 #### Sample records for algebraic multigrid methods

1. Toward robust scalable algebraic multigrid solvers

International Nuclear Information System (INIS)

Waisman, Haim; Schroder, Jacob; Olson, Luke; Hiriyur, Badri; Gaidamour, Jeremie; Siefert, Christopher; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

2010-01-01

This talk highlights some multigrid challenges that arise from several application areas including structural dynamics, fluid flow, and electromagnetics. A general framework is presented to help introduce and understand algebraic multigrid methods based on energy minimization concepts. Connections between algebraic multigrid prolongators and finite element basis functions are made to explored. It is shown how the general algebraic multigrid framework allows one to adapt multigrid ideas to a number of different situations. Examples are given corresponding to linear elasticity and specifically in the solution of linear systems associated with extended finite elements for fracture problems.

2. Layout optimization with algebraic multigrid methods

Science.gov (United States)

Regler, Hans; Ruede, Ulrich

1993-01-01

Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

3. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method

Science.gov (United States)

Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu

2017-03-01

To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.

4. The Mixed Finite Element Multigrid Method for Stokes Equations

Science.gov (United States)

Muzhinji, K.; Shateyi, S.; Motsa, S. S.

2015-01-01

The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q 2-Q 1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361

5. Final report on the Copper Mountain conference on multigrid methods

Energy Technology Data Exchange (ETDEWEB)

NONE

1997-10-01

The Copper Mountain Conference on Multigrid Methods was held on April 6-11, 1997. It took the same format used in the previous Copper Mountain Conferences on Multigrid Method conferences. Over 87 mathematicians from all over the world attended the meeting. 56 half-hour talks on current research topics were presented. Talks with similar content were organized into sessions. Session topics included: fluids; domain decomposition; iterative methods; basics; adaptive methods; non-linear filtering; CFD; applications; transport; algebraic solvers; supercomputing; and student paper winners.

6. Two-Level Adaptive Algebraic Multigrid for a Sequence of Problems with Slowly Varying Random Coefficients [Adaptive Algebraic Multigrid for Sequence of Problems with Slowly Varying Random Coefficients

Energy Technology Data Exchange (ETDEWEB)

Kalchev, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ketelsen, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, P. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2013-11-07

Our paper proposes an adaptive strategy for reusing a previously constructed coarse space by algebraic multigrid to construct a two-level solver for a problem with nearby characteristics. Furthermore, a main target application is the solution of the linear problems that appear throughout a sequence of Markov chain Monte Carlo simulations of subsurface flow with uncertain permeability field. We demonstrate the efficacy of the method with extensive set of numerical experiments.

7. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

Energy Technology Data Exchange (ETDEWEB)

2017-10-24

ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

8. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

Science.gov (United States)

Molenaar, J.

1996-01-01

In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

9. Multigrid methods III

CERN Document Server

Trottenberg, U; Third European Conference on Multigrid Methods

1991-01-01

These proceedings contain a selection of papers presented at the Third European Conference on Multigrid Methods which was held in Bonn on October 1-4, 1990. Following conferences in 1981 and 1985, a platform for the presentation of new Multigrid results was provided for a third time. Multigrid methods no longer have problems being accepted by numerical analysts and users of numerical methods; on the contrary, they have been further developed in such a successful way that they have penetrated a variety of new fields of application. The high number of 154 participants from 18 countries and 76 presented papers show the need to continue the series of the European Multigrid Conferences. The papers of this volume give a survey on the current Multigrid situation; in particular, they correspond to those fields where new developments can be observed. For example, se­ veral papers study the appropriate treatment of time dependent problems. Improvements can also be noticed in the Multigrid approach for semiconductor eq...

10. Self-correcting Multigrid Solver

International Nuclear Information System (INIS)

Lewandowski, Jerome L.V.

2004-01-01

A new multigrid algorithm based on the method of self-correction for the solution of elliptic problems is described. The method exploits information contained in the residual to dynamically modify the source term (right-hand side) of the elliptic problem. It is shown that the self-correcting solver is more efficient at damping the short wavelength modes of the algebraic error than its standard equivalent. When used in conjunction with a multigrid method, the resulting solver displays an improved convergence rate with no additional computational work

11. The development of an algebraic multigrid algorithm for symmetric positive definite linear systems

Energy Technology Data Exchange (ETDEWEB)

Vanek, P.; Mandel, J.; Brezina, M. [Univ. of Colorado, Denver, CO (United States)

1996-12-31

An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.

12. Non-Galerkin Coarse Grids for Algebraic Multigrid

Energy Technology Data Exchange (ETDEWEB)

Falgout, Robert D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, Jacob B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2014-06-26

Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.

13. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

KAUST Repository

Chen, Meng-Huo

2015-09-13

In this research we are particularly interested in extending the robustness of multigrid solvers to encounter complex systems related to subsurface reservoir applications for flow problems in porous media. In many cases, the step for solving the pressure filed in subsurface flow simulation becomes a bottleneck for the performance of the simulator. For solving large sparse linear system arising from MPFA discretization, we choose multigrid methods as the linear solver. The possible difficulties and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately goal which we desire to achieve.

14. A Parallel Algebraic Multigrid Solver on Graphics Processing Units

KAUST Repository

Haase, Gundolf

2010-01-01

The paper presents a multi-GPU implementation of the preconditioned conjugate gradient algorithm with an algebraic multigrid preconditioner (PCG-AMG) for an elliptic model problem on a 3D unstructured grid. An efficient parallel sparse matrix-vector multiplication scheme underlying the PCG-AMG algorithm is presented for the many-core GPU architecture. A performance comparison of the parallel solver shows that a singe Nvidia Tesla C1060 GPU board delivers the performance of a sixteen node Infiniband cluster and a multi-GPU configuration with eight GPUs is about 100 times faster than a typical server CPU core. © 2010 Springer-Verlag.

15. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions

Science.gov (United States)

Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

2018-04-01

Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switching technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. We also show that the strategy is efficient and scales optimally with problem size.

16. The multigrid preconditioned conjugate gradient method

Science.gov (United States)

Tatebe, Osamu

1993-01-01

A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

17. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

Science.gov (United States)

Rasthofer, U.; Wall, W. A.; Gravemeier, V.

2018-04-01

A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

18. New multigrid solver advances in TOPS

International Nuclear Information System (INIS)

Falgout, R D; Brannick, J; Brezina, M; Manteuffel, T; McCormick, S

2005-01-01

In this paper, we highlight new multigrid solver advances in the Terascale Optimal PDE Simulations (TOPS) project in the Scientific Discovery Through Advanced Computing (SciDAC) program. We discuss two new algebraic multigrid (AMG) developments in TOPS: the adaptive smoothed aggregation method (αSA) and a coarse-grid selection algorithm based on compatible relaxation (CR). The αSA method is showing promising results in initial studies for Quantum Chromodynamics (QCD) applications. The CR method has the potential to greatly improve the applicability of AMG

19. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

KAUST Repository

Chen, Meng-Huo; Sun, Shuyu; Salama, Amgad

2015-01-01

and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately

20. Extending the applicability of multigrid methods

International Nuclear Information System (INIS)

Brannick, J; Brezina, M; Falgout, R; Manteuffel, T; McCormick, S; Ruge, J; Sheehan, B; Xu, J; Zikatanov, L

2006-01-01

Multigrid methods are ideal for solving the increasingly large-scale problems that arise in numerical simulations of physical phenomena because of their potential for computational costs and memory requirements that scale linearly with the degrees of freedom. Unfortunately, they have been historically limited by their applicability to elliptic-type problems and the need for special handling in their implementation. In this paper, we present an overview of several recent theoretical and algorithmic advances made by the TOPS multigrid partners and their collaborators in extending applicability of multigrid methods. specific examples that are presented include quantum chromodynamics, radiation transport, and electromagnetics

1. Semi-coarsening multigrid methods for parallel computing

Energy Technology Data Exchange (ETDEWEB)

Jones, J.E.

1996-12-31

Standard multigrid methods are not well suited for problems with anisotropic coefficients which can occur, for example, on grids that are stretched to resolve a boundary layer. There are several different modifications of the standard multigrid algorithm that yield efficient methods for anisotropic problems. In the paper, we investigate the parallel performance of these multigrid algorithms. Multigrid algorithms which work well for anisotropic problems are based on line relaxation and/or semi-coarsening. In semi-coarsening multigrid algorithms a grid is coarsened in only one of the coordinate directions unlike standard or full-coarsening multigrid algorithms where a grid is coarsened in each of the coordinate directions. When both semi-coarsening and line relaxation are used, the resulting multigrid algorithm is robust and automatic in that it requires no knowledge of the nature of the anisotropy. This is the basic multigrid algorithm whose parallel performance we investigate in the paper. The algorithm is currently being implemented on an IBM SP2 and its performance is being analyzed. In addition to looking at the parallel performance of the basic semi-coarsening algorithm, we present algorithmic modifications with potentially better parallel efficiency. One modification reduces the amount of computational work done in relaxation at the expense of using multiple coarse grids. This modification is also being implemented with the aim of comparing its performance to that of the basic semi-coarsening algorithm.

2. Design Considerations for a Flexible Multigrid Preconditioning Library

Directory of Open Access Journals (Sweden)

Jérémie Gaidamour

2012-01-01

Full Text Available MueLu is a library within the Trilinos software project [An overview of Trilinos, Technical Report SAND2003-2927, Sandia National Laboratories, 2003] and provides a framework for parallel multigrid preconditioning methods for large sparse linear systems. While providing efficient implementations of modern multigrid methods based on smoothed aggregation and energy minimization concepts, MueLu is designed to be customized and extended. This article gives an overview of design considerations for the MueLu package: user interfaces, internal design, data management, usage of modern software constructs, leveraging Trilinos capabilities, linear algebra operations and advanced application.

3. Multigrid methods for partial differential equations - a short introduction

International Nuclear Information System (INIS)

Linden, J.; Stueben, K.

1993-01-01

These notes summarize the multigrid methods and emphasis is laid on the algorithmic concepts of multigrid for solving linear and non-linear partial differential equations. In this paper there is brief description of the basic structure of multigrid methods. Detailed introduction is also contained with applications to VLSI process simulation. (A.B.)

4. Numerical Multilevel Upscaling for Incompressible Flow in Reservoir Simulation: An Element-based Algebraic Multigrid (AMGe) Approach

DEFF Research Database (Denmark)

Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter

2017-01-01

associated with non-planar interfaces between agglomerates, the coarse velocity space has guaranteed approximation properties. The employed AMGe technique provides coarse spaces with desirable local mass conservation and stability properties analogous to the original pair of Raviart-Thomas and piecewise......We study the application of a finite element numerical upscaling technique to the incompressible two-phase porous media total velocity formulation. Specifically, an element agglomeration based Algebraic Multigrid (AMGe) technique with improved approximation proper ties  is used, for the first...... discontinuous polynomial spaces, resulting in strong mass conservation for the upscaled systems. Due to the guaranteed approximation properties and the generic nature of the AMGe method, recursive multilevel upscaling is automatically obtained. Furthermore, this technique works for both structured...

5. An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems

Energy Technology Data Exchange (ETDEWEB)

Oosterlee, C.W. [Inst. for Algorithms and Scientific Computing, Sankt Augustin (Germany); Washio, T. [C& C Research Lab., Sankt Augustin (Germany)

1996-12-31

In this paper we try to achieve h-independent convergence with preconditioned GMRES and BiCGSTAB for 2D singular perturbed equations. Three recently developed multigrid methods are adopted as a preconditioner. They are also used as solution methods in order to compare the performance of the methods as solvers and as preconditioners. Two of the multigrid methods differ only in the transfer operators. One uses standard matrix- dependent prolongation operators from. The second uses {open_quotes}upwind{close_quotes} prolongation operators, developed. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss-Seidel smoother. The third method is based on the block LU decomposition of a matrix and on an approximate Schur complement. This multigrid variant is presented in. All three multigrid algorithms are algebraic methods.

6. A multigrid method for variational inequalities

Energy Technology Data Exchange (ETDEWEB)

Oliveira, S.; Stewart, D.E.; Wu, W.

1996-12-31

Multigrid methods have been used with great success for solving elliptic partial differential equations. Penalty methods have been successful in solving finite-dimensional quadratic programs. In this paper these two techniques are combined to give a fast method for solving obstacle problems. A nonlinear penalized problem is solved using Newtons method for large values of a penalty parameter. Multigrid methods are used to solve the linear systems in Newtons method. The overall numerical method developed is based on an exterior penalty function, and numerical results showing the performance of the method have been obtained.

7. Multigrid

CERN Document Server

Trottenberg, Ulrich; Schuller, Anton

2000-01-01

Multigrid presents both an elementary introduction to multigrid methods for solving partial differential equations and a contemporary survey of advanced multigrid techniques and real-life applications.Multigrid methods are invaluable to researchers in scientific disciplines including physics, chemistry, meteorology, fluid and continuum mechanics, geology, biology, and all engineering disciplines. They are also becoming increasingly important in economics and financial mathematics.Readers are presented with an invaluable summary covering 25 years of practical experience acquired by the multigrid research group at the Germany National Research Center for Information Technology. The book presents both practical and theoretical points of view.* Covers the whole field of multigrid methods from its elements up to the most advanced applications* Style is essentially elementary but mathematically rigorous* No other book is so comprehensive and written for both practitioners and students

8. Multigrid methods in structural mechanics

Science.gov (United States)

Raju, I. S.; Bigelow, C. A.; Taasan, S.; Hussaini, M. Y.

1986-01-01

Although the application of multigrid methods to the equations of elasticity has been suggested, few such applications have been reported in the literature. In the present work, multigrid techniques are applied to the finite element analysis of a simply supported Bernoulli-Euler beam, and various aspects of the multigrid algorithm are studied and explained in detail. In this study, six grid levels were used to model half the beam. With linear prolongation and sequential ordering, the multigrid algorithm yielded results which were of machine accuracy with work equivalent to 200 standard Gauss-Seidel iterations on the fine grid. Also with linear prolongation and sequential ordering, the V(1,n) cycle with n greater than 2 yielded better convergence rates than the V(n,1) cycle. The restriction and prolongation operators were derived based on energy principles. Conserving energy during the inter-grid transfers required that the prolongation operator be the transpose of the restriction operator, and led to improved convergence rates. With energy-conserving prolongation and sequential ordering, the multigrid algorithm yielded results of machine accuracy with a work equivalent to 45 Gauss-Seidel iterations on the fine grid. The red-black ordering of relaxations yielded solutions of machine accuracy in a single V(1,1) cycle, which required work equivalent to about 4 iterations on the finest grid level.

9. A Critical Study of Agglomerated Multigrid Methods for Diffusion

Science.gov (United States)

Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

2011-01-01

Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

10. Is the Multigrid Method Fault Tolerant? The Two-Grid Case

Energy Technology Data Exchange (ETDEWEB)

Ainsworth, Mark [Brown Univ., Providence, RI (United States). Division of Applied Mathematics; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Glusa, Christian [Brown Univ., Providence, RI (United States). Division of Applied Mathematics

2016-06-30

The predicted reduced resiliency of next-generation high performance computers means that it will become necessary to take into account the effects of randomly occurring faults on numerical methods. Further, in the event of a hard fault occurring, a decision has to be made as to what remedial action should be taken in order to resume the execution of the algorithm. The action that is chosen can have a dramatic effect on the performance and characteristics of the scheme. Ideally, the resulting algorithm should be subjected to the same kind of mathematical analysis that was applied to the original, deterministic variant. The purpose of this work is to provide an analysis of the behaviour of the multigrid algorithm in the presence of faults. Multigrid is arguably the method of choice for the solution of large-scale linear algebra problems arising from discretization of partial differential equations and it is of considerable importance to anticipate its behaviour on an exascale machine. The analysis of resilience of algorithms is in its infancy and the current work is perhaps the first to provide a mathematical model for faults and analyse the behaviour of a state-of-the-art algorithm under the model. It is shown that the Two Grid Method fails to be resilient to faults. Attention is then turned to identifying the minimal necessary remedial action required to restore the rate of convergence to that enjoyed by the ideal fault-free method.

11. Comparative Performance Analysis of Coarse Solvers for Algebraic Multigrid on Multicore and Manycore Architectures

Energy Technology Data Exchange (ETDEWEB)

Druinsky, A; Ghysels, P; Li, XS; Marques, O; Williams, S; Barker, A; Kalchev, D; Vassilevski, P

2016-04-02

In this paper, we study the performance of a two-level algebraic-multigrid algorithm, with a focus on the impact of the coarse-grid solver on performance. We consider two algorithms for solving the coarse-space systems: the preconditioned conjugate gradient method and a new robust HSS-embedded low-rank sparse-factorization algorithm. Our test data comes from the SPE Comparative Solution Project for oil-reservoir simulations. We contrast the performance of our code on one 12-core socket of a Cray XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor. To obtain top performance, we optimized the code to take full advantage of fine-grained parallelism and made it thread-friendly for high thread count. We also developed a bounds-and-bottlenecks performance model of the solver which we used to guide us through the optimization effort, and also carried out performance tuning in the solver’s large parameter space. Finally, as a result, significant speedups were obtained on both machines.

12. Investigations on application of multigrid method to MHD equilibrium analysis

International Nuclear Information System (INIS)

Ikuno, Soichiro

2000-01-01

The potentiality of application for Multi-grid method to MHD equilibrium analysis is investigated. The nonlinear eigenvalue problem often appears when the MHD equilibria are determined by solving the Grad-Shafranov equation numerically. After linearization of the equation, the problem is solved by use of the iterative method. Although the Red-Black SOR method or Gauss-Seidel method is often used for the solution of the linearized equation, it takes much CPU time to solve the problem. The Multi-grid method is compared with the SOR method for the Poisson Problem. The results of computations show that the CPU time required for the Multi-grid method is about 1000 times as small as that for the SOR method. (author)

13. Asynchronous Task-Based Parallelization of Algebraic Multigrid

KAUST Repository

AlOnazi, Amani A.

2017-06-23

As processor clock rates become more dynamic and workloads become more adaptive, the vulnerability to global synchronization that already complicates programming for performance in today\\'s petascale environment will be exacerbated. Algebraic multigrid (AMG), the solver of choice in many large-scale PDE-based simulations, scales well in the weak sense, with fixed problem size per node, on tightly coupled systems when loads are well balanced and core performance is reliable. However, its strong scaling to many cores within a node is challenging. Reducing synchronization and increasing concurrency are vital adaptations of AMG to hybrid architectures. Recent communication-reducing improvements to classical additive AMG by Vassilevski and Yang improve concurrency and increase communication-computation overlap, while retaining convergence properties close to those of standard multiplicative AMG, but remain bulk synchronous.We extend the Vassilevski and Yang additive AMG to asynchronous task-based parallelism using a hybrid MPI+OmpSs (from the Barcelona Supercomputer Center) within a node, along with MPI for internode communications. We implement a tiling approach to decompose the grid hierarchy into parallel units within task containers. We compare against the MPI-only BoomerAMG and the Auxiliary-space Maxwell Solver (AMS) in the hypre library for the 3D Laplacian operator and the electromagnetic diffusion, respectively. In time to solution for a full solve an MPI-OmpSs hybrid improves over an all-MPI approach in strong scaling at full core count (32 threads per single Haswell node of the Cray XC40) and maintains this per node advantage as both weak scale to thousands of cores, with MPI between nodes.

14. The multigrid method for reactor calculations

International Nuclear Information System (INIS)

Douglas, S.R.

1991-07-01

Iterative solutions to linear systems of equations are discussed. The emphasis is on the concepts that affect convergence rates of these solution methods. The multigrid method is described, including the smoothing property, restriction, and prolongation. A simple example is used to illustrate the ideas

15. Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems

Science.gov (United States)

Shen, Zhao-Li; Huang, Ting-Zhu; Carpentieri, Bruno; Wen, Chun; Gu, Xian-Ming

2018-06-01

Recently, the adaptive algebraic aggregation multigrid method has been proposed for computing stationary distributions of Markov chains. This method updates aggregates on every iterative cycle to keep high accuracies of coarse-level corrections. Accordingly, its fast convergence rate is well guaranteed, but often a large proportion of time is cost by aggregation processes. In this paper, we show that the aggregates on each level in this method can be utilized to transfer the probability equation of that level into a block linear system. Then we propose a Block-Jacobi relaxation that deals with the block system on each level to smooth error. Some theoretical analysis of this technique is presented, meanwhile it is also adapted to solve PageRank problems. The purpose of this technique is to accelerate the adaptive aggregation multigrid method and its variants for solving Markov chains and PageRank problems. It also attempts to shed some light on new solutions for making aggregation processes more cost-effective for aggregation multigrid methods. Numerical experiments are presented to illustrate the effectiveness of this technique.

16. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

International Nuclear Information System (INIS)

McCormick, Stephen F.

2016-01-01

This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

17. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

Energy Technology Data Exchange (ETDEWEB)

McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

2016-03-25

This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

18. Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow

KAUST Repository

Brown, Jed; Smith, Barry; Ahmadia, Aron

2013-01-01

The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today's ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.

19. Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow

KAUST Repository

Brown, Jed

2013-03-12

The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today\\'s ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.

20. Efficient relaxed-Jacobi smoothers for multigrid on parallel computers

Science.gov (United States)

Yang, Xiang; Mittal, Rajat

2017-03-01

In this Technical Note, we present a family of Jacobi-based multigrid smoothers suitable for the solution of discretized elliptic equations. These smoothers are based on the idea of scheduled-relaxation Jacobi proposed recently by Yang & Mittal (2014)  and employ two or three successive relaxed Jacobi iterations with relaxation factors derived so as to maximize the smoothing property of these iterations. The performance of these new smoothers measured in terms of convergence acceleration and computational workload, is assessed for multi-domain implementations typical of parallelized solvers, and compared to the lexicographic point Gauss-Seidel smoother. The tests include the geometric multigrid method on structured grids as well as the algebraic grid method on unstructured grids. The tests demonstrate that unlike Gauss-Seidel, the convergence of these Jacobi-based smoothers is unaffected by domain decomposition, and furthermore, they outperform the lexicographic Gauss-Seidel by factors that increase with domain partition count.

1. Nonlinear Multigrid solver exploiting AMGe Coarse Spaces with Approximation Properties

DEFF Research Database (Denmark)

Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter

The paper introduces a nonlinear multigrid solver for mixed finite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstructured problems is the guaranteed approximation property of the AMGe coarse...... properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on unstructured meshes has the ability to be as powerful/successful as FAS on geometrically refined meshes. For comparison, Newton’s method and Picard iterations with an inner state-of-the-art linear solver...... are compared to FAS on a nonlinear saddle point problem with applications to porous media flow. It is demonstrated that FAS is faster than Newton’s method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate...

2. Multigrid methods for the computation of propagators in gauge fields

International Nuclear Information System (INIS)

Kalkreuter, T.

1992-11-01

In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. We discuss proper averaging operations for bosons and for staggered fermions. An efficient algorithm for computing C numerically is presented. The averaging kernels C can be used not only in deterministic multigrid computations, but also in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies of gauge theories. Actual numerical computations of kernels and propagators are performed in compact four-dimensional SU(2) gauge fields. (orig./HSI)

3. Multigrid Methods for the Computation of Propagators in Gauge Fields

Science.gov (United States)

Kalkreuter, Thomas

Multigrid methods were invented for the solution of discretized partial differential equations in order to overcome the slowness of traditional algorithms by updates on various length scales. In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. Gauge fields are incorporated in algorithms in a covariant way. The kernel C of the restriction operator which averages from one grid to the next coarser grid is defined by projection on the ground-state of a local Hamiltonian. The idea behind this definition is that the appropriate notion of smoothness depends on the dynamics. The ground-state projection choice of C can be used in arbitrary dimension and for arbitrary gauge group. We discuss proper averaging operations for bosons and for staggered fermions. The kernels C can also be used in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies. Actual numerical computations are performed in four-dimensional SU(2) gauge fields. We prove that our proposals for block spins are “good”, using renormalization group arguments. A central result is that the multigrid method works in arbitrarily disordered gauge fields, in principle. It is proved that computations of propagators in gauge fields without critical slowing down are possible when one uses an ideal interpolation kernel. Unfortunately, the idealized algorithm is not practical, but it was important to answer questions of principle. Practical methods are able to outperform the conjugate gradient algorithm in case of bosons. The case of staggered fermions is harder. Multigrid methods give considerable speed-ups compared to conventional relaxation algorithms, but on lattices up to 184 conjugate gradient is superior.

4. Numerical Methods for Forward and Inverse Problems in Discontinuous Media

Energy Technology Data Exchange (ETDEWEB)

Chartier, Timothy P.

2011-03-08

The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise to medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.

5. Large-Scale Parallel Viscous Flow Computations using an Unstructured Multigrid Algorithm

Science.gov (United States)

Mavriplis, Dimitri J.

1999-01-01

The development and testing of a parallel unstructured agglomeration multigrid algorithm for steady-state aerodynamic flows is discussed. The agglomeration multigrid strategy uses a graph algorithm to construct the coarse multigrid levels from the given fine grid, similar to an algebraic multigrid approach, but operates directly on the non-linear system using the FAS (Full Approximation Scheme) approach. The scalability and convergence rate of the multigrid algorithm are examined on the SGI Origin 2000 and the Cray T3E. An argument is given which indicates that the asymptotic scalability of the multigrid algorithm should be similar to that of its underlying single grid smoothing scheme. For medium size problems involving several million grid points, near perfect scalability is obtained for the single grid algorithm, while only a slight drop-off in parallel efficiency is observed for the multigrid V- and W-cycles, using up to 128 processors on the SGI Origin 2000, and up to 512 processors on the Cray T3E. For a large problem using 25 million grid points, good scalability is observed for the multigrid algorithm using up to 1450 processors on a Cray T3E, even when the coarsest grid level contains fewer points than the total number of processors.

6. A multigrid solution method for mixed hybrid finite elements

Energy Technology Data Exchange (ETDEWEB)

Schmid, W. [Universitaet Augsburg (Germany)

1996-12-31

We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

7. On several aspects and applications of the multigrid method for solving partial differential equations

Science.gov (United States)

Dinar, N.

1978-01-01

Several aspects of multigrid methods are briefly described. The main subjects include the development of very efficient multigrid algorithms for systems of elliptic equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as the development of control and prediction tools (based on local mode Fourier analysis), used to analyze, check and improve these algorithms. Preliminary research on multigrid algorithms for time dependent parabolic equations is also described. Improvements in existing multigrid processes and algorithms for elliptic equations were studied.

8. Copper Mountain conference on multigrid methods. Preliminary proceedings -- List of abstracts

Energy Technology Data Exchange (ETDEWEB)

NONE

1995-12-31

This report contains abstracts of the papers presented at the conference. Papers cover multigrid algorithms and applications of multigrid methods. Applications include the following: solution of elliptical problems; electric power grids; fluid mechanics; atmospheric data assimilation; thermocapillary effects on weld pool shape; boundary-value problems; prediction of hurricane tracks; modeling multi-dimensional combustion and detailed chemistry; black-oil reservoir simulation; image processing; and others.

9. Finite volume multigrid method of the planar contraction flow of a viscoelastic fluid

Science.gov (United States)

Moatssime, H. Al; Esselaoui, D.; Hakim, A.; Raghay, S.

2001-08-01

This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the velocities and first-order upwind approximation for the viscoelastic stress. A non-uniform staggered grid system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity equations. The non-linear algebraic equations over the flow domain are solved iteratively by the symmetrical coupled Gauss-Seidel (SCGS) method. In both, the full approximation storage (FAS) multigrid algorithm is used. An Oldroyd-B fluid model was selected for the calculation. Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to be stable and smooth. The solutions show that at high Weissenberg number the domain must be long enough. The convergence of the method has been verified with grid refinement. All the calculations have been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright

10. Electrical Resistivity Tomography using a finite element based BFGS algorithm with algebraic multigrid preconditioning

Science.gov (United States)

Codd, A. L.; Gross, L.

2018-03-01

We present a new inversion method for Electrical Resistivity Tomography which, in contrast to established approaches, minimizes the cost function prior to finite element discretization for the unknown electric conductivity and electric potential. Minimization is performed with the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) in an appropriate function space. BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major obstacle to solving large 3-D problems using parallel computers. In addition to the forward problem predicting the measurement from the injected current, the so-called adjoint problem also needs to be solved. For this problem a virtual current is injected through the measurement electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual current is equal to the misfit at the measurement electrodes. This new approach has the advantage that the solution process of the optimization problem remains independent to the meshes used for discretization and allows for mesh adaptation during inversion. Computation time is reduced by using superposition of pole loads for the forward and adjoint problems. A smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied to construct the potentials for a given electric conductivity estimate and for constructing a first level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid solvers inversion time for large 3-D problems can be reduced further. We apply our new inversion method to synthetic survey data created by the resistivity profile representing the characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D surface electrode survey on Heron Island, a small tropical island off the east coast of central Queensland, Australia.

