Model Checking Processes Specified In Join-Calculus Algebra
Directory of Open Access Journals (Sweden)
Sławomir Piotr Maludziński
2014-01-01
Full Text Available This article presents a model checking tool used to verify concurrent systems specified in join-calculus algebra. The temporal properties of systems under verification are expressed in CTL logic. Join-calculus algebra with its operational semantics defined by the chemical abstract machine serves as the basic method for the specification of concurrent systems and their synchronization mechanisms, and allows the examination of more complex systems.
Analysis of DIRAC's behavior using model checking with process algebra
Remenska, Daniela; Templon, Jeff; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Graciani Diaz, Ricardo; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof
2012-12-01
DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple; the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike conventional testing, it allows full control over the parallel processes execution, and supports exhaustive state-space exploration. We used the mCRL2 language and toolset to model the behavior of two related DIRAC subsystems: the workload and storage management system. Based on process algebra, mCRL2 allows defining custom data types as well as functions over these. This makes it suitable for modeling the data manipulations made by DIRAC's agents. By visualizing the state space and replaying scenarios with the toolkit's simulator, we have detected race-conditions and deadlocks in these systems, which, in several cases, were confirmed to occur in the reality. Several properties of interest were formulated and verified with the tool. Our future direction is automating the translation from DIRAC to a formal model.
Analysis of DIRAC's behavior using model checking with process algebra
International Nuclear Information System (INIS)
DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple; the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike conventional testing, it allows full control over the parallel processes execution, and supports exhaustive state-space exploration. We used the mCRL2 language and toolset to model the behavior of two related DIRAC subsystems: the workload and storage management system. Based on process algebra, mCRL2 allows defining custom data types as well as functions over these. This makes it suitable for modeling the data manipulations made by DIRAC's agents. By visualizing the state space and replaying scenarios with the toolkit's simulator, we have detected race-conditions and deadlocks in these systems, which, in several cases, were confirmed to occur in the reality. Several properties of interest were formulated and verified with the tool. Our future direction is automating the translation from DIRAC to a formal model.
Analysis of DIRAC's behavior using model checking with process algebra
Remenska, Daniela; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Diaz, Ricardo Graciani; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof
2012-01-01
DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple, the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike con...
Model checking process algebra of communicating resources for real-time systems
DEFF Research Database (Denmark)
Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand;
2014-01-01
, urgentness and resource usage over a dense-time model. The semantic interpretation of PACoR is defined in the form of a timed transition system expressing the timed behavior and dynamic creation of processes. We define a translation of PACoR systems to Parameterized Stopwatch Automata (PSA). The translation...... preserves the original semantics of PACoR and enables the verification of PACoR systems using symbolic model checking in Uppaal and statistical model checking UppaalSMC. Finally we provide an example to illustrate system specification in PACoR, translation and verification.......This paper presents a new process algebra, called PACoR, for real-time systems which deals with resource- constrained timed behavior as an improved version of the ACSR algebra. We define PACoR as a Process Algebra of Communicating Resources which allows to explicitly express preemptiveness...
Model Checking Process Algebra of Communicating Resources for Real-time Systems
DEFF Research Database (Denmark)
Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand;
2014-01-01
and resource usage over a dense-time model. The semantic interpretation of PACOR is defined in the form of a timed transition system expressing the timed behavior and dynamic creation of processes. We define a translation of PACOR systems to Parameterized Stopwatch Automata (PSA). The translation preserves...... the original semantics of PACOR and enables the verification of PACOR systems using symbolic model checking in UPPAAL and statistical model checking UPPAAL SMC. Finally we provide an example to illustrate system specification in PACOR, translation and verification.......This paper presents a new process algebra, called PACOR, for real-time systems which deals with resource constrained timed behavior as an improved version of the ACSR algebra. We define PACOR as a Process Algebra of Communicating Resources which allows to express preemptiveness, urgent ness...
LHCb: Analysing DIRAC's Behavior using Model Checking with Process Algebra
Remenska, Daniela
2012-01-01
DIRAC is the Grid solution designed to support LHCb production activities as well as user data analysis. Based on a service-oriented architecture, DIRAC consists of many cooperating distributed services and agents delivering the workload to the Grid resources. Services accept requests from agents and running jobs, while agents run as light-weight components, fulfilling specific goals. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check for changes in the service states, and react to these accordingly. A characteristic of DIRAC's architecture is the relatively low complexity in the logic of each agent; the main source of complexity lies in their cooperation. These agents run concurrently, and communicate using the services' databases as a shared memory for synchronizing the state transitions. Although much effort is invested in making DIRAC reliable, entities occasionally get into inconsistent states, leadi...
Institute of Scientific and Technical Information of China (English)
Wanwei LIU; Ji WANG; Huowang CHEN; Xiaodong MA; Zhaofei WANG
2009-01-01
Property specification language (PSL) is a specification language which has been accepted as an industrial standard. In PSL, SEREs are used as additional formula constructs. In this paper, we present a variant of PSL, namely APSL, which replaces SEREs with finite automata. APSL and PSL are of the exactly same expressiveness. Then, we extend the LTL symbolic model checking algorithm to that of APSL, and then present a tableau based APSL verification technique, which can be easily implemented via the BDD based symbolic approach. Moreover, we implement an extension of NuSMV, and this adapted version supports symbolic model checking of APSL. Experimental results show that this variant of PSL can be efficiently verified. Henceforth, symbolic model checking PSL can be carried out by a transformation from PSL to APSL and symbolic model checking APSL.
DEFF Research Database (Denmark)
Andersen, Henrik Reif
1995-01-01
A major obstacle in applying finite-state model checking to the verification of large systems is the combinatorial explosion of the state space arising when many loosely coupled parallel processes are considered. The problem also known as the state-explosion problem has been attacked from various...... sides. This paper presents a new approach based on partial model checking where parts of the concurrent system are gradually removed while transforming the specification accordingly. When the intermediate specifications constructed in this manner can be kept small, the state-explosion problem is avoided...
Model composition in model checking
Felscher, Ingo
2014-01-01
Model-checking allows one to formally check properties of systems: these properties are modeled as logic formulas and the systems as structures like transition systems. These transition systems are often composed, i.e., they arise in form of products or sums. The composition technique allows us to deduce the truth of a formula in the composed system from "interface information": the truth of formulas for the component systems and information in which components which of these formulas hold. W...
Institute of Scientific and Technical Information of China (English)
Zhi-Hong Tao; Cong-Hua Zhou; Zhong Chen; Li-Fu Wang
2007-01-01
Bounded Model Checking has been recently introduced as an efficient verification method for reactive systems.This technique reduces model checking of linear temporal logic to propositional satisfiability.In this paper we first present how quantified Boolean decision procedures can replace BDDs.We introduce a bounded model checking procedure for temporal logic CTL* which reduces model checking to the satisfiability of quantified Boolean formulas.Our new technique avoids the space blow up of BDDs, and extends the concept of bounded model checking.
International Nuclear Information System (INIS)
In this paper, we begin the study of zero-dimensional field theories with fields taking values in a semistrict Lie 2-algebra. These theories contain the IKKT matrix model and various M-brane related models as special cases. They feature solutions that can be interpreted as quantized 2-plectic manifolds. In particular, we find solutions corresponding to quantizations of ℝ3, S3 and a five-dimensional Hpp-wave. Moreover, by expanding a certain class of Lie 2-algebra models around the solution corresponding to quantized ℝ3, we obtain higher BF-theory on this quantized space
Model Checking as Static Analysis
DEFF Research Database (Denmark)
Zhang, Fuyuan
Both model checking and static analysis are prominent approaches to detecting software errors. Model Checking is a successful formal method for verifying properties specified in temporal logics with respect to transition systems. Static analysis is also a powerful method for validating program...... properties which can predict safe approximations to program behaviors. In this thesis, we have developed several static analysis based techniques to solve model checking problems, aiming at showing the link between static analysis and model checking. We focus on logical approaches to static analysis......-calculus can be encoded as the intended model of SFP. Our research results have strengthened the link between model checking and static analysis. This provides a theoretical foundation for developing a unied tool for both model checking and static analysis techniques....
MODEL IDENTIFICATION AND COMPUTER ALGEBRA.
Bollen, Kenneth A; Bauldry, Shawn
2010-10-01
Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods.
MODEL IDENTIFICATION AND COMPUTER ALGEBRA.
Bollen, Kenneth A; Bauldry, Shawn
2010-10-01
Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods. PMID:21769158
Checking Model Transformation Refinement
Büttner, Fabian; Egea, Marina; Guerra, Esther; Lara, Juan De
2013-01-01
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38883-5_15 Proceedings of 6th International Conference, ICMT 2013, Budapest, Hungary, June 18-19, 2013 Refinement is a central notion in computer science, meaning that some artefact S can be safely replaced by a refinement R, which preserves S’s properties. Having available techniques and tools to check transformation refinement would enable (a) the reasoning on whether a transformation correctly impl...
Model Checking Algorithms for CTMDPs
DEFF Research Database (Denmark)
Buchholz, Peter; Hahn, Ernst Moritz; Hermanns, Holger;
2011-01-01
Continuous Stochastic Logic (CSL) can be interpreted over continuoustime Markov decision processes (CTMDPs) to specify quantitative properties of stochastic systems that allow some external control. Model checking CSL formulae over CTMDPs requires then the computation of optimal control strategie...
Model checking PSL safety properties
Launiainen, Tuomas
2009-01-01
Model checking is a modern, efficient approach to gaining confidence of the correctness of complex systems. It outperforms conventional testing methods especially in cases where a high degree of confidence in the correctness of the system is required, or when the test runs of the system are difficult to reproduce accurately. In model checking the system is verified against a specification that is expressed in a formal specification language. The main challenges are that the process requires q...
Model Checking Feature Interactions
DEFF Research Database (Denmark)
Le Guilly, Thibaut; Olsen, Petur; Pedersen, Thomas;
2015-01-01
This paper presents an offline approach to analyzing feature interactions in embedded systems. The approach consists of a systematic process to gather the necessary information about system components and their models. The model is first specified in terms of predicates, before being refined to t...
Jansen, D.N.
2002-01-01
The logic ATCTL is a convenient logic to specify properties with actions and real-time. It is intended as a property language for Lightweight UML models [12], which consist mainly of simplified class diagrams and statecharts. ATCTL combines two known extensions of CTL, namely ACTL and TCTL. The reas
Direct Model Checking Matrix Algorithm
Institute of Scientific and Technical Information of China (English)
Zhi-Hong Tao; Hans Kleine Büning; Li-Fu Wang
2006-01-01
During the last decade, Model Checking has proven its efficacy and power in circuit design, network protocol analysis and bug hunting. Recent research on automatic verification has shown that no single model-checking technique has the edge over all others in all application areas. So, it is very difficult to determine which technique is the most suitable for a given model. It is thus sensible to apply different techniques to the same model. However, this is a very tedious and time-consuming task, for each algorithm uses its own description language. Applying Model Checking in software design and verification has been proved very difficult. Software architectures (SA) are engineering artifacts that provide high-level and abstract descriptions of complex software systems. In this paper a Direct Model Checking (DMC) method based on Kripke Structure and Matrix Algorithm is provided. Combined and integrated with domain specific software architecture description languages (ADLs), DMC can be used for computing consistency and other critical properties.
