Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Operator Algebras of Functions
Mittal, Meghna
2009-01-01
We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a vector-valued reproducing kernel Hilbert space. We use these to further develop a quantized function theory for various domains that extends and unifies Agler's theory of commuting contractions and the Arveson-Drury-Popescu theory of commuting row contractions. We obtain analogous factorization theorems, prove that the algebras that we obtain are dual operator algebras and show that for many domains, supremums over all commuting tuples of operators satisfying certain inequalities are obtained over all commuting tuples of matrices.
GOLDMAN ALGEBRA, OPERS AND THE SWAPPING ALGEBRA
Labourie, François
2012-01-01
We define a Poisson Algebra called the {\\em swapping algebra} using the intersection of curves in the disk. We interpret a subalgebra of the fraction algebra of the swapping algebra -- called the {\\em algebra of multifractions} -- as an algebra of functions on the space of cross ratios and thus as an algebra of functions on the Hitchin component as well as on the space of $\\mathsf{SL}_n(\\mathbb R)$-opers with trivial holonomy. We relate this Poisson algebra to the Atiyah--Bott--Goldman symple...
Operator algebras and topology
International Nuclear Information System (INIS)
These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L2-cohomology, L2-Betti numbers and other L2-invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)
Simple Algebras of Invariant Operators
Institute of Scientific and Technical Information of China (English)
Xiaorong Shen; J.D.H. Smith
2001-01-01
Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.
Operator product expansion algebra
International Nuclear Information System (INIS)
The Operator Product Expansion (OPE) is a theoretical tool for studying the short distance behaviour of products of local quantum fields. Over the past 40 years, the OPE has not only found widespread computational application in high-energy physics, but, on a more conceptual level, it also encodes fundamental information on algebraic structures underlying quantum field theories. I review new insights into the status and properties of the OPE within Euclidean perturbation theory, addressing in particular the topics of convergence and ''factorisation'' of the expansion. Further, I present a formula for the ''deformation'' of the OPE algebra caused by a quartic interaction. This formula can be used to set up a novel iterative scheme for the perturbative computation of OPE coefficients, based solely on the zeroth order coefficients (and renormalisation conditions) as initial input.
Differential operators on non-commutative algebras
Hazewinkel, Michiel
2013-01-01
There is a relatively well-known description of the algebra of (higher order) left differential operators on commutative algebras. This note gives a construction of similar flavor for algebras of differential operators on not necessarily commutative algebras.
Linear operators in Clifford algebras
International Nuclear Information System (INIS)
We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators MeI,eJ defined by x→eI.x.eJ, where the eI are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (MeI,eJ) is exactly a basis in the even case. (orig.)
Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras
Ashihara, Takahiro; Miyamoto, Masahiko
2008-01-01
If a vertex operator algebra $V=\\oplus_{n=0}^{\\infty}V_n$ satisfies $\\dim V_0=1, V_1=0$, then $V_2$ has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set $Sym_d(\\C)$ of symmetric matrices of degree $d$ becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, central charges influence the properties of vertex operator algebras. In t...
On Axiomatic Approaches to Intertwining Operator Algebras
Chen, Ling
2015-01-01
We study intertwining operator algebras introduced and constructed by Huang. In the case that the intertwining operator algebras involve intertwining operators among irreducible modules for their vertex operator subalgebras, a number of results on intertwining operator algebras were given in [H9] but some of the proofs were postponed to an unpublished monograph. In this paper, we give the proofs of these results in [H9] and we formulate and prove results for general intertwining operator algebras without assuming that the modules involved are irreducible. In particular, we construct fusing and braiding isomorphisms for general intertwining operator algebras and prove that they satisfy the genus-zero Moore-Seiberg equations. We show that the Jacobi identity for intertwining operator algebras is equivalent to generalized rationality, commutativity and associativity properties of intertwining operator algebras. We introduce the locality for intertwining operator algebras and show that the Jacobi identity is equi...
Reflexive Operator Algebras on Banach Spaces
Merlevède, Florence; Peligrad, Costel; Peligrad, Magda
2012-01-01
In this paper we study the reflexivity of a unital strongly closed algebra of operators with complemented invariant subspace lattice on a Banach space. We prove that if such an algebra contains a complete Boolean algebra of projections of finite uniform multiplicity and with the direct sum property, then it is reflexive, i.e. it contains every operator that leaves invariant every closed subspace in the invariant subspace lattice of the algebra. In particular, such algebras coincide with their...
Vertex operator (super)algebras and LCFT
International Nuclear Information System (INIS)
We review some of the developments in logarithmic conformal field theory from the vertex algebra point of view. Several important examples of vertex operator (super)algebras of the triplet type are discussed, including their representation theory. Particular emphasis is put on C2-cofiniteness of these vertex algebras, a description of Zhu’s algebras and the construction of logarithmic modules. (review)
Spatial-Operator Algebra For Robotic Manipulators
Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.
1991-01-01
Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.
Exceptional Vertex Operator Algebras and the Virasoro Algebra
Tuite, Michael P.
2008-01-01
We consider exceptional vertex operator algebras for which particular Casimir vectors constructed from the primary vectors of lowest conformal weight are Virasoro descendants of the vacuum. We discuss constraints on these theories that follow from an analysis of appropriate genus zero and genus one two point correlation functions. We find explicit differential equations for the partition function in the cases where the lowest weight primary vectors form a Lie algebra or a Griess algebra. Exam...
Compact Weighted Composition Operators on Function Algebras
TAKAGI, Hiroyuki
1988-01-01
A weighted endomorphism of an algebra is an endomorphism followed by a multiplier. In [6] and [4], H. Kamowitz characterized compact weighted endomorphisms of $C(X)$ and the disc algebra. In this note we define a weighted composition operator on a function algebra as a generalization of a weighted endomorphism, and characterize compact weighted composition operators on a function algebra satisfying a certain condition [Theorem 2]. This theorem not only includes Kamowitz's results as ...
Algebra of pseudo-differential operators over C*-algebra
International Nuclear Information System (INIS)
Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L2-continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra
On ultraproducts of operator algebras
Institute of Scientific and Technical Information of China (English)
LI; Weihua
2005-01-01
Some basic questions on ultraproducts of C*-algebras and yon Neumann algebras, including the relation to K-theory of C*-algebras are considered. More specifically,we prove that under certain conditions, the K-groups of ultraproduct of C*-algebras are isomorphic to the ultraproduct of respective K-groups of C*-algebras. We also show that the ultraproducts of factors of type Ⅱ1 are prime, i.e. not isomorphic to any non-trivial tensor product.
Lectures on algebraic quantum field theory and operator algebras
International Nuclear Information System (INIS)
In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)
Lectures on algebraic quantum field theory and operator algebras
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Berlin Univ. (Germany). Institut fuer Theoretische Physik. E-mail: schroer@cbpf.br
2001-04-01
In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)
Lax operator algebras and integrable systems
Sheinman, O. K.
2016-02-01
A new class of infinite-dimensional Lie algebras, called Lax operator algebras, is presented, along with a related unifying approach to finite-dimensional integrable systems with a spectral parameter on a Riemann surface such as the Calogero-Moser and Hitchin systems. In particular, the approach includes (non-twisted) Kac-Moody algebras and integrable systems with a rational spectral parameter. The presentation is based on quite simple ideas about the use of gradings of semisimple Lie algebras and their interaction with the Riemann-Roch theorem. The basic properties of Lax operator algebras and the basic facts about the theory of the integrable systems in question are treated (and proved) from this general point of view. In particular, the existence of commutative hierarchies and their Hamiltonian properties are considered. The paper concludes with an application of Lax operator algebras to prequantization of finite-dimensional integrable systems. Bibliography: 51 titles.
Imperfect Cloning Operations in Algebraic Quantum Theory
Kitajima, Yuichiro
2015-01-01
No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.
Niibori, Hidekazu; Sagaki, Daisuke
2009-01-01
Let $r \\in \\BC$ be a complex number, and $d \\in \\BZ_{\\ge 2}$ a positive integer greater than or equal to 2. Ashihara and Miyamoto introduced a vertex operator algebra $\\Vam$ of central charge $dr$, whose Griess algebra is isomorphic to the simple Jordan algebra of symmetric matrices of size $d$. In this paper, we prove that the vertex operator algebra $\\Vam$ is simple if and only if $r$ is not an integer. Further, in the case that $r$ is an integer (i.e., $\\Vam$ is not simple), we give a gene...
Operator algebras for analytic varieties
Davidson, Kenneth R; Shalit, Orr Moshe
2012-01-01
We study the isomorphism problem for the multiplier algebras of irreducible complete Pick kernels. These are precisely the restrictions $\\cM_V$ of the multiplier algebra $\\cM$ of Drury-Arveson space to a holomorphic subvariety $V$ of the unit ball. The related algebras of continuous multipliers are also considered. We find that $\\cM_V$ is completely isometrically isomorphic to $\\cM_W$ if and only if $W$ is the image of $V$ under a biholomorphic automorphism of the ball. A similar condition characterizes when there exists a unital completely contractive homomorphism from $\\cM_V$ to $\\cM_W$. If one of the varieties is a homogeneous algebraic variety, then isometric isomorphism is shown to imply completely isometric isomorphism of the algebras. The problem of characterizing when two such algebras are (algebraically) isomorphic is also studied. It is shown that if there is an isomorphism between $\\cM_V$ and $\\cM_W$, then there is a biholomorphism (with multiplier coordinates) between the varieties. We present a n...
Operator algebras for multivariable dynamics
Davidson, Kenneth R.; Katsoulis, Elias G.
2007-01-01
Let $X$ be a locally compact Hausdorff space with $n$ proper continuous self maps $\\tau_i:X \\to X$ for $1 \\le i \\le n$. To this we associate two topological conjugacy algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra $\\A(X, \\tau)$ and the semicrossed product $\\rC_0(X)\\times_\\tau\\Fn$. We introduce a concept of conjugacy for multidimensional systems, which we coin piecewise conjugacy. We prove that the piecewise conjugacy class of the sy...
Weighted composition operators and locally convex algebras
Institute of Scientific and Technical Information of China (English)
Edoardo Vesentini
2005-01-01
The Gleason-Kahane-Zelazko theorem characterizes the continuous homomorphism of an associative, locally multiplicatively convex, sequentially complete algebra A into the field C among all linear forms on A. This characterization will be applied along two different directions. In the case in which A is a commutative Banach algebra, the theorem yields the representation of some classes of continuous linear maps A: A → A as weighted composition operators, or as composition operators when A is a continuous algebra endomorphism. The theorem will then be applied to explore the behaviour of continuous linear forms on quasi-regular elements, when A is either the algebra of all Hilbert-Schmidt operators or a Hilbert algebra.
Homogeneous conformal averaging operators on semisimple Lie algebras
Kolesnikov, Pavel
2014-01-01
In this note we show a close relation between the following objects: Classical Yang---Baxter equation (CYBE), conformal algebras (also known as vertex Lie algebras), and averaging operators on Lie algebras. It turns out that the singular part of a solution of CYBE (in the operator form) on a Lie algebra $\\mathfrak g$ determines an averaging operator on the corresponding current conformal algebra $\\mathrm{Cur} \\mathfrak g$. For a finite-dimensional semisimple Lie algebra $\\mathfrak g$, we desc...
Duality theories for Boolean algebras with operators
Givant, Steven
2014-01-01
In this new text, Steven Givant—the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski—develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.
Nijenhuis Operators on n-Lie Algebras
Jie-Feng, Liu; Yun-He, Sheng; Yan-Qiu, Zhou; Cheng-Ming, Bai
2016-06-01
In this paper, we study (n ‑ 1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples. Supported by National Natural Science Foundation of China under Grant Nos. 11471139, 11271202, 11221091, 11425104, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120031110022, and National Natural Science Foundation of Jilin Province under Grant No. 20140520054JH
Ahmed, Tarek Sayed
2013-01-01
We give some general theorems on free algebras of varieties of Boolean algebras with operators; a hitherto new result is obtained for Pinter's substitution algebras. For n\\geq 3, and m>1, there is a generating set of the free algebra freely generated by m elements, which is not a free set of generators.
Braiding operator via quantum cluster algebra
International Nuclear Information System (INIS)
We construct a braiding operator in terms of the quantum dilogarithm function based on the quantum cluster algebra. We show that it is a q-deformation of the R-operator for which hyperbolic octahedron is assigned. Also shown is that, by taking q to be a root of unity, our braiding operator reduces to the Kashaev RK-matrix up to a simple gauge-transformation. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
C*-algebras and operator theory
Murphy, Gerald J
1990-01-01
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Lax operator algebras and Hamiltonian integrable hierarchies
Sheinman, Oleg K
2009-01-01
We consider the theory of Lax equations in complex simple and reductive classical Lie algebras with the spectral parameter on a Riemann surface of finite genus. Our approach is based on the new objects -- the Lax operator algebras, and develops the approach of I.Krichever treating the $\\gl(n)$ case. For every Lax operator considered as the mapping sending a point of the cotangent bundle on the space of extended Tyrin data to an element of the corresponding Lax operator algebra we construct the hierarchy of mutually commuting flows given by Lax equations and prove that those are Hamiltonian with respect to the Krichever-Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example we derive elliptic $A_n$, $C_n$, $D_n$ Calogero-Moser systems in frame of our approach.
Automorphism groups and derivation algebras of finitely generated vertex operator algebras
Dong, C.; Griess Jr., R. L.
2002-01-01
We investigate the general structure of the automorphism group and the Lie algebra of derivations of a finitely generated vertex operator algebra. The automorphism group is isomorphic to an algebraic group. Under natural assumptions, the derivation algebra has an invariant bilinear form and the ideal of inner derivations is nonsingular.
States on algebras of unbounded operators
International Nuclear Information System (INIS)
There are reviewed some of the fundamental results on normal states on algebras of unbounded operators. It is ndicated how these results are related with ideal theory. Few known facts concerning perturbation of normal states are included. There are contained some new results on singular states
Virasoro Correlation Functions for Vertex Operator Algebras
Hurley, Donny; Tuite, Michael P.
2011-01-01
We consider all genus zero and genus one correlation functions for the Virasoro vacuum descendants of a vertex operator algebra. These are described in terms of explicit generating functions that can be combinatorially expressed in terms of graph theory related to derangements in the genus zero case and to partial permutations in the genus one case.
Conditional Expectations for Unbounded Operator Algebras
Directory of Open Access Journals (Sweden)
Atsushi Inoue
2007-06-01
Full Text Available Two conditional expectations in unbounded operator algebras (OÃ¢ÂˆÂ—-algebras are discussed. One is a vector conditional expectation defined by a linear map of an OÃ¢ÂˆÂ—-algebra into the Hilbert space on which the OÃ¢ÂˆÂ—-algebra acts. This has the usual properties of conditional expectations. This was defined by Gudder and Hudson. Another is an unbounded conditional expectation which is a positive linear map Ã¢Â„Â° of an OÃ¢ÂˆÂ—-algebra Ã¢Â„Â³ onto a given OÃ¢ÂˆÂ—-subalgebra Ã°ÂÂ’Â© of Ã¢Â„Â³. Here the domain D(Ã¢Â„Â° of Ã¢Â„Â° does not equal to Ã¢Â„Â³ in general, and so such a conditional expectation is called unbounded.
Almost-graded central extensions of Lax operator algebra
Schlichenmaier, Martin
2011-01-01
Lax operator algebras constitute a new class of infinite dimensional Lie algebras of geometric origin. More precisely, they are algebras of matrices whose entries are meromorphic functions on a compact Riemann surface. They generalize classical current algebras and current algebras of Krichever-Novikov type. Lax operators for $\\gl(n)$, with the spectral parameter on a Riemann surface, were introduced by Krichever. In joint works of Krichever and Sheinman their algebraic structure was revealed and extended to more general groups. These algebras are almost-graded. In this article their definition is recalled and classification and uniqueness results for almost-graded central extensions for this new class of algebras are presented. The explicit forms of the defining cocycles are given. If the finite-dimensional Lie algebra on which the Lax operator algebra is based is simple then, up to equivalence and rescaling of the central element, there is a unique non-trivial almost-graded central extension. These results ...
Framed vertex operator algebras, codes and the moonshine module
Dong, C; Hoehn, G
1997-01-01
For a simple vertex operator algebra whose Virasoro element is a sum of commutative Virasoro elements of central charge 1/2, two codes are introduced and studied. It is proved that such vertex operator algebras are rational. For lattice vertex operator algebras and related ones, decompositions into direct sums of irreducible modules for the product of the Virasoro algebras of central charge 1/2 are explicitly described. As an application, the decomposition of the moonshine vertex operator algebra is obtained for a distinguished system of 48 Virasoro algebras.
Framed vertex operator algebras, codes and the moonshine module
Dong, C.; Griess Jr., R. L.; Hoehn, G.
1997-01-01
For a simple vertex operator algebra whose Virasoro element is a sum of commutative Virasoro elements of central charge 1/2, two codes are introduced and studied. It is proved that such vertex operator algebras are rational. For lattice vertex operator algebras and related ones, decompositions into direct sums of irreducible modules for the product of the Virasoro algebras of central charge 1/2 are explicitly described. As an application, the decomposition of the moonshine vertex operator alg...
Operator algebra from fusion rules
International Nuclear Information System (INIS)
It is described how the fusion rules of a conformal field theory can be employed to derive differential equations for the four-point functions of the theory, and thus to determine eventually the operator product coeffients for primary fields. The results are applied to the Ising fusion rules. A set of theories possessing these function rules is found which is labelled by two discrete parameters. For a specific value of one of the parameters, these are the level one Spin(2m+1) Wess-Zusimo-Witten theories; it is shown that they represent an infinite number of inequivalent theories. (author). 38 refs
Conformal field theory, tensor categories and operator algebras
International Nuclear Information System (INIS)
This is a set of lecture notes on the operator algebraic approach to 2-dimensional conformal field theory. Representation theoretic aspects and connections to vertex operator algebras are emphasized. No knowledge on operator algebras or quantum field theory is assumed. (topical review)
Topological isomorphisms for some universal operator algebras
Hartz, Michael
2012-01-01
Let $I$ be a radical homogeneous ideal of complex polynomials in $d$ variables, and let $\\mathcal A_I$ be the norm-closed non-selfadjoint algebra generated by the compressions of the $d$-shift on Drury-Arveson space $H^2_d$ to the co-invariant subspace $H^2_d \\ominus I$. Then $\\mathcal A_I$ is the universal operator algebra for commuting row contractions subject to the relations in $I$. In this note, we study the question, under which conditions there are topological isomorphisms between two such algebras $\\mathcal A_I$ and $\\mathcal A_J$. We provide a positive answer to a conjecture of Davdison, Ramsey and Shalit: that $\\mathcal A_I$ and $\\mathcal A_J$ are topologically isomorphic if and only if there is an invertible linear map $A$ on $\\mathbb C^d$ which maps the vanishing locus of $J$ isometrically onto the vanishing locus of $I$. Most of the proof is devoted to showing that finite algebraic sums of full Fock spaces over subspaces of $\\mathbb C^d$ are closed. This allows us to show that the map $A$ induces...
The radical of a vertex operator algebra
Dong, C.; Li, H.; Mason, G.; Montague, P
1996-01-01
The radical $J(V)$ of a vertex operator algebra $V$ is defined to be the subspace of $V$ consisting of vectors $v$ such that the zero mode $o(v)=0$ on $V$ where $o(v)=v_{wt v-1}$ if $v$ is homogeneous. We establish various facts about $o(v),$ including the determination of $J(V)$ which is shown to be essentially equal to $(L(0)+L(-1))V.$
Bispectral algebras of commuting ordinary differential operators
Bakalov, B N; Yakimov, M T
1997-01-01
We develop a systematic way for constructing bispectral algebras of commuting ordinary differential operators of any rank N. It enables us to obtain all previously known classes or examples of bispectral operators. The suggested method is completely algorithmic, which allows us to present explicitly new examples. We conjecture that the class built in the present paper exhausts all bispectral scalar operators. This paper is the third of a series of papers (hep-th/9510211, q-alg/9602010, q-alg/9602012) on the bispectral problem.
Spatial Operator Algebra for multibody system dynamics
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1992-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Algebras of unbounded operators and physical applications: a survey
Bagarello, Fabio
2009-01-01
After an historical introduction on the standard algebraic approach to quantum mechanics of large systems we review the basic mathematical aspects of the algebras of unbounded operators. After that we discuss in some details their relevance in physical applications.
Algebra of pseudo-differential C*-operators
International Nuclear Information System (INIS)
In this paper the algebra of pseudo-differential operators is studied in the framework of C*-algebras. It is proved that every pseudo-differential operator of order m admits an adjoint operator, in this case, which is again a pseudo-differential operator. Consequently, the space of all pseudo-differential operators on a compact manifold is an involutive algebra. 10 refs
On Monotone Product of Operator Algebras
Institute of Scientific and Technical Information of China (English)
Wen Ming WU; Li Guang WANG
2007-01-01
In this note, we give complete descriptions of the structure of the monotone product of two yon Neumann algebras and two C*-algebras. We show that the monotone product of two simple yon Neumann algebras and C*-algebras aren't simple again. We also show that the monotone product of two hyperfinite von Neumann algebras is again hyperfinite and determine the type of the monotone product of two factors.
International Nuclear Information System (INIS)
The graphic technique of 'trees' developed in the previous paper is used for the construction of the q-analogue of the tensor operator algebra. The adjoint action of the suq(2) generator on tensor operators is discussed and adjoint R-matrix is introduced. A set of formulae for the calculation of the matrix elements of tensor operators and their combinations is derived. As an application, the recurrent relations for the suq(2) Clebsh-Gordan and Racah coefficients are obtained
Spatial-Operator Algebra For Flexible-Link Manipulators
Jain, Abhinandan; Rodriguez, Guillermo
1994-01-01
Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.
A spatial operator algebra for manipulator modeling and control
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
QPFT operator algebras and commutative exterior differential calculus
International Nuclear Information System (INIS)
The reduction of the structure theory of the operator algebras of quantum projective (sl(2, C)-invariant) field theory (QPFT operator algebras) to a commutative exterior differential calculus by means of the operation of renormalization of a pointwise product of operator fields is described. In the first section, the author introduces the concept of the operator algebra of quantum field theory and describes the operation of the renormalization of a pointwise product of operator fields. The second section is devoted to a brief exposition of the fundamentals of the structure theory of QPT operator algebras. The third section is devoted to commutative exterior differential calculus. In the fourth section, the author establishes the connection between the renormalized pointwise product of operator fields in QPFT operator algebras and the commutative exterior differential calculus. 5 refs
Affine Vertex Operator Algebras and Modular Linear Differential Equations
Arike, Yusuke; Kaneko, Masanobu; Nagatomo, Kiyokazu; Sakai, Yuichi
2016-05-01
In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20.
Affine Vertex Operator Algebras and Modular Linear Differential Equations
Arike, Yusuke; Kaneko, Masanobu; Nagatomo, Kiyokazu; Sakai, Yuichi
2016-04-01
In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20.
Bounded linear operators between C^*-algebras
Haagerup, U.; Pisier, Gilles
1993-01-01
Let $u:A\\to B$ be a bounded linear operator between two $C^*$-algebras $A,B$. The following result was proved by the second author. Theorem 0.1. There is a numerical constant $K_1$ such that for all finite sequences $x_1,\\ldots, x_n$ in $A$ we have $$\\leqalignno{&\\max\\left\\{\\left\\|\\left(\\sum u(x_i)^* u(x_i)\\right)^{1/2}\\right\\|_B, \\left\\|\\left(\\sum u(x_i) u(x_i)^*\\right)^{1/2}\\right\\|_B\\right\\}&(0.1)_1\\cr \\le &K_1\\|u\\| \\max\\left\\{\\left\\|\\left(\\sum x^*_ix_i\\right)^{1/2}\\right\\|_A, \\left\\|\\left...
An $E_8$-approach to the moonshine vertex operator algebra
Shimakura, Hiroki
2010-01-01
In this article, we study the moonshine vertex operator algebra starting with the tensor product of three copies of the vertex operator algebra $V_{\\sqrt2E_8}^+$, and describe it by the quadratic space over $\\F_2$ associated to $V_{\\sqrt2E_8}^+$. Using quadratic spaces and orthogonal groups, we show the transitivity of the automorphism group of the moonshine vertex operator algebra on the set of all full vertex operator subalgebras isomorphic to the tensor product of three copies of $V_{\\sqrt2E_8}^+$, and determine the stabilizer of such a vertex operator subalgebra. Our approach is a vertex operator algebra analogue of "An $E_8$-approach to the Leech lattice and the Conway group" by Lepowsky and Meurman. Moreover, we find new analogies among the moonshine vertex operator algebra, the Leech lattice and the extended binary Golay code.
Campoamor-Stursberg, R
2008-01-01
Given a semidirect product $\\frak{g}=\\frak{s}\\uplus\\frak{r}$ of semisimple Lie algebras $\\frak{s}$ and solvable algebras $\\frak{r}$, we construct polynomial operators in the enveloping algebra $\\mathcal{U}(\\frak{g})$ of $\\frak{g}$ that commute with $\\frak{r}$ and transform like the generators of $\\frak{s}$, up to a functional factor that turns out to be a Casimir operator of $\\frak{r}$. Such operators are said to generate a virtual copy of $\\frak{s}$ in $\\mathcal{U}(\\frak{g})$, and allow to compute the Casimir operators of $\\frak{g}$ in closed form, using the classical formulae for the invariants of $\\frak{s}$. The behavior of virtual copies with respect to contractions of Lie algebras is analyzed. Applications to the class of Hamilton algebras and their inhomogeneous extensions are given.
International Conference on Semigroups, Algebras and Operator Theory
Meakin, John; Rajan, A
2015-01-01
This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f...
Boson permutation and parity operators: Lie algebra and applications
International Nuclear Information System (INIS)
We show that dichotomic permutation and parity operators for a two-dimensional boson system form an su(2) algebra with a unitary operator that relates, in quantum optics, to a balanced beamsplitter. The algebra greatly simplifies the input-output transformations of states through quantum nonlinear systems such as the Kerr interferometer or the kicked top
An investigation of symmetry operations with Clifford algebra
International Nuclear Information System (INIS)
After presenting Clifford algebra and quaternions, the symmetry operations with Clifford algebra and quaternions are defined. This symmetry operations are applied to a Platonic solid, which is called as dodecahedron. Also, the vertices of a dodecahedron presented in the Cartesian coordinates are calculated (Authors)
Theory of pseudo-differential operators over C*-Algebras
International Nuclear Information System (INIS)
In this article the behaviour of adjoints and composition of pseudo-differential operators in the framework of a C*-algebra is studied. It results that the class of pseudo-differential operators of order zero is a C*-algebra. 8 refs
On the uniqueness of the moonshine vertex operator algebra
Dong, Chongying; Griess Jr., Robert L.; lam, Ching Hung
2005-01-01
It is proved that a vertex operator algebra is isomorphic to the moonshine VOA of Frenkel-Lepowsky-Meurman if it satisfies certain conditions. Our two main theorems establish a weak version of the FLM uniqueness conjecture for the moonshine vertex operator algebra. We believe that these are the first such results.
