Operator algebras and topology
International Nuclear Information System (INIS)
Schick, T.
2002-01-01
These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)
Operator theory, operator algebras and applications
Lebre, Amarino; Samko, Stefan; Spitkovsky, Ilya
2014-01-01
This book consists of research papers that cover the scientific areas of the International Workshop on Operator Theory, Operator Algebras and Applications, held in Lisbon in September 2012. The volume particularly focuses on (i) operator theory and harmonic analysis (singular integral operators with shifts; pseudodifferential operators, factorization of almost periodic matrix functions; inequalities; Cauchy type integrals; maximal and singular operators on generalized Orlicz-Morrey spaces; the Riesz potential operator; modification of Hadamard fractional integro-differentiation), (ii) operator algebras (invertibility in groupoid C*-algebras; inner endomorphisms of some semi group, crossed products; C*-algebras generated by mappings which have finite orbits; Folner sequences in operator algebras; arithmetic aspect of C*_r SL(2); C*-algebras of singular integral operators; algebras of operator sequences) and (iii) mathematical physics (operator approach to diffraction from polygonal-conical screens; Poisson geo...
Cluster algebras bases on vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2016-01-01
Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300
Linear operators in Clifford algebras
International Nuclear Information System (INIS)
Laoues, M.
1991-01-01
We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators M eI,eJ defined by x→e I .x.e J , where the e I are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (M eI,eJ ) is exactly a basis in the even case. (orig.)
Hamiltonian operators in differential algebras
Zharinov, V. V.
2017-12-01
We develop a previously proposed algebraic technique for a Hamiltonian approach to evolution systems of partial differential equations including constrained systems and propose a defining system of equations ( suitable for computer calculations) characterizing the Hamiltonian operators of a given form. We demonstrate the technique with a simple example.
Lectures on algebraic quantum field theory and operator algebras
International Nuclear Information System (INIS)
Schroer, Bert
2001-04-01
In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)
Additive derivations on algebras of measurable operators
International Nuclear Information System (INIS)
Ayupov, Sh.A.; Kudaybergenov, K.K.
2009-08-01
Given a von Neumann algebra M we introduce the so-called central extension mix(M) of M. We show that mix(M) is a *-subalgebra in the algebra LS(M) of all locally measurable operators with respect to M, and this algebra coincides with LS(M) if and only if M does not admit type II direct summands. We prove that if M is a properly infinite von Neumann algebra then every additive derivation on the algebra mix(M) is inner. This implies that on the algebra LS(M), where M is a type I ∞ or a type III von Neumann algebra, all additive derivations are inner derivations. (author)
Semicrossed products of operator algebras by semigroups
Davidson, Kenneth R; Kakariadis, Evgenios T A
2017-01-01
The authors examine the semicrossed products of a semigroup action by *-endomorphisms on a C*-algebra, or more generally of an action on an arbitrary operator algebra by completely contractive endomorphisms. The choice of allowable representations affects the corresponding universal algebra. The authors seek quite general conditions which will allow them to show that the C*-envelope of the semicrossed product is (a full corner of) a crossed product of an auxiliary C*-algebra by a group action. Their analysis concerns a case-by-case dilation theory on covariant pairs. In the process we determine the C*-envelope for various semicrossed products of (possibly nonselfadjoint) operator algebras by spanning cones and lattice-ordered abelian semigroups.
Certain extensions of vertex operator algebras of affine type
International Nuclear Information System (INIS)
Li Haisheng
2001-01-01
We generalize Feigin and Miwa's construction of extended vertex operator (super)algebras A k (sl(2)) for other types of simple Lie algebras. For all the constructed extended vertex operator (super)algebras, irreducible modules are classified, complete reducibility of every module is proved and fusion rules are determined modulo the fusion rules for vertex operator algebras of affine type. (orig.)
Operator algebras and conformal field theory
International Nuclear Information System (INIS)
Gabbiani, F.; Froehlich, J.
1993-01-01
We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)
Ideals in algebras of unbounded operators
International Nuclear Information System (INIS)
Timmermann, W.
1977-01-01
The paper presents a continuation of investigations on ideals in algebras of unbounded operators. A general procedure is given to get ideals in L + (D) starting with ideals in B(H). A definition of the two types of ideals is given: one contains only bounded operators, the other involves both bounded and unbounded operators. Some algebraic properties of ideals Ssub(phi)(D) derived from the well-known symmetrically normed ideals Ssub(phi) are investigated. Topologies in such ideals are introduced, and some results connected with topological properties of these ideals are given
C*-algebras and operator theory
Murphy, Gerald J
1990-01-01
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Private quantum subsystems and quasiorthogonal operator algebras
International Nuclear Information System (INIS)
Levick, Jeremy; Kribs, David W; Pereira, Rajesh; Jochym-O’Connor, Tomas; Laflamme, Raymond
2016-01-01
We generalize a recently discovered example of a private quantum subsystem to find private subsystems for Abelian subgroups of the n-qubit Pauli group, which exist in the absence of private subspaces. In doing so, we also connect these quantum privacy investigations with the theory of quasiorthogonal operator algebras through the use of tools from group theory and operator theory. (paper)
Operator algebra in the space of images
Celeghini, Enrico
2017-08-01
A consistent description of images on the disk and of their transformations is given as elements of a vector space and of an operators algebra. The vector space of images on the disk 𝔻 is the Hilbert space L 2(𝔻) that has as a basis the Zernike functions. To construct the operator algebra that transforms the images, L 2(𝔻) must be complemented and the full rigged Hilbert space RHS(𝔻) considered. Only this rigged Hilbert space allows indeed to write the operators of different cardinality we need to build the ladder operators on the Zernike functions that by inspection, belong to the representation {D}1/2+\\otimes {D}1/2+ of the algebra su(1, 1) ⊕ su(1, 1). Consequently the transformations of images are operators contained inside the universal enveloping algebra UEA[su(1, 1) ⊕ su(1, 1)]. Because of limited precision of experimental measures, physical states can be always described by vectors of the Schwartz space 𝕊(𝔻), dense in the L 2(𝔻) space where the manipulation of images is performed.
Extension properties of states on operator algebras
Hamhalter, Jan
1995-08-01
We summarize and deepen some recent results concerning the extension problem for states on operator algebras and general quantum logics. In particular, we establish equivalence between the Gleason extension property, the Hahn-Banach extension property, and the universal state extension property of projection logics. Extensions of Jauch-Piron states are investigated.
States on algebras of unbounded operators
International Nuclear Information System (INIS)
Timmermann, W.
1985-01-01
There are reviewed some of the fundamental results on normal states on algebras of unbounded operators. It is ndicated how these results are related with ideal theory. Few known facts concerning perturbation of normal states are included. There are contained some new results on singular states
Quasi exactly solvable operators and abstract associative algebras
International Nuclear Information System (INIS)
Brihaye, Y.; Kosinski, P.
1998-01-01
We consider the vector spaces consisting of direct sums of polynomials of given degrees and we show how to classify the linear differential operators preserving these spaces. The families of operators so obtained are identified as the envelopping algebras of particular abstract associative algebras. Some of these operators can be transformed into quasi exactly solvable Schroedinger operators which, having a hidden algebra, can be partially solved algebraically; we exhibit however a series of Schoedinger equations which, while completely solvable algebraically, do not possess a hidden algebra
On Derivations of Operator Algebras with Involution
Directory of Open Access Journals (Sweden)
Širovnik Nejc
2014-12-01
Full Text Available The purpose of this paper is to prove the following result. Let X be a complex Hilbert space, let L(X be an algebra of all bounded linear operators on X and let A(X ⊂ L(X be a standard operator algebra, which is closed under the adjoint operation. Suppose there exists a linear mapping D : A(X → L(X satisfying the relation 2D(AA*A = D(AA*A + AA*D(A + D(AA*A + AD(A*A for all A ∈ A(X. In this case, D is of the form D(A = [A,B] for all A ∈ A(X and some fixed B ∈ L(X, which means that D is a derivation.
Operator algebra from fusion rules
International Nuclear Information System (INIS)
Fuchs, J.
1989-03-01
It is described how the fusion rules of a conformal field theory can be employed to derive differential equations for the four-point functions of the theory, and thus to determine eventually the operator product coeffients for primary fields. The results are applied to the Ising fusion rules. A set of theories possessing these function rules is found which is labelled by two discrete parameters. For a specific value of one of the parameters, these are the level one Spin(2m+1) Wess-Zusimo-Witten theories; it is shown that they represent an infinite number of inequivalent theories. (author). 38 refs
Elliptic genera and vertex operator super-algebras
Tamanoi, Hirotaka
1999-01-01
This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin Kähler manifolds such as Riemannian tensors and Kähler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.
On States and State Operators on Certain Basic Algebras
Botur, Michal; Kühr, Jan; Rachůnek, Jiří
2014-10-01
The paper is based on the authors' talks given at the 11th IQSA Meeting in Cagliari; it deals with states and state operators (internal states) on basic algebras which are a generalization of MV-algebras and orthomodular lattices, also including lattice effect algebras. On the one hand, the paper is a survey of some previous results on states and state operators on commutative basic algebras, and on the other one, an extension of these results to the much larger class of basic algebras where the addition ⊕ distributes over the lattice meet ∧.
QPFT operator algebras and commutative exterior differential calculus
International Nuclear Information System (INIS)
Yur'ev, D.V.
1993-01-01
The reduction of the structure theory of the operator algebras of quantum projective (sl(2, C)-invariant) field theory (QPFT operator algebras) to a commutative exterior differential calculus by means of the operation of renormalization of a pointwise product of operator fields is described. In the first section, the author introduces the concept of the operator algebra of quantum field theory and describes the operation of the renormalization of a pointwise product of operator fields. The second section is devoted to a brief exposition of the fundamentals of the structure theory of QPT operator algebras. The third section is devoted to commutative exterior differential calculus. In the fourth section, the author establishes the connection between the renormalized pointwise product of operator fields in QPFT operator algebras and the commutative exterior differential calculus. 5 refs
Rigged Hilbert spaces and topologies on operator algebras
International Nuclear Information System (INIS)
Freidrich, M.; Lassner, G.
1979-01-01
To any Oπ-algebra of unbounded operators there corresponds a rigged Hilbert space so that all operators are continuous with respect to the topologies. This leads to different topologies of uniformly bounded convergence on the operator algebra, which are investigated in this paper. Particularly consistent results are obtained if the rigged Hilbert space is a reflexive one
Relations for Modular Forms from Vertex Operator Algebras
Zuevsky, Alexander
2018-02-01
We will give a short reminder for vertex operator algebra notion and corresponding characters. Then we discuss algebraic methods for explicit computation of the partition and correlation functions. We then illustrate general ways to find number theory identities for related modular forms by specific examples of modular form relations arising from our construction. Finally, we present new results concerning identities for prime forms on genus g Riemann surfaces and genus two n-point functions for vertex operator algebra characters.
International Conference on Semigroups, Algebras and Operator Theory
Meakin, John; Rajan, A
2015-01-01
This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f...
International Nuclear Information System (INIS)
Smirnov, Yu.F.; Tolstoi, V.N.; Kharitonov, Yu.I.
1993-01-01
The tree technique for the quantum algebra su q (2) developed in an earlier study is used to construct the q analog of the algebra of irreducible tensor operators. The adjoint action of the algebra su q (2) on irreducible tensor operators is discussed, and the adjoint R matrix is introduced. A set of expressions is obtained for the matrix elements of various irreducible tensor operators and combinations of them. As an application, the recursion relations for the Clebsch-Gordan and Racah coefficients of the algebra su q (2) are derived. 16 refs
The algebraic geometry of Harper operators
Li, Dan
2011-10-01
Following an approach developed by Gieseker, Knörrer and Trubowitz for discretized Schrödinger operators, we study the spectral theory of Harper operators in dimensions 2 and 1, as a discretized model of magnetic Laplacians, from the point of view of algebraic geometry. We describe the geometry of an associated family of Bloch varieties and compute their density of states. Finally, we also compute some spectral functions based on the density of states. We discuss the difference between the cases with rational or irrational parameters: for the two-dimensional Harper operator, the compactification of the Bloch variety is an ordinary variety in the rational case and an ind-pro-variety in the irrational case. This gives rise, at the algebro-geometric level of Bloch varieties, to a phenomenon similar to the Hofstadter butterfly in the spectral theory. In dimension 2, the density of states can be expressed in terms of period integrals over Fermi curves, where the resulting elliptic integrals are independent of the parameters. In dimension 1, for the almost Mathieu operator, with a similar argument, we find the usual dependence of the spectral density on the parameter, which gives rise to the well-known Hofstadter butterfly picture.
Fermionic construction of vertex operators for twisted affine algebras
International Nuclear Information System (INIS)
Frappat, L.; Sorba, P.; Sciarrino, A.
1988-03-01
We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators
Dobrev, V.K.
2013-01-01
In the present paper we continue the project of systematic construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we call 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduce the new notion of {\\it parabolic relation} between two non-compact semisimple Lie algebras g and g' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E_{7(7)} which is parabolically related to the CLA E_{7(-25)}, the parabolic subalgebras including E_{6(6)} and E_{6(-6)} . Other interesting examples are the orthogonal algebras so(p,q) all of which are parabolically related to the conformal algebra so(n,2) with p+q=n+2, the parabolic subalgebras including the Lorentz subalgebra so(n-1,1) and its analogs so(p-1,...
Sup(*)-algebras of unbounded operators in statistical mechanics
International Nuclear Information System (INIS)
Moore, S.M.
1978-01-01
A formulation of statistical mechanics is proposed which employs algebraic methods and unbounded operators. A tentative axiom system is developed which includes the KMS condition as the definition of equilibrium state. (author)
The investigation of platonic solids symmetry operations with clifford algebra
International Nuclear Information System (INIS)
Kilic, A.
2005-01-01
The geometric algebra produces the new fields of view in the modern mathematical physics, definition of bodies and rearranging for equations of mathematics and physics. The new mathematical approaches play an important role in the progress of physics. After presenting Clifford algebra and quarantine's, the symmetry operations with Clifford algebra and quarantine's are defined. This symmetry operations are applied to a Platonic solids, which are called as tetrahedron, cube, octahedron, icosahedron and dodecahedron. Also, the vertices of Platonic solids presented in the Cartesian coordinates are calculated
Dobrev, V. K.
2013-02-01
In the present paper we continue the project of systematic construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we call 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduce the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G ' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E 7(7) which is parabolically related to the CLA E 7(-25) , the parabolic subalgebras including E 6(6) and E 6(-26). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so( n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so( n - 1, 1) and its analogs so( p - 1, q - 1). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14) , the parabolic subalgebras including real forms of sl(6). We also give a formula for the number of representations in the main multiplets valid for CLAs and all algebras that are parabolically related to them. In all considered cases we give the main multiplets of indecomposable elementary representations including the necessary data for all relevant invariant differential operators. In the case of so( p, q) we give also the reduced multiplets. We should stress that the multiplets are given in the most economic way in pairs of shadow fields. Furthermore we should stress that the classification of all invariant differential operators includes as special cases all possible conservation laws and conserved currents, unitary or not.
The algebraic size of the family of injective operators
Directory of Open Access Journals (Sweden)
Bernal-González Luis
2017-01-01
Full Text Available In this paper, a criterion for the existence of large linear algebras consisting, except for zero, of one-to-one operators on an infinite dimensional Banach space is provided. As a consequence, it is shown that every separable infinite dimensional Banach space supports a commutative infinitely generated free linear algebra of operators all of whose nonzero members are one-to-one. In certain cases, the assertion holds for nonseparable Banach spaces.
Vertex operator algebras and conformal field theory
International Nuclear Information System (INIS)
Huang, Y.Z.
1992-01-01
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics
Algebraic Properties of Toeplitz Operators on the Polydisk
Directory of Open Access Journals (Sweden)
Bo Zhang
2011-01-01
Full Text Available We discuss some algebraic properties of Toeplitz operators on the Bergman space of the polydisk Dn. Firstly, we introduce Toeplitz operators with quasihomogeneous symbols and property (P. Secondly, we study commutativity of certain quasihomogeneous Toeplitz operators and commutators of diagonal Toeplitz operators. Thirdly, we discuss finite rank semicommutators and commutators of Toeplitz operators with quasihomogeneous symbols. Finally, we solve the finite rank product problem for Toeplitz operators on the polydisk.
Operator algebra of free conformal currents via twistors
Energy Technology Data Exchange (ETDEWEB)
Gelfond, O.A. [Institute of System Research of Russian Academy of Sciences, Nakhimovsky prospect 36-1, 117218 Moscow (Russian Federation); Vasiliev, M.A., E-mail: vasiliev@lpi.ru [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute, Leninsky prospect 53, 119991 Moscow (Russian Federation)
2013-11-21
Operator algebra of (not necessarily free) higher-spin conformal conserved currents in generalized matrix spaces, that include 3d Minkowski space–time as a particular case, is shown to be determined by an associative algebra M of functions on the twistor space. For free conserved currents, M is the universal enveloping algebra of the higher-spin algebra. Proposed construction greatly simplifies computation and analysis of correlators of conserved currents. Generating function for n-point functions of 3d (super)currents of all spins, built from N free constituent massless scalars and spinors, is obtained in a concise form of certain determinant. Our results agree with and extend earlier bulk computations in the HS AdS{sub 4}/CFT{sub 3} framework. Generating function for n-point functions of 4d conformal currents is also presented.
Algebraic approach to bare nucleon matrix elements of quark operators
International Nuclear Information System (INIS)
Zschocke, Sven; Kaempfer, Burkhard; Plunien, Guenter
2005-01-01
An algebraic method for evaluating bare nucleon matrix elements of quark operators is proposed. Thereby, bare nucleon matrix elements are traced back to vacuum matrix elements. The method is similar to the soft pion theorem. Matrix elements of two-quark, four-quark and six-quark operators inside the bare nucleon are considered
Simple properties of some ideals of compact operators in algebras of unbounded operators
International Nuclear Information System (INIS)
Timmermann, W.
1977-01-01
Several ideals of compact and completely continuous operators in algebras of unbounded operators are defined. Simple properties as the density of the finite dimensional operators are discussed. The connection with the approximation problem is indicated
Construction of conformally invariant higher spin operators using transvector algebras
Energy Technology Data Exchange (ETDEWEB)
Eelbode, D., E-mail: David.Eelbode@ua.ac.be [Department of Mathematics and Computer Science, University of Antwerp, Campus Middelheim, G-Building, Middelheimlaan 1, 2020 Antwerpen (Belgium); Raeymaekers, T., E-mail: Tim.Raeymaekers@UGent.be [Clifford Research Group, Department of Mathematical Analysis, Ghent University, Galglaan 2, 9000 Ghent (Belgium)
2014-10-15
This paper deals with a systematic construction of higher spin operators, defined as conformally invariant differential operators acting on functions on flat space R{sup m} with values in an arbitrary half-integer irreducible representation for the spin group. To be more precise, the higher spin version of the Dirac operator and associated twistor operators will be constructed as generators of a transvector algebra, hereby generalising the well-known fact that the classical Dirac operator on R{sup m} and its symbol generate the orthosymplectic Lie superalgebra osp(1,2). To do so, we will use the extremal projection operator and its relation to transvector algebras. In the second part of the article, the conformal invariance of the constructed higher spin operators will be proven explicitly.