11. s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid

Energy Technology Data Exchange (ETDEWEB)

Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lijewski, Mike [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Almgren, Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carson, Erin [Univ. of California, Berkeley, CA (United States); Knight, Nicholas [Univ. of California, Berkeley, CA (United States); Demmel, James [Univ. of California, Berkeley, CA (United States)

2014-08-14

Geometric multigrid solvers within adaptive mesh refinement (AMR) applications often reach a point where further coarsening of the grid becomes impractical as individual sub domain sizes approach unity. At this point the most common solution is to use a bottom solver, such as BiCGStab, to reduce the residual by a fixed factor at the coarsest level. Each iteration of BiCGStab requires multiple global reductions (MPI collectives). As the number of BiCGStab iterations required for convergence grows with problem size, and the time for each collective operation increases with machine scale, bottom solves in large-scale applications can constitute a significant fraction of the overall multigrid solve time. In this paper, we implement, evaluate, and optimize a communication-avoiding s-step formulation of BiCGStab (CABiCGStab for short) as a high-performance, distributed-memory bottom solver for geometric multigrid solvers. This is the first time s-step Krylov subspace methods have been leveraged to improve multigrid bottom solver performance. We use a synthetic benchmark for detailed analysis and integrate the best implementation into BoxLib in order to evaluate the benefit of a s-step Krylov subspace method on the multigrid solves found in the applications LMC and Nyx on up to 32,768 cores on the Cray XE6 at NERSC. Overall, we see bottom solver improvements of up to 4.2x on synthetic problems and up to 2.7x in real applications. This results in as much as a 1.5x improvement in solver performance in real applications.

12. Analysis and development of stochastic multigrid methods in lattice field theory

International Nuclear Information System (INIS)

Grabenstein, M.

1994-01-01

We study the relation between the dynamical critical behavior and the kinematics of stochastic multigrid algorithms. The scale dependence of acceptance rates for nonlocal Metropolis updates is analyzed with the help of an approximation formula. A quantitative study of the kinematics of multigrid algorithms in several interacting models is performed. We find that for a critical model with Hamiltonian H(Φ) absence of critical slowing down can only be expected if the expansion of (H(Φ+ψ)) in terms of the shift ψ contains no relevant term (mass term). The predictions of this rule was verified in a multigrid Monte Carlo simulation of the Sine Gordon model in two dimensions. Our analysis can serve as a guideline for the development of new algorithms: We propose a new multigrid method for nonabelian lattice gauge theory, the time slice blocking. For SU(2) gauge fields in two dimensions, critical slowing down is almost completely eliminated by this method, in accordance with the theoretical prediction. The generalization of the time slice blocking to SU(2) in four dimensions is investigated analytically and by numerical simulations. Compared to two dimensions, the local disorder in the four dimensional gauge field leads to kinematical problems. (orig.)

13. An application of multigrid methods for a discrete elastic model for epitaxial systems

International Nuclear Information System (INIS)

Caflisch, R.E.; Lee, Y.-J.; Shu, S.; Xiao, Y.-X.; Xu, J.

2006-01-01

We apply an efficient and fast algorithm to simulate the atomistic strain model for epitaxial systems, recently introduced by Schindler et al. [Phys. Rev. B 67, 075316 (2003)]. The discrete effects in this lattice statics model are crucial for proper simulation of the influence of strain for thin film epitaxial growth, but the size of the atomistic systems of interest is in general quite large and hence the solution of the discrete elastic equations is a considerable numerical challenge. In this paper, we construct an algebraic multigrid method suitable for efficient solution of the large scale discrete strain model. Using this method, simulations are performed for several representative physical problems, including an infinite periodic step train, a layered nanocrystal, and a system of quantum dots. The results demonstrate the effectiveness and robustness of the method and show that the method attains optimal convergence properties, regardless of the problem size, the geometry and the physical parameters. The effects of substrate depth and of invariance due to traction-free boundary conditions are assessed. For a system of quantum dots, the simulated strain energy density supports the observations that trench formation near the dots provides strain relief

14. Analysis of a parallel multigrid algorithm

Science.gov (United States)

Chan, Tony F.; Tuminaro, Ray S.

1989-01-01

The parallel multigrid algorithm of Frederickson and McBryan (1987) is considered. This algorithm uses multiple coarse-grid problems (instead of one problem) in the hope of accelerating convergence and is found to have a close relationship to traditional multigrid methods. Specifically, the parallel coarse-grid correction operator is identical to a traditional multigrid coarse-grid correction operator, except that the mixing of high and low frequencies caused by aliasing error is removed. Appropriate relaxation operators can be chosen to take advantage of this property. Comparisons between the standard multigrid and the new method are made.

15. Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients

Energy Technology Data Exchange (ETDEWEB)

Kalchev, D

2012-04-02

This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the

16. Primal-Dual Interior Point Multigrid Method for Topology Optimization

Czech Academy of Sciences Publication Activity Database

Kočvara, Michal; Mohammed, S.

2016-01-01

Roč. 38, č. 5 (2016), B685-B709 ISSN 1064-8275 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : topology optimization * multigrid method s * interior point method Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0462418.pdf

17. Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.

Science.gov (United States)

Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.

1997-08-01

A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.

18. Multigrid Methods for EHL Problems

Science.gov (United States)

Nurgat, Elyas; Berzins, Martin

1996-01-01

In many bearings and contacts, forces are transmitted through thin continuous fluid films which separate two contacting elements. Objects in contact are normally subjected to friction and wear which can be reduced effectively by using lubricants. If the lubricant film is sufficiently thin to prevent the opposing solids from coming into contact and carries the entire load, then we have hydrodynamic lubrication, where the lubricant film is determined by the motion and geometry of the solids. However, for loaded contacts of low geometrical conformity, such as gears, rolling contact bearings and cams, this is not the case due to high pressures and this is referred to as Elasto-Hydrodynamic Lubrication (EHL) In EHL, elastic deformation of the contacting elements and the increase in fluid viscosity with pressure are very significant and cannot be ignored. Since the deformation results in changing the geometry of the lubricating film, which in turn determines the pressure distribution, an EHL mathematical model must simultaneously satisfy the complex elasticity (integral) and the Reynolds lubrication (differential) equations. The nonlinear and coupled nature of the two equations makes numerical calculations computationally intensive. This is especially true for highly loaded problems found in practice. One novel feature of these problems is that the solution may exhibit sharp pressure spikes in the outlet region. To this date both finite element and finite difference methods have been used to solve EHL problems with perhaps greater emphasis on the use of the finite difference approach. In both cases, a major computational difficulty is ensuring convergence of the nonlinear equations solver to a steady state solution. Two successful methods for achieving this are direct iteration and multigrid methods. Direct iteration methods (e.g Gauss Seidel) have long been used in conjunction with finite difference discretizations on regular meshes. Perhaps one of the best examples of

19. Parallel multigrid methods: implementation on message-passing computers and applications to fluid dynamics. A draft

International Nuclear Information System (INIS)

Solchenbach, K.; Thole, C.A.; Trottenberg, U.

1987-01-01

For a wide class of problems in scientific computing, in particular for partial differential equations, the multigrid principle has proved to yield highly efficient numerical methods. However, the principle has to be applied carefully: if the multigrid components are not chosen adequately with respect to the given problem, the efficiency may be much smaller than possible. This has been demonstrated for many practical problems. Unfortunately, the general theories on multigrid convergence do not give much help in constructing really efficient multigrid algorithms. Although some progress has been made in bridging the gap between theory and practice during the last few years, there are still several theoretical approaches which are misleading rather than helpful with respect to the objective of real efficiency. The research in finding highly efficient algorithms for non-model applications therefore is still a sophisticated mixture of theoretical considerations, a transfer of experiences from model to real life problems and systematical experimental work. The emphasis of the practical research activity today lies - among others - in the following fields: - finding efficient multigrid components for really complex problems, - combining the multigrid approach with advanced discretizative techniques: - constructing highly parallel multigrid algorithms. In this paper, we want to deal mainly with the last topic

20. Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem

Energy Technology Data Exchange (ETDEWEB)

Yoo, Jaechil [Univ. of Wisconsin, Madison, WI (United States)

1996-12-31

Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.

1. NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES

Energy Technology Data Exchange (ETDEWEB)

Christensen, Max La Cour [Technical Univ. of Denmark, Lyngby (Denmark); Villa, Umberto E. [Univ. of Texas, Austin, TX (United States); Engsig-Karup, Allan P. [Technical Univ. of Denmark, Lyngby (Denmark); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2016-01-22

The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.

2. Development of Multigrid Methods for diffusion, Advection, and the incompressible Navier-Stokes Equations

Energy Technology Data Exchange (ETDEWEB)

Gjesdal, Thor

1997-12-31

This thesis discusses the development and application of efficient numerical methods for the simulation of fluid flows, in particular the flow of incompressible fluids. The emphasis is on practical aspects of algorithm development and on application of the methods either to linear scalar model equations or to the non-linear incompressible Navier-Stokes equations. The first part deals with cell centred multigrid methods and linear correction scheme and presents papers on (1) generalization of the method to arbitrary sized grids for diffusion problems, (2) low order method for advection-diffusion problems, (3) attempt to extend the basic method to advection-diffusion problems, (4) Fourier smoothing analysis of multicolour relaxation schemes, and (5) analysis of high-order discretizations for advection terms. The second part discusses a multigrid based on pressure correction methods, non-linear full approximation scheme, and papers on (1) systematic comparison of the performance of different pressure correction smoothers and some other algorithmic variants, low to moderate Reynolds numbers, and (2) systematic study of implementation strategies for high order advection schemes, high-Re flow. An appendix contains Fortran 90 data structures for multigrid development. 160 refs., 26 figs., 22 tabs.

3. Numerical Evaluation of P-Multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations

Science.gov (United States)

Atkins, H. L.; Helenbrook, B. T.

2005-01-01

This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of di usion. Gauss-Seidel relaxation converges 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.

4. Recent Development of Multigrid Algorithms for Mixed and Noncomforming Methods for Second Order Elliptical Problems

Science.gov (United States)

Chen, Zhangxin; Ewing, Richard E.

1996-01-01

Multigrid algorithms for nonconforming and mixed finite element methods for second order elliptic problems on triangular and rectangular finite elements are considered. The construction of several coarse-to-fine intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed finite element methods with and without projection of the coefficient of the differential problems into finite element spaces is described.

5. Scalable multi-grid preconditioning techniques for the even-parity S_N solver in UNIC

International Nuclear Information System (INIS)

Mahadevan, Vijay S.; Smith, Michael A.

2011-01-01

The Even-parity neutron transport equation with FE-S_N discretization is solved traditionally using SOR preconditioned CG method at the lowest level of iterations in order to compute the criticality in reactor analysis problems. The use of high order isoparametric finite elements prohibits the formation of the discrete operator explicitly due to memory constraints in peta scale architectures. Hence, a h-p multi-grid preconditioner based on linear tessellation of the higher order mesh is introduced here for the space-angle system and compared against SOR and Algebraic MG black-box solvers. The performance and scalability of the multi-grid scheme was determined for two test problems and found to be competitive in terms of both computational time and memory requirements. The implementation of this preconditioner in an even-parity solver like UNIC from ANL can further enable high fidelity calculations in a scalable manner on peta flop machines. (author)

6. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

Science.gov (United States)

Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

2014-06-01

We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the

7. Summary Report: Multigrid for Systems of Elliptic PDEs

Energy Technology Data Exchange (ETDEWEB)

Lee, Barry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2016-11-17

We are interested in determining if multigrid can be effectively applied to the system. The conclusion that I seem to be drawn to is that it is impossible to develop a blackbox multigrid solver for these general systems. Analysis of the system of PDEs must be conducted first to determine pre-processing procedures on the continuous problem before applying a multigrid method. Determining this pre-processing is currently not incorporated in black-box multigrid strategies. Nevertheless, we characterize some system features that will make the system more amenable to multigrid approaches, techniques that may lead to more amenable systems, and multigrid procedures that are generally more appropriate for these systems.

8. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

International Nuclear Information System (INIS)

Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

2010-01-01

Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

9. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

International Nuclear Information System (INIS)

Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

2013-01-01

Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called textbook multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

10. Multigrid methods for fully implicit oil reservoir simulation

Energy Technology Data Exchange (ETDEWEB)

Molenaar, J.

1995-12-31

In this paper, the authors consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations the material balance or continuity equations, and the equation of motion (Darcys law). For the numerical solution of this system of nonlinear partial differential equations, there are two approaches: the fully implicit or simultaneous solution method, and the sequential solution method. In this paper, the authors consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations.

11. A multigrid Newton-Krylov method for flux-limited radiation diffusion

International Nuclear Information System (INIS)

Rider, W.J.; Knoll, D.A.; Olson, G.L.

1998-01-01

The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques

12. Multilevel local refinement and multigrid methods for 3-D turbulent flow

Energy Technology Data Exchange (ETDEWEB)

Liao, C.; Liu, C. [UCD, Denver, CO (United States); Sung, C.H.; Huang, T.T. [David Taylor Model Basin, Bethesda, MD (United States)

1996-12-31

A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.

13. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

KAUST Repository

Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

2010-01-01

Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.

14. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

KAUST Repository

2010-09-01

Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.

15. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

Science.gov (United States)

Hano, Mitsuo; Hotta, Masashi

A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

16. Asynchronous Task-Based Parallelization of Algebraic Multigrid

KAUST Repository

AlOnazi, Amani A.; Markomanolis, George S.; Keyes, David E.

2017-01-01

As processor clock rates become more dynamic and workloads become more adaptive, the vulnerability to global synchronization that already complicates programming for performance in today's petascale environment will be exacerbated. Algebraic

17. Discrete Fourier analysis of multigrid algorithms

NARCIS (Netherlands)

van der Vegt, Jacobus J.W.; Rhebergen, Sander

2011-01-01

The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the

18. The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces

KAUST Repository

Chen, Yujia

2015-01-01

© 2015 Society for Industrial and Applied Mathematics. Elliptic partial differential equations are important from both application and analysis points of view. In this paper we apply the closest point method to solve elliptic equations on general curved surfaces. Based on the closest point representation of the underlying surface, we formulate an embedding equation for the surface elliptic problem, then discretize it using standard finite differences and interpolation schemes on banded but uniform Cartesian grids. We prove the convergence of the difference scheme for the Poisson\\'s equation on a smooth closed curve. In order to solve the resulting large sparse linear systems, we propose a specific geometric multigrid method in the setting of the closest point method. Convergence studies in both the accuracy of the difference scheme and the speed of the multigrid algorithm show that our approaches are effective.

19. Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids

Directory of Open Access Journals (Sweden)

A.D. Matveev

2016-12-01

Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.

20. Segmental Refinement: A Multigrid Technique for Data Locality

Energy Technology Data Exchange (ETDEWEB)

Adams, Mark [Columbia Univ., New York, NY (United States). Applied Physics and Applied Mathematics Dept.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

2014-10-27

We investigate a technique - segmental refinement (SR) - proposed by Brandt in the 1970s as a low memory multigrid method. The technique is attractive for modern computer architectures because it provides high data locality, minimizes network communication, is amenable to loop fusion, and is naturally highly parallel and asynchronous. The network communication minimization property was recognized by Brandt and Diskin in 1994; we continue this work by developing a segmental refinement method for a finite volume discretization of the 3D Laplacian on massively parallel computers. An understanding of the asymptotic complexities, required to maintain textbook multigrid efficiency, are explored experimentally with a simple SR method. A two-level memory model is developed to compare the asymptotic communication complexity of a proposed SR method with traditional parallel multigrid. Performance and scalability are evaluated with a Cray XC30 with up to 64K cores. We achieve modest improvement in scalability from traditional parallel multigrid with a simple SR implementation.

1. Multigrid technique and Optimized Schwarz method on block-structured grids with discontinuous interfaces

DEFF Research Database (Denmark)

Kolmogorov, Dmitry; Sørensen, Niels N.; Shen, Wen Zhong

2013-01-01

An Optimized Schwarz method using Robin boundary conditions for relaxation scheme is presented in the frame of Multigrid method on discontinuous grids. At each iteration the relaxation scheme is performed in two steps: one step with Dirichlet and another step with Robin boundary conditions at inn...

2. A first-order multigrid method for bound-constrained convex optimization

Czech Academy of Sciences Publication Activity Database

Kočvara, Michal; Mohammed, S.

2016-01-01

Roč. 31, č. 3 (2016), s. 622-644 ISSN 1055-6788 R&D Projects: GA ČR(CZ) GAP201/12/0671 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : bound-constrained optimization * multigrid methods * linear complementarity problems Subject RIV: BA - General Mathematics Impact factor: 1.023, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0460326.pdf

3. Matrix-dependent multigrid-homogenization for diffusion problems

Energy Technology Data Exchange (ETDEWEB)

Knapek, S. [Institut fuer Informatik tu Muenchen (Germany)

1996-12-31

We present a method to approximately determine the effective diffusion coefficient on the coarse scale level of problems with strongly varying or discontinuous diffusion coefficients. It is based on techniques used also in multigrid, like Dendys matrix-dependent prolongations and the construction of coarse grid operators by means of the Galerkin approximation. In numerical experiments, we compare our multigrid-homogenization method with homogenization, renormalization and averaging approaches.

4. Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method

International Nuclear Information System (INIS)

Natsume, Y; Ohsasa, K

2015-01-01

A two-dimensional cellular automaton model with a multi-grid method was developed to simulate dendritic growth. In the present model, we used a triple-grid system for temperature, solute concentration and solid fraction fields as a new approach of the multi-grid method. In order to evaluate the validity of the present model, we carried out simulations of single dendritic growth, secondary dendrite arm growth, multi-columnar dendritic growth and multi-equiaxed dendritic growth. From the results of the grid dependency from the simulation of single dendritic growth, we confirmed that the larger grid can be used in the simulation and that the computational time can be reduced dramatically. In the simulation of secondary dendrite arm growth, the results from the present model were in good agreement with the experimental data and the simulated results from a phase-field model. Thus, the present model can quantitatively simulate dendritic growth. From the simulated results of multi-columnar and multi-equiaxed dendrites, we confirmed that the present model can perform simulations under practical solidification conditions. (paper)

5. Algebraic Methods to Design Signals

Science.gov (United States)

2015-08-27

to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory

6. Iterative and multigrid methods in the finite element solution of incompressible and turbulent fluid flow

Science.gov (United States)

Lavery, N.; Taylor, C.

1999-07-01

Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright

7. Multigrid methods for S/sub N/ problems

International Nuclear Information System (INIS)

Nowak, P.F.; Larsen, E.W.; Martin, W.R.

1987-01-01

It has long been known that the standard source iteration (SI) method for obtaining iterative solutions of S/sub N/ problems is very slowly converging in optically thick regions with low absorption. The rebalance and diffusion synthetic acceleration (DSA) methods are generalizations of SI that have been developed to accelerate convergence, but neither of these methods has been completely successful. In particular, the rebalance method tends to become unstable in problems where it is needed most (problems with high scattering ratios c = 1), while the DSA method, to be implemented in a stable fashion, requires the solution of a particular system of acceleration equations, and this has been done efficiently in two-dimensional geometries only for the diamond difference S/sub N/ equations. This paper discusses another extension of the SI method, namely, SI combined with the spatial multigrid algorithm (SIMG). This appears to be a viable way to accelerate many S/sub N/ problems in multidimensional geometries, provided the finest mesh consists of cells that are not optically thick

8. On a multigrid method for the coupled Stokes and porous media flow problem

Science.gov (United States)

Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.

2017-07-01

The multigrid solution of coupled porous media and Stokes flow problems is considered. The Darcy equation as the saturated porous medium model is coupled to the Stokes equations by means of appropriate interface conditions. We focus on an efficient multigrid solution technique for the coupled problem, which is discretized by finite volumes on staggered grids, giving rise to a saddle point linear system. Special treatment is required regarding the discretization at the interface. An Uzawa smoother is employed in multigrid, which is a decoupled procedure based on symmetric Gauss-Seidel smoothing for velocity components and a simple Richardson iteration for the pressure field. Since a relaxation parameter is part of a Richardson iteration, Local Fourier Analysis (LFA) is applied to determine the optimal parameters. Highly satisfactory multigrid convergence is reported, and, moreover, the algorithm performs well for small values of the hydraulic conductivity and fluid viscosity, that are relevant for applications.

9. Some multigrid algorithms for SIMD machines

Energy Technology Data Exchange (ETDEWEB)

Dendy, J.E. Jr. [Los Alamos National Lab., NM (United States)

1996-12-31

Previously a semicoarsening multigrid algorithm suitable for use on SIMD architectures was investigated. Through the use of new software tools, the performance of this algorithm has been considerably improved. The method has also been extended to three space dimensions. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance on the CM-5 is compared with its performance on the CRAY-YMP. A standard coarsening multigrid algorithm is also considered, and we compare its performance on these two platforms as well.

10. Progress with multigrid schemes for hypersonic flow problems

International Nuclear Information System (INIS)

1995-01-01

Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 X 10 6 and Mach numbers up to 25. 32 refs., 31 figs., 1 tab

11. Multigrid techniques with non-standard coarsening and group relaxation methods

International Nuclear Information System (INIS)

Danaee, A.

1989-06-01

In the usual (standard) multigrid methods, doubling of grid sizes with different smoothing iterations (pointwise, or blockwise) has been considered by different authors. Some have indicated that a large coarsening can also be used, but is not beneficial (cf. H3, p.59). In this paper, it is shown that with a suitable blockwise smoothing scheme, some advantages could be achieved even with a factor of H l-1 /h l = 3. (author). 10 refs, 2 figs, 6 tabs

12. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

NARCIS (Netherlands)

P. Luo (Peiyao); C. Rodrigo (Carmen); F.J. Gaspar Lorenz (Franscisco); C.W. Oosterlee (Cornelis)

2018-01-01

textabstractThe interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled

13. Aplicação do pré-condicionador Multigrid Algébrico baseado em Wavelet no cálculo de campos magnéticos não lineares

Directory of Open Access Journals (Sweden)

Fabio Henrique Pereira

2009-01-01

Full Text Available In this work the performance of ¿-cycle wavelet-based algebraic multigrid preconditioner for iterative methods is investigated. The method is applied as a preconditioner for the classical iterative methods Bi-Conjugate Gradient Stabilized (BiCGStab, Generalized Minimum Residual (GMRes and Conjugate Gradient (CG to the solution of non-linear system of algebraic equations from the analysis of a switched reluctance motor with ferromagnetic material the steel S45C and nonlinear magnetization curve, associated with the Newton-Raphson algorithm. Particular attention has been focused in both V- and W-cycle convergence factors, as well as the CPU time. Numerical results show the efficiency of the proposed techniques when compared with classical preconditioner, such as Incomplete Cholesky and Incomplete LU decomposition.

14. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

International Nuclear Information System (INIS)

Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

2003-01-01

Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines

15. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

Science.gov (United States)

Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

2003-07-01

Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.

16. Segmental Refinement: A Multigrid Technique for Data Locality

KAUST Repository

Adams, Mark F.; Brown, Jed; Knepley, Matt; Samtaney, Ravi

2016-01-01

We investigate a domain decomposed multigrid technique, termed segmental refinement, for solving general nonlinear elliptic boundary value problems. We extend the method first proposed in 1994 by analytically and experimentally investigating its complexity. We confirm that communication of traditional parallel multigrid is eliminated on fine grids, with modest amounts of extra work and storage, while maintaining the asymptotic exactness of full multigrid. We observe an accuracy dependence on the segmental refinement subdomain size, which was not considered in the original analysis. We present a communication complexity analysis that quantifies the communication costs ameliorated by segmental refinement and report performance results with up to 64K cores on a Cray XC30.

17. Segmental Refinement: A Multigrid Technique for Data Locality

KAUST Repository

2016-08-04

We investigate a domain decomposed multigrid technique, termed segmental refinement, for solving general nonlinear elliptic boundary value problems. We extend the method first proposed in 1994 by analytically and experimentally investigating its complexity. We confirm that communication of traditional parallel multigrid is eliminated on fine grids, with modest amounts of extra work and storage, while maintaining the asymptotic exactness of full multigrid. We observe an accuracy dependence on the segmental refinement subdomain size, which was not considered in the original analysis. We present a communication complexity analysis that quantifies the communication costs ameliorated by segmental refinement and report performance results with up to 64K cores on a Cray XC30.

18. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

Science.gov (United States)

Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.

2018-01-01

The interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled Uzawa smoother is employed as an efficient numerical technique for the linear discrete system obtained by finite volumes on staggered grids. A specialty in our modeling approach is that at the interface of the fluid and poroelastic medium, two unknowns from the different subsystems are defined at the same grid point. We propose a special discretization at and near the points on the interface, which combines the approximation of the governing equations and the considered interface conditions. In the decoupled Uzawa smoother, Local Fourier Analysis (LFA) helps us to select optimal values of the relaxation parameter appearing. To implement the monolithic multigrid method, grid partitioning is used to deal with the interface updates when communication is required between two subdomains. Numerical experiments show that the proposed numerical method has an excellent convergence rate. The efficiency and robustness of the method are confirmed in numerical experiments with typically small realistic values of the physical coefficients.

19. Multigrid for Staggered Lattice Fermions

Energy Technology Data Exchange (ETDEWEB)

Brower, Richard C. [Boston U.; Clark, M. A. [Unlisted, US; Strelchenko, Alexei [Fermilab; Weinberg, Evan [Boston U.

2018-01-23

Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.

20. On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics

NARCIS (Netherlands)

F.J. Gaspar Lorenz (Franscisco); C. Rodrigo (Carmen)

2017-01-01

textabstractThe fixed-stress split method has been widely used as solution method in the coupling of flow and geomechanics. In this work, we analyze the behavior of an inexact version of this algorithm as smoother within a geometric multigrid method, in order to obtain an efficient monolithic solver

1. Formalization and Implementation of Algebraic Methods in Geometry

Directory of Open Access Journals (Sweden)

Filip Marić

2012-02-01

Full Text Available We describe our ongoing project of formalization of algebraic methods for geometry theorem proving (Wu's method and the Groebner bases method, their implementation and integration in educational tools. The project includes formal verification of the algebraic methods within Isabelle/HOL proof assistant and development of a new, open-source Java implementation of the algebraic methods. The project should fill-in some gaps still existing in this area (e.g., the lack of formal links between algebraic methods and synthetic geometry and the lack of self-contained implementations of algebraic methods suitable for integration with dynamic geometry tools and should enable new applications of theorem proving in education.

2. Multigrid and multilevel domain decomposition for unstructured grids

Energy Technology Data Exchange (ETDEWEB)

Chan, T.; Smith, B.

1994-12-31

Multigrid has proven itself to be a very versatile method for the iterative solution of linear and nonlinear systems of equations arising from the discretization of PDES. In some applications, however, no natural multilevel structure of grids is available, and these must be generated as part of the solution procedure. In this presentation the authors will consider the problem of generating a multigrid algorithm when only a fine, unstructured grid is given. Their techniques generate a sequence of coarser grids by first forming an approximate maximal independent set of the vertices and then applying a Cavendish type algorithm to form the coarser triangulation. Numerical tests indicate that convergence using this approach can be as fast as standard multigrid on a structured mesh, at least in two dimensions.

3. A survey of parallel multigrid algorithms

Science.gov (United States)

Chan, Tony F.; Tuminaro, Ray S.

1987-01-01

A typical multigrid algorithm applied to well-behaved linear-elliptic partial-differential equations (PDEs) is described. Criteria for designing and evaluating parallel algorithms are presented. Before evaluating the performance of some parallel multigrid algorithms, consideration is given to some theoretical complexity results for solving PDEs in parallel and for executing the multigrid algorithm. The effect of mapping and load imbalance on the partial efficiency of the algorithm is studied.

4. Ground-state projection multigrid for propagators in 4-dimensional SU(2) gauge fields

International Nuclear Information System (INIS)

Kalkreuter, T.

1991-09-01

The ground-state projection multigrid method is studied for computations of slowly decaying bosonic propagators in 4-dimensional SU(2) lattice gauge theory. The defining eigenvalue equation for the restriction operator is solved exactly. Although the critical exponent z is not reduced in nontrivial gauge fields, multigrid still yields considerable speedup compared with conventional relaxation. Multigrid is also able to outperform the conjugate gradient algorithm. (orig.)