Model Checking Linearizability via Refinement
Liu, Yang; Chen, Wei; Liu, Yanhong A.; Sun, Jun
Linearizability is an important correctness criterion for implementations of concurrent objects. Automatic checking of linearizability is challenging because it requires checking that 1) all executions of concurrent operations be serializable, and 2) the serialized executions be correct with respect to the sequential semantics. This paper describes a new method to automatically check linearizability based on refinement relations from abstract specifications to concrete implementations. Our method avoids the often difficult task of determining linearization points in implementations, but can also take advantage of linearization points if they are given. The method exploits model checking of finite state systems specified as concurrent processes with shared variables. Partial order reduction is used to effectively reduce the search space. The approach is built into a toolset that supports a rich set of concurrent operators. The tool has been used to automatically check a variety of implementations of concurrent objects, including the first algorithms for the mailbox problem and scalable NonZero indicators. Our system was able to find all known and injected bugs in these implementations.
Dimer models and Calabi-Yau algebras
Broomhead, Nathan
2008-01-01
In this thesis we study dimer models, as introduced in string theory, which give a way of writing down a class of non-commutative `superpotential' algebras. Some examples are 3-dimensional Calabi-Yau algebras, as defined by Ginzburg, and some are not. We consider two types of `consistency' condition on dimer models, and show that a `geometrically consistent' model is `algebraically consistent'. Finally we prove that the algebras obtained from algebraically consistent dimer models are 3-dimensional Calabi-Yau algebras.
Compositional and Quantitative Model Checking
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand
2010-01-01
on the existence of a quotient construction, allowing a property phi of a parallel system phi/A to be transformed into a sufficient and necessary quotient-property yolA to be satisfied by the component 13. Given a model checking problem involving a network Pi I and a property yo, the method gradually move (by...
Observable Algebra in Field Algebra of G-spin Models
Institute of Scientific and Technical Information of China (English)
蒋立宁
2003-01-01
Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra AH, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that AH is a C*-algebra. The correspondence between H and AH is strictly monotonic. Finally, a duality between D(H) and AH is given via an irreducible vacuum C*-representation of F.
FOUNDATION OF NUCLEAR ALGEBRAIC MODELS
Institute of Scientific and Technical Information of China (English)
周孝谦
1990-01-01
Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.
From model checking to model measuring
Henzinger, Thomas A.; Otop, Jan
2013-01-01
We define the model-measuring problem: given a model $M$ and specification~$\\varphi$, what is the maximal distance $\\rho$ such that all models $M'$ within distance $\\rho$ from $M$ satisfy (or violate)~$\\varphi$. The model measuring problem presupposes a distance function on models. We concentrate on automatic distance functions, which are defined by weighted automata. The model-measuring problem subsumes several generalizations of the classical model-checking problem, in particular, qu...
Heteroscedasticity checks for regression models
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
For checking on heteroscedasticity in regression models, a unified approach is proposed to constructing test statistics in parametric and nonparametric regression models. For nonparametric regression, the test is not affected sensitively by the choice of smoothing parameters which are involved in estimation of the nonparametric regression function. The limiting null distribution of the test statistic remains the same in a wide range of the smoothing parameters. When the covariate is one-dimensional, the tests are, under some conditions, asymptotically distribution-free. In the high-dimensional cases, the validity of bootstrap approximations is investigated. It is shown that a variant of the wild bootstrap is consistent while the classical bootstrap is not in the general case, but is applicable if some extra assumption on conditional variance of the squared error is imposed. A simulation study is performed to provide evidence of how the tests work and compare with tests that have appeared in the literature. The approach may readily be extended to handle partial linear, and linear autoregressive models.
Heteroscedasticity checks for regression models
Institute of Scientific and Technical Information of China (English)
ZHU; Lixing
2001-01-01
［1］Carroll, R. J., Ruppert, D., Transformation and Weighting in Regression, New York: Chapman and Hall, 1988.［2］Cook, R. D., Weisberg, S., Diagnostics for heteroscedasticity in regression, Biometrika, 1988, 70: 1—10.［3］Davidian, M., Carroll, R. J., Variance function estimation, J. Amer. Statist. Assoc., 1987, 82: 1079—1091.［4］Bickel, P., Using residuals robustly I: Tests for heteroscedasticity, Ann. Statist., 1978, 6: 266—291.［5］Carroll, R. J., Ruppert, D., On robust tests for heteroscedasticity, Ann. Statist., 1981, 9: 205—209.［6］Eubank, R. L., Thomas, W., Detecting heteroscedasticity in nonparametric regression, J. Roy. Statist. Soc., Ser. B, 1993, 55: 145—155.［7］Diblasi, A., Bowman, A., Testing for constant variance in a linear model, Statist. and Probab. Letters, 1997, 33: 95—103.［8］Dette, H., Munk, A., Testing heteoscedasticity in nonparametric regression, J. R. Statist. Soc. B, 1998, 60: 693—708.［9］Müller, H. G., Zhao, P. L., On a semi-parametric variance function model and a test for heteroscedasticity, Ann. Statist., 1995, 23: 946—967.［10］Stute, W., Manteiga, G., Quindimil, M. P., Bootstrap approximations in model checks for regression, J. Amer. Statist. Asso., 1998, 93: 141—149.［11］Stute, W., Thies, G., Zhu, L. X., Model checks for regression: An innovation approach, Ann. Statist., 1998, 26: 1916—1939.［12］Shorack, G. R., Wellner, J. A., Empirical Processes with Applications to Statistics, New York: Wiley, 1986.［13］Efron, B., Bootstrap methods: Another look at the jackknife, Ann. Statist., 1979, 7: 1—26.［14］Wu, C. F. J., Jackknife, bootstrap and other re-sampling methods in regression analysis, Ann. Statist., 1986, 14: 1261—1295.［15］H rdle, W., Mammen, E., Comparing non-parametric versus parametric regression fits, Ann. Statist., 1993, 21: 1926—1947.［16］Liu, R. Y., Bootstrap procedures under some non-i.i.d. models, Ann. Statist., 1988, 16: 1696—1708.［17
Shashidhar, K C; Catthoor, Francky; Janssens, Gerda
2011-01-01
Development of energy and performance-efficient embedded software is increasingly relying on application of complex transformations on the critical parts of the source code. Designers applying such nontrivial source code transformations are often faced with the problem of ensuring functional equivalence of the original and transformed programs. Currently they have to rely on incomplete and time-consuming simulation. Formal automatic verification of the transformed program against the original is instead desirable. This calls for equivalence checking tools similar to the ones available for comparing digital circuits. We present such a tool to compare array-intensive programs related through a combination of important global transformations like expression propagations, loop and algebraic transformations. When the transformed program fails to pass the equivalence check, the tool provides specific feedback on the possible locations of errors.
On the Model Properties of BCK Algebras
Institute of Scientific and Technical Information of China (English)
LIANGJun-qi
2004-01-01
This paper is devoted to the study of the logical properties of BCK algebras. For formalized BCK algebra theory T, it is proved that T is preserved under submodels and unions of chains; T is neither complete nor model complete, and hence there exist no builtin Skolem function. Moreover, the ultraproduct BCK algebras and the fuzzy ultraproduct of fuzzy subsets of BCK algebras were proposed by using the concept of ultrafilters with corresponding propertics of fuzzy ideals discussed.
The model checking fingerprints of CTL operators
Krebs, Andreas; Meier, Arne; Mundhenk, Martin
2015-01-01
The aim of this study is to understand the inherent expressive power of CTL operators. We investigate the complexity of model checking for all CTL fragments with one CTL operator and arbitrary Boolean operators. This gives us a fingerprint of each CTL operator. The comparison between the fingerprints yields a hierarchy of the operators that mirrors their strength with respect to model checking.
MODEL IDENTIFICATION AND COMPUTER ALGEBRA
Bollen, Kenneth A.; Bauldry, Shawn
2010-01-01
Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local a...
Model Checking of Boolean Process Models
Schneider, Christoph
2011-01-01
In the field of Business Process Management formal models for the control flow of business processes have been designed since more than 15 years. Which methods are best suited to verify the bulk of these models? The first step is to select a formal language which fixes the semantics of the models. We adopt the language of Boolean systems as reference language for Boolean process models. Boolean systems form a simple subclass of coloured Petri nets. Their characteristics are low tokens to model explicitly states with a subsequent skipping of activations and arbitrary logical rules of type AND, XOR, OR etc. to model the split and join of the control flow. We apply model checking as a verification method for the safeness and liveness of Boolean systems. Model checking of Boolean systems uses the elementary theory of propositional logic, no modal operators are needed. Our verification builds on a finite complete prefix of a certain T-system attached to the Boolean system. It splits the processes of the Boolean sy...
Matrix algebra for linear models
Gruber, Marvin H J
2013-01-01
Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f
Engineering Abstractions in Model Checking and Testing
Achenbach, Michael; Ostermann, Klaus
2009-01-01
Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implicati...
Model Checking Discounted Temporal Properties
Alfaro, de Luca; Faella, Marco; Henzinger, Thomas A.; Majumdar, Rupak; Stoelinga, Mariëlle
2004-01-01
Temporal logic is two-valued: formulas are interpreted as either true or false. When applied to the analysis of stochastic systems, or systems with imprecise formal models, temporal logic is therefore fragile: even small changes in the model can lead to opposite truth values for a specification. We
Model Checking Discounted Temporal Properties
Alfaro, de Luca; Faella, Marco; Henzinger, Thomas A.; Majumdar, Rupak; Stoelinga, Mariëlle
2005-01-01
Temporal logic is two-valued: formulas are interpreted as either true or false. When applied to the analysis of stochastic systems, or systems with imprecise formal models, temporal logic is therefore fragile: even small changes in the model can lead to opposite truth values for a specification. We
Graded CTL Model Checking for Test Generation
Napoli, Margherita
2011-01-01
Recently there has been a great attention from the scientific community towards the use of the model-checking technique as a tool for test generation in the simulation field. This paper aims to provide a useful mean to get more insights along these lines. By applying recent results in the field of graded temporal logics, we present a new efficient model-checking algorithm for Hierarchical Finite State Machines (HSM), a well established symbolism long and widely used for representing hierarchical models of discrete systems. Performing model-checking against specifications expressed using graded temporal logics has the peculiarity of returning more counterexamples within a unique run. We think that this can greatly improve the efficacy of automatically getting test cases. In particular we verify two different models of HSM against branching time temporal properties.
Engineering Abstractions in Model Checking and Testing
DEFF Research Database (Denmark)
Achenbach, Michael; Ostermann, Klaus
2009-01-01
Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implications of remaining weaknesses of these tools. We believe that a principled engineering approach to designing...
A Method for Model Checking Feature Interactions
DEFF Research Database (Denmark)
Pedersen, Thomas; Le Guilly, Thibaut; Ravn, Anders Peter;
2015-01-01
This paper presents a method to check for feature interactions in a system assembled from independently developed concurrent processes as found in many reactive systems. The method combines and refines existing definitions and adds a set of activities. The activities describe how to populate the ...... the definitions with models to ensure that all interactions are captured. The method is illustrated on a home automation example with model checking as analysis tool. In particular, the modelling formalism is timed automata and the analysis uses UPPAAL to find interactions....