Jorgensen, Palle E T
1987-01-01
Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Logic TK: Algebraic Notions from Tarski’s Consequence Operator
Directory of Open Access Journals (Sweden)
Hércules A. Feitosa
2010-04-01
Full Text Available Tarski presented his definition of consequence operator to explain the most important notions which any logical consequence concept must contemplate. A Tarski space is a pair constituted by a nonempty set and a consequence operator. This structure characterizes an almost topological space. This paper presents an algebraic view of the Tarski spaces and introduces a modal propositional logic which has as a model exactly the closed sets of a Tarski space.
The Algebra of the Cumulative Percent Operation.
Berry, Andrew J.
2002-01-01
Discusses how to help students avoid some pervasive reasoning errors in solving cumulative percent problems. Discusses the meaning of ."%+b%." the additive inverse of ."%." and other useful applications. Emphasizes the operational aspect of the cumulative percent concept. (KHR)
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
International Nuclear Information System (INIS)
Le Van Hop.
1989-12-01
The combinatorics computation is used to describe the Casimir operators of the symplectic Lie Algebra. This result is applied for determining the Center of the enveloping Algebra of the semidirect Product of the Heisenberg Lie Algebra and the symplectic Lie Algebra. (author). 10 refs
Foundations of quantum theory from classical concepts to operator algebras
Landsman, Klaas
2017-01-01
This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.
Weyl type theorems for algebraically Quasi-$\\mathcal{HNP}$ operators
Rashid, M. H. M.; Prasad, T.
2015-01-01
In this paper, by introducing the class of quasi hereditarily normaloid polaroid operators, we obtain a theoretical and general framework from which Weyl type theorems may be promptly established for many of these classes of operators. This framework also entails Weyl type theorems for perturbations $f(T + A)$, where $A$ is algebraic and commutes with $T,$ and $f$ is an analytic function, defined on an open neighborhood of the spectrum of $T +A$, such that $f$ is non constant on each of the c...
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
On a certain class of operator algebras and their derivations
International Nuclear Information System (INIS)
Ayupov, S. A.; Abdullaev, R.Z.; Kudaybergenov, K.K.
2009-08-01
Given a von Neumann algebra M with a faithful normal finite trace, we introduce the so-called finite tracial algebra M f as the intersection of L p -spaces L p (M, μ) over all p ≥ and over all faithful normal finite traces μ on M. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner. (author)
Operator algebras generated by commuting projections a vector measure approach
Ricker, Werner
1999-01-01
This book presents a systematic investigation of the theory of those commutative, unital subalgebras (of bounded linear operators acting in a Banach space) which are closed for some given topology and are generated by a uniformly bounded Boolean algebra of projections. One of the main aims is to employ the methods of vector measures and integration as a unifying theme throughout. This yields proofs of several classical results which are quite different to the classical ones. This book is directed to both those wishing to learn this topic for the first time and to current experts in the field.
Weyl's theorem for algebraically totally hereditarily normaloid operators
Duggal, B. P.
2005-08-01
A Banach space operator is said to be totally hereditarily normaloid, T[set membership, variant]THN, if every part of T is normaloid and every invertible part of T has a normaloid inverse. The operator T is said to be an H(q) operator for some integer q[greater-or-equal, slanted]1, T[set membership, variant]H(q), if the quasi-nilpotent part H0(T-[lambda])=(T-[lambda])-q(0) for every complex number [lambda]. It is proved that if T is algebraically H(q), or T is algebraically THN and is separable, then f(T) satisfies Weyl's theorem for every function f analytic in an open neighborhood of [sigma](T), and T* satisfies a-Weyl's theorem. If also T* has the single valued extension property, then f(T) satisfies a-Weyl's theorem for every analytic function f which is non-constant on the connected components of the open neighborhood of [sigma](T) on which it is defined.
Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory
Molina, Mercedes
2016-01-01
Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are relevant in research and development in coding theory, cryptography and quantum mechanics. The topics in this volume were presented at the Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory, held May 23—25, 2014 at Cheikh Anta Diop University in Dakar, Senegal in honor of Professor Amin Kaidi. The workshop was hosted by the university's Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications, in cooperation with the University of Almería and the University of Málaga. Dr. Kaidi's work focuses on non-associative rings and algebras, operator theory and functional analysis, and he...
Algebraic quantization, good operators and fractional quantum numbers
International Nuclear Information System (INIS)
Aldaya, V.; Calixto, M.; Guerrero, J.
1996-01-01
The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the failure of the Ehrenfest theorem is clarified in terms of the already defined notion of good (and bad) operators. The analysis of constrained Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for quantum operators without classical analogue and for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric Quantization. This study is illustrated with the examples of the free particle on the circumference and the charged particle in a homogeneous magnetic field on the torus, both examples featuring anomalous operators, non-equivalent quantization and the latter, fractional quantum numbers. These provide the rationale behind flux quantization in superconducting rings and Fractional Quantum Hall Effect, respectively. (orig.)
Algebra of 2D periodic operators with local and perpendicular defects
DEFF Research Database (Denmark)
Kutsenko, Anton
2016-01-01
We show that 2D periodic operators with local and perpendicular defects form an algebra. We provide an algorithm for finding spectrum for such operators. While the continuous spectral components can be computed by simple algebraic operations on some matrix-valued functions and a few number...
Mikusi\\'nski's Operational Calculus with Algebraic Foundations and Applications to Bessel Functions
Bengochea, Gabriel; G, Gabriel López
2013-01-01
We construct an operational calculus supported on the algebraic operational calculus introduced by Bengochea and Verde. With this operational calculus we study the solution of certain Bessel type equations.
How to Produce S-Tense Operators on Lattice Effect Algebras
Chajda, Ivan; Janda, Jiří; Paseka, Jan
2014-07-01
Tense operators in effect algebras play a key role for the representation of the dynamics of formally described physical systems. For this, it is important to know how to construct them on a given effect algebra and how to compute all possible pairs of tense operators on . However, we firstly need to derive a time frame which enables these constructions and computations. Hence, we usually apply a suitable set of states of the effect algebra in question. To approximate physical reality in quantum mechanics, we use only the so-called Jauch-Piron states on in our paper. To realize our constructions, we are restricted on lattice effect algebras only.
Campbell-Hausdorff Formula and Algebras with Operator
International Nuclear Information System (INIS)
Khudaverdyan, O.M.
1994-01-01
Some new classes of algebras are introduced and in these algebras Campbell-Hausdorff like formula is established. The application of these constructions to the problem of the connectivity of the Feynman graphs corresponding to the Green functions in Quantum Field Theory is described. 9 refs
A study of the geometric and algebraic sewing operations
Penfound, Bryan
The sewing operation is an integral component of both Geometric Function Theory and Conformal Field Theory and in this thesis we explore the interplay between the two fields. We will first generalize Huang's Geometric Sewing Equation to the quasi-symmetric case. That is, given specific maps g(z) and f-1( z), we show the existence of the sewing maps F 1(z) and F2(z). Second, we display an algebraic procedure using convergent matrix operations showing that the coefficients of the Conformal Welding Theorem maps F(z) and G(z) are dependent on the coefficients of the map φ. We do this for both the analytic and quasi-symmetric cases, and it is done using a special block/vector decomposition of a matrix representation called the power matrix. Lastly, we provide a partial result: given specific maps g( z) and f-1(z) with analytic extensions, as well as a particular analytic map φ, it is possible to provide a method of determining the coefficients of the complementary maps.
On higher-dimensional loop algebras, pseudodifferential operators and Fock space realizations
International Nuclear Information System (INIS)
Westerberg, A.
1997-01-01
We discuss a previously discovered extension of the infinite-dimensional Lie algebra map(M,g) which generalizes the Kac-Moody algebras in 1+1 dimensions and the Mickelsson-Faddeev algebras in 3+1 dimensions to manifolds M of general dimensions. Furthermore, we review the method of regularizing current algebras in higher dimensions using pseudodifferential operator (PSDO) symbol calculus. In particular, we discuss the issue of Lie algebra cohomology of PSDOs and its relation to the Schwinger terms arising in the quantization process. Finally, we apply this regularization method to the algebra with partial success, and discuss the remaining obstacles to the construction of a Fock space representation. (orig.)
Time-evolution operators for (coupled) time-dependent oscillators and Lie algebraic structure theory
Wolf, F.; Korsch, H. J.
1988-03-01
This paper deals with the application of Lie algebraic structure theory to time-dependent quantum systems making use of the Levi-Malcev decomposition of the Lie algebra generated by the Hamiltonian and the Wei-Norman representation of the time-evolution operator. In particular, (coupled) harmonic-oscillator systems are studied. Explicit formulas for expectation values and transition probabilities are derived.
Spatiality of Derivations of Operator Algebras in Banach Spaces
Directory of Open Access Journals (Sweden)
Quanyuan Chen
2011-01-01
Full Text Available Suppose that A is a transitive subalgebra of B(X and its norm closure A¯ contains a nonzero minimal left ideal I. It is shown that if δ is a bounded reflexive transitive derivation from A into B(X, then δ is spatial and implemented uniquely; that is, there exists T∈B(X such that δ(A=TA−AT for each A∈A, and the implementation T of δ is unique only up to an additive constant. This extends a result of E. Kissin that “if A¯ contains the ideal C(H of all compact operators in B(H, then a bounded reflexive transitive derivation from A into B(H is spatial and implemented uniquely.” in an algebraic direction and provides an alternative proof of it. It is also shown that a bounded reflexive transitive derivation from A into B(X is spatial and implemented uniquely, if X is a reflexive Banach space and A¯ contains a nonzero minimal right ideal I.
Path operator algebras in conformal quantum field theories
International Nuclear Information System (INIS)
Roesgen, M.
2000-10-01
Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)
Radial multipliers on reduced free products of operator algebras
DEFF Research Database (Denmark)
Haagerup, Uffe; Møller, Søren
2012-01-01
Let AiAi be a family of unital C¿C¿-algebras, respectively, of von Neumann algebras and ¿:N0¿C¿:N0¿C. We show that if a Hankel matrix related to ¿ is trace-class, then there exists a unique completely bounded map M¿M¿ on the reduced free product of the AiAi, which acts as a radial multiplier...
Radial multipliers on reduced free products of operator algebras
DEFF Research Database (Denmark)
Haagerup, Uffe; Møller, Søren
2012-01-01
Let AiAi be a family of unital C¿C¿-algebras, respectively, of von Neumann algebras and ¿:N0¿C¿:N0¿C. We show that if a Hankel matrix related to ¿ is trace-class, then there exists a unique completely bounded map M¿M¿ on the reduced free product of the AiAi, which acts as a radial multiplier. Her...
Jordan (α,β-Derivations on Operator Algebras
Directory of Open Access Journals (Sweden)
Quanyuan Chen
2017-01-01
Full Text Available Let A be a CSL subalgebra of a von Neumann algebra acting on a Hilbert space H. It is shown that any Jordan (α,β-derivation on A is an (α,β-derivation, where α,β are any automorphisms on A. Moreover, the nth power (α,β-maps on A are investigated.
Warner, Seth
1990-01-01
Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.
Extended finite operator calculus as an example of algebraization of analysis
Kwasniewski, A. K.; Borak, E.
2004-01-01
A wardian calculus of sequences started almost seventy years ago constitutes the general scheme for extensions of the classical umbral operator calculus considered by many afterwards . At the same time this calculus is an example of the algebraization of the analysis here restricted to the algebra of formal series. This is a review article based on the recent first author contributions. As the survey article it is supplemented by the short indicatory glossaries of notation and terms used by p...
Education Development Center, Inc., 2016
2016-01-01
In the domain of "Operations & Algebraic Thinking," Common Core State Standards indicate that in kindergarten, first grade, and second grade, children should demonstrate and expand their ability to understand, represent, and solve problems using the operations of addition and subtraction, laying the foundation for operations using…
Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał
2018-03-01
Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
Additional operations in algebra of structural numbers for control algorithm development
Directory of Open Access Journals (Sweden)
Morhun A.V.
2016-12-01
Full Text Available The structural numbers and the algebra of the structural numbers due to the simplicity of representation, flexibility and current algebraic operations are the powerful tool for a wide range of applications. In autonomous power supply systems and systems with distributed generation (Micro Grid mathematical apparatus of structural numbers can be effectively used for the calculation of the parameters of the operating modes of consumption of electric energy. The purpose of the article is the representation of the additional algebra of structural numbers. The standard algebra was proposed to be extended by the additional operations and modification current in order to expand the scope of their use, namely to construct a flexible, adaptive algorithms of control systems. It is achieved due to the possibility to consider each individual component of the system with its parameters and provide easy management of entire system and each individual component. Thus, structural numbers and extended algebra are the perspective line of research and further studying is required.
Algebras of Operators on Holomorphic Functions and Applications
International Nuclear Information System (INIS)
Ben Chrouda, M.; Ouerdiane, H.
2002-01-01
We develop the theory of operators defined on a space of holomorphic functions. First, we characterize such operators by a suitable space of holomorphic functions. Next, we show that every operator is a limit of a sequence of convolution and multiplication operators. Finally, we define the exponential of an operator which permits us to solve some quantum stochastic differential equations
q-deformed differential operator algebra and new braid group representation
International Nuclear Information System (INIS)
Wang Luyu; Dai Jianghui; Zhang Jun
1991-01-01
It is proved that the q-deformed differential operator algebra introduced is consistent with quantum hyperplane described by Wess and Zumino. At the same time, a new braid group representation associated with sl q (2) is obtained by adding the terms of weight conservation to the standard universal R-matrix. (author). 10 refs
R-matrix arising from affine Hecke algebras and its application to Macdonald's difference operators
International Nuclear Information System (INIS)
Kato, Shinichi
1994-01-01
We shall give a certain trigonometric R-matrix associated with each root system by using affine Hecke algebras. From this R-matrix, we derive a quantum Knizhnik-Zamolodchikov equation after Cherednik, and show that the solutions of this KZ equation yield eigenfunctions of Macdonald's difference operators. (orig.)
Analysis of the F. Calogero Type Projection-Algebraic Scheme for Differential Operator Equations
International Nuclear Information System (INIS)
Lustyk, Miroslaw; Bogolubov, Nikolai N. Jr.; Blackmore, Denis; Prykarpatsky, Anatoliy K.
2010-12-01
The existence, convergence, realizability and stability of solutions of differential operator equations obtained via a novel projection-algebraic scheme are analyzed in detail. This analysis is based upon classical discrete approximation techniques coupled with a recent generalization of the Leray-Schauder fixed point theorem. An example is included to illustrate the efficacy of the projection scheme and analysis strategy. (author)
New modular form identities associated to generalized vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2015-01-01
Roč. 16, č. 1 (2015), s. 607-623 ISSN 1787-2405 Institutional support: RVO:67985840 Keywords : vertex operator superalgebras * intertwining operators * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.335, year: 2015 http://mat76.mat.uni-miskolc.hu/~mnotes/index.php?page=article&name=mmn_1138
On an ideal in algebras of unbounded operators
International Nuclear Information System (INIS)
Timmermann, W.
1977-01-01
The closure of the set of finite dimensional operators with respect to different topologies is considered. The obtained ideals have many properties similar to those of the ideal of completely continuous operators on the Hilbert space. For example, on some appropriate assumptions all continuous functionals are normal, irreducible representations are equivalent to the identical representation and so on
Hypercyclic operators on algebra of symmetric snalytic functions on $\\ell_p$
Directory of Open Access Journals (Sweden)
Z. H. Mozhyrovska
2016-06-01
Full Text Available In the paper, it is proposed a method of construction of hypercyclic composition operators on $H(\\mathbb{C}^n$ using polynomial automorphisms of $\\mathbb{C}^n$ and symmetric analytic functions on $\\ell_p.$ In particular, we show that an ``symmetric translation'' operator is hypercyclic on a Frechet algebra of symmetric entire functions on $\\ell_p$ which are bounded on bounded subsets.
International Nuclear Information System (INIS)
Ehsani, Amir
2015-01-01
Algebras with a pair of non-associative binary operations (f, g) which are satisfy in the balanced quadratic functional equations with four object variables considered. First, we obtain a linear representation for the operations, of this kind of binary algebras (A,f,g), over an abelian group (A, +) and then we generalize the linear representation of operations, to an algebra (A,F) with non-associative binary operations which are satisfy in the balanced quadratic functional equations with four object variables. (paper)
A program to evaluate closed diagrams algebraically for angular momentum coupled product operators
International Nuclear Information System (INIS)
Chang, B.D.; Wong, S.S.M.
1980-01-01
The many particle trace of a product operator, expressed in terms of angular-momentum coupled spherical tensor creation and annihilation operators, can be evaluated as the sum of the different ways or diagrams to contract all the single particle operators. In the coupled representation, the process of contraction involves recouplings of angular momenta and this can be tedious. The program is constructed to perform algebraically the contractions and the associated angular momentum recouplings. The output are (algebraic) expressions which can be used either as analytical results or as input to a separate program, CONTRACTION-COMPILER, constructed to write a Fortran code to carry out the numerical calculations. The primary motivation of the project is derived from the need of scalar and configuration traces in nuclear structure problems using spectral distribution methods. (orig./HSI)
Unitary operator bases and Q-deformed algebras
Energy Technology Data Exchange (ETDEWEB)
Galetti, D.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica. Grupo de Fisica Nuclear e Teorica e Fenomenologia de Particulas Elementares; Lunardi, J.T. [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Matematica e Estatistica
1998-03-01
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity. (author)
Unitary operator bases and q-deformed algebras
Energy Technology Data Exchange (ETDEWEB)
Galleti, D.; Lunardi, J.T.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
1995-11-01
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed communication relation is shown to emergence in a natural way, when the deformation parameter is a root of unity. (author). 14 refs.
Optimizing relational algebra operations using discrimination-based joins and lazy products
DEFF Research Database (Denmark)
Henglein, Fritz
We show how to implement in-memory execution of the core re- lational algebra operations of projection, selection and cross-product eciently, using discrimination-based joins and lazy products. We introduce the notion of (partitioning) discriminator, which par- titions a list of values according...... to a specied equivalence relation on keys the values are associated with. We show how discriminators can be dened generically, purely functionally, and eciently (worst-case linear time) on top of the array-based basic multiset discrimination algorithm of Cai and Paige (1995). Discriminators provide the basis...... the selection operation to recognize on the y whenever it is applied to a cross-product, in which case it can choose an ecient discrimination-based equijoin implementation. The techniques subsume most of the optimization techniques based on relational algebra equalities, without need for a query preprocessing...
On the algebra of deformed differential operators, and induced integrable Toda field theory
International Nuclear Information System (INIS)
Hssaini, M.; Kessabi, M.; Maroufi, B.; Sedra, M.B.
2000-07-01
We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular the first leading orders of this q-deformed hierarchy namely the q-KdV and q-Boussinesq integrable systems. We also present the q-generalisation of the conformal transformations of the currents u n , n ≥ 2 and discuss the primary condition of the fields w n , n ≥ 2 by using the Volterra gauge group transformations for the q-covariant Lax operators. An induced su(n)-Toda(su(2)-Liouville) field theory construction is discussed and other important features are presented. (author)
Reproducing and learning new algebraic operations on word embeddings using genetic programming
Santana, Roberto
2017-01-01
Word-vector representations associate a high dimensional real-vector to every word from a corpus. Recently, neural-network based methods have been proposed for learning this representation from large corpora. This type of word-to-vector embedding is able to keep, in the learned vector space, some of the syntactic and semantic relationships present in the original word corpus. This, in turn, serves to address different types of language classification tasks by doing algebraic operations define...