5. Scalable smoothing strategies for a geometric multigrid method for the immersed boundary equations

Energy Technology Data Exchange (ETDEWEB)

Bhalla, Amneet Pal Singh [Univ. of North Carolina, Chapel Hill, NC (United States); Knepley, Matthew G. [Rice Univ., Houston, TX (United States); Adams, Mark F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guy, Robert D. [Univ. of California, Davis, CA (United States); Griffith, Boyce E. [Univ. of North Carolina, Chapel Hill, NC (United States)

2016-12-20

The immersed boundary (IB) method is a widely used approach to simulating fluid-structure interaction (FSI). Although explicit versions of the IB method can suffer from severe time step size restrictions, these methods remain popular because of their simplicity and generality. In prior work (Guy et al., Adv Comput Math, 2015), some of us developed a geometric multigrid preconditioner for a stable semi-implicit IB method under Stokes flow conditions; however, this solver methodology used a Vanka-type smoother that presented limited opportunities for parallelization. This work extends this Stokes-IB solver methodology by developing smoothing techniques that are suitable for parallel implementation. Specifically, we demonstrate that an additive version of the Vanka smoother can yield an effective multigrid preconditioner for the Stokes-IB equations, and we introduce an efficient Schur complement-based smoother that is also shown to be effective for the Stokes-IB equations. We investigate the performance of these solvers for a broad range of material stiffnesses, both for Stokes flows and flows at nonzero Reynolds numbers, and for thick and thin structural models. We show here that linear solver performance degrades with increasing Reynolds number and material stiffness, especially for thin interface cases. Nonetheless, the proposed approaches promise to yield effective solution algorithms, especially at lower Reynolds numbers and at modest-to-high elastic stiffnesses.

6. Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.

Science.gov (United States)

Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L

2002-09-01

We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.

7. Unweighted least squares phase unwrapping by means of multigrid techniques

Science.gov (United States)

Pritt, Mark D.

1995-11-01

We present a multigrid algorithm for unweighted least squares phase unwrapping. This algorithm applies Gauss-Seidel relaxation schemes to solve the Poisson equation on smaller, coarser grids and transfers the intermediate results to the finer grids. This approach forms the basis of our multigrid algorithm for weighted least squares phase unwrapping, which is described in a separate paper. The key idea of our multigrid approach is to maintain the partial derivatives of the phase data in separate arrays and to correct these derivatives at the boundaries of the coarser grids. This maintains the boundary conditions necessary for rapid convergence to the correct solution. Although the multigrid algorithm is an iterative algorithm, we demonstrate that it is nearly as fast as the direct Fourier-based method. We also describe how to parallelize the algorithm for execution on a distributed-memory parallel processor computer or a network-cluster of workstations.

8. Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems

Science.gov (United States)

Bramble, James H.; Kwak, Do Y.; Pasciak, Joseph E.

1993-01-01

In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic problems. In this multigrid method various types of smoothers may be used. One type of smoother which we consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi, and Gauss-Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal form, that is, the product of the operator and its transpose. Other smoothers studied include point and line, Jacobi, and Gauss-Seidel. We show that the uniform estimates for symmetric positive definite problems carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is sufficiently fine (but not depending on the number of multigrid levels).

9. A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid structure interaction

Science.gov (United States)

Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.

2007-07-01

A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.

10. Robust Algebraic Multilevel Methods and Algorithms

CERN Document Server

Kraus, Johannes

2009-01-01

This book deals with algorithms for the solution of linear systems of algebraic equations with large-scale sparse matrices, with a focus on problems that are obtained after discretization of partial differential equations using finite element methods. Provides a systematic presentation of the recent advances in robust algebraic multilevel methods. Can be used for advanced courses on the topic.

11. Analysis of an aggregation-based algebraic two-grid method for a rotated anisotropic diffusion problem

KAUST Repository

Chen, Meng-Huo; Greenbaum, Anne

2015-01-01

Summary: A two-grid convergence analysis based on the paper [Algebraic analysis of aggregation-based multigrid, by A. Napov and Y. Notay, Numer. Lin. Alg. Appl. 18 (2011), pp. 539-564] is derived for various aggregation schemes applied to a finite element discretization of a rotated anisotropic diffusion equation. As expected, it is shown that the best aggregation scheme is one in which aggregates are aligned with the anisotropy. In practice, however, this is not what automatic aggregation procedures do. We suggest approaches for determining appropriate aggregates based on eigenvectors associated with small eigenvalues of a block splitting matrix or based on minimizing a quantity related to the spectral radius of the iteration matrix. © 2015 John Wiley & Sons, Ltd.

12. Analysis of an aggregation-based algebraic two-grid method for a rotated anisotropic diffusion problem

KAUST Repository

Chen, Meng-Huo

2015-03-18

Summary: A two-grid convergence analysis based on the paper [Algebraic analysis of aggregation-based multigrid, by A. Napov and Y. Notay, Numer. Lin. Alg. Appl. 18 (2011), pp. 539-564] is derived for various aggregation schemes applied to a finite element discretization of a rotated anisotropic diffusion equation. As expected, it is shown that the best aggregation scheme is one in which aggregates are aligned with the anisotropy. In practice, however, this is not what automatic aggregation procedures do. We suggest approaches for determining appropriate aggregates based on eigenvectors associated with small eigenvalues of a block splitting matrix or based on minimizing a quantity related to the spectral radius of the iteration matrix. © 2015 John Wiley & Sons, Ltd.

13. Neural multigrid for gauge theories and other disordered systems

International Nuclear Information System (INIS)

Baeker, M.; Kalkreuter, T.; Mack, G.; Speh, M.

1992-09-01

We present evidence that multigrid works for wave equations in disordered systems, e.g. in the presence of gauge fields, no matter how strong the disorder, but one needs to introduce a 'neural computations' point of view into large scale simulations: First, the system must learn how to do the simulations efficiently, then do the simulation (fast). The method can also be used to provide smooth interpolation kernels which are needed in multigrid Monte Carlo updates. (orig.)

14. Multigrid solution of the convection-diffusion equation with high-Reynolds number

Energy Technology Data Exchange (ETDEWEB)

Zhang, Jun [George Washington Univ., Washington, DC (United States)

1996-12-31

A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.

15. Classical versus Computer Algebra Methods in Elementary Geometry

Science.gov (United States)

Pech, Pavel

2005-01-01

Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…

16. Multigrid treatment of implicit continuum diffusion

Science.gov (United States)

Francisquez, Manaure; Zhu, Ben; Rogers, Barrett

2017-10-01

Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

17. Methods of algebraic geometry in control theory

CERN Document Server

Falb, Peter

1999-01-01

"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...

18. An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems

Science.gov (United States)

Deng, Qingping

1996-01-01

A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.

19. q-Derivatives, quantization methods and q-algebras

International Nuclear Information System (INIS)

Twarock, Reidun

1998-01-01

Using the example of Borel quantization on S 1 , we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number τ. This extension is denoted as quasi-crystal Lie algebra, because this is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed

20. Multicore Performance of Block Algebraic Iterative Reconstruction Methods

DEFF Research Database (Denmark)

Sørensen, Hans Henrik B.; Hansen, Per Christian

2014-01-01

Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely on semiconv......Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely...... on semiconvergence. Block versions of these methods, based on a partitioning of the linear system, are able to combine the fast semiconvergence of ART with the better multicore properties of SIRT. These block methods separate into two classes: those that, in each iteration, access the blocks in a sequential manner...... a fixed relaxation parameter in each method, namely, the one that leads to the fastest semiconvergence. Computational results show that for multicore computers, the sequential approach is preferable....

1. High Performance Parallel Multigrid Algorithms for Unstructured Grids

Science.gov (United States)

Frederickson, Paul O.

1996-01-01

We describe a high performance parallel multigrid algorithm for a rather general class of unstructured grid problems in two and three dimensions. The algorithm PUMG, for parallel unstructured multigrid, is related in structure to the parallel multigrid algorithm PSMG introduced by McBryan and Frederickson, for they both obtain a higher convergence rate through the use of multiple coarse grids. Another reason for the high convergence rate of PUMG is its smoother, an approximate inverse developed by Baumgardner and Frederickson.

2. Generalized Heisenberg algebra and algebraic method: The example of an infinite square-well potential

International Nuclear Information System (INIS)

Curado, E.M.F.; Hassouni, Y.; Rego-Monteiro, M.A.; Rodrigues, Ligia M.C.S.

2008-01-01

We discuss the role of generalized Heisenberg algebras (GHA) in obtaining an algebraic method to describe physical systems. The method consists in finding the GHA associated to a physical system and the relations between its generators and the physical observables. We choose as an example the infinite square-well potential for which we discuss the representations of the corresponding GHA. We suggest a way of constructing a physical realization of the generators of some GHA and apply it to the square-well potential. An expression for the position operator x in terms of the generators of the algebra is given and we compute its matrix elements

3. An algebraic formulation of quantum electrodynamics. [Fermi method, Schroedinger representation, Weylalgebra

Energy Technology Data Exchange (ETDEWEB)

Gaffney, J M

1975-01-01

A reappraisal of electromagnetic field theories is made and an account is given of the radiation gauge, Gupta-Bleuler and Fermi methods of quantitising the electromagnetic fields. The Weyl algebra of the vector potential is constructed and the Fermi method is then related to a certain representation of the algebra. The representation is specified by a generating functional for a state on the algebra. The Weyl algebra of the physical field is then constructed as a factor algebra. The Schroedinger representation of the algebra is then studied and it was found that the Fermi method is just a generalization of this representation to an infinite number of degrees of freedom. The Schroedinger representation of Fermi method is constructed.

4. Multigrid solution of incompressible turbulent flows by using two-equation turbulence models

Energy Technology Data Exchange (ETDEWEB)

Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)

1996-12-31

Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.

5. Variational linear algebraic equations method

International Nuclear Information System (INIS)

Moiseiwitsch, B.L.

1982-01-01

A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)

6. Linear Algebraic Method for Non-Linear Map Analysis

International Nuclear Information System (INIS)

Yu, L.; Nash, B.

2009-01-01

We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

7. Multigrid Computation of Stratified Flow over Two-Dimensional Obstacles

Science.gov (United States)

Paisley, M. F.

1997-09-01

A robust multigrid method for the incompressible Navier-Stokes equations is presented and applied to the computation of viscous flow over obstacles in a bounded domain under conditions of neutral stability and stable density stratification. Two obstacle shapes have been used, namely a vertical barrier, for which the grid is Cartesian, and a smooth cosine-shaped obstacle, for which a boundary-conforming transformation is incorporated. Results are given for laminar flows at low Reynolds numbers and turbulent flows at a high Reynolds number, when a simple mixing length turbulence model is included. The multigrid algorithm is used to compute steady flows for each obstacle at low and high Reynolds numbers in conditions of weak static stability, defined byK=ND/πU≤ 1, whereU,N, andDare the upstream velocity, bouyancy frequency, and domain height respectively. Results are also presented for the vertical barrier at low and high Reynolds number in conditions of strong static stability,K> 1, when lee wave motions ensure that the flow is unsteady, and the multigrid algorithm is used to compute the flow at each timestep.

8. Multigrid on unstructured grids using an auxiliary set of structured grids

Energy Technology Data Exchange (ETDEWEB)

Douglas, C.C.; Malhotra, S.; Schultz, M.H. [Yale Univ., New Haven, CT (United States)

1996-12-31

Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.

9. Algébrico: Parte II - Algoritmo Paralelo

Directory of Open Access Journals (Sweden)

Fabio Henrique Pereira

2007-01-01

Full Text Available In this work, it is presented a new parallel wavelet- based algorithm for the Algebraic Multigrid Method (PWAMG. A variation of the standard parallel implementation of discrete wavelet transforms is used in the construction of a hierarchy of matrices and of intergrid transfer operators for Algebraic Multigrid. The PWAMG method has been tested as a parallel solver for the two dimensional Poisson equation, for different numbers of finite difference mesh nodes and comparisons are made with the sequential version of this method.

10. A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

Science.gov (United States)

White, J. A.; Morrison, J. H.

1999-01-01

A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.

11. A Cost-Effective Smoothed Multigrid with Modified Neighborhood-Based Aggregation for Markov Chains

Directory of Open Access Journals (Sweden)

Zhao-Li Shen

2015-01-01

Full Text Available Smoothed aggregation multigrid method is considered for computing stationary distributions of Markov chains. A judgement which determines whether to implement the whole aggregation procedure is proposed. Through this strategy, a large amount of time in the aggregation procedure is saved without affecting the convergence behavior. Besides this, we explain the shortage and irrationality of the Neighborhood-Based aggregation which is commonly used in multigrid methods. Then a modified version is presented to remedy and improve it. Numerical experiments on some typical Markov chain problems are reported to illustrate the performance of these methods.

12. Copper Mountain conference on iterative methods: Proceedings: Volume 2

Energy Technology Data Exchange (ETDEWEB)

NONE

1996-10-01

This volume (the second of two) contains information presented during the last two days of the Copper Mountain Conference on Iterative Methods held April 9-13, 1996 at Copper Mountain, Colorado. Topics of the sessions held these two days include domain decomposition, Krylov methods, computational fluid dynamics, Markov chains, sparse and parallel basic linear algebra subprograms, multigrid methods, applications of iterative methods, equation systems with multiple right-hand sides, projection methods, and the Helmholtz equation. Selected papers indexed separately for the Energy Science and Technology Database.

13. Mathematical methods linear algebra normed spaces distributions integration

CERN Document Server

Korevaar, Jacob

1968-01-01

Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

14. Mapping robust parallel multigrid algorithms to scalable memory architectures

Science.gov (United States)

Overman, Andrea; Vanrosendale, John

1993-01-01

The convergence rate of standard multigrid algorithms degenerates on problems with stretched grids or anisotropic operators. The usual cure for this is the use of line or plane relaxation. However, multigrid algorithms based on line and plane relaxation have limited and awkward parallelism and are quite difficult to map effectively to highly parallel architectures. Newer multigrid algorithms that overcome anisotropy through the use of multiple coarse grids rather than relaxation are better suited to massively parallel architectures because they require only simple point-relaxation smoothers. In this paper, we look at the parallel implementation of a V-cycle multiple semicoarsened grid (MSG) algorithm on distributed-memory architectures such as the Intel iPSC/860 and Paragon computers. The MSG algorithms provide two levels of parallelism: parallelism within the relaxation or interpolation on each grid and across the grids on each multigrid level. Both levels of parallelism must be exploited to map these algorithms effectively to parallel architectures. This paper describes a mapping of an MSG algorithm to distributed-memory architectures that demonstrates how both levels of parallelism can be exploited. The result is a robust and effective multigrid algorithm for distributed-memory machines.

15. Commutative algebra constructive methods finite projective modules

CERN Document Server

Lombardi, Henri

2015-01-01

Translated from the popular French edition, this book offers a detailed introduction to various basic concepts, methods, principles, and results of commutative algebra. It takes a constructive viewpoint in commutative algebra and studies algorithmic approaches alongside several abstract classical theories. Indeed, it revisits these traditional topics with a new and simplifying manner, making the subject both accessible and innovative. The algorithmic aspects of such naturally abstract topics as Galois theory, Dedekind rings, Prüfer rings, finitely generated projective modules, dimension theory of commutative rings, and others in the current treatise, are all analysed in the spirit of the great developers of constructive algebra in the nineteenth century. This updated and revised edition contains over 350 well-arranged exercises, together with their helpful hints for solution. A basic knowledge of linear algebra, group theory, elementary number theory as well as the fundamentals of ring and module theory is r...

16. Highly indefinite multigrid for eigenvalue problems

Energy Technology Data Exchange (ETDEWEB)

Borges, L.; Oliveira, S.

1996-12-31

Eigenvalue problems are extremely important in understanding dynamic processes such as vibrations and control systems. Large scale eigenvalue problems can be very difficult to solve, especially if a large number of eigenvalues and the corresponding eigenvectors need to be computed. For solving this problem a multigrid preconditioned algorithm is presented in {open_quotes}The Davidson Algorithm, preconditioning and misconvergence{close_quotes}. Another approach for solving eigenvalue problems is by developing efficient solutions for highly indefinite problems. In this paper we concentrate on the use of new highly indefinite multigrid algorithms for the eigenvalue problem.

17. Algebraic Methods in Plane Geometry

Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Algebraic Methods in ... General Article Volume 13 Issue 10 October 2008 pp 916-928 ... Keywords. Conics; family of curves; Pascal's theorem; homogeneous coordinates; Butterfly theorem; abelian group; associativity of addition; group law.

18. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

Science.gov (United States)

Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa

2017-12-01

Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.

19. AIR Tools - A MATLAB package of algebraic iterative reconstruction methods

DEFF Research Database (Denmark)

Hansen, Per Christian; Saxild-Hansen, Maria

2012-01-01

We present a MATLAB package with implementations of several algebraic iterative reconstruction methods for discretizations of inverse problems. These so-called row action methods rely on semi-convergence for achieving the necessary regularization of the problem. Two classes of methods are impleme......We present a MATLAB package with implementations of several algebraic iterative reconstruction methods for discretizations of inverse problems. These so-called row action methods rely on semi-convergence for achieving the necessary regularization of the problem. Two classes of methods...... are implemented: Algebraic Reconstruction Techniques (ART) and Simultaneous Iterative Reconstruction Techniques (SIRT). In addition we provide a few simplified test problems from medical and seismic tomography. For each iterative method, a number of strategies are available for choosing the relaxation parameter...

20. Algebraic Verification Method for SEREs Properties via Groebner Bases Approaches

Directory of Open Access Journals (Sweden)

Ning Zhou

2013-01-01

Full Text Available This work presents an efficient solution using computer algebra system to perform linear temporal properties verification for synchronous digital systems. The method is essentially based on both Groebner bases approaches and symbolic simulation. A mechanism for constructing canonical polynomial set based symbolic representations for both circuit descriptions and assertions is studied. We then present a complete checking algorithm framework based on these algebraic representations by using Groebner bases. The computational experience result in this work shows that the algebraic approach is a quite competitive checking method and will be a useful supplement to the existent verification methods based on simulation.

1. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

NARCIS (Netherlands)

N.W. van den Hijligenberg; R. Martini

1995-01-01

textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra

2. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.

Science.gov (United States)

Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger

2016-11-01

In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

3. Multigrid solution of the Navier-Stokes equations at low speeds with large temperature variations

International Nuclear Information System (INIS)

Sockol, Peter M.

2003-01-01

Multigrid methods for the Navier-Stokes equations at low speeds and large temperature variations are investigated. The compressible equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. Three implicit smoothers have been incorporated into a common multigrid procedure. Both full coarsening and semi-coarsening with directional fine-grid defect correction have been studied. The resulting methods have been tested on four 2D laminar problems over a range of Reynolds numbers on both uniform and highly stretched grids. Two of the three methods show efficient and robust performance over the entire range of conditions. In addition, none of the methods has any difficulty with the large temperature variations

4. Multicloud: Multigrid convergence with a meshless operator

International Nuclear Information System (INIS)

Katz, Aaron; Jameson, Antony

2009-01-01

The primary objective of this work is to develop and test a new convergence acceleration technique we call multicloud. Multicloud is well-founded in the mathematical basis of multigrid, but relies on a meshless operator on coarse levels. The meshless operator enables extremely simple and automatic coarsening procedures for arbitrary meshes using arbitrary fine level discretization schemes. The performance of multicloud is compared with established multigrid techniques for structured and unstructured meshes for the Euler equations on two-dimensional test cases. Results indicate comparable convergence rates per unit work for multicloud and multigrid. However, because of its mesh and scheme transparency, multicloud may be applied to a wide array of problems with no modification of fine level schemes as is often required with agglomeration techniques. The implication is that multicloud can be implemented in a completely modular fashion, allowing researchers to develop fine level algorithms independent of the convergence accelerator for complex three-dimensional problems.

5. A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)

Science.gov (United States)

Zhang, H.; Tian, X.

2017-12-01

The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.

6. Conservative multigrid methods for Cahn-Hilliard fluids

International Nuclear Information System (INIS)

Kim, Junseok; Kang, Kyungkeun; Lowengrub, John

2004-01-01

We develop a conservative, second-order accurate fully implicit discretization of the Navier-Stokes (NS) and Cahn-Hilliard (CH) system that has an associated discrete energy functional. This system provides a diffuse-interface description of binary fluid flows with compressible or incompressible flow components [R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998) 2617]. In this work, we focus on the case of flows containing two immiscible, incompressible and density-matched components. The scheme, however, has a straightforward extension to multi-component systems. To efficiently solve the discrete system at the implicit time-level, we develop a nonlinear multigrid method to solve the CH equation which is then coupled to a projection method that is used to solve the NS equation. We demonstrate convergence of our scheme numerically in both the presence and absence of flow and perform simulations of phase separation via spinodal decomposition. We examine the separate effects of surface tension and external flow on the decomposition. We find surface tension driven flow alone increases coalescence rates through the retraction of interfaces. When there is an applied external shear, the evolution of the flow is nontrivial and the flow morphology repeats itself in time as multiple pinchoff and reconnection events occur. Eventually, the periodic motion ceases and the system relaxes to a global equilibrium. The equilibria we observe appears has a similar structure in all cases although the dynamics of the evolution is quite different. We view the work presented in this paper as preparatory for a detailed investigation of liquid-liquid interfaces with surface tension where the interfaces separate two immiscible fluids [On the pinchoff of liquid-liquid jets with surface tension, in preparation]. To this end, we also include a simulation of the pinchoff of a liquid thread under the Rayleigh instability at finite Reynolds number

7. Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

NARCIS (Netherlands)

van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud

1995-01-01

We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of

8. Two-level Fourier analysis of a multigrid approach for discontinuous Galerkin discretisation

NARCIS (Netherlands)

P.W. Hemker (Piet); W. Hoffmann; M.H. van Raalte (Marc)

2002-01-01

textabstractIn this paper we study a multigrid method for the solution of a linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods, andwe give a detailed analysis of the convergence for different block-relaxation strategies.We find that point-wise

9. SYNTHESIS METHODS OF ALGEBRAIC NORMAL FORM OF MANY-VALUED LOGIC FUNCTIONS

Directory of Open Access Journals (Sweden)

A. V. Sokolov

2016-01-01

Full Text Available The rapid development of methods of error-correcting coding, cryptography, and signal synthesis theory based on the principles of many-valued logic determines the need for a more detailed study of the forms of representation of functions of many-valued logic. In particular the algebraic normal form of Boolean functions, also known as Zhegalkin polynomial, that well describe many of the cryptographic properties of Boolean functions is widely used. In this article, we formalized the notion of algebraic normal form for many-valued logic functions. We developed a fast method of synthesis of algebraic normal form of 3-functions and 5-functions that work similarly to the Reed-Muller transform for Boolean functions: on the basis of recurrently synthesized transform matrices. We propose the hypothesis, which determines the rules of the synthesis of these matrices for the transformation from the truth table to the coefficients of the algebraic normal form and the inverse transform for any given number of variables of 3-functions or 5-functions. The article also introduces the definition of algebraic degree of nonlinearity of the functions of many-valued logic and the S-box, based on the principles of many-valued logic. Thus, the methods of synthesis of algebraic normal form of 3-functions applied to the known construction of recurrent synthesis of S-boxes of length N = 3k, whereby their algebraic degrees of nonlinearity are computed. The results could be the basis for further theoretical research and practical applications such as: the development of new cryptographic primitives, error-correcting codes, algorithms of data compression, signal structures, and algorithms of block and stream encryption, all based on the perspective principles of many-valued logic. In addition, the fast method of synthesis of algebraic normal form of many-valued logic functions is the basis for their software and hardware implementation.

10. Algebraic coarsening methods for linear and nonlinear PDE and systems

International Nuclear Information System (INIS)

McWilliams, J C

2000-01-01

In [l] Brandt describes a general approach for algebraic coarsening. Given fine-grid equations and a prescribed relaxation method, an approach is presented for defining both the coarse-grid variables and the coarse-grid equations corresponding to these variables. Although, these two tasks are not necessarily related (and, indeed, are often performed independently and with distinct techniques) in the approaches of  both revolve around the same underlying observation. To determine whether a given set of coarse-grid variables is appropriate it is suggested that one should employ compatible relaxation. This is a generalization of so-called F-relaxation (e.g., ). Suppose that the coarse-grid variables are defined as a subset of the fine-grid variables. Then, F-relaxation simply means relaxing only the F-variables (i.e., fine-grid variables that do not correspond to coarse-grid variables), while leaving the remaining fine-grid variables (C-variables) unchanged. The generalization of compatible relaxation is in allowing the coarse-grid variables to be defined differently, say as linear combinations of fine-grid variables, or even nondeterministically (see examples in ). For the present summary it suffices to consider the simple case. The central observation regarding the set of coarse-grid variables is the following : Observation 1--A general measure for the quality of the set of coarse-grid variables is the convergence rate of compatible relaxation. The conclusion is that a necessary condition for efficient multigrid solution (e.g., with convergence rates independent of problem size) is that the compatible-relaxation convergence be bounded away from 1, independently of the number of variables. This is often a sufficient condition, provided that the coarse-grid equations are sufficiently accurate. Therefore, it is suggested in  that the convergence rate of compatible relaxation should be used as a criterion for choosing and evaluating the set of coarse

11. Homological methods, representation theory, and cluster algebras

CERN Document Server

Trepode, Sonia

2018-01-01

This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...

12. Experiences using multigrid for geothermal simulation

Energy Technology Data Exchange (ETDEWEB)

Bullivant, D.P.; OSullivan, M.J. [Univ. of Auckland (New Zealand); Yang, Z. [Univ. of New South Wales (Australia)

1995-03-01

Experiences of applying multigrid to the calculation of natural states for geothermal simulations are discussed. The modelling of natural states was chosen for this study because they can take a long time to compute and the computation is often dominated by the development of phase change boundaries that take up a small region in the simulation. For the first part of this work a modified version of TOUGH was used for 2-D vertical problems. A {open_quotes}test-bed{close_quotes} program is now being used to investigate some of the problems encountered with implementing multigrid. This is ongoing work. To date, there have been some encouraging but not startling results.

13. FINAL REPORT (MILESTONE DATE 9/30/11) FOR SUBCONTRACT NO. B594099 NUMERICAL METHODS FOR LARGE-SCALE DATA FACTORIZATION

Energy Technology Data Exchange (ETDEWEB)

De Sterck, H

2011-10-18

The following work has been performed by PI Hans De Sterck and graduate student Manda Winlaw for the required tasks 1-5 (as listed in the Statement of Work). Graduate student Manda Winlaw has visited LLNL January 31-March 11, 2011 and May 23-August 19, 2010, working with Van Henson and Mike O'Hara on non-negative matrix factorizations (NMF). She has investigated the dense subgraph clustering algorithm from 'Finding Dense Subgraphs for Sparse Undirected, Directed, and Bipartite Graphs' by Chen and Saad, testing this method on several term-document matrices and adapting it to cluster based on the rank of the subgraphs instead of the density. Manda Winlaw was awarded a first prize in the annual LLNL summer student poster competition for a poster on her NMF research. PI Hans De Sterck has developed a new adaptive algebraic multigrid algorithm for computing a few dominant or minimal singular triplets of sparse rectangular matrices. This work builds on adaptive algebraic multigrid methods that were further developed by the PI and collaborators (including Sanders and Henson) for Markov chains. The method also combines and extends existing multigrid algorithms for the symmetric eigenproblem. The PI has visited LLNL February 22-25, 2011, and has given a CASC seminar 'Algebraic Multigrid for the Singular Value Problem' on this work on February 23, 2011. During his visit, he has discussed this work and related topics with Van Henson, Geoffrey Sanders, Panayot Vassilevski, and others. He has tested the algorithm on PDE matrices and on a term-document matrix, with promising initial results. Manda Winlaw has also started to work, with O'Hara, on estimating probability distributions over undirected graph edges. The goal is to estimate probabilistic models from sets of undirected graph edges for the purpose of prediction, anomaly detection and support to supervised learning. Graduate student Manda Winlaw is writing a paper on the results obtained with

14. Monomial algebras

CERN Document Server

Villarreal, Rafael

2015-01-01

The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

15. The Adapted Ordering Method for Lie algebras and superalgebras and their generalizations

Energy Technology Data Exchange (ETDEWEB)

Gato-Rivera, Beatriz [Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); NIKHEF-H, Kruislaan 409, NL-1098 SJ Amsterdam (Netherlands)

2008-02-01

In 1998 the Adapted Ordering Method was developed for the representation theory of the superconformal algebras in two dimensions. It allows us to determine maximal dimensions for a given type of space of singular vectors, to identify all singular vectors by only a few coefficients, to spot subsingular vectors and to set the basis for constructing embedding diagrams. In this paper we present the Adapted Ordering Method for general Lie algebras and superalgebras and their generalizations, provided they can be triangulated. We also review briefly the results obtained for the Virasoro algebra and for the N = 2 and Ramond N = 1 superconformal algebras.

16. Real division algebras and other algebras motivated by physics

International Nuclear Information System (INIS)

Benkart, G.; Osborn, J.M.