Norton's Trace Formulae for the Griess Algebra of a Vertex Operator Algebra with Larger Symmetry
Matsuo, Atsushi
2000-01-01
Formulae expressing the trace of the composition of several (up to five) adjoint actions of elements of the Griess algebra of a vertex operator algebra are derived under certain assumptions on the action of the automorphism group. They coincide, when applied to the moonshine module $V^\
Associative algebras for (logarithmic) twisted modules for a vertex operator algebra
Huang, Yi-Zhi
2016-01-01
We construct two associative algebras from a vertex operator algebra $V$ and a general automorphism $g$ of $V$. The first, called $g$-twisted zero-mode algebra, is a subquotient of what we call $g$-twisted universal enveloping algebra of $V$. These algebras are generalizations of the corresponding algebras introduced and studied by Frenkel-Zhu and Nagatomo-Tsuchiya in the (untwisted) case that $g$ is the identity. The other is a generalization of the $g$-twisted version of Zhu's algebra for suitable $g$-twisted modules constructed by Dong-Li-Mason when the order of $g$ is finite. We are mainly interested in $g$-twisted $V$-modules introduced by the first author in the case that $g$ is of infinite order and does not act on $V$ semisimply. In this case, twisted vertex operators in general involve the logarithm of the variable. We construct functors between categories of suitable modules for these associative algebras and categories of suitable (logarithmic) $g$-twisted $V$-modules. Using these functors, we prov...
The antipode of and star operations in a Hopf algebra
International Nuclear Information System (INIS)
It is pointed out that a star operation in a Hopf algebra, i.e., an involutive semilinear mapping of the Hopf algebra into itself which is (anti)multiplicative and (anti)comultiplicative, automatically satisfies a certain compatibility relation with the antipode. (orig.)
Norton's trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry
International Nuclear Information System (INIS)
Formulae expressing the trace of the composition of several (up to five) adjoint actions of elements of the Griess algebra of a vertex operator algebra are derived under certain assumptions on the action of the automorphism group. They coincide, when applied to the moonshine module of I. B. Frenkel et al. (1984), with the trace formulae obtained in a different way by S. Norton, and the spectrum of some idempotents related to 2A, 2B, 3A and 4A elements of the Monster is determined by the representation theory of the Virasoro algebra at c=1/2, the W3 algebra at c=4/5 or the W4 algebra at c=1. The generalization to the trace function on the whole space is also given for the composition of two adjoint actions, which can be used to compute the McKay-Thompson series for a 2A involution of the Monster. (orig.)
Qiu, Jianjun
2013-01-01
In this paper, the Composition-Diamond lemma for commutative algebras with multiple operators is established. As applications, the Gr\\"obner-Shirshov bases and linear bases of free commutative Rota-Baxter algebra, free commutative $\\lambda$-differential algebra and free commutative $\\lambda$-differential Rota-Baxter algebra are given, respectively. Consequently, these three free algebras are constructed directly by commutative $\\Omega$-words.
Commutative subalgebras of the algebra of smooth operators
Ciaś, Tomasz
2015-01-01
We consider the Fr\\'echet ${}^*$-algebra $L(s',s)$ of the so-called smooth operators, i.e. continuous linear operators from the dual $s'$ of the space $s$ of rapidly decreasing sequences into $s$. This algebra is a non-commutative analogue of the algebra $s$. We characterize all closed commutative ${}^*$-subalgebras of $L(s',s)$ which are at the same time isomorphic to closed ${}^*$-subalgebras of $s$ and we provide an example of a closed commutative ${}^*$-subalgebra of $L(s',s)$ which canno...
The investigation of platonic solids symmetry operations with clifford algebra
International Nuclear Information System (INIS)
The geometric algebra produces the new fields of view in the modern mathematical physics, definition of bodies and rearranging for equations of mathematics and physics. The new mathematical approaches play an important role in the progress of physics. After presenting Clifford algebra and quarantine's, the symmetry operations with Clifford algebra and quarantine's are defined. This symmetry operations are applied to a Platonic solids, which are called as tetrahedron, cube, octahedron, icosahedron and dodecahedron. Also, the vertices of Platonic solids presented in the Cartesian coordinates are calculated
Dobrev, V K
2013-01-01
In the present paper we continue the project of systematic construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we call 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduce the new notion of {\\it parabolic relation} between two non-compact semisimple Lie algebras g and g' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E_{7(7)} which is parabolically related to the CLA E_{7(-25)}, the parabolic subalgebras including E_{6(6)} and E_{6(-6)} . Other interesting examples are the orthogonal algebras so(p,q) all of which are parabolically related to the conformal algebra so(n,2) with p+q=n+2, the parabolic subalgebras including the Lorentz subalgebra so(n-1,1) and its analogs so(p-1,...
Why Do the Quantum Observables Form a Jordan Operator Algebra?
Niestegge, Gerd
2010-01-01
The Jordan algebra structure of the bounded real quantum observables was recognized already in the early days of quantum mechanics. While there are plausible reasons for most parts of this structure, the existence of the distributive nonassociative multiplication operation is hard to justify from a physical or statistical point of view. Considering the non-Boolean extension of classical probabilities, presented in a recent paper, it is shown in this paper that such a multiplication operation can be derived from certain properties of the conditional probabilities and the observables, i.e., from postulates with a clear statistical interpretation. The well-known close relation between Jordan operator algebras and C*-algebras then provides the connection to the quantum-mechanical Hilbert space formalism, thus resulting in a novel axiomatic approach to general quantum mechanics that includes the types II and III von Neumann algebras.
Braided Tensor Categories and Extensions of Vertex Operator Algebras
Huang, Yi-Zhi; Kirillov, Alexander; Lepowsky, James
2015-08-01
Let V be a vertex operator algebra satisfying suitable conditions such that in particular its module category has a natural vertex tensor category structure, and consequently, a natural braided tensor category structure. We prove that the notions of extension (i.e., enlargement) of V and of commutative associative algebra, with uniqueness of unit and with trivial twist, in the braided tensor category of V-modules are equivalent.
Semantics for a Quantum Programming Language by Operator Algebras
Cho, K.
2014-01-01
This paper presents a novel semantics for a quantum programming language by operator algebras, which are known to give a formulation for quantum theory that is alternative to the one by Hilbert spaces. We show that the opposite category of the category of W*-algebras and normal completely positive subunital maps is an elementary quantum flow chart category in the sense of Selinger. As a consequence, it gives a denotational semantics for Selinger's first-order functional quantum programming la...
Algebraic Properties of Toeplitz Operators on the Polydisk
Directory of Open Access Journals (Sweden)
Bo Zhang
2011-01-01
Full Text Available We discuss some algebraic properties of Toeplitz operators on the Bergman space of the polydisk Dn. Firstly, we introduce Toeplitz operators with quasihomogeneous symbols and property (P. Secondly, we study commutativity of certain quasihomogeneous Toeplitz operators and commutators of diagonal Toeplitz operators. Thirdly, we discuss finite rank semicommutators and commutators of Toeplitz operators with quasihomogeneous symbols. Finally, we solve the finite rank product problem for Toeplitz operators on the polydisk.
Operator algebra of free conformal currents via twistors
Gelfond, O A
2013-01-01
Operator algebra of (not necessarily free) higher-spin conformal conserved currents in generalized matrix spaces, that include 3d Minkowski space-time as a particular case, is shown to be determined by an associative algebra $M$ of functions on the twistor space. For free conserved currents, $M$ is the universal enveloping algebra of the higher-spin algebra. Proposed construction greatly simplifies computation and analysis of correlators of conserved currents. Generating function for $n$-point functions of 3d (super)currents of all spins, built from $N$ free constituent massless scalars and spinors, is obtained in a concise form of certain determinant. Our results agree with and extend earlier bulk computations in the HS $AdS_4/CFT_3$ framework. Generating function for $n$-point functions of 4d conformal currents is also presented.
Construction of conformally invariant higher spin operators using transvector algebras
International Nuclear Information System (INIS)
This paper deals with a systematic construction of higher spin operators, defined as conformally invariant differential operators acting on functions on flat space Rm with values in an arbitrary half-integer irreducible representation for the spin group. To be more precise, the higher spin version of the Dirac operator and associated twistor operators will be constructed as generators of a transvector algebra, hereby generalising the well-known fact that the classical Dirac operator on Rm and its symbol generate the orthosymplectic Lie superalgebra osp(1,2). To do so, we will use the extremal projection operator and its relation to transvector algebras. In the second part of the article, the conformal invariance of the constructed higher spin operators will be proven explicitly
Construction of conformally invariant higher spin operators using transvector algebras
Energy Technology Data Exchange (ETDEWEB)
Eelbode, D., E-mail: David.Eelbode@ua.ac.be [Department of Mathematics and Computer Science, University of Antwerp, Campus Middelheim, G-Building, Middelheimlaan 1, 2020 Antwerpen (Belgium); Raeymaekers, T., E-mail: Tim.Raeymaekers@UGent.be [Clifford Research Group, Department of Mathematical Analysis, Ghent University, Galglaan 2, 9000 Ghent (Belgium)
2014-10-15
This paper deals with a systematic construction of higher spin operators, defined as conformally invariant differential operators acting on functions on flat space R{sup m} with values in an arbitrary half-integer irreducible representation for the spin group. To be more precise, the higher spin version of the Dirac operator and associated twistor operators will be constructed as generators of a transvector algebra, hereby generalising the well-known fact that the classical Dirac operator on R{sup m} and its symbol generate the orthosymplectic Lie superalgebra osp(1,2). To do so, we will use the extremal projection operator and its relation to transvector algebras. In the second part of the article, the conformal invariance of the constructed higher spin operators will be proven explicitly.
Expressing OLAP operators with the TAX XML algebra
Hachicha, Marouane; Darmont, Jérôme
2008-01-01
With the rise of XML as a standard for representing business data, XML data warehouses appear as suitable solutions for Web-based decision-support applications. In this context, it is necessary to allow OLAP analyses over XML data cubes (XOLAP). Thus, XQuery extensions are needed. To help define a formal framework and allow much-needed performance optimizations on analytical queries expressed in XQuery, having an algebra at one's disposal is desirable. However, XOLAP approaches and algebras from the literature still largely rely on the relational model and/or only feature a small number of OLAP operators. In opposition, we propose in this paper to express a broad set of OLAP operators with the TAX XML algebra.
Jorgensen, PET
1987-01-01
Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e
BRST-operator for quantum Lie algebra and differential calculus on quantum groups
International Nuclear Information System (INIS)
For A Hopf algebra one determined structure of differential complex in two dual external Hopf algebras: A external expansion and in A* dual algebra external expansion. The Heisenberg double of these two Hopf algebras governs the differential algebra for the Cartan differential calculus on A algebra. The forst differential complex is the analog of the de Rame complex. The second complex coincide with the standard complex. Differential is realized as (anti)commutator with Q BRST-operator. Paper contains recursion relation that determines unequivocally Q operator. For Uq(gl(N)) Lie quantum algebra one constructed BRST- and anti-BRST-operators and formulated the theorem of the Hodge expansion
Hopf-algebraic structure of combinatorial objects and differential operators
Grossman, Robert; Larson, Richard G.
1989-01-01
A Hopf-algebraic structure on a vector space which has as basis a family of trees is described. Some applications of this structure to combinatorics and to differential operators are surveyed. Some possible future directions for this work are indicated.
Fractional Dirac operators and deformed field theory on Clifford algebra
International Nuclear Information System (INIS)
Fractional Dirac equations are constructed and fractional Dirac operators on Clifford algebra in four dimensional are introduced within the framework of the fractional calculus of variations recently introduced by the author. Many interesting consequences are revealed and discussed in some details.
and as Vertex Operator Extensionsof Dual Affine Algebras
Bowcock, P.; Feigin, B. L.; Semikhatov, A. M.; Taormina, A.
We discover a realisation of the affine Lie superalgebra and of the exceptional affine superalgebra as vertex operator extensions of two algebras with ``dual'' levels (and an auxiliary level-1 algebra). The duality relation between the levels is . We construct the representation of on a sum of tensor products of , , and modules and decompose it into a direct sum over the spectral flow orbit. This decomposition gives rise to character identities, which we also derive. The extension of the construction to is traced to the properties of embeddings into and their relation with the dual pairs. Conversely, we show how the representations are constructed from representations.
Some topics pertaining to algebras of linear operators
Semmes, Stephen
2002-01-01
On the one hand the algebras of linear operators here act on finite-dimensional vector spaces, and on the other hand the point of view is generally an analysts'. Also, one might think of algebras as being used to add more data to basic geometry as on a graph, for instance. Of course this is a common theme which is considered in numerous settings. From an analysts' perspective, compact groups, their representations, and more general topological groups and their representations are basic object...
Spatial operator algebra for flexible multibody dynamics
Jain, A.; Rodriguez, G.
1993-01-01
This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations.
Robot Control Based On Spatial-Operator Algebra
Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan
1992-01-01
Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.
ALGEBRAIC METHODS IN PARTIAL DIFFERENTIAL OPERATORS
Institute of Scientific and Technical Information of China (English)
Djilali Behloul
2005-01-01
In this paper we build a class of partial differential operators L having the following property: if u is a meromorphic function in Cn and Lu is a rational function A/q, with q homogenous, then u is also a rational function.
Genus Two Zhu Theory for Vertex Operator Algebras
Gilroy, Thomas
2015-01-01
We consider correlation functions for a vertex operator algebra on a genus two Riemann surface formed by sewing two tori together. We describe a generalisation of genus one Zhu recursion expressing an arbitrary genus two $n$--point correlation function in terms of $(n-1)$--point functions. We consider several applications including the correlation functions for the Heisenberg vertex operator algebra and its modules, Virasoro correlation functions and genus two Ward identities. We derive novel differential equations in terms of a differential operator on the genus two Siegel upper half plane for holomorphic $1$--forms, the normalised bidifferential of the second kind and the Heisenberg partition function. We also prove that the holomorphic mapping from the sewing parameter domain to the Siegel upper half plane is injective but not surjective.
C*-algebras generated by multiplication operators and composition operators with rational symbol
Hamada, Hiroyasu
2015-01-01
Let $R$ be a rational function of degree at least two, let $J_R$ be the Julia set of $R$ and let $\\mu^L$ be the Lyubich measure of $R$. We study the C$^*$-algebra $\\mathcal{MC}_R$ generated by all multiplication operators by continuous functions in $C(J_R)$ and the composition operator $C_R$ induced by $R$ on $L^2(J_R, \\mu^L)$. We show that the C$^*$-algebra $\\mathcal{MC}_R$ is isomorphic to the C$^*$-algebra $\\mathcal{O}_R (J_R)$ associated with the complex dynamical system $\\{R^{\\circ n} \\}...
Wilson operator algebras and ground states for coupled BF theories
Tiwari, Apoorv; Chen, Xiao; Ryu, Shinsei
2016-01-01
The multi-flavor $BF$ theories in (3+1) dimensions with cubic or quartic coupling are the simplest topological quantum field theories that can describe fractional braiding statistics between loop-like topological excitations (three-loop or four-loop braiding statistics). In this paper, by canonically quantizing these theories, we study the algebra of Wilson loop and Wilson surface operators, and multiplets of ground states on three torus. In particular, by quantizing these coupled $BF$ theori...
Algebraic Quantization, Good Operators and Fractional Quantum Numbers
Aldaya Valverde, Víctor; Calixto Molina, Manuel; Guerrero García, Julio
1995-01-01
The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the “failure” of the Ehrenfest theorem is clarified in terms of the already defined notion of good (and bad) operators. The analysis of “constrained” Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric ...
Spatial operator algebra framework for multibody system dynamics
Rodriguez, G.; Jain, Abhinandan; Kreutz, K.
1989-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Analysis on singular spaces: Lie manifolds and operator algebras
Nistor, Victor
2016-07-01
We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called "Lie manifolds" -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Exceptional Lie Algebra $E_{7(-25)}$ (Multiplets and Invariant Differential Operators)
Dobrev, V K
2008-01-01
In the present paper we continue the project of systematic construction of invariant differential operators on the example of the non-compact exceptional algebra $E_{7(-25)}$. Our choice of this particular algebra is motivated by the fact that it belongs to a narrow class of algebras, which we call 'conformal Lie algebras', which have very similar properties to the conformal algebras of $n$-dimensional Minkowski space-time. This class of algebras is identified and summarized in a table. Another motivation is related to the AdS/CFT correspondence. We give the multiplets of indecomposable elementary representations, including the necessary data for all relevant invariant differential operators.
Disjunctive normal forms for any class of Boolean algebras with operators
Khaled, Mohamed
2015-01-01
Disjunctive normal forms can provide elegant and constructive proofs of many standard results such as completeness, decidability and so on. They were also used to show non atomicity of some free algebras of specific Boolean algebras with operators. Here, we generalize the normal forms for any class of Boolean algebras with operators.
Method of generalized Reynolds operators and Pauli's theorem in Clifford algebras
Shirokov, D. S.
2014-01-01
We consider real and complex Clifford algebras of arbitrary even and odd dimensions and prove generalizations of Pauli's theorem for two sets of Clifford algebra elements that satisfy the main anticommutative conditions. In our proof we use some special operators - generalized Reynolds operators. This method allows us to obtain an algorithm to compute elements that connect two different sets of Clifford algebra elements.
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.
International Nuclear Information System (INIS)
The combinatorics computation is used to describe the Casimir operators of the symplectic Lie Algebra. This result is applied for determining the Center of the enveloping Algebra of the semidirect Product of the Heisenberg Lie Algebra and the symplectic Lie Algebra. (author). 10 refs
On Some Algebraic and Operator-Theoretic Properties of λ-Toeplitz Operators
Mehdi Nikpour
2015-01-01
Based on a spectral problem raised by Barría and Halmos, a new class of Hardy-Hilbert space operators, containing the classical Toeplitz operators, is introduced, and some of their Toeplitz-like algebraic and operator-theoretic properties are studied and explored.
Norton's trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry
Energy Technology Data Exchange (ETDEWEB)
Matsuo, A. [Cambridge Univ. (United Kingdom). Dept. of Pure Mathematics and Mathematical Statistics
2001-12-01
Formulae expressing the trace of the composition of several (up to five) adjoint actions of elements of the Griess algebra of a vertex operator algebra are derived under certain assumptions on the action of the automorphism group. They coincide, when applied to the moonshine module of I. B. Frenkel et al. (1984), with the trace formulae obtained in a different way by S. Norton, and the spectrum of some idempotents related to 2A, 2B, 3A and 4A elements of the Monster is determined by the representation theory of the Virasoro algebra at c=1/2, the W{sub 3} algebra at c=4/5 or the W{sub 4} algebra at c=1. The generalization to the trace function on the whole space is also given for the composition of two adjoint actions, which can be used to compute the McKay-Thompson series for a 2A involution of the Monster. (orig.)
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
On a certain class of operator algebras and their derivations
International Nuclear Information System (INIS)
Given a von Neumann algebra M with a faithful normal finite trace, we introduce the so-called finite tracial algebra Mf as the intersection of Lp-spaces Lp(M, μ) over all p ≥ and over all faithful normal finite traces μ on M. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner. (author)
Lie Subalgebras in a Certain Operator Lie Algebra with Involution
Institute of Scientific and Technical Information of China (English)
Shan Li SUN; Xue Feng MA
2011-01-01
We show in a certain Lie'-algebra,the connections between the Lie subalgebra G+:＝G+G*+[G,G*],generated by a Lie subalgebra G,and the properties of G.This allows us to investigate some useful information about the structure of such two Lie subalgebras.Some results on the relations between the two Lie subalgebras are obtained.As an application,we get the following conclusion:Let A (∪) B(X)be a space of self-adjoint operators and L:＝A ⊕ iA the corresponding complex Lie*-algebra.G+＝G+G*+[G,G*]and G are two LM-decomposable Lie subalgebras of,L with the decomposition G+＝R(G+)+S,G＝RG+SG,and RG (∪) R(C+).Then G+ is ideally finite iff RG+:＝RG+RG*+[RG,RG*]is a quasisolvable Lie subalgebra,SG+:＝SG+SG*+[SG,SG*]is an ideally finite semisimple Lie subalgebra,and [RG,SG]＝[RG*,SG]＝{0}.
W-algebras and chiral differential operators at the critical Level
Fortuna, Giorgia
2012-01-01
Let $\\mathcal{A}_{crit}$ be the chiral algebra corresponding to the affine Kac-Moody algebra at the critical level $\\hat{\\mathfrak{g}}_{crit}$. Let $\\mathfrak{Z}_{crit}$ be the center of $\\mathcal{A}_{crit}$. The commutative chiral algebra $\\mathfrak{Z}_{crit}$ admits a canonical deformation into a non-commutative chiral algebra $\\mathcl{W}_{h}$. In this paper we will express the resulting first order deformation via the chiral algebra $\\mathcal{D}_{crit}$ of chiral differential operators of ...
W-algebras and chiral differential operators at the critical Level
Fortuna, Giorgia
2012-01-01
Let $\\mathcal{A}_{crit}$ be the chiral algebra corresponding to the affine Kac-Moody algebra at the critical level $\\hat{\\mathfrak{g}}_{crit}$. Let $\\mathfrak{Z}_{crit}$ be the center of $\\mathcal{A}_{crit}$. The commutative chiral algebra $\\mathfrak{Z}_{crit}$ admits a canonical deformation into a non-commutative chiral algebra $\\mathcl{W}_{h}$. In this paper we will express the resulting first order deformation via the chiral algebra $\\mathcal{D}_{crit}$ of chiral differential operators of $G((t))$ at the critical level.
Wilson operator algebras and ground states for coupled BF theories
Tiwari, Apoorv; Ryu, Shinsei
2016-01-01
The multi-flavor $BF$ theories in (3+1) dimensions with cubic or quartic coupling are the simplest topological quantum field theories that can describe fractional braiding statistics between loop-like topological excitations (three-loop or four-loop braiding statistics). In this paper, by canonically quantizing these theories, we study the algebra of Wilson loop and Wilson surface operators, and multiplets of ground states on three torus. In particular, by quantizing these coupled $BF$ theories on the three-torus, we explicitly calculate the $\\mathcal{S}$- and $\\mathcal{T}$-matrices, which encode fractional braiding statistics and topological spin of loop-like excitations, respectively. In the coupled $BF$ theories with cubic and quartic coupling, the Hopf link and Borromean ring of loop excitations, together with point-like excitations, form composite particles.
Mikusi\\'nski's Operational Calculus with Algebraic Foundations and Applications to Bessel Functions
Bengochea, Gabriel; G, Gabriel López
2013-01-01
We construct an operational calculus supported on the algebraic operational calculus introduced by Bengochea and Verde. With this operational calculus we study the solution of certain Bessel type equations.
Differential operators associated to the Cauchy-Riemann operator in a quaternion algebra
International Nuclear Information System (INIS)
This paper deals with the initial value problem of the type φw / φt = L (t, x, w, φw / φxi) (1) w(0, x) = φ(x) (2) where t is the time, L is a linear first order operator (matrix-type) in a Quaternion algebra and φ is a regular function. The article proves necessary and sufficient conditions on the coefficients of operator L under which L is associated to the Cauchy-Riemann operator of Quarternion algebra. This criterion makes it possible to construct the operator L for which the initial problem (1),(2) is solvable for an arbitrary initial regular function φ and the solution is also regular for each t. (author)
The Calkin representation for a certain class of algebras of unbounded operators
International Nuclear Information System (INIS)
Let D=Dsup(infinity)(T), T=T* >= I selfadjoint. It is proved that the closure of the finite dimensional operators on D with respect to the uniform topology tausub(D) is the only twosided tausub(D) - closed * - ideal C in the maximal operator * - algebra α+(D) on D. Moreover the quotient algebra α+(h)/C equipped with the factor topology induced by tausub(D) is algebraically and topologically isomorphic to an appropriate Op*-algebra A(D)[tausub(D-circumflex)]. The isomorphism is constructed explicitly. This generalizes the classical Calkin result to the unbounded case
Algebraic models of deviant modal operators based on de Morgan and Kleene lattices
Cattaneo, G.; Ciucci, DE; Dubois, D.
2011-01-01
An algebraic model of a kind of modal extension of de Morgan logic is described under the name MDS5 algebra. The main properties of this algebra can be summarized as follows: (1) it is based on a de Morgan lattice, rather than a Boolean algebra; (2) a modal necessity operator that satisfies the axioms N, K, T, and 5 (and as a consequence also B and 4) of modal logic is introduced; it allows one to introduce a modal possibility by the usual combination of necessity operation and...
Campbell-Hausdorff Formula and Algebras with Operator
International Nuclear Information System (INIS)
Some new classes of algebras are introduced and in these algebras Campbell-Hausdorff like formula is established. The application of these constructions to the problem of the connectivity of the Feynman graphs corresponding to the Green functions in Quantum Field Theory is described. 9 refs
Radial multipliers on reduced free products of operator algebras
DEFF Research Database (Denmark)
Haagerup, Uffe; Møller, Søren
2012-01-01
Let AiAi be a family of unital C¿C¿-algebras, respectively, of von Neumann algebras and ¿:N0¿C¿:N0¿C. We show that if a Hankel matrix related to ¿ is trace-class, then there exists a unique completely bounded map M¿M¿ on the reduced free product of the AiAi, which acts as a radial multiplier. Her....... Hereby we generalize a result of Wysoczanski for Herz–Schur multipliers on reduced group C¿C¿-algebras for free products of groups....
Radial multipliers on reduced free products of operator algebras
DEFF Research Database (Denmark)
Haagerup, Uffe; Möller, Sören
2012-01-01
Let Ai be a family of unital C*-algebras, respectively, of von Neumann algebras and \\phi: N0 \\to C. We show that if a Hankel matrix related to \\phi is trace-class, then there exists a unique completely bounded map M\\phi on the reduced free product of the Ai, which acts as a radial multiplier. Her....... Hereby we generalize a result of Wysoczański for Herz–Schur multipliers on reduced group C*-algebras for free products of groups....
First order differential operator associated to the Cauchy-Riemann operator in a Clifford algebra
International Nuclear Information System (INIS)
The complex differentiation transforms holomorphic functions into holomorphic functions. Analogously, the conjugate Cauchy-Riemann operator of the Clifford algebra transforms regular functions into regular functions. This paper determines more general first order operator L (matrix-type) for which Lu is regular provided u is regular. For such operator L, the initial value problem ∂u / ∂t = L (t, x, u, ∂u / ∂x) (1) u(0, x) = φ(x) (2) is solvable for an arbitrary regular function φ and the solution is regular in x for each t. (author)
Lambda: A Mathematica-package for operator product expansions in vertex algebras
Ekstrand, Joel
2010-01-01
We give an introduction to the Mathematica package Lambda, designed for calculating $\\lambda$-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of $\\lambda$-brackets is reviewed, and some simple examples are shown, both in component notation, and in $N=1$ superfield notation.