A PSL Bounded Model Checking Method
Institute of Scientific and Technical Information of China (English)
YU Lei; ZHAO Zongtao
2012-01-01
SAT-based bounded model checking （BMC） is introduced as an important complementary technique to OBDD-based symbolic model checking, and is an efficient verification method for parallel and reactive systems. However, until now the properties verified by bounded model checking are very finite. Temporal logic PSL is a property specification language （IEEE-1850） describing parallel systems and is divided into two parts, i.e. the linear time logic FL and the branch time logic OBE. In this paper, the specification checked by BMC is extended to PSL and its algorithm is also proposed. Firstly, define the bounded semantics of PSL, and then reduce the bounded semantics into SAT by translating PSL specification formula and the state transition relation of the system to the propositional formula A and B, respectively. Finally, verify the satisfiability of the conjunction propositional formula of A and B. The algorithm results in the translation of the existential model checking of the temporal logic PSL into the satisfiability problem of propositional formula. An example of a queue controlling circuit is used to interpret detailedly the executing procedure of the algorithm.
Modeling digital switching circuits with linear algebra
Thornton, Mitchell A
2014-01-01
Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf
A Metric Encoding for Bounded Model Checking
Pradella, Matteo; Morzenti, Angelo; San Pietro, Pierluigi
In Bounded Model Checking, both the system model and the checked property are translated into a Boolean formula to be analyzed by a SAT-solver. We introduce a new encoding technique which is particularly optimized for managing quantitative future and past metric temporal operators, typically found in properties of hard real time systems. The encoding is simple and intuitive in principle, but it is made more complex by the presence, typical of the Bounded Model Checking technique, of backward and forward loops used to represent an ultimately periodic infinite domain by a finite structure. We report and comment on the new encoding technique and on an extensive set of experiments carried out to assess its feasibility and effectiveness.
Explicit State Model Checking for Graph Grammars
Rensink, A.; De Nicola, R.; Degano, P.; Meseguer, J.
2008-01-01
In this paper we present the philosophy behind the GROOVE project, in which graph transformation is used as a modelling formalism on top of which a model checking approach to software verification is being built. We describe the basic formalism, the current state of the project, and (current and fut
Lagrangians for the W-Algebra Models
Gaite, J C
1994-01-01
The field algebra of the minimal models of W-algebras is amenable to a very simple description as a polynomial algebra generated by few elementary fields, corresponding to order parameters. Using this description, the complete Landau-Ginzburg lagrangians for these models are obtained. Perturbing these lagrangians we can explore their phase diagrams, which correspond to multicritical points with $D_n$ symmetry. In particular, it is shown that there is a perturbation for which the phase structure coincides with that of the IRF models of Jimbo et al.
Model Checking as Static Analysis: Revisited
DEFF Research Database (Denmark)
Zhang, Fuyuan; Nielson, Flemming; Nielson, Hanne Riis
2012-01-01
We show that the model checking problem of the μ-calculus can be viewed as an instance of static analysis. We propose Succinct Fixed Point Logic (SFP) within our logical approach to static analysis as an extension of Alternation-free Least Fixed Logic (ALFP). We generalize the notion...
Efficient CSL Model Checking Using Stratification
DEFF Research Database (Denmark)
Zhang, Lijun; Jansen, David N.; Nielson, Flemming;
2012-01-01
For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996 [ 1, 2]. Their proof can be turned into an approximation algorithm with worse than expone...
Using chemical organization theory for model checking
Kaleta, Christoph; Richter, Stephan; Dittrich, Peter
2009-01-01
Motivation: The increasing number and complexity of biomodels makes automatic procedures for checking the models' properties and quality necessary. Approaches like elementary mode analysis, flux balance analysis, deficiency analysis and chemical organization theory (OT) require only the stoichiometric structure of the reaction network for derivation of valuable information. In formalisms like Systems Biology Markup Language (SBML), however, information about the stoichiometric coefficients re...
An algebraic model of software evolution
Keller, Benjamin J.d
1990-01-01
A model of the software evolution process, called the Abstraction Refinement Model, is described which builds on the algebraic influence of the Laws of Programming and the transformational Draco Paradigm. The result is an algebraic structure consisting of the states of the software product (system descriptions) ordered by a relation of relative correctness with transformations defined between the system descriptions. This structure is interpreted as the software evolution space, ...
Computational algebraic geometry of epidemic models
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
Automata-Based CSL Model Checking
DEFF Research Database (Denmark)
Zhang, Lijun; Jansen, David N.; Nielson, Flemming;
2011-01-01
For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. The presented decision procedure, however, has exponential complexity. In this paper, we...... probability can then be approximated in polynomial time (using uniformization). This makes the present work the centerpiece of a broadly applicable full CSL model checker. Recently, the decision algorithm by Aziz et al. was shown to be incorrect in general. In fact, it works only for stratified CTMCs...
Howard, Y; Gravell, A; Ferreira, C; Augusto, J C
2011-01-01
Trace analysis can be a useful way to discover problems in a program under test. Rather than writing a special purpose trace analysis tool, this paper proposes that traces can usefully be analysed by checking them against a formal model using a standard model-checker or else an animator for executable specifications. These techniques are illustrated using a Travel Agent case study implemented in J2EE. We added trace beans to this code that write trace information to a database. The traces are then extracted and converted into a form suitable for analysis by Spin, a popular model-checker, and Pro-B, a model-checker and animator for the B notation. This illustrates the technique, and also the fact that such a system can have a variety of models, in different notations, that capture different features. These experiments have demonstrated that model-based trace-checking is feasible. Future work is focussed on scaling up the approach to larger systems by increasing the level of automation.
Model Checking over Paraconsistent Temporal Logic
Institute of Scientific and Technical Information of China (English)
CHEN Dong-huo; WANG Lin-zhang; CUI Jia-lin
2008-01-01
Classical logic cannot be used to effectively reason about concurrent systems with inconsistencies (inconsistencies often occur, especially in the early stage of the development, when large and complex concurrent systems are developed). In this paper, we propose the use of a guasi-classical temporal logic (QCTL) for supporting the verification of temporal properties of such systems even where the consistent model is not available. Our models are paraKripke structures ( extended standard Kripke structures), in which both a formula and its negation are satisfied in a same state, and properties to be verified are expressed by QCTL with paraKripke structures semantics. We introduce a novel notion of paraKripke models, which grasps the paraconsistent character of the entailment relation of QCTL. Furthermore, we explore the methodology of model checking over QCTL, and describe the detailed algorithm of implementing QCTL model checker. In the sequel, a simple example is presented, showing how to exploit the proposed model checking technique to verify the temporal properties of inconsistent concurrent systems.
Stoutemyer, D. R.
1977-01-01
The computer algebra language MACSYMA enables the programmer to include symbolic physical units in computer calculations, and features automatic detection of dimensionally-inhomogeneous formulas and conversion of inconsistent units in a dimensionally homogeneous formula. Some examples illustrate these features.
Solving stochastic epidemiological models using computer algebra
Hincapie, Doracelly; Ospina, Juan
2011-06-01
Mathematical modeling in Epidemiology is an important tool to understand the ways under which the diseases are transmitted and controlled. The mathematical modeling can be implemented via deterministic or stochastic models. Deterministic models are based on short systems of non-linear ordinary differential equations and the stochastic models are based on very large systems of linear differential equations. Deterministic models admit complete, rigorous and automatic analysis of stability both local and global from which is possible to derive the algebraic expressions for the basic reproductive number and the corresponding epidemic thresholds using computer algebra software. Stochastic models are more difficult to treat and the analysis of their properties requires complicated considerations in statistical mathematics. In this work we propose to use computer algebra software with the aim to solve epidemic stochastic models such as the SIR model and the carrier-borne model. Specifically we use Maple to solve these stochastic models in the case of small groups and we obtain results that do not appear in standard textbooks or in the books updated on stochastic models in epidemiology. From our results we derive expressions which coincide with those obtained in the classical texts using advanced procedures in mathematical statistics. Our algorithms can be extended for other stochastic models in epidemiology and this shows the power of computer algebra software not only for analysis of deterministic models but also for the analysis of stochastic models. We also perform numerical simulations with our algebraic results and we made estimations for the basic parameters as the basic reproductive rate and the stochastic threshold theorem. We claim that our algorithms and results are important tools to control the diseases in a globalized world.
Tomino, Dan
2010-01-01
1-loop vacuum energies of (fuzzy) spacetimes from a supersymmetric reduced model with Filippov 3-algebra are discussed. A_{2,2} algebra, Nambu-Poisson algebra in flat spacetime, and a Lorentzian 3-algebra are examined as 3-algebras.
Statistical Model Checking for Biological Systems
DEFF Research Database (Denmark)
David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel;
2014-01-01
Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic...... timed automata and most recently hybrid systems using the tool Uppaal SMC. In this paper we enable the application of SMC to complex biological systems, by combining Uppaal SMC with ANIMO, a plugin of the tool Cytoscape used by biologists, as well as with SimBiology®, a plugin of Matlab to simulate...
SAT-Based Model Checking without Unrolling
Bradley, Aaron R.
A new form of SAT-based symbolic model checking is described. Instead of unrolling the transition relation, it incrementally generates clauses that are inductive relative to (and augment) stepwise approximate reachability information. In this way, the algorithm gradually refines the property, eventually producing either an inductive strengthening of the property or a counterexample trace. Our experimental studies show that induction is a powerful tool for generalizing the unreachability of given error states: it can refine away many states at once, and it is effective at focusing the proof search on aspects of the transition system relevant to the property. Furthermore, the incremental structure of the algorithm lends itself to a parallel implementation.
Workflow Fault Tree Generation Through Model Checking
DEFF Research Database (Denmark)
Herbert, Luke Thomas; Sharp, Robin
2014-01-01
We present a framework for the automated generation of fault trees from models of realworld process workflows, expressed in a formalised subset of the popular Business Process Modelling and Notation (BPMN) language. To capture uncertainty and unreliability in workflows, we extend this formalism...... with probabilistic non-deterministic branching. We present an algorithm that allows for exhaustive generation of possible error states that could arise in execution of the model, where the generated error states allow for both fail-stop behaviour and continued system execution. We employ stochastic model checking...... to calculate the probabilities of reaching each non-error system state. Each generated error state is assigned a variable indicating its individual probability of occurrence. Our method can determine the probability of combined faults occurring, while accounting for the basic probabilistic structure...
Model Checking JAVA Programs Using Java Pathfinder
Havelund, Klaus; Pressburger, Thomas
2000-01-01
This paper describes a translator called JAVA PATHFINDER from JAVA to PROMELA, the "programming language" of the SPIN model checker. The purpose is to establish a framework for verification and debugging of JAVA programs based on model checking. This work should be seen in a broader attempt to make formal methods applicable "in the loop" of programming within NASA's areas such as space, aviation, and robotics. Our main goal is to create automated formal methods such that programmers themselves can apply these in their daily work (in the loop) without the need for specialists to manually reformulate a program into a different notation in order to analyze the program. This work is a continuation of an effort to formally verify, using SPIN, a multi-threaded operating system programmed in Lisp for the Deep-Space 1 spacecraft, and of previous work in applying existing model checkers and theorem provers to real applications.
Sigma-models and Homotopy Algebras
Zeitlin, Anton M
2015-01-01
We review the relation between homotopy algebras of conformal field theory and geometric structures arising in sigma models. In particular we formulate conformal invariance conditions, which in the quasi-classical limit are Einstein equations with extra fields, as generalized Maurer-Cartan equations.