1981-01-01

In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations

17. On multigrid solution of the implicit equations of hydrodynamics. Experiments for the compressible Euler equations in general coordinates

Science.gov (United States)

Kifonidis, K.; Müller, E.

2012-08-01

Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a

18. Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra

NARCIS (Netherlands)

van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud

1995-01-01

We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).

19. INdAM Meeting on Homological and Computational Methods in Commutative Algebra

CERN Document Server

2017-01-01

This volume collects contributions by leading experts in the area of commutative algebra related to the  INdAM meeting “Homological and Computational Methods in Commutative Algebra” held in Cortona (Italy) from May 30 to  June 3, 2016 . The conference and this volume are dedicated to Winfried Bruns on the occasion of his 70th birthday. In particular, the topics of this book strongly reflect the variety of Winfried Bruns’ research interests and his great impact on commutative algebra as well as its applications to related fields. The authors discuss recent and relevant developments in algebraic geometry, commutative algebra, computational algebra, discrete geometry and homological algebra. The book offers a unique resource, both for young and more experienced researchers seeking comprehensive overviews and extensive bibliographic references.

20. The relation between quantum W algebras and Lie algebras

International Nuclear Information System (INIS)

Boer, J. de; Tjin, T.

1994-01-01

By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)

1. Higher-order schemes for the Laplace transformation method for parabolic problems

KAUST Repository

Douglas, C.

2011-01-01

In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely high order convergent. Second, higher-order compact schemes of order four and six are used for the the spatial discretization. Finally, the discretized linear algebraic systems are solved using multigrid to show the actual convergence rate for numerical examples, which are compared to other numerical solution methods. © 2011 Springer-Verlag.

2. The finite volume element (FVE) and multigrid method for the incompressible Navier-Stokes equations

International Nuclear Information System (INIS)

Gu Lizhen; Bao Weizhu

1992-01-01

The authors apply FVE method to discrete INS equations with the original variable, in which the bilinear square finite element and the square finite volume are chosen. The discrete schemes of INS equations are presented. The FMV multigrid algorithm is applied to solve that discrete system, where DGS iteration is used as smoother, DGS distributive mode for the INS discrete system is also presented. The sample problems for the square cavity flow with Reynolds number Re≤100 are successfully calculated. The numerical solutions show that the results with 1 FMV is satisfactory and when Re is not large, The FVE discrete scheme of the conservative INS equations and that of non-conservative INS equations with linearization both can provide almost same accuracy

3. Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface

Science.gov (United States)

Coco, Armando; Russo, Giovanni

2018-05-01

In this paper we propose a second-order accurate numerical method to solve elliptic problems with discontinuous coefficients (with general non-homogeneous jumps in the solution and its gradient) in 2D and 3D. The method consists of a finite-difference method on a Cartesian grid in which complex geometries (boundaries and interfaces) are embedded, and is second order accurate in the solution and the gradient itself. In order to avoid the drop in accuracy caused by the discontinuity of the coefficients across the interface, two numerical values are assigned on grid points that are close to the interface: a real value, that represents the numerical solution on that grid point, and a ghost value, that represents the numerical solution extrapolated from the other side of the interface, obtained by enforcing the assigned non-homogeneous jump conditions on the solution and its flux. The method is also extended to the case of matrix coefficient. The linear system arising from the discretization is solved by an efficient multigrid approach. Unlike the 1D case, grid points are not necessarily aligned with the normal derivative and therefore suitable stencils must be chosen to discretize interface conditions in order to achieve second order accuracy in the solution and its gradient. A proper treatment of the interface conditions will allow the multigrid to attain the optimal convergence factor, comparable with the one obtained by Local Fourier Analysis for rectangular domains. The method is robust enough to handle large jump in the coefficients: order of accuracy, monotonicity of the errors and good convergence factor are maintained by the scheme.

4. Seeking Space Aliens and the Strong Approximation Property: A (disjoint) Study in Dust Plumes on Planetary Satellites and Nonsymmetric Algebraic Multigrid

Science.gov (United States)

Southworth, Benjamin Scott

linear systems arises often in the modeling of biological and physical phenomenon, data analysis through graphs and networks, and other scientific applications. This work focuses primarily on linear systems resulting from the discretization of partial differential equations (PDEs). Because solving linear systems is the bottleneck of many large simulation codes, there is a rich field of research in developing "fast" solvers, with the ultimate goal being a method that solves an n x n linear system in O(n) operations. One of the most effective classes of solvers is algebraic multigrid (AMG), which is a multilevel iterative method based on projecting the problem into progressively smaller spaces, and scales like O(n) or O(nlog n) for certain classes of problems. The field of AMG is well-developed for symmetric positive definite matrices, and is typically most effective on linear systems resulting from the discretization of scalar elliptic PDEs, such as the heat equation. Systems of PDEs can add additional difficulties, but the underlying linear algebraic theory is consistent and, in many cases, an elliptic system of PDEs can be handled well by AMG with appropriate modifications of the solver. Solving general, nonsymmetric linear systems remains the wild west of AMG (and other fast solvers), lacking significant results in convergence theory as well as robust methods. Here, we develop new theoretical motivation and practical variations of AMG to solve nonsymmetric linear systems, often resulting from the discretization of hyperbolic PDEs. In particular, multilevel convergence of AMG for nonsymmetric systems is proven for the first time. A new nonsymmetric AMG solver is also developed based on an approximate ideal restriction, referred to as AIR, which is able to solve advection-dominated, hyperbolic-type problems that are outside the scope of existing AMG solvers and other fast iterative methods. AIR demonstrates scalable convergence on unstructured meshes, in multiple

5. Experimental and Theoretical Methods in Algebra, Geometry and Topology

CERN Document Server

Veys, Willem; Bridging Algebra, Geometry, and Topology

2014-01-01

Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference “Experimental and Theoretical Methods in Algebra, Geometry and Topology”, held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Ştefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research f...

6. Algorithmic and experimental methods in algebra, geometry, and number theory

CERN Document Server

Decker, Wolfram; Malle, Gunter

2017-01-01

This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved.  The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It off...

7. On one method of realization of commutation relation algebra

International Nuclear Information System (INIS)

Sveshnikov, K.A.

1983-01-01

Method for constructing the commulation relation representations based on the purely algebraic construction of joined algebraic representation with specially selected composition law has been suggested9 Purely combinatorial construction realizing commulation relations representation has been obtained proceeding from formal equivalence of operatopr action on vector and adding a simbol to a sequences of symbols. The above method practically has the structure of calculating algorithm, which assigns some rule of ''word'' formation of an initial set of ''letters''. In other words, a computer language with definite relations between words (an analogy between quantum mechanics and computer linguistics has been applied)

8. Use of regularized algebraic methods in tomographic reconstruction

International Nuclear Information System (INIS)

Koulibaly, P.M.; Darcourt, J.; Blanc-Ferraud, L.; Migneco, O.; Barlaud, M.

1997-01-01

The algebraic methods are used in emission tomography to facilitate the compensation of attenuation and of Compton scattering. We have tested on a phantom the use of a regularization (a priori introduction of information), as well as the taking into account of spatial resolution variation with the depth (SRVD). Hence, we have compared the performances of the two methods by back-projection filtering (BPF) and of the two algebraic methods (AM) in terms of FWHM (by means of a point source), of the reduction of background noise (σ/m) on the homogeneous part of Jaszczak's phantom and of reconstruction speed (time unit = BPF). The BPF methods make use of a grade filter (maximal resolution, no noise treatment), single or associated with a Hann's low-pass (f c = 0.4), as well as of an attenuation correction. The AM which embody attenuation and scattering corrections are, on one side, the OS EM (Ordered Subsets, partitioning and rearranging of the projection matrix; Expectation Maximization) without regularization or SRVD correction, and, on the other side, the OS MAP EM (Maximum a posteriori), regularized and embodying the SRVD correction. A table is given containing for each used method (grade, Hann, OS EM and OS MAP EM) the values of FWHM, σ/m and time, respectively. One can observe that the OS MAP EM algebraic method allows ameliorating both the resolution, by taking into account the SRVD in the reconstruction process and noise treatment by regularization. In addition, due to the OS technique the reconstruction times are acceptable

9. Commutative algebra with a view toward algebraic geometry

CERN Document Server

Eisenbud, David

1995-01-01

Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

10. Multigrid for high dimensional elliptic partial differential equations on non-equidistant grids

NARCIS (Netherlands)

bin Zubair, H.; Oosterlee, C.E.; Wienands, R.

2006-01-01

This work presents techniques, theory and numbers for multigrid in a general d-dimensional setting. The main focus is the multigrid convergence for high-dimensional partial differential equations (PDEs). As a model problem we have chosen the anisotropic diffusion equation, on a unit hypercube. We

11. Angular Multigrid Preconditioner for Krylov-Based Solution Techniques Applied to the Sn Equations with Highly Forward-Peaked Scattering

Science.gov (United States)

Turcksin, Bruno; Ragusa, Jean C.; Morel, Jim E.

2012-01-01

It is well known that the diffusion synthetic acceleration (DSA) methods for the Sn equations become ineffective in the Fokker-Planck forward-peaked scattering limit. In response to this deficiency, Morel and Manteuffel (1991) developed an angular multigrid method for the 1-D Sn equations. This method is very effective, costing roughly twice as much as DSA per source iteration, and yielding a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Pautz, Adams, and Morel (PAM) (1999) later generalized the angular multigrid to 2-D, but it was found that the method was unstable with sufficiently forward-peaked mappings between the angular grids. The method was stabilized via a filtering technique based on diffusion operators, but this filtering also degraded the effectiveness of the overall scheme. The spectral radius was not bounded away from unity in the Fokker-Planck limit, although the method remained more effective than DSA. The purpose of this article is to recast the multidimensional PAM angular multigrid method without the filtering as an Sn preconditioner and use it in conjunction with the Generalized Minimal RESidual (GMRES) Krylov method. The approach ensures stability and our computational results demonstrate that it is also significantly more efficient than an analogous DSA-preconditioned Krylov method.

12. A Direct Elliptic Solver Based on Hierarchically Low-Rank Schur Complements

KAUST Repository

Chávez, Gustavo

2017-03-17

A parallel fast direct solver for rank-compressible block tridiagonal linear systems is presented. Algorithmic synergies between Cyclic Reduction and Hierarchical matrix arithmetic operations result in a solver with O(Nlog2N) arithmetic complexity and O(NlogN) memory footprint. We provide a baseline for performance and applicability by comparing with well-known implementations of the $$\\\\mathcal{H}$$ -LU factorization and algebraic multigrid within a shared-memory parallel environment that leverages the concurrency features of the method. Numerical experiments reveal that this method is comparable with other fast direct solvers based on Hierarchical Matrices such as $$\\\\mathcal{H}$$ -LU and that it can tackle problems where algebraic multigrid fails to converge.

13. HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part I. Multilevel Analysis

NARCIS (Netherlands)

van der Vegt, Jacobus J.W.; Rhebergen, Sander

2011-01-01

The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate space-(time) discontinuous Galerkin discretizations of advection dominated flows is presented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the

14. Numerical method for the eigenvalue problem and the singular equation by using the multi-grid method and application to ordinary differential equation

International Nuclear Information System (INIS)

Kanki, Takashi; Uyama, Tadao; Tokuda, Shinji.

1995-07-01

In the numerical method to compute the matching data which are necessary for resistive MHD stability analyses, it is required to solve the eigenvalue problem and the associated singular equation. An iterative method is developed to solve the eigenvalue problem and the singular equation. In this method, the eigenvalue problem is replaced with an equivalent nonlinear equation and a singular equation is derived from Newton's method for the nonlinear equation. The multi-grid method (MGM), a high speed iterative method, can be applied to this method. The convergence of the eigenvalue and the eigenvector, and the CPU time in this method are investigated for a model equation. It is confirmed from the numerical results that this method is effective for solving the eigenvalue problem and the singular equation with numerical stability and high accuracy. It is shown by improving the MGM that the CPU time for this method is 50 times shorter than that of the direct method. (author)

15. Multigrid Reduction in Time for Nonlinear Parabolic Problems

Energy Technology Data Exchange (ETDEWEB)

Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Univ. of Colorado, Boulder, CO (United States); O' Neill, B. [Univ. of Colorado, Boulder, CO (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2016-01-04

The need for parallel-in-time is being driven by changes in computer architectures, where future speed-ups will be available through greater concurrency, but not faster clock speeds, which are stagnant.This leads to a bottleneck for sequential time marching schemes, because they lack parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficient is defined as achieving similar performance when compared to a corresponding linear problem. As our benchmark, we use the p-Laplacian, where p = 4 corresponds to a well-known nonlinear diffusion equation and p = 2 corresponds to our benchmark linear diffusion problem. When considering linear problems and implicit methods, the use of optimal spatial solvers such as spatial multigrid imply that the cost of one time step evaluation is fixed across temporal levels, which have a large variation in time step sizes. This is not the case for nonlinear problems, where the work required increases dramatically on coarser time grids, where relatively large time steps lead to worse conditioned nonlinear solves and increased nonlinear iteration counts per time step evaluation. This is the key difficulty explored by this paper. We show that by using a variety of strategies, most importantly, spatial coarsening and an alternate initial guess to the nonlinear time-step solver, we can reduce the work per time step evaluation over all temporal levels to a range similar with the corresponding linear problem. This allows for parallel scaling behavior comparable to the corresponding linear problem.

16. Multi-grid Beam and Warming scheme for the simulation of unsteady ...

African Journals Online (AJOL)

In this paper, a multi-grid algorithm is applied to a large-scale block matrix that is produced from a Beam and Warming scheme. The Beam and Warming scheme is used in the simulation of unsteady flow in an open channel. The Gauss-Seidel block-wise iteration method is used for a smoothing process with a few iterations.

17. Linear algebraic methods applied to intensity modulated radiation therapy.

Science.gov (United States)

Crooks, S M; Xing, L

2001-10-01

Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

18. Algebraic methods in statistical mechanics and quantum field theory

CERN Document Server

Emch, Dr Gérard G

2009-01-01

This systematic algebraic approach concerns problems involving a large number of degrees of freedom. It extends the traditional formalism of quantum mechanics, and it eliminates conceptual and mathematical difficulties common to the development of statistical mechanics and quantum field theory. Further, the approach is linked to research in applied and pure mathematics, offering a reflection of the interplay between formulation of physical motivations and self-contained descriptions of the mathematical methods.The four-part treatment begins with a survey of algebraic approaches to certain phys

19. Two-Level Hierarchical FEM Method for Modeling Passive Microwave Devices

Science.gov (United States)

Polstyanko, Sergey V.; Lee, Jin-Fa

1998-03-01

In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss-Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.

20. Algebraic topological entropy

International Nuclear Information System (INIS)

Hudetz, T.

1989-01-01

As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)

1. Conjugate gradient coupled with multigrid for an indefinite problem

Science.gov (United States)

Gozani, J.; Nachshon, A.; Turkel, E.

1984-01-01

An iterative algorithm for the Helmholtz equation is presented. This scheme was based on the preconditioned conjugate gradient method for the normal equations. The preconditioning is one cycle of a multigrid method for the discrete Laplacian. The smoothing algorithm is red-black Gauss-Seidel and is constructed so it is a symmetric operator. The total number of iterations needed by the algorithm is independent of h. By varying the number of grids, the number of iterations depends only weakly on k when k(3)h(2) is constant. Comparisons with a SSOR preconditioner are presented.

2. Free Modal Algebras Revisited: The Step-by-Step Method

NARCIS (Netherlands)

Bezhanishvili, N.; Ghilardi, Silvio; Jibladze, Mamuka

2012-01-01

We review the step-by-step method of constructing finitely generated free modal algebras. First we discuss the global step-by-step method, which works well for rank one modal logics. Next we refine the global step-by-step method to obtain the local step-by-step method, which is applicable beyond

3. AIR Tools II: algebraic iterative reconstruction methods, improved implementation

DEFF Research Database (Denmark)

Hansen, Per Christian; Jørgensen, Jakob Sauer

2017-01-01

with algebraic iterative methods and their convergence properties. The present software is a much expanded and improved version of the package AIR Tools from 2012, based on a new modular design. In addition to improved performance and memory use, we provide more flexible iterative methods, a column-action method...

4. Exact solution of some linear matrix equations using algebraic methods

Science.gov (United States)

Djaferis, T. E.; Mitter, S. K.

1977-01-01

A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

5. Multi-grid Particle-in-cell Simulations of Plasma Microturbulence

International Nuclear Information System (INIS)

Lewandowski, J.L.V.

2003-01-01

A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas

6. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

CERN Document Server

Pitsch, Wolfgang; Zarzuela, Santiago

2016-01-01

This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

7. An Improved Algebraic Method for Transit Signal Priority Scheme and Its Impact on Traffic Emission

OpenAIRE

Ji, Yanjie; Hu, Bo; Han, Jing; Tang, Dounan

2014-01-01

Transit signal priority has a positive effect on improving traffic congestion and reducing transit delay and also has an influence on traffic emission. In this paper, an optimal transit signal priority scheme based on an improved algebraic method was developed and its impact on vehicle emission was evaluated as well. The improved algebraic method was proposed on the basis of classical algebraic method and has improvements in three aspects. First, the calculation rules of split loss are more r...

8. Non-asymptotic fractional order differentiators via an algebraic parametric method

KAUST Repository

Liu, Dayan; Gibaru, O.; Perruquetti, Wilfrid

2012-01-01

Recently, Mboup, Join and Fliess ,  introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method , . In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie's modified Riemann-Liouville derivative . Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations. © 2012 IEEE.

9. Non-asymptotic fractional order differentiators via an algebraic parametric method

KAUST Repository

Liu, Dayan

2012-08-01

Recently, Mboup, Join and Fliess ,  introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method , . In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie\\'s modified Riemann-Liouville derivative . Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations. © 2012 IEEE.

10. A multigrid algorithm for the cell-centered finite difference scheme

Science.gov (United States)

Ewing, Richard E.; Shen, Jian

1993-01-01

In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.

11. Uzawa smoother in multigrid for the coupleD porous medium and stokes flow system

NARCIS (Netherlands)

P. Luo (Peiyao); C. Rodrigo (Carmen); F.J. Gaspar Lorenz (Franscisco); C.W. Oosterlee (Kees)

2017-01-01

textabstractThe multigrid solution of coupled porous media and Stokes flow problems is considered. The Darcy equation as the saturated porous medium model is coupled to the Stokes equations by means of appropriate interface conditions. We focus on an efficient multigrid solution technique for the

12. Multigrid preconditioning of the generator two-phase mixture balance equations in the Genepi software

International Nuclear Information System (INIS)

Belliard, M.; Grandotto, M.

2003-01-01

In the framework of the two-phase fluid simulations of the steam generators of pressurized water nuclear reactors, we present in this paper a geometric version of a pseudo-Full MultiGrid (pseudo- FMG) Full Approximation Storage (FAS) preconditioning of balance equations in the GENEPI code. In our application, the 3D steady state flow is reached by a transient computation using a semi-implicit fractional step algorithm for the averaged two-phase mixture balance equations (mass, momentum and energy for the secondary flow). Our application, running on workstation clusters, is based on a CEA code-linker and the PVM package. The difficulties to apply the geometric FAS multigrid method to the momentum and mass balance equations are addressed. The use of a sequential pseudo-FMG FAS twogrid method for both energy and mass/momentum balance equations, using dynamic multigrid cycles, leads to perceptibly improvements in the computation convergences. An original parallel red-black pseudo-FMG FAS three-grid algorithm is presented too. The numerical tests (steam generator mockup simulations) underline the sizable increase in speed of convergence of the computations, essentially for the ones involving a large number of freedom degrees (about 100 thousand cells). The two-phase mixture balance equation residuals are quickly reduced: the reached speed-up stands between 2 and 3 following the number of grids. The effects on the convergence behavior of the numerical parameters are investigated

13. Efficient multigrid computation of steady hypersonic flows

NARCIS (Netherlands)

Koren, B.; Hemker, P.W.; Murthy, T.K.S.

1991-01-01

In steady hypersonic flow computations, Newton iteration as a local relaxation procedure and nonlinear multigrid iteration as an acceleration procedure may both easily fail. In the present chapter, same remedies are presented for overcoming these problems. The equations considered are the steady,

14. The bubble algebra: structure of a two-colour Temperley-Lieb Algebra

International Nuclear Information System (INIS)

Grimm, Uwe; Martin, Paul P

2003-01-01

We define new diagram algebras providing a sequence of multiparameter generalizations of the Temperley-Lieb algebra, suitable for the modelling of dilute lattice systems of two-dimensional statistical mechanics. These algebras give a rigorous foundation to the various 'multi-colour algebras' of Grimm, Pearce and others. We determine the generic representation theory of the simplest of these algebras, and locate the nongeneric cases (at roots of unity of the corresponding parameters). We show by this example how the method used (Martin's general procedure for diagram algebras) may be applied to a wide variety of such algebras occurring in statistical mechanics. We demonstrate how these algebras may be used to solve the Yang-Baxter equations

15. Open algebraic surfaces

CERN Document Server

Miyanishi, Masayoshi

2000-01-01

Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

16. Study on time of flight property of electron optical systems by differential algebraic method

International Nuclear Information System (INIS)

Cheng Min; Tang Tiantong; Yao Zhenhua

2002-01-01

Differential algebraic method is a powerful and promising technique in computer numerical analysis. When applied to nonlinear dynamics systems, the arbitrary high-order transfer properties of the systems can be computed directly with high precision. In this paper, the principle of differential algebra is applied to study on the time of flight (TOF) property of electron optical systems and their arbitrary order TOF transfer properties can be numerically calculated out. As an example, TOF transfer properties of a uniform magnetic sector field analyzer have been studied by differential algebraic method. Relative errors of the first-order and second-order TOF transfer coefficients of the magnetic sector field analyzer are of the order 10 -11 or smaller compared with the analytic solutions. It is proved that differential algebraic TOF method is of high accuracy and very helpful for high-order TOF transfer property analysis of electron optical systems. (author)

17. On multigrid-CG for efficient topology optimization

DEFF Research Database (Denmark)

Amir, Oded; Aage, Niels; Lazarov, Boyan Stefanov

2014-01-01

reduction is obtained by exploiting specific characteristics of a multigrid preconditioned conjugate gradients (MGCG) solver. In particular, the number of MGCG iterations is reduced by relating it to the geometric parameters of the problem. At the same time, accurate outcome of the optimization process...

18. On the economical solution method for a system of linear algebraic equations

Directory of Open Access Journals (Sweden)

Jan Awrejcewicz

2004-01-01

Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.

19. Simple relation algebras

CERN Document Server

Givant, Steven

2017-01-01

This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

20. Quantum affine algebras and deformations of the virasoro and W-algebras

International Nuclear Information System (INIS)

Frenkel, E.; Reshetikhin, N.

1996-01-01

Using the Wakimoto realization of quantum affine algebras we define new Poisson algebras, which are q-deformations of the classical W-algebras. We also define their free field realizations, i.e. homomorphisms into some Heisenberg-Poisson algebras. The formulas for these homomorphisms coincide with formulas for spectra of transfer-matrices in the corresponding quantum integrable models derived by the Bethe-Ansatz method. (orig.)

1. Wavelets and quantum algebras

International Nuclear Information System (INIS)

Ludu, A.; Greiner, M.

1995-09-01

A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

2. An Algebraic Method of Synchronous Pulsewidth Modulation for Converters for Adjustable Speed Drives

DEFF Research Database (Denmark)

Oleschuk, Valentin; Blaabjerg, Frede

2002-01-01

This paper describes the basic peculiarities of a new method of feedforward synchronous pulsewidth modulation (PWM) of the output voltage of converters, based on one-stage closed-form strategy of PWM with pure algebraic control dependencies. It is applied to voltage source inverters with a contin......This paper describes the basic peculiarities of a new method of feedforward synchronous pulsewidth modulation (PWM) of the output voltage of converters, based on one-stage closed-form strategy of PWM with pure algebraic control dependencies. It is applied to voltage source inverters...... with a continuous scheme of conventional voltage space vector modulation and with two basic variants of symmetrical discontinuous PWM. Simulations give the behaviour of the proposed method and show the advantage of algebraic synchronous PWM compared with the typical asynchronous, for low indices of the frequency...

3. Distance-two interpolation for parallel algebraic multigrid

International Nuclear Information System (INIS)

Sterck, H de; Falgout, R D; Nolting, J W; Yang, U M

2007-01-01

In this paper we study the use of long distance interpolation methods with the low complexity coarsening algorithm PMIS. AMG performance and scalability is compared for classical as well as long distance interpolation methods on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers

4. Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems.

Science.gov (United States)

1980-10-01

solving (1.3); PFAS combines the concepts of multigrid algorithms with those of projected SOR. In Section 3, we discuss the implementation of PFAS, and...numerique de la torsion elasto- plastique d’une barre cylindrique. In Approximation et Methodes Iteratives de Resolution d’Inequations Variationelles et

5. Compiler generation and autotuning of communication-avoiding operators for geometric multigrid

Energy Technology Data Exchange (ETDEWEB)

Basu, Protonu [Univ. of Utah, Salt Lake City, UT (United States); Venkat, Anand [Univ. of Utah, Salt Lake City, UT (United States); Hall, Mary [Univ. of Utah, Salt Lake City, UT (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Van Straalen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

2014-04-17

This paper describes a compiler approach to introducing communication-avoiding optimizations in geometric multigrid (GMG), one of the most popular methods for solving partial differential equations. Communication-avoiding optimizations reduce vertical communication through the memory hierarchy and horizontal communication across processes or threads, usually at the expense of introducing redundant computation. We focus on applying these optimizations to the smooth operator, which successively reduces the error and accounts for the largest fraction of the GMG execution time. Our compiler technology applies both novel and known transformations to derive an implementation comparable to manually-tuned code. To make the approach portable, an underlying autotuning system explores the tradeoff between reduced communication and increased computation, as well as tradeoffs in threading schemes, to automatically identify the best implementation for a particular architecture and at each computation phase. Results show that we are able to quadruple the performance of the smooth operation on the finest grids while attaining performance within 94% of manually-tuned code. Overall we improve the overall multigrid solve time by 2.5× without sacrificing programer productivity.

6. Solving the nuclear shell model with an algebraic method

International Nuclear Information System (INIS)

Feng, D.H.; Pan, X.W.; Guidry, M.

1997-01-01

We illustrate algebraic methods in the nuclear shell model through a concrete example, the fermion dynamical symmetry model (FDSM). We use this model to introduce important concepts such as dynamical symmetry, symmetry breaking, effective symmetry, and diagonalization within a higher-symmetry basis. (orig.)

7. INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra"

CERN Document Server

Delucchi, Emanuele; Moci, Luca

2015-01-01

Combinatorics plays a prominent role in contemporary mathematics, due to the vibrant development it has experienced in the last two decades and its many interactions with other subjects. This book arises from the INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra,'' which was held in Cortona in September 2013. The event brought together emerging and leading researchers at the crossroads of Combinatorics, Topology and Algebra, with a particular focus on new trends in subjects such as: hyperplane arrangements; discrete geometry and combinatorial topology; polytope theory and triangulations of manifolds; combinatorial algebraic geometry and commutative algebra; algebraic combinatorics; and combinatorial representation theory. The book is divided into two parts. The first expands on the topics discussed at the conference by providing additional background and explanations, while the second presents original contributions on new trends in the topics addressed by the conference.

8. Morphing Wing Structural Optimization Using Opposite-Based Population-Based Incremental Learning and Multigrid Ground Elements

Directory of Open Access Journals (Sweden)

S. Sleesongsom

2015-01-01

Full Text Available This paper has twin aims. Firstly, a multigrid design approach for optimization of an unconventional morphing wing is proposed. The structural design problem is assigned to optimize wing mass, lift effectiveness, and buckling factor subject to structural safety requirements. Design variables consist of partial topology, nodal positions, and component sizes of a wing internal structure. Such a design process can be accomplished by using multiple resolutions of ground elements, which is called a multigrid approach. Secondly, an opposite-based multiobjective population-based incremental learning (OMPBIL is proposed for comparison with the original multiobjective population-based incremental learning (MPBIL. Multiobjective design problems with single-grid and multigrid design variables are then posed and tackled by OMPBIL and MPBIL. The results show that using OMPBIL in combination with a multigrid design approach is the best design strategy. OMPBIL is superior to MPBIL since the former provides better population diversity. Aeroelastic trim for an elastic morphing wing is also presented.