Lambda: A Mathematica-package for operator product expansions in vertex algebras
Ekstrand, Joel
2010-01-01
We give an introduction to the Mathematica package Lambda, designed for calculating {\\lambda}-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of {\\lambda}-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation.
Path operator algebras in conformal quantum field theories
International Nuclear Information System (INIS)
Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)
Nonmeromorphic operator product expansion and C{sub 2}-cofiniteness for a family of W-algebras
Energy Technology Data Exchange (ETDEWEB)
Carqueville, Nils; Flohr, Michael [Physikalisches Institut, University of Bonn, Nussallee 12, 53115 Bonn (Germany)
2006-01-27
We prove the existence and associativity of the nonmeromorphic operator product expansion for an infinite family of vertex operator algebras, the triplet W-algebras, using results from P(z)-tensor product theory. While doing this, we also show that all these vertex operator algebras are C{sub 2}-cofinite.
Ladder operators and associated algebra for position-dependent effective mass systems
Amir, Naila; Iqbal, Shahid
2015-07-01
An algebraic treatment of shape-invariant quantum-mechanical position-dependent effective mass systems is discussed. Using shape invariance, a general recipe for construction of ladder operators and associated algebraic structure of the pertaining system, is obtained. These operators are used to find exact solutions of general one-dimensional systems with spatially varying mass. We apply our formalism to specific translationally shape-invariant potentials having position-dependent effective mass.
GLAME@lab: An M-script API for Linear Algebra Operations on Graphics Processors
Barrachina Mir, Sergio; Castillo Catalán, Maribel; Igual Peña, Francisco Daniel; Mayo, Rafael; Quintana Ortí, Enrique S.
2008-01-01
We propose two high-level application programming interfaces (APIs) to use a graphics processing unit (GPU) as a coprocessor for dense linear algebra operations. Combined with an extension of the FLAME API and an implementation on top of NVIDIA CUBLAS, the result is an efficient and user-friendly tool to design, implement, and execute dense linear algebra operations on the current generation of NVIDIA graphics processors, of wide-appeal to scientists and engineers. As an applicati...
Norton's Trace Formulae for the Griess Algebraof a Vertex Operator Algebra with Larger Symmetry
Matsuo, Atsushi
Formulae expressing the trace of the composition of several (up to five) adjoint actions of elements of the Griess algebra of a vertex operator algebra are derived under certain assumptions on the action of the automorphism group. They coincide, when applied to the moonshine module V , with the trace formulae obtained in a different way by S. Norton, and the spectrum of some idempotents related to 2A, 2B, 3A and 4A elements of the Monster is determined by the representation theory of the Virasoro algebra at c= 1/2, the W3 algebra at c= 4/5 or the W4 algebra at c= 1. The generalization to the trace function on the whole space is also given for the composition of two adjoint actions, which can be used to compute the McKay-Thompson series for a 2A involution of the Monster.
Infinite-dimensional Lie algebras, classical r-matrices, and Lax operators: Two approaches
Skrypnyk, T.
2013-10-01
For each finite-dimensional simple Lie algebra {g}, starting from a general {g}⊗ {g}-valued solutions r(u, v) of the generalized classical Yang-Baxter equation, we construct infinite-dimensional Lie algebras widetilde{{g}}-_r of {g}-valued meromorphic functions. We outline two ways of embedding of the Lie algebra widetilde{{g}}-_r into a larger Lie algebra with Kostant-Adler-Symmes decomposition. The first of them is an embedding of widetilde{{g}}-_r into Lie algebra widetilde{{g}}(u^{-1},u)) of formal Laurent power series. The second is an embedding of widetilde{{g}}-_r as a quasigraded Lie subalgebra into a quasigraded Lie algebra widetilde{{g}}_r: widetilde{{g}}_r=widetilde{{g}}-_r+widetilde{{g}}+_r, such that the Kostant-Adler-Symmes decomposition is consistent with a chosen quasigrading. We construct dual spaces widetilde{{g}}^*_r, (widetilde{{g}}^{± }_r)^* and explicit form of the Lax operators L(u), L±(u) as elements of these spaces. We develop a theory of integrable finite-dimensional hamiltonian systems and soliton hierarchies based on Lie algebras widetilde{{g}}_r, widetilde{{g}}^{± }_r. We consider examples of such systems and soliton equations and obtain the most general form of integrable tops, Kirchhoff-type integrable systems, and integrable Landau-Lifshitz-type equations corresponding to the Lie algebra {g}.
Some G-M-type Banach spaces and K-groups of operator algebras on them
Institute of Scientific and Technical Information of China (English)
ZHONG Huaijie; CHEN Dongxiao; CHEN Jianlan
2004-01-01
By providing several new varieties of G-M-type Banachspaces according to decomposable and compoundable properties, this paper discusses the operator structures of thesespaces and the K-theory of the algebra of the operators on these G-M-type Banach spaces throughcalculation of the K-groups of the operator ideals contained in the class of Riesz operators.
The symmetric operation in a free pre-Lie algebra is magmatic
Bergeron, Nantel
2010-01-01
A pre-Lie product is a binary operation whose associator is symmetric in the last two variables. As a consequence its antisymmetrization is a Lie bracket. In this paper we study the symmetrization of the pre-Lie product. We show that it does not satisfy any other universal relation than commutativity. It means that the map from the free commutative-magmatic algebra to the free pre-Lie algebra induced by the symmetrization of the pre-Lie product is injective. This result is in contrast with the associative case, where the symmetrization gives rise to the notion of Jordan algebra.
International Nuclear Information System (INIS)
In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E7(7) which is parabolically related to the CLA E7(−25). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so(n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so(n − 1,1) and its analogs so(p − 1, q − 1). Further we consider the algebras sl(2n, R) and for n = 2k the algebras su* (4k) which are parabolically related to the CLA su(n,n). Further we consider the algebras sp(r,r) which are parabolically related to the CLA sp(2r, R). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14).
Quantum Measurement Problem and Systems Selfdescription in Operators Algebras Formalism
Mayburov, S.
2002-01-01
Quantum Measurement problem studied in Information Theory approach of systems selfdescription which exploits the information acquisition incompleteness for the arbitrary information system. The studied model of measuring system (MS) consist of measured state S environment E and observer $O$ processing input S signal. $O$ considered as the quantum object which interaction with S,E obeys to Schrodinger equation (SE). MS incomplete or restricted states for $O$ derived by the algebraic QM formali...
6-transposition property of $\\tau$-involutions of vertex operator algebras
Sakuma, Shinya
2006-01-01
In this paper, we study the subalgebra generated by two Ising vectors in the Griess algebra of a vertex operator algebra. We show that the structure of it is uniquely determined by some inner products of Ising vectors. We prove that the order of the product of two $\\tau$-involutions is less than or equal to 6 and we determine the inner product of two Ising vectors.
Boolean Functions, Quantum Gates, Hamilton Operators, Spin Systems and Computer Algebra
Hardy, Yorick; Steeb, Willi-Hans
2014-01-01
We describe the construction of quantum gates (unitary operators) from boolean functions and give a number of applications. Both non-reversible and reversible boolean functions are considered. The construction of the Hamilton operator for a quantum gate is also described with the Hamilton operator expressed as spin system. Computer algebra implementations are provided.
Multipoint Lax operator algebras: almost-graded structure and central extensions
International Nuclear Information System (INIS)
Recently, Lax operator algebras appeared as a new class of higher genus current-type algebras. Introduced by Krichever and Sheinman, they were based on Krichever's theory of Lax operators on algebraic curves. These algebras are almost-graded Lie algebras of currents on Riemann surfaces with marked points (in-points, out-points and Tyurin points). In a previous joint article with Sheinman, the author classified the local cocycles and associated almost-graded central extensions in the case of one in-point and one out-point. It was shown that the almost-graded extension is essentially unique. In this article the general case of Lax operator algebras corresponding to several in- and out-points is considered. As a first step they are shown to be almost-graded. The grading is given by splitting the marked points which are non-Tyurin points into in- and out-points. Next, classification results both for local and bounded cocycles are proved. The uniqueness theorem for almost-graded central extensions follows. To obtain this generalization additional techniques are needed which are presented in this article. Bibliography: 30 titles
Dobrev, V K
2013-01-01
In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of {\\it parabolic relation} between two non-compact semisimple Lie algebras $\\cal G$ and $\\cal G'$ that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra $E_{7(7)}$ which is parabolically related to the CLA $E_{7(-25)}$. Other interesting examples are the orthogonal algebras $so(p,q)$ all of which are parabolically related to the conformal algebra $so(n,2)$ with $p+q=n+2$, the parabolic subalgebras including the Lorentz subalgebra $so(n-1,1)$ and its analogs ...
Operator Algebra Quantum Homogeneous Spaces of Universal Gauge Groups
Mahanta, Snigdhayan; Mathai, Varghese
2011-09-01
In this paper, we quantize universal gauge groups such as SU(∞), as well as their homogeneous spaces, in the σ- C*-algebra setting. More precisely, we propose concise definitions of σ- C*-quantum groups and σ- C*-quantum homogeneous spaces and explain these concepts here. At the same time, we put these definitions in the mathematical context of countably compactly generated spaces as well as C*-compact quantum groups and homogeneous spaces. We also study the representable K-theory of these spaces and compute these groups for the quantum homogeneous spaces associated to the quantum version of the universal gauge group SU(∞).
On the Action of Steenrod Operations on Polynomial Algebras
KARACA, İsmet
1998-01-01
Let \\( \\bba \\) be the mod-\\( p \\) Steenrod Algebra. Let \\( p \\) be an odd prime number and \\( Zp = Z/pZ \\). Let \\( Ps = Zp [x1,x2,\\ldots,xs]. \\) A polynomial \\( N \\in Ps \\) is said to be hit if it is in the image of the action \\( A \\otimes Ps \\ra Ps. \\) In [10] for \\( p=2, \\) Wood showed that if \\( \\a(d+s) > s \\) then every polynomial of degree \\( d \\) in \\( Ps \\) is hit where \\( \\a(d+s) \\) denotes the number of ones in the binary expansion of \\( d+s \\). Latter in [6] Monks extended a resu...
Ladder operators, Fock-space irreducibility and group gradings for the Relative Parabose Set algebra
Kanakoglou, K
2010-01-01
We investigate in detail, the Fock-like representations of the Relative Parabose Set (RPBS) algebra in a single parabosonic and a single parafermionic degree of freedom, for any value of the parameter p. We compute explicit expressions for the action of the generators and we show them to be creation-annihilation operators on the specified Fock-space. We prove that this infinite dimensional Fock-space is irreducible under the action of the whole algebra or in other words that it is a simple module over the RPBS algebra. Finally we introduce (Z2 x Z2)-gradings for both the algebra $P_{BF}^{(1,1)}$ and its Fock-space, we prove that the constructed Fock-like representation is an inf. dim., irreducible, (Z2 x Z2)-graded, $P_{BF}^{(1,1)}$-module and we comment on the relation between our present approach and similar works in the literature.
Applications Of Algebraic Image Operators To Model-Based Vision
Lerner, Bao-Ting; Morelli, Michael V.; Thomas, Hans J.
1989-03-01
This paper extends our previous research on a highly structured and compact algebraic representation of grey-level images. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, we have devised an innovative, efficient edge detection scheme.We have developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower with this new edge detection scheme. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The feature extractor and model matcher are being incorporated into a distributed robot control system. Model matching is accomplished using both top-down and bottom-up processing: a priori sensor and world model information are used to constrain the search of the image space for features, while extracted image information is used to update the model.
BRST and anti-BRST operators for quantum linear algebra Uq(gl(N))
International Nuclear Information System (INIS)
For a quantum Lie algebra Uq(gl(N)) we construct BRST, anti-BRST and Laplace operators. The (anti)commutator with the BRST operator defines the differential on the de Rham complex over the quantum group GLq(N). The Hodge decomposition theorem for this complex is formulated
Which multiplier algebras are $W^*$-algebras?
Akemann, Charles A.; Amini, Massoud; Asadi, Mohammad B.
2013-01-01
We consider the question of when the multiplier algebra $M(\\mathcal{A})$ of a $C^*$-algebra $\\mathcal{A}$ is a $ W^*$-algebra, and show that it holds for a stable $C^*$-algebra exactly when it is a $C^*$-algebra of compact operators. This implies that if for every Hilbert $C^*$-module $E$ over a $C^*$-algebra $\\mathcal{A}$, the algebra $B(E)$ of adjointable operators on $E$ is a $ W^*$-algebra, then $\\mathcal{A}$ is a $C^*$-algebra of compact operators. Also we show that a unital $C^*$-algebr...
Algebraic Bethe ansatz for Q-operators: the Heisenberg spin chain
Frassek, Rouven
2015-07-01
We diagonalize Q-operators for rational homogeneous {sl}(2)-invariant Heisenberg spin chains using the algebraic Bethe ansatz. After deriving the fundamental commutation relations relevant for this case from the Yang-Baxter equation we demonstrate that the Q-operators act diagonally on the Bethe vectors if the Bethe equations are satisfied. In this way we provide a direct proof that the eigenvalues of the Q-operators studied here are given by Baxter's Q-functions.
On the algebraic Bethe ansatz for the XXX spin chain: creation operators 'beyond the equator'
International Nuclear Information System (INIS)
Considering the XXX spin-1/2 chain in the framework of the algebraic Bethe ansatz, we make the following short comment: the product of the creation operators corresponding to the recently found solution of the Bethe equations 'on the wrong side of the equator' is just zero (not only its action on the pseudovacuum). (author). Letter-to-the-editor
A chain morphism for Adams operations on rational algebraic K-theory
DEFF Research Database (Denmark)
Feliu, Elisenda
2010-01-01
For any regular noetherian scheme X and every k>0, we define a chain morphism between two chain complexes whose homology with rational coefficients is isomorphic to the algebraic K-groups of X tensored by Q. These morphisms induce in homology the Adams operations defined by Gillet and Soulé or th...
Construction of the Model of the Lambda Calculus System with Algebraic Operators
Institute of Scientific and Technical Information of China (English)
陆汝占; 张政; 等
1991-01-01
A lambda system with algebraic operators,Lambda-plus system,is introduced.After giving the definitions of the system,we present a sufficient condition for formulating a model of the system.Finally,a model of such system is constructed.
Lie elements in pu-Lie algebras, trees and cohomology operators
Czech Academy of Sciences Publication Activity Database
Markl, Martin
2007-01-01
Roč. 17, č. 2 (2007), s. 241-261. ISSN 0949-5932 R&D Projects: GA ČR(CZ) GA201/05/2117 Institutional research plan: CEZ:AV0Z10190503 Keywords : cohomology operations * pu-Lie algebras * Chevalley-Eilenberg complex Subject RIV: BA - General Mathematics Impact factor: 0.367, year: 2007
Integral forms in vertex operator algebras which are invariant under finite groups
Griess, Robert L
2012-01-01
For certain vertex operator algebras (e.g., lattice type) and given finite group of automorphisms, we prove existence of a positive definite integral form invariant under the group. Applications include an integral form in the Moonshine VOA which is invariant under the Monster, and examples in other lattice type VOAs.
Poincare supersymmetry representations over trace class non-commutative graded operator algebras
International Nuclear Information System (INIS)
We show that rigid supersymmetry theories in four dimensions can be extended to give supersymmetric trace (or generalized quantum) dynamics theories, in which the supersymmetry algebra is represented by the generalized Poisson bracket of trace supercharges, constructed from fields that form a trace class non-commutative graded operator algebra. In particular, supersymmetry theories can be turned into supersymmetric matrix models this way. We demonstrate our results by detailed component field calculations for the Wess-Zumino and the supersymmetric Yang-Mills models (the latter with axial gauge fixing), and then show that they are also implied by a simple and general superspace argument. (orig.)
New modular form identities associated to generalized vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2015-01-01
Roč. 16, č. 1 (2015), s. 607-623. ISSN 1787-2405 Institutional support: RVO:67985840 Keywords : vertex operator superalgebras * intertwining operators * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.229, year: 2014 http://mat76.mat.uni-miskolc.hu/~mnotes/index.php?page=article&name=mmn_1138
An $S_3$-symmetry of the Jacobi Identity for Intertwining Operator Algebras
Chen, Ling
2015-01-01
We prove an $S_{3}$-symmetry of the Jacobi identity for intertwining operator algebras. Since this Jacobi identity involves the braiding and fusing isomorphisms satisfying the genus-zero Moore-Seiberg equations, our proof uses not only the basic properties of intertwining operators, but also the properties of braiding and fusing isomorphisms and the genus-zero Moore Seiberg equations. Our proof depends heavily on the theory of multivalued analytic functions of several variables, especially the theory of analytic extensions.
Hypercyclic operators on algebra of symmetric snalytic functions on $\\ell_p$
Directory of Open Access Journals (Sweden)
Z. H. Mozhyrovska
2016-06-01
Full Text Available In the paper, it is proposed a method of construction of hypercyclic composition operators on $H(\\mathbb{C}^n$ using polynomial automorphisms of $\\mathbb{C}^n$ and symmetric analytic functions on $\\ell_p.$ In particular, we show that an ``symmetric translation'' operator is hypercyclic on a Frechet algebra of symmetric entire functions on $\\ell_p$ which are bounded on bounded subsets.
Unitary operator bases and Q-deformed algebras
International Nuclear Information System (INIS)
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity. (author)
Unitary operator bases and q-deformed algebras
International Nuclear Information System (INIS)
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed communication relation is shown to emergence in a natural way, when the deformation parameter is a root of unity. (author). 14 refs
Unitary operator bases and q-deformed algebras
Energy Technology Data Exchange (ETDEWEB)
Galleti, D.; Lunardi, J.T.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
1995-11-01
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed communication relation is shown to emergence in a natural way, when the deformation parameter is a root of unity. (author). 14 refs.
A program to evaluate closed diagrams algebraically for angular momentum coupled product operators
International Nuclear Information System (INIS)
The many particle trace of a product operator, expressed in terms of angular-momentum coupled spherical tensor creation and annihilation operators, can be evaluated as the sum of the different ways or diagrams to contract all the single particle operators. In the coupled representation, the process of contraction involves recouplings of angular momenta and this can be tedious. The program is constructed to perform algebraically the contractions and the associated angular momentum recouplings. The output are (algebraic) expressions which can be used either as analytical results or as input to a separate program, CONTRACTION-COMPILER, constructed to write a Fortran code to carry out the numerical calculations. The primary motivation of the project is derived from the need of scalar and configuration traces in nuclear structure problems using spectral distribution methods. (orig./HSI)
International Nuclear Information System (INIS)
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed suq(2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
Clifford algebra, geometric algebra, and applications
Lundholm, Douglas; Svensson, Lars
2009-01-01
These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction (then called geometric algebra) with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra. The v...
Quantum exchange algebra and exact operator solution of A sub 2 -Toda field theory
Takimoto, Y; Kurokawa, H; Fujiwara, T
1999-01-01
Locality is analyzed for Toda field theories by noting novel chiral description in the conventional non-chiral formalism. It is shown that the canonicity of the interacting to free field mapping described by the classical solution is automatically guaranteed by the locality. Quantum Toda theories are investigated by applying the method of free field quantization. We give Toda exponential operators associated with fundamental weight vectors as bilinear forms of chiral fields satisfying characteristic quantum exchange algebra. It is shown that the locality leads to non-trivial relations among the R-matrix and the expansion coefficients of the exponential operators. The Toda exponentials are obtained for a A sub 2 -system by extending the algebraic method developed for the Liouville theory. The canonical commutation relations and the operatorial field equations are also examined.
Quantum Exchange Algebra and Exact Operator Solution of $A_{2}$-Toda Field Theory
Takimoto, Y; Kurokawa, H; Fujiwara, T
1999-01-01
Locality is analyzed for Toda field theories by noting novel chiral description in the conventional nonchiral formalism. It is shown that the canonicity of the interacting to free field mapping described by the classical solution is automatically guaranteed by the locality. Quantum Toda theories are investigated by applying the method of free field quantization. We give Toda exponential operators associated with fundamental weight vectors as bilinear forms of chiral fields satisfying characteristic quantum exchange algebra. It is shown that the locality leads to nontrivial relations among the ${\\cal R}$-matrix and the expansion coefficients of the exponential operators. The Toda exponentials are obtained for $A_2$-system by extending the algebraic method developed for Liouville theory. The canonical commutation relations and the operatorial field equations are also examined.
On the algebra of deformed differential operators, and induced integrable Toda field theory
International Nuclear Information System (INIS)
We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular the first leading orders of this q-deformed hierarchy namely the q-KdV and q-Boussinesq integrable systems. We also present the q-generalisation of the conformal transformations of the currents un, n ≥ 2 and discuss the primary condition of the fields wn, n ≥ 2 by using the Volterra gauge group transformations for the q-covariant Lax operators. An induced su(n)-Toda(su(2)-Liouville) field theory construction is discussed and other important features are presented. (author)
Additive results for the group inverse in an algebra with applications to block operators
Benítez López, Julio; Liu, Xiaoji; Zhu, Tongping
2011-01-01
We derive a very short expression for the group inverse of a(1) + ... + a(n) when a(1), ... , a(n) are elements in an algebra having group inverse and satisfying a(i)a(j) = 0 for i < j. We apply this formula in order to find the group inverse of 2 x 2 block operators under some conditions. (C) 2011 Taylor & Francis
Tensor operators of the Lie algebras U(n) and o(ν)
International Nuclear Information System (INIS)
Formulas for matrix elements of tensor operators of the Lie algebras U(n) and o(ν) are derived in bases of irreducible representations. The formulas are simple for applications in calculations and are of the form of the Bell polynomials in sums of powers of the angular lengths. Recurrent formulas and generating functions are also obtained. An example of using the formulas obtained in nuclear physics is presented
The origin of the algebra of quantum operators in the stochastic formulation of quantum mechanics
Davidson, Mark P.
2001-01-01
The origin of the algebra of the non-commuting operators of quantum mechanics is explained in the general Fenyes-Nelson stochastic models in which the diffusion constant is a free parameter. This is achieved by continuing the diffusion constant to imaginary values, a continuation which destroys the physical interpretation, but does not affect experimental predictions. This continuation leads to great mathematical simplification in the stochastic theory, and to an understanding of the entire m...
Lattice-integrality of certain group-invariant integral forms in vertex operator algebras
Dong, Chongying; Griess Jr., Robert L.
2014-01-01
Certain vertex operator algebras have integral forms (integral spans of bases which are closed under the countable set of products). It is unclear when they (or integral multiples of them) are integral as lattices under the natural bilinear form on the VOA. We show that lattice-integrality may be arranged under some hypotheses, including cases of integral forms invariant by finite groups. In particular, there exists a lattice-integral Monster-invariant integral form in the Moonshine VOA.
Korf, Lisa A.; Schroeck, Franklin E.
2015-12-01
We consider an effect algebra of phase space localization operators for a quantum mechanical Hilbert space that contains no non-trivial projections, and the C*-algebra generated by it. This C∗-algebra forms an informationally complete set in the original Hilbert space. Its elements are shown to have singular-value-based decompositions that permit their characterization in terms of limits of linear combinations of products of pairs of the phase space fuzzy localization operators. Through these results, it is shown that the informational completeness of the C*-algebra can be greatly reduced to the informational completeness of the set of products of pairs formed from the elements of the effect algebra.
Weighted Traces on Algebras of Pseudo-Differential Operators and Geometry of Loop Groups
Cardona, A.; Ducourtioux, C.; Magnot, J. P.; Paycha, S.
2000-01-01
Using {\\it weighted traces} which are linear functionals of the type $$A\\to tr^Q(A):=(tr(A Q^{-z})-z^{-1} tr(A Q^{-z}))_{z=0}$$ defined on the whole algebra of (classical) pseudo-differential operators (P.D.O.s) and where $Q$ is some positive invertible elliptic operator, we investigate the geometry of loop groups in the light of the cohomology of pseudo-differential operators. We set up a geometric framework to study a class of infinite dimensional manifolds in which we recover some results ...
Kleyn, Aleks
2007-01-01
The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.
Conformal Field Theory, Vertex Operator Algebra and Stochastic Loewner Evolution in Ising Model
Zahabi, Ali
2015-01-01
We review the algebraic and analytic aspects of the conformal field theory (CFT) and its relation to the stochastic Loewner evolution (SLE) in an example of the Ising model. We obtain the scaling limit of the correlation functions of Ising free fermions on an arbitrary simply connected two-dimensional domain $D$. Then, we study the analytic and algebraic aspects of the fermionic CFT on $D$, using the Fock space formalism of fields, and the Clifford vertex operator algebra (VOA). These constructions lead to the conformal field theory of the Fock space fields and the fermionic Fock space of states and their relations in case of the Ising free fermions. Furthermore, we investigate the conformal structure of the fermionic Fock space fields and the Clifford VOA, namely the operator product expansions, correlation functions and differential equations. Finally, by using the Clifford VOA and the fermionic CFT, we investigate a rigorous realization of the CFT/SLE correspondence in the Ising model. First, by studying t...
Hasse-Schmidt derivations on Grassmann algebras with applications to vertex operators
Gatto, Letterio
2016-01-01
This book provides a comprehensive advanced multi-linear algebra course based on the concept of Hasse-Schmidt derivations on a Grassmann algebra (an analogue of the Taylor expansion for real-valued functions), and shows how this notion provides a natural framework for many ostensibly unrelated subjects: traces of an endomorphism and the Cayley-Hamilton theorem, generic linear ODEs and their Wronskians, the exponential of a matrix with indeterminate entries (Putzer's method revisited), universal decomposition of a polynomial in the product of two monic polynomials of fixed smaller degree, Schubert calculus for Grassmannian varieties, and vertex operators obtained with the help of Schubert calculus tools (Giambelli's formula). Significant emphasis is placed on the characterization of decomposable tensors of an exterior power of a free abelian group of possibly infinite rank, which then leads to the celebrated Hirota bilinear form of the Kadomtsev-Petviashvili (KP) hierarchy describing the Plücker embedding of ...
Baxter's Q-operator for the W-algebra W{sub N}
Energy Technology Data Exchange (ETDEWEB)
Kojima, Takeo [Department of Mathematics, College of Science and Technology, Nihon University, Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)
2008-09-05
The q-oscillator representation for the Borel subalgebra of the affine symmetry U'{sub q}(sl{sub N}-hat) is presented. By means of this q-oscillator representation, we give the free field realizations of Baxter's Q-operator Q{sub j}({lambda}), Q-bar{sub j}({lambda}), (j=1,2,...,N) for the W-algebra W{sub N}. We give functional relations of the T-Q operators, including the higher-rank generalization of Baxter's T-Q relation.