Fusion algebras of logarithmic minimal models
Energy Technology Data Exchange (ETDEWEB)
Rasmussen, Joergen; Pearce, Paul A [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010 (Australia)
2007-11-09
We present explicit conjectures for the chiral fusion algebras of the logarithmic minimal models LM(p,p') considering Virasoro representations with no enlarged or extended symmetry algebra. The generators of fusion are countably infinite in number but the ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of representations decomposes into a finite direct sum of representations. The fusion rules are commutative, associative and exhibit an sl(2) structure but require so-called Kac representations which are typically reducible yet indecomposable representations of rank 1. In particular, the identity of the fundamental fusion algebra p {ne} 1 is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the results of Gaberdiel and Kausch for p = 1 and with Eberle and Flohr for (p, p') = (2, 5) corresponding to the logarithmic Yang-Lee model. In the latter case, we confirm the appearance of indecomposable representations of rank 3. We also find that closure of a fundamental fusion algebra is achieved without the introduction of indecomposable representations of rank higher than 3. The conjectured fusion rules are supported, within our lattice approach, by extensive numerical studies of the associated integrable lattice models. Details of our lattice findings and numerical results will be presented elsewhere. The agreement of our fusion rules with the previous fusion rules lends considerable support for the identification of the logarithmic minimal models LM(p,p') with the augmented c{sub p,p'} (minimal) models defined algebraically.
Model Checking of Boolean Process Models
Schneider, Christoph; Wehler, Joachim
2011-01-01
In the field of Business Process Management formal models for the control flow of business processes have been designed since more than 15 years. Which methods are best suited to verify the bulk of these models? The first step is to select a formal language which fixes the semantics of the models. We adopt the language of Boolean systems as reference language for Boolean process models. Boolean systems form a simple subclass of coloured Petri nets. Their characteristics are low tokens to mode...
Probabilistic and hybrid model checking deployments for wireless sensor networks
International Nuclear Information System (INIS)
In the early stages of system development, model checking is a good practice for examining the WSNs (Wireless Sensor Networks). Model checking involves verifying a system's properties based on the system's finite state model. For varying applications like computers and wireless communication prior to expensive simulations, model checking has become a vital requirement in order to investigate the performance and reliability. In this paper for the first time, we are presenting probabilistic and hybrid model checking tools which are being implemented to analyse and verify the WSN applications and their examples. Here we are categorizing the model checking tools and presenting how they have been used for the investigation of various behaviours of WSN solutions. Consequently, this paper helps readers/researchers to choose the appropriate model checking tool and to get benefited in shape of validating their solutions. The paper has also highlighted the problems of existing model checking tools within WSN domain. (author)
Conformant Planning via Symbolic Model Checking
Cimatti, A; 10.1613/jair.774
2011-01-01
We tackle the problem of planning in nondeterministic domains, by presenting a new approach to conformant planning. Conformant planning is the problem of finding a sequence of actions that is guaranteed to achieve the goal despite the nondeterminism of the domain. Our approach is based on the representation of the planning domain as a finite state automaton. We use Symbolic Model Checking techniques, in particular Binary Decision Diagrams, to compactly represent and efficiently search the automaton. In this paper we make the following contributions. First, we present a general planning algorithm for conformant planning, which applies to fully nondeterministic domains, with uncertainty in the initial condition and in action effects. The algorithm is based on a breadth-first, backward search, and returns conformant plans of minimal length, if a solution to the planning problem exists, otherwise it terminates concluding that the problem admits no conformant solution. Second, we provide a symbolic representation ...
Map algebra and model algebra for integrated model building
Schmitz, O.; Karssenberg, D.J.; Jong, K. de; Kok, J.-L. de; Jong, S.M. de
2013-01-01
Computer models are important tools for the assessment of environmental systems. A seamless workflow of construction and coupling of model components is essential for environmental scientists. However, currently available software packages are often tailored either to the construction of model compo
Using Model Checking to Validate AI Planner Domain Models
Penix, John; Pecheur, Charles; Havelund, Klaus
1999-01-01
This report describes an investigation into using model checking to assist validation of domain models for the HSTS planner. The planner models are specified using a qualitative temporal interval logic with quantitative duration constraints. We conducted several experiments to translate the domain modeling language into the SMV, Spin and Murphi model checkers. This allowed a direct comparison of how the different systems would support specific types of validation tasks. The preliminary results indicate that model checking is useful for finding faults in models that may not be easily identified by generating test plans.
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Abstraction and Model Checking in the PEPA Plug-in for Eclipse
DEFF Research Database (Denmark)
Smith, Michael James Andrew
2010-01-01
The stochastic process algebra PEPA is a widely used language for performance modelling, and a large part of its success is due to the rich tool support that is available. As a compositional Markovian formalism, however, it suffers from the state space explosion problem, where even small models can...... lead to very large Markov chains. One way of analysing such models is to use abstraction - constructing a smaller model that bounds the properties of the original. We present an extension to the PEPA plug-in for Eclipse that enables abstracting and model checking of PEPA models. This implements two new...
Optimisation of BPMN Business Models via Model Checking
DEFF Research Database (Denmark)
Herbert, Luke Thomas; Sharp, Robin
2013-01-01
We present a framework for the optimisation of business processes modelled in the business process modelling language BPMN, which builds upon earlier work, where we developed a model checking based method for the analysis of BPMN models. We define a structure for expressing optimisation goals...
Analyzing Interoperability of Protocols Using Model Checking
Institute of Scientific and Technical Information of China (English)
WUPeng
2005-01-01
In practical terms, protocol interoperability testing is still laborious and error-prone with little effect, even for those products that have passed conformance testing. Deadlock and unsymmetrical data communication are familiar in interoperability testing, and it is always very hard to trace their causes. The previous work has not provided a coherent way to analyze why the interoperability was broken among protocol implementations under test. In this paper, an alternative approach is presented to analyzing these problems from a viewpoint of implementation structures. Sequential and concurrent structures are both representative implementation structures, especially in event-driven development model. Our research mainly discusses the influence of sequential and concurrent structures on interoperability, with two instructive conclusions: (a) a sequential structure may lead to deadlock; (b) a concurrent structure may lead to unsymmetrical data communication. Therefore, implementation structures carry weight on interoperability, which may not gain much attention before. To some extent, they are decisive on the result of interoperability testing. Moreover, a concurrent structure with a sound task-scheduling strategy may contribute to the interoperability of a protocol implementation. Herein model checking technique is introduced into interoperability analysis for the first time. As the paper shows, it is an effective way to validate developers' selections on implementation structures or strategies.
Graph model of the Heisenberg-Weyl algebra
Blasiak, P.; Horzela, A.; Duchamp, G. H. E.; Penson, K. A.; Solomon, A. I.
2007-01-01
We consider an algebraic formulation of Quantum Theory and develop a combinatorial model of the Heisenberg-Weyl algebra structure. It is shown that by lifting this structure to the richer algebra of graph operator calculus, we gain a simple interpretation involving, for example, the natural composition of graphs. This provides a deeper insight into the algebraic structure of Quantum Theory and sheds light on the intrinsic combinatorial underpinning of its abstract formalism.
Statistical Model Checking of Rich Models and Properties
DEFF Research Database (Denmark)
Poulsen, Danny Bøgsted
Software is in increasing fashion embedded within safety- and business critical processes of society. Errors in these embedded systems can lead to human casualties or severe monetary loss. Model checking technology has proven formal methods capable of finding and correcting errors in software...... motivates why existing model checking technology should be supplemented by new techniques. It also contains a brief introduction to probability theory and concepts covered by the six papers making up the second part. The first two papers are concerned with developing online monitoring techniques....... However, software is approaching the boundary in terms of the complexity and size that model checking can handle. Furthermore, software systems are nowadays more frequently interacting with their environment hence accurately modelling such systems requires modelling the environment as well - resulting...
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.
Checking for normality in linear mixed models
Institute of Scientific and Technical Information of China (English)
WU Ping; ZHU LiXing; FANG Yun
2012-01-01
Linear mixed models are popularly used to fit continuous longitudinal data,and the random effects are commonly assumed to have normal distribution.However,this assumption needs to be tested so that further analysis can be proceeded well.In this paper,we consider the Baringhaus-Henze-Epps-Pulley (BHEP) tests,which are based on an empirical characteristic function.Differing from their case,we consider the normality checking for the random effects which are unobservable and the test should be based on their predictors.The test is consistent against global alternatives,and is sensitive to the local alternatives converging to the null at a certain rate arbitrarily close to 1/(√)n where n is sample size.Furthermore,to overcome the problem that the limiting null distribution of the test is not tractable,we suggest a new method:use a conditional Monte Carlo test (CMCT) to approximate the null distribution,and then to simulate p-values.The test is compared with existing methods,the power is examined,and several examples are applied to illustrate the usefulness of our test in the analysis of longitudinal data.
Algebraic model of baryon resonances
Bijker, R
1997-01-01
We discuss recent calculations of electromagnetic form factors and strong decay widths of nucleon and delta resonances. The calculations are done in a collective constituent model of the nucleon, in which the baryons are interpreted as rotations and vibrations of an oblate top.
Verifying Multi-Agent Systems via Unbounded Model Checking
Kacprzak, M.; Lomuscio, A.; Lasica, T.; Penczek, W.; Szreter, M.
2004-01-01
We present an approach to the problem of verification of epistemic properties in multi-agent systems by means of symbolic model checking. In particular, it is shown how to extend the technique of unbounded model checking from a purely temporal setting to a temporal-epistemic one. In order to achieve this, we base our discussion on interpreted systems semantics, a popular semantics used in multi-agent systems literature. We give details of the technique and show how it can be applied to the well known train, gate and controller problem. Keywords: model checking, unbounded model checking, multi-agent systems
Algebraic model of baryon structure
Bijker, R
2000-01-01
We discuss properties of baryon resonances belonging to the Nucleon, Delta, Sigma, Lambda, Xi and Omega families in a collective string-like model for the nucleon, in which the radial excitations are interpreted as rotations and vibrations of the string configuration. We find good overall agreement with the available data. The main discrepancies are found for low lying S-wave states, in particular N(1535), N(1650), Sigma(1750), Lambda*(1405), Lambda(1670) and Lambda(1800).
Quantum spin models and extended conformal algebras
Honecker, A
1995-01-01
First, an algebraic criterion for integrability is discussed -the so-called `superintegrability'- and some results on the classification of superintegrable quantum spin Hamiltonians based on sl(2) are obtained. Next, the massive phases of the Z_n-chiral Potts quantum spin chain (a model that violates parity) are studied in detail. It is shown that the excitation spectrum of the massive high-temperature phase can be explained in terms of n-1 fundamental quasiparticles. We compute correlation functions from a perturbative and numerical evaluation of the groundstate for the Z_3-chain. In addition to an exponential decay we observe an oscillating contribution. The oscillation length seems to be related to the asymmetry of the dispersion relations. We show that this relation is exact at special values of the parameters for general Z_n using a form factor expansion. Finally, we discuss several aspects of extended conformal algebras (W-algebras). We observe an analogy between boundary conditions for Z_n-spin chains ...
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Algebraic model theory for languages without equality
Elgueta Montó, Raimon
1994-01-01
In our opinion, it is fair to distinguish two separate branches in the origins of model theory. The first one, the model theory of first-order logic, can be traced back to the pioneering work of L. Lowenheim, T. Skolem, K. Gödel, A. Tarski and A.I. MaI 'cev, published before the mid 30's. This branch was put forward during the 40s' and 50s’ by several authors, including A. Tarski, L. Henkin, A. Robinson, J. Los. Their contribution, however, was rather influenced by modern algebra, a disciplin...