9. Adaptive parallel multigrid for Euler and incompressible Navier-Stokes equations

Energy Technology Data Exchange (ETDEWEB)

Trottenberg, U.; Oosterlee, K.; Ritzdorf, H. [and others

1996-12-31

The combination of (1) very efficient solution methods (Multigrid), (2) adaptivity, and (3) parallelism (distributed memory) clearly is absolutely necessary for future oriented numerics but still regarded as extremely difficult or even unsolved. We show that very nice results can be obtained for real life problems. Our approach is straightforward (based on {open_quotes}MLAT{close_quotes}). But, of course, reasonable refinement and load-balancing strategies have to be used. Our examples are 2D, but 3D is on the way.

10. Adaptive tree multigrids and simplified spherical harmonics approximation in deterministic neutral and charged particle transport

International Nuclear Information System (INIS)

Kotiluoto, P.

2007-05-01

A new deterministic three-dimensional neutral and charged particle transport code, MultiTrans, has been developed. In the novel approach, the adaptive tree multigrid technique is used in conjunction with simplified spherical harmonics approximation of the Boltzmann transport equation. The development of the new radiation transport code started in the framework of the Finnish boron neutron capture therapy (BNCT) project. Since the application of the MultiTrans code to BNCT dose planning problems, the testing and development of the MultiTrans code has continued in conventional radiotherapy and reactor physics applications. In this thesis, an overview of different numerical radiation transport methods is first given. Special features of the simplified spherical harmonics method and the adaptive tree multigrid technique are then reviewed. The usefulness of the new MultiTrans code has been indicated by verifying and validating the code performance for different types of neutral and charged particle transport problems, reported in separate publications. (orig.)

11. Representations of quantum bicrossproduct algebras

International Nuclear Information System (INIS)

Arratia, Oscar; Olmo, Mariano A del

2002-01-01

We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra

12. An algebraic sub-structuring method for large-scale eigenvalue calculation

International Nuclear Information System (INIS)

Yang, C.; Gao, W.; Bai, Z.; Li, X.; Lee, L.; Husbands, P.; Ng, E.

2004-01-01

We examine sub-structuring methods for solving large-scale generalized eigenvalue problems from a purely algebraic point of view. We use the term 'algebraic sub-structuring' to refer to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to provide approximate solutions to the original problem. We are interested in the question of which spectral components one should extract from each sub-structure in order to produce an approximate solution to the original problem with a desired level of accuracy. Error estimate for the approximation to the smallest eigenpair is developed. The estimate leads to a simple heuristic for choosing spectral components (modes) from each sub-structure. The effectiveness of such a heuristic is demonstrated with numerical examples. We show that algebraic sub-structuring can be effectively used to solve a generalized eigenvalue problem arising from the simulation of an accelerator structure. One interesting characteristic of this application is that the stiffness matrix produced by a hierarchical vector finite elements scheme contains a null space of large dimension. We present an efficient scheme to deflate this null space in the algebraic sub-structuring process

13. Vertex algebras and algebraic curves

CERN Document Server

Frenkel, Edward

2004-01-01

Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...

14. Algebraic partial Boolean algebras

International Nuclear Information System (INIS)

Smith, Derek

2003-01-01

Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

15. Improved Solver Settings for 3D Exploding Wire Simulations in ALEGRA

Science.gov (United States)

2016-08-01

performance and rate of throughput of ALEGRA-MHD simulations. The algebraic multigrid algorithms in ML approximate the solution of a linear sys- tem on a fine...in the algebraic multigrid preconditioner, Trilinos/ML, as implemented in ALEGRA. Three parameters impacted performance with one dominating. We provide...option (RM << 1) is not quite applicable and not used in this study. ALEGRA uses explicit time integration to solve the solid-dynamic and nonresistive

16. Solution of systems of linear algebraic equations by the method of summation of divergent series

International Nuclear Information System (INIS)

Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

2015-01-01

A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

17. C*-algebras by example

CERN Document Server

Davidson, Kenneth R

1996-01-01

The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea

18. Quadratic algebras in the noncommutative integration method of wave equation

International Nuclear Information System (INIS)

Varaksin, O.L.

1995-01-01

The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras

19. Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra

Science.gov (United States)

Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio

2018-03-01

By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.

20. Divergence of Scientific Heuristic Method and Direct Algebraic Instruction

Science.gov (United States)

Calucag, Lina S.

2016-01-01

This is an experimental study, made used of the non-randomized experimental and control groups, pretest-posttest designs. The experimental and control groups were two separate intact classes in Algebra. For a period of twelve sessions, the experimental group was subjected to the scientific heuristic method, but the control group instead was given…

1. Linear Algebra and Smarandache Linear Algebra

OpenAIRE

Vasantha, Kandasamy

2003-01-01

The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

2. A parallel version of a multigrid algorithm for isotropic transport equations

International Nuclear Information System (INIS)

Manteuffel, T.; McCormick, S.; Yang, G.; Morel, J.; Oliveira, S.

1994-01-01

The focus of this paper is on a parallel algorithm for solving the transport equations in a slab geometry using multigrid. The spatial discretization scheme used is a finite element method called the modified linear discontinuous (MLD) scheme. The MLD scheme represents a lumped version of the standard linear discontinuous (LD) scheme. The parallel algorithm was implemented on the Connection Machine 2 (CM2). Convergence rates and timings for this algorithm on the CM2 and Cray-YMP are shown

3. Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras

International Nuclear Information System (INIS)

Gebert, R.W.

1993-09-01

The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)

4. Towards a multigrid scheme in SU(2) lattice gauge theory

International Nuclear Information System (INIS)

Gutbrod, F.

1992-12-01

The task of constructing a viable updating multigrid scheme for SU(2) lattice gauge theory is discussed in connection with the classical eigenvalue problem. For a nonlocal overrelaxation Monte Carlo update step, the central numerical problem is the search for the minimum of a quadratic approximation to the action under nonlocal constraints. Here approximate eigenfunctions are essential to reduce the numerical work, and these eigenfunctions are to be constructed with multigrid techniques. A simple implementation on asymmetric lattices is described, where the grids are restricted to 3-dimensional hyperplanes. The scheme is shown to be moderately successful in the early stages of the updating history (starting from a cold configuration). The main results of another, less asymmetric scheme are presented briefly. (orig.)

5. Algebraic method for constructing singular steady solitary waves: a case study

Science.gov (United States)

Clamond, Didier; Dutykh, Denys; Galligo, André

2016-07-01

This article describes the use of algebraic methods in a phase plane analysis of ordinary differential equations. The method is illustrated by the study of capillary-gravity steady surface waves propagating in shallow water. We consider the (fully nonlinear, weakly dispersive) Serre-Green-Naghdi equation with surface tension, because it provides a tractable model that, at the same time, is not too simple, so interest in the method can be emphasized. In particular, we analyse a special class of solutions, the solitary waves, which play an important role in many fields of physics. In capillary-gravity regime, there are two kinds of localized infinitely smooth travelling wave solutions-solitary waves of elevation and of depression. However, if we allow the solitary waves to have an angular point, then the zoology' of solutions becomes much richer, and the main goal of this study is to provide a complete classification of such singular localized solutions using the methods of the effective algebraic geometry.

6. Subroutine MLTGRD: a multigrid algorithm based on multiplicative correction and implicit non-stationary iteration

International Nuclear Information System (INIS)

Barry, J.M.; Pollard, J.P.

1986-11-01

A FORTRAN subroutine MLTGRD is provided to solve efficiently the large systems of linear equations arising from a five-point finite difference discretisation of some elliptic partial differential equations. MLTGRD is a multigrid algorithm which provides multiplicative correction to iterative solution estimates from successively reduced systems of linear equations. It uses the method of implicit non-stationary iteration for all grid levels

7. Multiplier ideal sheaves and analytic methods in algebraic geometry

International Nuclear Information System (INIS)

Demailly, J.-P.

2001-01-01

Our main purpose here is to describe a few analytic tools which are useful to study questions such as linear series and vanishing theorems for algebraic vector bundles. One of the early successes of analytic methods in this context is Kodaira's use of the Bochner technique in relation with the theory of harmonic forms, during the decade 1950-60.The idea is to represent cohomology classes by harmonic forms and to prove vanishing theorems by means of suitable a priori curvature estimates. We pursue the study of L2 estimates, in relation with the Nullstellenstatz and with the extension problem. We show how subadditivity can be used to derive an approximation theorem for (almost) plurisubharmonic functions: any such function can be approximated by a sequence of (almost) plurisubharmonic functions which are smooth outside an analytic set, and which define the same multiplier ideal sheaves. From this, we derive a generalized version of the hard Lefschetz theorem for cohomology with values in a pseudo-effective line bundle; namely, the Lefschetz map is surjective when the cohomology groups are twisted by the relevant multiplier ideal sheaves. These notes are essentially written with the idea of serving as an analytic tool- box for algebraic geometers. Although efficient algebraic techniques exist, our feeling is that the analytic techniques are very flexible and offer a large variety of guidelines for more algebraic questions (including applications to number theory which are not discussed here). We made a special effort to use as little prerequisites and to be as self-contained as possible; hence the rather long preliminary sections dealing with basic facts of complex differential geometry

8. Multiplier ideal sheaves and analytic methods in algebraic geometry

Energy Technology Data Exchange (ETDEWEB)

Demailly, J -P [Universite de Grenoble I, Institut Fourier, Saint-Martin d' Heres (France)

2001-12-15

Our main purpose here is to describe a few analytic tools which are useful to study questions such as linear series and vanishing theorems for algebraic vector bundles. One of the early successes of analytic methods in this context is Kodaira's use of the Bochner technique in relation with the theory of harmonic forms, during the decade 1950-60.The idea is to represent cohomology classes by harmonic forms and to prove vanishing theorems by means of suitable a priori curvature estimates. We pursue the study of L2 estimates, in relation with the Nullstellenstatz and with the extension problem. We show how subadditivity can be used to derive an approximation theorem for (almost) plurisubharmonic functions: any such function can be approximated by a sequence of (almost) plurisubharmonic functions which are smooth outside an analytic set, and which define the same multiplier ideal sheaves. From this, we derive a generalized version of the hard Lefschetz theorem for cohomology with values in a pseudo-effective line bundle; namely, the Lefschetz map is surjective when the cohomology groups are twisted by the relevant multiplier ideal sheaves. These notes are essentially written with the idea of serving as an analytic tool- box for algebraic geometers. Although efficient algebraic techniques exist, our feeling is that the analytic techniques are very flexible and offer a large variety of guidelines for more algebraic questions (including applications to number theory which are not discussed here). We made a special effort to use as little prerequisites and to be as self-contained as possible; hence the rather long preliminary sections dealing with basic facts of complex differential geometry.

9. Mathematics and computational methods development in U.S. department of energy-sponsored research (nuclear energy research initiative and nuclear engineering education research). 5. Analysis of Angular V-Cycle Multigrid Formulation for Three-Dimensional Discrete Ordinates Shielding Problems

International Nuclear Information System (INIS)

Kucukboyaci, Vefa; Haghighat, Alireza

2001-01-01

We have developed new angular multigrid formulations, including the Simplified Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycle schemes, that are compatible with the parallel environment and the adaptive differencing strategy of the PENTRAN three-dimensional parallel S N code. Using the Fourier analysis method for an infinite, homogenous medium, we have investigated the effectiveness of the V-Cycle scheme for different problem parameters including scattering ratio, spatial differencing weights, quadrature order, and mesh size. We have further investigated the effectiveness of the new schemes for practical shielding applications such as the Kobayashi benchmark problem and the boiling water reactor core shroud problem. In this paper, we summarize the angular V-Cycle scheme implemented in the PENTRAN code, the Fourier Analysis of the V-Cycle scheme, and results of convergence analysis of the V-Cycle scheme using different problem parameters. The theoretical analysis reveals that the V-Cycle scheme is effective for a large range of scattering ratios and is insensitive to mesh size. Besides the theoretical analysis, we have applied the new angular multigrid schemes to shielding problems. In comparison to the standard PCR formulation, combinations of the new angular multigrid schemes and PCR (e.g., SAM+V-Cycle+PCR) have proved to be very effective for scattering ratios in a range of 0.6 to 0.9. (authors)

10. Generalization of the linear algebraic method to three dimensions

International Nuclear Information System (INIS)

Lynch, D.L.; Schneider, B.I.

1991-01-01

We present a numerical method for the solution of the Lippmann-Schwinger equation for electron-molecule collisions. By performing a three-dimensional numerical quadrature, this approach avoids both a basis-set representation of the wave function and a partial-wave expansion of the scattering potential. The resulting linear equations, analogous in form to the one-dimensional linear algebraic method, are solved with the direct iteration-variation method. Several numerical examples are presented. The prospect for using this numerical quadrature scheme for electron-polyatomic molecules is discussed

11. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

Science.gov (United States)

Laakso, Ilkka; Hirata, Akimasa

2012-12-01

In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

12. The Virasoro algebra in integrable hierarchies and the method of matrix models

International Nuclear Information System (INIS)

Semikhatov, A.M.

1992-01-01

The action of the Virasoro algebra on hierarchies of nonlinear integrable equations, and also the structure and consequences of Virasoro constraints on these hierarchies, are studied. It is proposed that a broad class of hierarchies, restricted by Virasoro constraints, can be defined in terms of dressing operators hidden in the structure of integrable systems. The Virasoro-algebra representation constructed on the dressing operators displays a number of analogies with structures in conformal field theory. The formulation of the Virasoro constraints that stems from this representation makes it possible to translate into the language of integrable systems a number of concepts from the method of the 'matrix models' that describe nonperturbative quantum gravity, and, in particular, to realize a 'hierarchical' version of the double scaling limit. From the Virasoro constraints written in terms of the dressing operators generalized loop equations are derived, and this makes it possible to do calculations on a reconstruction of the field-theoretical description. The reduction of the Kadomtsev-Petviashvili (KP) hierarchy, subject to Virasoro constraints, to generalized Korteweg-deVries (KdV) hierarchies is implemented, and the corresponding representation of the Virasoro algebra on these hierarchies is found both in the language of scalar differential operators and in the matrix formalism of Drinfel'd and Sokolov. The string equation in the matrix formalism does not replicate the structure of the scalar string equation. The symmetry algebras of the KP and N-KdV hierarchies restricted by Virasoro constraints are calculated: A relationship is established with algebras from the family W ∞ (J) of infinite W-algebras

13. Non commutative geometry methods for group C*-algebras

International Nuclear Information System (INIS)

Do Ngoc Diep.

1996-09-01

This book is intended to provide a quick introduction to the subject. The exposition is scheduled in the sequence, as possible for more understanding for beginners. The author exposed a K-theoretic approach to study group C * -algebras: started in the elementary part, with one example of description of the structure of C * -algebra of the group of affine transformations of the real straight line, continued then for some special classes of solvable and nilpotent Lie groups. In the second advanced part, he introduced the main tools of the theory. In particular, the conception of multidimensional geometric quantization and the index of group C * -algebras were created and developed. (author). Refs

14. Alternative algebraic approaches in quantum chemistry

International Nuclear Information System (INIS)

Mezey, Paul G.

2015-01-01

Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed

15. Alternative algebraic approaches in quantum chemistry

Energy Technology Data Exchange (ETDEWEB)

Mezey, Paul G., E-mail: paul.mezey@gmail.com [Canada Research Chair in Scientific Modeling and Simulation, Department of Chemistry and Department of Physics and Physical Oceanography, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John' s, NL A1B 3X7 (Canada)

2015-01-22

Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

16. Algebraic methods in system theory

Science.gov (United States)

Brockett, R. W.; Willems, J. C.; Willsky, A. S.

1975-01-01

Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

17. Quantum W-algebras and elliptic algebras

International Nuclear Information System (INIS)

Feigin, B.; Kyoto Univ.; Frenkel, E.

1996-01-01

We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)

18. W-realization of Lie algebras. Application to so(4,2) and Poincare algebras

International Nuclear Information System (INIS)

Barbarin, F.; Ragoucy, E.; Sorba, P.

1996-05-01

The property of some finite W-algebras to appear as the commutant of a particular subalgebra in a simple Lie algebra G is exploited for the obtention of new G-realizations from a 'canonical' differential one. The method is applied to the conformal algebra so(4,2) and therefore yields also results for its Poincare subalgebra. Unitary irreducible representations of these algebras are recognized in this approach, which is naturally compared -or associated to - the induced representation technique. (author)

19. Numerical Methods for a Class of Differential Algebraic Equations

Directory of Open Access Journals (Sweden)

Lei Ren

2017-01-01

Full Text Available This paper is devoted to the study of some efficient numerical methods for the differential algebraic equations (DAEs. At first, we propose a finite algorithm to compute the Drazin inverse of the time varying DAEs. Numerical experiments are presented by Drazin inverse and Radau IIA method, which illustrate that the precision of the Drazin inverse method is higher than the Radau IIA method. Then, Drazin inverse, Radau IIA, and Padé approximation are applied to the constant coefficient DAEs, respectively. Numerical results demonstrate that the Padé approximation is powerful for solving constant coefficient DAEs.

20. Recoupling Lie algebra and universal ω-algebra

International Nuclear Information System (INIS)

Joyce, William P.

2004-01-01

We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure

1. W-realization of Lie algebras. Application to so(4,2) and Poincare algebras

Energy Technology Data Exchange (ETDEWEB)

Barbarin, F.; Ragoucy, E.; Sorba, P.

1996-05-01

The property of some finite W-algebras to appear as the commutant of a particular subalgebra in a simple Lie algebra G is exploited for the obtention of new G-realizations from a canonical differential one. The method is applied to the conformal algebra so(4,2) and therefore yields also results for its Poincare subalgebra. Unitary irreducible representations of these algebras are recognized in this approach, which is naturally compared -or associated to - the induced representation technique. (author). 12 refs.

2. Algebraic collapsing acceleration of the characteristics method with anisotropic scattering

International Nuclear Information System (INIS)

Le Tellier, R.; Hebert, A.; Roy, R.

2004-01-01

In this paper, the characteristics solvers implemented in the lattice code Dragon are extended to allow a complete anisotropic treatment of the collision operator. An efficient synthetic acceleration method, called Algebraic Collapsing Acceleration (ACA), is presented. Tests show that this method can substantially speed up the convergence of scattering source iterations. The effect of boundary conditions, either specular or white reflections, on anisotropic scattering lattice-cell problems is also considered. (author)

3. Blockspin and multigrid for staggered fermions in non-abelian gauge fields

International Nuclear Information System (INIS)

Kalkreuter, T.; Mack, G.; Speh, M.

1991-07-01

We discuss blockspins for staggered fermions, i.e. averaging and interpolation procedures which are needed in a real space renormalization group approach to gauge theories with staggered fermions and in a multigrid approach to the computation of gauge covariant propagators. The discussion starts from the requirement that the symmetries of the free action should be preserved by the blocking procedure in the limit of a pure gauge. A definition of an averaging kernel as a solution of a gauge covariant eigenvalue equation is proposed, and the properties of a corresponding interpolation kernel are examined in the light of general criteria for good choices of blockspins. Some results of multigrid computation of bosonic propagation in an SU(2) gauge field in 4 dimensions are also presented. (orig.)

4. The Yoneda algebra of a K2 algebra need not be another K2 algebra

OpenAIRE

Cassidy, T.; Phan, C.; Shelton, B.

2010-01-01

The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

5. Multigrid and defect correction for the steady Navier-Stokes equations

NARCIS (Netherlands)

Koren, B.

1990-01-01

Theoretical and experimental convergence results are presented for nonlinear multigrid and iterative defect correction applied to finite volume discretizations of the full, steady, 2D, compressible Navier-Stokes equations. Iterative defect correction is introduced for circumventing the difficulty in

6. Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes, and light optics

International Nuclear Information System (INIS)

Dragt, A.J.

1987-01-01

A review is given of elementary Lie algebraic methods for treating Hamiltonian systems. This review is followed by a brief exposition of advanced Lie algebraic methods including resonance bases and conjugacy theorems. Finally, applications are made to the design of third-order achromats for use in accelerators, to the design of subangstroem resolution electron microscopes, and to the classification and study of high order aberrations in light optics. (orig.)

7. Cylindric-like algebras and algebraic logic

CERN Document Server

Ferenczi, Miklós; Németi, István

2013-01-01

Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

8. An algebraic method for constructing stable and consistent autoregressive filters

International Nuclear Information System (INIS)

Harlim, John; Hong, Hoon; Robbins, Jacob L.

2015-01-01

In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides a discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern

9. Study on Differential Algebraic Method of Aberrations up to Arbitrary Order for Combined Electromagnetic Focusing Systems

Institute of Scientific and Technical Information of China (English)

CHENG Min; TANG Tiantong; YAO Zhenhua; ZHU Jingping

2001-01-01

Differential algebraic method is apowerful technique in computer numerical analysisbased on nonstandard analysis and formal series the-ory. It can compute arbitrary high order derivativeswith excellent accuracy. The principle of differentialalgebraic method is applied to calculate high orderaberrations of combined electromagnetic focusing sys-tems. As an example, third-order geometric aberra-tion coefficients of an actual combined electromagneticfocusing system were calculated. The arbitrary highorder aberrations are conveniently calculated by dif-ferential algebraic method and the fifth-order aberra-tion diagrams are given.

10. Tensor spaces and exterior algebra

CERN Document Server

Yokonuma, Takeo

1992-01-01

This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.

11. Modeling of frequency-domain scalar wave equation with the average-derivative optimal scheme based on a multigrid-preconditioned iterative solver

Science.gov (United States)

Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue

2018-01-01

An efficient finite-difference frequency-domain modeling of seismic wave propagation relies on the discrete schemes and appropriate solving methods. The average-derivative optimal scheme for the scalar wave modeling is advantageous in terms of the storage saving for the system of linear equations and the flexibility for arbitrary directional sampling intervals. However, using a LU-decomposition-based direct solver to solve its resulting system of linear equations is very costly for both memory and computational requirements. To address this issue, we consider establishing a multigrid-preconditioned BI-CGSTAB iterative solver fit for the average-derivative optimal scheme. The choice of preconditioning matrix and its corresponding multigrid components is made with the help of Fourier spectral analysis and local mode analysis, respectively, which is important for the convergence. Furthermore, we find that for the computation with unequal directional sampling interval, the anisotropic smoothing in the multigrid precondition may affect the convergence rate of this iterative solver. Successful numerical applications of this iterative solver for the homogenous and heterogeneous models in 2D and 3D are presented where the significant reduction of computer memory and the improvement of computational efficiency are demonstrated by comparison with the direct solver. In the numerical experiments, we also show that the unequal directional sampling interval will weaken the advantage of this multigrid-preconditioned iterative solver in the computing speed or, even worse, could reduce its accuracy in some cases, which implies the need for a reasonable control of directional sampling interval in the discretization.

12. Multigrid solution of diffusion equations on distributed memory multiprocessor systems

International Nuclear Information System (INIS)

Finnemann, H.

1988-01-01

The subject is the solution of partial differential equations for simulation of the reactor core on high-performance computers. The parallelization and implementation of nodal multigrid diffusion algorithms on array and ring configurations of the DIRMU multiprocessor system is outlined. The particular iteration scheme employed in the nodal expansion method appears similarly efficient in serial and parallel environments. The combination of modern multi-level techniques with innovative hardware (vector-multiprocessor systems) provides powerful tools needed for real time simulation of physical systems. The parallel efficiencies range from 70 to 90%. The same performance is estimated for large problems on large multiprocessor systems being designed at present. (orig.) [de

13. Current algebra

International Nuclear Information System (INIS)

Jacob, M.

1967-01-01

The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr

14. Multi-grid and ICCG for problems with interfaces

International Nuclear Information System (INIS)

Dendy, J.E.; Hyman, J.M.

1980-01-01

Computation times for the multi-grid (MG) algorithm, the incomplete Cholesky conjugate gradient (ICCG) algorithm [J. Comp. Phys. 26, 43-65 (1978); Math. Comp. 31, 148-162 (1977)], and the modified ICCG (MICCG) algorithm [BIT 18, 142-156 (1978)] to solve elliptic partial differential equations are compared. The MICCG and ICCG algorithms are more robust than the MG for general positive definite systems. A major advantage of the MG algorithm is that the structure of the problem can be exploited to reduce the solution time significantly. Five example problems are discussed. For problems with little structure and for one-shot calculations ICCG is recommended over MG, and MICCG, over ICCG. For problems that are done many times, it is worth investing the effort to study methods like MG. 1 table

15. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

International Nuclear Information System (INIS)

Ammar, F; Makhlouf, A; Silvestrov, S

2010-01-01

In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

16. Donaldson invariants in algebraic geometry

International Nuclear Information System (INIS)

Goettsche, L.

2000-01-01

In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

17. Introduction to relation algebras relation algebras

CERN Document Server

Givant, Steven

2017-01-01

The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

18. Lectures on algebraic quantum field theory and operator algebras

International Nuclear Information System (INIS)

Schroer, Bert

2001-04-01

In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

19. Multigrid time-accurate integration of Navier-Stokes equations

Science.gov (United States)

Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

1993-01-01

Efficient acceleration techniques typical of explicit steady-state solvers are extended to time-accurate calculations. Stability restrictions are greatly reduced by means of a fully implicit time discretization. A four-stage Runge-Kutta scheme with local time stepping, residual smoothing, and multigridding is used instead of traditional time-expensive factorizations. Some applications to natural and forced unsteady viscous flows show the capability of the procedure.

20. Algebraic methods in random matrices and enumerative geometry

CERN Document Server

Eynard, Bertrand

2008-01-01

We review the method of symplectic invariants recently introduced to solve matrix models loop equations, and further extended beyond the context of matrix models. For any given spectral curve, one defined a sequence of differential forms, and a sequence of complex numbers Fg . We recall the definition of the invariants Fg, and we explain their main properties, in particular symplectic invariance, integrability, modularity,... Then, we give several example of applications, in particular matrix models, enumeration of discrete surfaces (maps), algebraic geometry and topological strings, non-intersecting brownian motions,...

1. Lie algebras and applications

CERN Document Server

Iachello, Francesco

2015-01-01

This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

2. Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS

Science.gov (United States)

Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.

2017-04-01

The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

3. From Rota-Baxter algebras to pre-Lie algebras

International Nuclear Information System (INIS)

An Huihui; Ba, Chengming

2008-01-01

Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras

4. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator algebras

International Nuclear Information System (INIS)

Marquette, Ian

2013-01-01

We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently

5. A q-deformed Lorentz algebra

International Nuclear Information System (INIS)

Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

1991-01-01

We derive a q-deformed version of the Lorentz algebra by deformating the algebra SL(2, C). The method is based on linear representations of the algebra on the complex quantum spinor space. We find that the generators usually identified with SL q (2, C) generate SU q (2) only. Four additional generators are added which generate Lorentz boosts. The full algebra of all seven generators and their coproduct is presented. We show that in the limit q→1 the generators are those of the classical Lorentz algebra plus an additional U(1). Thus we have a deformation of SL(2, C)xU(1). (orig.)

6. Non commutative geometry methods for group C{sup *}-algebras

Energy Technology Data Exchange (ETDEWEB)

Diep, Do Ngoc

1996-09-01

This book is intended to provide a quick introduction to the subject. The exposition is scheduled in the sequence, as possible for more understanding for beginners. The author exposed a K-theoretic approach to study group C{sup *}-algebras: started in the elementary part, with one example of description of the structure of C{sup *}-algebra of the group of affine transformations of the real straight line, continued then for some special classes of solvable and nilpotent Lie groups. In the second advanced part, he introduced the main tools of the theory. In particular, the conception of multidimensional geometric quantization and the index of group C{sup *}-algebras were created and developed. (author). Refs.

7. High order aberrations calculation of a hexapole corrector using a differential algebra method

Energy Technology Data Exchange (ETDEWEB)

Kang, Yongfeng, E-mail: yfkang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Zhao, Jingyi, E-mail: jingyi.zhao@foxmail.com [School of Science, Chang’an University, Xi’an 710064 (China); Tang, Tiantong [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

2017-02-21

A differential algebraic (DA) method is proved as an unusual and effective tool in numerical analysis. It implements conveniently differentiation up to arbitrary high order, based on the nonstandard analysis. In this paper, the differential algebra (DA) method has been employed to compute the high order aberrations up to the fifth order of a practical hexapole corrector including round lenses and hexapole lenses. The program has been developed and tested as well. The electro-magnetic fields of arbitrary point are obtained by local analytic expressions, then field potentials are transformed into new forms which can be operated in the DA calculation. In this paper, the geometric and chromatic aberrations up to fifth order of a practical hexapole corrector system are calculated by the developed program.

8. Yoneda algebras of almost Koszul algebras

Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...

9. Quantum cluster algebras and quantum nilpotent algebras

Science.gov (United States)

Goodearl, Kenneth R.; Yakimov, Milen T.

2014-01-01

A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

10. An introduction to algebraic geometry and algebraic groups

CERN Document Server

Geck, Meinolf

2003-01-01

An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups

11. Einstein algebras and general relativity

International Nuclear Information System (INIS)

Heller, M.