African Journals Online (AJOL)
Tadesse
metric space. Also we prove that every implicative algebra can be made into a regular. Autometrized Algebra of Swamy (1964) (see theorem 2.9). We recall the definition of Xu (1993). Defintion [2]: Let (L,∨,∧,0,1) be a bounded lattice with order reversing involution. “ ' ”and a binary operation → satisfying the following ...
International Nuclear Information System (INIS)
Dadashyan, K.Yu.; Khoruzhii, S.S.
1987-01-01
The construction of a modular theory for weakly closed J-involutive algebras of bounded operators on Pontryagin spaces is continued. The spectrum of the modular operator Δ of such an algebra is investigated, the existence of a strongly continuous J-unitary group is established and, under the condition that the spectrum lies in the right half-plane, Tomita's fundamental theorem is proved
Hasse-Schmidt derivations on Grassmann algebras with applications to vertex operators
Gatto, Letterio
2016-01-01
This book provides a comprehensive advanced multi-linear algebra course based on the concept of Hasse-Schmidt derivations on a Grassmann algebra (an analogue of the Taylor expansion for real-valued functions), and shows how this notion provides a natural framework for many ostensibly unrelated subjects: traces of an endomorphism and the Cayley-Hamilton theorem, generic linear ODEs and their Wronskians, the exponential of a matrix with indeterminate entries (Putzer's method revisited), universal decomposition of a polynomial in the product of two monic polynomials of fixed smaller degree, Schubert calculus for Grassmannian varieties, and vertex operators obtained with the help of Schubert calculus tools (Giambelli's formula). Significant emphasis is placed on the characterization of decomposable tensors of an exterior power of a free abelian group of possibly infinite rank, which then leads to the celebrated Hirota bilinear form of the Kadomtsev-Petviashvili (KP) hierarchy describing the Plücker embedding of ...
International Nuclear Information System (INIS)
Macfarlane, A J; Pfeiffer, Hendryk
2003-01-01
The uniformity, for the family of exceptional Lie algebras g, of the decompositions of the powers of their adjoint representations is now well known for powers up to four. The paper describes an extension of this uniformity for the totally antisymmetrized nth powers up to n = 9, identifying families of representations with integer eigenvalues 5, ..., 9 for the quadratic Casimir operator, in each case providing a formula for the dimensions of the representations in the family as a function of D = dim g. This generalizes previous results for powers j and Casimir eigenvalues j, j ≤ 4. Many intriguing, perhaps puzzling, features of the dimension formulae are discussed and the possibility that they may be valid for a wider class of not necessarily simple Lie algebras is considered
Directory of Open Access Journals (Sweden)
Hongyan Guan
2013-01-01
Full Text Available We study some algebraic properties of Toeplitz operator with quasihomogeneous or separately quasihomogeneous symbol on the pluriharmonic Bergman space of the unit ball in ℂn. We determine when the product of two Toeplitz operators with certain separately quasi-homogeneous symbols is a Toeplitz operator. Next, we discuss the zero-product problem for several Toeplitz operators, one of whose symbols is separately quasihomogeneous and the others are quasi-homogeneous functions, and show that the zero-product problem for two Toeplitz operators has only a trivial solution if one of the symbols is separately quasihomogeneous and the other is arbitrary. Finally, we also characterize the commutativity of certain quasihomogeneous or separately quasihomogeneous Toeplitz operators.
Invariant differential operators and characters of the AdS4 algebra
International Nuclear Information System (INIS)
Dobrev, V K
2006-01-01
The aim of this paper is to apply systematically to AdS 4 some modern tools in the representation theory of Lie algebras which are easily generalized to the supersymmetric and quantum group settings and necessary for applications to string theory and integrable models. Here we introduce the necessary representations of the AdS 4 algebra and group. We give explicitly all singular (null) vectors of the reducible AdS 4 Verma modules. These are used to obtain the AdS 4 invariant differential operators. Using this we display a new structure-a diagram involving four partially equivalent reducible representations one of which contains all finite-dimensional irreps of the AdS 4 algebra. We study in more detail the cases involving UIRs, in particular, the Di and the Rac singletons, and the massless UIRs. In the massless case, we discover the structure of sets of 2s 0 - 1 conserved currents for each spin s 0 UIR, s 0 = 1, 3/2,.... All massless cases are contained in a one-parameter subfamily of the quartet diagrams mentioned above, the parameter being the spin s 0 . Further we give the classification of the so(5,C) irreps presented in a diagrammatic way which makes easy the derivation of all character formulae. The paper concludes with a speculation on the possible applications of the character formulae to integrable models
Generalized Hermitian Algebras
Foulis, David J.; Pulmannová, Sylvia
2009-05-01
We refer to the real Jordan Banach algebra of bounded Hermitian operators on a Hilbert space as a Hermitian algebra. In this paper we define and launch a study of a class of generalized Hermitian (GH) algebras. Among the examples of GH-algebras are ordered special Jordan algebras, JW-algebras, and AJW-algebras, but unlike these more restricted cases, a GH-algebra is not necessarily a Banach space and its lattice of projections is not necessarily complete. In this paper we develop the basic theory of GH-algebras, identify their unit intervals as effect algebras, and observe that their projection lattices are sigma-complete orthomodular lattices. We show that GH-algebras are spectral order-unit spaces and that they admit a substantial spectral theory.
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
McKeague, Charles P
1986-01-01
Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra
McKeague, Charles P
1981-01-01
Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e
International Nuclear Information System (INIS)
Ablinger, J.; Schneider, C.; Manteuffel, A. von
2015-09-01
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element A Qg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
Linear algebra and linear operators in engineering with applications in Mathematica
Davis, H Ted
2000-01-01
Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical ...
From Rota-Baxter algebras to pre-Lie algebras
International Nuclear Information System (INIS)
An Huihui; Ba, Chengming
2008-01-01
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras
Chistyakov, VV
2005-01-01
It is shown that the space of functions of n real variables with finite total variation in the sense of Vitali, Hardy and Krause, defined on a rectangle I-a(b) C R-n, is a Banach algebra under the pointwise operations and Hildebrandt-Leonov's norm. This result generalizes the classical case of
Chistyakov, VV
2005-01-01
We characterize superposition Nemytskii operators, which map the Banach algebra of functions of n real variables with finite total variation in the sense of Vitali, Hardy and Krause into itself and satisfy the global Lipschitz condition. Our results extend previous results in this direction by
Algebraic partial Boolean algebras
Smith, D
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial...
Spectral theory of linear operators and spectral systems in Banach algebras
Müller, Vladimir
2003-01-01
This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...
International Nuclear Information System (INIS)
Campoamor-Stursberg, R
2008-01-01
We show that the Inoenue-Wigner contraction naturally associated to a reduction chain s implies s' of semisimple Lie algebras induces a decomposition of the Casimir operators into homogeneous polynomials, the terms of which can be used to obtain additional mutually commuting missing label operators for this reduction. The adjunction of these scalars that are no more invariants of the contraction allow to solve the missing label problem for those reductions where the contraction provides an insufficient number of labelling operators.
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Algebraic partial Boolean algebras
Smith, Derek
2003-04-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space Script H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E8.
Algebraic partial Boolean algebras
Energy Technology Data Exchange (ETDEWEB)
Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)
2003-04-04
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.
Coreflections in Algebraic Quantum Logic
Jacobs, Bart; Mandemaker, Jorik
2012-07-01
Various generalizations of Boolean algebras are being studied in algebraic quantum logic, including orthomodular lattices, orthomodular po-sets, orthoalgebras and effect algebras. This paper contains a systematic study of the structure in and between categories of such algebras. It does so via a combination of totalization (of partially defined operations) and transfer of structure via coreflections.
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Matrix Operations for Engineers and Scientists An Essential Guide in Linear Algebra
Jeffrey, Alan
2010-01-01
Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designe...
Quantum deformation of the affine transformation algebra
International Nuclear Information System (INIS)
Aizawa, N.; Sato, Haru-Tada
1994-01-01
We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
International Nuclear Information System (INIS)
Garcia, R.L.
1983-11-01
The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Beilinson, Alexander
2004-01-01
Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch
Bicovariant quantum algebras and quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)
Optimizing relational algebra operations using generic equivalence discriminators and lazy products
DEFF Research Database (Denmark)
Henglein, Fritz
2010-01-01
We show how to efficiently evaluate generic map-filter-product queries, generalizations of select-project-join (SPJ) queries in re- lational algebra, based on a combination of two novel techniques: generic discrimination-based joins and lazy (formal) products. Discrimination-based joins are based...... that discriminators can be constructed generically (by structural recursion on equivalence expressions), purely func- tionally, and efficiently (worst-case linear time). The array-based basic multiset discrimination algorithm of Cai and Paige (1995) provides a base discriminator that is both asymptotically and prac...... on relational algebra equalities, without need for a query preprocessing phase. They require no indexes and behave purely functionally. They can be considered a form of symbolic execution of set expressions that automate and encapsulate dynamic program transformation of such expressions and lead to asymptotic...
Quantum double actions on operator algebras and orbifold quantum field theories
International Nuclear Information System (INIS)
Mueger, M.
1996-06-01
Starting from a local quantum field theory with an unbroken compact symmetry group G in 1+1 dimensional spacetime we construct disorder fields implementing gauge transformations on the fields (order variables) localized in a wedge region. Enlarging the local algebras by these disorder fields we obtain a nonlocal field theory, the fixpoint algebras of which under the appropriately extended action of the group G are shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case of a finite group G the extended theory is acted upon in a completely canonical way by the quantum double D(G) and satisfies R-matrix commutation relations as well as a Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent approach to bosonization. The main technical ingredient is a strengthened version of the split property which should hold in all reasonable massive theories. In the appendices (part of) the results are extended to arbitary locally compact groups and our methods are adapted to chiral theories on the circle. (orig.)
Kurosh, A G; Stark, M; Ulam, S
1965-01-01
Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Davidson, Kenneth R
1996-01-01
The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea
Liu, Chengshi
2010-08-01
We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.
Applications of the potential algebras of the two-dimensional Dirac-like operators
Czech Academy of Sciences Publication Activity Database
Jakubský, Vít
2013-01-01
Roč. 331, č. 4 (2013), s. 216-235 ISSN 0003-4916 R&D Projects: GA AV ČR GPP203/11/P038 Institutional support: RVO:61389005 Keywords : potential algebra * Dirac eyuation * supersymmetry * shape-invariance Subject RIV: BE - Theoretical Physics Impact factor: 3.065, year: 2013 http://ac.els- cdn .com/S0003491613000080/1-s2.0-S0003491613000080-main.pdf?_tid=e9c316f0-bbe7-11e2-b8ca-00000aab0f6c& amp ;acdnat=1368461731_fb8fe2f5da71ade23877f1a9bcddd89f
Goodstein, R L
2007-01-01
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Planar algebra of the subgroup-subfactor
Indian Academy of Sciences (India)
G in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra sub- factor RG ⊂ RH and the G-invariant planar subalgebra of the planar algebra of the 'flip' of ⋆n. Keywords. Planar algebras; subfactors; standard invariant. 1. Introduction. For every pair H ⊂ G of finite groups, ...
On Dunkl angular momenta algebra
Energy Technology Data Exchange (ETDEWEB)
Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2015-11-17
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
Leibniz Algebras and Lie Algebras
Directory of Open Access Journals (Sweden)
Geoffrey Mason
2013-10-01
Full Text Available This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.
FatMan vs. LittleBoy: Scaling up Linear Algebraic Operations in Scale-out Data Platforms
Energy Technology Data Exchange (ETDEWEB)
Lim, Seung-Hwan [ORNL; Xu, Luna [Virginia Tech, Blacksburg, VA; Butt, Ali R [Virginia Tech, Blacksburg, VA; Sukumar, Sreenivas Rangan [ORNL; Kannan, Ramakrishnan [ORNL
2016-01-01
Linear algebraic operations such as matrix manipulations form the kernel of many machine learning and other crucial algorithms. Scaling up as well as scaling out such algorithms are highly desirable to enable efficient processing over millions of data points. To this end, we present a matrix manipulation approach to effectively scale-up each node in a scale-out data parallel platform such as Apache Spark. Specifically, we enable hardware acceleration for matrix multiplications in a distributed Spark setup without user intervention. Our approach supports both dense and sparse distributed matrices, and provides flexible control of acceleration by matrix density. We demonstrate the benefit of our approach for generalized matrix multiplication operations over large matrices with up to four billion elements. To connect the effectiveness of our approach with machine learning applications, we performed Gramian matrix computation via generalized matrix multiplications. Our experiments show that our approach achieves more than 2x performance speed-up, and up to 96.1% computation improvement, compared to a state of the art Spark MLlib for dense matrices.
Intermediate algebra a textworkbook
McKeague, Charles P
1985-01-01
Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex
Beginning algebra a textworkbook
McKeague, Charles P
1985-01-01
Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division
Ford, Timothy J
2017-01-01
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
International Nuclear Information System (INIS)
Odesskii, A V
2002-01-01
This survey is devoted to associative Z ≥0 -graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations
National Research Council Canada - National Science Library
Hartshorne, Robin
1977-01-01
.... 141 BECKERIWEISPFENNINGIKREDEL. Grabner Bases. A Computational Approach to Commutative Algebra. 142 LANG. Real and Functional Analysis. 3rd ed. 143 DOOB. Measure Theory. 144 DENNIS/FARB. Noncommutat...
Momani, Shaher; Ibrahim, Rabha W.
2008-03-01
In this paper, we study the existence of periodic solutions for a nonlinear integral equation of periodic functions involving Weyl-Riesz fractional integral operator under the mixed generalized Lipschitz, Carathéodory and monotonicity conditions. The fixed point theorems due to Dhage are the main tool in carrying out our proofs.
International Nuclear Information System (INIS)
Fan Hongyi; Wang Yong
2006-01-01
With the help of Bose operator identities and entangled state representation and based on our previous work [Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
African Journals Online (AJOL)
Tadesse
Department of Mathematics, Faculty of Computer and Mathematical Sciences, Addis Ababa. University, Addis Ababa, Ethiopia(*drkvenkateswarlu@gmail.com, **berhanufk@yahoo.co.uk). ABSTRACT. In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra ...
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Coherent state quantization of paragrassmann algebras
Energy Technology Data Exchange (ETDEWEB)
El Baz, M; Hassouni, Y [Laboratoire de Physique Theorique, LPT-URAC 13, Faculte des Sciences, Universite Mohamed V, Av.Ibn Battouta, BP 1014 Agdal Rabat (Morocco); Fresneda, R [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo (Brazil); Gazeau, J P, E-mail: elbaz@fsr.ac.m, E-mail: fresneda@gmail.co, E-mail: gazeau@apc.univ-paris7.f, E-mail: y-hassou@fsr.ac.m [Laboratoire APC, Universite Paris Diderot (Paris 7), 10, rue A Domon et L Duquet 75205 Paris Cedex 13 (France)
2010-09-24
By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices realizes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators leads to interesting conclusions.
Fine, Henry Burchard
2005-01-01
At the beginning of the twentieth century, college algebra was taught differently than it is nowadays. There are many topics that are now part of calculus or analysis classes. Other topics are covered only in abstract form in a modern algebra class on field theory. Fine's College Algebra offers the reader a chance to learn the origins of a variety of topics taught in today's curriculum, while also learning valuable techniques that, in some cases, are almost forgotten. In the early 1900s, methods were often emphasized, rather than abstract principles. In this book, Fine includes detailed discus
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Algebra & trigonometry super review
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y
Algebra & trigonometry I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq
Holme, Audun
1988-01-01
This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
Prime alternative algebras that are nearly commutative
International Nuclear Information System (INIS)
Pchelintsev, S V
2004-01-01
We prove that by deforming the multiplication in a prime commutative alternative algebra using a C-operation we obtain a prime non-commutative alternative algebra. Under certain restrictions on non-commutative algebras this relation between algebras is reversible. Isotopes are special cases of deformations. We introduce and study a linear space generated by the Bruck C-operations. We prove that the Bruck space is generated by operations of rank 1 and 2 and that 'general' Bruck operations of rank 2 are independent in the following sense: a sum of n operations of rank 2 cannot be written as a linear combination of (n-1) operations of rank 2 and an arbitrary operation of rank 1. We describe infinite series of non-isomorphic prime non-commutative algebras of bounded degree that are deformations of a concrete prime commutative algebra
Semiprojectivity of universal -algebras generated by algebraic elements
DEFF Research Database (Denmark)
Shulman, Tatiana
2012-01-01
Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Bell, Eric T
1927-01-01
The central topic of this book is the presentation of the author's principle of arithmetical paraphrases, which won him the BÃ´cher Prize in 1924. This general principle served to unify and extend many isolated results in the theory of numbers. The author successfully provides a systematic attempt to find a unified theory for each of various classes of related important problems in the theory of numbers, including its interrelations with algebra and analysis. This book will be of interest to advanced students in various branches of mathematics, including number theory, abstract algebra, ellipti
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Invariants of triangular Lie algebras
International Nuclear Information System (INIS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-01-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated
A Term-Graph Syntax for Algebras over Multisets
Gadducci, Fabio
Earlier papers argued that term graphs play for the specification of relation-based algebras the same role that standard terms play for total algebras. The present contribution enforces the claim by showing that term graphs are a sound and complete representation for multiset algebras, i.e., algebras whose operators are interpreted over multisets.
Oliver, Bob; Pawałowski, Krzystof
1991-01-01
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
Indian Academy of Sciences (India)
tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).
Quantum algebra of N superspace
International Nuclear Information System (INIS)
Hatcher, Nicolas; Restuccia, A.; Stephany, J.
2007-01-01
We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the κ-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra
Rota-Baxter algebras and the Hopf algebra of renormalization
International Nuclear Information System (INIS)
Ebrahimi-Fard, K.
2006-06-01
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
A note on relations between Hom-Malcev algebras and Hom-Lie-Yamaguti algebras
Gaparayi, Donatien; Issa, A. Nourou
2015-01-01
A Hom-Lie-Yamaguti algebra, whose ternary operation expresses through its binary one in a specific way, is a multiplicative Hom-Malcev algebra. Any multiplicative Hom-Malcev algebra over a field of characteristic zero has a natural Hom-Lie-Yamaguti structure.
Fractional supersymmetry through generalized anyonic algebra
International Nuclear Information System (INIS)
Douari, Jamila; Abdus Salam International Centre for Theoretical Physics, Trieste; Hassouni, Yassine
2001-01-01
The construction of anyonic operators and algebra is generalized by using quons operators. Therefore, the particular version of fractional supersymmetry is constructed on the two-dimensional lattice by associating two generalized anyons of different kinds. The fractional supersymmetry Hamiltonian operator is obtained on the two-dimensional lattice and the quantum algebra U q (sl 2 ) is realized. (author)
Algebraic characterizations of measure algebras
Czech Academy of Sciences Publication Activity Database
Jech, Thomas
2008-01-01
Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008
International Nuclear Information System (INIS)
Mohammad, N.; Siddiqui, A.H.