The Complexity of Model Checking Higher-Order Fixpoint Logic
DEFF Research Database (Denmark)
Axelsson, Roland; Lange, Martin; Somla, Rafal
2007-01-01
provides complexity results for its model checking problem. In particular we consider its fragments HFLk,m which are formed using types of bounded order k and arity m only. We establish k-ExpTime-completeness for model checking each HFLk,m fragment. For the upper bound we reduce the problem to the problem...
The geometry of supersymmetric coset models and superconformal algebras
Papadopoulos, G
1993-01-01
An on-shell formulation of (p,q), 2\\leq p \\leq 4, 0\\leq q\\leq 4, supersymmetric coset models with target space the group G and gauge group a subgroup H of G is given. It is shown that there is a correspondence between the number of supersymmetries of a coset model and the geometry of the coset space G/H. The algebras of currents of supersymmetric coset models are superconformal algebras. In particular, the algebras of currents of (2,2) and (4,0) supersymmetric coset models are related to the N=2 Kazama-Suzuki and N=4 Van Proeyen superconformal algebras correspondingly.
Monotonic Property in Field Algebra of G-Spin Model
Institute of Scientific and Technical Information of China (English)
蒋立宁
2003-01-01
Let F be the field algebra of G-spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G. The paper builds a correspondence between D(H) and the D(H)-invariant sub-C*-algebra AH in F, and proves that the correspondence is strictly monotonic.
Symmetries of faces models and the double triangle algebra
Trinchero, R
2005-01-01
Symmetries of trigonometric integrable two dimensional statistical face models are considered. The corresponding symmetry operators on the Hilbert space of states of the quantum version of these models define a weak *-Hopf algebra isomorphic to the Ocneanu double triangle algebra(DTA).
Efficient Checking of Individual Rewards Properties in Markov Population Models
Bortolussi, Luca; Hillston, Jane
2015-01-01
In recent years fluid approaches to the analysis of Markov populations models have been demonstrated to have great pragmatic value. Initially developed to estimate the behaviour of the system in terms of the expected values of population counts, the fluid approach has subsequently been extended to more sophisticated interrogations of models through its embedding within model checking procedures. In this paper we extend recent work on checking CSL properties of individual agents within a Marko...
A spatial operator algebra for manipulator modeling and control
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Model Checking Is Static Analysis of Modal Logic
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis
2010-01-01
Flow Logic is an approach to the static analysis of programs that has been developed for functional, imperative and object-oriented programming languages and for concurrent, distributed, mobile and cryptographic process calculi. In this paper we extend it; to deal with modal logics and prove...... that it can give an exact characterisation of the semantics of formulae in a modal logic. This shows that model checking can be performed by means of state-of-the-art approaches to static analysis and allow us to conclude that the problems of model checking and static analysis are reducible to each other....... In terms of computational complexity we show that model checking by means of static analysis gives the same complexity bounds as are known for traditional approaches to model checking....
Model checking biological systems described using ambient calculus
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Priami, Corrado; Qualia, Paola;
2005-01-01
Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005....
Dynamic State Space Partitioning for External Memory Model Checking
DEFF Research Database (Denmark)
Evangelista, Sami; Kristensen, Lars Michael
2009-01-01
We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different ...... partitions, and thereby limit the amount of disk access and network communication. We report on several experiments made with our verification platform ASAP that implements the dynamic partitioning scheme proposed in this paper....
Improved Bounded Model Checking for the Universal Fragment of CTL
Institute of Scientific and Technical Information of China (English)
Liang Xu; Wei Chen; Yan-Yan Xu; Wen-Hui Zhang
2009-01-01
SAT-based bounded model checking (BMC) has been introduced as a complementary technique to BDD-based symbolic model checking in recent years, and a lot of successful work has been done in this direction. The approach was first introduced by A. Biere et al. in checking linear temporal logic (LTL) formulae and then also adapted to check formulae of the universal fragment of computation tree logic (ACTL) by W. Penczek et al. As the efficiency of model checking is still an important issue, we present an improved BMC approach for ACTL based on Penczek's method. We consider two aspects of the approach. One is reduction of the number of variables and transitions in the k-model by distinguishing the temporal operator EX from the others. The other is simplification of the transformation of formulae by using uniform path encoding instead of a disjunction of all paths needed in the k-model. With these improvements, for an ACTI, formula, the length of the final encoding of the formula in the worst case is reduced. The improved approach is implemented in the tool BMV and is compared with the original one by applying both to two well known examples, mutual exclusion and dining philosophers. The comparison shows the advantages of the improved approach with respect to the efficiency of model checking.
Preparing Secondary Mathematics Teachers: A Focus on Modeling in Algebra
Jung, Hyunyi; Mintos, Alexia; Newton, Jill
2015-01-01
This study addressed the opportunities to learn (OTL) modeling in algebra provided to secondary mathematics pre-service teachers (PSTs). To investigate these OTL, we interviewed five instructors of required mathematics and mathematics education courses that had the potential to include opportunities for PSTs to learn algebra at three universities.…
Model Checking-Based Testing of Web Applications
Institute of Scientific and Technical Information of China (English)
ZENG Hongwei; MIAO Huaikou
2007-01-01
A formal model representing the navigation behavior of a Web application as the Kripke structure is proposed and an approach that applies model checking to test case generation is presented. The Object Relation Diagram as the object model is employed to describe the object structure of a Web application design and can be translated into the behavior model. A key problem of model checking-based test generation for a Web application is how to construct a set of trap properties that intend to cause the violations of model checking against the behavior model and output of counterexamples used to construct the test sequences.We give an algorithm that derives trap properties from the object model with respect to node and edge coverage criteria.
L∞-algebra models and higher Chern-Simons theories
Ritter, Patricia; Sämann, Christian
2016-10-01
We continue our study of zero-dimensional field theories in which the fields take values in a strong homotopy Lie algebra. In the first part, we review in detail how higher Chern-Simons theories arise in the AKSZ-formalism. These theories form a universal starting point for the construction of L∞-algebra models. We then show how to describe superconformal field theories and how to perform dimensional reductions in this context. In the second part, we demonstrate that Nambu-Poisson and multisymplectic manifolds are closely related via their Heisenberg algebras. As a byproduct of our discussion, we find central Lie p-algebra extensions of 𝔰𝔬(p + 2). Finally, we study a number of L∞-algebra models which are physically interesting and which exhibit quantized multisymplectic manifolds as vacuum solutions.
Learning Markov Decision Processes for Model Checking
Directory of Open Access Journals (Sweden)
Hua Mao
2012-12-01
Full Text Available Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system. The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation is performed by analyzing the probabilistic linear temporal logic properties of the system as well as by analyzing the schedulers, in particular the optimal schedulers, induced by the learned models.
Learning Markov Decision Processes for Model Checking
DEFF Research Database (Denmark)
Mao, Hua; Chen, Yingke; Jaeger, Manfred;
2012-01-01
. The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation......Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm...... on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system...
Fermi resonance-algebraic model for molecular vibrational spectra
Institute of Scientific and Technical Information of China (English)
侯喜文; 董世海; 谢汨; 马中骐
1999-01-01
A Fermi resonance-algebraic model is proposed for molecular vibrations, where a U(2) algebra is used for describing the vibrations of each bond, and Fermi resonances between stretching and bending modes are taken into account. The model for a bent molecule XY2 and a molecule XY3 is successfully applied to fitting the recently observed vibrational spectrum of the water molecule and arsine (AsH3), respectively, and the results are compared with those of other models. Calculations show that algebraic approaches can be used as an effective method to describe molecular vibrations with small standard deviations.
Action Algebras and Model Algebras in Denotational Semantics
Guedes, Luiz Carlos Castro; Haeusler, Edward Hermann
This article describes some results concerning the conceptual separation of model dependent and language inherent aspects in a denotational semantics of a programming language. Before going into the technical explanation, the authors wish to relate a story that illustrates how correctly and precisely posed questions can influence the direction of research. By means of his questions, Professor Mosses aided the PhD research of one of the authors of this article and taught the other, who at the time was a novice supervisor, the real meaning of careful PhD supervision. The student’s research had been partially developed towards the implementation of programming languages through denotational semantics specification, and the student had developed a prototype [12] that compared relatively well to some industrial compilers of the PASCAL language. During a visit to the BRICS lab in Aarhus, the student’s supervisor gave Professor Mosses a draft of an article describing the prototype and its implementation experiments. The next day, Professor Mosses asked the supervisor, “Why is the generated code so efficient when compared to that generated by an industrial compiler?” and “You claim that the efficiency is simply a consequence of the Object- Orientation mechanisms used by the prototype programming language (C++); this should be better investigated. Pay more attention to the class of programs that might have this good comparison profile.” As a result of these aptly chosen questions and comments, the student and supervisor made great strides in the subsequent research; the advice provided by Professor Mosses made them perceive that the code generated for certain semantic domains was efficient because it mapped to the “right aspect” of the language semantics. (Certain functional types, used to represent mappings such as Stores and Environments, were pushed to the level of the object language (as in gcc). This had the side-effect of generating code for arrays in
Checking Flavour Models at Neutrino Facilities
Meloni, Davide
2013-01-01
In the recent years, the industry of model building has been the subject of the intense activity, especially after the measurement of a relatively large values of the reactor angle. Special attention has been devoted to the use of non-abelian discrete symmetries, thanks to their ability of reproducing some of the relevant features of the neutrino mixing matrix. In this paper, we consider two special relations between the leptonic mixing angles, arising from models based on S4 and A4, and study whether, and to which extent, they can be distinguished at superbeam facilities, namely T2K, NOvA and T2HK.
Checking flavour models at neutrino facilities
Energy Technology Data Exchange (ETDEWEB)
Meloni, Davide, E-mail: meloni@fis.uniroma3.it
2014-01-20
In the recent years, the industry of model building has been the subject of the intense activity, especially after the measurement of a relatively large values of the reactor angle. Special attention has been devoted to the use of non-abelian discrete symmetries, thanks to their ability of reproducing some of the relevant features of the neutrino mixing matrix. In this Letter, we consider two special relations between the leptonic mixing angles, arising from models based on S{sub 4} and A{sub 4}, and study whether, and to which extent, they can be distinguished at superbeam facilities, namely T2K, NOνA and T2HK.
Algebra model and security analysis for cryptographic protocols
Institute of Scientific and Technical Information of China (English)
HUAI Jinpeng; LI Xianxian
2004-01-01
More and more cryptographic protocols have been used to achieve various security requirements of distributed systems in the open network environment. However cryptographic protocols are very difficult to design and analyze due to the complexity of the cryptographic protocol execution, and a large number of problems are unsolved that range from the theory framework to the concrete analysis technique. In this paper, we build a new algebra called cryptographic protocol algebra (CPA) for describing the message operations with many cryptographic primitives, and proposed a new algebra model for cryptographic protocols based on the CPA. In the model, expanding processes of the participant's knowledge on the protocol runs are characterized with some algebraic notions such as subalgebra, free generator and polynomial algebra, and attack processes are modeled with a new notion similar to that of the exact sequence used in homological algebra. Then we develope a mathematical approach to the cryptographic protocol security analysis. By using algebraic techniques, we have shown that for those cryptographic protocols with some symmetric properties, the execution space generated by an arbitrary number of participants may boil down to a smaller space generated by several honest participants and attackers. Furthermore we discuss the composability problem of cryptographic protocols and give a sufficient condition under which the protocol composed of two correct cryptographic protocols is still correct, and we finally offer a counterexample to show that the statement may not be true when the condition is not met.
Universality: Accurate Checks in Dyson's Hierarchical Model
Godina, J. J.; Meurice, Y.; Oktay, M. B.