1992-01-01

A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs

12. Building bridges between algebra and topology

CERN Document Server

Pitsch, Wolfgang; Zarzuela, Santiago

2018-01-01

This volume presents an elaborated version of lecture notes for two advanced courses: (Re)Emerging Methods in Commutative Algebra and Representation Theory and Building Bridges Between Algebra and Topology, held at the CRM in the spring of 2015. Homological algebra is a rich and ubiquitous subject; it is both an active field of research and a widespread toolbox for many mathematicians. Together, these notes introduce recent applications and interactions of homological methods in commutative algebra, representation theory and topology, narrowing the gap between specialists from different areas wishing to acquaint themselves with a rapidly growing field. The covered topics range from a fresh introduction to the growing area of support theory for triangulated categories to the striking consequences of the formulation in the homotopy theory of classical concepts in commutative algebra. Moreover, they also include a higher categories view of Hall algebras and an introduction to the use of idempotent functors in al...

13. Higher-order differencing method with a multigrid approach for the solution of the incompressible flow equations at high Reynolds numbers

International Nuclear Information System (INIS)

Tzanos, C.P.

1992-01-01

A higher-order differencing method was recently proposed for the convection-diffusion equation, which even with a coarse mesh gives oscillation-free solutions that are far more accurate than those of the upwind scheme. In this paper, the performance of this method is investigated in conjunction with the performance of different iterative solvers for the solution of the Navier-Stokes equations in the vorticity-streamfunction formulation for incompressible flow at high Reynolds numbers. Flow in a square cavity with a moving lid was chosen as a model problem. Solvers that performed well at low Re numbers either failed to converge or had a computationally prohibitive convergence rate at high Re numbers. The additive correction method of Settari and Aziz and an iterative incomplete lower and upper (ILU) solver were used in a multigrid approach that performed well in the whole range of Re numbers considered (from 1000 to 10,000) and for uniform as well as nonuniform grids. At high Re numbers, point or line Gauss-Seidel solvers converged with uniform grids, but failed to converge with nonuniform grids

14. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

International Nuclear Information System (INIS)

Gerdt, V.P.; Kostov, N.A.

1989-01-01

In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

15. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

Science.gov (United States)

Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

2003-02-01

Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

16. A Numerical Method for Partial Differential Algebraic Equations Based on Differential Transform Method

Directory of Open Access Journals (Sweden)

Murat Osmanoglu

2013-01-01

Full Text Available We have considered linear partial differential algebraic equations (LPDAEs of the form , which has at least one singular matrix of . We have first introduced a uniform differential time index and a differential space index. The initial conditions and boundary conditions of the given system cannot be prescribed for all components of the solution vector here. To overcome this, we introduced these indexes. Furthermore, differential transform method has been given to solve LPDAEs. We have applied this method to a test problem, and numerical solution of the problem has been compared with analytical solution.

17. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

Directory of Open Access Journals (Sweden)

Kelin Zhuang

2017-01-01

Full Text Available A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land–sea–ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

18. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

Science.gov (United States)

Zhuang, Kelin; North, Gerald R.; Stevens, Mark J.

A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land-sea-ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

19. h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems

Science.gov (United States)

Botti, L.; Colombo, A.; Bassi, F.

2017-10-01

In this work we exploit agglomeration based h-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature h-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.

20. Algebraic Methods in Plane Geometry

Srimath

rally, a1 ;a2 ;a3 ;a4 m ust not all be 0.) If w e m ultiply all th e ai's by a non-zero constant w e get the sam e cubic. .... B ut a sm all m odi¯cation of the operation changes the ..... Robert Bix, Conics and Cubics: A Concrete Introduction to Algebraic ... Joseph H Silverman and John Torrence Tate, Rational Points on Elliptic.

1. Lectures on Algebraic Geometry I

CERN Document Server

Harder, Gunter

2012-01-01

This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho

2. 2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras

International Nuclear Information System (INIS)

Ayupov, Shavkat; Kudaybergenov, Karimbergen

2016-01-01

The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)

3. A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids

Science.gov (United States)

Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

2001-01-01

This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.

4. Development of new multigrid schemes for the method of characteristics in neutron transport theory

International Nuclear Information System (INIS)

Grassi, G.

2006-01-01

This dissertation is based upon our doctoral research that dealt with the conception and development of new non-linear multigrid techniques for the Method of the Characteristics (MOC) within the TDT code. Here we focus upon a two-level scheme consisting of a fine level on which the neutron transport equation is iteratively solved using the MOC algorithm, and a coarse level defined by a more coarsely discretized phase space on which a low-order problem is considered. The solution of this problem is then used in order to correct the angular flux moments resulting from the previous transport iteration. A flux-volume homogenization procedure is employed to evaluate the coarse-level material properties after each transport iteration. This entails the non-linearity of the methods. According to the Generalised Equivalence Theory (GET), additional degrees of freedom are introduced for the low-order problem so that the convergence of the acceleration scheme can be ensured. We present two classes of non-linear methods: transport-like methods and discussion-like methods. Transport-like methods consider a homogenized low-order transport problem on the coarse level. This problem is iteratively solved using the same MOC algorithm as for the transport problem on the fine level. Discontinuity factors are then employed, per region or per surface, in order to reconstruct the currents evaluated by the low-order operator, which ensure the convergence of the acceleration scheme. On the other hand, discussion-like methods consider a low-order problem inspired by diffusion. We studied the non-linear Coarse Mesh Finite Difference (CMFD) method, already present in literature, in the perspective of integrating it into TDT code. Then, we developed a new non-linear method on the model of CMFD. From the latter, we borrowed the idea to establish a simple relation between currents and fluxes in order to obtain a problem involving only coarse fluxes. Finally, those non-linear methods have been

5. The Jordan structure of lie and Kac-Moody algebras

International Nuclear Information System (INIS)

Ferreira, L.A.; Gomes, J.F.; Teotonio Sobrinho, P.; Zimerman, A.H.

1989-01-01

A precise relation between the structures of Lie and Jordan algebras by presenting a method of constructing one type of algebra from the other is established. The method differs in some aspects of the Tits construction and Jordan pairs. The examples of the Lie algebras associated to simple Jordan algebras M m (n ) and Clifford algebras are discussed in detail. This approach will shed light on the role of the realizations of Jordan algebras through some types of Fermi fields used in the construction of Kac-Moodey and Virasoro algebras as well as its relevance in the study of some aspects of conformal fields theories. (author)

6. Quantum cluster algebra structures on quantum nilpotent algebras

CERN Document Server

Goodearl, K R

2017-01-01

All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

7. Higher-order ice-sheet modelling accelerated by multigrid on graphics cards

Science.gov (United States)

Brædstrup, Christian; Egholm, David

2013-04-01

Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.

8. A C*-algebra formulation of the quantization of the electromagnetic field

International Nuclear Information System (INIS)

Carey, A.L.; Gaffney, J.M.; Hurst, C.A.

1977-01-01

A presentation of the Fermi, Gupta--Bleuler, and radiation gauge methods for quantizing the free electromagnetic field is given in the Weyl algebra formalism for quantum field theory first introduced by Segal. The abstract Weyl algebra of the vector potential is defined using the formalism of Manuceau. Then the Fermi and Gupta--Bleuler methods are given as schemes for constructing representations of the algebra. The algebra of the physical photons is shown to be a factor algebra of a certain subalgebra of the original algebra of the vector potential. In this formalism, the application of the supplementary condition in the Fermi method, and the supplementary condition and indefinite metric in the Gupta--Bleuler method, can be interpreted as the means by which a representation of this factor algebra is obtained. The Weyl algebra of the physical photons is the Weyl algebra associated with the radiation gauge method. It is also shown that in the Fock representation of the Weyl algebra given by the Fermi method, automorphisms of the algebra corresponding to Lorentz transformations cannot always be implemented by unitary transformations. This leads us to construct a new representation of the Weyl algebra which provides a covariant representation for the vector potential

9. The Effect of the Math Emporium Instructional Method on Students' Performance in College Algebra

Science.gov (United States)

Cousins-Cooper, Kathy; Staley, Katrina N.; Kim, Seongtae; Luke, Nicholas S.

2017-01-01

This study aims to investigate the effectiveness of the Emporium instructional method in a course of college algebra and trigonometry by comparing to the traditional lecture method. The math emporium method is a nontraditional instructional method of learning math that has been implemented at several universities with much success and has been…

10. Without derivatives or limits: from visual and geometrical points of view to algebraic methods for identifying tangent lines

Science.gov (United States)

Vivier, L.

2013-07-01

Usually, the tangent line is considered to be a calculus notion. However, it is also a graphical and an algebraic notion. The graphical frame, where our primary conceptions are conceived, could give rise to algebraic methods to obtain the tangent line to a curve. In this pre-calculus perspective, two methods are described and discussed according to their potential for secondary students and teacher training.

11. Waterloo Workshop on Computer Algebra

CERN Document Server

Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday

2018-01-01

This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016.   This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

12. Generalization of mixed multiscale finite element methods with applications

Energy Technology Data Exchange (ETDEWEB)

Lee, C S [Texas A & M Univ., College Station, TX (United States)

2016-08-01

Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii

CERN Document Server

Polishchuk, Alexander

2005-01-01

Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

14. The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems

Science.gov (United States)

Ng, Swee Fong; Lee, Kerry

2009-01-01

Solving arithmetic and algebraic word problems is a key component of the Singapore elementary mathematics curriculum. One heuristic taught, the model method, involves drawing a diagram to represent key information in the problem. We describe the model method and a three-phase theoretical framework supporting its use. We conducted 2 studies to…

15. Regularity of C*-algebras and central sequence algebras

DEFF Research Database (Denmark)

Christensen, Martin S.

The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

16. Hom-Novikov algebras

International Nuclear Information System (INIS)

Yau, Donald

2011-01-01

We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.

17. Grassmann, super-Kac-Moody and super-derivation algebras

International Nuclear Information System (INIS)

Frappat, L.; Ragoucy, E.; Sorba, P.

1989-05-01

We study the cyclic cocycles of degree one on the Grassmann algebra and on the super-circle with N supersymmetries (i.e. the tensor product of the algebra of functions on the circle times a Grassmann algebra with N generators). They are related to central extensions of graded loop algebras (i.e. super-Kac-Moody algebras). The corresponding algebras of super-derivations have to be compatible with the cocycle characterizing the extension; we give a general method for determining these algebras and examine in particular the cases N = 1,2,3. We also discuss their relations with the Ademollo et al. algebras, and examine the possibility of defining new kinds of super-conformal algebras, which, for N > 1, generalize the N = 1 Ramond-Neveu-Schwarz algebra

18. Linear algebra meets Lie algebra: the Kostant-Wallach theory

OpenAIRE

Shomron, Noam; Parlett, Beresford N.

2008-01-01

In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

19. Optimal multigrid algorithms for the massive Gaussian model and path integrals

International Nuclear Information System (INIS)

Brandt, A.; Galun, M.

1996-01-01

Multigrid algorithms are presented which, in addition to eliminating the critical slowing down, can also eliminate the open-quotes volume factorclose quotes. The elimination of the volume factor removes the need to produce many independent fine-grid configurations for averaging out their statistical deviations, by averaging over the many samples produced on coarse grids during the multigrid cycle. Thermodynamic limits of observables can be calculated to relative accuracy var-epsilon r in just O(var-epsilon r -2 ) computer operations, where var-epsilon r is the error relative to the standard deviation of the observable. In this paper, we describe in detail the calculation of the susceptibility in the one-dimensional massive Gaussian model, which is also a simple example of path integrals. Numerical experiments show that the susceptibility can be calculated to relative accuracy var-epsilon r in about 8 var-epsilon r -2 random number generations, independent of the mass size

20. Computers in nonassociative rings and algebras

CERN Document Server

Beck, Robert E

1977-01-01

Computers in Nonassociative Rings and Algebras provides information pertinent to the computational aspects of nonassociative rings and algebras. This book describes the algorithmic approaches for solving problems using a computer.Organized into 10 chapters, this book begins with an overview of the concept of a symmetrized power of a group representation. This text then presents data structures and other computational methods that may be useful in the field of computational algebra. Other chapters consider several mathematical ideas, including identity processing in nonassociative algebras, str

1. Basic matrix algebra and transistor circuits

CERN Document Server

Zelinger, G

1963-01-01

Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

2. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

Science.gov (United States)

Benhammouda, Brahim

2016-01-01

Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

3. Filiform Lie algebras of order 3

Science.gov (United States)

Navarro, R. M.

2014-04-01

The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, "Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes," Bull. Soc. Math. France 98, 81-116 (1970)]. Also we give the dimension, using an adaptation of the {sl}(2,{C})-module Method, and a basis of such infinitesimal deformations in some generic cases.

4. New family of Maxwell like algebras

International Nuclear Information System (INIS)

Concha, P.K.; Durka, R.; Merino, N.; Rodríguez, E.K.

2016-01-01

We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.

5. New family of Maxwell like algebras

Energy Technology Data Exchange (ETDEWEB)

Concha, P.K., E-mail: patillusion@gmail.com [Departamento de Ciencias, Facultad de Artes y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia (Chile); Durka, R., E-mail: remigiuszdurka@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Merino, N., E-mail: nemerino@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Rodríguez, E.K., E-mail: everodriguezd@gmail.com [Departamento de Ciencias, Facultad de Artes y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia (Chile)

2016-08-10

We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.

6. Coexistence of algebraic and non-algebraic limit cycles for quintic polynomial differential systems

Directory of Open Access Journals (Sweden)

Ahmed Bendjeddou

2017-03-01

Full Text Available In the work by Gine and Grau , a planar differential system of degree nine admitting a nested configuration formed by an algebraic and a non-algebraic limit cycles explicitly given was presented. As an improvement, we obtain by a new method a similar result for a family of quintic polynomial differential systems.

7. Grade 11 Students' Interconnected Use of Conceptual Knowledge, Procedural Skills, and Strategic Competence in Algebra: A Mixed Method Study of Error Analysis

Science.gov (United States)

Egodawatte, Gunawardena; Stoilescu, Dorian

2015-01-01

The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students' difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly…

8. Zeta functional equation on Jordan algebras of type II

International Nuclear Information System (INIS)

Kayoya, J.B.

2003-10-01

Using the Jordan algebras method, specially the properties of Peirce decomposition and the Frobenius transformation, we compute the coefficients of the zeta functional equation, in the case of Jordan algebras of Type II. As particular cases of our result, we can cite the case of V M (n, R) studied by Gelbart and Godement-Jacquet, and the case of V Herm(3, O s ) studied by Muro. Let us also mention, that recently, Bopp and Rubenthaler have obtained a more general result on the zeta functional equation by using methods based on the algebraic properties of regular graded algebras which are in one to one correspondence with simple Jordan algebras. The method used in this paper is a direct application of specific properties of Jordan algebras of Type H. (author)

9. Intertextuality and Sense Production in the Learning of Algebraic Methods

Science.gov (United States)

Rojano, Teresa; Filloy, Eugenio; Puig, Luis

2014-01-01

In studies carried out in the 1980s the algebraic symbols and expressions are revealed through prealgebraic readers as non-independent texts, as texts that relate to other texts that in some cases belong to the reader's native language or to the arithmetic sign system. Such outcomes suggest that the act of reading algebraic texts submerges…

10. Extended Virasoro algebra and algebra of area preserving diffeomorphisms

International Nuclear Information System (INIS)

Arakelyan, T.A.

1990-01-01

The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs

11. An application of the division algebras, Jordan algebras and split composition algebras

International Nuclear Information System (INIS)

Foot, R.; Joshi, G.C.

1992-01-01

It has been established that the covering group of the Lorentz group in D = 3, 4, 6, 10 can be expressed in a unified way, based on the four composition division algebras R, C, Q and O. In this paper, the authors discuss, in this framework, the role of the complex numbers of quantum mechanics. A unified treatment of quantum-mechanical spinors is given. The authors provide an explicit demonstration that the vector and spinor transformations recently constructed from a subgroup of the reduced structure group of the Jordan algebras M n 3 are indeed the Lorentz transformations. The authors also show that if the division algebras in the construction of the covering groups of the Lorentz groups in D = 3, 4, 6, 10 are replaced by the split composition algebras, then the sequence of groups SO(2, 2), SO(3, 3) and SO(5, 5) result. The analysis is presumed to be self-contained as the relevant aspects of the division algebras and Jordan algebras are reviewed. Some applications to physical theory are indicated

12. Algebraic groups and their birational invariants

CERN Document Server

Voskresenskiĭ, V E

2011-01-01

Since the late 1960s, methods of birational geometry have been used successfully in the theory of linear algebraic groups, especially in arithmetic problems. This book--which can be viewed as a significant revision of the author's book, Algebraic Tori (Nauka, Moscow, 1977)--studies birational properties of linear algebraic groups focusing on arithmetic applications. The main topics are forms and Galois cohomology, the Picard group and the Brauer group, birational geometry of algebraic tori, arithmetic of algebraic groups, Tamagawa numbers, R-equivalence, projective toric varieties, invariants of finite transformation groups, and index-formulas. Results and applications are recent. There is an extensive bibliography with additional comments that can serve as a guide for further reading.

13. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

Science.gov (United States)

Verburgt, Lukas M

2016-01-01

This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

14. Filiform Lie algebras of order 3

International Nuclear Information System (INIS)

Navarro, R. M.

2014-01-01

The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases

15. HP-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part II: Optimization of the Runge-Kutta smoother

NARCIS (Netherlands)

van der Vegt, Jacobus J.W.; Rhebergen, Sander

2012-01-01

Using a detailed multilevel analysis of the complete hp-Multigrid as Smoother algorithm accurate predictions are obtained of the spectral radius and operator norms of the multigrid error transformation operator. This multilevel analysis is used to optimize the coefficients in the semi-implicit

16. Algebra

CERN Document Server

Tabak, John

2004-01-01

Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

17. Iwahori-Hecke algebras and Schur algebras of the symmetric group

CERN Document Server

Mathas, Andrew

1999-01-01

This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the q-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and q-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in Chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the q-Schur algebras. T...

18. Linear algebra

CERN Document Server

Edwards, Harold M

1995-01-01

In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

19. Algebra of pseudo-differential operators over C*-algebra

International Nuclear Information System (INIS)

1982-08-01

Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra

20. New simple algebraic root locus method for design of feedback control systems

Directory of Open Access Journals (Sweden)

Cingara Aleksandar M.

2008-01-01

Full Text Available New concept of algebraic characteristic equation decomposition method is presented to simplify the design of closed-loop systems for practical applications. The method consists of two decompositions. The first one, decomposition of the characteristic equation into two lower order equations, was performed in order to simplify the analysis and design of closed loop systems. The second is the decomposition of Laplace variable, s, into two variables, damping coefficient, ζ, and natural frequency, ω n. Those two decompositions reduce the design of any order feedback systems to setting of two complex dominant poles in the desired position. In the paper, we derived explicit equations for six cases: first, second and third order system with P and PI. We got the analytical solutions for the case of fourth and fifth order characteristic equations with the P and PI controller; one may obtain a complete analytical solution of controller gain as a function of the desired damping coefficient. The complete derivation is given for the third order equation with P and PI controller. We can extend the number of specified poles to the highest order of the characteristic equation working in a similar way, so we can specify the position of each pole. The concept is similar to the root locus but root locus is implicit, which makes it more complicated and this is simpler explicit root locus. Standard procedures, root locus and Bode diagrams or Nichol Charts, are neither algebraic nor explicit. We basically change controller parameters and observe the change of some function until we get the desired specifications. The derived method has three important advantage over the standard procedures. It is general, algebraic and explicit. Those are the best poles design results possible; it is not possible to get better controller design results.

1. Jordan algebras versus C*- algebras

International Nuclear Information System (INIS)

Stormer, E.

1976-01-01

The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)

2. Analysis of multigrid methods on massively parallel computers: Architectural implications

Science.gov (United States)

Matheson, Lesley R.; Tarjan, Robert E.

1993-01-01

We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.

3. Implicative Algebras

African Journals Online (AJOL)

In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...

4. Automatic mesh refinement and local multigrid methods for contact problems: application to the Pellet-Cladding mechanical Interaction

International Nuclear Information System (INIS)

Liu, Hao

2016-01-01

This Ph.D. work takes place within the framework of studies on Pellet-Cladding mechanical Interaction (PCI) which occurs in the fuel rods of pressurized water reactor. This manuscript focuses on automatic mesh refinement to simulate more accurately this phenomena while maintaining acceptable computational time and memory space for industrial calculations. An automatic mesh refinement strategy based on the combination of the Local Defect Correction multigrid method (LDC) with the Zienkiewicz and Zhu a posteriori error estimator is proposed. The estimated error is used to detect the zones to be refined, where the local sub-grids of the LDC method are generated. Several stopping criteria are studied to end the refinement process when the solution is accurate enough or when the refinement does not improve the global solution accuracy anymore. Numerical results for elastic 2D test cases with pressure discontinuity show the efficiency of the proposed strategy. The automatic mesh refinement in case of unilateral contact problems is then considered. The strategy previously introduced can be easily adapted to the multi-body refinement by estimating solution error on each body separately. Post-processing is often necessary to ensure the conformity of the refined areas regarding the contact boundaries. A variety of numerical experiments with elastic contact (with or without friction, with or without an initial gap) confirms the efficiency and adaptability of the proposed strategy. (author) [fr

5. Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)

Science.gov (United States)

Leigh-Lancaster, David; Les, Magdalena; Evans, Michael

2010-01-01

2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…

6. Separable algebras

CERN Document Server

Ford, Timothy J

2017-01-01

This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

7. Circle Maps and C*-algebras

DEFF Research Database (Denmark)

Schmidt, Thomas Lundsgaard; Thomsen, Klaus

2015-01-01

We consider a construction of $C^*$-algebras from continuous piecewise monotone maps on the circle which generalizes the crossed product construction for homeomorphisms and more generally the construction of Renault, Deaconu and Anantharaman-Delaroche for local homeomorphisms. Assuming that the map...... is surjective and not locally injective we give necessary and sufficient conditions for the simplicity of the $C^*$-algebra and show that it is then a Kirchberg algebra. We provide tools for the calculation of the K-theory groups and turn them into an algorithmic method for Markov maps....

8. Algebraic number theory

CERN Document Server

Weiss, Edwin

1998-01-01

Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

9. Numerical study of turbulent heat transfer from confined impinging jets using a pseudo-compressibility method

Energy Technology Data Exchange (ETDEWEB)

Rahman, M.; Rautaheimo, P.; Siikonen, T.

1997-12-31

A numerical investigation is carried out to predict the turbulent fluid flow and heat transfer characteristics of two-dimensional single and three impinging slot jets. Two low-Reynolds-number {kappa}-{epsilon} models, namely the classical model of Chien and the explicit algebraic stress model of Gatski and Speziale, are considered in the simulation. A cell-centered finite-volume scheme combined with an artificial compressibility approach is employed to solve the flow equations, using a diagonally dominant alternating direction implicit (DDADI) time integration method. A fully upwinded second order spatial differencing is adopted to approximate the convective terms. Roe`s damping term is used to calculate the flux on the cell face. A multigrid method is utilized for the acceleration of convergence. On average, the heat transfer coefficients predicted by both models show good agreement with the experimental results. (orig.) 17 refs.

10. Analysis of preconditioning and multigrid for Euler flows with low-subsonic regions

NARCIS (Netherlands)

Koren, B.; Leer, van B.

1995-01-01

For subsonic flows and upwind-discretized, linearized 1-D Euler equations, the smoothing behavior of multigrid-accelerated point Gauss-Seidel relaxation is analyzed. Error decay by convection across domain boundaries is also discussed. A fix to poor convergence rates at low Mach numbers is sought in

11. Generalized EMV-Effect Algebras

Science.gov (United States)

Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.

2018-04-01

Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

12. Multigrid and defect correction for the steady Navier-Stokes equations : application to aerodynamics

NARCIS (Netherlands)

Koren, B.

1991-01-01

Theoretical and expcrimental convergence results are presented for nonlinear multigrid and iterative defect correction applied to finite volume discretizations of the full, steady, 2D, compressible NavierStokes equations. lterative defect correction is introduced for circumventing the difficulty in

13. Special set linear algebra and special set fuzzy linear algebra

OpenAIRE

Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.

2009-01-01

The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...

14. Dual number algebra method for Green's function derivatives in 3D magneto-electro-elasticity

Science.gov (United States)

Dziatkiewicz, Grzegorz

2018-01-01

The Green functions are the basic elements of the boundary element method. To obtain the boundary integral formulation the Green function and its derivative should be known for the considered differential operator. Today the interesting group of materials are electronic composites. The special case of the electronic composite is the magnetoelectroelastic continuum. The mentioned continuum is a model of the piezoelectric-piezomagnetic composites. The anisotropy of their physical properties makes the problem of Green's function determination very difficult. For that reason Green's functions for the magnetoelectroelastic continuum are not known in the closed form and numerical methods should be applied to determine such Green's functions. These means that the problem of the accurate and simply determination of Green's function derivatives is even harder. Therefore in the present work the dual number algebra method is applied to calculate numerically the derivatives of 3D Green's functions for the magnetoelectroelastic materials. The introduced method is independent on the step size and it can be treated as a special case of the automatic differentiation method. Therefore, the dual number algebra method can be applied as a tool for checking the accuracy of the well-known finite difference schemes.

15. Basic algebraic geometry, v.2

CERN Document Server

Shafarevich, Igor Rostislavovich

1994-01-01

Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

16. Banach Synaptic Algebras

Science.gov (United States)

Foulis, David J.; Pulmannov, Sylvia

2018-04-01

Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

17. Grassmann algebras

International Nuclear Information System (INIS)

Garcia, R.L.

1983-11-01

The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt

18. Schwarz maps of algebraic linear ordinary differential equations

Science.gov (United States)

Sanabria Malagón, Camilo

2017-12-01

A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

19. Algebraic geometry

CERN Document Server

Lefschetz, Solomon

2005-01-01

An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

20. Helmholtz algebraic solitons

Energy Technology Data Exchange (ETDEWEB)

Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

2010-02-26

We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

1. Helmholtz algebraic solitons

International Nuclear Information System (INIS)

Christian, J M; McDonald, G S; Chamorro-Posada, P

2010-01-01

We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

2. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method

International Nuclear Information System (INIS)

Fan Engui

2002-01-01

A new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system. Compared with most of the existing tanh methods, the Jacobi elliptic function method or other sophisticated methods, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the travelling wave solutions according to the values of some parameters. The solutions obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions, (b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. The efficiency of the method can be demonstrated on a large variety of nonlinear evolution equations such as those considered in this paper, KdV-MKdV, Ito's fifth MKdV, Hirota, Nizhnik-Novikov-Veselov, Broer-Kaup, generalized coupled Hirota-Satsuma, coupled Schroedinger-KdV, (2+1)-dimensional dispersive long wave, (2+1)-dimensional Davey-Stewartson equations. In addition, as an illustrative sample, the properties of the soliton solutions and Jacobi doubly periodic solutions for the Hirota equation are shown by some figures. The links among our proposed method, the tanh method, extended tanh method and the Jacobi elliptic function method are clarified generally. (author)

3. Converting nested algebra expressions into flat algebra expressions

NARCIS (Netherlands)

Paredaens, J.; Van Gucht, D.

1992-01-01

Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its

4. Fibered F-Algebra

OpenAIRE

Kleyn, Aleks

2007-01-01

The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

5. Algebraic monoids, group embeddings, and algebraic combinatorics

CERN Document Server

Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang

2014-01-01

This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

6. Leavitt path algebras

CERN Document Server

Abrams, Gene; Siles Molina, Mercedes

2017-01-01

This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

7. An algebraic method to solve the Tavis-Cummings problem

International Nuclear Information System (INIS)

Vadejko, I.P.; Miroshnichenko, G.P.; Rybin, A.V.; Timonen, J.

2003-01-01

We study cooperative behaviour of the system of two-level atoms coupled to a single mode of the electromagnetic field in the resonator. We have developed a general procedure allowing one to rewrite a polynomial deformed SU(2) algebra in terms of another polynomial deformation. Using these methods, we have constructed a perturbation series for the Tavis-Cummings Hamiltonian and diagonalized it in the third order. Based on the zero-order Hamiltonian we calculate the intensity of spontaneous emission of N two-level atoms inside a cavity, which are in thermal equilibrium with the reservoir. The atom-atom correlation determining superradiance in the system is analyzed

8. Operator algebras and conformal field theory

International Nuclear Information System (INIS)

Gabbiani, F.; Froehlich, J.

1993-01-01

We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)

9. Algebra II textbook for students of mathematics

CERN Document Server

Gorodentsev, Alexey L

2017-01-01

This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.

10. Algebra I textbook for students of mathematics

CERN Document Server

Gorodentsev, Alexey L

2016-01-01

This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.