1987-11-01
The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
International Nuclear Information System (INIS)
Cufaro-Petroni, N.; Dewdney, C.; Holland, P.; Kyprianidis, T.; Vigier, J.P.
1985-01-01
The deduction by Guerra and Marra of the usual quantum operator algebra from a canonical variable Hamiltonian treatment of Nelson's hydrodynamical stochastic description of real nonrelativistic Schroedinger waves is extended to the causal stochastic interpretation given by Guerra and Ruggiero and by Vigier of relativistic Klein-Gordon waves. A specific representation shows that the Poisson brackets for canonical hydrodynamical observables become ''averages'' of quantum observables in the given state. Stochastic quantization thus justifies the standard procedure of replacing the classical particle (or field) observables with operators according to the scheme p/sub μ/→-ihpartial/sub μ/ and L/sub munu/→-ih(x/sub μ/partial/sub ν/-x/sub ν/partial/sub μ/ )
Iachello, F
1995-01-01
1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters
Lutfiyya, Lutfi A
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.
Macdonald index and chiral algebra
Song, Jaewon
2017-08-01
For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.
Remarks on the differential algebraic approach to particle beam optics by M. Berz
Energy Technology Data Exchange (ETDEWEB)
Garczynski, V.
1992-12-31
The underlying mathematical structure of the differential algebraic approach of M. Berz to particle beam optics is isomorphic to the familiar truncated polynomial algebra. Concrete examples of derivations in this algebra, consistent with the truncation operation, are given.
Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
International Nuclear Information System (INIS)
Yau, Donald
2011-01-01
We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.
On Realization of Generalized Effect Algebras
Paseka, Jan
2012-12-01
A well-known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show that a generalized effect algebra is representable in the operator generalized effect algebra G(H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riečanová and Zajac. Further, any operator generalized effect algebra G(H) possesses an order determining set of generalized states.
Bliss, Gilbert Ames
1933-01-01
This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t
On BRST quantization of second class constraint algebras
International Nuclear Information System (INIS)
Niemi, A.J.
1988-01-01
A BRST quantization of second-class constraint algebras that avoids Dirac brackets is constructed, and the BRST operator is shown to be related to the BRST operator of a first class algebra by a nonunitary canonical transformation. The transformation converts the second class algebra into an effective first class algebra with the help of an auxiliary second class algebra constructed from the dynamical Lagrange multipliers of the Dirac approach. The BRST invariant path integral for second class algebras is related to the path integral of the pertinent Dirac brackets, using the Parisi-Sourlas mechanism. As an application the possibility of string theories in subcritical dimensions is considered. (orig.)
Algebras with actions and automata
Directory of Open Access Journals (Sweden)
W. Kühnel
1982-01-01
Full Text Available In the present paper we want to give a common structure theory of left action, group operations, R-modules and automata of different types defined over various kinds of carrier objects: sets, graphs, presheaves, sheaves, topological spaces (in particular: compactly generated Hausdorff spaces. The first section gives an axiomatic approach to algebraic structures relative to a base category B, slightly more powerful than that of monadic (tripleable functors. In section 2 we generalize Lawveres functorial semantics to many-sorted algebras over cartesian closed categories. In section 3 we treat the structures mentioned in the beginning as many-sorted algebras with fixed scalar or input object and show that they still have an algebraic (or monadic forgetful functor (theorem 3.3 and hence the general theory of algebraic structures applies. These structures were usually treated as one-sorted in the Lawvere-setting, the action being expressed by a family of unary operations indexed over the scalars. But this approach cannot, as the one developed here, describe continuity of the action (more general: the action to be a B-morphism, which is essential for the structures mentioned above, e.g. modules for a sheaf of rings or topological automata. Finally we discuss consequences of theorem 3.3 for the structure theory of various types of automata. The particular case of algebras with fixed natural numbers object has been studied by the authors in [23].
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Strengthening Effect Algebras in a Logical Perspective: Heyting-Wajsberg Algebras
Konig, Martinvaldo
2014-10-01
Heyting effect algebras are lattice-ordered pseudoboolean effect algebras endowed with a pseudocomplementation that maps on the center (i.e. Boolean elements). They are the algebraic counterpart of an extension of both Łukasiewicz many-valued logic and intuitionistic logic. We show that Heyting effect algebras are termwise equivalent to Heyting-Wajsberg algebras where the two different logical implications are defined as primitive operators. We prove this logic to be decidable, to be strongly complete and to have the deduction-detachment theorem.
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...
Miyanishi, Masayoshi
2000-01-01
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...
Universal enveloping algebras for Malcev color algebras
de-la-Concepción, Daniel
2015-01-01
In this paper we give a construction of the universal enveloping algebra of a Malcev algebra in categories of group algebra comodules with a symmetry given by a bicharacter of the group. A particular example of such categories is the category of super vector spaces.
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
The algebras of large N matrix mechanics
Energy Technology Data Exchange (ETDEWEB)
Halpern, M.B.; Schwartz, C.
1999-09-16
Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.
Indian Academy of Sciences (India)
Introduction and preliminaries. The class of Malcev algebras contains one of the Lie algebras and so a question arises whether some known results on Lie algebras can be extended to the framework of Malcev algebras (see [4, 7, 9, 10]). In the present paper, we are interested in studying the structure of arbitrary Malcev ...
Embeddings of Heyting Algebras
Jongh, D.H.J. de; Visser, A.
In this paper we study embeddings of Heyting Algebras. It is pointed out that such embeddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra on countably
Dzhumadil'daev, A. S.
2002-01-01
Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
N=2 current algebra and coset models
International Nuclear Information System (INIS)
Hull, C.M.; Spence, B.
1990-01-01
The N=2 supersymmetric extension of the Kac-Moody algebra and the corresponding Sugawara construction of the N=2 superconformal algebra are discussed both in components and in N=1 superspace. A formulation of the Kac-Moody algebra and Sugawara construction is given in N=2 superspace in terms of supercurrents satisfying a non-linear chiral constraint. The operator product of two supercurrents includes terms that are non-linear in the supercurrents. The N=2 generalization of the GKO coset construction is then given and the conditions found by Kazama and Suzuki are seen to arise from the non-linearity of the algebra. (orig.)
Invariants of generalized Lie algebras
International Nuclear Information System (INIS)
Agrawala, V.K.
1981-01-01
Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants
Planar algebra of the subgroup-subfactor
Indian Academy of Sciences (India)
The crucial step in this identification is an exhibition of a model for the basic construction tower, and thereafter of the standard invariant of R ⋊ H ⊂ R ⋊ G in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra subfactor R G ⊂ R H and the -invariant planar subalgebra ...
Relational Algebra and SQL: Better Together
McMaster, Kirby; Sambasivam, Samuel; Hadfield, Steven; Wolthuis, Stuart
2013-01-01
In this paper, we describe how database instructors can teach Relational Algebra and Structured Query Language together through programming. Students write query programs consisting of sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The query programs can then be run interactively, allowing students to…
Differential structures in C*-algebras
Indian Academy of Sciences (India)
(M) de Rham algebra ... (5)A is spectral and stable. (6) A admits a spectral continuous bounded operator representation on a Hilbert space. ..... product = continuous crossed product of enveloping C∗-algebra. (b) Let A be hermitian and Q.Then.
International Nuclear Information System (INIS)
Staunton, L.P.
1976-01-01
The covariant operator Heisenberg equations of motion and commutation relations following from positive-energy wave equations are obtained. The resulting theory is identical to that of a dual string model restricted to excitations of only the lowest normal modes. It is suggested that recent classical Dirac-bracket formulations of the full dual string are subject to reinterpretation, and are apparently Poincare covariant in four dimensions. The nucleus of the complete set of covariant quantum string relations is obtained from the restricted model, and it is shown that covariant normal-mode operators and those of the null plane cannot both have simple creation-operator character
On q-deformed infinite-dimensional n-algebra
Directory of Open Access Journals (Sweden)
Lu Ding
2016-03-01
Full Text Available The q-deformation of the infinite-dimensional n-algebras is investigated. Based on the structure of the q-deformed Virasoro–Witt algebra, we derive a nontrivial q-deformed Virasoro–Witt n-algebra which is nothing but a sh-n-Lie algebra. Furthermore in terms of the pseud-differential operators, we construct the (cosine n-algebra and the q-deformed SDiff(T2 n-algebra. We find that they are the sh-n-Lie algebras for the n even case. In terms of the magnetic translation operators, an explicit physical realization of the (cosine n-algebra is given.
Generating loop graphs via Hopf algebra in quantum field theory
International Nuclear Information System (INIS)
Mestre, Angela; Oeckl, Robert
2006-01-01
We use the Hopf algebra structure of the time-ordered algebra of field operators to generate all connected weighted Feynman graphs in a recursive and efficient manner. The algebraic representation of the graphs is such that they can be evaluated directly as contributions to the connected n-point functions. The recursion proceeds by loop order and vertex number
Supersymmetry algebra cohomology. I. Definition and general structure
International Nuclear Information System (INIS)
Brandt, Friedemann
2010-01-01
This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding 'primitive elements' are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.
Goldmann, H
1990-01-01
The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.
Abrams, Gene; Siles Molina, Mercedes
2017-01-01
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...
Difficulties in initial algebra learning in Indonesia
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-12-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.
A generalization of Connes-Kreimer Hopf algebra
Byun, Jungyoon
2005-07-01
"Bonsai" Hopf algebras, introduced here, are generalizations of Connes-Kreimer Hopf algebras, which are motivated by Feynman diagrams and renormalization. We show that we can find operad structure on the set of bonsais. We introduce a new differential on these bonsai Hopf algebras, which is inspired by the tree differential. The cohomologies of these are computed here, and the relationship of this differential with the appending operation * of Connes-Kreimer Hopf algebras is investigated.
A generalization of Connes-Kreimer Hopf algebra
International Nuclear Information System (INIS)
Byun, Jungyoon
2005-01-01
'Bonsai' Hopf algebras, introduced here, are generalizations of Connes-Kreimer Hopf algebras, which are motivated by Feynman diagrams and renormalization. We show that we can find operad structure on the set of bonsais. We introduce a differential on these bonsai Hopf algebras, which is inspired by the tree differential. The cohomologies of these are computed here, and the relationship of this differential with the appending operation * of Connes-Kreimer Hopf algebras is investigated
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Osborn, J
1989-01-01
During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.
Relation between dual S-algebras and BE-algebras
Directory of Open Access Journals (Sweden)
Arsham Borumand Saeid
2015-05-01
Full Text Available In this paper, we investigate the relationship between dual (Weak Subtraction algebras, Heyting algebras and BE-algebras. In fact, the purpose of this paper is to show that BE-algebra is a generalization of Heyting algebra and dual (Weak Subtraction algebras. Also, we show that a bounded commutative self distributive BE-algebra is equivalent to the Heyting algebra.
Relation of deformed nonlinear algebras with linear ones
International Nuclear Information System (INIS)
Nowicki, A; Tkachuk, V M
2014-01-01
The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator. (paper)
Energy Technology Data Exchange (ETDEWEB)
Krishnaswami, Govind S [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Postbus 80.195, 3508 TD, Utrecht (Netherlands)], E-mail: govind.krishnaswami@durham.ac.uk
2008-04-11
We consider large-N multi-matrix models whose action closely mimics that of Yang-Mills theory, including gauge-fixing and ghost terms. We show that the factorized Schwinger-Dyson loop equations, expressed in terms of the generating series of gluon and ghost correlations G({xi}), are quadratic equations S{sup i}G=G{xi}{sup i}G in concatenation of correlations. The Schwinger-Dyson operator S{sup i} is built from the left annihilation operator, which does not satisfy the Leibnitz rule with respect to concatenation. So the loop equations are not differential equations. We show that left annihilation is a derivation of the graded shuffle product of gluon and ghost correlations. The shuffle product is the point-wise product of Wilson loops, expressed in terms of correlations. So in the limit where concatenation is approximated by shuffle products, the loop equations become differential equations. Remarkably, the Schwinger-Dyson operator as a whole is also a derivation of the graded shuffle product. This allows us to turn the loop equations into linear equations for the shuffle reciprocal, which might serve as a starting point for an approximation scheme.
Algebraic geometry and effective lagrangians
International Nuclear Information System (INIS)
Martinec, E.J.; Chicago Univ., IL
1989-01-01
N=2 supersymmetric Landau-Ginsburg fixed points describe nonlinear models whose target spaces are algebraic varieties in certain generalized projective spaces; the defining equation is precisely the zero set of the superpotential, considered as a condition in the projective space. The ADE classification of modular invariants arises as the classification of projective descriptions of P 1 ; in general, the hierarchy of fixed points is conjectured to be isomorphic to the classification of quasihomogeneous singularities. The condition of vanishing first Chern class is an integrality condition on the Virasoro central charge; the central charge is determined by the superpotential. The operator algebra is given by the algebra of Wick contractions of perturbations of the superpotential. (orig.)
Algebraic isotopy in genetics.
Campos, T M; Holgate, P
1987-01-01
It is shown that many of the algebras arising in nonselective genetics are isotopes of the algebras for particularly simple systems of inheritance. Moreover, interesting aspects of the structure are preserved under the relevant isotopies.
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
The Lie algebra of the N=2-string
International Nuclear Information System (INIS)
Kugel, K.
2006-01-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
The Lie algebra of the N=2-string
Energy Technology Data Exchange (ETDEWEB)
Kugel, K.
2006-07-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Process algebra with four-valued logic
Bergstra, J.A.; Ponse, A.
2000-01-01
We propose a combination of a fragment of four-valued logic and process algebra. We present an operational semantics in SOS-style, and a completeness result for ACP with conditionals and four-valued logic.
New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology
Pinczon, Georges; Ushirobira, Rosane
2005-01-01
We give new applications of graded Lie algebras to: identities of standard polynomials, deformation theory of quadratic Lie algebras, cyclic cohomology of quadratic Lie algebras, $2k$-Lie algebras, generalized Poisson brackets and so on.
Algebraic statistics computational commutative algebra in statistics
Pistone, Giovanni; Wynn, Henry P
2000-01-01
Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.
Indian Academy of Sciences (India)
We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form M = U + ∑ j I j with U a subspace of the abelian Malcev subalgebra and any I j a well described ideal of satisfying [ I j , I k ] = 0 if ≠ .
Foundations of algebraic geometry
Weil, A
1946-01-01
This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.
Directory of Open Access Journals (Sweden)
Sergio Arturo Celani
2006-01-01
Full Text Available We characterize the simple and subdirectly irreducible distributive algebras in some varieties of distributive lattices with unary operators, including topological and monadic positive modal algebras. Finally, for some varieties of Heyting algebras with operators we apply these results to determine the simple and subdirectly irreducible algebras.
Accelerating Dense Linear Algebra on the GPU
DEFF Research Database (Denmark)
Sørensen, Hans Henrik Brandenborg
and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...... architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general....
Advanced linear algebra for engineers with Matlab
Dianat, Sohail A
2009-01-01
Matrices, Matrix Algebra, and Elementary Matrix OperationsBasic Concepts and NotationMatrix AlgebraElementary Row OperationsSolution of System of Linear EquationsMatrix PartitionsBlock MultiplicationInner, Outer, and Kronecker ProductsDeterminants, Matrix Inversion and Solutions to Systems of Linear EquationsDeterminant of a MatrixMatrix InversionSolution of Simultaneous Linear EquationsApplications: Circuit AnalysisHomogeneous Coordinates SystemRank, Nu
On a family of weighted convolution algebras
Directory of Open Access Journals (Sweden)
Hans G. Feichtinger
1990-01-01
Full Text Available Continuing a line of research initiated by Larsen, Liu and Wang [12], Martin and Yap [13], Gürkanli [15], and influenced by Reiter's presentation of Beurling and Segal algebras in Reiter [2,10] this paper presents the study of a family of Banach ideals of Beurling algebras Lw1(G, G a locally compact Abelian group. These spaces are defined by weighted Lp-conditions of their Fourier transforms. In the first section invariance properties and asymptotic estimates for the translation and modulation operators are given. Using these it is possible to characterize inclusions in section 3 and to show that two spaces of this type coincide if and only if their parameters are equal. In section 4 the existence of approximate identities in these algebras is established, from which, among other consequences, the bijection between the closed ideals of these algebras and those of the corresponding Beurling algebra is derived.
The classical limit of W-algebras
International Nuclear Information System (INIS)
Figueroa-O'Farrill, J.M.; Ramos, E.
1992-01-01
We define and compute explicitly the classical limit of the realizations of W n appearing as hamiltonian structures of generalized KdV hierarchies. The classical limit is obtained by taking the commutative limit of the ring of pseudodifferential operators. These algebras - denoted w n - have free field realizations in which the generators are given by the elementary symmetric polynomials in the free fields. We compute the algebras explicitly and we show that they are all reductions of a new algebra w KP , which is proposed as the universal classical W-algebra for the w n series. As a deformation of this algebra we also obtain w 1+∞ , the classical limit of W 1+∞ . (orig.)
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
International Nuclear Information System (INIS)
Feigin, B.L.; Semikhatov, A.M.
2004-01-01
We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Discrete Minimal Surface Algebras
Directory of Open Access Journals (Sweden)
Joakim Arnlind
2010-05-01
Full Text Available We consider discrete minimal surface algebras (DMSA as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sl_n (any semi-simple Lie algebra providing a trivial example by itself. A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.
Non-commutative finite associative algebras of 2-dimensional vectors
Directory of Open Access Journals (Sweden)
Alexander Moldovyan
2017-12-01
Full Text Available In this paper properties of the non-commutative finite associative algebra of two-dimensional vectors are presented. Interesting features of algebra are mutual associativity of all modifications of the defined parameterized multiplication operation and existing of a large set of single-side unit elements. In the ordinary case one unique two-side unit element is connected with each element of the algebra, except the elements that are square roots from zero element. There are also presented four different variants of defining commutative associative algebras of 2-dimension vectors. For the case of commutativity the algebra has common unit element for all its elements.
Krichever-Novikov type algebras theory and applications
Schlichenmaier, Martin
2014-01-01
Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
Algebraic properties of generalized inverses
Cvetković‐Ilić, Dragana S
2017-01-01
This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...
On a class of smooth Frechet subalgebras of C -algebras
Indian Academy of Sciences (India)
1)-subalgebras of the C. ∗. -algebra of bounded operators (and also of compact operators) have been studied in detail in [15–17] by analysing the first- order differential structure defined by a closed symmetric operator. As a natural sequel to. Banach (D∗ p)-algebras, the following infinite order version has been proposed in ...
Hurwitz Algebras and the Octonion Algebra
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
AT -algebras and extensions of AT-algebras
Indian Academy of Sciences (India)
algebra by an AT-algebra and E has real rank zero, then E is an AT-algebra if and only if the index maps are both zero. Accordingly, in this paper, we attempt to describe a characterization of an extension E of an AT-algebra by an AF-algebra if E ...
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
a left (2, hQ − 2)-Koszul algebra (see Definition 2.1 below), and the Yoneda algebra of. A is isomorphic to a twisted ... is quadratic if R is a subspace of V ⊗ V . The quadratic dual A! of A is defined to be. T (V ∗)/(R⊥) .... (Q, ρ) is a stable bound quiver of Loewy length p + 1, and the Nakayama translation on. Q0 is induced by a ...