2003-06-01
In this talk we present high-accuracy calculations of the susceptibility near βc for Dyson's hierarchical model in D = 3. Using linear fitting, we estimate the leading (γ) and subleading (Δ) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized renormalization group transformation. We found γ = 1.29914073 ± 10 -8 and, Δ = 0.4259469 ± 10-7 independently of the choice of local integration measure (Ising or Landau-Ginzburg). After a suitable rescaling, the approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed by Koch and Wittwer.
Diagnostic checking for conditional heteroscedasticity models
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We suggest the score type tests for goodness-of-fit of conditional heteroscedasticity models in both univariate and multivariate time series.The tests can detect the alternatives converging to the null at a parametric rate.Weight functions are involved in the construction of the tests,which provides us with the flexibility to choose scores,especially under directional alternatives,for enhancing power performance.Furthermore,when the alternatives are not directional,we construct asymptotically distribution-free maximin tests for a large class of alternatives.A possibility to construct score-based omnibus tests is discussed when the alternative is saturated.The power performance is also investigated.A simulation study is carried out and a real data is analyzed.
Distributed Maximality based CTL Model Checking
Directory of Open Access Journals (Sweden)
Djamel Eddine Saidouni
2010-05-01
Full Text Available In this paper we investigate an approach to perform a distributed CTL Model checker algorithm on a network of workstations using Kleen three value logic, the state spaces is partitioned among the network nodes, We represent the incomplete state spaces as a Maximality labeled Transition System MLTS which are able to express true concurrency. we execute in parallel the same algorithm in each node, for a certain property on an incomplete MLTS , this last compute the set of states which satisfy or which if they fail are assigned the value .The third value mean unknown whether true or false because the partial state space lacks sufficient information needed for a precise answer concerning the complete state space .To solve this problem each node exchange the information needed to conclude the result about the complete state space. The experimental version of the algorithm is currently being implemented using the functional programming language Erlang.
A Metric Encoding for Bounded Model Checking (extended version)
Pradella, Matteo; Pietro, Pierluigi San
2009-01-01
In Bounded Model Checking both the system model and the checked property are translated into a Boolean formula to be analyzed by a SAT-solver. We introduce a new encoding technique which is particularly optimized for managing quantitative future and past metric temporal operators, typically found in properties of hard real time systems. The encoding is simple and intuitive in principle, but it is made more complex by the presence, typical of the Bounded Model Checking technique, of backward and forward loops used to represent an ultimately periodic infinite domain by a finite structure. We report and comment on the new encoding technique and on an extensive set of experiments carried out to assess its feasibility and effectiveness.
Computing Small 1-Homological Models for Commutative Differential Graded Algebras
Alvarez, Victor; Armario, Jose Andres; Frau, Maria Dolores; Gonzalez-Diaz, Rocio; Jimenez, Maria Jose; Real, Pedro; Silva, Beatriz
2001-01-01
We use homological perturbation machinery specific for the algebra category [P. Real. Homological Perturbation Theory and Associativity. Homology, Homotopy and Applications vol. 2, n. 5 (2000) 51-88] to give an algorithm for computing the differential structure of a small 1--homological model for commutative differential graded algebras (briefly, CDGAs). The complexity of the procedure is studied and a computer package in Mathematica is described for determining such models.
Model checking: one can do much more than you think!
Katoen, Joost-Pieter
2012-01-01
Model checking is an automated verification technique that actively is applied to find bugs in hardware and software designs. Companies like IBM and Cadence developed their in-house model checkers, and acted as driving forces behind the design of the IEEE-standardized temporal logic PSL. On the othe
Towards Model Checking a Spi-Calculus Dialect
Gnesi, S.; Latella, D.; Lenzini, G.
2002-01-01
We present a model checking framework for a spi-calculus dialect which uses a linear time temporal logic for expressing security properties. We have provided our spi-calculus dialect, called SPID, with a semantics based on labeled transition systems (LTS), where the intruder is modeled in the Dolev-
Algebraic Modeling of Information Retrieval in XML Documents
Georgiev, Bozhidar; Georgieva, Adriana
2009-11-01
This paper presents an information retrieval approach in XML documents using tools, based on the linear algebra. The well-known transformation languages as XSLT (XPath) are grounded on the features of higher-order logic for manipulating hierarchical trees. The presented conception is compared to existing higher-order logic formalisms, where the queries are realized by both languages XSLT and XPath. The possibilities of the proposed linear algebraic model combined with hierarchy data models permit more efficient solutions for searching, extracting and manipulating semi-structured data with hierarchical structures avoiding the global navigation over the XML tree components. The main purpose of this algebraic model representation, applied to the hierarchical relationships in the XML data structures, is to make the implementation of linear algebra tools possible for XML data manipulations and to eliminate existing problems, related to regular grammars theory and also to avoid the difficulties, connected with higher -order logic (first-order logic, monadic second- order logic etc.).
Hyper-lattice algebraic model for data warehousing
Sen, Soumya; Chaki, Nabendu
2016-01-01
This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.
Performance modeling and prediction for linear algebra algorithms
Iakymchuk, Roman
2012-01-01
This dissertation incorporates two research projects: performance modeling and prediction for dense linear algebra algorithms, and high-performance computing on clouds. The first project is focused on dense matrix computations, which are often used as computational kernels for numerous scientific applications. To solve a particular mathematical operation, linear algebra libraries provide a variety of algorithms. The algorithm of choice depends, obviously, on its performance. Performance of su...
An Extended Ontology Model and Ontology Checking Based on Description Logics
Institute of Scientific and Technical Information of China (English)
王洪伟; 蒋馥; 吴家春
2004-01-01
Ontology is defined as an explicit specification of a conceptualization. In this paper, an extended ontology model was constructed using description logics, which is a 5-tuples including term set, individual set, term definition set, instantiation assertion set and term restriction set. Based on the extended model, the issue on ontology checking was studied with the conclusion that the four kinds of term checking, including term satisfiability checking, term subsumption checking, term equivalence checking and term disjointness checking, can be reduced to the satisfiability checking, and satisfiability checking can be transformed into instantiation consistence checking.
Model checking conditional CSL for continuous-time Markov chains
DEFF Research Database (Denmark)
Gao, Yang; Xu, Ming; Zhan, Naijun;
2013-01-01
probabilistic operator. CCSL allows us to express a richer class of properties for CTMCs. Based on a parameterized product obtained from the CTMC and an automaton extracted from a given CCSL formula, we propose an approximate model checking algorithm and analyse its complexity....
Applied Bounded Model Checking for Interlocking System Designs
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth; Peleska, Jan; Pinger, Ralf
2013-01-01
of behavioural (operational) semantics. The former checks that the plant model – that is, the software components reflecting the physical components of the interlocking system – has been set up in an adequate way. The latter investigates trains moving through the network, with the objective to uncover potential...
Applied Bounded Model Checking for Interlocking System Designs
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth; Peleska, Jan; Pinger, Ralf
2014-01-01
of behavioural (operational) semantics. The former checks that the plant model – that is, the software components reflecting the physical components of the interlocking system – has been set up in an adequate way. The latter investigates trains moving through the network, with the objective to uncover potential...
Model Checking Timed Automata with Priorities using DBM Subtraction
DEFF Research Database (Denmark)
David, Alexandre; Larsen, Kim Guldstrand; Pettersson, Paul;
2006-01-01
In this paper we describe an extension of timed automata with priorities, and efficient algorithms to compute subtraction on DBMs (difference bounded matrices), needed in symbolic model-checking of timed automata with priorities. The subtraction is one of the few operations on DBMs that result in...
Boundary algebras and Kac modules for logarithmic minimal models
Morin-Duchesne, Alexi; Ridout, David
2015-01-01
Virasoro Kac modules were initially introduced indirectly as representations whose characters arise in the continuum scaling limits of certain transfer matrices in logarithmic minimal models, described using Temperley-Lieb algebras. The lattice transfer operators include seams on the boundary that use Wenzl-Jones projectors. If the projectors are singular, the original prescription is to select a subspace of the Temperley-Lieb modules on which the action of the transfer operators is non-singular. However, this prescription does not, in general, yield representations of the Temperley-Lieb algebras and the Virasoro Kac modules have remained largely unidentified. Here, we introduce the appropriate algebraic framework for the lattice analysis as a quotient of the one-boundary Temperley-Lieb algebra. The corresponding standard modules are introduced and examined using invariant bilinear forms and their Gram determinants. The structures of the Virasoro Kac modules are inferred from these results and are found to be...
Checking RTECTL properties of STSs via SMT-based Bounded Model Checking
Directory of Open Access Journals (Sweden)
Agnieszka Zbrzezny
2015-12-01
Full Text Available We present an SMT-based bounded model checking (BMC method for Simply-Timed Systems (STSs and for the existential fragment of the Real-time Computation Tree Logic. We implemented the SMT-based BMC algorithm and compared it with the SAT-based BMC method for the same systems and the same property language on several benchmarks for STSs. For the SAT- based BMC we used the PicoSAT solver and for the SMT-based BMC we used the Z3 solver. The experimental results show that the SMT-based BMC performs quite well and is, in fact, sometimes significantly faster than the tested SAT-based BMC.
Mixed Portmanteau Test for Diagnostic Checking of Time Series Models
Directory of Open Access Journals (Sweden)
Sohail Chand
2014-01-01
Full Text Available Model criticism is an important stage of model building and thus goodness of fit tests provides a set of tools for diagnostic checking of the fitted model. Several tests are suggested in literature for diagnostic checking. These tests use autocorrelation or partial autocorrelation in the residuals to criticize the adequacy of fitted model. The main idea underlying these portmanteau tests is to identify if there is any dependence structure which is yet unexplained by the fitted model. In this paper, we suggest mixed portmanteau tests based on autocorrelation and partial autocorrelation functions of the residuals. We derived the asymptotic distribution of the mixture test and studied its size and power using Monte Carlo simulations.
An Algebraic Dexter-Based Hypertext Reference Model
Mattick, Volker
2009-01-01
We present the first formal algebraic specification of a hypertext reference model. It is based on the well-known Dexter Hypertext Reference Model and includes modifications with respect to the development of hypertext since the WWW came up. Our hypertext model was developed as a product model with the aim to automatically support the design process and is extended to a model of hypertext-systems in order to be able to describe the state transitions in this process. While the specification should be easy to read for non-experts in algebraic specification, it guarantees a unique understanding and enables a close connection to logic-based development and verification.
Algebraic model of an oblate top
Bijker, R
1996-01-01
We consider an algebraic treatment of a three-body system. In particular, we develop the formalism for a system of three identical objects and discuss an application to nonstrange baryon resonances which are interpreted as vibrational and rotational excitations of an oblate symmetric top. We derive closed expressions for a set of elementary form factors that appear in the calculation of both electromagnetic, strong and weak couplings of baryons.