11. Approximation of complex algebraic numbers by algebraic numbers of bounded degree

OpenAIRE

Bugeaud, Yann; Evertse, Jan-Hendrik

2007-01-01

We investigate how well complex algebraic numbers can be approximated by algebraic numbers of degree at most n. We also investigate how well complex algebraic numbers can be approximated by algebraic integers of degree at most n+1. It follows from our investigations that for every positive integer n there are complex algebraic numbers of degree larger than n that are better approximable by algebraic numbers of degree at most n than almost all complex numbers. As it turns out, these numbers ar...

12. An algebra-based method for inferring gene regulatory networks.

Science.gov (United States)

Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard

2014-03-26

The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the

13. Operadic formulation of topological vertex algebras and gerstenhaber or Batalin-Vilkovisky algebras

International Nuclear Information System (INIS)

Huang Yizhi

1994-01-01

We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak topological vertex algebra) by combining this operadic formulation with a theorem of Getzler (or of Cohen) which formulates Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in terms of the homology of the framed little disk operad (or of the little disk operad). (orig.)

14. Final Report for 'Implimentation and Evaluation of Multigrid Linear Solvers into Extended Magnetohydrodynamic Codes for Petascale Computing'

International Nuclear Information System (INIS)

Vadlamani, Srinath; Kruger, Scott; Austin, Travis

2008-01-01

Extended magnetohydrodynamic (MHD) codes are used to model the large, slow-growing instabilities that are projected to limit the performance of International Thermonuclear Experimental Reactor (ITER). The multiscale nature of the extended MHD equations requires an implicit approach. The current linear solvers needed for the implicit algorithm scale poorly because the resultant matrices are so ill-conditioned. A new solver is needed, especially one that scales to the petascale. The most successful scalable parallel processor solvers to date are multigrid solvers. Applying multigrid techniques to a set of equations whose fundamental modes are dispersive waves is a promising solution to CEMM problems. For the Phase 1, we implemented multigrid preconditioners from the HYPRE project of the Center for Applied Scientific Computing at LLNL via PETSc of the DOE SciDAC TOPS for the real matrix systems of the extended MHD code NIMROD which is a one of the primary modeling codes of the OFES-funded Center for Extended Magnetohydrodynamic Modeling (CEMM) SciDAC. We implemented the multigrid solvers on the fusion test problem that allows for real matrix systems with success, and in the process learned about the details of NIMROD data structures and the difficulties of inverting NIMROD operators. The further success of this project will allow for efficient usage of future petascale computers at the National Leadership Facilities: Oak Ridge National Laboratory, Argonne National Laboratory, and National Energy Research Scientific Computing Center. The project will be a collaborative effort between computational plasma physicists and applied mathematicians at Tech-X Corporation, applied mathematicians Front Range Scientific Computations, Inc. (who are collaborators on the HYPRE project), and other computational plasma physicists involved with the CEMM project.

15. Wn(2) algebras

International Nuclear Information System (INIS)

Feigin, B.L.; Semikhatov, A.M.

2004-01-01

We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras

16. On higher-dimensional loop algebras, pseudodifferential operators and Fock space realizations

International Nuclear Information System (INIS)

Westerberg, A.

1997-01-01

We discuss a previously discovered extension of the infinite-dimensional Lie algebra map(M,g) which generalizes the Kac-Moody algebras in 1+1 dimensions and the Mickelsson-Faddeev algebras in 3+1 dimensions to manifolds M of general dimensions. Furthermore, we review the method of regularizing current algebras in higher dimensions using pseudodifferential operator (PSDO) symbol calculus. In particular, we discuss the issue of Lie algebra cohomology of PSDOs and its relation to the Schwinger terms arising in the quantization process. Finally, we apply this regularization method to the algebra with partial success, and discuss the remaining obstacles to the construction of a Fock space representation. (orig.)

17. A linear algebraic approach to electron-molecule collisions

International Nuclear Information System (INIS)

Collins, L.A.; Schnieder, B.I.

1982-01-01

The linear algebraic approach to electron-molecule collisions is examined by firstly deriving the general set of coupled integrodifferential equations that describe electron collisional processes and then describing the linear algebraic approach for obtaining a solution to the coupled equations. Application of the linear algebraic method to static-exchange, separable exchange and effective optical potential, is examined. (U.K.)

18. The vacuum preserving Lie algebra of a classical W-algebra

International Nuclear Information System (INIS)

Feher, L.; Tsutsui, I.

1993-07-01

We simplify and generalize an argument due to Bowcock and Watts showing that one can associate a finite Lie algebra (the 'classical vacuum preserving algebra') containing the Moebius sl(2) subalgebra to any classical W-algebra. Our construction is based on a kinematical analysis of the Poisson brackets of quasi-fields. In the case of the W S G -subalgebra S of a simple Lie algebra G, we exhibit a natural isomorphism between this finite Lie algebra and G whereby the Moebius sl(2) is identified with S. (orig.)

International Nuclear Information System (INIS)

Myung, H.C.

1978-01-01

We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type

20. On 2-Banach algebras

International Nuclear Information System (INIS)

1987-11-01

The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs

1. Applied linear algebra

CERN Document Server

Olver, Peter J

2018-01-01

This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...

2. Algebra

CERN Document Server

Flanders, Harley

1975-01-01

Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

3. Application Of Multi-grid Method On China Seas' Temperature Forecast

Science.gov (United States)

Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.

2006-12-01

Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.

4. An algebraic approach to the scattering equations

Energy Technology Data Exchange (ETDEWEB)

Huang, Rijun; Rao, Junjie [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Feng, Bo [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Center of Mathematical Science, Zhejiang University,Hangzhou, 310027 (China); He, Yang-Hui [School of Physics, NanKai University,Tianjin, 300071 (China); Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); Merton College, University of Oxford,Oxford, OX14JD (United Kingdom)

2015-12-10

We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

5. An algebraic approach to the scattering equations

International Nuclear Information System (INIS)

Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui

2015-01-01

We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

6. Lukasiewicz-Moisil algebras

CERN Document Server

Boicescu, V; Georgescu, G; Rudeanu, S

1991-01-01

The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

7. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

Science.gov (United States)

Wasserman, Nicholas H.

2016-01-01

This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

8. Gender differences in algebraic thinking ability to solve mathematics problems

Science.gov (United States)

Kusumaningsih, W.; Darhim; Herman, T.; Turmudi

2018-05-01

This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.

9. A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations

International Nuclear Information System (INIS)

Zhang Huiqun

2009-01-01

By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.

10. Supersymmetry algebra cohomology. I. Definition and general structure

International Nuclear Information System (INIS)

Brandt, Friedemann

2010-01-01

This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding 'primitive elements' are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.

11. Algebraic non-integrability of magnetic billiards

International Nuclear Information System (INIS)

Bialy, Misha; Mironov, Andrey E

2016-01-01

We consider billiard ball motion in a convex domain of the Euclidean plane bounded by a piece-wise smooth curve under the action of a constant magnetic field. We show that if there exists a first integral polynomial in the velocities of the magnetic billiard flow, then every smooth piece γ of the boundary must be algebraic, and either is a circle or satisfies very strong restrictions. In particular, it follows that any non-circular magnetic Birkhoff billiard is not algebraically integrable for all but finitely many values of the magnitude of the magnetic field. Moreover, a magnetic billiard in ellipse is not algebraically integrable for all values of the magnitude of the magnetic field. We conjecture that the circle is the only integrable magnetic billiard, not only in the algebraic sense, but also for a broader meaning of integrability. We also introduce what we call outer magnetic billiards. As an application of our method, we prove analogous results on algebraically integrable outer magnetic billiards. (paper)

12. The Boolean algebra and central Galois algebras

Directory of Open Access Journals (Sweden)

George Szeto

2001-01-01

Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

13. Novikov-Jordan algebras

OpenAIRE

2002-01-01

Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

14. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

Science.gov (United States)

Gonzalez-Vega, Laureano

1999-01-01

Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

15. Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data - II

Science.gov (United States)

Foster, Leslie; Waagen, Alex; Aijaz, Nabella; Hurley, Michael; Luis, Apolo; Rinsky, Joel; Satyavolu, Chandrika; Gazis, Paul; Srivastava, Ashok; Way, Michael

2008-01-01

Given photometric broadband measurements of a galaxy, Gaussian processes may be used with a training set to solve the regression problem of approximating the redshift of this galaxy. However, in practice solving the traditional Gaussian processes equation is too slow and requires too much memory. We employed several methods to avoid this difficulty using algebraic manipulation and low-rank approximation, and were able to quickly approximate the redshifts in our testing data within 17 percent of the known true values using limited computational resources. The accuracy of one method, the V Formulation, is comparable to the accuracy of the best methods currently used for this problem.

16. (Quasi-)Poisson enveloping algebras

OpenAIRE

Yang, Yan-Hong; Yao, Yuan; Ye, Yu

2010-01-01

We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

17. Iterated Leavitt Path Algebras

International Nuclear Information System (INIS)

Hazrat, R.

2009-11-01

Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)

18. Quadratic algebras applied to noncommutative integration of the Klein-Gordon equation: Four-dimensional quadratic algebras containing three-dimensional nilpotent lie algebras

International Nuclear Information System (INIS)

Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.

1995-01-01

The study is continued on noncommutative integration of linear partial differential equations in application to the exact integration of quantum-mechanical equations in a Riemann space. That method gives solutions to the Klein-Gordon equation when the set of noncommutative symmetry operations for that equation forms a quadratic algebra consisting of one second-order operator and of first-order operators forming a Lie algebra. The paper is a continuation of, where a single nontrivial example is used to demonstrate noncommutative integration of the Klein-Gordon equation in a Riemann space not permitting variable separation

19. Scaling algebras and renormalization group in algebraic quantum field theory

International Nuclear Information System (INIS)

Buchholz, D.; Verch, R.

1995-01-01

For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)

20. A multigrid based 3D space-charge routine in the tracking code GPT

NARCIS (Netherlands)

Pöplau, G.; Rienen, van U.; Loos, de M.J.; Geer, van der S.B.; Berz, M.; Makino, K.

2005-01-01

Fast calculation of3D non-linear space-charge fields is essential for the simulation ofhigh-brightness charged particle beams. We report on our development of a new 3D spacecharge routine in the General Particle Tracer (GPT) code. The model is based on a nonequidistant multigrid Poisson solver that

1. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear ordinary differential equations

Institute of Scientific and Technical Information of China (English)

WANG; Shunjin; ZHANG; Hua

2006-01-01

The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.

2. Linearizing W-algebras

International Nuclear Information System (INIS)

Krivonos, S.O.; Sorin, A.S.

1994-06-01

We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs

3. Numerical linear algebra theory and applications

CERN Document Server

Beilina, Larisa; Karchevskii, Mikhail

2017-01-01

This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.

4. Classical theory of algebraic numbers

CERN Document Server

Ribenboim, Paulo

2001-01-01

Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

5. Algebraic structure of chiral anomalies

International Nuclear Information System (INIS)

Stora, R.

1985-09-01

I will describe first the algebraic aspects of chiral anomalies, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge anomalies and will eventually make contact with results obtained from index theory. I will go into two sorts of generalizations: on the one hand, generalizing the algebraic set up yields e.g. gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories; on the other hand most constructions applied to the cohomologies which characterize anomalies easily extend to higher cohomologies. Section II is devoted to a description of the general set up as it applies to gauge anomalies. Section III deals with a number of algebraic set ups which characterize more general types of anomalies: gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories. It also includes brief remarks on σ models and a reminder on the full BRST algebra of quantized gauge theories

6. Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator

International Nuclear Information System (INIS)

Babich, R.; Brower, R. C.; Rebbi, C.; Brannick, J.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.

2010-01-01

We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ 5 -Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.

7. On algebraic time-derivative estimation and deadbeat state reconstruction

DEFF Research Database (Denmark)

Reger, Johann; Jouffroy, Jerome

2009-01-01

This paper places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear statespace theory for control systems. In particular, it is shown that the algebraic method can essentially be seen...

8. Quantum deformed su(mvertical stroke n) algebra and superconformal algebra on quantum superspace

International Nuclear Information System (INIS)

Kobayashi, Tatsuo

1993-01-01

We study a deformed su(mvertical stroke n) algebra on a quantum superspace. Some interesting aspects of the deformed algebra are shown. As an application of the deformed algebra we construct a deformed superconformal algebra. From the deformed su(1vertical stroke 4) algebra, we derive deformed Lorentz, translation of Minkowski space, iso(2,2) and its supersymmetric algebras as closed subalgebras with consistent automorphisms. (orig.)

9. Quantum complexity of graph and algebraic problems

International Nuclear Information System (INIS)

Doern, Sebastian

2008-01-01

This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

10. Quantum complexity of graph and algebraic problems

Energy Technology Data Exchange (ETDEWEB)

Doern, Sebastian

2008-02-04

This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

11. A note on the transition probability over Csup(*)-algebras

International Nuclear Information System (INIS)

Alberti, P.M.; Karl-Marx-Universitaet, Leipzig

1983-01-01

The algebraic structure of Uhlmann's transition probability between mixed states on unital Csup(*)-algebras is analyzed. Several improvements of methods to calculate the transition probability are fixed, examples are given (e.g., the case of quasi-local Csup(*)-algebras is dealt with) and two more functional characterizations are proved in general. (orig.)

12. Linear algebraic groups

CERN Document Server

Springer, T A

1998-01-01

"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

13. Extended conformal algebras

International Nuclear Information System (INIS)

Goddard, Peter

1990-01-01

The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)

14. Towards a classification of rational Hopf algebras

International Nuclear Information System (INIS)

Fuchs, J.; Ganchev, A.; Vecsernyes, P.

1994-02-01

Rational Hopf algebras, i.e. certain quasitriangular weak quasi-Hopf *-algebras, are expected to describe the quantum symmetry of rational field theories. In this paper methods are developed which allow for a classification of all rational Hopf algebras that are compatible with some prescribed set of fusion rules. The algebras are parametrized by the solutions of the square, pentagon and hexagon identities. As examples, we classify all solutions for fusion rules with not more than three sectors, as well as for the level three affine A 1 (1) fusion rules. We also establish several general properties of rational Hopf algebras and present a graphical description of the coassociator in terms of labelled tetrahedra. The latter construction allows to make contact with conformal field theory fusing matrices and with invariants of three-manifolds and topological lattice field theory. (orig.)

15. Numerical linear algebra with applications using Matlab

CERN Document Server

Ford, William

2014-01-01

Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for

16. Generalized symmetry algebras

International Nuclear Information System (INIS)

Dragon, N.

1979-01-01

The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)

17. Rota-Baxter algebras and the Hopf algebra of renormalization

Energy Technology Data Exchange (ETDEWEB)

Ebrahimi-Fard, K.

2006-06-15

Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

18. Rota-Baxter algebras and the Hopf algebra of renormalization

International Nuclear Information System (INIS)

Ebrahimi-Fard, K.

2006-06-01

Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

19. Galilean contractions of W-algebras

Directory of Open Access Journals (Sweden)

Jørgen Rasmussen

2017-09-01

Full Text Available Infinite-dimensional Galilean conformal algebras can be constructed by contracting pairs of symmetry algebras in conformal field theory, such as W-algebras. Known examples include contractions of pairs of the Virasoro algebra, its N=1 superconformal extension, or the W3 algebra. Here, we introduce a contraction prescription of the corresponding operator-product algebras, or equivalently, a prescription for contracting tensor products of vertex algebras. With this, we work out the Galilean conformal algebras arising from contractions of N=2 and N=4 superconformal algebras as well as of the W-algebras W(2,4, W(2,6, W4, and W5. The latter results provide evidence for the existence of a whole new class of W-algebras which we call Galilean W-algebras. We also apply the contraction prescription to affine Lie algebras and find that the ensuing Galilean affine algebras admit a Sugawara construction. The corresponding central charge is level-independent and given by twice the dimension of the underlying finite-dimensional Lie algebra. Finally, applications of our results to the characterisation of structure constants in W-algebras are proposed.

20. Algebraic entropy for algebraic maps

International Nuclear Information System (INIS)

Hone, A N W; Ragnisco, Orlando; Zullo, Federico

2016-01-01

We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

1. On hyper BCC-algebras

OpenAIRE

Borzooei, R. A.; Dudek, W. A.; Koohestani, N.

2006-01-01

We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

2. On hyper BCC-algebras

Directory of Open Access Journals (Sweden)

R. A. Borzooei

2006-01-01

Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

3. Motivations and physical aims of algebraic QFT

International Nuclear Information System (INIS)

Schroer, B.

1997-01-01

We present illustrations which show the usefulness of algebraic QFT (quantum field theory). In particular, in low-dimensional QFT, when Lagrangian quantization does not exist or is useless (e.g. in chiral conformal theories), the algebraic method is beginning to reveal its strength. copyright 1997 Academic Press, Inc

4. A modified linear algebraic approach to electron scattering using cubic splines

International Nuclear Information System (INIS)

Kinney, R.A.

1986-01-01

A modified linear algebraic approach to the solution of the Schrodiner equation for low-energy electron scattering is presented. The method uses a piecewise cubic-spline approximation of the wavefunction. Results in the static-potential and the static-exchange approximations for e - +H s-wave scattering are compared with unmodified linear algebraic and variational linear algebraic methods. (author)

5. Algebraic theory of numbers

CERN Document Server

Samuel, Pierre

2008-01-01

Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

6. The BRS algebra of a free differential algebra

International Nuclear Information System (INIS)

Boukraa, S.

1987-04-01

We construct in this work, the Weil and the universal BRS algebras of theories that can have as a gauge symmetry a free differential (Sullivan) algebra, the natural extension of Lie algebras allowing the definition of p-form gauge potentials (p>1). The finite gauge transformations of these potentials are deduced from the infinitesimal ones and the group structure is shown. The geometrical meaning of these p-form gauge potentials is given by the notion of a Quillen superconnection. (author). 19 refs

7. Pseudo-Riemannian Novikov algebras

Energy Technology Data Exchange (ETDEWEB)

Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn

2008-08-08

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.

8. On the PR-algebras

International Nuclear Information System (INIS)

Lebedenko, V.M.

1978-01-01

The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language

9. Introduction to W-algebras

International Nuclear Information System (INIS)

Takao, Masaru

1989-01-01

We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)

10. Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control

Science.gov (United States)

2016-04-01

multigrid approach as the means to efficiently solve the linear algebra problem that results in applying an implicit scheme to both steady-state and...projectile, CFD applications , microflaps, optimized control force 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...counterparts, and successive relaxation allows update of cells as information becomes available and thus aids convergence. CFD++ uses an algebraic

11. Guide to NavyFOAM V1.0

Science.gov (United States)

2011-04-01

solvers such as point-implicit Gauss - Seidel or algebraic multi-grid (AMG) methods. Velocity coupling to ensure mass conservation (continuity) is...state convergence is assumed when the forces (pressure and viscous) on the body change by a negligible amount from one iteration to the next. Figure...linear limited X.X with X.X< 1 will not converge to the same, more accurate, solution as Gauss linear corrected). Subdictionary: interpolationSchemes

12. (Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras

Directory of Open Access Journals (Sweden)

Dusko Pavlovic

2017-01-01

Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.

13. An algorithm to construct the basic algebra of a skew group algebra

NARCIS (Netherlands)

Horobeţ, E.

2016-01-01

We give an algorithm for the computation of the basic algebra Morita equivalent to a skew group algebra of a path algebra by obtaining formulas for the number of vertices and arrows of the new quiver Qb. We apply this algorithm to compute the basic algebra corresponding to all simple quaternion

14. A scalable geometric multigrid solver for nonsymmetric elliptic systems with application to variable-density flows

Science.gov (United States)

Esmaily, M.; Jofre, L.; Mani, A.; Iaccarino, G.

2018-03-01

A geometric multigrid algorithm is introduced for solving nonsymmetric linear systems resulting from the discretization of the variable density Navier-Stokes equations on nonuniform structured rectilinear grids and high-Reynolds number flows. The restriction operation is defined such that the resulting system on the coarser grids is symmetric, thereby allowing for the use of efficient smoother algorithms. To achieve an optimal rate of convergence, the sequence of interpolation and restriction operations are determined through a dynamic procedure. A parallel partitioning strategy is introduced to minimize communication while maintaining the load balance between all processors. To test the proposed algorithm, we consider two cases: 1) homogeneous isotropic turbulence discretized on uniform grids and 2) turbulent duct flow discretized on stretched grids. Testing the algorithm on systems with up to a billion unknowns shows that the cost varies linearly with the number of unknowns. This O (N) behavior confirms the robustness of the proposed multigrid method regarding ill-conditioning of large systems characteristic of multiscale high-Reynolds number turbulent flows. The robustness of our method to density variations is established by considering cases where density varies sharply in space by a factor of up to 104, showing its applicability to two-phase flow problems. Strong and weak scalability studies are carried out, employing up to 30,000 processors, to examine the parallel performance of our implementation. Excellent scalability of our solver is shown for a granularity as low as 104 to 105 unknowns per processor. At its tested peak throughput, it solves approximately 4 billion unknowns per second employing over 16,000 processors with a parallel efficiency higher than 50%.

15. Compact quantum group C*-algebras as Hopf algebras with approximate unit

International Nuclear Information System (INIS)

Do Ngoc Diep; Phung Ho Hai; Kuku, A.O.

1999-04-01

In this paper, we construct and study the representation theory of a Hopf C*-algebra with approximate unit, which constitutes quantum analogue of a compact group C*-algebra. The construction is done by first introducing a convolution-product on an arbitrary Hopf algebra H with integral, and then constructing the L 2 and C*-envelopes of H (with the new convolution-product) when H is a compact Hopf *-algebra. (author)

16. Intervals in Generalized Effect Algebras and their Sub-generalized Effect Algebras

Directory of Open Access Journals (Sweden)

Zdenka Riečanová

2013-01-01

Full Text Available We consider subsets G of a generalized effect algebra E with 0∈G and such that every interval [0, q]G = [0, q]E ∩ G of G (q ∈ G , q ≠ 0 is a sub-effect algebra of the effect algebra [0, q]E. We give a condition on E and G under which every such G is a sub-generalized effect algebra of E.

17. THE METHODICAL ASPECTS OF THE ALGEBRA AND THE MATHEMATICAL ANALYSIS STUDY USING THE SAGEMATH CLOUD

Directory of Open Access Journals (Sweden)

M. Popel

2014-06-01

Full Text Available The quality of mathematics education depends largely on the quality of education in general. The main idea may be summarized as follows: in order to educate the younger generation of people to be able to meet adequately the demands of the time, it is necessary to create conditions for the high-quality mathematics education. Improving the quality of mathematics education of pupils in secondary school is one of the most pressing problems. Contents of the school course of mathematics and its teaching method has always been the subject of undammed and sometimes stormy scientific debates. There are especially true methods of teaching algebra and the analisis in the high secondary school. Still in the study process the algebraic concepts and principles of analysis are given in such an abstract and generalized form that the student may has considerable difficulties to map these general abstract concepts to the certain concrete images, they are generalizations of. Improving education quality indicators can be achieved by using the appropriate computer technology. The article deals with the use of the cloud-oriented systems of computer mathematics (SCM. The prospects of development of the Web-SCM in terms of cloud-based learning environment are considered. The pedagogical features of the SageMath Cloud use as a tool for mathematics learning are revealed. The methodological aspects of algebra and elementary analysis teaching in a high profile school using the cloud-oriented the SCM SageMath Cloud are revealed.

18. Variants of bosonization in parabosonic algebra: the Hopf and super-Hopf structures in parabosonic algebra

International Nuclear Information System (INIS)

2008-01-01

Parabosonic algebra in finite or infinite degrees of freedom is considered as a Z 2 -graded associative algebra, and is shown to be a Z 2 -graded (or super) Hopf algebra. The super-Hopf algebraic structure of the parabosonic algebra is established directly without appealing to its relation to the osp(1/2n) Lie superalgebraic structure. The notion of super-Hopf algebra is equivalently described as a Hopf algebra in the braided monoidal category CZ 2 M. The bosonization technique for switching a Hopf algebra in the braided monoidal category H M (where H is a quasitriangular Hopf algebra) into an ordinary Hopf algebra is reviewed. In this paper, we prove that for the parabosonic algebra P B , beyond the application of the bosonization technique to the original super-Hopf algebra, a bosonization-like construction is also achieved using two operators, related to the parabosonic total number operator. Both techniques switch the same super-Hopf algebra P B to an ordinary Hopf algebra, thus producing two different variants of P B , with an ordinary Hopf structure

19. Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization

Energy Technology Data Exchange (ETDEWEB)

Clark, M. A. [NVIDIA Corp., Santa Clara; Joó, Bálint [Jefferson Lab; Strelchenko, Alexei [Fermilab; Cheng, Michael [Boston U., Ctr. Comp. Sci.; Gambhir, Arjun [William-Mary Coll.; Brower, Richard [Boston U.

2016-12-22

The past decade has witnessed a dramatic acceleration of lattice quantum chromodynamics calculations in nuclear and particle physics. This has been due to both significant progress in accelerating the iterative linear solvers using multi-grid algorithms, and due to the throughput improvements brought by GPUs. Deploying hierarchical algorithms optimally on GPUs is non-trivial owing to the lack of parallelism on the coarse grids, and as such, these advances have not proved multiplicative. Using the QUDA library, we demonstrate that by exposing all sources of parallelism that the underlying stencil problem possesses, and through appropriate mapping of this parallelism to the GPU architecture, we can achieve high efficiency even for the coarsest of grids. Results are presented for the Wilson-Clover discretization, where we demonstrate up to 10x speedup over present state-of-the-art GPU-accelerated methods on Titan. Finally, we look to the future, and consider the software implications of our findings.

20. The C*-algebra of a vector bundle and fields of Cuntz algebras

OpenAIRE

Vasselli, Ezio

2004-01-01

We study the Pimsner algebra associated with the module of continuous sections of a Hilbert bundle, and prove that it is a continuous bundle of Cuntz algebras. We discuss the role of such Pimsner algebras w.r.t. the notion of inner endomorphism. Furthermore, we study bundles of Cuntz algebras carrying a global circle action, and assign to them a class in the representable KK-group of the zero-grade bundle. We compute such class for the Pimsner algebra of a vector bundle.

1. Bicovariant quantum algebras and quantum Lie algebras

International Nuclear Information System (INIS)

Schupp, P.; Watts, P.; Zumino, B.

1993-01-01

A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)

2. Basic math and pre-algebra for dummies

CERN Document Server

Zegarelli, Mark

2014-01-01

Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methodsRelevant cultural vernacular and referencesStandard For Dummies materials that

3. Three-dimensional quantum algebras: a Cartan-like point of view

International Nuclear Information System (INIS)

Ballesteros, A; Celeghini, E; Olmo, M A del

2004-01-01

A perturbative quantization procedure for Lie bialgebras is introduced. The relevance of the choice of a completely symmetrized basis of the quantum universal enveloping algebra is stressed. Sets of elements of the quantum algebra that play a role similar to generators in the case of Lie algebras are considered and a Cartan-like procedure applied to find a representative for each class of quantum algebras. The method is used to construct and classify all three-dimensional complex quantum algebras that are compatible with a given type of coproduct. The quantization of all Lie algebras that, in the classical limit, belong to the most relevant sector in the classification for three-dimensional Lie bialgebras is thus performed. New quantizations of solvable algebras, whose simplicity makes them suitable for possible physical applications, are obtained and already known related quantum algebras recovered

4. Boolean algebra

CERN Document Server

Goodstein, R L

2007-01-01

This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

5. Combinatorial commutative algebra

CERN Document Server

Miller, Ezra

2005-01-01

Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.

6. Practical algebraic renormalization

International Nuclear Information System (INIS)

Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias

2001-01-01

A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ

7. Topological أ-algebras with Cأ-enveloping algebras II

necessarily complete) pro-Cأ-topology which coincides with the relative uniform .... problems in Cأ-algebras, Phillips introduced more general weakly Cأ- .... Banach أ-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pًxق where.

8. A new class of infinite-dimensional Lie algebras: an analytical continuation of the arbitrary finite-dimensional semisimple Lie algebra

International Nuclear Information System (INIS)

1990-06-01

With any semisimple Lie algebra g we associate an infinite-dimensional Lie algebra AC(g) which is an analytic continuation of g from its root system to its root lattice. The manifest expressions for the structure constants of analytic continuations of the symplectic Lie algebras sp2 n are obtained by Poisson-bracket realizations method and AC(g) for g=sl n and so n are discussed. The representations, central extension, supersymmetric and higher spin generalizations are considered. The Virasoro theory is a particular case when g=sp 2 . (author). 9 refs

9. Applied linear algebra and matrix analysis

CERN Document Server

Shores, Thomas S

2018-01-01

In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. This approach places special emphasis on linear algebra as an experimental science that provides tools for solving concrete problems. The second edition’s revised text discusses applications of linear algebra like graph theory and network modeling methods used in Google’s PageRank algorithm. Other new materials include modeling examples of diffusive processes, linear programming, image processing, digital signal processing, and Fourier analysis. These topics are woven into the core material of Gaussian elimination and other matrix operations; eigenvalues, eigenvectors, and discrete dynamical systems; and the geometrical aspects of vector spaces. Intended for a one-semester undergraduate course without a strict calculus prerequisite, Applied Linear Algebra and M...