Towers of algebras in rational conformal field theories
International Nuclear Information System (INIS)
Gomez, C.; Sierra, G.
1991-01-01
This paper reports on Jones fundamental construction applied to rational conformal field theories. The Jones algebra which emerges in this application is realized in terms of duality operations. The generators of the algebra are an open version of Verlinde's operators. The polynomial equations appear in this context as sufficient conditions for the existence of Jones algebra. The ADE classification of modular invariant partition functions is put in correspondence with Jones classification of subfactors
K-theory for certain extension algebras of purely infinite simple C ...
Indian Academy of Sciences (India)
London/Singapore/Hong Kong/Bangalore: World Scientific) (2001). [6] Lin H, On the classification of C∗. -algebras of real rank zero with zero K1, J. Operator. Theory 35 (1996) 147–178. [7] Lin H, A classification theorem for infinite Toeplitz algebras, in Operator algebras and operator theory (Shanghai) (1997), vol. 228 of ...
Algebras with convergent star products and their representations in Hilbert spaces
International Nuclear Information System (INIS)
Soloviev, M. A.
2013-01-01
We study star product algebras of analytic functions for which the power series defining the products converge absolutely. Such algebras arise naturally in deformation quantization theory and in noncommutative quantum field theory. We consider different star products in a unifying way and present results on the structure and basic properties of these algebras, which are useful for applications. Special attention is given to the Hilbert space representation of the algebras and to the exact description of their corresponding operator algebras
Evolution algebras and their applications
Tian, Jianjun Paul
2008-01-01
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
q-Derivatives, quantization methods and q-algebras
International Nuclear Information System (INIS)
Twarock, Reidun
1998-01-01
Using the example of Borel quantization on S 1 , we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number τ. This extension is denoted as quasi-crystal Lie algebra, because this is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed
Givant, Steven
2017-01-01
This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...
Twisted classical Poincare algebras
International Nuclear Information System (INIS)
Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.
1993-11-01
We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)
DEFF Research Database (Denmark)
Høyrup, Jens
From the early fourteenth century onward, some Italian Abbacus manuscripts begin to use particular abbreviations for algebraic operations and objects and, to be distinguished from that, examples of symbolic operation. The algebraic abbreviations and symbolic operations we find in German...
Introduction to abstract algebra
Smith, Jonathan D H
2008-01-01
Taking a slightly different approach from similar texts, Introduction to Abstract Algebra presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It helps students fully understand groups, rings, semigroups, and monoids by rigorously building concepts from first principles. A Quick Introduction to Algebra The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. The author also uses equivalence relations to introduc
Algebras, lattices and strings 1986
International Nuclear Information System (INIS)
Olive, D.
1987-01-01
The formulation of the string theory of unified elementary particle interactions in terms of operators in a Fock space is now seen to relate to the representation theory of certain infinite dimensional algebras. This insight has enhanced the understanding of the physical and mathematical theories involved and furthermore has led to applications in other branches of theoretical physics. A brief account of the new results is given here. (orig.)
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Directory of Open Access Journals (Sweden)
Frank Roumen
2017-01-01
Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.
Albert, A A
1939-01-01
The first three chapters of this work contain an exposition of the Wedderburn structure theorems. Chapter IV contains the theory of the commutator subalgebra of a simple subalgebra of a normal simple algebra, the study of automorphisms of a simple algebra, splitting fields, and the index reduction factor theory. The fifth chapter contains the foundation of the theory of crossed products and of their special case, cyclic algebras. The theory of exponents is derived there as well as the consequent factorization of normal division algebras into direct factors of prime-power degree. Chapter VI con
BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS
Krogh, F. T.
1994-01-01
The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.
The dual algebra of the Poincare group on Fock space
International Nuclear Information System (INIS)
Klink, W.H.; Iowa Univ., Iowa City, IA
1989-01-01
The Lie algebra of operators commuting with the Poincare group on the Fock space appropriate for a massive spinless particle is constructed in terms of raising and lowering operators indexed by a Lorentz invariant function. From the assumption that the phase operator is an element of this Lie algebra, it is shown that the scattering operator can be written as a unitary representation operator of the group associated with the Lie algebra. A simple choice of the phase operator shows that the Lorentz invariant function can be interpreted as a basic scattering amplitude, in the sense that all multiparticle scattering amplitudes can be written in terms of this basic scattering amplitude. (orig.)
Algebraic monoids, group embeddings, and algebraic combinatorics
Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang
2014-01-01
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular. Graduate students as well a...
Bär, Christian; Becker, Christian
In this chapter we will collect those basic concepts and facts related to C*-algebras that will be needed later on. We give complete proofs. In Sects. 1, 2, 3, and 6 we follow closely the presentation in [1]. For more information on C*-algebras, see, e.g. [2-6].
Seo, Young Joo; Kim, Young Hee
2016-01-01
In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.
Hayden, Dunstan; Cuevas, Gilberto
The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…
International Nuclear Information System (INIS)
Calmet, J.
1982-01-01
A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)
Indian Academy of Sciences (India)
Discourses on Algebra. Rajaram Nityananda. Discourses on Algebra. Igor R Shafarevich. Narosa Publishing. Pages: 273, Price in India: | 1750. To the Indian reader, the word discourse, evokes a respected figure interpreting divine wisdom to common folk in an accessible fash- ion. I dug a bit deeper with Google trans-.
Algebraic Description of Motion
Davidon, William C.
1974-01-01
An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)
International Nuclear Information System (INIS)
Talon, M.
1987-01-01
The algebraic set up for anomalies, a la Stora, is reviewed. Then a brief account is provided of the work of M. Dubois Violette, M. Talon, C. Viallet, in which the general algebraic solution to the consistency conditions is described. 34 references
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Geometric algebra in plasma electrodynamics
Resendes, D. P.; Resendes
2013-10-01
Geometric algebra (GA) is a recent broad mathematical framework incorporating synthetic and coordinate geometry, complex variables, quarternions, vector analysis, matrix algebra, spinors, tensors, and differential forms. It has been claimed to be a unified language for physics. GA is presented in the context of the Maxwell-Plasma system. In this formalism the divergence and curl differential operators are united in a single vector derivative, which is invertible, in the form of a first-order Green function. The four Maxwell equations can be combined into a single equation (for homogeneous and constant media) or into two equations involving the invertible vector derivative for more complex media. GA is applied to simple examples to illustrate the compactness of the notation and coordinate-free computations.
Verification of discrete-event control systems using algebraic specification
International Nuclear Information System (INIS)
Vaeliwuo, H.; Sivertsen, T.
1990-01-01
In this paper power plant operating procedures and automatics are shown to be closely related to discrete-event systems, that is systems characterized by instantaneous discrete changes in their state. It is discussed how to model plant automatics, operating procedures and power plant systems as discrete-event systems so that the model can be used as a basis for formal proofs of various operational aspects. Algebraic specification is pressented as an appropriate modelling formalism. Proving theorems on safety and operationality of power plant systems controlled by discrete-event systems is then discussed. A theorem prover has been developed for our dialect of algebraic specification. This program is based on the close relationship between algebraic specifications and logic programs. The algebraic specifications are automatically translated to a set of Horn clauses, and hence represented as a PROLOG program. By using this representation it is possible to evaluate expressions from the corresponding algebraic specification
Differential structures in C*-algebras
Indian Academy of Sciences (India)
(Gelfand-Naimark) A C∗-algebra A — topological data (a noncommutative virtual compact space) ...... Second and higher order differential structure defined by a closed symmetric operator. Theorem. The operator S is self adjoint iff F2. S has bounded approximate identity. In this case, F2. S = J 2. S . D(S2) = a Hilbert space,.
Pre-Algebra Groups. Concepts & Applications.
Montgomery County Public Schools, Rockville, MD.
Discussion material and exercises related to pre-algebra groups are provided in this five chapter manual. Chapter 1 (mappings) focuses on restricted domains, order of operations (parentheses and exponents), rules of assignment, and computer extensions. Chapter 2 considers finite number systems, including binary operations, clock arithmetic,…
Optical systolic solutions of linear algebraic equations
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
On Lie Group-Lie Algebra Correspondences of Unitary Groups in Finite Von Neumann Algebras
Ando, Hiroshi; Ojima, Izumi; Matsuzawa, Yasumichi
2011-01-01
This article is a summary of our talk in QBIC2010. We give an affirmative answer to the question whether there exist Lie algebras for suitable closed subgroups of the unitary group U( {H}) in a Hilbert space {H} with U( {H}) equipped with the strong operator topology. More precisely, for any strongly closed subgroup G of the unitary group U( {M}) in a finite von Neumann algebra {M}, we show that the set of all generators of strongly continuous one-parameter subgroups of G forms a complete topological Lie algebra with respect to the strong resolvent topology. We also characterize the algebra /line {M} of all densely defined closed operators affiliated with {M} from the viewpoint of a tensor category.
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D......_E of C*(E). Our results pertain both automorphisms and proper endomorphisms. Firstly, the Weyl group and the restricted Weyl group of a graph C*-algebra are introduced and investigated. In particular, criteria of outerness for automorphisms in the restricted Weyl group are found. We also show...
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Chatterjee, D
2007-01-01
About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the
Orthogonal symmetries and Clifford algebras
Indian Academy of Sciences (India)
algebra over a field K, can be regarded as the Clifford algebra of a suitable nondegenerate quadratic form q over the base field K. In [13], such a form q is also explicitly constructed. The Grassmann algebra (or the exterior algebra) may also be regarded as the Clifford alge- bra of the null (totally isotropic) quadratic form.
Lifting solutions to perturbing problems in C*-algebras
Loring, Terry A
1996-01-01
The nature of C^*-algebras is such that one cannot study perturbation without also studying the theory of lifting and the theory of extensions. Approximation questions involving representations of relations in matrices and C^*-algebras are the central focus of this volume. A variety of approximation techniques are unified by translating them into lifting problems: from classical questions about transitivity of algebras of operators on Hilbert spaces to recent results in linear algebra. One chapter is devoted to Lin's theorem on approximating almost normal matrices by normal matrices. The techn
An algebraic description of perturbation theory in quantum electrodynamics
International Nuclear Information System (INIS)
Wright, J.D.
1982-01-01
An algebraic formulation of the electromagnetic field, in which various quantization procedures can be described, is used to discuss perturbation calculations. The Feynman rules and the second order calculation of the self-energy of the electron can be developed on the basis of the Fermi method of quantization. The algebraic approach clarifies the problems in defining the vacuum and other states, which are associated with calculations in terms of field algebra operators. The vacuum state defined on the field algebra by Schwinger leads to incorrect results in the self-energy calculation
Twisted vertex algebras, bicharacter construction and boson-fermion correspondences
International Nuclear Information System (INIS)
Anguelova, Iana I.
2013-01-01
The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras
Chiral algebras in Landau-Ginzburg models
Dedushenko, Mykola
2018-03-01
Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.
Matrix realization of string algebra axioms and conditions of invariance
International Nuclear Information System (INIS)
Babichev, L.F.; Kuvshinov, V.I.; Fedorov, F.I.
1990-01-01
The matrix representations of Witten's and B-algebras of the field string theory in finite dimensional space of the ghost states are suggested for the case of Virasoro algebra truncated to its SU(1,1) subalgebra. In this case all algebraic operations of Witten's and B-algebras are realized in explicit form as some matrix operations in the graded complex vector space. The structure of string action coincides with the universal non-linear cubic matrix form of action for the gauge field theories. These representations lead to matrix conditions of theory invariance which can be used for finding of the explicit form of corresponding operators of the string algebras. (author)
Özen, Kahraman Esen; Tosun, Murat
2018-01-01
In this study, we define the elliptic biquaternions and construct the algebra of elliptic biquaternions over the elliptic number field. Also we give basic properties of elliptic biquaternions. An elliptic biquaternion is in the form A0 + A1i + A2j + A3k which is a linear combination of {1, i, j, k} where the four components A0, A1, A2 and A3 are elliptic numbers. Here, 1, i, j, k are the quaternion basis of the elliptic biquaternion algebra and satisfy the same multiplication rules which are satisfied in both real quaternion algebra and complex quaternion algebra. In addition, we discuss the terms; conjugate, inner product, semi-norm, modulus and inverse for elliptic biquaternions.
Algebraic Semantics for Narrative
Kahn, E.
1974-01-01
This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)
Bochvar-McCarthy logic and process algebra
Bergstra, J.A.; Ponse, A.
1998-01-01
We propose a combination of Bochvar's strict three-valued logic, McCarthy's sequential three-valued logic, and process algebra via the conditional guard construct. This combination entails the introduction of a new constant meaningless in process algebra. We present an operational semantics
Introduction to Matrix Algebra, Student's Text, Unit 23.
Allen, Frank B.; And Others
Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…
Limit algebras of differential forms in non-commutative geometry
Indian Academy of Sciences (India)
The holomorphic functional calculus closure of Connes' non- commutative de Rham algebra. ∗. D. (p. 549 of [C]) leads to a couple of operator algebras which are briefly discussed in this section. In §5, which contains the main contributions of the paper, quantized integrals are constructed on ∞A by using Dixmier trace ...
Commutator identities on associative algebras and integrability of nonlinear pde's
Pogrebkov, A. K.
2007-01-01
It is shown that commutator identities on associative algebras generate solutions of linearized integrable equations. Next, a special kind of the dressing procedure is suggested that in a special class of integral operators enables to associate to such commutator identity both nonlinear equation and its Lax pair. Thus problem of construction of new integrable pde's reduces to construction of commutator identities on associative algebras.
Deficiently extremal Gorenstein algebras
Indian Academy of Sciences (India)
Thus, R/I is a Cohen–. Macaulay algebra of Type 1, and hence R/I is Gorenstein. In view of Theorem 2.1, R/I is a nearly (or 1-deficient) extremal Gorenstein algebra. We now shall describe a result of Bruns and Hibi [1] which characterizes the Stanley–. Reisner rings having 2-pure but not 2-linear resolutions. Theorem 2.3.
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
Currents on Grassmann algebras
International Nuclear Information System (INIS)
Coquereaux, R.; Ragoucy, E.
1993-09-01
Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Supersymmetric extension of the Snyder algebra
Energy Technology Data Exchange (ETDEWEB)
Gouba, L., E-mail: lgouba@ictp.it [Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy); Stern, A., E-mail: astern@bama.ua.edu [Dept. of Physics and Astronomy, Univ. of Alabama, Tuscaloosa, Al 35487 (United States)
2012-04-11
We obtain a minimal supersymmetric extension of the Snyder algebra and study its representations. The construction differs from the general approach given in Hatsuda and Siegel ( (arXiv:hep-th/0311002)) and does not utilize super-de Sitter groups. The spectra of the position operators are discrete, implying a lattice description of space, and the lattice is compatible with supersymmetry transformations. -- Highlights: Black-Right-Pointing-Pointer A new supersymmetric extension of the Snyder algebra is constructed. Black-Right-Pointing-Pointer The extension is minimal and the construction does not involve supersymmetric de Sitter algebras. Black-Right-Pointing-Pointer An involution is defined for the system and discrete representations are constructed. Black-Right-Pointing-Pointer The representations imply a spatial lattice and the lattice spacing is half that of the bosonic case. Black-Right-Pointing-Pointer A differential operator representation is given for fields on super-momentum space.
The 'golden' algebraic equations
International Nuclear Information System (INIS)
Stakhov, A.; Rozin, B.
2006-01-01
The special case of the (p + 1)th degree algebraic equations of the kind x p+1 = x p + 1 (p = 1, 2, 3, ?) is researched in the present article. For the case p = 1, the given equation is reduced to the well-known Golden Proportion equation x 2 = x + 1. These equations are called the golden algebraic equations because the golden p-proportions τ p , special irrational numbers that follow from Pascal's triangle, are their roots. A research on the general properties of the roots of the golden algebraic equations is carried out in this article. In particular, formulas are derived for the golden algebraic equations that have degree greater than p + 1. There is reason to suppose that algebraic equations derived by the authors in the present article will interest theoretical physicists. For example, these algebraic equations could be found in the research of the energy relationships within the structures of many compounds and physical particles. For the case of butadiene (C 4 H 6 ), this fact is proved by the famous physicist Richard Feynman
The Boolean algebra of Galois algebras
Directory of Open Access Journals (Sweden)
Lianyong Xue
2003-02-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={bÃ¢ÂˆÂˆB|bx=g(xbÃ¢Â€Â‰for allÃ¢Â€Â‰xÃ¢ÂˆÂˆB} for each gÃ¢ÂˆÂˆG, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|gÃ¢ÂˆÂˆG}, e a nonzero element in Ba, and He={gÃ¢ÂˆÂˆG|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.
Real division algebras and other algebras motivated by physics
Energy Technology Data Exchange (ETDEWEB)
Benkart, G.; Osborn, J.M.
1981-02-01
In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations.
A process algebra model of QED
International Nuclear Information System (INIS)
Sulis, William
2016-01-01
The process algebra approach to quantum mechanics posits a finite, discrete, determinate ontology of primitive events which are generated by processes (in the sense of Whitehead). In this ontology, primitive events serve as elements of an emergent space-time and of emergent fundamental particles and fields. Each process generates a set of primitive elements, using only local information, causally propagated as a discrete wave, forming a causal space termed a causal tapestry. Each causal tapestry forms a discrete and finite sampling of an emergent causal manifold (space-time) M and emergent wave function. Interactions between processes are described by a process algebra which possesses 8 commutative operations (sums and products) together with a non-commutative concatenation operator (transitions). The process algebra possesses a representation via nondeterministic combinatorial games. The process algebra connects to quantum mechanics through the set valued process and configuration space covering maps, which associate each causal tapestry with sets of wave functions over M. Probabilities emerge from interactions between processes. The process algebra model has been shown to reproduce many features of the theory of non-relativistic scalar particles to a high degree of accuracy, without paradox or divergences. This paper extends the approach to a semi-classical form of quantum electrodynamics. (paper)
q-deformation of ''W3'', Virasoro and U(1)-Kac-Moody algebras
International Nuclear Information System (INIS)
El Hassouni, A.; Tahri, E.H.; Zakkari, M.
1995-07-01
A deformation of the algebra of infinite matrices gl(∞, C) is given. We show that this operation leads to the realization of a deformed ''W 3 '' like algebra. The central extension of the q-U(1) Kac-Moody and the q-Virasoro algebra is performed. (author). 10 refs
Smooth Frechet subalgebras of C∗-algebras defined by first order ...
Indian Academy of Sciences (India)
A large number of examples of such Frechet algebras are exhibited; and the smooth structure defined by an unbounded self-adjoint Hilbert space operator is discussed. Keywords. Smooth subalgebra of a C∗-algebra; spectral invariance; closure under functional calculus; Arens–Michael decomposition of a Frechet algebra; ...
Hecke algebras with unequal parameters
Lusztig, G
2003-01-01
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...
Algebra II workbook for dummies
Sterling, Mary Jane
2014-01-01
To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr
How to be Brilliant at Algebra
Webber, Beryl
2010-01-01
How to be Brilliant at Algebra is contains 40 photocopiable worksheets designed to improve students' understanding of number relationships and patterns. They will learn about: odds and evens; patterns; inverse operations; variables; calendars; equations; pyramid numbers; digital root patterns; prime numbers; Fibonacci numbers; Pascal's triangle.