Logic Model Checking of Unintended Acceleration Claims in Toyota Vehicles
Gamble, Ed
2012-01-01
Part of the US Department of Transportation investigation of Toyota sudden unintended acceleration (SUA) involved analysis of the throttle control software, JPL Laboratory for Reliable Software applied several techniques including static analysis and logic model checking, to the software; A handful of logic models were build, Some weaknesses were identified; however, no cause for SUA was found; The full NASA report includes numerous other analyses
Symbolic Model Checking and Analysis for E-Commerce Protocol
Institute of Scientific and Technical Information of China (English)
WEN Jing-Hua; ZHANG Mei; LI Xiang
2005-01-01
A new approach is proposed for analyzing non-repudiation and fairness of e-commerce protocols. The authentication e-mail protocol CMP1 is modeled as finite state machine and analyzed in two vital aspects - non-repudiation and fairness using SMV. As a result, the CMP1 protocol is not fair and we have improved it. This result shows that it is effective to analyze and check the new features of e-commerce protocols using SMV model checker
A comparison between algebraic models of molecular spectroscopy
Bijker, R; Lemus, R; Arias, J M; Pérez-Bernal, F
1998-01-01
We discuss a symmetry-adapted algebraic (or vibron) model for molecular spectroscopy. The model is formulated in terms of tensor operators under the molecular point group. In this way, we have identified interactions that are absent in previous versions of the vibron model, in which the Hamiltonian is expressed in terms of Casimir operators and their products. The inclusion of these new interactions leads to reliable spectroscopic predictions. As an example we study the vibrational excitations of the methane molecule, and compare our results with those obtained in other algebraic models.
Schedulability of Herschel revisited using statistical model checking
DEFF Research Database (Denmark)
David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel;
2015-01-01
Schedulability analysis is a main concern for several embedded applications due to their safety-critical nature. The classical method of response time analysis provides an efficient technique used in industrial practice. However, the method is based on conservative assumptions related to execution...... and blocking times of tasks. Consequently, the method may falsely declare deadline violations that will never occur during execution. This paper is a continuation of previous work of the authors in applying extended timed automata model checking (using the tool UPPAAL) to obtain more exact...... schedulability analysis, here in the presence of non-deterministic computation times of tasks given by intervals [BCET,WCET]. Computation intervals with preemptive schedulers make the schedulability analysis of the resulting task model undecidable. Our contribution is to propose a combination of model checking...
Model Checking Real-Time Value-Passing Systems
Institute of Scientific and Technical Information of China (English)
Jing Chen; Zio-Ning Cao
2004-01-01
In this paper,to model check real-time value-passing systems,a formal language Timed Symbolic Transition Graph and a logic system named Timed Predicate μ-Calculus are proposed.An algorithm is presented which is local in that it generates and investigates the reachable state space in top-down fashion and maintains the partition for time evaluations as coarse as possible while on-the-fly instantiating data variables.It can deal with not only data variables with finite value domain,but also the so called data independent variables with infinite value domain.To authors knowledge,this is the first algorithm for model checking timed systems containing value-passing features.
Detecting feature interactions in Web services with model checking techniques
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
As a platform-independent software system, a Web service is designed to offer interoperability among diverse and heterogeneous applications.With the introduction of service composition in the Web service creation, various message interactions among the atomic services result in a problem resembling the feature interaction problem in the telecommunication area.This article defines the problem as feature interaction in Web services and proposes a model checking-based detection method.In the method, the Web service description is translated to the Promela language - the input language of the model checker simple promela interpreter (SPIN), and the specific properties, expressed as linear temporal logic (LTL) formulas, are formulated according to our classification of feature interaction.Then, SPIN is used to check these specific properties to detect the feature interaction in Web services.
A Succinct Approach to Static Analysis and Model Checking
DEFF Research Database (Denmark)
Filipiuk, Piotr
In a number of areas software correctness is crucial, therefore it is often desirable to formally verify the presence of various properties or the absence of errors. This thesis presents a framework for concisely expressing static analysis and model checking problems. The framework facilitates...... in the classical formulation of ALFP logic. Finally, we show that the logics and the associated solvers can be used for rapid prototyping. We illustrate that by a variety of case studies from static analysis and model checking....... that guarantees that there always is single best solution for a problem under consideration. We also develop a solving algorithm, based on a dierential worklist, that computes the least solution guaranteed by the Moore Family result. Furthermore, we present a logic for specifying analysis problems called Layered...
SMT-based Bounded Model Checking with Difference Logic Constraints
Bersani, Marcello M; Morzenti, Angelo; Pradella, Matteo; Rossi, Matteo; Pietro, Pierluigi San
2010-01-01
Traditional Bounded Model Checking (BMC) is based on translating the model checking problem into SAT, the Boolean satisfiability problem. This paper introduces an encoding of Linear Temporal Logic with Past operators (PLTL) into the Quantifier-Free Difference Logic with Uninterpreted Functions (QF-UFIDL). The resulting encoding is a simpler and more concise version of existing SATbased encodings, currently used in BMC. In addition, we present an extension of PLTL augmented with arithmetic relations over integers, which can express unbounded counters; as such, the extended logic is more expressive than PLTL. We introduce suitable restrictions and assumptions that are shown to make the verification problem for the extended logic decidable, and we define an encoding of the new logic into QF-UFIDL. Finally, a performance comparison with the SAT-based approach on purely PLTL examples shows significant improvements in terms of both execution time and memory occupation.
Parallel State Space Construction for Model-Checking
Garavel, Hubert; Mateescu, Radu; Smarandache, Irina
2001-01-01
The verification of concurrent finite-state systems by model-checking often requires to generate (a large part of) the state space of the system under analysis. Because of the state explosion problem, this may be a resource-consuming operation, both in terms of memory and CPU time. In this report, we aim at improving the performances of state space construction by using parallelization techniques. We present parallel algorithms for constructing state spaces (or Labeled Transition Systems) on ...
A Graphical μ-Calculus and Local Model Checking
Institute of Scientific and Technical Information of China (English)
林惠民
2002-01-01
A graphical notation for the propositionalμ-calculus, called modal graphs, ispresented. It is shown that both the textual and equational presentations of theμ-calculus canbe translated into modal graphs. A model checking algorithm based on such graphs is proposed.The algorithm is truly local in the sense that it only generates the parts of the underlyingsearch space which are necessary for the computation of the final result. The correctness of thealgorithm is proven and its complexity analysed.
Approximating Attractors of Boolean Networks by Iterative CTL Model Checking.
Klarner, Hannes; Siebert, Heike
2015-01-01
This paper introduces the notion of approximating asynchronous attractors of Boolean networks by minimal trap spaces. We define three criteria for determining the quality of an approximation: "faithfulness" which requires that the oscillating variables of all attractors in a trap space correspond to their dimensions, "univocality" which requires that there is a unique attractor in each trap space, and "completeness" which requires that there are no attractors outside of a given set of trap spaces. Each is a reachability property for which we give equivalent model checking queries. Whereas faithfulness and univocality can be decided by model checking the corresponding subnetworks, the naive query for completeness must be evaluated on the full state space. Our main result is an alternative approach which is based on the iterative refinement of an initially poor approximation. The algorithm detects so-called autonomous sets in the interaction graph, variables that contain all their regulators, and considers their intersection and extension in order to perform model checking on the smallest possible state spaces. A benchmark, in which we apply the algorithm to 18 published Boolean networks, is given. In each case, the minimal trap spaces are faithful, univocal, and complete, which suggests that they are in general good approximations for the asymptotics of Boolean networks.
Algorithmic metatheorems for decidable LTL model checking over infinite systems
To, Anthony Widjaja
2009-01-01
By algorithmic metatheorems for a model checking problem P over infinite-state systems we mean generic results that can be used to infer decidability (possibly complexity) of P not only over a specific class of infinite systems, but over a large family of classes of infinite systems. Such results normally start with a powerful formalism of infinite-state systems, over which P is undecidable, and assert decidability when is restricted by means of an extra "semantic condition" C. We prove various algorithmic metatheorems for the problems of model checking LTL and its two common fragments LTL(Fs,Gs) and LTLdet over the expressive class of word/tree automatic transition systems, which are generated by synchronized finite-state transducers operating on finite words and trees. We present numerous applications, where we derive (in a unified manner) many known and previously unknown decidability and complexity results of model checking LTL and its fragments over specific classes of infinite-state systems including pu...
Laser modeling a numerical approach with algebra and calculus
Csele, Mark Steven
2014-01-01
Offering a fresh take on laser engineering, Laser Modeling: A Numerical Approach with Algebra and Calculus presents algebraic models and traditional calculus-based methods in tandem to make concepts easier to digest and apply in the real world. Each technique is introduced alongside a practical, solved example based on a commercial laser. Assuming some knowledge of the nature of light, emission of radiation, and basic atomic physics, the text:Explains how to formulate an accurate gain threshold equation as well as determine small-signal gainDiscusses gain saturation and introduces a novel pass
An Algebraic Solution for the Kermack-McKendrick Model
Carvalho, Alexsandro M
2016-01-01
We present an algebraic solution for the Susceptible-Infective-Removed (SIR) model originally presented by Kermack-McKendrick in 1927. Starting from the differential equation for the removed subjects presented by them in the original paper, we re-write it in a slightly different form in order to derive formally the solution, unless one integration. Then, using algebraic techniques and some well justified numerical assumptions we obtain an analytic solution for the integral. Finally, we compare the numerical solution of the differential equations of the SIR model with the analytically solution here proposed, showing an excellent agreement.
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Algebraic models of hadron structure I. Nonstrange baryons
Bijker, R; Leviatan, A
1994-01-01
We introduce an algebraic framework for the description of baryons. Within this framework we study a collective string-like model and show that this model gives a good overall description of the presently available data. We discuss in particular masses and electromagnetic couplings, including the transition form factors that can be measured at new electron facilities.
Using Model Checking for Analyzing Distributed Power Control Problems
DEFF Research Database (Denmark)
Brihaye, Thomas; Jungers, Marc; Lasaulce, Samson;
2010-01-01
Model checking (MC) is a formal verification technique which has been known and still knows a resounding success in the computer science community. Realizing that the distributed power control ( PC) problem can be modeled by a timed game between a given transmitter and its environment, the authors...... objectives a transmitter-receiver pair would like to reach. The network is modeled by a game where transmitters are considered as timed automata interacting with each other. The objectives are then translated into timed alternating-time temporal logic formulae and MC is exploited to know whether the desired...
Correctness of Sensor Network Applications by Software Bounded Model Checking
Werner, Frank; Faragó, David
We investigate the application of the software bounded model checking tool CBMC to the domain of wireless sensor networks (WSNs). We automatically generate a software behavior model from a network protocol (ESAWN) implementation in a WSN development and deployment platform (TinyOS), which is used to rigorously verify the protocol. Our work is a proof of concept that automatic verification of programs of practical size (≈ 21 000 LoC) and complexity is possible with CBMC and can be integrated into TinyOS. The developer can automatically check for pointer dereference and array index out of bound errors. She can also check additional, e.g., functional, properties that she provides by assume- and assert-statements. This experience paper shows that our approach is in general feasible since we managed to verify about half of the properties. We made the verification process scalable in the size of the code by abstraction (eg, from hardware) and by simplification heuristics. The latter also achieved scalability in data type complexity for the properties that were verifiable. The others require technical advancements for complex data types within CBMC's core.
An algebraic approach to modeling in software engineering
International Nuclear Information System (INIS)
Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ''computer science'' objects like abstract data types, but in practice software errors are often caused because ''real-world'' objects are improperly modeled. There is a large semantic gap between the customer's objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form
An algebraic approach to modeling in software engineering
Energy Technology Data Exchange (ETDEWEB)
Loegel, G.J. [Superconducting Super Collider Lab., Dallas, TX (United States)]|[Michigan Univ., Ann Arbor, MI (United States); Ravishankar, C.V. [Michigan Univ., Ann Arbor, MI (United States)
1993-09-01
Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ``computer science`` objects like abstract data types, but in practice software errors are often caused because ``real-world`` objects are improperly modeled. There is a large semantic gap between the customer`s objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form.