International Nuclear Information System (INIS)
We recall results concerning one-dimensional classical and quantum systems with ladder operators. We obtain the most general one-dimensional classical systems, respectively, with a third and a fourth-order ladder operators satisfying polynomial Heisenberg algebras. These systems are written in terms of the solutions of quartic and quintic equations. They are the classical equivalent of quantum systems involving the fourth and fifth Painleve transcendents. We use these results to present two new families of superintegrable systems and examples of trajectories that are deformation of Lissajous's figures.
Factorization and selection rules of operator product algebras in conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Brustein, R.; Yankielowicz, S.; Zuber, J.B.
1989-02-06
Factorization of the operator product algebra in conformal field theory into independent left and right components is investigated. For those theories in which factorization holds we propose an ansatz for the number of independent amplitudes which appear in the fusion rules, in terms of the crossing matrices of conformal blocks in the plane. This is proved to be equivalent to a recent conjecture by Verlinde. The monodromy properties of the conformal blocks of 2-point functions on the torus are investigated. The analysis of their short-distance singularities leads to a precise definition of Verlinde's operations.
Jeribi, Aref
2015-01-01
Uncover the Useful Interactions of Fixed Point Theory with Topological StructuresNonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices with nonlinear entries in Banach spaces and Banach algebras. The book provides researchers and graduate students with a unified survey of the fundamental principles of fixed point theory in Banach spaces and algebras. The authors present several exten
Chen, Hsian-Yang; Lam, Ching Hung
2014-06-01
In this paper, we construct explicitly certain moonshine type vertex operator algebras generated by a set of Ising vectors I such that (1) for any e ≠ f ∈ I, the subVOA VOA(e, f) generated by e and f is isomorphic to either U2B or U3C; and (2) the subgroup generated by the corresponding Miyamoto involutions {τe | e ∈ I} is isomorphic to the Weyl group of a root system of type An, Dn, E6, E7 or E8. The structures of the corresponding vertex operator algebras and their Griess algebras are also studied. In particular, the central charge of these vertex operator algebras are determined.
q-deformed oscillator algebra and an index theorem for the photon phase operator
Fujikawa, K; Oh, C H; Fujikawa, Kazuo; Kwek, L C; Oh, C H
1995-01-01
The quantum deformation of the oscillator algebra is studied from the view point of an index theorem. It is shown that the creation and annihilation operators satisfying \\dml a - \\dml a^{\\dagger} = 1 can be deformed to \\dml a - \\dml a^{\\dagger} = 0 in a singular limit \\dml a = \\infty, which corresponds to the deformation parameter q as a primitive root of unity. On the other hand, the phase operator of Susskind and Glogower, which satisfies \\dml \\expon^{i \\varphi} - \\dml (\\expon^{i \\varphi})^{\\dagger} = 1, cannot be deformed to a hermitian phase operator which satisfies \\dml \\expon^{i \\phi} - \\dml (\\expon^{i \\phi})^{\\dagger} = 0. The indices associated with phase operators are quite robust and may be regarded as responsible for the absence of the hermitian phase operator of the photon.
Rigged modules I: modules over dual operator algebras and the Picard group
Blecher, David P.; Kashyap, Upasana
2016-01-01
In a previous paper we generalized the theory of W*-modules to the setting of modules over nonselfadjoint dual operator algebras, obtaining the class of weak*-rigged modules. At that time we promised a forthcoming paper devoted to other aspects of the theory. We fulfill this promise in the present work and its sequel "Rigged modules II", giving many new results about weak*-rigged modules and their tensor products. We also discuss the Picard group of weak* closed subalgebras of a commutative a...
Virasoro frames and their Stabilizers for the E_8 lattice type Vertex Operator Algebra
Griess Jr., Robert L.; Hoehn, Gerald
2001-01-01
The concept of a framed vertex operator algebra was studied in [DGH] (q-alg/9707008). This article is an analysis of all Virasoro frame stabilizers of the lattice VOA V for the E_8 root lattice, which is isomorphic to the E_8-level 1 affine Kac-Moody VOA V. We analyze the frame stabilizers, both as abstract groups and as subgroups of the Lie group Aut(V) = E_8(C). Each frame stabilizer is a finite group, contained in the normalizer of a 2B-pure elementary abelian 2-group in Aut(V). In particu...
Derivations on the Algebra of Operators in Hilbert C*-Modules
Institute of Scientific and Technical Information of China (English)
Peng Tong LI; De Guang HAN; Wai Shing TANG
2012-01-01
Let (M) be a full Hilbert C*-module over a C*-algebra (A),and let End*(A)((M)) be the algebra of adjointable operators on (M).We show that if (A) is unital and commutative,then every derivation of End*(A)((M)) is an inner derivation,and that if (A) is σ-unital and commutative,then innerness of derivations on “compact” operators completely decides innerness of derivations on End*(A)((M)).If (A) is unital (no commutativity is assumed) such that every derivation of (A) is inner,then it is proved that every derivation of End*(A)(Ln((A))) is also inner,where Ln((A)) denotes the direct sum of n copies of (A).In addition,in case (A) is unital,commutative and there exist x0,y0 ∈(M) such that〈x0,y0〉＝1,we characterize the linear (A)-module homomorphisms on End*(A)((M)) which behave like derivations when acting on zero products.
Alternative formulation for the operator algebra over the space of paths in a ADE $SU(3)$ graph
Pineda, Jesús A; Caicedo, Mario I
2015-01-01
In this work we discuss the elements required for the construction of the operator algebra for the space of paths over a simply laced $SU(3)$ graph. These operators are an important step in the construction of the bialgebra required to find the partition functions of some modular invariant CFTs. We define the cup and cap operators associated with back-and-forth sequences and add them to the creation and annihilation operators in the operator algebra as they are required for the calculation of the full space of essential paths prescribed by the fusion algebra. These operators require collapsed triangular cells that had not been found in previous works; here we provide explicit values for these cells and show their importance in order for the cell system to fulfill the Kuperberg relations for $SU(3)$ tangles. We also find that demanding that our operators satisfy the Temperley-Lieb algebra leads one naturally to consider operators that create and annihilate closed triangular sequences, which in turn provides an...
International Nuclear Information System (INIS)
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in formal variational calculus. They are a class of left-symmetric algebras with commutative right multiplication operators, which can be viewed as bosonic. Fermionic Novikov algebras are a class of left-symmetric algebras with anti-commutative right multiplication operators. They correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we commence a study on fermionic Novikov algebras from the algebraic point of view. We will show that any fermionic Novikov algebra in dimension ≤3 must be bosonic. Moreover, we give the classification of real fermionic Novikov algebras on four-dimensional nilpotent Lie algebras and some examples in higher dimensions. As a corollary, we obtain kinds of four-dimensional real fermionic Novikov algebras which are not bosonic. All of these examples will serve as a guide for further development including the application in physics
International Nuclear Information System (INIS)
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.
2016-05-01
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
Hoehn, Gerald
1996-01-01
We investigate self-dual vertex operator algebras (VOAs) and super algebras (SVOAs). Using the genus one correlation functions, it is shown that self-dual SVOAs exist only for half-integral central charges. It is described how self-dual SVOAs can be constructed from self-dual VOAs of larger central charge. The analogy with integral lattices and binary codes is emphasized. One main result is the construction of the shorter Moonshine module, a self-dual SVOA of central charge 23.5 on which the Baby monster - the second largest sporadic simple group - acts by automorphisms. The shorter Moonshine module has the character q^(-47/48)*(1+ 4371q^(3/2)+ 96256q^2+ 1143745q^(5/2) +...) and is the "shorter cousin" of the Moonshine module. Its lattice and code analog are the shorter Leech lattice and shorter Golay code. We conjecture that the shorter Moonshine module is the unique SVOA with this character. The final chapter introduces the notion of extremal VOAs and SVOAs. These are self-dual (S)VOAs with character having...
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732
Institute of Scientific and Technical Information of China (English)
An Hui-hui; Wang Zhi-chun
2016-01-01
L-octo-algebra with 8 operations as the Lie algebraic analogue of octo-algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo-algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri-algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.
Directory of Open Access Journals (Sweden)
M. Heydari
2013-05-01
Full Text Available A new and effective direct method to determine the numerical solution of linear and nonlinear differential-algebraic equations (DAEs is proposed. The method consists of expanding the required approximate solution as the elements of Chebyshev cardinal functions. The operational matrices for the integration and product of the Chebyshev cardinal functions are presented. A general procedure for forming these matrices is given. These matrices play an important role in modelling of problems. By using these operational matrices together, a differentialalgebraic equation can be transformed to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique
2-Local derivations on matrix algebras over commutative regular algebras
Ayupov, Sh. A.; Kudaybergenov, K. K.; Alauadinov, A. K.
2012-01-01
The paper is devoted to 2-local derivations on matrix algebras over commutative regular algebras. We give necessary and sufficient conditions on a commutative regular algebra to admit 2-local derivations which are not derivations. We prove that every 2-local derivation on a matrix algebra over a commutative regular algebra is a derivation. We apply these results to 2-local derivations on algebras of measurable and locally measurable operators affiliated with type I von Neumann algebras.
Optimizing relational algebra operations using discrimination-based joins and lazy products
DEFF Research Database (Denmark)
Henglein, Fritz
We show how to implement in-memory execution of the core re- lational algebra operations of projection, selection and cross-product eciently, using discrimination-based joins and lazy products. We introduce the notion of (partitioning) discriminator, which par- titions a list of values according to...... a specied equivalence relation on keys the values are associated with. We show how discriminators can be dened generically, purely functionally, and eciently (worst-case linear time) on top of the array-based basic multiset discrimination algorithm of Cai and Paige (1995). Discriminators provide the...... basis for discrimination-based joins, a new technique for computing joins that requires neither hashing nor sorting. Discriminators also provide ecient implementations for eliminating duplicates, set union and set dierence. We represent a cross-product lazily as a formal pair of the argument sets...
Linear algebra and linear operators in engineering with applications in Mathematica
Davis, H Ted
2000-01-01
Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical ...
Ablinger, J; Blümlein, J; De Freitas, A; von Manteuffel, A; Schneider, C
2015-01-01
Three loop ladder and $V$-topology diagrams contributing to the massive operator matrix element $A_{Qg}$ are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable $N$ and the dimensional parameter $\\varepsilon$. Given these representations, the desired Laurent series expansions in $\\varepsilon$ can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural ...
Factorizations of invertible operators and $K$-theory of $C^*$-algebras
Zhang, Shuang
1992-01-01
Let $\\Scr A$ be a unital C*-algebra. We describe \\it K-skeleton factorizations \\rm of all invertible operators on a Hilbert C*-module $\\Scr H_{\\Scr A}$, in particular on $\\Scr H=l^2$, with the Fredholm index as an invariant. We then outline the isomorphisms $K_0(\\Scr A) \\cong \\pi _{2k}([p]_0)\\cong \\pi _{2k} ({GL}^p_r(\\Scr A))$ and $K_1(\\Scr A)\\cong \\pi _{2k+1}([p]_0)\\cong \\pi _{2k+1}(GL^p_r(\\Scr A))$ for $k\\ge 0 $, where $[p]_0$ denotes the class of all compact perturbations of a projection $...
Certain associative algebras similar to $U(sl_{2})$ and Zhu's algebra $A(V_{L})$
Dong, Chongying; Li, Haisheng; Mason, Geoffrey
1996-01-01
It is proved that Zhu's algebra for vertex operator algebra associated to a positive-definite even lattice of rank one is a finite-dimensional semiprimitive quotient algebra of certain associative algebra introduced by Smith. Zhu's algebra for vertex operator algebra associated to any positive-definite even lattice is also calculated and is related to a generalization of Smith's algebra.
Intertwining operators for ℓ-conformal Galilei algebras and hierarchy of invariant equations
International Nuclear Information System (INIS)
The ℓ-conformal Galilei algebra, denoted by gl(d), is a non-semisimple Lie algebra specified by a pair of parameters (d, ℓ). The algebra is regarded as a nonrelativistic analogue of the conformal algebra. We derive hierarchies of partial differential equations which have invariance of the group generated by gl(d) with a central extension as kinematical symmetry. This is done by developing a representation theory such as Verma modules, singular vectors of gl(d) and vector field representations for d = 1, 2. (paper)
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Manteuffel, A. von [Mainz Univ. (Germany). Inst. fuer Physik
2015-09-15
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element A{sub Qg} are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
Universal Algebras of Hurwitz Numbers
A. Mironov; Morozov, A; Natanzon, S.
2009-01-01
Infinite-dimensional universal Cardy-Frobenius algebra is constructed, which unifies all particular algebras of closed and open Hurwitz numbers and is closely related to the algebra of differential operators, familiar from the theory of Generalized Kontsevich Model.
Regular norm and the operator semi-norm on a non-unital Banach Algebra
Orenstein, Adam
2014-01-01
We show that if $\\mathfrak{A}$ is a commutative complex non-unital Banach Algebra with norm $\\|\\cdot\\|$, then $\\|\\cdot\\|$ is regular on $\\mathfrak{A}$ if and only if $\\|\\cdot\\|_{op}$ is a norm on $\\mathfrak{A}\\oplus \\mathbb{C}$ and $\\mathfrak{A}\\oplus\\mathbb{C}$ is a commutative complex Banach Algebra with respect to $\\|\\cdot\\|_{op}$.
Spectral theory of linear operators and spectral systems in Banach algebras
Müller, Vladimir
2003-01-01
This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...
Relations Between BZMVdM-Algebra and Other Algebras
Institute of Scientific and Technical Information of China (English)
高淑萍; 邓方安; 刘三阳
2003-01-01
Some properties of BZMVdM-algebra are proved, and a new operator is introduced. It is shown that the substructure of BZMVdM-algebra can produce a quasi-lattice implication algebra. The relations between BZMVdM-algebra and other algebras are discussed in detail. A pseudo-distance function is defined in linear BZMVdM-algebra, and its properties are derived.
Scalar product for the tensor operators of the quantum algebra Ŭq(su2) by the Wigner-Eckart theorem
Fakhri, H.; Nouraddini, M.
2015-07-01
Tensor operators as the irreducible submodules corresponding to the adjoint representation of the quantum algebra Ŭq(su2) are equipped with q-analogue of the Hilbert-Schmidt scalar product by using the Wigner-Eckart theorem. Then, it is used to show that the adjoint representation of the quantum algebra Ŭq(su2) is a *-representation.
Matrix order and W*-algebras in the operational approach to statistical physical systems
International Nuclear Information System (INIS)
An important problem in the axiomatic approach to statistical physical systems is to characterize ordered vector spaces that are isomorphic to the predual of a W*-algebra. Recent work of Werner has shown that the set of interactive neutral hereditary projection on a matrix ordered complete base norm space V is order isomorphic to the lattice of projections of a W*-algebra, called the matrix multiplier algebra. If there are sufficiently many of these projections, then V is the predual of its matrix multiplier algebra. This mathematical conception is motivated by physics. The result shows that matrix order instead of merely partially order provides a setting in which an axiomatic approach to statistical physical systems may be studied. In this paper the discussion on the physical relevance of the conception of matrix order and interactive neutral hereditary projections is started. (orig.)
Wassermann, Antony
1998-01-01
Fusion of positive energy representations is defined using Connes' tensor product for bimodules over a von Neumann algebra. Fusion is computed using the analytic theory of primary fields and explicit solutions of the Knizhnik-Zamolodchikov equation.
Chappell, Isaac
2009-01-01
Using the previous construction of the geometrical representation (GR) of the centerless 1D, N = 4 extended Super Virasoro algebra, we construct the corresponding Short Distance Operation Product Expansions for the deformed version of the algebra. This algebra differs from the regular algebra by the addition of terms containing the Levi-Civita tensor. How this addition changes the super-commutation relations and affects the Short Distance Operation Product Expansions (OPEs) of the associated fields is investigated. The Method of Coadjoint Orbits, which removes the need first to find Lagrangians invariant under the action of the symmetries, is used to calculate the expansions. Finally, an alternative method involving Clifford algebras is investigated for comparison.
Deskins, W E
1996-01-01
This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop
Matrix Operations for Engineers and Scientists An Essential Guide in Linear Algebra
Jeffrey, Alan
2010-01-01
Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designe...
lam, Ching Hung; Chen, Hsian-Yang
2013-01-01
In this article, we study Griess algebras and vertex operator subalgebras generated by Ising vectors in a moonshine type VOA such that the subgroup generated by the corresponding Miyamoto involutions has the shape $3^2{:}2$ and any two Ising vectors generate a 3C subVOA $U_{3C}$. We show that such a Griess algebra is uniquely determined, up to isomorphisms. The structure of the corresponding vertex operator algebra is also discussed. In addition, we give a construction of such a VOA inside th...
Homotopy commutative algebra and 2-nilpotent Lie algebra
Dubois-Violette, Michel; Popov, Todor
2012-01-01
The homotopy transfer theorem due to Tornike Kadeishvili induces the structure of a homotopy commutative algebra, or $C_{\\infty}$-algebra, on the cohomology of the free 2-nilpotent Lie algebra. The latter $C_{\\infty}$-algebra is shown to be generated in degree one by the binary and the ternary operations.
Left Artinian Algebraic Algebras
Institute of Scientific and Technical Information of China (English)
S. Akbari; M. Arian-Nejad
2001-01-01
Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.
Calixto, M.
2000-03-01
The structure constants for Moyal brackets of an infinite basis of functions on the algebraic manifolds M of pseudo-unitary groups U (N + ,N - ) are provided. They generalize the Virasoro and icons/Journals/Common/calW" ALT="calW" ALIGN="TOP"/> icons/Journals/Common/infty" ALT="infty" ALIGN="MIDDLE"/> algebras to higher dimensions. The connection with volume-preserving diffeomorphisms on M , higher generalized-spin and tensor operator algebras of U (N + ,N - ) is discussed. These centrally extended, infinite-dimensional Lie algebras also provide the arena for nonlinear integrable field theories in higher dimensions, residual gauge symmetries of higher-extended objects in the light-cone gauge and C * -algebras for tractable non-commutative versions of symmetric curved spaces.
Diassociative algebras and their derivations
International Nuclear Information System (INIS)
The paper concerns the derivations of diassociative algebras. We introduce one important class of diassociative algebras, give simple properties of the right and left multiplication operators in diassociative algebras. Then we describe the derivations of complex diassociative algebras in dimension two and three
Tree technique and irreducible tensor operators for SUq(2) quantum algebra, 9j-symbols
International Nuclear Information System (INIS)
The graphic technique of Kuznetsov-Smorodinov for the SUq(2) quantum algebra is discussed. The transformation of trees including the braiding of branches is considered. Using the universal R-matrix the q-analog of 9j-symbol is introduced and its symmetry are examined
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Energy Technology Data Exchange (ETDEWEB)
Kalay, Berfin; Demiralp, Metin [İstanbul Technical University, Informatics Institute, Maslak, 34469, İstanbul (Turkey)
2015-12-31
This proceedings paper aims to show the efficiency of an expectation value identity for a given algebraic function operator which is assumed to be depending pn only position operator. We show that this expectation value formula becomes enabled to determine the eigenstates of the quantum system Hamiltonian as long as it is autonomous and an appropriate basis set in position operator is used. This approach produces a denumerable infinite recursion which may be considered as revisited but at the same time generalized form of the recursions over the natural number powers of the position operator. The content of this short paper is devoted not only to the formulation of the new method but also to show that this novel approach is capable of catching the eigenvalues and eigenfunctions for Hydrogen-like systems, beyond that, it can give a hand to us to reveal the wavefunction structure. So it has also somehow a confirmative nature.
International Nuclear Information System (INIS)
This proceedings paper aims to show the efficiency of an expectation value identity for a given algebraic function operator which is assumed to be depending pn only position operator. We show that this expectation value formula becomes enabled to determine the eigenstates of the quantum system Hamiltonian as long as it is autonomous and an appropriate basis set in position operator is used. This approach produces a denumerable infinite recursion which may be considered as revisited but at the same time generalized form of the recursions over the natural number powers of the position operator. The content of this short paper is devoted not only to the formulation of the new method but also to show that this novel approach is capable of catching the eigenvalues and eigenfunctions for Hydrogen-like systems, beyond that, it can give a hand to us to reveal the wavefunction structure. So it has also somehow a confirmative nature
Quantum double actions on operator algebras and orbifold quantum field theories
International Nuclear Information System (INIS)
Starting from a local quantum field theory with an unbroken compact symmetry group G in 1+1 dimensional spacetime we construct disorder fields implementing gauge transformations on the fields (order variables) localized in a wedge region. Enlarging the local algebras by these disorder fields we obtain a nonlocal field theory, the fixpoint algebras of which under the appropriately extended action of the group G are shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case of a finite group G the extended theory is acted upon in a completely canonical way by the quantum double D(G) and satisfies R-matrix commutation relations as well as a Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent approach to bosonization. The main technical ingredient is a strengthened version of the split property which should hold in all reasonable massive theories. In the appendices (part of) the results are extended to arbitary locally compact groups and our methods are adapted to chiral theories on the circle. (orig.)
Shimakura, Hiroki
2013-01-01
In this article, we prove that the full automorphism group of the Z_2-orbifold of the Barnes-Wall lattice vertex operator algebra of central charge 32 has the shape $2^{27}.E_6(2)$. In order to identify the group structure, we introduce a graph structure on the Griess algebra and show that it is a rank 3 graph associated to $E_6(2)$.
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Lefschetz, Solomon
2012-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Topological ∗-algebras with *-enveloping Algebras II
Indian Academy of Sciences (India)
S J Bhatt
2001-02-01
Universal *-algebras *() exist for certain topological ∗-algebras called algebras with a *-enveloping algebra. A Frechet ∗-algebra has a *-enveloping algebra if and only if every operator representation of maps into bounded operators. This is proved by showing that every unbounded operator representation , continuous in the uniform topology, of a topological ∗-algebra , which is an inverse limit of Banach ∗-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-* algebra () of . Given a *-dynamical system (, , ), any topological ∗-algebra containing (, ) as a dense ∗-subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If $G = \\mathbb{R}$, if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ∗-automorphisms: then the smooth Schwartz crossed product $S(\\mathbb{R}, B, )$ satisfies $E(S(\\mathbb{R}, B, )) = C^*(\\mathbb{R}, A, )$. When is a Lie group, the ∞-elements ∞(), the analytic elements () as well as the entire analytic elements () carry natural topologies making them algebras with a *-enveloping algebra. Given a non-unital *-algebra , an inductive system of ideals is constructed satisfying $A = C^*-\\mathrm{ind} \\lim I_$; and the locally convex inductive limit $\\mathrm{ind}\\lim I_$ is an -convex algebra with the *-enveloping algebra and containing the Pedersen ideal of . Given generators with weakly Banach admissible relations , we construct universal topological ∗-algebra (, ) and show that it has a *-enveloping algebra if and only if (, ) is *-admissible.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.
Brouder, Christian
2002-01-01
The Laplace Hopf algebra created by Rota and coll. is generalized to provide an algebraic tool for combinatorial problems of quantum field theory. This framework encompasses commutation relations, normal products, time-ordered products and renormalisation. It considers the operator product and the time-ordered product as deformations of the normal product. In particular, it gives an algebraic meaning to Wick's theorem and it extends the concept of Laplace pairing to prove that the renormalise...
Symmetric Extended Ockham Algebras
Institute of Scientific and Technical Information of China (English)
T.S. Blyth; Jie Fang
2003-01-01
The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30
Optimizing relational algebra operations using discrimination-based joins and lazy products
DEFF Research Database (Denmark)
Henglein, Fritz
on the notion of (equiv- alence) discriminator. A discriminator partitions a list of values according to a user-specified equivalence relation on keys the val- ues are associated with. Equivalence relations can be specified in an expressive embedded language for denoting equivalence rela- tions. We......We show how to efficiently evaluate generic map-filter-product queries, generalizations of select-project-join (SPJ) queries in re- lational algebra, based on a combination of two novel techniques: generic discrimination-based joins and lazy (formal) products. Discrimination-based joins are based...... show that discriminators can be constructed generically (by structural recursion on equivalence expressions), purely func- tionally, and efficiently (worst-case linear time). The array-based basic multiset discrimination algorithm of Cai and Paige (1995) provides a base discriminator that is both...
Applications of the potential algebras of the two-dimensional Dirac-like operators
Czech Academy of Sciences Publication Activity Database
Jakubský, Vít
2013-01-01
Roč. 331, č. 4 (2013), s. 216-235. ISSN 0003-4916 R&D Projects: GA AV ČR GPP203/11/P038 Institutional support: RVO:61389005 Keywords : potential algebra * Dirac eyuation * supersymmetry * shape-invariance Subject RIV: BE - Theoretical Physics Impact factor: 3.065, year: 2013 http://ac.els-cdn.com/S0003491613000080/1-s2.0-S0003491613000080-main.pdf?_tid=e9c316f0-bbe7-11e2-b8ca-00000aab0f6c&acdnat=1368461731_fb8fe2f5da71ade23877f1a9bcddd89f
Stability of functional equations in Banach algebras
Cho, Yeol Je; Rassias, Themistocles M; Saadati, Reza
2015-01-01
Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the l...
Algebra Operations on Counting Bloom Filters%计数布鲁姆过滤器代数运算
Institute of Scientific and Technical Information of China (English)
田小梅; 张大方; 谢鲲; 史长琼; 杨晓波
2012-01-01
文中探讨计数布鲁姆过滤器的代数运算和集合运算的一致性关系,研究使用计数布鲁姆过滤器代数运算进行集合成员查询的性能.理论分析和实验结果表明,计数布鲁姆过滤器的并、交、补、减、异或运算产生的新过滤器依然保持计数布鲁姆过滤器的特征,支持元素的删除操作,不会出现假阴性,能用于集合并集、交集、补集、差集及对称差的成员查询；当使用两个原始的计数布鲁姆过滤器查询补集、差集及对称差元素时,会存在部分本来属于补集、差集或对称差的元素被判为不属于补集、差集或对称差的问题,而使用计数布鲁姆过滤器代数运算后的过滤器进行补集、差集及对称差成员查询,则不存在上述问题,空间效率能提高一倍,时间效率亦能显著地得到改善.计数布鲁姆过滤器代数运算的使用有利于进一步扩展计数布鲁姆过滤器的应用范围.譬如计数布鲁姆过滤器减运算可用作一种新的集合调和方法,用于分布式系统中大型文件的分发.%This paper examines the consistence between algebra operations on counting Bloom filters and algebra operations on data sets, and studies the membership query performances of algebra operations on counting Bloom filters. Theoretical analyses and simulations show that the counting Bloom filter which is Ored(ANDed, COMPLEMENTed, SUBTRACTed, XORed) from the original counting Bloom filters can support membership query on data set Ored (ANDed, COMPLEMENTed, SUBTRACTed, XORed) from the original data sets. When using the two original counting Bloom filter to query elements belonged to complementary set, differences or symmetric differences of the two sets, some complementary set elements, differences or symmetric differences of the sets will be misjudged, while the query method using algebra operations on counting Bloom filters has no false negatives and gain a remarkable improvement in
Kimura, Taro
2015-01-01
For a quiver with weighted arrows we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al., and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.