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
Quasi-algebras and general Weyl quantization
International Nuclear Information System (INIS)
Lassner, G.A.; Lassner, G.
1984-01-01
In this paper we show how the systematic use of the topological properties of the quasi-sup(*)-algebra L(S,S') leads to a systematization of the quantization procedure. With that as background, the multiplication of certain classes of pairs of operators of L(S,S') and the corresponding twisted product of their sybmols are defined. (orig./HSI)
Algebraic characterization of the Witten vertex
International Nuclear Information System (INIS)
Embacher, F.
1989-01-01
The Witten vertex of open bosonic string field theory is characterized by a set of algebraic properties written down in the Fock-space operator formalism. The typical 3-string overlap structure as well as the correct ghost midpoint insertion are not required from the outset but arise as consequences. 20 refs. (Author)
Hamiltonian structure of linearly extended Virasoro algebra
International Nuclear Information System (INIS)
Arakelyan, T.A.; Savvidi, G.K.
1991-01-01
The Hamiltonian structure of linearly extended Virasoro algebra which admits free bosonic field representation is described. An example of a non-trivial extension is found. The hierarchy of integrable non-linear equations corresponding to this Hamiltonian structure is constructed. This hierarchy admits the Lax representation by matrix Lax operator of second order
Algebraic special functions and SO(3,2)
International Nuclear Information System (INIS)
Celeghini, E.; Olmo, M.A. del
2013-01-01
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L 2 functions defined on (−1,1)×Z and on the sphere S 2 , respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining in this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L 2 functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L 2 functions
Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra
Pitsch, Wolfgang; Zarzuela, Santiago
2016-01-01
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...
Quantum cluster algebra structures on quantum nilpotent algebras
Goodearl, K R
2017-01-01
All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.
Schematic limits of rank 4 Azumaya bundles are the locally-Witt algebras
International Nuclear Information System (INIS)
Venkata Balaji, T.E.
2002-07-01
It is shown that the schematic image of the scheme of Azumaya algebra structures on a vector bundle of rank 4 over any base scheme is separated, of finite type, smooth of relative dimension 13 and geometrically irreducible over that base and that this construction base-changes well. This generalises the main theorem of Part I of an earlier work and clarifies it by showing that the algebraic operation of forming the even Clifford algebra (=Witt algebra) of a rank 3 quadratic module essentially translates to performing the geometric operation of taking the schematic image of the scheme of Azumaya algebra structures. (author)
Identities and derivations for Jacobian algebras
International Nuclear Information System (INIS)
Dzhumadil'daev, A.S.
2001-09-01
Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)
Deo, Satya
2018-01-01
This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
Jarvis, Frazer
2014-01-01
The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Bloch, Spencer J
2000-01-01
This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.
Wadsworth, A R
2017-01-01
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.
Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf
1992-01-01
The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
Atomistic and orthoatomistic effect algebras
Tkadlec, Josef
2008-05-01
We characterize atomistic effect algebras, prove that a weakly orthocomplete Archimedean atomic effect algebra is orthoatomistic and present an example of an orthoatomistic orthomodular poset that is not weakly orthocomplete.
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Contractions of quantum algebraic structures
International Nuclear Information System (INIS)
Doikou, A.; Sfetsos, K.
2010-01-01
A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
Principles of algebraic geometry
Griffiths, Phillip A
1994-01-01
A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top
Artin, Emil
2007-01-01
The present text was first published in 1947 by the Courant Institute of Mathematical Sciences of New York University. Published under the title Modern Higher Algebra. Galois Theory, it was based on lectures by Emil Artin and written by Albert A. Blank. This volume became one of the most popular in the series of lecture notes published by Courant. Many instructors used the book as a textbook, and it was popular among students as a supplementary text as well as a primary textbook. Because of its popularity, Courant has republished the volume under the new title Algebra with Galois Theory.
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2010-01-01
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Pseudo Algebraically Closed Extensions
Bary-Soroker, Lior
2009-07-01
This PhD deals with the notion of pseudo algebraically closed (PAC) extensions of fields. It develops a group-theoretic machinery, based on a generalization of embedding problems, to study these extensions. Perhaps the main result is that although there are many PAC extensions, the Galois closure of a proper PAC extension is separably closed. The dissertation also contains the following subjects. The group theoretical counterpart of pseudo algebraically closed extensions, the so-called projective pairs. Applications to seemingly unrelated subjects, e.g., an analog of Dirichlet's theorem about primes in arithmetic progression for polynomial rings in one variable over infinite fields.
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Algebraic curves and cryptography
Murty, V Kumar
2010-01-01
It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on
Partially ordered algebraic systems
Fuchs, Laszlo
2011-01-01
Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
Polynomial deformations of oscillator algebras in quantum theories with internal symmetries
International Nuclear Information System (INIS)
Karassiov, V.P.
1992-01-01
This paper reports that for last years some new Lie-algebraic structures (quantum groups or algebras, W-algebras, Casimir algebras) have been introduced in different areas of modern physics. All these objects are non-linear generalizations (deformations) of usual (linear) Lie algebras which are generated by a set B = {T a } of their generators T a satisfying a commutation relations (CR) of the form [T a , T b ] = f ab ({T c }) where f ab (...) are some functions of the generators T c given by power series. From the mathematical viewpoint such objects called as nonlinear or deformed Lie algebras G d may be treated as universal algebras or algebraic systems G d = left-angle B; +, · , [,] right-angle generated by a basic set B and the usual operations of the addition (+) and the multiplication (·) together with the Lie product ([T a , T b ] = T a T b - T b T a )
The core of C*-algebras associated with circle maps
DEFF Research Database (Denmark)
Johannesen, Benjamin Randeris
2017-01-01
The relationship between dynamical systems and operator algebras is one that has been fruitful and mutually beneficial and is by now both well-established, -aged and -matured. This thesis contribute in developing the relationship between dynamical systems, groupoids and operator algebra for circle...... dynamics. Another aspect of this thesis are the results solely about dynamics on the unit circle. The reader is supposed to be well versed in C*-algebras and K-theory (and classification). The reader is not assumed to be familiar with dynamical system theory nor with groupoids....
Introduction to operator space theory
Pisier, Gilles
2003-01-01
An introduction to the theory of operator spaces, emphasising examples that illustrate the theory and applications to C*-algebras, and applications to non self-adjoint operator algebras, and similarity problems. Postgraduate and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find the book has much to offer.
Homomorphisms between C∗ -algebra extensions
Indian Academy of Sciences (India)
C∗. -algebra extensions, Ext groups do not classify extension algebras. So one has to study the isomorphism equivalence of extensions. In fact, a homomorphism between two extension algebras may not map the essential ideal into the other in general, so we have to consider properties of extension homomorphisms.
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Process Algebra and Markov Chains
Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
International Nuclear Information System (INIS)
Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.
2008-01-01
A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
On W1+∞ 3-algebra and integrable system
Directory of Open Access Journals (Sweden)
Min-Ru Chen
2015-02-01
Full Text Available We construct the W1+∞ 3-algebra and investigate its connection with the integrable systems. Since the W1+∞ 3-algebra with a fixed generator W00 in the operator Nambu 3-bracket recovers the W1+∞ algebra, it is intrinsically related to the KP hierarchy. For the general case of the W1+∞ 3-algebra, we directly derive the KP and KdV equations from the Nambu–Poisson evolution equation with the different Hamiltonian pairs of the KP hierarchy. Due to the Nambu–Poisson evolution equation involves two Hamiltonians, the deep relationship between the Hamiltonian pairs of KP hierarchy is revealed. Furthermore we give a realization of the W1+∞ 3-algebra in terms of a complex bosonic field. Based on the Nambu 3-brackets of the complex bosonic field, we derive the (generalized nonlinear Schrödinger equation and give an application in optical soliton.
c-fans and Newton polyhedra of algebraic varieties
International Nuclear Information System (INIS)
Kazarnovskii, B Ya
2003-01-01
To every algebraic subvariety of a complex torus there corresponds a Euclidean geometric object called a c-fan. This correspondence determines an intersection theory for algebraic varieties. c-fans form a graded commutative algebra with visually defined operations. The c-fans of algebraic varieties lie in the subring of rational c-fans. It seems that other subrings may be used to construct an intersection theory for other categories of analytic varieties. We discover a relation between an old problem in the theory of convex bodies (the so-called Minkowski problem) and the ring of c-fans. This enables us to define a correspondence that sends any algebraic curve to a convex polyhedron in the space of characters of the torus
Riemann surfaces, Clifford algebras and infinite dimensional groups
International Nuclear Information System (INIS)
Carey, A.L.; Eastwood, M.G.; Hannabuss, K.C.
1990-01-01
We introduce of class of Riemann surfaces which possess a fixed point free involution and line bundles over these surfaces with which we can associate an infinite dimensional Clifford algebra. Acting by automorphisms of this algebra is a 'gauge' group of meromorphic functions on the Riemann surface. There is a natural Fock representation of the Clifford algebra and an associated projective representation of this group of meromorphic functions in close analogy with the construction of the basic representation of Kac-Moody algebras via a Fock representation of the Fermion algebra. In the genus one case we find a form of vertex operator construction which allows us to prove a version of the Boson-Fermion correspondence. These results are motivated by the analysis of soliton solutions of the Landau-Lifshitz equation and are rather distinct from recent developments in quantum field theory on Riemann surfaces. (orig.)
Contractions on ranks and quaternion types in Clifford algebras
Directory of Open Access Journals (Sweden)
Dmitry S. Shirokov
2015-03-01
Full Text Available In this paper we consider expressions in real and complex Clifford algebras, which we call contractions or averaging. We consider contractions of arbitrary Clifford algebra element. Each contraction is a sum of several summands with different basis elements of Clifford algebra. We consider even and odd contractions, contractions on ranks and contractions on quaternion types. We present relation between these contractions and projection operations onto fixed subspaces of Clifford algebras - even and odd subspaces, subspaces of fixed ranks and subspaces of fixed quaternion types. Using method of contractions we present solutions of system of commutator equations in Clifford algebras. The cases of commutator and anticommutator are the most important. These results can be used in the study of different field theory equations, for example, Yang-Mills equations, primitive field equation and others.
Matrix algebra theory, computations and applications in statistics
Gentle, James E
2017-01-01
This textbook for graduate and advanced undergraduate students presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and the second edition of this very popular textbook provides essential updates and comprehensive coverage on critical topics in mathematics in data science and in statistical theory. Part I offers a self-contained description of relevant aspects of the theory of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices in solutions of linear systems and in eigenanalysis. Part II considers various types of matrices encountered in statistics, such as...
Integrable systems in the realm of algebraic geometry
Vanhaecke, Pol
2001-01-01
This book treats the general theory of Poisson structures and integrable systems on affine varieties in a systematic way. Special attention is drawn to algebraic completely integrable systems. Several integrable systems are constructed and studied in detail and a few applications of integrable systems to algebraic geometry are worked out. In the second edition some of the concepts in Poisson geometry are clarified by introducting Poisson cohomology; the Mumford systems are constructed from the algebra of pseudo-differential operators, which clarifies their origin; a new explanation of the multi Hamiltonian structure of the Mumford systems is given by using the loop algebra of sl(2); and finally Goedesic flow on SO(4) is added to illustrate the linearizatin algorith and to give another application of integrable systems to algebraic geometry.
Algebraic generalization of quantum statistics
International Nuclear Information System (INIS)
Stoilova, N I; Van der Jeugt, J
2008-01-01
Generalized quantum statistics such as para-Bose and para-Fermi statistics are related to the basic classical Lie superalgebras B(0|n) and B n . We give a quite general definition of 'a generalized quantum statistics associated to a Lie superalgebra G'. This definition is closely related to a certain Z-grading of G. The generalized quantum statistics is determined by a set of root vectors (the creation and annihilation operators of the statistics) and the set of algebraic relations for these operators. Then we give a complete classification of all generalized quantum statistics associated to the Lie superalgebras A n , B n , C n , D n , G 2 , F 4 , E 6 , E 7 , E 8 , A(m|n), B(m|n), C(n), D(m|n), G(3), F(4) and D(2; 1; α).
Commutative algebra with a view toward algebraic geometry
Eisenbud, David
1995-01-01
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...
Quantitative Algebraic Reasoning
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon
2016-01-01
We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We deﬁne an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...
Fan, Yun; Zheng, Y L
2000-01-01
This volume is based on the lectures given by the authors at Wuhan University and Hubei University in courses on abstract algebra. It presents the fundamental concepts and basic properties of groups, rings, modules and fields, including the interplay between them and other mathematical branches and applied aspects.
Indian Academy of Sciences (India)
from India, I will describe mainly some work in four topics with which I am familiar: Moduli problem of vector bundles (and the related geometric invariant theory), the work of. CPRamanujam, Frobenius split varieties and algebraic .... One important series of works, by Seshadri in collaboration with V Lakshmibai, C Musili, and.
Indian Academy of Sciences (India)
To the Indian reader, the word discourse, evokes a respected figure interpreting divine wisdom to common folk in an accessible fash- ion. I dug a bit deeper with Google trans- late, and found that the original Russian ti- tle of Shafarevich's book was more like Se- lected Chapters of Algebra and that it was first published in a ...
Bergstra, J.A.; Middelburg, C.A.
2015-01-01
We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution
Gudder, Stan
2004-08-01
We define a special type of additive map J on an effect algebra E called a compression. We call J(1) the focus of J and if p is the focus of a compression then p is called a projection. The set of projections in E is denoted by P(E). A compression J is direct if J( a) ≤ a for all a ɛ E. We show that direct compressions are equivalent to projections onto components of cartesian products. An effect algebra E is said to be compressible if every compression on E is uniquely determined by its focus and every compression on E has a supplement. We define and characterize the commutant C(p) of a projection p and show that a compression with focus p is direct if and only if C(p) = E. We show that P(E) is an orthomodular poset. It is proved that the cartesian product of effect algebras is compressible if and only if each component is compressible. We then consider compressible sequential effect algebras, Lüders maps and conditional probabilities.
Thinking Visually about Algebra
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
Algebraic Thinking through Origami.
Higginson, William; Colgan, Lynda
2001-01-01
Describes the use of paper folding to create a rich environment for discussing algebraic concepts. Explores the effect that changing the dimensions of two-dimensional objects has on the volume of related three-dimensional objects. (Contains 13 references.) (YDS)
Advanced modern algebra part 2
Rotman, Joseph J
2017-01-01
This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.
Invariant differential operators
Dobrev, Vladimir K
2016-01-01
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory.
Free Malcev algebra of rank three
Kornev, Alexandr
2011-01-01
We find a basis of the free Malcev algebra on three free generators over a field of characteristic zero. The specialty and semiprimity of this algebra are proved. In addition, we prove the decomposability of this algebra into subdirect sum of the free Lie algebra rank three and the free algebra of rank three of variety of Malcev algebras generated by a simple seven-dimensional Malcev algebra.
Supersymmetric construction of exactly solvable potentials and nonlinear algebras
International Nuclear Information System (INIS)
Junker, G.; Roy, P.
1998-01-01
Using algebraic tools of supersymmetric quantum mechanics we construct classes of conditionally exactly solvable potentials being the supersymmetric partners of the linear or radial harmonic oscillator. With the help of the raising and lowering operators of these harmonic oscillators and the SUSY operators we construct ladder operators for these new conditionally solvable systems. It is found that these ladder operators together with the Hamilton operator form a nonlinear algebra which is of quadratic and cubic type for the SUSY partners of the linear and radial harmonic oscillator
Quantum mechanics in coherent algebras on phase space
International Nuclear Information System (INIS)
Lesche, B.; Seligman, T.H.
1986-01-01
Quantum mechanics is formulated on a quantum mechanical phase space. The algebra of observables and states is represented by an algebra of functions on phase space that fulfills a certain coherence condition, expressing the quantum mechanical superposition principle. The trace operation is an integration over phase space. In the case where the canonical variables independently run from -infinity to +infinity the formalism reduces to the representation of quantum mechanics by Wigner distributions. However, the notion of coherent algebras allows to apply the formalism to spaces for which the Wigner mapping is not known. Quantum mechanics of a particle in a plane in polar coordinates is discussed as an example. (author)
Galilean Duffin-Kemmer-Petiau algebra and symplectic structure
Fernandes, M C B; Vianna, J D M
2003-01-01
We develop the Duffin-Kemmer-Petiau (DKP) approach in the phase-space picture of quantum mechanics by considering DKP algebras in a Galilean covariant context. Specifically, we develop an algebraic calculus based on a tensor algebra defined on a five-dimensional space which plays the role of spacetime background of the non-relativistic DKP equation. The Liouville operator is determined and the Liouville-von Neumann equation is written in two situations: the free particle and a particle in an external electromagnetic field. A comparison between the non-relativistic and the relativistic cases is commented.
Basic math and pre-algebra for dummies
Zegarelli, Mark
2014-01-01
Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methodsRelevant cultural vernacular and referencesStandard For Dummies materials that
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Jacobson-Witt algebras and Lie-admissible algebras
International Nuclear Information System (INIS)
Tomber, M.L.
1981-01-01
For any field PHI of characteristics p > 0 and integer m greater than or equal to 1, there is a Jacobson-Witt algebra which is a Lie algebra. In this paper, all flexible Lie-admissible algebras U, such that U - is a Jacobson-Witt algebra W/sub m/(p), are determined. For any W/sub m/(p), p > 2 there is exactly one such U and it is isomorphic to W/sub m/(p). There are two non-isomorphic algebras U such that U - is isomorphic to W 1 (2), and there are no algebras U with U - isomorphic to W/sub m/(2), m > 1
An algebraic approach to solving evolution problems in some nonlinear quantum models
International Nuclear Information System (INIS)
Karassiov, Valery P.; Klimov, Andrei B.
1994-01-01
A new general Lie-algebraic approach is proposed to solve evolution problems in some nonlinear models of quantum physics with polynomially deformed Lie algebras su pd (2) as their dynamic symmetry algebras. The method makes use of an expansion of the evolution operators by power series in the su pd (2) shift operators and a (recursive) reduction of finding coefficient functions to solve auxiliary exactly solvable su(2) problems with quadratic Hamiltonians. ((orig.))
An algebraic approach for solving evolution problems in some nonlinear quantum models
International Nuclear Information System (INIS)
Karassiov, Valery P.; Klimov, Andrei B.
1994-01-01
A new general Lie-algebraic approach is proposed for solving evolution tasks in some nonlinear problems of quantum physics with polynomially deformed Lie algebras su pd (2) as their dynamic symmetry algebras. The method makes use of an expansion of the evolution operators by power series in the su pd (2) shift operators and a (recursive) reduction finding coefficient functions for solving auxiliary exactly solvable su(2) problems with quadratic Hamiltonians. ((orig.))