10. Non-freely generated W-algebras and construction of N=2 super W-algebras

International Nuclear Information System (INIS)

Blumenhagen, R.

1994-07-01

Firstly, we investigate the origin of the bosonic W-algebras W(2, 3, 4, 5), W(2, 4, 6) and W(2, 4, 6) found earlier by direct construction. We present a coset construction for all three examples leading to a new type of finitely, non-freely generated quantum W-algebras, which we call unifying W-algebras. Secondly, we develop a manifest covariant formalism to construct N = 2 super W-algebras explicitly on a computer. Applying this algorithm enables us to construct the first four examples of N = 2 super W-algebras with two generators and the N = 2 super W 4 algebra involving three generators. The representation theory of the former ones shows that all examples could be divided into four classes, the largest one containing the N = 2 special type of spectral flow algebras. Besides the W-algebra of the CP(3) Kazama-Suzuki coset model, the latter example with three generators discloses a second solution which could also be explained as a unifying W-algebra for the CP(n) models. (orig.)

11. An algebraic description of perturbation theory in quantum electrodynamics

International Nuclear Information System (INIS)

Wright, J.D.

1982-01-01

An algebraic formulation of the electromagnetic field, in which various quantization procedures can be described, is used to discuss perturbation calculations. The Feynman rules and the second order calculation of the self-energy of the electron can be developed on the basis of the Fermi method of quantization. The algebraic approach clarifies the problems in defining the vacuum and other states, which are associated with calculations in terms of field algebra operators. The vacuum state defined on the field algebra by Schwinger leads to incorrect results in the self-energy calculation

12. Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient

Science.gov (United States)

Aryani, F.; Amin, S. M.; Sulaiman, R.

2018-01-01

Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.

13. Development of a multi-grid FDTD code for three-dimensional simulation of large microwave sintering experiments

Energy Technology Data Exchange (ETDEWEB)

White, M.J.; Iskander, M.F. [Univ. of Utah, Salt Lake City, UT (United States). Electrical Engineering Dept.; Kimrey, H.D. [Oak Ridge National Lab., TN (United States)

1996-12-31

The Finite-Difference Time-Domain (FDTD) code available at the University of Utah has been used to simulate sintering of ceramics in single and multimode cavities, and many useful results have been reported in literature. More detailed and accurate results, specifically around and including the ceramic sample, are often desired to help evaluate the adequacy of the heating procedure. In electrically large multimode cavities, however, computer memory requirements limit the number of the mathematical cells, and the desired resolution is impractical to achieve due to limited computer resources. Therefore, an FDTD algorithm which incorporates multiple-grid regions with variable-grid sizes is required to adequately perform the desired simulations. In this paper the authors describe the development of a three-dimensional multi-grid FDTD code to help focus a large number of cells around the desired region. Test geometries were solved using a uniform-grid and the developed multi-grid code to help validate the results from the developed code. Results from these comparisons, as well as the results of comparisons between the developed FDTD code and other available variable-grid codes are presented. In addition, results from the simulation of realistic microwave sintering experiments showed improved resolution in critical sites inside the three-dimensional sintering cavity. With the validation of the FDTD code, simulations were performed for electrically large, multimode, microwave sintering cavities to fully demonstrate the advantages of the developed multi-grid FDTD code.

14. Algebraic conformal field theory

International Nuclear Information System (INIS)

Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

1991-11-01

Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

15. Boolean algebra essentials

CERN Document Server

Solomon, Alan D

2012-01-01

REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

16. q-deformed Poincare algebra

International Nuclear Information System (INIS)

Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

1992-01-01

The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)

17. Introduction to quantum algebras

International Nuclear Information System (INIS)

Kibler, M.R.

1992-09-01

The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs

18. Continuum analogues of contragredient Lie algebras

International Nuclear Information System (INIS)

Saveliev, M.V.; Vershik, A.M.

1989-03-01

We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

19. Study of some properties of partial differential equations by Lie algebra method

International Nuclear Information System (INIS)

Chongdar, A.K.; Ludu, A.

1990-05-01

In this note we present a system of optimal subalgebras of the Lie algebra obtained in course of investigating hypergeometric polynomial. In addition to this we have obtained some reduced equation and invariants of the P.D.E. obtained under certain transformation while studying hypergeometric polynomial by Weisner's method. Some topological properties of the solutions of P.D.E. are pointed out by using the extended jet bundle formalism. Some applications of our work on plasma physics and hydrodynamics are also cited. (author). 8 refs

20. Lectures on algebraic statistics

CERN Document Server

Drton, Mathias; Sullivant, Seth

2009-01-01

How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

1. Quiver W-algebras

Science.gov (United States)

Kimura, Taro; Pestun, Vasily

2018-06-01

For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

2. Abstract algebra

CERN Document Server

Garrett, Paul B

2007-01-01

Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

3. College algebra

CERN Document Server

Kolman, Bernard

1985-01-01

College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

4. Twisted classical Poincare algebras

International Nuclear Information System (INIS)

Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.

1993-11-01

We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

5. High order spectral volume and spectral difference methods on unstructured grids

Science.gov (United States)

Kannan, Ravishekar

The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed

6. Pre-Algebra Essentials For Dummies

CERN Document Server

Zegarelli, Mark

2010-01-01

Many students worry about starting algebra. Pre-Algebra Essentials For Dummies provides an overview of critical pre-algebra concepts to help new algebra students (and their parents) take the next step without fear. Free of ramp-up material, Pre-Algebra Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in a typical pre-algebra course, from fractions, decimals, and percents to scientific notation and simple variable equations. This guide is also a perfect reference for parents who need to review critical pre-algebra

7. EXACT SOLITARY WAVE SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL EQUATIONS USING DIRECT ALGEBRAIC METHOD

Institute of Scientific and Technical Information of China (English)

2008-01-01

Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.

8. Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics

Energy Technology Data Exchange (ETDEWEB)

Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne

1988-12-01

The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).

9. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles

Science.gov (United States)

Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis

2008-11-01

Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

10. Algorithms in Algebraic Geometry

CERN Document Server

Dickenstein, Alicia; Sommese, Andrew J

2008-01-01

In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

11. Computer algebra and operators

Science.gov (United States)

Fateman, Richard; Grossman, Robert

1989-01-01

The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

12. Abstract Algebra to Secondary School Algebra: Building Bridges

Science.gov (United States)

Christy, Donna; Sparks, Rebecca

2015-01-01

The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

13. Infinite dimension algebra and conformal symmetry

International Nuclear Information System (INIS)

Ragoucy-Aubezon, E.

1991-04-01

A generalisation of Kac-Moody algebras (current algebras defined on a circle) to algebras defined on a compact supermanifold of any dimension and with any number of supersymmetries is presented. For such a purpose, we compute all the central extensions of loop algebras defined on this supermanifold, i.e. all the cohomology classes of these loop algebras. Then, we try to extend the relation (i.e. semi-direct sum) that exists between the two dimensional conformal algebras (called Virasoro algebra) and the usual Kac-Moody algebras, by considering the derivation algebra of our extended Kac-Moody algebras. The case of superconformal algebras (used in superstrings theories) is treated, as well as the cases of area-preserving diffeomorphisms (used in membranes theories), and Krichever-Novikov algebras (used for interacting strings). Finally, we present some generalizations of the Sugawara construction to the cases of extended Kac-Moody algebras, and Kac-Moody of superalgebras. These constructions allow us to get new realizations of the Virasoro, and Ramond, Neveu-Schwarz algebras

14. Fusion algebra and fusing matrices

International Nuclear Information System (INIS)

Gao Yihong; Li Miao; Yu Ming.

1989-09-01

We show that the Wilson line operators in topological field theories form a fusion algebra. In general, the fusion algebra is a relation among the fusing (F) matrices. In the case of the SU(2) WZW model, some special F matrix elements are found in this way, and the remaining F matrix elements are then determined up to a sign. In addition, the S(j) modular transformation of the one point blocks on the torus is worked out. Our results are found to agree with those obtained from the quantum group method. (author). 24 refs

15. {sup 10}B multi-grid proportional gas counters for large area thermal neutron detectors

Energy Technology Data Exchange (ETDEWEB)

Andersen, K. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, T. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Birch, J. [Linköping University, SE-581, 83 Linköping (Sweden); Buffet, J. C.; Correa, J. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Hall-Wilton, R. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Hultman, L. [Linköping University, SE-581, 83 Linköping (Sweden); Höglund, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Linköping University, SE-581, 83 Linköping (Sweden); Guérard, B., E-mail: guerard@ill.fr [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Jensen, J. [Linköping University, SE-581, 83 Linköping (Sweden); Khaplanov, A. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); ESS, P.O. Box 176, SE-221 00 Lund (Sweden); Kirstein, O. [Linköping University, SE-581, 83 Linköping (Sweden); Piscitelli, F.; Van Esch, P. [ILL, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Vettier, C. [ESS, P.O. Box 176, SE-221 00 Lund (Sweden)

2013-08-21

{sup 3}He was a popular material in neutrons detectors until its availability dropped drastically in 2008. The development of techniques based on alternative convertors is now of high priority for neutron research institutes. Thin films of {sup 10}B or {sup 10}B{sub 4}C have been used in gas proportional counters to detect neutrons, but until now, only for small or medium sensitive area. We present here the multi-grid design, introduced at the ILL and developed in collaboration with ESS for LAN (large area neutron) detectors. Typically thirty {sup 10}B{sub 4}C films of 1 μm thickness are used to convert neutrons into ionizing particles which are subsequently detected in a proportional gas counter. The principle and the fabrication of the multi-grid are described and some preliminary results obtained with a prototype of 200 cm×8 cm are reported; a detection efficiency of 48% has been measured at 2.5 Å with a monochromatic neutron beam line, showing the good potential of this new technique.

16. Equivalency of two-dimensional algebras

International Nuclear Information System (INIS)

Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.

2011-01-01

Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

17. General algebraic method applied to control analysis of complex engine types

Science.gov (United States)

Boksenbom, Aaron S; Hood, Richard

1950-01-01

A general algebraic method of attack on the problem of controlling gas-turbine engines having any number of independent variables was utilized employing operational functions to describe the assumed linear characteristics for the engine, the control, and the other units in the system. Matrices were used to describe the various units of the system, to form a combined system showing all effects, and to form a single condensed matrix showing the principal effects. This method directly led to the conditions on the control system for noninteraction so that any setting disturbance would affect only its corresponding controlled variable. The response-action characteristics were expressed in terms of the control system and the engine characteristics. The ideal control-system characteristics were explicitly determined in terms of any desired response action.

18. Algebraic K- and L-theory and applications to the topology of manifolds

Energy Technology Data Exchange (ETDEWEB)

Hambleton, I [Department of Mathematics and Statistics, McMaster University, Hamilton (Canada)

2002-08-15

The development of geometric topology has led to the identification of specific algebraic structures of great richness and usefulness. A common theme in this area is the study of algebraic invariants of discrete groups or rings by topological methods. The resulting subject is now called algebraic K-theory. The purpose of these lecture notes is to survey some of the main constructions and techniques in algebraic K-theory, together with an indication of the topological backnd and applications. More details about proofs can be found in the references. The material is organized into some introductory sections, concerning linear and unitary K-theory, followed by descriptions of four important geometric problems and their related algebraic methods.

19. The algebraic method of the scattering inverse problem solution under untraditional statements

CERN Document Server

Popushnoj, M N

2001-01-01

The algebraic method of the scattering inverse problem solution under untraditional statements is proposed consistently in this review, in the framework of which some quantum theory od scattering charged particles problem were researched afterwards. The inverse problem of scattering theory of charged particles on the complex plane of the Coulomb coupling constant (CCC) is considered. A procedure of interaction potential restoration is established for the case when the energy, orbital moment quadrate and CCC are linearly dependent. The relation between one-parametric problems of the potential scattering of charged particles is investigated

20. The current algebra on the circle as a germ of local field theories

International Nuclear Information System (INIS)

Buchholz, D.; Mack, G.; Todorov, I.; Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika)

1988-01-01

Methods of algebraic quantum field theory are used to classify all field- and observable algebras, whose common germ is the U(1)-current algebra. An elementary way is described to compute characters of such algebras. It exploits the Kubo-Martin-Schwinger condition for Gibbs states. (orig.)

1. Natural differential operations on manifolds: an algebraic approach

International Nuclear Information System (INIS)

Katsylo, P I; Timashev, D A

2008-01-01

Natural algebraic differential operations on geometric quantities on smooth manifolds are considered. A method for the investigation and classification of such operations is described, the method of IT-reduction. With it the investigation of natural operations reduces to the analysis of rational maps between k-jet spaces, which are equivariant with respect to certain algebraic groups. On the basis of the method of IT-reduction a finite generation theorem is proved: for tensor bundles V,W→M all the natural differential operations D:Γ(V)→Γ(W) of degree at most d can be algebraically constructed from some finite set of such operations. Conceptual proofs of known results on the classification of natural linear operations on arbitrary and symplectic manifolds are presented. A non-existence theorem is proved for natural deformation quantizations on Poisson manifolds and symplectic manifolds. Bibliography: 21 titles.

2. Algebraic Concepts: What's Really New in New Curricula?

Science.gov (United States)

Star, Jon R.; Herbel-Eisenmann, Beth A.; Smith, John P., III

2000-01-01

Examines 8th grade units from the Connected Mathematics Project (CMP). Identifies differences in older and newer conceptions, fundamental objects of study, typical problems, and typical solution methods in algebra. Also discusses where the issue of what is new in algebra is relevant to many other innovative middle school curricula. (KHR)

3. Axis Problem of Rough 3-Valued Algebras

Institute of Scientific and Technical Information of China (English)

Jianhua Dai; Weidong Chen; Yunhe Pan

2006-01-01

The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

4. Enveloping σ-C C C-algebra of a smooth Frechet algebra crossed ...

Home; Journals; Proceedings – Mathematical Sciences; Volume 116; Issue 2. Enveloping -*-Algebra of a Smooth Frechet Algebra Crossed Product by R R , K -Theory and Differential Structure in *-Algebras. Subhash J Bhatt. Regular Articles Volume 116 Issue 2 May 2006 pp 161-173 ...

5. Realization Of Algebraic Processor For XML Documents Processing

International Nuclear Information System (INIS)

2010-01-01

In this paper, are presented some possibilities concerning the implementation of an algebraic method for XML hierarchical data processing which makes faster the XML search mechanism. Here is offered a different point of view for creation of advanced algebraic processor (with all necessary software tools and programming modules respectively). Therefore, this nontraditional approach for fast XML navigation with the presented algebraic processor may help to build an easier user-friendly interface provided XML transformations, which can avoid the difficulties in the complicated language constructions of XSL, XSLT and XPath. This approach allows comparatively simple search of XML hierarchical data by means of the following types of functions: specification functions and so named build-in functions. The choice of programming language Java may appear strange at first, but it isn't when you consider that the applications can run on different kinds of computers. The specific search mechanism based on the linear algebra theory is faster in comparison with MSXML parsers (on the basis of the developed examples with about 30%). Actually, there exists the possibility for creating new software tools based on the linear algebra theory, which cover the whole navigation and search techniques characterizing XSLT/XPath. The proposed method is able to replace more complicated operations in other SOA components.

6. Hecke algebras with unequal parameters

CERN Document Server

Lusztig, G

2003-01-01

Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...

7. An implicit multigrid algorithm for computing hypersonic, chemically reacting viscous flows

International Nuclear Information System (INIS)

Edwards, J.R.

1996-01-01

An implicit algorithm for computing viscous flows in chemical nonequilibrium is presented. Emphasis is placed on the numerical efficiency of the time integration scheme, both in terms of periteration workload and overall convergence rate. In this context, several techniques are introduced, including a stable, O(m 2 ) approximate factorization of the chemical source Jacobian and implementations of V-cycle and filtered multigrid acceleration methods. A five species-seventeen reaction air model is used to calculate hypersonic viscous flow over a cylinder at conditions corresponding to flight at 5 km/s, 60 km altitude and at 11.36 km/s, 76.42 km altitude. Inviscid calculations using an eleven-species reaction mechanism including ionization are presented for a case involving 11.37 km/s flow at an altitude of 84.6 km. Comparisons among various options for the implicit treatment of the chemical source terms and among different multilevel approaches for convergence acceleration are presented for all simulations

8. Categories and Commutative Algebra

CERN Document Server

Salmon, P

2011-01-01

L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

9. Computer methods in general relativity: algebraic computing

CERN Document Server

Araujo, M E; Skea, J E F; Koutras, A; Krasinski, A; Hobill, D; McLenaghan, R G; Christensen, S M

1993-01-01

Karlhede & MacCallum  gave a procedure for determining the Lie algebra of the isometry group of an arbitrary pseudo-Riemannian manifold, which they intended to im- plement using the symbolic manipulation package SHEEP but never did. We have recently ﬁnished making this procedure explicit by giving an algorithm suitable for implemen- tation on a computer . Specifically, we have written an algorithm for determining the isometry group of a spacetime (in four dimensions), and partially implemented this algorithm using the symbolic manipulation package CLASSI, which is an extension of SHEEP.

10. Particle-like structure of Lie algebras

Science.gov (United States)

2017-07-01

If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.

11. Dynamical entropy of C* algebras and Von Neumann algebras

International Nuclear Information System (INIS)

Connes, A.; Narnhofer, H.; Thirring, W.

1986-01-01

The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)

12. Gradings on simple Lie algebras

CERN Document Server

Elduque, Alberto

2013-01-01

Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.

13. Topological conformal algebra and BRST algebra in non-critical string theories

International Nuclear Information System (INIS)

Fujikawa, Kazuo; Suzuki, Hiroshi.

1991-03-01

The operator algebra in non-critical string theories is studied by treating the cosmological term as a perturbation. The algebra of covariantly regularized BRST and related currents contains a twisted N = 2 superconformal algebra only at d = -2 in bosonic strings, and a twisted N = 3 superconformal algebra only at d = ±∞ in spinning strings. The bosonic string at d = -2 is examined by replacing the string coordinate by a fermionic matter with c = -2. The resulting bc-βγ system accommodates various forms of BRST cohomology, and the ghost number assignment and BRST cohomology are different in the c = -2 string theory and two-dimensional topological gravity. (author)

14. Algebraic K-theory

CERN Document Server

Srinivas, V

1996-01-01

Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...

15. Fermionic construction of vertex operators for twisted affine algebras

International Nuclear Information System (INIS)

Frappat, L.; Sorba, P.; Sciarrino, A.

1988-03-01

We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators

16. Head First Algebra A Learner's Guide to Algebra I

CERN Document Server

Pilone, Tracey

2008-01-01

Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

17. Novikov algebras with associative bilinear forms

Energy Technology Data Exchange (ETDEWEB)

Zhu Fuhai; Chen Zhiqi [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)

2007-11-23

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. The goal of this paper is to study Novikov algebras with non-degenerate associative symmetric bilinear forms, which we call quadratic Novikov algebras. Based on the classification of solvable quadratic Lie algebras of dimension not greater than 4 and Novikov algebras in dimension 3, we show that quadratic Novikov algebras up to dimension 4 are commutative. Furthermore, we obtain the classification of transitive quadratic Novikov algebras in dimension 4. But we find that not every quadratic Novikov algebra is commutative and give a non-commutative quadratic Novikov algebra in dimension 6.

18. Lie algebra in quantum physics by means of computer algebra

OpenAIRE

Kikuchi, Ichio; Kikuchi, Akihito

2017-01-01

This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...

19. Fast multigrid solution of the advection problem with closed characteristics

Energy Technology Data Exchange (ETDEWEB)

Yavneh, I. [Israel Inst. of Technology, Haifa (Israel); Venner, C.H. [Univ. of Twente, Enschede (Netherlands); Brandt, A. [Weizmann Inst. of Science, Rehovot (Israel)

1996-12-31

The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.

20. Profinite algebras and affine boundedness

OpenAIRE

Schneider, Friedrich Martin; Zumbrägel, Jens

2015-01-01

We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...

1. Algebraic quantization of systems with a gauge degeneracy

International Nuclear Information System (INIS)

Grundling, H.B.G.S.; Hurst, C.A.

1985-01-01

Systems with a gauge degeneracy are characterized either by supplementary conditions, or by a set of generators of gauge transformations, or by a set of constraints deriving from Dirac's canonical constraint method. These constraints can be expressed either as conditions on the field algebra F, or on the states on F. In a Csup(*)-algebra framework, we show that the state conditions give rise to a factor algebra of a subalgebra of the field algebra F. This factor algebra R, is free of state conditions. In this formulation we show also that the algebraic conditions can be treated in the same way as the state conditions. The connection between states on F and states on R is investigated further within this framework, as is also the set of transformations which are compatible with the set of constraints. It is also shown that not every set of constraints can give rise to a nontrivial system. Finally as an example, the abstract theory is applied to the electromagnetic field, and this treatment can be generalized to all systems of bosons with linear constraints. The question of dynamics is not discussed. (orig.)

2. Double-partition Quantum Cluster Algebras

DEFF Research Database (Denmark)

Jakobsen, Hans Plesner; Zhang, Hechun

2012-01-01

A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....

3. Algebra II workbook for dummies

CERN Document Server

Sterling, Mary Jane

2014-01-01

To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

4. Very true operators on MTL-algebras

Directory of Open Access Journals (Sweden)

Wang Jun Tao

2016-01-01

Full Text Available The main goal of this paper is to investigate very true MTL-algebras and prove the completeness of the very true MTL-logic. In this paper, the concept of very true operators on MTL-algebras is introduced and some related properties are investigated. Also, conditions for an MTL-algebra to be an MV-algebra and a Gödel algebra are given via this operator. Moreover, very true filters on very true MTL-algebras are studied. In particular, subdirectly irreducible very true MTL-algebras are characterized and an analogous of representation theorem for very true MTL-algebras is proved. Then, the left and right stabilizers of very true MTL-algebras are introduced and some related properties are given. As applications of stabilizer of very true MTL-algebras, we produce a basis for a topology on very true MTL-algebras and show that the generated topology by this basis is Baire, connected, locally connected and separable. Finally, the corresponding logic very true MTL-logic is constructed and the soundness and completeness of this logic are proved based on very true MTL-algebras.

5. Construction Example for Algebra System Using Harmony Search Algorithm

Directory of Open Access Journals (Sweden)

FangAn Deng

2015-01-01

Full Text Available The construction example of algebra system is to verify the existence of a complex algebra system, and it is a NP-hard problem. In this paper, to solve this kind of problems, firstly, a mathematical optimization model for construction example of algebra system is established. Secondly, an improved harmony search algorithm based on NGHS algorithm (INGHS is proposed to find as more solutions as possible for the optimization model; in the proposed INGHS algorithm, to achieve the balance between exploration power and exploitation power in the search process, a global best strategy and parameters dynamic adjustment method are present. Finally, nine construction examples of algebra system are used to evaluate the optimization model and performance of INGHS. The experimental results show that the proposed algorithm has strong performance for solving complex construction example problems of algebra system.

6. Path operator algebras in conformal quantum field theories

International Nuclear Information System (INIS)

Roesgen, M.

2000-10-01

Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)

7. Hopf algebras in noncommutative geometry

International Nuclear Information System (INIS)

Varilly, Joseph C.

2001-10-01

We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

8. Extended Kac-Moody algebras and applications

International Nuclear Information System (INIS)

Ragoucy, E.; Sorba, P.

1991-04-01

The notion of a Kac-Moody algebra defined on the S 1 circle is extended to super Kac-Moody algebras defined on MxG N , M being a smooth closed compact manifold of dimension greater than one, and G N the Grassman algebra with N generators. All the central extensions of these algebras are computed. Then, for each such algebra the derivation algebra constructed from the MxG N diffeomorphism is determined. The twists of such super Kac-Moody algebras as well as the generalization to non-compact surfaces are partially studied. Finally, the general construction is applied to the study of conformal and superconformal algebras, as well as area-preserving diffeomorphisms algebra and its supersymmetric extension. (author) 65 refs

9. Al- Khwarizmi and axiomatic foundation of algebra

International Nuclear Information System (INIS)

Fares, N.

2015-01-01

This paper intends to investigate the axiomatic foundations of algebra, as they were presented in the book of algebra of al-Khwarizmi (9 th century), and as they were developed in many subsequent Arabic works. The paper gives also a description of algebra evolution towards a discipline independent ofgeometry and arithmetic: the two disciplines whosemarriage had led to its birth.By an in depth reading of some details in the text of al Khwarizmi , we concluded that this mathematician intended to lay down the axiomatic foundations of that new discipline. His resort to arithmetical and geometrical means was a way of making his theory more accessible. He used them to justify the axioms: those that were not explicitly introduced per se, and those that were remained implicit. The paper also relies on some unedited writingsof al-Khwarizmi's successors, which could shedlight on the ways they used to consolidate the foundations of algebra and improve its methods. (author)

10. (Fuzzy) Ideals of BN-Algebras

Science.gov (United States)

Walendziak, Andrzej

2015-01-01

The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

11. Teaching Linear Algebra: Must the Fog Always Roll In?

Science.gov (United States)

Carlson, David

1993-01-01

Proposes methods to teach the more difficult concepts of linear algebra. Examines features of the Linear Algebra Curriculum Study Group Core Syllabus, and presents problems from the core syllabus that utilize the mathematical process skills of making conjectures, proving the results, and communicating the results to colleagues. Presents five…

12. Non-relativistic Bondi-Metzner-Sachs algebra

Science.gov (United States)

Batlle, Carles; Delmastro, Diego; Gomis, Joaquim

2017-09-01

We construct two possible candidates for non-relativistic bms4 algebra in four space-time dimensions by contracting the original relativistic bms4 algebra. bms4 algebra is infinite-dimensional and it contains the generators of the Poincaré algebra, together with the so-called super-translations. Similarly, the proposed nrbms4 algebras can be regarded as two infinite-dimensional extensions of the Bargmann algebra. We also study a canonical realization of one of these algebras in terms of the Fourier modes of a free Schrödinger field, mimicking the canonical realization of relativistic bms4 algebra using a free Klein-Gordon field.

13. The Unitality of Quantum B-algebras

Science.gov (United States)

Han, Shengwei; Xu, Xiaoting; Qin, Feng

2018-02-01

Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.

14. On Weak-BCC-Algebras

Science.gov (United States)

Thomys, Janus; Zhang, Xiaohong

2013-01-01

We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

15. G-identities of non-associative algebras

International Nuclear Information System (INIS)

Bakhturin, Yu A; Zaitsev, M V; Sehgal, S K

1999-01-01

The main class of algebras considered in this paper is the class of algebras of Lie type. This class includes, in particular, associative algebras, Lie algebras and superalgebras, Leibniz algebras, quantum Lie algebras, and many others. We prove that if a finite group G acts on such an algebra A by automorphisms and anti-automorphisms and A satisfies an essential G-identity, then A satisfies an ordinary identity of degree bounded by a function that depends on the degree of the original identity and the order of G. We show in the case of ordinary Lie algebras that if L is a Lie algebra, a finite group G acts on L by automorphisms and anti-automorphisms, and the order of G is coprime to the characteristic of the field, then the existence of an identity on skew-symmetric elements implies the existence of an identity on the whole of L, with the same kind of dependence between the degrees of the identities. Finally, we generalize Amitsur's theorem on polynomial identities in associative algebras with involution to the case of alternative algebras with involution

16. On Dunkl angular momenta algebra

Energy Technology Data Exchange (ETDEWEB)

Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

2015-11-17

We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

17. Algebraic computing

International Nuclear Information System (INIS)

MacCallum, M.A.H.

1990-01-01

The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)

18. A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets

Science.gov (United States)

2014-11-01

linear hybrid systems by linear algebraic methods. In SAS, volume 6337 of LNCS, pages 373–389. Springer, 2010.  E. W. Mayr. Membership in polynomial...383–394, 2009.  A. Tarski. A decision method for elementary algebra and geometry. Bull. Amer. Math. Soc., 59, 1951.  A. Tiwari. Abstractions...A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 November 2014 CMU

19. Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra

CERN Document Server

Cox, David A; O'Shea, Donal

2015-01-01

This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem, and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and, with some supplementation perhaps, for beginning graduate level courses in algebraic geom...

20. Connections between algebra, combinatorics, and geometry

CERN Document Server

Sather-Wagstaff, Sean

2014-01-01

Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...