Kurosh, A G; Stark, M; Ulam, S
1965-01-01
Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Villarreal, Rafael
2015-01-01
The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.
Quantum algebra of $N$ superspace
Hatcher, N; Stephany, J
2006-01-01
We identify the quantum algebra of position and momentum operators for a quantum system in superspace bearing an irreducible representation of the super Poinca\\'e algebra. This algebra is noncommutative for the position operators. We use the properties of superprojectors in D=4 $N$ superspace to construct explicit position and momentum operators satisfying the algebra. They act on wave functions corresponding to different supermultiplets classified by its superspin. We show that the quantum algebra associated to the massive superparticle is a particular case described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently.
Localization of Rota-Baxter algebras
Chu, Chenghao; Guo, Li
2012-01-01
A commutative Rota-Baxter algebra can be regarded as a commutative algebra that carries an abstraction of the integral operator. With the motivation of generalizing the study of algebraic geometry to Rota-Baxter algebra, we extend the central concept of localization for commutative algebras to commutative Rota-Baxter algebras. The existence of such a localization is proved and, under mild conditions, its explicit constructions are obtained. The existence of tensor products of commutative Rota...
Twisted Hamiltonian Lie Algebras and Their Multiplicity-Free Representations
Institute of Scientific and Technical Information of China (English)
Ling CHEN
2011-01-01
We construct a class of new Lie algebras by generalizing the one-variable Lie algebras generated by the quadratic conformal algebras (or corresponding Hamiltonian operators) associated with Poisson algebras and a quasi-derivation found by Xu. These algebras can be viewed as certain twists of Xu's generalized Hamiltonian Lie algebras. The simplicity of these algebras is completely determined. Moreover, we construct a family of multiplicity-free representations of these Lie algebras and prove their irreducibility.
International Nuclear Information System (INIS)
We apply the Schroedinger factorization to construct the ladder operators for the hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator in arbitrary dimensions. By generalizing these operators we show that the dynamical algebra for these problems is the su(1, 1) Lie algebra.
Discrete Duality for Tense Symmetric Heyting Algebras
Figallo, Aldo V; Sanza, Claudia
2012-01-01
In this article, we continue the study of tense symmetric Heyting algebras (or TSH-algebras). These algebras constitute a generalization of tense algebras. In particular, we describe a discrete duality for TSHalgebras bearing in mind the results indicated by E. Or lowska and I. Rewitzky in [E. Or lowska and I. Rewitzky, Discrete Dualities for Heyting Algebras with Operators, Fund. Inform. 81 (2007), no.1-3, 275-295.] for Heyting algebras. In addition, we introduce a propositional calculus and prove this calculus has TSH-algebras as algebraic counterpart. Finally, the duality mentioned above allowed us to show the completeness theorem for this calculus.
On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl_{2}
Directory of Open Access Journals (Sweden)
Sergii Kuzhel
2012-01-01
\\(\\Sigma_{J_{\\vec{\\beta}}}\\ are unitarily equivalent for different \\(\\vec{\\alpha}, \\vec{\\beta} \\in \\mathbb{S}^2\\ and describe in detail the structure of operators \\(A \\in \\Sigma_{J_{\\vec{\\alpha}}}\\ with empty resolvent set.
Extended finite operator calculus as an example of algebraization of analysis
Kwasniewski, A. K.
2008-01-01
A calculus of sequences started by professor morgan ward constitutes the general scheme for extensions of classical operator calculus of the distinguished gian carlo rota considered by many afterwards and after ward morgan. Because of the historically now established notation we call the wardian calculus of sequences in its afterwards elaborated form a psi calculus. The psi calculus in parts appears to be almost automatic, natural extension of classical operator calculus or equivalently of um...
Method of averaging in Clifford algebras
Shirokov, D. S.
2014-01-01
In this paper we consider different operators acting on Clifford algebras. We consider Reynolds operator of Salingaros' vee group. This operator average" an action of Salingaros' vee group on Clifford algebra. We consider conjugate action on Clifford algebra. We present a relation between these operators and projection operators onto fixed subspaces of Clifford algebras. Using method of averaging we present solutions of system of commutator equations.
Izhakian, Zur; Rowen, Louis
2008-01-01
We develop the algebraic polynomial theory for "supertropical algebra," as initiated earlier over the real numbers by the first author. The main innovation there was the introduction of "ghost elements," which also play the key role in our structure theory. Here, we work somewhat more generally over an ordered monoid, and develop a theory which contains the analogs of several basic theorems of classical commutative algebra. This structure enables one to develop a Zariski-type algebraic geomet...
On various avatars of the Pasquier algebra
International Nuclear Information System (INIS)
A Pasquier algebra is a commutative associative algebra of normal matrices attached to a graph. I review various appearances of such algebras in different contexts: operator product algebras and structure constants in conformal theories and lattice models, integrable N = 2 supersymmetric models and their topological partners. (author)
International Nuclear Information System (INIS)
In this paper we initiate the study of a non-potential scattering theory within the framework of Lie-admissible formulations. By working in a time-dependent approach, we assume as starting point the usual definition of S-matrix as the time development operator connecting states of our system (supposed interacting through nonpotential forces) in the infinite past to states in the infinite future. It is shown that the Lie-admissible generalization of quantum mechanics, needed to take into account nonconservative forces, leads to two different, non-unitary evolution operators in Schroedinger's representation, U/sub +/ and U/sub -/, describing, respectively, motion forward and backward in time. This implies the existence of two different S-matrices (and, therefore, of two different cross sections) for a given reaction and the inverse (time-reversed) one. Then, one expects a violation of time-reversal invariance whenever nonpotential forces are involved, predictably for strong (nuclear and hadronic) interactions, in agreement with some recent experimental results in nuclear physics. Lie-admissible generalizations of Schroedinger's equations, suggested by the equations of motion for U/sub +/ and U/sub -/, are proposed. Both U/sub +/ and U/sub -/ operators satisfy a Volterra-like integral equation, which can be expanded, under suitable assumptions, in a Neumann-Liouville series. By introducing the operators of chronological and antichronological ordering, one can express both the direct and inverse scattering matrix in the form of a perturbative expansion. The validity of the limiting procedure leading from the U-operators to the S-matrices is investigated by means of generalized Moller's operators
Quantum computation using geometric algebra
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; WANG Yong
2006-01-01
With the help of Bose operator identities and entangled state representation and based on our previous work [Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.
On Dunkl angular momenta algebra
Feigin, Misha; Hakobyan, Tigran
2015-11-01
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
Omid Zahiri; Rajab Ali Borzooei
2012-01-01
We associate a graph to any subset Y of a BCI-algebra X and denote it by G(Y). Then we find the set of all connected components of G(X) and verify the relation between X and G(X), when X is commutative BCI-algebra or G(X) is complete graph or n-star graph. Finally, we attempt to investigate the relation between some operations on graph and some operations on BCI-algebras.
Baykara, N. A.
2015-12-01
Recent studies on quantum evolutionary problems in Demiralp's group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.
International Nuclear Information System (INIS)
Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one
Intermediate algebra a textworkbook
McKeague, Charles P
1985-01-01
Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex
Bosonization of ZF algebras: direction toward a deformed Virasoro algebra
International Nuclear Information System (INIS)
Bosonization of conformal field theory is discussed. An explicit realization of chiral vertex operators interpolating between irreducible representations of the deformed Virasoro algebra is obtained. The commutation relations of these operators are determined by the elliptic matrix of Zamolodchikov-Faddeev algebras. 45 refs., 6 figs
Hopf algebras in noncommutative geometry
International Nuclear Information System (INIS)
We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)
DEFF Research Database (Denmark)
2007-01-01
The workshop continued a series of Oberwolfach meetings on algebraic groups, started in 1971 by Tonny Springer and Jacques Tits who both attended the present conference. This time, the organizers were Michel Brion, Jens Carsten Jantzen, and Raphaël Rouquier. During the last years, the subject of...... algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group-theorists, and to...
Dirac matrices as elements of superalgebraic matrix algebra
Monakhov, V. V.
2016-01-01
The paper considers a Clifford extension of the Grassmann algebra, in which operators are built from Grassmann variables and by the derivatives with respect to them. It is shown that a subalgebra which is isomorphic to the usual matrix algebra exists in this algebra, the Clifford exten-sion of the Grassmann algebra is a generalization of the matrix algebra and contains superalgebraic operators expanding matrix algebra and produces supersymmetric transformations.
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
International Nuclear Information System (INIS)
We calculate the cohomology of the BRS operator s modulo an auxiliary differential operator t where both operators act on invariant polynomials in anticommuting variables Ci and commuting variables Xi. Ci and Xi transform according to the adjoint representation of the Lie algebra of a compact Lie group. The cohomology classes of s modulo t are related to the solutions of the consistency equations which have to be satisfied by anomalies of Yang-Mills theories. The present investigation completes the proof of the completeness and nontriviality of these solutions and, as a by-product, determines the cohomology of the underlying Lie algebra. (orig.)
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...
Segal algebras in commutative Banach algebras
INOUE, Jyunji; TAKAHASI, Sin-Ei
2014-01-01
The notion of Reiter's Segal algebra in commutative group algebras is generalized to a notion of Segal algebra in more general classes of commutative Banach algebras. Then we introduce a family of Segal algebras in commutative Banach algebras under considerations and study some properties of them.
Algebra-Geometry of Piecewise Algebraic Varieties
Institute of Scientific and Technical Information of China (English)
Chun Gang ZHU; Ren Hong WANG
2012-01-01
Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.
The algebraic structure of the Onsager algebra
DATE, ETSURO; Roan, Shi-shyr
2000-01-01
We study the Lie algebra structure of the Onsager algebra from the ideal theoretic point of view. A structure theorem of ideals in the Onsager algebra is obtained with the connection to the finite-dimensional representations. We also discuss the solvable algebra aspect of the Onsager algebra through the formal Lie algebra theory.
Boiteau, Denise; Stansfield, David
This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative Numbers"; and (5) "Using Positive…
Vertex Algebras, Kac-Moody Algebras, and the Monster
Borcherds, Richard E.
1986-05-01
It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The ``Moonshine'' representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.
On realizations of polynomial algebras with three generators via deformed oscillator algebras
International Nuclear Information System (INIS)
We present the most general polynomial Lie algebra generated by a second order integral of motion and one of order M, construct the Casimir operator, and show how the Jacobi identity provides the existence of a realization in terms of deformed oscillator algebra. We also present the classical analogue of this construction for the most general polynomial Poisson algebra. Two specific classes of such polynomial algebras are discussed that include the symmetry algebras observed for various 2D superintegrable systems. (paper)
Semigroups and computer algebra in algebraic structures
Bijev, G.
2012-11-01
Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Holtz, Olga; Ron, Amos
2007-01-01
A wealth of geometric and combinatorial properties of a given linear endomorphism $X$ of $\\R^N$ is captured in the study of its associated zonotope $Z(X)$, and, by duality, its associated hyperplane arrangement ${\\cal H}(X)$. This well-known line of study is particularly interesting in case $n\\eqbd\\rank X \\ll N$. We enhance this study to an algebraic level, and associate $X$ with three algebraic structures, referred herein as {\\it external, central, and internal.} Each algebraic structure is ...
Hochschild homology of structured algebras
DEFF Research Database (Denmark)
Wahl, Nathalie; Westerland, Craig Christopher
2016-01-01
We give a general method for constructing explicit and natural operations on the Hochschild complex of algebras over any prop with A∞-multiplication—we think of such algebras as A∞-algebras “with extra structure”. As applications, we obtain an integral version of the Costello......–Kontsevich–Soibelman moduli space action on the Hochschild complex of open TCFTs, the Tradler–Zeinalian and Kaufmann actions of Sullivan diagrams on the Hochschild complex of strict Frobenius algebras, and give applications to string topology in characteristic zero. Our main tool is a generalization of the Hochschild complex....
Congruence Kernels of Orthoimplication Algebras
Directory of Open Access Journals (Sweden)
I. Chajda
2007-10-01
Full Text Available Abstracting from certain properties of the implication operation in Boolean algebras leads to so-called orthoimplication algebras. These are in a natural one-to-one correspondence with families of compatible orthomodular lattices. It is proved that congruence kernels of orthoimplication algebras are in a natural one-to-one correspondence with families of compatible p-filters on the corresponding orthomodular lattices. Finally, it is proved that the lattice of all congruence kernels of an orthoimplication algebra is relatively pseudocomplemented and a simple description of the relative pseudocomplement is given.
Algebra & trigonometry I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq
Algebra & trigonometry super review
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y
Issa, A. Nourou
2010-01-01
Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-M...
Cardinal invariants on Boolean algebras
Monk, J Donald
2014-01-01
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the...
On integral forms for vertex algebras associated with affine Lie algebras and lattices
McRae, Robert
2014-01-01
We revisit the construction of integral forms for vertex (operator) algebras $V_L$ based on even lattices $L$ using generators instead of bases, and we construct integral forms for $V_L$-modules. We construct integral forms for vertex (operator) algebras based on highest-weight modules for affine Lie algebras and we exhibit natural generating sets. For vertex operator algebras in general, we give conditions showing when an integral form contains the standard conformal vector generating the Vi...
Congruences on Balanced Pseudocomplemented Ockham Algebras
Institute of Scientific and Technical Information of China (English)
Jie FANG
2009-01-01
The variety bpO consists of those algebras (L;∧,∨, f,* ) of type where (L; ∧, ∨, f, 0, 1) is an Ockham algebra, (L; ∧, ∨, *, 0, 1) is a p-algebra, and the operations x→f(x) and x →x* satisfy the identities f(x*) = x** and [f(x)]* = f2(x). In this note, we show that the compact congruences on a bpO-algebra form a dual Stone lattice. Using this, we characterize the algebras in which every principal congruence is complemented. We also give a description of congruence coherent bpO-algebras.
Cardinal invariants on Boolean algebras
Monk, J Donald
2009-01-01
Deals with cardinal number valued functions defined for any Boolean algebra. This title considers the behavior of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. It covers topics such as ultraproducts and Fedorchukis theorem
Toeplitz Algebras on Dirichlet Spaces
Institute of Scientific and Technical Information of China (English)
TAN Yan-hua; WANG Xiao-feng
2001-01-01
In the present paper, some properties of Toeplitz algebras on Dirichlet spaces for several complex variables are discussed; in particular, the automorphism group of the Toeplitz C* -algebra, (C1), generated by Toeplitz operators with C1-symbols is discussed. In addition, the first cohomology group of (C1) is computed.
Das, Tapas
2015-01-01
The second order $N$-dimensional Schr\\"odinger equation with pseudoharmonic potential is reduced to a first order differential equation by using the Laplace transform approach and exact bound state solutions are obtained using convolution theorem. Our results generalize all other previous works that done for various potential combinations in the case of lower dimensions.The Ladder operators are also constructed for the pseudoharmonic potential in $N$-dimensions.Lie algebra associated with these operators are studied and found that they satisfy the commutation relations for the SU(1,1) group. Matrix elements of different operators such as $z$, $z\\frac{d}{dz}$ are derived and finally the Casimir operator is discussed briefly.
Monakhov, Vadim V
2016-01-01
We introduced fermionic variables in complex modules over real Clifford algebras of even dimension which are analog of the Witt basis. We built primitive idempotents which are a set of equivalent Clifford vacuums. It is shown that the modules are decomposed into direct sum of minimal left ideals generated by these idempotents and that the fermionic variables can be considered as more fundamental mathematical objects than spinors.
International Nuclear Information System (INIS)
Since the works of Gelfand, Harish-Chandra, Kostant and Duflo, a new theory has earned its place in the field of mathematics, due to the abundance of its results and the coherence of its methods: the theory of enveloping algebras. This study is the first to present the whole subject in textbook form. The most recent results are included, as well as complete proofs, starting from the elementary theory of Lie algebras. (Auth.)
基于8种常用蕴涵算子上的模糊布尔代数%Fuzzy Boolean Algebras Based on Eight Familiar Kinds of Implication Operator
Institute of Scientific and Technical Information of China (English)
陈华新
2012-01-01
Based on the work of "Fuzzy Boolean Algebras Based on Implication Operator", present work gives eight kinds of equivalent forms of fuzzy Boolean algebras based on familiar eight kinds of implication operator by using inequalities characterizatian method. This paper promotes the results of the corresponding fuzzy algebra, and enriches riches theoretical results of fuzzy algebra.%在文献[1]的基础上,利用不等式的刻画方法,给出8种常用的R-蕴涵算子下的R-模糊布尔代数的8种等价形式,推广了现有相应模糊代数的结果,丰富了模糊代数的理论成果.
Young tableaux and homotopy commutative algebras
Dubois-Violette, Michel; Popov, Todor
2012-01-01
A homotopy commutative algebra, or $C_{\\infty}$-algebra, is defined via the Tornike Kadeishvili homotopy transfer theorem on the vector space generated by the set of Young tableaux with self-conjugated Young diagrams. We prove that this $C_{\\infty}$-algebra is generated in degree 1 by the binary and the ternary operations.
An infinite algebra of quantum Dirac brackets
International Nuclear Information System (INIS)
A new algebraic approach to the theory with second-class constraints is proposed. The operator equations that generate automatically the infinite algebra of quantum Dirac brackets are formulated. First-class constraints are naturally involved into the new algebraic scheme. (orig.)
Algebraic entropy for algebraic maps
International Nuclear Information System (INIS)
We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)
Homotopy DG algebras induce homotopy BV algebras
Terilla, John; Tradler, Thomas; Wilson, Scott O.
2011-01-01
Let TA denote the space underlying the tensor algebra of a vector space A. In this short note, we show that if A is a differential graded algebra, then TA is a differential Batalin-Vilkovisky algebra. Moreover, if A is an A-infinity algebra, then TA is a commutative BV-infinity algebra.
Planar Para Algebras, Reflection Positivity
Jaffe, Arthur
2016-01-01
We define the notion of a planar para algebra, which arises naturally from combining planar algebras with the idea of $\\Z_{N}$ para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects, that are invariant under isotopy. For each $\\Z_{N}$, we construct a family of subfactor planar para algebras which play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra. Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras which one can use in the study of quantum information. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivi...
Semiprojectivity of universal -algebras generated by algebraic elements
DEFF Research Database (Denmark)
Shulman, Tatiana
2012-01-01
Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given.......Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....
Institute of Scientific and Technical Information of China (English)
WANG Renhong; ZHU Chungang
2004-01-01
The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Cofree Hopf algebras on Hopf bimodule algebras
Fang, Xin; Jian, Run-Qiang
2013-01-01
We investigate a Hopf algebra structure on the cotensor coalgebra associated to a Hopf bimodule algebra which contains universal version of Clifford algebras and quantum groups as examples. It is shown to be the bosonization of the quantum quasi-shuffle algebra built on the space of its right coinvariants. The universal property and a Rota-Baxter algebra structure are established on this new algebra.
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
On uniform topological algebras
Azhari, M. El
2013-01-01
The uniform norm on a uniform normed Q-algebra is the only uniform Q-algebra norm on it. The uniform norm on a regular uniform normed Q-algebra with unit is the only uniform norm on it. Let A be a uniform topological algebra whose spectrum M (A) is equicontinuous, then A is a uniform normed algebra. Let A be a regular semisimple commutative Banach algebra, then every algebra norm on A is a Q-algebra norm on A.
Marchuk, Nikolay
2011-01-01
Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann alg...
Hazewinkel, Michiel
2004-01-01
Two important generalizations of the Hopf algebra of symmetric functions are the Hopf algebra of noncommutative symmetric functions and its graded dual the Hopf algebra of quasisymmetric functions. A common generalization of the latter is the selfdual Hopf algebra of permutations (MPR Hopf algebra). This latter Hopf algebra can be seen as a Hopf algebra of endomorphisms of a Hopf algebra. That turns out to be a fruitful way of looking at things and gives rise to wide ranging further generaliz...
Allenby, Reg
1995-01-01
As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Properties Of Operators On Linear De.Morgan Algebra(II)%线性De.Morgan代数上算子的性质(Ⅱ)
Institute of Scientific and Technical Information of China (English)
成央金
2000-01-01
At first,we propose the θ operator and θ* operator on De.Morgan algebra.Next investigate their properties and apply them to solve inqualities in one unknown.especially obtain the result:aθ*b=((-a)+e)(aθb)%讨论了θ算子与θ*算子,建立了θ*算子的类似于剩余算子的性质,由此可以看出可把θ*算子作为一种新的蕴涵算子.研究了θ算子与θ*算子的关系获得了aθ*b=(e+)(aθb),给出了含一个变元的不等式的求解.
Smarandache Jordan Algebras - abstract
Vasantha Kandasamy, W. B.; Christopher, S.; A. Victor Devadoss
2004-01-01
We prove a S-commutative Jordan Algebra is a S-weakly commutative Jordan algebra. We define a S-Jordan algebra to be S-simple Jordan algebras if the S-Jordan algebra has no S-Jordan ideals. We obtain several other interesting notions and results on S-Jordan algebras.
International Nuclear Information System (INIS)
We establish the algebraic isomorphism between the Drinfeld basis of the twisted quantum affine algebra Uq(A(2)2) and the twisted Reshetihkin and Semenov-Tian-Shansky algebra by using the Gauss decomposition technique of Ding and Frenkel. (author). Letter-to-the-editor
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type
Directory of Open Access Journals (Sweden)
Ta Khongsap
2009-01-01
Full Text Available We introduce an odd double affine Hecke algebra (DaHa generated by a classical Weyl group $W$ and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by $W$ and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (superequivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras.
Associative subalgebras of the Griess algebra and related topics
Dong, C; Mason, G; Norton, S P
1996-01-01
It is shown how certain idempotents in the Griess algebra generate the discrete series representations for the Virasoro algebra inside the Frenkel-Lepowsky-Meurman's moonshine module vertex operator algebra. It is also shown that each Niemeier lattice determines (in many ways) certain maximal associative subalgebras of the Griess algebra.
Quantum algebra of N superspace
International Nuclear Information System (INIS)
We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the κ-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra
Indian Academy of Sciences (India)
Tomás L Gómez
2001-02-01
This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.
Oliver, Bob; Pawałowski, Krzystof
1991-01-01
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
Energy Technology Data Exchange (ETDEWEB)
Bowcock, P.; Taormina, A. [Durham Univ. (United Kingdom). Dept. of Mathematics; Feigin, B.L. [Landau Inst. of Theoretical Physics, Moscow (Russian Federation); Semikhatov, A.M. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Institut
2000-11-01
We discover a realisation of the affine Lie superalgebra sl(2 vertical stroke 1) and of the exceptional affine superalgebra D(2 vertical stroke 1;{alpha}) as vertex operator extensions of two sl(2) algebras with ''dual'' levels (and an auxiliary level-1 sl(2) algebra). The duality relation between the levels is (k{sub 1}+1)(k{sub 2}+1)=1. We construct the representation of sl(2 vertical stroke 1){sub k{sub 1}} on a sum of tensor products of sl(2){sub k{sub 1}}, sl(2){sub k{sub 2}}, and sl(2){sub 1} modules and decompose it into a direct sum over the sl(2 vertical stroke 1){sub k{sub 1}} spectral flow orbit. This decomposition gives rise to character identities, which we also derive. The extension of the construction to D(2 vertical stroke 1;k{sub 2}){sub k{sub 1}} is traced to the properties of sl(2)+ sl(2)+ sl(2) embeddings into D(2 vertical stroke 1;{alpha}) and their relation with the dual sl(2) pairs. Conversely, we show how the sl (2){sub k{sub 2}} representations are constructed from sl(2 vertical stroke 1){sub k{sub 1}} representations. (orig.)
Bowcock, P; Semikhatov, A M; Taormina, A
2000-01-01
We discover a realisation of the affine Lie superalgebra sl(2|1) and of the exceptional affine superalgebra D(2|1;alpha) as vertex operator extensions of two affine sl(2) algebras with dual levels (and an auxiliary level 1 sl(2) algebra). The duality relation between the levels is (k+1)(k'+1)=1. We construct the representation of sl(2|1) at level k' on a sum of tensor products of sl(2) at level k, sl(2) at level k' and sl(2) at level 1 modules and decompose it into a direct sum over the sl(2|1) spectral flow orbit. This decomposition gives rise to character identities, which we also derive. The extension of the construction to the affine D(2|1;k') at level k is traced to properties of sl(2)+sl(2)+sl(2) embeddings into D(2|1;alpha) and their relation with the dual sl(2) pairs. Conversely, we show how the level k' sl(2) representations are constructed from level k sl(2|1) representations.
On Nilpotent Extensions of Algebras
Institute of Scientific and Technical Information of China (English)
Adam W. Marczak; Jerzy Plonka
2007-01-01
In this paper, we investigate essentially n-ary term operations of nilpotent extensions of algebras. We detect the connection between term operations of an original algebra and its nilpotent extensions. This structural point of view easily leads to the conclusion that the number of distinct essentially n-ary term operations of a proper algebraic nilpotent extension (ひ) of an algebra (ワ) is given by the formula pn(ひ)={pn(ワ)+1 for n=1,{pn(ワ) otherwise. We show that in general the converse theorem is not true. However, we suppose that if a variety V is uniquely determined by its pn-sequences, the converse theorem is also satisfied. In the second part of the paper, we characterize generics of nilpotent shifts of varieties and describe cardinalities of minimal generics. We give a number of examples and pose some problems.
Rota-Baxter algebras and the Hopf algebra of renormalization
International Nuclear Information System (INIS)
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Fuzzy Boolean Algebras Based on Implication Operator%基于蕴涵算子上的模糊布尔代数
Institute of Scientific and Technical Information of China (English)
陈华新
2011-01-01
文中给出R-模糊布尔代数的定义,讨论了其与模糊布尔代数的关系,证明在一定的条件下,有限个R-模糊布尔代数的交(并)还是R-模糊布尔代数,R-模糊布尔代数的同态像(原像)仍是R-模糊布尔代数.%In this paper ,we introduce the definition of fuzzy Boolean algebra. Based on that, the differences and connection between R-fuzzy Boolean algebra and fuzzy Boolean algebra are discussed. Furhtermore, it is proved that the finite intersection (union) of R-fuzzy Boolean algebra is still R-fuzzy Boolean algebra , and the homomorphic image (preimage) of R-fuzzy Boolean algebra is still R-fuzzy Boolean algebra.