Algebras of Information States
Czech Academy of Sciences Publication Activity Database
Punčochář, Vít
2017-01-01
Roč. 27, č. 5 (2017), s. 1643-1675 ISSN 0955-792X R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : information states * relational semantics * algebraic semantics * intuitionistic logic * inquisitive disjunction Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.909, year: 2016
Algebra, Arithmetic, and Geometry
Tschinkel, Yuri
2009-01-01
The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont
Indian Academy of Sciences (India)
project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
International Nuclear Information System (INIS)
Todorov, Ivan
2010-12-01
Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)
Algebra & trigonometry II essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Allen, Frank B.; And Others
This is the student text for part one of a three-part SMSG algebra course for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include congruence; numbers and variables; operations;…
Compactly Generated de Morgan Lattices, Basic Algebras and Effect Algebras
Paseka, Jan; Riečanová, Zdenka
2010-12-01
We prove that a de Morgan lattice is compactly generated if and only if its order topology is compatible with a uniformity on L generated by some separating function family on L. Moreover, if L is complete then L is (o)-topological. Further, if a basic algebra L (hence lattice with sectional antitone involutions) is compactly generated then L is atomic. Thus all non-atomic Boolean algebras as well as non-atomic lattice effect algebras (including non-atomic MV-algebras and orthomodular lattices) are not compactly generated.
Krňávek, Jan; Kühr, Jan
2011-12-01
Basic algebras are a generalization of MV-algebras, also including orthomodular lattices and lattice effect algebras. A pre-ideal of a basic algebra is a non-empty subset that is closed under the addition ⊕ and downwards closed with respect to the underlying order. In this paper, we study the pre-ideal lattices of algebras in a particular subclass of basic algebras which are closer to MV-algebras than basic algebras in general. We also prove that finite members of this subclass are exactly finite MV-algebras.
Assessing Algebraic Solving Ability: A Theoretical Framework
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Formalized Linear Algebra over Elementary Divisor Rings in Coq
Cano , Guillaume; Cohen , Cyril; Dénès , Maxime; Mörtberg , Anders; Siles , Vincent
2016-01-01
International audience; This paper presents a Coq formalization of linear algebra over elementary divisor rings, that is, rings where every matrix is equivalent to a matrix in Smith normal form. The main results are the formalization that these rings support essential operations of linear algebra, the classification theorem of finitely pre-sented modules over such rings and the uniqueness of the Smith normal form up to multiplication by units. We present formally verified algorithms comput-in...
On massless representations of the Q-deformed Poincare algebra
International Nuclear Information System (INIS)
Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.
1993-01-01
This talk is devoted to the construction of massless representations of the q-deformed Poincare algebra. In section 2 we give Hilbert space representations of the SL q (2, C)-covariant quantum space. We then show in the next section how the generators of the q-Poincare algebra can be expressed in terms of operators which live in the light cone. The q-deformed massless one-particle states are considered in section 4. (orig.)
Einstein algebras and general relativity
International Nuclear Information System (INIS)
Heller, M.
1992-01-01
A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs
Fusion rules of chiral algebras
International Nuclear Information System (INIS)
Gaberdiel, M.
1994-01-01
Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)
Categorical Algebra and its Applications
1988-01-01
Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.
Projective Connections and the Algebra of Densities
International Nuclear Information System (INIS)
George, Jacob
2008-01-01
Projective connections first appeared in Cartan's papers in the 1920's. Since then they have resurfaced periodically in, for example, integrable systems and perhaps most recently in the context of so called projectively equivariant quantisation. We recall the notion of projective connection and describe its relation with the algebra of densities on a manifold. In particular, we construct a Laplace-type operator on functions using a Thomas projective connection and a symmetric contravariant tensor of rank 2 ('upper metric').
Consistent algebra for the constraints of quantum gravity
International Nuclear Information System (INIS)
Christodoulakis, T.; Zanelli, J.
1984-09-01
Recently, a proposal was advanced for the ordering of the operators Hsub(μ)-circumflex that arise in Dirac's programme for the quantization of gravity. The resulting algebra, however, was found to contain an undesired anomalous operator. Here we present a minimal modification of the canonical commutation relations of gravity in order to ensure that covariance is maintained for non-commuting tensor operators. As a result of this modification, the algebra of the quantum operator constraints is found to close exactly as in the classical case. (author)
Linear algebra and probability for computer science applications
Davis, Ernest
2012-01-01
MATLABDesk calculator operations Booleans Nonstandard numbers Loops and conditionals Script file Functions Variable scope and parameter passingI: Linear Algebra Vectors Definition of vectors Applications of vectorsBasic operations on vectorsDot productVectors in MATLAB: Basic operationsPlotting vectors in MATLABVectors in other programming languagesMatrices Definition of matrices Applications of matrices Simple operations on matrices Multiplying a matrix times a vector Linear transformation Systems of linear equations Matrix multiplication Vectors as matrices Algebraic properties of matrix mul
"Lost chains" in algebraic models
Fortunato, L.; de Graaf, W. A.
2011-03-01
The algebraic structure of some of the simplest algebraic models u(2), u(3) and u(4), widely used in several branches of physics either as toy models or as working instruments, are reanalyzed under a new perspective that releases the requirement that chains should terminate or pass through the angular momentum algebra. Unitary algebras are non-semisimple, therefore we first apply the Levi-Malcev decomposition. Then we use the theory of weighted Dynkin diagrams to identify conjugacy classes of A1 ~ su(2) ~ so(3) subalgebras: a complete classification of new angular momentum non conserving (AMNC) dynamical symmetries follows that we substantiate with examples.
Applications of Computer Algebra Conference
Martínez-Moro, Edgar
2017-01-01
The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.
Introduction to algebraic independence theory
Philippon, Patrice
2001-01-01
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
Computational aspects of algebraic curves
Shaska, Tanush
2005-01-01
The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove
A Verified Algebra for Linked Data
Directory of Open Access Journals (Sweden)
Ross Horne
2011-07-01
Full Text Available A foundation is investigated for the application of loosely structured data on the Web. This area is often referred to as Linked Data, due to the use of URIs in data to establish links. This work focuses on emerging W3C standards which specify query languages for Linked Data. The approach is to provide an abstract syntax to capture Linked Data structures and queries, which are then internalised in a process calculus. An operational semantics for the calculus specifies how queries, data and processes interact. A labelled transition system is shown to be sound with respect to the operational semantics. Bisimulation over the labelled transition system is used to verify an algebra over queries. The derived algebra is a contribution to the application domain. For instance, the algebra may be used to rewrite a query to optimise its distribution across a cluster of servers. The framework used to provide the operational semantics is powerful enough to model related calculi for the Web.
Basic linear algebra subprograms for FORTRAN usage
Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.
1977-01-01
A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.
Usman, Ahmed Ibrahim
2015-01-01
Knowledge and understanding of mathematical operations serves as a pre-reequisite for the successful translation of algebraic word problems. This study explored pre-service teachers' ability to recognize mathematical operations as well as use of those capabilities in constructing algebraic expressions, equations, and their solutions. The outcome…
Extended KN algebras and extended conformal field theories over higher genus Riemann surfaces
International Nuclear Information System (INIS)
Ceresole, A.; Huang Chaoshang
1990-01-01
A global operator formalism for extended conformal field theories over higher genus Riemann surfaces is introduced and extended KN algebra are obtained by means of the KN bases. The BBSS construction of the spin-3 operator is carried out for Kac-Moody algebra A 2 over a Riemann surface of arbitrary genus. (orig.)
The planar algebra of a semisimple and cosemisimple Hopf algebra
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
[TngGlk] Etingof Pavel and Gelaki Shlomo, On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic. Int. Math. Res. Notices,. 16 (1998) 851–864. [DasKdy] Das Paramita and Vijay Kodiyalam, Planar algebras and the Ocneanu–. Szymanski theorem, Proc. AMS, 133 (2005) 2751–2759.
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
Put, Marius van der
1999-01-01
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.
Dynamical entropy of C* algebras and Von Neumann algebras
International Nuclear Information System (INIS)
Connes, A.; Narnhofer, H.; Thirring, W.
1986-01-01
The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry and ge...
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Algebraic topology and concurrency
DEFF Research Database (Denmark)
Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric
2006-01-01
We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...
Hazewinkel, M
2008-01-01
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i
New examples of continuum graded Lie algebras
International Nuclear Information System (INIS)
Savel'ev, M.V.
1989-01-01
Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs
Fractional supersymmetry and infinite dimensional lie algebras
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
2001-01-01
In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed
Parsing with Regular Expressions & Extensions to Kleene Algebra
DEFF Research Database (Denmark)
Grathwohl, Niels Bjørn Bugge
to do so. To be optimal, the algorithm performs a PSPACE-complete preprocessing step; for a fixed RE the running time is linear in the input size. Finally, we present and implement a determinization procedure, omitting the preprocessing step, and a surface language, Kleenex, for expressing general...... string transductions. We have implemented a compiler that translates Kleenex programs into efficient C code. The resulting programs are essentially optimally streaming, run in worst-case linear time in the input size, and show consistent high performance in the 1 Gbps range on various use cases....... In the second part of this thesis, we study two extensions to Kleene algebra. Chomsky algebra is an algebra with a structure similar to Kleene algebra, but with a generalized mu-operator for recursion instead of the Kleene star. We show that the axioms of idempotent semirings along with continuity of the mu...
Graded associative conformal algebras of finite type
Kolesnikov, Pavel
2011-01-01
In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...
Galois Connections for Flow Algebras
DEFF Research Database (Denmark)
Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis
2011-01-01
to the approach taken by Monotone Frameworks and other classical analyses. We present a generic framework for static analysis based on flow algebras and program graphs. Program graphs are often used in Model Checking to model concurrent and distributed systems. The framework allows to induce new flow algebras...
Ultraproducts of von Neumann algebras
DEFF Research Database (Denmark)
Ando, Hiroshi; Haagerup, Uffe
2014-01-01
We study several notions of ultraproducts of von Neumann algebras from a unified viewpoint. In particular, we show that for a sigma-finite von Neumann algebra M , the ultraproduct MωMω introduced by Ocneanu is a corner of the ultraproduct ∏ωM∏ωM introduced by Groh and Raynaud. Using...
Orthogonal symmetries and Clifford algebras
Indian Academy of Sciences (India)
a universal property of the even Clifford algebra in §3. ..... symmetry if σ2 = id. In the literature, such maps are sometimes also called “orthogonal involutions” (cf. Ch. III, §5 of [4]). We have, however, preferred to use the former ...... [7] Helmstetter J and Micali A, Quadratic mappings and Clifford algebras (Basel: Birkhäuser.
Six Lectures on Commutative Algebra
Elias, J; Miro-Roig, Rosa Maria; Zarzuela, Santiago
2009-01-01
Interest in commutative algebra has surged over the years. In order to survey and highlight the developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. This title offers a synthesis of the lectures presented at the Summer School
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
1995-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and
Linear Algebra and Image Processing
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
Ahadpanah, A.; Borumand Saeid, A.
2011-01-01
In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.
The Algebra of Complex Numbers.
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Modular specifications in process algebra
R.J. van Glabbeek (Rob); F.W. Vaandrager (Frits)
1987-01-01
textabstractIn recent years a wide variety of process algebras has been proposed in the literature. Often these process algebras are closely related: they can be viewed as homomorphic images, submodels or restrictions of each other. The aim of this paper is to show how the semantical reality,
Linear Algebra and Linear Models
Indian Academy of Sciences (India)
Linear Algebra and Linear. Models. Kalyan Das. Linear Algebra and linear Models. (2nd Edn) by R P Bapat. Hindustan Book Agency, 1999 pp.xiii+180, Price: Rs.135/-. This monograph provides an introduction to the basic aspects of the theory oflinear estima- tion and that of testing linear hypotheses. The primary objective ...
Quantum Observables and Effect Algebras
Dvurečenskij, Anatolij
2017-11-01
We study observables on monotone σ-complete effect algebras. We find conditions when a spectral resolution implies existence of the corresponding observable. We characterize sharp observables of a monotone σ-complete homogeneous effect algebra using its orthoalgebraic skeleton. In addition, we study compatibility in orthoalgebras and we show that every orthoalgebra satisfying RIP is an orthomodular poset.
Algebraic study of chiral anomalies
Indian Academy of Sciences (India)
2012-06-14
Jun 14, 2012 ... Abstract. The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles ... Editor's Note: †Reproduced with kind permission from Springer Science+Business Media: Algebraic study of chiral anoma- ..... We shall see in the sequel several examples in which this ambiguity helps.
Practical algebraic renormalization
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias
2001-01-01
A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ
Waterloo Workshop on Computer Algebra
Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday
2018-01-01
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.
Elements of algebraic coding systems
Cardoso da Rocha, Jr, Valdemar
2014-01-01
Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...
Representations of affine Hecke algebras
Xi, Nanhua
1994-01-01
Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest
Solution of systems of linear algebraic equations by the method of summation of divergent series
International Nuclear Information System (INIS)
Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.
2015-01-01
A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru
Representation of states on effect-tribes and effect algebras by integrals
Dvurečenskij, Anatolij
2011-02-01
We describe σ-additive states on effect-tribes by integrals. Effect-tribes are monotone σ-complete effect algebras of functions where operations are defined pointwise. Then we show that every state on an effect algebra is an integral through a Borel regular probability measure. Finally, we show that every σ-convex combination of extremal states on a monotone σ-complete effect algebra is a Jauch-Piron state.
Properties of an associative algebra of tensor fields. Duality and Dirac identities
International Nuclear Information System (INIS)
Salingaros, N.; Dresden, M.
1979-01-01
An algebra of forms in Minkowski space has been constructed. A multiplication between forms is defined as an extension of the quaternionic multiplications. The algebra obtained is associative with respect to this multiplication of order 16. Duality is expressed as (new) multiplication by a basis element. Vector identities in the algebra lead to a number of new trace identities. A new derivative operator expresses the four Maxwell equations in an especially transparent form
(Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras
Directory of Open Access Journals (Sweden)
Dusko Pavlovic
2017-01-01
Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.
Universal enveloping Lie Rota-Baxter algebra of preLie and post-Lie algebras
Gubarev, Vsevolod
2017-01-01
Universal enveloping Lie Rota-Baxter algebras of pre-Lie and post-Lie algebras are constructed. It is proved that the pairs of varieties (Lie Rota-Baxter algebras of zero weight,preLie algebras) and (Lie Rota-Baxter algebras of nonzero weight,post-Lie algebras) are PBW-pairs and the variety of Lie Rota-Baxter algebras is not Schreier.
Singular vectors for the WN algebras
Ridout, David; Siu, Steve; Wood, Simon
2018-03-01
In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.
Alexander, John W., Jr.; Rosenberg, Nancy S.
This document consists of two modules. The first of these views applications of algebra and elementary calculus to curve fitting. The user is provided with information on how to: 1) construct scatter diagrams; 2) choose an appropriate function to fit specific data; 3) understand the underlying theory of least squares; 4) use a computer program to…
Universal operations in Hochschild homology
DEFF Research Database (Denmark)
Wahl, Nathalie
2016-01-01
We provide a general method for finding all natural operations on the Hochschild complex of E-algebras, where E is any algebraic structure encoded in a PROP with multiplication, as for example the PROP of Frobenius, commutative or A_infty-algebras. We show that the chain complex of all such natur...
Lie algebra in quantum physics by means of computer algebra
Kikuchi, Ichio; Kikuchi, Akihito
2017-01-01
This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...
Head First Algebra A Learner's Guide to Algebra I
Pilone, Tracey
2008-01-01
Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
W-algebra for solving problems with fuzzy parameters
Shevlyakov, A. O.; Matveev, M. G.
2018-03-01
A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.
Current algebra for parafields
International Nuclear Information System (INIS)
Palev, Ch.D.
1976-01-01
Within the framework of the Lagrangean QFT a generalization of canonical commutation and anticommutation relations in terms of three-linear commutation relations, corresponding to the parastatistics, s discussed. A detailed derivation of these three-linear relations for a set of parafermi fields is presented. Then for a Lagrangean, depending of a family of parabose fields and a family of paraferm fields, is shown that the fundamental hypothesis of current algebra is valid. In other words, the currents corresponding to the linear gauge transformations are found to meet the commutation relation: [Jsub(f)sup(0)(x), Jsub(g)sup(0)]sub(x 0 =y 0 ) = -idelta(x vector - y vector)Jsub([f,g])sup(0) (x), where Jsub(f)sup(0) is a time component of the current, corresponding to transformation f. (S.P.)
Meijer, Alko R
2016-01-01
This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...
Hestenes, David
2015-01-01
This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...
Energy Technology Data Exchange (ETDEWEB)
2017-08-01
AMG is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the BoomerAMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL and is very similar to the AMG2013 benchmark with additional optimizations. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem with a 27-point stencil, which can be scaled up and is designed to solve a very large problem. A second problem simulates a time dependent problem, in which successively various smnllcr systems are solved.
Applications of computer algebra
1985-01-01
Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa tion and obtains a closed for...
Vertex algebras and mirror symmetry
International Nuclear Information System (INIS)
Borisov, L.A.
2001-01-01
Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)
Algebras and manifolds: Differential, difference, simplicial and quantum
International Nuclear Information System (INIS)
Finkelstein, D.; Rodriguez, E.
1986-01-01
Generalized manifolds and Clifford algebras depict the world at levels of resolution ranging from the classical macroscopic to the quantum microscopic. The coarsest picture is a differential manifold and algebra (dm), direct integral of familiar local Clifford algebras of spin operators in curved time-space. Next is a finite difference manifold (Δm) of Regge calculus. This is a subalgebra of the third, a Minkowskian simplicial manifold (Σm). The most detailed description is the quantum manifold (Qm), whose algebra is the free Clifford algebra S of quantum set theory. We surmise that each Σm is a classical 'condensation' of a Qm. Quantum simplices have both integer and half-integer spins in their spectrum. A quantum set theory of nature requires a series of reductions leading from the Qm and a world descriptor W up through the intermediate Σm and Δm to a dm and an action principle. What may be a new algebraic language for topology, classical or quantum, is a by-product of the work. (orig.)
Topological Ã-algebras with CÃ-enveloping algebras II
Indian Academy of Sciences (India)
subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If G = R , if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ...
Coxeter groups and Hopf algebras
Aguiar, Marcelo
2011-01-01
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary backgrou
Homology theory on algebraic varieties
Wallace, Andrew H
1958-01-01
Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n
Clifford algebraic symmetries in physics
International Nuclear Information System (INIS)
Salingaros, N.
1986-01-01
This paper reviews the following appearances of Clifford algebras in theoretical physics: statistical mechanics; general relativity; quantum electrodynamics; internal symmetries; the vee product; classical electrodynamics; charged-particle motion; and the Lorentz group. It is concluded that the power of the Clifford-algebraic description resides in its ability to perform representation-free calculations which are generalizations of the traditional vector algebra and that this considerable computational asset, in combination with the intrinsic symmetry, provides a practical framework for much of theoretical physics. 5 references
Kolman, Bernard; Levitan, Michael L
1985-01-01
Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
Introduction to applied algebraic systems
Reilly, Norman R
2009-01-01
This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as
Introduction to algebra and trigonometry
Kolman, Bernard
1981-01-01
Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are
Study guide for college algebra
Snow, James W; Shapiro, Arnold
1981-01-01
Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what
Abstract algebra an introduction with applications
Robinson, Derek JS
2015-01-01
This is the second edition of the introduction to abstract algebra. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. There is ample material here for a two semester course in abstract algebra.
Homomorphisms of certain Banach function algebras
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
. } < ∞ is denoted by Lipα(X, d). These algebras are called Lipschitz algebras of order α and were first studied by Sherbert. The Lipschitz algebras Lipα(X, d) for α ≤ 1 are natural. Banach function algebras on X under the norm f α = f X + pα(f ) ...
Particle-like structure of Lie algebras
Vinogradov, A. M.