Between Quantum Virasoro Algebra \\cal{L}_c and Generalized Clifford Algebras
Kinani, E. H. El
2003-01-01
In this paper we construct the quantum Virasoro algebra ${\\mathcal{L}}_{c}$ generators in terms of operators of the generalized Clifford algebras $C_{n}^{k}$. Precisely, we show that ${\\mathcal{L}}_{c}$ can be embedded into generalized Clifford algebras.
Central simple Poisson algebras
Institute of Scientific and Technical Information of China (English)
SU; Yucai; XU; Xiaoping
2004-01-01
Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.
El-Chaar, Caroline
2012-01-01
In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. U...
Literal algebra for satellite dynamics. [perturbation analysis
Gaposchkin, E. M.
1975-01-01
A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.
Excision in algebraic K-theory and Karoubi's conjecture.
Suslin, A A; Wodzicki, M
1990-12-15
We prove that the property of excision in algebraic K-theory is for a Q-algebra A equivalent to the H-unitality of the latter. Our excision theorem, in particular, implies Karoubi's conjecture on the equality of algebraic and topological K-theory groups of stable C*-algebras. It also allows us to identify the algebraic K-theory of the symbol map in the theory of pseudodifferential operators. PMID:11607130
Quaternion types of Clifford algebra elements, basis-free approach
Shirokov, D S
2011-01-01
We consider Clifford algebras over the field of real or complex numbers as a quotient algebra without fixed basis. We present classification of Clifford algebra elements based on the notion of quaternion type. This classification allows us to reveal and prove a number of new properties of Clifford algebras. We rely on the operations of conjugation to introduce the notion of quaternion type. Also we find relations between the concepts of quaternion type and rank of Clifford algebra element.
Highest-weight representations of Brocherd`s algebras
Energy Technology Data Exchange (ETDEWEB)
Slansky, R.
1997-01-01
General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.
Algebraic structures in quantum gravity
Tanasa, Adrian
2009-01-01
Starting from a recently-introduced algebraic structure on spin foam models, we define a Hopf algebra by dividing with an appropriate quotient. The structure, thus defined, naturally allows for a mirror analysis of spin foam models with quantum field theory, from a combinatorial point of view. A grafting operator is introduced allowing for the equivalent of a Dyson-Schwinger equation to be written. Non-trivial examples are explicitly worked out. Finally, the physical significance of the results is discussed.
Chirvasitu, Alex; Smith, S. Paul
2015-01-01
This paper examines a general method for producing twists of a comodule algebra by tensoring it with a torsor then taking co-invariants. We examine the properties that pass from the original algebra to the twisted algebra and vice versa. We then examine the special case where the algebra is a 4-dimensional Sklyanin algebra viewed as a comodule algebra over the Hopf algebra of functions on the non-cyclic group of order 4 with the torsor being the 2x2 matrix algebra. The twisted algebra is an "...
Nonmonotonic logics and algebras
Institute of Scientific and Technical Information of China (English)
CHAKRABORTY Mihir Kr; GHOSH Sujata
2008-01-01
Several nonmonotonie logic systems together with their algebraic semantics are discussed. NM-algebra is defined.An elegant construction of an NM-algebra starting from a Boolean algebra is described which gives rise to a few interesting algebraic issues.
Lutfiyya, Lutfi A
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.
Petri Nets And Algebraic Specifications
International Nuclear Information System (INIS)
The present report covers part of the work carried out in connection to the co-operative project between ENEA and the OECD Halden Reactor Project on graphical and formal methods for software specification. One of the project assignments has been to investigate how graphical descriptions can be supported by the algebraic specification language and associated tool (the HRP Prover) developed at the Halden Project. Since many graphical description languages can be translated to Petri nets, the focus of the investigations has been put on the translation of these nets into algebraic specification. The report introduces two related classes of algebraic specifications, and defines a notion of equivalence between them. It is demonstrated how these two classes provide a suitable framework for the translation of many different types of Petri nets into algebraic specification. It is also demonstrated how this translation makes it possible to analyse the nets with techniques established for algebraic specification, illustrated through the use of the HRP Prover. The exposition in the report contributes to a clarification about the relationship between Petri nets and algebraic specifications. Furthermore, it indicates the extent to which graphical descriptions can be used to explain the meaning of algebraic specifications to non experts. The report also reviews applications of Petri nets related to nuclear power. These include fault diagnosis and fault detection in nuclear reactors, fault tolerance in nuclear reactor protection systems, and modelling of work flow in nuclear waste management. (author)
Perturbations of C*-algebraic Invariants
DEFF Research Database (Denmark)
Christensen, Erik; Sinclair, Allan M.; Smith, Roger R.;
2010-01-01
The setting of the article is the so-called theory of perturbations of algebras of operators. It is shown that several of the properties a C*-algebra may have are preseved under pertubations. The main result states that Pisier's concept finite length is a stasble property.......The setting of the article is the so-called theory of perturbations of algebras of operators. It is shown that several of the properties a C*-algebra may have are preseved under pertubations. The main result states that Pisier's concept finite length is a stasble property....
Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
Algebras, dialgebras, and polynomial identities
Bremner, Murray R
2012-01-01
This is a survey of some recent developments in the theory of associative and nonassociative dialgebras, with an emphasis on polynomial identities and multilinear operations. We discuss associative, Lie, Jordan, and alternative algebras, and the corresponding dialgebras; the KP algorithm for converting identities for algebras into identities for dialgebras; the BSO algorithm for converting operations in algebras into operations in dialgebras; Lie and Jordan triple systems, and the corresponding disystems; and a noncommutative version of Lie triple systems based on the trilinear operation abc-bca. The paper concludes with a conjecture relating the KP and BSO algorithms, and some suggestions for further research. Most of the original results are joint work with Raul Felipe, Luiz A. Peresi, and Juana Sanchez-Ortega.
李代数D8到李代数E8嵌入关系的顶点算子代数类似%Vertex operator algebra analogue of the embedding D8 into E8
Institute of Scientific and Technical Information of China (English)
楚彦军; 程俊芳; 郑驻军
2012-01-01
Frenkel I,Lepowsky J,MeurmanA利用E8-格的方法构造月光顶点算子代数.由此过程可知,D8格顶点算子代数到E8格顶点算子代数的嵌入关系是不平凡的,而且这种嵌入关系应用到共形场论中有困难.结合一些新发展的顶点代数理论,给出了顶点算子代数LD8(1,0)到顶点算子代数LE8(1,0)嵌入关系的一种实现.这也表明LE8(1,0)作为LD8(1,0)模,同构于LE8(1,0)由其单模LD8(1,(ω)8)的扩张.在此基础上,得到LD8(1,0)在LE8(1,0)中的commutant子代数是由真空向量生成的一维平凡子代数.我们希望这样的嵌入关系对理解与月光顶点算子代数的构造相关的嵌入关系有较大帮助.%From Frenkel-Lepowsky-Meurman' s construction of the moonshine vertex operator algebra with the methods of Es - lattice originally, there is a nontrivial embedding of the Dg - lattice vertex operator algebra into the ￡g - lattice vertex operator algebra , and this embedding relation is difficult to be used into conformal field theories. Associating to the recent vertex algebra theory, we give a realization of the embedding of the vertex operator algebra L^ (1,0) into the vertex operator algebra LE% (1,0) and show that as an L^ (1,0 ) - module, LE% (1,0) is isomorphic to the extension of L^ (1,0) by its simple module Z,^ (1 ,a>g ). We also get the commutant of L^ (1,0) in Z,￡g (1,0) , which is trivial. We expect it is helpful to study the embedding relations associated to the construction of the moonshine vertex operator algebra.
Goze, Michel; Remm, Elisabeth
2006-01-01
A current Lie algebra is contructed from a tensor product of a Lie algebra and a commutative associative algebra of dimension greater than 2. In this work we are interested in deformations of such algebras and in the problem of rigidity. In particular we prove that a current Lie algebra is rigid if it is isomorphic to a direct product gxg...xg where g is a rigid Lie algebra.
Solvable quadratic Lie algebras
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.
Grabowski, Jan
2015-01-01
In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite type cluster algebras without coefficients, giving a full classification. Translating ...
Parsing with Regular Expressions & Extensions to Kleene Algebra
DEFF Research Database (Denmark)
Grathwohl, Niels Bjørn Bugge
. In the second part of this thesis, we study two extensions to Kleene algebra. Chomsky algebra is an algebra with a structure similar to Kleene algebra, but with a generalized mu-operator for recursion instead of the Kleene star. We show that the axioms of idempotent semirings along with continuity of the mu......-operator completely axiomatize the equational theory of the context-free languages. KAT+B! is an extension to Kleene algebra with tests (KAT) that adds mutable state. We describe a test algebra B! for mutable tests and give a commutative coproduct between KATs. Combining the axioms of B! with those of KAT and some...
Banach Algebras Associated to Lax Pairs
Glazebrook, James F.
2015-04-01
Lax pairs featuring in the theory of integrable systems are known to be constructed from a commutative algebra of formal pseudodifferential operators known as the Burchnall- Chaundy algebra. Such pairs induce the well known KP flows on a restricted infinite-dimensional Grassmannian. The latter can be exhibited as a Banach homogeneous space constructed from a Banach *-algebra. It is shown that this commutative algebra of operators generating Lax pairs can be associated with a commutative C*-subalgebra in the C*-norm completion of the *-algebra. In relationship to the Bose-Fermi correspondence and the theory of vertex operators, this C*-algebra has an association with the CAR algebra of operators as represented on Fermionic Fock space by the Gelfand-Naimark-Segal construction. Instrumental is the Plücker embedding of the restricted Grassmannian into the projective space of the associated Hilbert space. The related Baker and tau-functions provide a connection between these two C*-algebras, following which their respective state spaces and Jordan-Lie-Banach algebras structures can be compared.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
It is a small step toward the Koszul-type algebras. The piecewise-Koszul algebras are,in general, a new class of quadratic algebras but not the classical Koszul ones, simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases. We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A), and show an A∞-structure on E(A). Relations between Koszul algebras and piecewise-Koszul algebras are discussed. In particular, our results are related to the third question of Green-Marcos.
Li, Haisheng; Tan, Shaobin; Wang, Qing
2012-01-01
In this paper, we study a notion of what we call vertex Leibniz algebra. This notion naturally extends that of vertex algebra without vacuum, which was previously introduced by Huang and Lepowsky. We show that every vertex algebra without vacuum can be naturally extended to a vertex algebra. On the other hand, we show that a vertex Leibniz algebra can be embedded into a vertex algebra if and only if it admits a faithful module. To each vertex Leibniz algebra we associate a vertex algebra with...
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Automorphisms and Derivations of the Insertion-Elimination Algebra and Related Graded Lie Algebras
Ondrus, Matthew; Wiesner, Emilie
2016-07-01
This paper addresses several structural aspects of the insertion-elimination algebra {mathfrak{g}}, a Lie algebra that can be realized in terms of tree-inserting and tree-eliminating operations on the set of rooted trees. In particular, we determine the finite-dimensional subalgebras of {mathfrak{g}}, the automorphism group of {mathfrak{g}}, the derivation Lie algebra of {mathfrak{g}}, and a generating set. Several results are stated in terms of Lie algebras admitting a triangular decomposition and can be used to reproduce results for the generalized Virasoro algebras.
$N$-point Virasoro algebras are multi-point Krichever--Novikov type algebras
Schlichenmaier, Martin
2015-01-01
We show how the recently again discussed $N$-point Witt, Virasoro, and affine Lie algebras are genus zero examples of the multi-point versions of Krichever--Novikov type algebras as introduced and studied by Schlichenmaier. Using this more general point of view, useful structural insights and an easier access to calculations can be obtained. The concept of almost-grading will yield information about triangular decompositions which are of importance in the theory of representations. As examples the algebra of functions, vector fields, differential operators, current algebras, affine Lie algebras, Lie superalgebras and their central extensions are studied. Very detailed calculations for the three-point case are given.
The equitable Racah algebra from three su(1,1) algebras
International Nuclear Information System (INIS)
The Racah algebra, a quadratic algebra with two independent generators, is central in the analysis of superintegrable models and encodes the properties of the Racah polynomials. It is the algebraic structure behind the su(1,1) Racah problem as it is realized by the intermediate Casimir operators arising in the addition of three irreducible su(1,1) representations. It has been shown that this Racah algebra can also be obtained from quadratic elements in the enveloping algebra of su(2). The correspondence between these two realizations is here explained and made explicit. (paper)
Strengthening Effect Algebras in a Logical Perspective: Heyting-Wajsberg Algebras
Konig, Martinvaldo
2014-10-01
Heyting effect algebras are lattice-ordered pseudoboolean effect algebras endowed with a pseudocomplementation that maps on the center (i.e. Boolean elements). They are the algebraic counterpart of an extension of both Łukasiewicz many-valued logic and intuitionistic logic. We show that Heyting effect algebras are termwise equivalent to Heyting-Wajsberg algebras where the two different logical implications are defined as primitive operators. We prove this logic to be decidable, to be strongly complete and to have the deduction-detachment theorem.
Institute of Scientific and Technical Information of China (English)
Hoger GHAHRAMANI
2014-01-01
Let A be a subalgebra of B(X ) containing the identity operator I and an idem-potent P . Suppose that α,β :A→A are ring epimorphisms and there exists some nest N on X such thatα(P )(X ) andβ(P )(X ) are non-trivial elements of N . Let A contain all rank one operators in AlgN and δ :A→B(X ) be an additive mapping. It is shown that, if δ is (α,β)-derivable at zero point, then there exists an additive (α,β)-derivation τ : A→ B(X ) such that δ(A) = τ(A)+α(A)δ(I ) for all A ∈ A. It is also shown that if δ is generalized (α,β)-derivable at zero point, then δ is an additive generalized (α,β)-derivation. Moreover, by use of this result, the additive maps (generalized) (α,β)-derivable at zero point on several nest algebras, are also characterized.
Arrangement Computation for Planar Algebraic Curves
Berberich, Eric; Emeliyanenko, Pavel; Kobel, Alexander; Sagraloff, Michael
2011-01-01
We present a new certified and complete algorithm to compute arrangements of real planar algebraic curves. Our algorithm provides a geometric-topological analysis of the decomposition of the plane induced by a finite number of algebraic curves in terms of a cylindrical algebraic decomposition of the plane. Compared to previous approaches, we improve in two main aspects: Firstly, we significantly reduce the amount of exact operations, that is, our algorithms only uses resultant and gcd as pure...
Wodzicki residue and anomalies of current algebras
Mickelsson, J
1994-01-01
The commutator anomalies (Schwinger terms) of current algebras in 3+1 dimensions are computed in terms of the Wodzicki residue of pseudodifferential operators; the result can be written as a (twisted) Radul 2-cocycle for the Lie algebra of PSDOs. The construction of the (second quantized) current algebra is closely related to a geometric renormalization of the interaction Hamiltonian H_I=j_{\\mu} A^{\\mu} in gauge theory.
The Hyperbolic Clifford Algebra of Multivecfors
Rodrigues Jr., W. A.; de Souza, Q. A. G.
2007-01-01
In this paper we give a thoughtful exposition of the hyperbolic Clifford algebra of multivecfors which is naturally associated with a hyperbolic space, whose elements are called vecfors. Geometrical interpretation of vecfors and multivecfors are given. Poincare automorphism (Hodge dual operator) is introduced and several useful formulas derived. The role of a particular ideal in the hyperbolic Clifford algebra whose elements are representatives of spinors and resume the algebraic properties o...
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Zheng Lijing
2015-11-01
Let be an algebraically closed field, a finite dimensional connected (, )-Koszul self-injective algebra with , ≥ 2. In this paper, we prove that the Yoneda algebra of is isomorphic to a twisted polynomial algebra $A^!$ [ ; ] in one indeterminate of degree +1 in which $A^!$ is the quadratic dual of , is an automorphism of $A^!$, and = () for each $t \\in A^!$. As a corollary, we recover Theorem 5.3 of [2].
Algebra cohomology over a commutative algebra revisited
Pirashvili, Teimuraz
2003-01-01
The aim of this paper is to give a relatively easy bicomplex which computes the Shukla, or Quillen cohomology in the category of associative algebras over a commutative algebra $A$, in the case when $A$ is an algebra over a field.
WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY
Institute of Scientific and Technical Information of China (English)
TaoChangli; LuShijie; ChenPeixin
2002-01-01
Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.
Kinds of Knowledge in Algebra.
Lewis, Clayton
Solving equations in elementary algebra requires knowledge of the permitted operations, and knowledge of what operation to use at a given point in the solution process. While just these kinds of knowledge would be adequate for an ideal solver, human solvers appear to need and use other kinds of knowledge. First, many errors seem to indicate that…
Algebras of Measurements: the logical structure of Quantum Mechanics
Lehmann, D; Gabbay, D M; Engesser, Kurt; Gabbay, Dov M.; Lehmann, Daniel
2005-01-01
In Quantum Physics, a measurement is represented by a projection on some closed subspace of a Hilbert space. We study algebras of operators that abstract from the algebra of projections on closed subspaces of a Hilbert space. The properties of such operators are justified on epistemological grounds. Commutation of measurements is a central topic of interest. Classical logical systems may be viewed as measurement algebras in which all measurements commute. Keywords: Quantum measurements, Measurement algebras, Quantum Logic. PACS: 02.10.-v.
Dirac cohomology for the degenerate affine Hecke Clifford algebra
Chan, Kei Yuen
2013-01-01
We define an analogue of the Dirac operator for the degenerate affine Hecke-Clifford algebra. A main result is to relate the central characters of the degenerate affine Hecke-Clifford algebra with the central characters of the Sergeev algebra via Dirac cohomology. The action of the Dirac operator on certain modules is also computed. Results in this paper could be viewed as a projective version of the Dirac cohomology of the degenerate affine Hecke algebra.
Alternative algebraic approaches in quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Mezey, Paul G., E-mail: paul.mezey@gmail.com [Canada Research Chair in Scientific Modeling and Simulation, Department of Chemistry and Department of Physics and Physical Oceanography, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John' s, NL A1B 3X7 (Canada)
2015-01-22
Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.
Alternative algebraic approaches in quantum chemistry
International Nuclear Information System (INIS)
Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed
The algebras of large N matrix mechanics
Energy Technology Data Exchange (ETDEWEB)
Halpern, M.B.; Schwartz, C.
1999-09-16
Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.
The algebras of large N matrix mechanics
International Nuclear Information System (INIS)
Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N
Enveloping algebras of some quantum Lie algebras
Pourkia, Arash
2014-01-01
We define a family of Hopf algebra objects, $H$, in the braided category of $\\mathbb{Z}_n$-modules (known as anyonic vector spaces), for which the property $\\psi^2_{H\\otimes H}=id_{H\\otimes H}$ holds. We will show that these anyonic Hopf algebras are, in fact, the enveloping (Hopf) algebras of particular quantum Lie algebras, also with the property $\\psi^2=id$. Then we compute the braided periodic Hopf cyclic cohomology of these Hopf algebras. For that, we will show the following fact: analog...
The Yoneda algebra of a K2 algebra need not be another K2 algebra
Cassidy, T.; Phan, C.; Shelton, B.
2010-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
Workshop on Commutative Algebra
Simis, Aron
1990-01-01
The central theme of this volume is commutative algebra, with emphasis on special graded algebras, which are increasingly of interest in problems of algebraic geometry, combinatorics and computer algebra. Most of the papers have partly survey character, but are research-oriented, aiming at classification and structural results.
Idempotents of Clifford Algebras
Ablamowicz, R.; Fauser, B.; Podlaski, K.; Rembielinski, J.
2003-01-01
A classification of idempotents in Clifford algebras C(p,q) is presented. It is shown that using isomorphisms between Clifford algebras C(p,q) and appropriate matrix rings, it is possible to classify idempotents in any Clifford algebra into continuous families. These families include primitive idempotents used to generate minimal one sided ideals in Clifford algebras. Some low dimensional examples are discussed.
National Council of Teachers of Mathematics, Inc., Reston, VA.
This is a reprint of the historical capsules dealing with algebra from the 31st Yearbook of NCTM,"Historical Topics for the Mathematics Classroom." Included are such themes as the change from a geometric to an algebraic solution of problems, the development of algebraic symbolism, the algebraic contributions of different countries, the origin and…
Regular algebra and finite machines
Conway, John Horton
2012-01-01
World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg
包含紧算子理想的Toeplitz算子代数的刻画%A Character of Toeplitz Algebras Containing the Ideal of Compact Operators
Institute of Scientific and Technical Information of China (English)
许庆祥
2001-01-01
设G为一个torsion一free的离散群， (G，G+)为一个拟序群。记TG+(G)为相应的T0eplitz算子代数，K( 2(G+))为 2(G+)上的紧算子全体。本文证明了K( 2(G+)) TG+(G)当且仅当下列两个条件同时满足： (1)(G，G+)为一个序群； (2)G中存在一个最小的正元。%Let G be a discrete torsion-free group and (G, G+) a qua si-ordered group. Let TG+ (G) be the corresponding Toeplitz algebra. In this note, we show that TG+ (G) contains the ideal of compact operators on 2(G+) if and only if the following two conditions are satisfied: (1) (G, G+)is an ordered group; (2) G admits a least positive element.
Generalized Quantum Current Algebras
Institute of Scientific and Technical Information of China (English)
ZHAO Liu
2001-01-01
Two general families of new quantum-deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enables one to define "tensor products" of these algebras. The standard quantum affine algebras turn out to be a very special case of the two algebra families, in which case the infinite Hopf family structure degenerates into a standard Hopf algebra. The relationship between the two algebraic families as well as thefr various special examples are discussed, and the free boson representation is also considered.
Relational algebra as formalism for hardware design
Berg, ten A.J.W.M.; Huijs, C.; Krol, Th.
1993-01-01
This paper introduces relational algebra as an elegant formalism to describe hardware behaviour. Hardware behaviour is modelled by functions that are represented by sets of tables. Relational algebra, developed for designing large and consistent databases is capable to operate on sets of tables and
Algebraically periodic translation surfaces
Calta, Kariane; Smillie, John
2007-01-01
Algebraically periodic directions on translation surfaces were introduced by Calta in her study of genus two translation surfaces. We say that a translation surface with three or more algebraically periodic directions is an algebraically periodic surface. We show that for an algebraically periodic surface the slopes of the algebraically periodic directions are given by a number field which we call the periodic direction field. We show that translation surfaces with pseudo-Anosov automorphisms...
Clifford Algebra with Mathematica
Aragon-Camarasa, G.; Aragon-Gonzalez, G; Aragon, J. L.; Rodriguez-Andrade, M. A.
2008-01-01
The Clifford algebra of a n-dimensional Euclidean vector space provides a general language comprising vectors, complex numbers, quaternions, Grassman algebra, Pauli and Dirac matrices. In this work, a package for Clifford algebra calculations for the computer algebra program Mathematica is introduced through a presentation of the main ideas of Clifford algebras and illustrative examples. This package can be a useful computational tool since allows the manipulation of all these mathematical ob...
Algebraic Proofs over Noncommutative Formulas
Tzameret, Iddo
2010-01-01
We study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege---yielding a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic analogue of Frege proofs, different from that given in [BIKPRS96,GH03]. We then turn to an apparently weaker system, namely, polynomial calculus (PC) where polynomials are written as ordered formulas ("PC over ordered formulas", for short). This is an algebraic propositional proof system that operates with noncommutative polynomials in which the order of products in all monomials respects a fixed linear order on the variables, and where proof-lines are written as noncommutative formulas. We show that the latter proof system is strictly stronger than resolution, polynomial calculus and polynomial calculus with resolution (PCR) and admits polynomial-size refutations for the pigeonhole principle and the Tseitin's formulas. We...
Institute of Scientific and Technical Information of China (English)
Jia-feng; Lü
2007-01-01
[1]Priddy S.Koszul resolutions.Trans Amer Math Soc,152:39-60 (1970)[2]Beilinson A,Ginszburg V,Soergel W.Koszul duality patterns in representation theory.J Amer Math Soc,9:473-525 (1996)[3]Aquino R M,Green E L.On modules with linear presentations over Koszul algebras.Comm Algebra,33:19-36 (2005)[4]Green E L,Martinez-Villa R.Koszul and Yoneda algebras.Representation theory of algebras (Cocoyoc,1994).In:CMS Conference Proceedings,Vol 18.Providence,RI:American Mathematical Society,1996,247-297[5]Berger R.Koszulity for nonquadratic algebras.J Algebra,239:705-734 (2001)[6]Green E L,Marcos E N,Martinez-Villa R,et al.D-Koszul algebras.J Pure Appl Algebra,193:141-162(2004)[7]He J W,Lu D M.Higher Koszul Algebras and A-infinity Algebras.J Algebra,293:335-362 (2005)[8]Green E L,Marcos E N.δ-Koszul algebras.Comm Algebra,33(6):1753-1764 (2005)[9]Keller B.Introduction to A-infinity algebras and modules.Homology Homotopy Appl,3:1-35 (2001)[10]Green E L,Martinez-Villa R,Reiten I,et al.On modules with linear presentations.J Algebra,205(2):578-604 (1998)[11]Keller B.A-infinity algebras in representation theory.Contribution to the Proceedings of ICRA Ⅸ.Beijing:Peking University Press,2000[12]Lu D M,Palmieri J H,Wu Q S,et al.A∞-algebras for ring theorists.Algebra Colloq,11:91-128 (2004)[13]Weibel C A.An Introduction to homological algebra.Cambridge Studies in Avanced Mathematics,Vol 38.Cambridge:Cambridge University Press,1995
On q-deformed infinite-dimensional n-algebra
Directory of Open Access Journals (Sweden)
Lu Ding
2016-03-01
Full Text Available The q-deformation of the infinite-dimensional n-algebras is investigated. Based on the structure of the q-deformed Virasoro–Witt algebra, we derive a nontrivial q-deformed Virasoro–Witt n-algebra which is nothing but a sh-n-Lie algebra. Furthermore in terms of the pseud-differential operators, we construct the (cosine n-algebra and the q-deformed SDiff(T2 n-algebra. We find that they are the sh-n-Lie algebras for the n even case. In terms of the magnetic translation operators, an explicit physical realization of the (cosine n-algebra is given.
Supersymmetry algebra cohomology. I. Definition and general structure
Brandt, Friedemann
2010-12-01
This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding "primitive elements" are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.
Supersymmetry algebra cohomology. I. Definition and general structure
International Nuclear Information System (INIS)
This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding 'primitive elements' are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.
Maps from the enveloping algebra of the positive Witt algebra to regular algebras
Sierra, Susan J.; Walton, Chelsea
2015-01-01
We construct homomorphisms from the universal enveloping algebra of the positive (part of the) Witt algebra to several different Artin-Schelter regular algebras, and determine their kernels and images. As a result, we produce elementary proofs that the universal enveloping algebras of the Virasoro algebra, the Witt algebra, and the positive Witt algebra are neither left nor right noetherian.
Entanglement in Quantum Process Algebra
Wang, Yong
2014-01-01
We explicitly model entanglement in quantum processes by treating entanglement as a kind of parallelism. We introduce a shadow constant quantum operation and a so-called entanglement merge into quantum process algebra qACP. The transition rules of the shadow constant quantum operation and entanglement merge are designed. We also do a sound and complete axiomatization modulo the so-called quantum bisimularity for the shadow constant quantum operation and entanglement merge. Then, this new type...
Linear algebra algorithms for divisors on an algebraic curve
Khuri-Makdisi, Kamal
2001-01-01
We use an embedding of the symmetric $d$th power of any algebraic curve $C$ of genus $g$ into a Grassmannian space to give algorithms for working with divisors on $C$, using only linear algebra in vector spaces of dimension $O(g)$, and matrices of size $O(g^2)\\times O(g)$. When the base field $k$ is finite, or if $C$ has a rational point over $k$, these give algorithms for working on the Jacobian of $C$ that require $O(g^4)$ field operations, arising from the Gaussian elimination. Our point o...
Inhomogeneous linear equation in Rota-Baxter algebra
Pietrzkowski, Gabriel
2014-01-01
We consider a complete filtered Rota-Baxter algebra of weight $\\lambda$ over a commutative ring. Finding the unique solution of a non-homogeneous linear algebraic equation in this algebra, we generalize Spitzer's identity in both commutative and non-commutative cases. As an application, considering the Rota-Baxter algebra of power series in one variable with q-integral as the Rota-Baxter operator, we show certain Eulerian identities.
Graph model of the Heisenberg-Weyl algebra
Blasiak, P.; Horzela, A.; Duchamp, G. H. E.; Penson, K. A.; Solomon, A. I.
2007-01-01
We consider an algebraic formulation of Quantum Theory and develop a combinatorial model of the Heisenberg-Weyl algebra structure. It is shown that by lifting this structure to the richer algebra of graph operator calculus, we gain a simple interpretation involving, for example, the natural composition of graphs. This provides a deeper insight into the algebraic structure of Quantum Theory and sheds light on the intrinsic combinatorial underpinning of its abstract formalism.
Graph model of the Heisenberg-Weyl algebra
International Nuclear Information System (INIS)
We consider an algebraic formulation of Quantum Theory and develop a combinatorial model of the Heisenberg-Weyl algebra structure. It is shown that by lifting this structure to the richer algebra of graph operator calculus, we gain a simple interpretation involving, for example, the natural composition of graphs. This provides a deeper insight into the algebraic structure of Quantum Theory and sheds light on the intrinsic combinatorial underpinning of its abstract formalism.
A Unified Algebraic Approach to Classical Yang-Baxter Equation
Bai, Chengming
2007-01-01
In this paper, the different operator forms of classical Yang-Baxter equation are given in the tensor expression through a unified algebraic method. It is closely related to left-symmetric algebras which play an important role in many fields in mathematics and mathematical physics. By studying the relations between left-symmetric algebras and classical Yang-Baxter equation, we can construct left-symmetric algebras from certain classical r-matrices and conversely, there is a natural classical ...
Spacetime algebra and electron physics
Doran, C J L; Gull, S F; Somaroo, S; Challinor, A D
1996-01-01
This paper surveys the application of geometric algebra to the physics of electrons. It first appeared in 1996 and is reproduced here with only minor modifications. Subjects covered include non-relativistic and relativistic spinors, the Dirac equation, operators and monogenics, the Hydrogen atom, propagators and scattering theory, spin precession, tunnelling times, spin measurement, multiparticle quantum mechanics, relativistic multiparticle wave equations, and semiclassical mechanics.
Brackets in representation algebras of Hopf algebras
Massuyeau, Gwenael; Turaev, Vladimir
2015-01-01
For any graded bialgebras $A$ and $B$, we define a commutative graded algebra $A_B$ representing the functor of so-called $B$-representations of $A$. When $A$ is a cocommutative graded Hopf algebra and $B$ is a commutative ungraded Hopf algebra, we introduce a method deriving a Gerstenhaber bracket in $A_B$ from a Fox pairing in $A$ and a balanced biderivation in $B$. Our construction is inspired by Van den Bergh's non-commutative Poisson geometry, and may be viewed as an algebraic generaliza...
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Boicescu, V; Georgescu, G; Rudeanu, S
1991-01-01
The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.
Osborn, J
1989-01-01
During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.
Algebraic combinatorics and coinvariant spaces
Bergeron, Francois
2009-01-01
Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and some commutative algebra, the main material provides links between the study of coinvariant-or diagonally coinvariant-spaces and the study of Macdonald polynomials and related operators. This gives rise to a large number of combinatorial questions r
Relation of deformed nonlinear algebras with linear ones
International Nuclear Information System (INIS)
The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator. (paper)
Relation between dual S-algebras and BE-algebras
Directory of Open Access Journals (Sweden)
Arsham Borumand Saeid
2015-05-01
Full Text Available In this paper, we investigate the relationship between dual (Weak Subtraction algebras, Heyting algebras and BE-algebras. In fact, the purpose of this paper is to show that BE-algebra is a generalization of Heyting algebra and dual (Weak Subtraction algebras. Also, we show that a bounded commutative self distributive BE-algebra is equivalent to the Heyting algebra.
The quantum algebra of superspace
Hatcher, N; Stephany, J
2006-01-01
We present the complete set of N=1, D=4 quantum algebras associated to massive superparticles. We obtain the explicit solution of these algebras realized in terms of unconstrained operators acting on the Hilbert space of superfields. These solutions are expressed in terms of the chiral, anti-chiral and tensorial projectors which define the three irreducible representations of the supersymmetry on the superfields. In each case the space-time variables are non-commuting and their commutators are proportional to the internal angular momentum of the representation. The quantum algebras associated to the chiral or anti-chiral projectors is the one obtained by the quantization of the Casalbuoni-Brink-Schwarz massive superparticle. We present a new action for the tensorial case and show that their wave functions are restricted to be tensorial superfields.
Algebraic realization of rotational dynamics
International Nuclear Information System (INIS)
It is shown that the dynamics of a quantum rotor can be realized in terms of the SU(3)→SO(3) group algebra. Specifically, an analytic result is given for mapping from the hamiltonian of a trixial rotor to its algebraic image. Under the mapping invariants of the rotor are carried into Casimir invariants of the algebraic theory. Results for spectra and transition rates and various sums are given to demonstrate the effectiveness of the mapping. The theory gives physical significance to operators that were first introduced by Racah as a means for resolving the SU(3)→SO(3) state labelling problem. As the SU(3)→SO(3) structure is common to the rotational limit of several nuclear models, the theory also offers an opportunity to explore in a new way the microscopic underpinnings of rotational phenomena in nuclei. (orig.)
Representations of twisted current algebras
Lau, Michael
2013-01-01
We use evaluation representations to give a complete classification of the finite-dimensional simple modules of twisted current algebras. This generalizes and unifies recent work on multiloop algebras, current algebras, equivariant map algebras, and twisted forms.
Hom-alternative algebras and Hom-Jordan algebras
Makhlouf, Abdenacer
2009-01-01
The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra.
Cellularity of diagram algebras as twisted semigroup algebras
Wilcox, Stewart
2010-01-01
The Temperley-Lieb and Brauer algebras and their cyclotomic analogues, as well as the partition algebra, are all examples of twisted semigroup algebras. We prove a general theorem about the cellularity of twisted semigroup algebras of regular semigroups. This theorem, which generalises a recent result of East about semigroup algebras of inverse semigroups, allows us to easily reproduce the cellularity of these algebras.
The Lie algebra of the N=2-string
Energy Technology Data Exchange (ETDEWEB)
Kugel, K.
2006-07-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Lie Algebra of Noncommutative Inhomogeneous Hopf Algebra
Lagraa, M.; Touhami, N.
1997-01-01
We construct the vector space dual to the space of right-invariant differential forms construct from a first order differential calculus on inhomogeneous quantum group. We show that this vector space is equipped with a structure of a Hopf algebra which closes on a noncommutative Lie algebra satisfying a Jacobi identity.
Realizations of Galilei algebras
International Nuclear Information System (INIS)
All inequivalent realizations of the Galilei algebras of dimensions not greater than five are constructed using the algebraic approach proposed by Shirokov. The varieties of the deformed Galilei algebras are discussed and families of one-parametric deformations are presented in explicit form. It is also shown that a number of well-known and physically interesting equations and systems are invariant with respect to the considered Galilei algebras or their deformations. (paper)
Leinster, Tom
2000-01-01
We present a definition of homotopy algebra for an operad, and explore its consequences. The paper should be accessible to topologists, category theorists, and anyone acquainted with operads. After a review of operads and monoidal categories, the definition of homotopy algebra is given. Specifically, suppose that M is a monoidal category in which it makes sense to talk about algebras for some operad P. Then our definition says what a homotopy P-algebra in M is, provided only that some of the ...
Bounded Algebra and Current-Mode Digital Circuits
Institute of Scientific and Technical Information of China (English)
WU Xunwei; Massoud Pedram
1999-01-01
This paper proposes two boundedarithmetic operations, which are easily realized with current signals.Based on these two operations, a bounded algebra system suitable fordescribing current-mode digital circuits is developed and itsrelationship with the Boolean algebra, which is suitable for representingvoltage-mode digital circuits, is investigated. Design procedure forcurrent-mode circuits using the proposed algebra system is demonstratedon a number of common circuit elements which are used to realizearithmetic operations, such as adders and multipliers.
Accelerating Dense Linear Algebra on the GPU
DEFF Research Database (Denmark)
Sørensen, Hans Henrik Brandenborg
and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...... architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general....
Advanced linear algebra for engineers with Matlab
Dianat, Sohail A
2009-01-01
Matrices, Matrix Algebra, and Elementary Matrix OperationsBasic Concepts and NotationMatrix AlgebraElementary Row OperationsSolution of System of Linear EquationsMatrix PartitionsBlock MultiplicationInner, Outer, and Kronecker ProductsDeterminants, Matrix Inversion and Solutions to Systems of Linear EquationsDeterminant of a MatrixMatrix InversionSolution of Simultaneous Linear EquationsApplications: Circuit AnalysisHomogeneous Coordinates SystemRank, Nu
Algebraic statistics computational commutative algebra in statistics
Pistone, Giovanni; Wynn, Henry P
2000-01-01
Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.
Kimura, Yusuke
2015-07-01
It has been understood that correlation functions of multi-trace operators in SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand, such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.
International Nuclear Information System (INIS)
We construct a special type of quantum soliton solutions for quantized affine Toda models. The elements of the principal Heisenberg subalgebra in the affinised quantum Lie algebra are found. Their eigenoperators inside the quantized universal enveloping algebra for an affine Lie algebra are constructed to generate quantum soliton solutions
Deficiently Extremal Gorenstein Algebras
Indian Academy of Sciences (India)
Pavinder Singh
2011-08-01
The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.
Connecting Arithmetic to Algebra
Darley, Joy W.; Leapard, Barbara B.
2010-01-01
Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…
Khovanova, Tanya
2008-01-01
I show how to associate a Clifford algebra to a graph. I describe the structure of these Clifford graph algebras and provide many examples and pictures. I describe which graphs correspond to isomorphic Clifford algebras and also discuss other related sets of graphs. This construction can be used to build models of representations of simply-laced compact Lie groups.
Algebraic formulation of duality
International Nuclear Information System (INIS)
Two dimensional lattice spin (chiral) models over (possibly non-abelian) compact groups are formulated in terms of a generalized Pauli algebra. Such models over cyclic groups are written in terms of the generalized Clifford algebra. An automorphism of this algebra is shown to exist and to lead to the duality transformation
Planar Algebra of the Subgroup-Subfactor
Indian Academy of Sciences (India)
Ved Prakash Gupta
2008-11-01
We give an identification between the planar algebra of the subgroup-subfactor $R \\rtimes H \\subset R \\rtimes G$ and the -invariant planar subalgebra of the planar algebra of the bipartite graph $\\star_n$, where $n=[G:H]$. The crucial step in this identification is an exhibition of a model for the basic construction tower, and thereafter of the standard invariant of $R \\rtimes H \\subset R \\rtimes G$ in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra subfactor $R^G \\subset R^H$ and the -invariant planar subalgebra of the planar algebra of the `flip’ of $\\star_n$.
Algebraic Apect of Helicities in Hadron Physics
An, Murat; Ji, Chueng
2015-04-01
We examined the relation of polarization vectors and spinors of (1 , 0) ⊕(0 , 1) representation of Lorentz group in Clifford algebra Cl1 , 3 , their relation with standard algebra, and properties of these spinors. Cl1 , 3 consists of different grades:e.g. the first and the second grades represent (1 / 2 , 1 / 2) and (1 , 0) ⊕(0 , 1) representation of spin groups respectively with 4 and 6 components. However, these Clifford numbers are not the helicity eigenstates and thus we transform them into combinations of helicity eigenstates by expressing them as spherical harmonics. We relate the spin-one polarization vectors and (1 , 0) ⊕(0 , 1) spinors under one simple transformation with the spin operators. We also link our work with Winnberg's work of a superfield of a spinors of Clifford algebra by giving a physical meaning to Grassmann variables and discuss how Grassman algebra is linked with Clifford algebra.
Homogeneous Construction of the Toroidal Lie Algebra of Type A1
Institute of Scientific and Technical Information of China (English)
Haifeng Lian; Cui Chen; Qinzhu Wen
2007-01-01
In this paper,we consider an analogue of the level two homogeneous construc-tion of the affine Kac-Moody algebra A1(1) by vertex operators.We construct modules for the toroidal Lie algebra and the extended toroidal Lie algebra of type A1.We also prove that the module is completely reducible for the extended toroidal Lie algebra.
Bases of Schur algebras associated to cellularly stratified diagram algebras
Bowman, C
2011-01-01
We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.
Jespers, Eric; Riley, David; Siciliano, Salvatore
2007-01-01
An algebra is called a GI-algebra if its group of units satisfies a group identity. We provide positive support for the following two open problems. 1. Does every algebraic GI-algebra satisfy a polynomial identity? 2. Is every algebraically generated GI-algebra locally finite?
Indian Academy of Sciences (India)
Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado
2012-05-01
We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.
The Colombeau Quaternion Algebra
Cortes, W.; Ferrero, M. A.; Juriaans, S. O.
2008-01-01
We introduce the Colombeau Quaternio Algebra and study its algebraic structure. We also study the dense ideal, dense in the algebraic sense, of the algebra of Colombeau generalized numbers and use this show the existence of a maximal ting of quotions which is Von Neumann regular. Recall that it is already known that then algebra of COlombeau generalized numbers is not Von Neumann regular. We also use the study of the dense ideals to give a criteria for a generalized holomorphic function to sa...
Basics of Ternary Algebras and their underlying Nambu Brackets
International Nuclear Information System (INIS)
Ternary algebras amount to closing systems of antisymmetrized trinomials of operators. The Filippov conditions (FI, which are not identities) for ternary algebras are contrasted to Bremner's identities dictated by associativity of operator products, and thus analogous to Jacobi identities. Maps of the known FI-compliant ternary algebras to underlying classical Nambu brackets are constructed, which then explain this compliance: FI-compliant ternary algebras are essentially classical Nambu brackets in disguise. In some cases involving infinite algebras, we show the classical limit may be obtained by a contraction of the quantal ternary algebra, and then explicitly realized through classical Nambu brackets. We illustrate this classical-contraction method on our Virasoro-Witt ternary algebra paradigm. The content of the talk is in the two references
Taghavi, Ali
2013-01-01
We study some properies of $Z^{*}$ algebras, thos C^* algebra which all positive elements are zero divisors. We show by means of an example that an extension of a Z* algebra by a Z* algebra is not necessarily Z* algebra. However we prove that an extension of a non Z* algebra by a non Z* algebra is again a Z^* algebra. As an application of our methods, we prove that evey compact subset of the positive cones of a C* algebra has an upper bound in the algebra.
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Krichever-Novikov type algebras theory and applications
Schlichenmaier, Martin
2014-01-01
Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are
On the concept of universal W-algebra
International Nuclear Information System (INIS)
Ordinary quadratic WN-algebras are in fact particular subsets of naturally closed algebras of Casimir-like operators TrJn, formed from generators J of Sl(N) Kac-Moody algebra. These subsets arise after Hamiltonian reduction and some additional less universal restrictions, specifying non-reducible closed subalgebra and ignored in the text. In the limit of N=∞ a structure of linear Lie algebra is restored and a new object arises, naturally interpreted as universal W-algebra. 14 refs
On Derivations Of Genetic Algebras
International Nuclear Information System (INIS)
A genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. In application of genetics this algebra often has a basis corresponding to genetically different gametes, and the structure constant of the algebra encode the probabilities of producing offspring of various types. In this paper, we find the connection between the genetic algebras and evolution algebras. Moreover, we prove the existence of nontrivial derivations of genetic algebras in dimension two
Algebra a complete introduction : teach yourself
Neill, Hugh
2013-01-01
Algebra: A Complete Introduction is the most comprehensive yet easy-to-use introduction to using Algebra. Written by a leading expert, this book will help you if you are studying for an important exam or essay, or if you simply want to improve your knowledge. The book covers all the key areas of algebra including elementary operations, linear equations, formulae, simultaneous equations, quadratic equations, logarithms, variation, laws and sequences. Everything you will need is here in this one book. Each chapter includes not only an explanation of the knowledge and skills you need, but also worked examples and test questions.
Higher Dimensional Classical W-Algebras
Martínez-Moras, F; Martinez-Moras, Fernando; Ramos, Eduardo
1993-01-01
Classical $W$-algebras in higher dimensions are constructed. This is achieved by generalizing the classical Gel'fand-Dickey brackets to the commutative limit of the ring of classical pseudodifferential operators in arbitrary dimension. These $W$-algebras are the Poisson structures associated with a higher dimensional version of the Khokhlov-Zabolotskaya hierarchy (dispersionless KP-hierarchy). The two dimensional case is worked out explicitly and it is shown that the role of Diff$S(1)$ is taken by the algebra of generators of local diffeomorphisms in two dimensions.
Bihamiltonian Reductions and $W_n$-Algebras
Casati, P; Magri, F; Pedroni, M; Casati, Paolo; Falqui, Gregorio; Magri, Franco; Pedroni, Marco
1997-01-01
We discuss the geometry of the Marsden-Ratiu reduction theorem for a bihamiltonian manifold. We consider the case of the manifolds associated with the Gel'fand-Dickey theory, i.e., loop algebras over sl(n+1). We provide an explicit identification, tailored on the MR reduction, of the Adler-Gel'fand-Dickey brackets with the Poisson brackets on the MR-reduced bihamiltonian manifold N. Such an identification relies on a suitable immersion of the space of sections of the cotangent bundle of N into the algebra of pseudo differential operators connected to geometrical features of the theory of (classical) W_n algebras.
Pérez López, César
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...
On Generalized I-Algebras and 4-valued Modal Algebras
Figallo, Aldo V
2012-01-01
In this paper we establish a new characterization of 4-valued modal algebras considered by A. Monteiro. In order to obtain this characterization we introduce a new class of algebras named generalized I-algebras. This class contains strictly the class of C-algebras defined by Y. Komori as an algebraic counterpart of the infinite-valued implicative Lukasiewicz propositional calculus. On the other hand, the relationship between I-algebras and conmutative BCK-algebras, defined by S. Tanaka in 1975, allows us to say that in a certain sense G-algebras are also a generalization of these latter algebras
Algebras of Measurements: The Logical Structure of Quantum Mechanics
Lehmann, Daniel; Engesser, Kurt; Gabbay, Dov M.
2006-04-01
In quantum physics, a measurement is represented by a projection on some closed subspace of a Hilbert space. We study algebras of operators that abstract from the algebra of projections on closed subspaces of a Hilbert space. The properties of such operators are justified on epistemological grounds. Commutation of measurements is a central topic of interest. Classical logical systems may be viewed as measurement algebras in which all measurements commute.
Poincare invariant algebra from instant to light-front quantization
International Nuclear Information System (INIS)
We present the Poincare algebra interpolating between instant and light-front time quantizations. The angular momentum operators satisfying SU(2) algebra are constructed in an arbitrary interpolation angle and shown to be identical to the ordinary angular momentum and Leutwyler-Stern angular momentum in the instant and light-front quantization limits, respectively. The exchange of the dynamical role between the transverse angular mometum and the boost operators is manifest in our newly constructed algebra
Omni-Lie Color Algebras and Lie Color 2-Algebras
Zhang, Tao
2013-01-01
Omni-Lie color algebras over an abelian group with a bicharacter are studied. The notions of 2-term color $L_{\\infty}$-algebras and Lie color 2-algebras are introduced. It is proved that there is a one-to-one correspondence between Lie color 2-algebras and 2-term color $L_{\\infty}$-algebras.
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Stable endomorphism algebras of modules over special biserial algebras
Schröer, Jan; Zimmermann, Alexander
2002-01-01
We prove that the stable endomorphism algebra of a module without self-extensions over a special biserial algebra is a gentle algebra. In particular, it is again special biserial. As a consequence, any algebra which is derived equivalent to a gentle algebra is gentle.
$L_{\\infty}$ algebra structures of Lie algebra deformations
Gao, Jining
2004-01-01
In this paper,we will show how to kill the obstructions to Lie algebra deformations via a method which essentially embeds a Lie algebra into Strong homotopy Lie algebra or $L_{\\infty}$ algebra. All such obstructions have been transfered to the revelvant $L_{\\infty}$ algebras which contain only three terms
On the relation of Manin's quantum plane and quantum Clifford algebras
International Nuclear Information System (INIS)
In a recent work we have shown that quantum Clifford algebras - i.e. Clifford algebras of an arbitrary bilinear form - are closely related to the deformed structures as q-spin groups, Hecke algebras, q-Young operators and deformed tensor products. The question to relate Manin's approach to quantum Clifford algebras is addressed here. Explicit computations using the CLIFFORD Maple package are exhibited. The meaning of non-commutative geometry is reexamined and interpreted in Clifford algebraic terms. (author)
Deformations of Quasicoherent Sheaves of Algebras
Lunts, Valery A.
2001-01-01
Gerstenhaber and Schack ([GS]) developed a deformation theory of presheaves of algebras on small categories. We translate their cohomological description to sheaf cohomology. More precisely, we describe the deformation space of (admissible) quasicoherent sheaves of algebras on a quasiprojective scheme $X$ in terms of sheaf cohomology on $X$ and $X\\times X$. These results are applied to the study of deformations of the sheaf $D_X$ of differential operators on $X$. In particular, in case $X$ is...
Implementation of Endomorphisms of the CAR Algebra
Binnenhei, Carsten
1997-01-01
The implementation of non-surjective Bogoliubov transformations in Fock states over CAR algebras is investigated. Such a transformation is implementable by a Hilbert space of isometries if and only if the well-known Shale-Stinespring condition is met. In this case, the dimension of the implementing Hilbert space equals the square root of the Watatani index of the associated inclusion of CAR algebras, and both are determined by the Fredholm index of the corresponding one-particle operator. Exp...
Algebraic Curves for Factorized String Solutions
Dekel, Amit
2013-01-01
We show how to construct an algebraic curve for factorized string solution in the context of the AdS/CFT correspondence. We define factorized solutions to be solutions where the flat-connection becomes independent of one of the worldsheet variables by a similarity transformation with a matrix $S$ satisfying $S^{-1}d S=const$. Using the factorization property we construct a well defined Lax operator and an associated algebraic curve. The construction procedure is local and does not require the...
An elliptic quantum algebra for sl$_{2}$
Foda, O E; Jimbo, M; Kedem, R; Miwa, T; Yan, H
1994-01-01
An elliptic deformation of \\widehat{sl}_2 is proposed. Our presentation of the algebra is based on the relation RLL=LLR^*, where R and R^* are eight-vertex R-matrices with the elliptic moduli chosen differently. In the trigonometric limit, this algebra reduces to a quotient of that proposed by Reshetikhin and Semenov-Tian-Shansky. Conjectures concerning highest weight modules and vertex operators are formulated, and the physical interpretation of R^* is discussed.
Generalized join-hemimorphisms on Boolean algebras
Sergio Celani
2003-01-01
We introduce the notions of generalized join-hemimorphism and generalized Boolean relation as an extension of the notions of join-hemimorphism and Boolean relation, respectively. We prove a duality between these two notions. We will also define a generalization of the notion of Boolean algebra with operators by considering a finite family of Boolean algebras endowed with a generalized join-hemimorphism. Finally, we define suitable notions of subalgebra, congruences, Boole...
Linear Maps Preserving Idempotence on Nest Algebras
Institute of Scientific and Technical Information of China (English)
Jian Lian CUI; Jin Chuan HOU
2004-01-01
In this paper, we discuss the rank-1-preserving linear maps on nest algebras of Hilbertspace operators. We obtain several characterizations of such linear maps and apply them to show that a weakly continuous linear bijection on an atomic nest algebra is idempotent preserving if and only if it is a Jordan homomorphism, and in turn, if and only if it is an automorphism or an anti-automorphism.
Evolution algebras and their applications
Tian, Jianjun Paul
2008-01-01
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.
Invariants of Lie algebras with fixed structure of nilradicals
International Nuclear Information System (INIS)
An algebraic algorithm is developed for computation of invariants ('generalized Casimir operators') of general Lie algebras over the real or complex number field. Its main tools are the Cartan's method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. Unlike the first application of the algorithm in Boyko et al (2006 J. Phys. A: Math. Gen. 39 5749 (Preprint math-ph/0602046)), which deals with low-dimensional Lie algebras, here the effectiveness of the algorithm is demonstrated by its application to computation of invariants of solvable Lie algebras of general dimension n < ∞ restricted only by a required structure of the nilradical. Specifically, invariants are calculated here for families of real/complex solvable Lie algebras. These families contain, with only a few exceptions, all the solvable Lie algebras of specific dimensions, for whom the invariants are found in the literature
Combinatorial Algebra for second-quantized Quantum Theory
Blasiak, P; Solomon, A I; Horzela, A; Penson, K A
2010-01-01
We describe an algebra G of diagrams which faithfully gives a diagrammatic representation of the structures of both the Heisenberg-Weyl algebra H - the associative algebra of the creation and annihilation operators of quantum mechanics - and U(L_H), the enveloping algebra of the Heisenberg Lie algebra L_H. We show explicitly how G may be endowed with the structure of a Hopf algebra, which is also mirrored in the structure of U(L_H). While both H and U(L_H) are images of G, the algebra G has a richer structure and therefore embodies a finer combinatorial realization of the creation-annihilation system, of which it provides a concrete model.