2017-07-01
If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.
Contraction of graded su(2) algebra
International Nuclear Information System (INIS)
Patra, M.K.; Tripathy, K.C.
1989-01-01
The Inoenu-Wigner contraction scheme is extended to Lie superalgebras. The structure and representations of extended BRS algebra are obtained from contraction of the graded su(2) algebra. From cohomological consideration, we demonstrate that the graded su(2) algebra is the only superalgebra which, on contraction, yields the full BRS algebra. (orig.)
Knizhnik-Zamolodchikov equations for positive genus and Krichever-Novikov algebras
International Nuclear Information System (INIS)
Schlichenmaier, M; Sheinman, O K
2004-01-01
In this paper a global operator approach to the Wess-Zumino-Witten-Novikov theory for compact Riemann surfaces of arbitrary genus with marked points is developed. The term 'global' here means that Krichever-Novikov algebras of gauge and conformal symmetries (that is, algebras of global symmetries) are used instead of loop algebras and Virasoro algebras (which are local in this context). The basic elements of this global approach are described in a previous paper of the authors (Russ. Math. Surveys 54:1 (1999)). The present paper gives a construction of the conformal blocks and of a projectively flat connection on the bundle formed by them
BRST analysis of super Kac-Moody and superconformal current algebras
International Nuclear Information System (INIS)
Bilal, A.; Gervais, J.L.
1986-01-01
The BRST charges are constructed for the supersymmetric extension of affine Kac-Moody algebras and for their semidirect sum with the superconformal algebra. In both cases, the BRST charge can be nilpotent only if the central charge of the super-Kac-Moody algebra representation vanishes. For general values of the central charge, it is shown by separating the positive and negative root contributions, that nilpotent operators can still be constructed. The associated cohomology is similar to the one introduced by Banks and Peskin for the Virasoro algebra. (orig.)
International Nuclear Information System (INIS)
Feng, H.; Zheng, Y.; Ding, S.
2007-01-01
Infrared multiphoton vibrational excitation of the linear triatomic molecule has been studied using the quadratic anharmonic Lie-algebra model, unitary transformations, and Magnus approximation. An explicit Lie-algebra expression for the vibrational transition probability is obtained by using a Lie-algebra approach. This explicit Lie-algebra expressions for time-evolution operator and vibrational transition probabilities make the computation clearer and easier. The infrared multiphoton vibrational excitation of the DCN linear tri-atomic molecule is discussed as an example
AT -algebras and extensions of AT-algebras
Indian Academy of Sciences (India)
and E has real rank zero, then E is an AT-algebra if and only if the index maps are both zero. Accordingly, in this ... It is well-known that two extensions with the same index are isomorphic as C. ∗. -algebras. We call these .... where each Bi = I (Ei) is a direct sum of K. By Lemma 2.3, I (E) = B. Without loss of generality, we may ...
Topological أ-algebras with Cأ-enveloping algebras II
Indian Academy of Sciences (India)
A with the locally convex inductive limit topology t is a locally m-convex Q-algebra satisfying EًKnc. A ق ¼ EًKAق ¼ A. (3) If A has a countable bounded approximate identity, then ًKnc. A ; tق is an LFQ-algebra. In general KA 6¼ Knc. A , though KA Knc. A . Now KA has been interpreted as a non- commutative analogue of CcًXق.
Lie 3-ALGEBRA and Super-Affinization of Split-Octonions
Carrión, Hector L.; Giardino, Sergio
The purpose of this study is to extend the concept of a generalized Lie 3-algebra, known to the divisional algebra of the octonions 𝕆, to split-octonions 𝕊𝕆, which is non-divisional. This is achieved through the unification of the product of both of the algebras in a single operation. Accordingly, a notational device is introduced to unify the product of both algebras. We verify that 𝕊𝕆 is a Malcev algebra and we recalculate known relations for the structure constants in terms of the introduced structure tensor. Finally we construct the manifestly supersymmetric {N} = 1{ SO} affine superalgebra. An application of the split Lie 3-algebra for a Bagger and Lambert gauge theory is also discussed.
Pre-Algebra Essentials For Dummies
Zegarelli, Mark
2010-01-01
Many students worry about starting algebra. Pre-Algebra Essentials For Dummies provides an overview of critical pre-algebra concepts to help new algebra students (and their parents) take the next step without fear. Free of ramp-up material, Pre-Algebra Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in a typical pre-algebra course, from fractions, decimals, and percents to scientific notation and simple variable equations. This guide is also a perfect reference for parents who need to review critical pre-algebra
String field theory. Algebraic structure, deformation properties and superstrings
International Nuclear Information System (INIS)
Muenster, Korbinian
2013-01-01
superstring are the appearance of Ramond punctures and the picture changing operators. The sewing in the Ramond sector requires an additional constraint on the state space of the world sheet conformal field theory, such that the associated symplectic structure is non-degenerate, at least on-shell. Moreover, we formulate an appropriate minimal area metric problem for type II world sheets, which can be utilized to sketch the construction of a consistent set of geometric vertices. The algebraic structure of type II superstring field theory is that of a N = 1 loop homotopy Lie algebra at the quantum level, and that of a N = 1 homotopy Lie algebra at the classical level.
GPU Linear algebra extensions for GNU/Octave
International Nuclear Information System (INIS)
Bosi, L B; Mariotti, M; Santocchia, A
2012-01-01
Octave is one of the most widely used open source tools for numerical analysis and liner algebra. Our project aims to improve Octave by introducing support for GPU computing in order to speed up some linear algebra operations. The core of our work is a C library that executes some BLAS operations concerning vector- vector, vector matrix and matrix-matrix functions on the GPU. OpenCL functions are used to program GPU kernels, which are bound within the GNU/octave framework. We report the project implementation design and some preliminary results about performance.
Connections between algebra, combinatorics, and geometry
Sather-Wagstaff, Sean
2014-01-01
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...
Lie-algebra approach to symmetry breaking
International Nuclear Information System (INIS)
Anderson, J.T.
1981-01-01
A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian
Cartooning in Algebra and Calculus
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
International Nuclear Information System (INIS)
Baeuerle, G.G.A.; Kerf, E.A. de
1990-01-01
The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
Computational linear and commutative algebra
Kreuzer, Martin
2016-01-01
This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...
Completeness of algebraic CPS simulations
Directory of Open Access Journals (Sweden)
Ali Assaf
2012-07-01
Full Text Available The algebraic lambda calculus and the linear algebraic lambda calculus are two extensions of the classical lambda calculus with linear combinations of terms. They arise independently in distinct contexts: the former is a fragment of the differential lambda calculus, the latter is a candidate lambda calculus for quantum computation. They differ in the handling of application arguments and algebraic rules. The two languages can simulate each other using an algebraic extension of the well-known call-by-value and call-by-name CPS translations. These simulations are sound, in that they preserve reductions. In this paper, we prove that the simulations are actually complete, strengthening the connection between the two languages.
Algebraic structure of the Green's ansatz and its q-deformed analogue
International Nuclear Information System (INIS)
Palev, T.D.
1994-08-01
The algebraic structure of the Green's ansatz is analyzed in such a way that its generalization to the case of q-deformed para-Bose and para-Fermi operators is becoming evident. To this end the underlying Lie (super) algebraic properties of the parastatistics are essentially used. (author). 41 refs
Crittenden, Barry D.
1991-01-01
A simple liquid-liquid equilibrium (LLE) system involving a constant partition coefficient based on solute ratios is used to develop an algebraic understanding of multistage contacting in a first-year separation processes course. This algebraic approach to the LLE system is shown to be operable for the introduction of graphical techniques…
The Poisson algebra of the invariant charges of the Nambu-Goto theory: Casimir elements
International Nuclear Information System (INIS)
Pohlmeyer, K.
1988-01-01
The reparametrization invariant ''non-local'' conserved charges of the Nambu-Goto theory form an algebra under Poisson bracket operation. The center of the formal closure of this algebra is determined. The relation of the central elements to the constraints of the Nambu-Goto theory is clarified. (orig.)
Cluster algebras in mathematical physics
International Nuclear Information System (INIS)
Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-01-01
This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm
A characterisation of algebraic exactness
Garner, Richard
2011-01-01
An algebraically exact category in one that admits all of the limits and colimits which every variety of algebras possesses and every forgetful functor between varieties preserves, and which verifies the same interactions between these limits and colimits as hold in any variety. Such categories were studied by Ad\\'amek, Lawvere and Rosick\\'y: they characterised them as the categories with small limits and sifted colimits for which the functor taking sifted colimits is continuous. They conject...
Distribution theory of algebraic numbers
Yang, Chung-Chun
2008-01-01
The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.
Nineteen papers on algebraic semigroups
Aizenshtat, A Ya; Podran, N E; Ponizovskii, IS; Shain, BM
1988-01-01
This volume contains papers selected by leading specialists in algebraic semigroups in the U.S., the United Kingdom, and Australia. Many of the papers strongly influenced the development of algebraic semigroups, but most were virtually unavailable outside the U.S.S.R. Written by some of the most prominent Soviet researchers in the field, the papers have a particular emphasis on semigroups of transformations. Boris Schein of the University of Arkansas is the translator.
Algebraic Systems and Pushdown Automata
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
Minimal sufficient statistical experiments on von Neumann algebras
Kuramochi, Yui
2017-06-01
A statistical experiment on a von Neumann algebra is a parametrized family of normal states on the algebra. This paper introduces the concept of minimal sufficiency for statistical experiments in such operator algebraic situations. We define equivalence relations of statistical experiments indexed by a common parameter set by completely positive or Schwarz coarse-graining and show that any statistical experiment is equivalent to a minimal sufficient statistical experiment unique up to normal isomorphism of outcome algebras. We also establish the relationship between the minimal sufficiency condition for a statistical experiment in this paper and those for subalgebra. These concepts and results are applied to the concatenation relation for completely positive channels with general input and outcome von Neumann algebras. In the case of the quantum-classical channel corresponding to the positive-operator valued measure (POVM), we prove the equivalence of the minimal sufficient condition previously proposed by the author and that in this paper. We also give a characterization of the discreteness of a POVM up to postprocessing equivalence in terms of the corresponding quantum-classical channel.
Cubic map algebra functions for spatio-temporal analysis
Mennis, J.; Viger, R.; Tomlin, C.D.
2005-01-01
We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.
Wörz-Busekros, Angelika
1980-01-01
The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and tran...
Chirivì, Rocco; Dvornicich, Roberto
2017-01-01
Questo libro – primo di due volumi - presenta oltre 250 esercizi scelti di algebra ricavati dai compiti d'esame dei corsi di Aritmetica tenuti dagli autori all'Università di Pisa. Ogni esercizio viene presentato con una o più soluzioni accuratamente redatte con linguaggio e notazioni uniformi. Caratteristica distintiva del libro è che gli esercizi proposti sono tutti diversi uno dall'altro e le soluzioni richiedono sempre una piccola idea originale; ciò rende il libro unico nel genere. Gli argomenti di questo primo volume sono: principio d'induzione, combinatoria, congruenze, gruppi abeliani, anelli commutativi, polinomi, estensioni di campi, campi finiti. Il libro contiene inoltre una dettagliata sezione di richiami teorici e può essere usato come libro di riferimento per lo studio. Una serie di esercizi preliminari introduce le tecniche principali da usare per confrontarsi con i testi d'esame proposti. Il volume è rivolto a tutti gli studenti del primo anno dei corsi di laur ea in Matematica e Inf...
Approximation of complex algebraic numbers by algebraic numbers of bounded degree
Bugeaud, Yann; Evertse, Jan-Hendrik
2007-01-01
We investigate how well complex algebraic numbers can be approximated by algebraic numbers of degree at most n. We also investigate how well complex algebraic numbers can be approximated by algebraic integers of degree at most n+1. It follows from our investigations that for every positive integer n there are complex algebraic numbers of degree larger than n that are better approximable by algebraic numbers of degree at most n than almost all complex numbers. As it turns out, these numbers ar...
An Algebraic Framework for Temporal Attribute Characteristics
DEFF Research Database (Denmark)
Böhlen, M. H.; Gamper, J.; Jensen, Christian Søndergaard
2006-01-01
then this implies the association of any further subset with the data. This paper offers a comprehensive, general framework where alternative semantics may co-exist and that supports so-called malleable and atomic temporal associations, in addition to the conventional ones mentioned above, which are termed constant....... To demonstrate the utility of the framework, the paper defines a characteristics-enabled temporal algebra, termed CETA, which defines the traditional relational operators in the new framework. This contribution demonstrates that it is possible to provide built-in temporal support while making less rigid...
A foundation for props, algebras, and modules
Yau, Donald
2015-01-01
PROPs and their variants are extremely general and powerful machines that encode operations with multiple inputs and multiple outputs. In this respect PROPs can be viewed as generalizations of operads that would allow only a single output. Variants of PROPs are important in several mathematical fields, including string topology, topological conformal field theory, homotopical algebra, deformation theory, Poisson geometry, and graph cohomology. The purpose of this monograph is to develop, in full technical detail, a unifying object called a generalized PROP. Then with an appropriate choice of p
Quantum algebra structure of certain Jackson integrals
International Nuclear Information System (INIS)
Matsuo, Atsushi
1993-01-01
The q-difference system satisfied by Jackson integrals with a configuration of A-type root system is studied. We explicitly construct some linear combination of Jackson integrals, which satisfies the quantum Knizhnik-Zamolodchikov equation for the 2-point correlation function of q-vertex operators, introduced by Frenkel and Reshetik hin, for the quantum affine algebra U q (sl 2 ). The expression of integrands for the n-point case is conjectured, and a set of linear relations for the corresponding Jackson integrals is proved. (orig.)
Free probability on Hecke algebras and certain group C^{*}-algebras induced by Hecke algebras
Directory of Open Access Journals (Sweden)
Ilwoo Cho
2016-01-01
Full Text Available In this paper, by establishing free-probabilistic models on the Hecke algebras \\(\\mathcal{H}\\left(GL_{2}(\\mathbb{Q}_{p}\\right\\ induced by \\(p\\-adic number fields \\(\\mathbb{Q}_{p}\\, we construct free probability spaces for all primes \\(p\\. Hilbert-space representations are induced by such free-probabilistic structures. We study \\(C^{*}\\-algebras induced by certain partial isometries realized under the representations.
A note on the Akivis algebra of a smooth hyporeductive loop
International Nuclear Information System (INIS)
Issa, A.N.
2002-05-01
Using the fundamental tensors of a smooth loop and the differential geometric characterization of smooth hyporeductive loops, the Akivis operations of a local smooth hyporeductive loop are expressed through the two binary and the one ternary operations of the hyporeductive triple algebra (h.t.a.) associated with the given hyporeductive loop. Those Akivis operations are also given in terms of Lie brackets of a Lie algebra of vector fields with the hyporeductive decomposition which generalizes the reductive decomposition of Lie algebras. A nontrivial real two-dimensional h.t.a. is presented. (author)
Homological methods, representation theory, and cluster algebras
Trepode, Sonia
2018-01-01
This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...
Extended Kac-Moody algebras and applications
International Nuclear Information System (INIS)
Ragoucy, E.; Sorba, P.
1991-04-01
The notion of a Kac-Moody algebra defined on the S 1 circle is extended to super Kac-Moody algebras defined on MxG N , M being a smooth closed compact manifold of dimension greater than one, and G N the Grassman algebra with N generators. All the central extensions of these algebras are computed. Then, for each such algebra the derivation algebra constructed from the MxG N diffeomorphism is determined. The twists of such super Kac-Moody algebras as well as the generalization to non-compact surfaces are partially studied. Finally, the general construction is applied to the study of conformal and superconformal algebras, as well as area-preserving diffeomorphisms algebra and its supersymmetric extension. (author) 65 refs
Infinite dimension algebra and conformal symmetry
International Nuclear Information System (INIS)
Ragoucy-Aubezon, E.
1991-04-01
A generalisation of Kac-Moody algebras (current algebras defined on a circle) to algebras defined on a compact supermanifold of any dimension and with any number of supersymmetries is presented. For such a purpose, we compute all the central extensions of loop algebras defined on this supermanifold, i.e. all the cohomology classes of these loop algebras. Then, we try to extend the relation (i.e. semi-direct sum) that exists between the two dimensional conformal algebras (called Virasoro algebra) and the usual Kac-Moody algebras, by considering the derivation algebra of our extended Kac-Moody algebras. The case of superconformal algebras (used in superstrings theories) is treated, as well as the cases of area-preserving diffeomorphisms (used in membranes theories), and Krichever-Novikov algebras (used for interacting strings). Finally, we present some generalizations of the Sugawara construction to the cases of extended Kac-Moody algebras, and Kac-Moody of superalgebras. These constructions allow us to get new realizations of the Virasoro, and Ramond, Neveu-Schwarz algebras
A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra
Foulis, David J.; Jenčová, Anna; Pulmannová, Sylvia
2017-10-01
A generalized Hermitian (GH-) algebra is a generalization of the partially ordered Jordan algebra of all Hermitian operators on a Hilbert space. We introduce the notion of a gh-tribe, which is a commutative GH-algebra of functions on a nonempty set X with pointwise partial order and operations, and we prove that every commutative GH-algebra is the image of a gh-tribe under a surjective GH-morphism. Using this result, we prove that each element a of a GH-algebra A corresponds to a real observable ξa on the σ-orthomodular lattice of projections in A and that ξa determines the spectral resolution of a. Also, if f is a continuous function defined on the spectrum of a, we formulate a definition of f (a), thus obtaining a continuous functional calculus for A.
Non-local matrix generalizations of W-algebras
International Nuclear Information System (INIS)
Bilal, A.
1995-01-01
There is a standard way to define two symplectic (hamiltonian) structures, the first and second Gelfand-Dikii brackets, on the space of ordinary m th -order linear differential operators L=-d m +U 1 d m-1 +U 2 d m-2 +..+U m . In this paper, I consider in detail the case where the U k are nxn-matrix-valued functions, with particular emphasis on the (more interesting) second Gelfand-Dikii bracket. Of particular interest is the reduction to the symplectic submanifold U 1 =0. This reduction gives rise to matrix generalizations of (the classical version of) the non-linear W m -algebras, called V n,m -algebras. The non-commutativity of the matrices leads to non-local terms in these V n,m -algebras. I show that these algebras contain a conformal Virasoro subalgebra and that combinations W k of the U k can be formed that are nxn-matrices of conformally primary fields of spin k, in analogy with the scalar case n=1. In general however, the V m,n -algebras have a much richer structure than the W m -algebras as can be seen on the examples of the non-linear and non-local Poisson brackets {(U 2 ) ab (σ),(U 2 ) cd (σ')}, {(U 2 ) ab (σ),(W 3 ) cd (σ')} and {(W 3 ) ab (σ),(W 3 ) cd (σ')} which I work out explicitly for all m and n. A matrix Miura transformation is derived, mapping these complicated (second Gelfand-Dikii) brackets of the U k to a set of much simpler Poisson brackets, providing the analogue of the free-field representation of the W m -algebras. (orig.)
Finite-dimensional division algebras over fields
Jacobson, Nathan
2009-01-01
Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of parti
Principles of linear algebra with Mathematica
Shiskowski, Kenneth M
2013-01-01
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings,
Double-partition Quantum Cluster Algebras
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Zhang, Hechun
2012-01-01
A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....