Relative Homological Algebra Volume 1
2011-01-01
This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. The book is also suitable for an introductory course in commutative and ordinary homological algebra.
Finite-dimensional (*)-serial algebras
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Let A be a finite-dimensional associative algebra with identity over a field k. In this paper we introduce the concept of (*)-serial algebras which is a generalization of serial algebras. We investigate the properties of (*)-serial algebras, and we obtain suficient and necessary conditions for an associative algebra to be (*)-serial.
Commutative combinatorial Hopf algebras
Hivert, F.; Novelli, J. -C.; Thibon, J. -Y.
2006-01-01
We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures, and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its non-commutative dual is realized in three different ways, in particular as the Grossman-Larson algebra of heap ordered trees. Extensions to endofunctions, parking functions, set compositions, set partitions, planar binary tre...
Algebraic nonlinear collective motion
Troupe, J.; Rosensteel, G.
1999-01-01
Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real number $\\Lambda$. The $\\Lambda=0$ solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear g...
Geometric Algebras and Extensors
Fernandez, V. V.; Moya, A. M.; Rodrigues Jr., W. A.
2007-01-01
This is the first paper in a series (of four) designed to show how to use geometric algebras of multivectors and extensors to a novel presentation of some topics of differential geometry which are important for a deeper understanding of geometrical theories of the gravitational field. In this first paper we introduce the key algebraic tools for the development of our program, namely the euclidean geometrical algebra of multivectors Cl(V,G_{E}) and the theory of its deformations leading to met...
Cayley-Dickson and Clifford Algebras as Twisted Group Algebras
Bales, John W.
2011-01-01
The effect of some properties of twisted groups on the associated algebras, particularly Cayley-Dickson and Clifford algebras. It is conjectured that the Hilbert space of square-summable sequences is a Cayley-Dickson algebra.
BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS
Krogh, F. T.
1994-01-01
The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.
Salaün, Gwen; Serwe, Wendelin
2005-01-01
A natural approach for the description of asynchronous hardware designs are hardware process algebras, such as Martin's CHP (Communicating Hardware Processes), Tangram, or BALSA, which are extensions of standard process algebras with particular operators exploiting the implementation of synchronisation using handshake protocols. In this research report, we give a structural operational semantics for value-passing CHP. Compared to existing semantics of CHP defined by translation into Petri net...
Algebraic extensions of fields
McCarthy, Paul J
1991-01-01
""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta
Shafarevich, Igor Rostislavovich
2005-01-01
This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Underwood, Robert G
2015-01-01
This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras. The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras. The book may be used as the main text or as a supplementary text for a graduate algebra course. Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...
Cloning by positive maps in von Neumann algebras
Łuczak, Andrzej
2014-01-01
We investigate cloning in the general operator algebra framework in arbitrary dimension assuming only positivity instead of strong positivity of the cloning operation, generalizing thus results obtained so far under that stronger assumption. The weaker positivity assumption turns out quite natural when considering cloning in the general C∗-algebra framework.
Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra
Hijligenberg, N.W. van den; Martini, R.
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g
Tubular algebras and affine Kac-Moody algebras
Institute of Scientific and Technical Information of China (English)
Zheng-xin CHEN; Ya-nan LIN
2007-01-01
The purpose of this paper is to construct quotient algebras L(A)C1/I(A) of complex degenerate composition Lie algebras L(A)C1 by some ideals, where L(A)C1 is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)C1/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)C1 generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)C1 generated by simple A-modules.
Tubular algebras and affine Kac-Moody algebras
Institute of Scientific and Technical Information of China (English)
2007-01-01
The purpose of this paper is to construct quotient algebras L(A)1C/I(A) of complex degenerate composition Lie algebras L(A)1C by some ideals, where L(A)1C is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)1C/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)1C generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)1C generated by simple A-modules.
Tilting theory and cluster algebras
Reiten, Idun
2010-01-01
We give an introduction to the theory of cluster categories and cluster tilted algebras. We include some background on the theory of cluster algebras, and discuss the interplay with cluster categories and cluster tilted algebras.
Indian Academy of Sciences (India)
Cătălin Ciupală
2005-02-01
In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.
On the number of finite algebraic structures
Aichinger, Erhard; McKenzie, Ralph
2011-01-01
We prove that every clone of operations on a finite set A, if it contains a Malcev operation, is finitely related -- i.e., identical with the clone of all operations respecting R for some finitary relation R over A. It follows that for a fixed finite set A, the set of all such Malcev clones is countable. This completes the solution of a problem that was first formulated in 1980, or earlier: how many Malcev clones can finite sets support? More generally, we prove that every finite algebra with few subpowers has a finitely related clone of term operations. Hence modulo term equivalence and a renaming of the elements, there are only countably many finite algebras with few subpowers, and thus only countably many finite algebras with a Malcev term.
Symplectic $C_\\infty$-algebras
Hamilton, Alastair; Lazarev, Andrey
2007-01-01
In this paper we show that a strongly homotopy commutative (or $C_\\infty$-) algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic $C_\\infty$-algebra (an $\\infty$-generalisation of a commutative Frobenius algebra introduced by Kontsevich). This result relies on the algebraic Hodge decomposition of the cyclic Hochschild cohomology of a $\\ci$-algebra and does not generalize to algebras over other operads.
On algebraic volume density property
Kaliman, Shulim; Kutzschebauch, Frank
2012-01-01
A smooth affine algebraic variety $X$ equipped with an algebraic volume form $\\omega$ has the algebraic volume density property (AVDP) if the Lie algebra generated by completely integrable algebraic vector fields of $\\omega$-divergence zero coincides with the space of all algebraic vector fields of $\\omega$-divergence zero. We develop an effective criterion of verifying whether a given $X$ has AVDP. As an application of this method we establish AVDP for any homogeneous space $X=G/R$ that admi...
(Quasi-)Poisson enveloping algebras
Yang, Yan-Hong; Yuan YAO; Ye, Yu
2010-01-01
We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.
Rota-Baxter multiplicative 3-ary Hom-Nambu-Lie algebras
Sun, Bing; Chen, Liangyun
2015-12-01
In this paper, we introduce the concepts of Rota-Baxter operators and differential operators with weights on a multiplicative n-ary Hom-algebra. We then focus on Rota-Baxter multiplicative 3-ary Hom-Nambu-Lie algebras and show that they can be derived from Rota-Baxter Hom-Lie algebras, Hom-preLie algebras and Rota-Baxter commutative Hom-associative algebras. We also explore the connections between these Rota-Baxter multiplicative 3-ary Hom-Nambu-Lie algebras.
Automorphism groups of some algebras
Institute of Scientific and Technical Information of China (English)
PARK Hong Goo; LEE Jeongsig; CHOI Seul Hee; CHEN XueQing; NAM Ki-Bong
2009-01-01
The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m, m+n).
Automorphism groups of some algebras
Institute of Scientific and Technical Information of China (English)
PARK; Hong; Goo; LEE; Jeongsig; CHOI; Seul; Hee; NAM; Ki-Bong
2009-01-01
The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m,m + n).
Heinicke, C; Heinicke, Christian; Hehl, Friedrich W.
2001-01-01
We survey the application of computer algebra in the context of gravitational theories. After some general remarks, we show of how to check the second Bianchi-identity by means of the Reduce package Excalc. Subsequently we list some computer algebra systems and packages relevant to applications in gravitational physics. We conclude by presenting a couple of typical examples.
May, Robert D.
2016-01-01
Left and right "generalized Schur algebras", previously introduced by the author, are defined and analyzed. Filtrations of these algebras lead, in most cases, to parameterizations of the their irreducible representations over fields of characteristic 0 and fields of positive characteristic p.
Computing upper cluster algebras
Matherne, Jacob; Muller, Greg
2013-01-01
This paper develops techniques for producing presentations of upper cluster algebras. These techniques are suited to computer implementation, and will always succeed when the upper cluster algebra is totally coprime and finitely generated. We include several examples of presentations produced by these methods.
Greuel, Gert-Martin
2000-01-01
Inhalte der Grundvorlesungen Lineare Algebra I und II im Winter- und Sommersemester 1999/2000: Gruppen, Ringe, Körper, Vektorräume, lineare Abbildungen, Determinanten, lineare Gleichungssysteme, Polynomring, Eigenwerte, Jordansche Normalform, endlich-dimensionale Hilberträume, Hauptachsentransformation, multilineare Algebra, Dualraum, Tensorprodukt, äußeres Produkt, Einführung in Singular.
Algebraic Differential Characters
Esnault, H
1996-01-01
We give a construction of algebraic differential characters, receiving classes of algebraic bundles with connection, lifitng the Chern-Simons invariants defined with S. Bloch, the classes in the Chow group and the analytic secondary invariants if the variety is defined over the field of complex numbers.
Directory of Open Access Journals (Sweden)
Carlos C. Peña
2000-05-01
Full Text Available Topological algebras of sequences of complex numbers are introduced, endowed with a Hadamard product type. The complex homomorphisms on these algebras are characterized, and units, prime cyclic ideals, prime closed ideals, and prime minimal ideals, discussed. Existence of closed and maximal ideals are investigated, and it is shown that the Jacobson and nilradicals are both trivial.
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…
Some Properties of Intuitionistic Fuzzy Lie Algebras over a Fuzzy Field
Antony, P. L.; Lilly, P. L.
2011-01-01
The concept of intuitionistic fuzzy Lie algebra over a fuzzy field is introduced. We study the "necessity" and "possibility" operators on intuitionistic fuzzy Lie algebra over a fuzzy field and give some properties of homomorphic images.
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Introduction to noncommutative algebra
Brešar, Matej
2014-01-01
Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.
Shifted genus expanded W ∞ algebra and shifted Hurwitz numbers
Zheng, Quan
2016-05-01
We construct the shifted genus expanded W ∞ algebra, which is isomorphic to the central subalgebra A ∞ of infinite symmetric group algebra and to the shifted Schur symmetrical function algebra Λ* defined by Okounkov and Olshanskii. As an application, we get some differential equations for the generating functions of the shifted Hurwitz numbers; thus, we can express the generating functions in terms of the shifted genus expanded cut-and-join operators.
An Invitation to Algebraic Statistics: New Outlook and Opportunities
Çetin, Eyüp
2012-01-01
Algebra, a branch of pure mathematics, now advances statistics and operations research of applied mathematics. This synergy is called algebraic statistics as a new discipline. Algebraic statistics offers statisticians, management scientists, business researchers, econometricians and algebraists new opportunities, horizons and connections to advance their fields and related application areas. In this effort, this young, vibrant, quickly growing, and active discipline is briefly discussed and s...
Random walks on the BMW monoid: an algebraic approach
Wolff, Sarah
2016-01-01
We consider Metropolis-based systematic scan algorithms for generating Birman-Murakami-Wenzl (BMW) monoid basis elements of the BMW algebra. As the BMW monoid consists of tangle diagrams, these scanning strategies can be rephrased as random walks on links and tangles. We translate these walks into left multiplication operators in the corresponding BMW algebra. Taking this algebraic perspective enables the use of tools from representation theory to analyze the walks; in particular, we develop ...
Vertex operators and Jordan fields
International Nuclear Information System (INIS)
The construction of Lie algebras in terms of Jordan algebras generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. (author)
Algebraic Optimization of Recursive Database Queries
DEFF Research Database (Denmark)
Hansen, Michael Reichhardt
1988-01-01
Queries are expressed by relational algebra expressions including a fixpoint operation. A condition is presented under which a natural join commutes with a fixpoint operation. This condition is a simple check of attribute sets of sub-expressions of the query. The work may be considered a...
Interpolation Problems for Nest Algebra Modules
Institute of Scientific and Technical Information of China (English)
李鹏同; 鲁世杰
2002-01-01
Let U be a weakly closed nest algebra module acting on a Hilbert space H.Given two operators X and Y in B(H),a necessary and sufficient condition for the existence of an operator T in U satisfying TX=Y is provided.
A Representation of Quantum Measurement in Nonassociative Algebras
Niestegge, Gerd
2010-01-01
Starting from an abstract setting for the Lueders - von Neumann quantum measurement process and its interpretation as a probability conditionalization rule in a non-Boolean event structure, the author derived a certain generalization of operator algebras in a preceding paper. This is an order-unit space with some specific properties. It becomes a Jordan operator algebra under a certain set of additional conditions, but does not own a multiplication operation in the most general case. A major objective of the present paper is the search for such examples of the structure mentioned above that do not stem from Jordan operator algebras; first natural candidates are matrix algebras over the octonions and other nonassociative rings. Therefore, the case when a nonassociative commutative multiplication exists is studied without assuming that it satisfies the Jordan condition. The characteristics of the resulting algebra are analyzed. This includes the uniqueness of the spectral resolution as well as a criterion for i...
Background independent algebraic structures in closed string field theory
International Nuclear Information System (INIS)
We construct a Batalin-Vilkovisky (BV) algebra on moduli spaces of Riemann surfaces. This algebra is background independent in that it makes no reference to a state space of a conformal field theory. Conformal theories define a homomorphism of this algebra to the BV algebra of string functionals. The construction begins with a graded-commutative free associative algebra C built from the vector space whose elements are orientable subspaces of moduli spaces of punctured Riemann surfaces. The typical element here is a surface with several connected components. The operation Δ of sewing two punctures with a full twist is shown to be an odd, second order derivation that squares to zero. It follows that (C,Δ) is a Batalin-Vilkovisky algebra. We introduce the odd operator δ=∂+ℎΔ, where ∂ is the boundary operator. It is seen that δ2=0, and that consistent closed string vertices define a cohomology class of δ. This cohomology class is used to construct a Lie algebra on a quotient space of C. This Lie algebra gives a manifestly background independent description of a subalgebra of the closed string gauge algebra. (orig.)
Boolean Differential Operators
Catumba, Jorge; Diaz, Rafael
2012-01-01
We consider four combinatorial interpretations for the algebra of Boolean differential operators. We show that each interpretation yields an explicit matrix representation for Boolean differential operators.
On the Structure of Closed Right Ideals of a C*-Algebra
Kruml, David
2015-12-01
The lattice of closed right ideals is an important invariant of a C*-algebra and naturally generalizes the spectrum of a commutative C*-algebra. As the C*-algebra is a union of its commutative sub-C*-algebras, the lattice can be considered as a "piecewise frame". It is discussed here that there is no right residuated total operation extending the meet operation on compatible elements, no "Sasakian" product, and no active lattice structure.
Algebraic Properties of Toeplitz Operators on Discrete Commutative Groups%离散交换群上Toeplitz算子的代数性质
Institute of Scientific and Technical Information of China (English)
郭训香
2008-01-01
In this Paper,a generalized Toeplitz operator is defined and some of results about the classical Toeplitz operator are generalized.In particular,we obtain the necessary and sufficient condition for the product of two such Toeplitz operators to still be Toeplitz operator and the necessary and sufficient condition for such Toeplitz operator to be normal operator.Finally,a necessary condition for two such Toeplitz operators to be commutative is established.
Optical systolic solutions of linear algebraic equations
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier-Jacobi Algebra
Directory of Open Access Journals (Sweden)
Karl Hallowell
2007-09-01
Full Text Available Lichnerowicz's algebra of differential geometric operators acting on symmetric tensors can be obtained from generalized geodesic motion of an observer carrying a complex tangent vector. This relation is based upon quantizing the classical evolution equations, and identifying wavefunctions with sections of the symmetric tensor bundle and Noether charges with geometric operators. In general curved spaces these operators obey a deformation of the Fourier-Jacobi Lie algebra of sp(2,R. These results have already been generalized by the authors to arbitrary tensor and spinor bundles using supersymmetric quantum mechanical models and have also been applied to the theory of higher spin particles. These Proceedings review these results in their simplest, symmetric tensor setting. New results on a novel and extremely useful reformulation of the rank 2 deformation of the Fourier-Jacobi Lie algebra in terms of an associative algebra are also presented. This new algebra was originally motivated by studies of operator orderings in enveloping algebras. It provides a new method that is superior in many respects to common techniques such as Weyl or normal ordering.
The Planar Algebra of a Semisimple and Cosemisimple Hopf Algebra
Indian Academy of Sciences (India)
Vijay Kodiyalam; V S Sunder
2006-11-01
To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection between (the isomorphism classes, on both sides, of) such objects.
Algebraic K-theory and algebraic topology
International Nuclear Information System (INIS)
This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers
The Dyer-Lashof algebra and the Steenrod algebra for generalized homology and cohomology
International Nuclear Information System (INIS)
An analogue R of the Dyer-Lashof algebra R and an analogue A of the Steenrod algebra A are defined for generalized homology and cohomology theories. It is shown that if there is an E∞-multiplicative structure on a spectrum H, then on the corresponding generalized cohomology H*(X) of a topological space X there is an action AxH*(X)→H*(X) of the Steenrod algebra, while if the space X is an E∞-space, then on the generalized homology H*(X) there is an action RxH*(X)→H*(X) of the Dyer-Lashof algebra. These actions are computed for cobordism of topological spaces. A connection is established between the Steenrod operations and the Landweber-Novikov operations
A new algebra which transmutes to the braided algebra
Yildiz, A
1999-01-01
We find a new braided Hopf structure for the algebra satisfied by the entries of the braided matrix $BSL_q(2)$. A new nonbraided algebra whose coalgebra structure is the same as the braided one is found to be a two parameter deformed algebra. It is found that this algebra is not a comodule algebra under adjoint coaction. However, it is shown that for a certain value of one of the deformation parameters the braided algebra becomes a comodule algebra under the coaction of this nonbraided algebr...
Certain Clifford-like algebra and quantum vertex algebras
Li, Haisheng; Tan, Shaobin; Wang, Qing
2015-01-01
In this paper, we study in the context of quantum vertex algebras a certain Clifford-like algebra introduced by Jing and Nie. We establish bases of PBW type and classify its $\\mathbb N$-graded irreducible modules by using a notion of Verma module. On the other hand, we introduce a new algebra, a twin of the original algebra. Using this new algebra we construct a quantum vertex algebra and we associate $\\mathbb N$-graded modules for Jing-Nie's Clifford-like algebra with $\\phi$-coordinated modu...
Lannes, A.; Teunissen, P. J. G.
2011-05-01
The first objective of this paper is to show that some basic concepts used in global navigation satellite systems (GNSS) are similar to those introduced in Fourier synthesis for handling some phase calibration problems. In experimental astronomy, the latter are at the heart of what is called `phase closure imaging.' In both cases, the analysis of the related structures appeals to the algebraic graph theory and the algebraic number theory. For example, the estimable functions of carrier-phase ambiguities, which were introduced in GNSS to correct some rank defects of the undifferenced equations, prove to be `closure-phase ambiguities:' the so-called `closure-delay' (CD) ambiguities. The notion of closure delay thus generalizes that of double difference (DD). The other estimable functional variables involved in the phase and code undifferenced equations are the receiver and satellite pseudo-clock biases. A related application, which corresponds to the second objective of this paper, concerns the definition of the clock information to be broadcasted to the network users for their precise point positioning (PPP). It is shown that this positioning can be achieved by simply having access to the satellite pseudo-clock biases. For simplicity, the study is restricted to relatively small networks. Concerning the phase for example, these biases then include five components: a frequency-dependent satellite-clock error, a tropospheric satellite delay, an ionospheric satellite delay, an initial satellite phase, and an integer satellite ambiguity. The form of the PPP equations to be solved by the network user is then similar to that of the traditional PPP equations. As soon as the CD ambiguities are fixed and validated, an operation which can be performed in real time via appropriate decorrelation techniques, estimates of these float biases can be immediately obtained. No other ambiguity is to be fixed. The satellite pseudo-clock biases can thus be obtained in real time. This is
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
The role of C*-algebras in infinite dimensional numerical linear algebra
Arveson, W
1993-01-01
This is a survey of four recent papers which deal with the relationship of simple C*-algebras to the problem of computing the spectra of self-adjoint operators in the general case, especially when the spectrum is not discrete. It is an expanded version of a talk presented at the 50 year C*-algebra celebration, held at the annual meeting of the AMS in San Antonio during January, 1993.
The Stabilized Poincare-Heisenberg algebra: a Clifford algebra viewpoint
Gresnigt, N. G.; Renaud, P. F.; Butler, P. H.
2006-01-01
The stabilized Poincare-Heisenberg algebra (SPHA) is the Lie algebra of quantum relativistic kinematics generated by fifteen generators. It is obtained from imposing stability conditions after attempting to combine the Lie algebras of quantum mechanics and relativity which by themselves are stable, however not when combined. In this paper we show how the sixteen dimensional Clifford algebra CL(1,3) can be used to generate the SPHA. The Clifford algebra path to the SPHA avoids the traditional ...
Algebraic Signal Processing Theory
Pueschel, Markus; Moura, Jose M. F.
2006-01-01
This paper presents an algebraic theory of linear signal processing. At the core of algebraic signal processing is the concept of a linear signal model defined as a triple (A, M, phi), where familiar concepts like the filter space and the signal space are cast as an algebra A and a module M, respectively, and phi generalizes the concept of the z-transform to bijective linear mappings from a vector space of, e.g., signal samples, into the module M. A signal model provides the structure for a p...
Transgression and Clifford algebras
Rohr, Rudolf Philippe
2007-01-01
Let $W$ be a differential (not necessarily commutative) algebra which carries a free action of a polynomial algebra $SP$ with homogeneous generators $p_1, >..., p_r$. We show that for $W$ acyclic, the cohomology of the quotient $H(W/)$ is isomorphic to a Clifford algebra $\\text{Cl}(P,B)$, where the (possibly degenerate) bilinear form $B$ depends on $W$. This observation is an analogue of an old result of Borel in a non-commutative context. As an application, we study the case of $W$ given by ...
Symplectic algebraic dynamics algorithm
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the algebraic dynamics solution of ordinary differential equations andintegration of ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.
Michael Roitman
2003-01-01
In this paper we prove that for any commutative (but in general non-associative) algebra $A$ with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra $V = V_0 \\oplus V_2 \\oplus V_3\\oplus ...$, such that $\\dim V_0 = 1$ and $V_2$ contains $A$. We can choose $V$ so that if $A$ has a unit $e$, then $2e$ is the Virasoro element of $V$, and if $G$ is a finite group of automorphisms of $A$, then $G$ acts on $V$ as well. In addition, the algebra $V$ can be chosen with...
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
C-Graded vertex algebras and conformal flow
International Nuclear Information System (INIS)
We consider C-graded vertex algebras, which are vertex algebras V with a C-grading such that V is an admissible V-module generated by “lowest weight vectors.” We show that such vertex algebras have a “good” representation theory in the sense that there is a Zhu algebra A(V) and a bijection between simple admissible V-modules and simple A(V)-modules. We also consider pseudo vertex operator algebras (PVOAs), which are C-graded vertex algebras with a conformal vector such that the homogeneous subspaces of V are generalized eigenspaces for L(0); essentially, these are VOAs that lack any semisimplicity or integrality assumptions on L(0). As a motivating example, we show that deformation of the conformal structure (conformal flow) of a strongly regular VOA (e.g., a lattice theory, or Wess-Zumino-Witten model) is a path in a space whose points are PVOAs
Monotone complete C*-algebras and generic dynamics
Saitô, Kazuyuki
2015-01-01
This monograph is about monotone complete C*-algebras, their properties and the new classification theory. A self-contained introduction to generic dynamics is also included because of its important connections to these algebras. Our knowledge and understanding of monotone complete C*-algebras has been transformed in recent years. This is a very exciting stage in their development, with much discovered but with many mysteries to unravel. This book is intended to encourage graduate students and working mathematicians to attack some of these difficult questions. Each bounded, upward directed net of real numbers has a limit. Monotone complete algebras of operators have a similar property. In particular, every von Neumann algebra is monotone complete but the converse is false. Written by major contributors to this field, Monotone Complete C*-algebras and Generic Dynamics takes readers from the basics to recent advances. The prerequisites are a grounding in functional analysis, some point set topology and an eleme...
Twisted vertex algebras, bicharacter construction and boson-fermion correspondences
International Nuclear Information System (INIS)
The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras
Permutation Centralizer Algebras and Multi-Matrix Invariants
Mattioli, Paolo
2016-01-01
We introduce a class of permutation centralizer algebras which underly the combinatorics of multi-matrix gauge invariant observables. One family of such non-commutative algebras is parametrised by two integers. Its Wedderburn-Artin decomposition explains the counting of restricted Schur operators, which were introduced in the physics literature to describe open strings attached to giant gravitons and were subsequently used to diagonalize the Gaussian inner product for gauge invariants of 2-matrix models. The structure of the algebra, notably its dimension, its centre and its maximally commuting sub-algebra, is related to Littlewood-Richardson numbers for composing Young diagrams. It gives a precise characterization of the minimal set of charges needed to distinguish arbitrary matrix gauge invariants, which are related to enhanced symmetries in gauge theory. The algebra also gives a star product for matrix invariants. The centre of the algebra allows efficient computation of a sector of multi-matrix correlator...
Contemporary developments in algebraic K-theory
International Nuclear Information System (INIS)
' includes K-theory of orders, group-rings and modules over EI categories, Equivariant Higher Algebraic K-theory for finite, profinite and compact Lie group actions together with their relative generalisations and applications. Topics covered under F. Morel's 'Introduction to A1 homotopy theory' include Simplicial sheaves, Quillen's homotopical algebra, Unstable A1 homotopy theory, Connectivity and A1-localisation, Stable A1 homotopy theory of S1-spectra and P1-spectra, etc. The contribution by N. Higson titled 'Local index formula in Non-commutative Geometry' includes such topics as Elliptic partial differential operators, cyclic homology theory, Chern characters, homotopy invariants and the index formula
Four Lie algebras associated with R6 and their applications
Zhang, Yufeng; Tam, Honwah
2010-09-01
The first part in the paper reads that a three-dimensional Lie algebra is first introduced, whose corresponding loop algebra is constructed, for which isospectral problems are established. By employing zero curvature equations, a modified Kaup-Newell (mKN) soliton hierarchy of evolution equations is obtained. The corresponding hereditary operator and Hamiltonian structure are worked out, respectively. Then two types of enlarging semisimple Lie algebras isomorphic to the linear space R6 are followed to construct, one of them is a complex Lie algebra. Their corresponding loop algebras are also given so that two types of new isospectral problems are introduced to generate two kinds of integrable couplings of the above mKN hierarchy. The hereditary operators, Hamiltonian structures of the hierarchies are produced again, respectively. The exact computing formulas of the constant γ appearing in the trace identity and the variational identity are derived under the semisimple algebras. The second part of this paper is devoted to constructing two kinds of Lie algebras by using product of complex vectors, which are also isomorphic to the linear space R6. Then we make use of the corresponding loop algebras to produce two integrable hierarchies along with bi-Hamiltonian structures. From various aspects, we give some ways for constructing Lie algebras which have extensive applications in generating integrable Hamiltonian systems.