Fully Analyzing an Algebraic Polya Urn Model
Morcrette, Basile
2012-01-01
This paper introduces and analyzes a particular class of Polya urns: balls are of two colors, can only be added (the urns are said to be additive) and at every step the same constant number of balls is added, thus only the color compositions varies (the urns are said to be balanced). These properties make this class of urns ideally suited for analysis from an "analytic combinatorics" point-of-view, following in the footsteps of Flajolet-Dumas-Puyhaubert, 2006. Through an algebraic generating function to which we apply a multiple coalescing saddle-point method, we are able to give precise asymptotic results for the probability distribution of the composition of the urn, as well as local limit law and large deviation bounds.
Model Checking Data Consistency for Cache Coherence Protocols
Institute of Scientific and Technical Information of China (English)
Hong Pan; Hui-Min Lin; Yi Lv
2006-01-01
A method for automatic verification of cache coherence protocols is presented, in which cache coherence protocols are modeled as concurrent value-passing processes, and control and data consistency requirement are described as formulas in first-orderμ-calculus. A model checker is employed to check if the protocol under investigation satisfies the required properties. Using this method a data consistency error has been revealed in a well-known cache coherence protocol.The error has been corrected, and the revised protocol has been shown free from data consistency error for any data domain size, by appealing to data independence technique.
UPPAAL-SMC: Statistical Model Checking for Priced Timed Automata
DEFF Research Database (Denmark)
Bulychev, Petr; David, Alexandre; Larsen, Kim Guldstrand;
2012-01-01
in the form of probability distributions and compare probabilities to analyze performance aspects of systems. The focus of the survey is on the evolution of the tool – including modeling and specification formalisms as well as techniques applied – together with applications of the tool to case studies....... on a series of extensions of the statistical model checking approach generalized to handle real-time systems and estimate undecidable problems. U PPAAL - SMC comes together with a friendly user interface that allows a user to specify complex problems in an efficient manner as well as to get feedback...
Optimizing ZigBee Security using Stochastic Model Checking
DEFF Research Database (Denmark)
Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming;
ZigBee is a fairly new but promising wireless sensor network standard that offers the advantages of simple and low resource communication. Nevertheless, security is of great concern to ZigBee, and enhancements are prescribed in the latest ZigBee specication: ZigBee-2007. In this technical report......, we identify an important gap in the specification on key updates, and present a methodology for determining optimal key update policies and security parameters. We exploit the stochastic model checking approach using the probabilistic model checker PRISM, and assess the security needs for realistic...
Network segregation in a model of misinformation and fact checking
Tambuscio, Marcella; Ciampaglia, Giovanni Luca; Ruffo, Giancarlo
2016-01-01
Misinformation under the form of rumor, hoaxes, and conspiracy theories spreads on social media at alarming rates. One hypothesis is that, since social media are shaped by homophily, belief in misinformation may be more likely to thrive on those social circles that are segregated from the rest of the network. One possible antidote is fact checking which, in some cases, is known to stop rumors from spreading further. However, fact checking may also backfire and reinforce the belief in a hoax. Here we take into account the combination of network segregation, finite memory and attention, and fact-checking efforts. We consider a compartmental model of two interacting epidemic processes over a network that is segregated between gullible and skeptic users. Extensive simulation and mean-field analysis show that a more segregated network facilitates the spread of a hoax only at low forgetting rates, but has no effect when agents forget at faster rates. This finding may inform the development of mitigation techniques ...
Algebraic approach to small-world network models
Rudolph-Lilith, Michelle; Muller, Lyle E.
2014-01-01
We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.
Applying Model Checking to Industrial-Sized PLC Programs
AUTHOR|(CDS)2079190; Darvas, Daniel; Blanco Vinuela, Enrique; Tournier, Jean-Charles; Bliudze, Simon; Blech, Jan Olaf; Gonzalez Suarez, Victor M
2015-01-01
Programmable logic controllers (PLCs) are embedded computers widely used in industrial control systems. Ensuring that a PLC software complies with its specification is a challenging task. Formal verification has become a recommended practice to ensure the correctness of safety-critical software but is still underused in industry due to the complexity of building and managing formal models of real applications. In this paper, we propose a general methodology to perform automated model checking of complex properties expressed in temporal logics (\\eg CTL, LTL) on PLC programs. This methodology is based on an intermediate model (IM), meant to transform PLC programs written in various standard languages (ST, SFC, etc.) to different modeling languages of verification tools. We present the syntax and semantics of the IM and the transformation rules of the ST and SFC languages to the nuXmv model checker passing through the intermediate model. Finally, two real cases studies of \\CERN PLC programs, written mainly in th...
SoS contract verification using statistical model checking
Directory of Open Access Journals (Sweden)
Alessandro Mignogna
2013-11-01
Full Text Available Exhaustive formal verification for systems of systems (SoS is impractical and cannot be applied on a large scale. In this paper we propose to use statistical model checking for efficient verification of SoS. We address three relevant aspects for systems of systems: 1 the model of the SoS, which includes stochastic aspects; 2 the formalization of the SoS requirements in the form of contracts; 3 the tool-chain to support statistical model checking for SoS. We adapt the SMC technique for application to heterogeneous SoS. We extend the UPDM/SysML specification language to express the SoS requirements that the implemented strategies over the SoS must satisfy. The requirements are specified with a new contract language specifically designed for SoS, targeting a high-level English- pattern language, but relying on an accurate semantics given by the standard temporal logics. The contracts are verified against the UPDM/SysML specification using the Statistical Model Checker (SMC PLASMA combined with the simulation engine DESYRE, which integrates heterogeneous behavioral models through the functional mock-up interface (FMI standard. The tool-chain allows computing an estimation of the satisfiability of the contracts by the SoS. The results help the system architect to trade-off different solutions to guide the evolution of the SoS.
Weak quasitriangular Quasi-Hopf algebra structure of minimal models
Teschner, J. A.
1995-01-01
The chiral vertex operators for the minimal models are constructed and used to define a fusion product of representations. The existence of commutativity and associativity operations is proved. The matrix elements of the associativity operations are shown to be given in terms of the 6-j symbols of the weak quasitriangular quasi-Hopf algebra obtained by truncating $\\usl$ at roots of unity.
Form factors in an algebraic model of the nucleon
Bijker, R
1995-01-01
We study the electromagnetic form factors of the nucleon in a collective model of baryons. In an algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction.
Algebraic Models of Hadron Structure; 2, Strange Baryons
Bijker, R; Leviatan, A
2000-01-01
The algebraic treatment of baryons is extended to strange resonances. Within this framework we study a collective string-like model in which the radial excitations are interpreted as rotations and vibrations of the strings. We derive a mass formula and closed expressions for strong and electromagnetic decay widths and use these to analyze the available experimental data.
Model checking coalitional games in shortage resource scenarios
Directory of Open Access Journals (Sweden)
Dario Della Monica
2013-07-01
Full Text Available Verification of multi-agents systems (MAS has been recently studied taking into account the need of expressing resource bounds. Several logics for specifying properties of MAS have been presented in quite a variety of scenarios with bounded resources. In this paper, we study a different formalism, called Priced Resource-Bounded Alternating-time Temporal Logic (PRBATL, whose main novelty consists in moving the notion of resources from a syntactic level (part of the formula to a semantic one (part of the model. This allows us to track the evolution of the resource availability along the computations and provides us with a formalisms capable to model a number of real-world scenarios. Two relevant aspects are the notion of global availability of the resources on the market, that are shared by the agents, and the notion of price of resources, depending on their availability. In a previous work of ours, an initial step towards this new formalism was introduced, along with an EXPTIME algorithm for the model checking problem. In this paper we better analyze the features of the proposed formalism, also in comparison with previous approaches. The main technical contribution is the proof of the EXPTIME-hardness of the the model checking problem for PRBATL, based on a reduction from the acceptance problem for Linearly-Bounded Alternating Turing Machines. In particular, since the problem has multiple parameters, we show two fixed-parameter reductions.
How algebraic Bethe ansatz works for integrable model
Fadeev, L
1996-01-01
I study the technique of Algebraic Bethe Ansatz for solving integrable models and show how it works in detail on the simplest example of spin 1/2 XXX magnetic chain. Several other models are treated more superficially, only the specific details are given. Several parameters, appearing in these generalizations: spin s, anisotropy parameter \\ga, shift \\om in the alternating chain, allow to include in our treatment most known examples of soliton theory, including relativistic model of Quantum Field Theory.
Generalization of Richardson-Gaudin models to rank-2 algebras
Energy Technology Data Exchange (ETDEWEB)
Errea, B; Lerma, S; Dukelsky, J; Dimitrova, S S; Pittel, S; Van Isacker, P; Gueorguiev, V G
2006-07-20
A generalization of Richardson-Gaudin models to the rank-2 SO(5) and SO(3,2) algebras is used to describe systems of two kinds of fermions or bosons interacting through a pairing force. They are applied to the proton-neutron neutron isovector pairing model and to the Interacting Boson Model 2, in the transition from vibration to gamma-soft nuclei, respectively. In both cases, the integrals of motion and their eigenvalues are obtained.
Algebraic turbulence modeling for unstructured and adaptive meshes
Mavriplis, Dimitri J.
1990-01-01
An algebraic turbulence model based on the Baldwin-Lomax model, has been implemented for use on unstructured grids. The implementation is based on the use of local background structured turbulence meshes. At each time-step, flow variables are interpolated from the unstructured mesh onto the background structured meshes, the turbulence model is executed on these meshes, and the resulting eddy viscosity values are interpolated back to the unstructured mesh. Modifications to the algebraic model were required to enable the treatment of more complicated flows, such as confluent boundary layers and wakes. The model is used in conjuction with an efficient unstructured multigrid finite-element Navier-Stokes solver in order to compute compressible turbulent flows on fully unstructured meshes. Solutions about single and multiple element airfoils are obtained and compared with experimental data.
Reasoning About Strategies: On the Model-Checking Problem
Mogavero, Fabio; Perelli, Giuseppe; Vardi, Moshe Y
2011-01-01
In open systems verification, to formally check for reliability, one needs an appropriate formalism to model the interaction between agents and express the correctness of the system no matter how the environment behaves. An important contribution in this context is given by modal logics for strategic ability, in the setting of multi-agent games, such as ATL, ATL*, and the like. Recently, Chatterjee, Henzinger, and Piterman introduced Strategy Logic (CHP-SL), with the aim of getting a powerful framework for reasoning explicitly about strategies. CHP-SL is obtained by using first-order quantifications over strategies and it has been investigated in the setting of two-agents turned-based games, where a non-elementary model-checking algorithm has been provided. While CHP-SL is a very expressive logic, we claim that it does not fully capture the strategic aspects of multi-agent systems. In this paper, we introduce and study a more general strategy logic, denoted SL, for reasoning about strategies in multi-agent co...
Using Model Checking for Analyzing Distributed Power Control Problems
Directory of Open Access Journals (Sweden)
Thomas Brihaye
2010-01-01
Full Text Available Model checking (MC is a formal verification technique which has been known and still knows a resounding success in the computer science community. Realizing that the distributed power control (PC problem can be modeled by a timed game between a given transmitter and its environment, the authors wanted to know whether this approach can be applied to distributed PC. It turns out that it can be applied successfully and allows one to analyze realistic scenarios including the case of discrete transmit powers and games with incomplete information. The proposed methodology is as follows. We state some objectives a transmitter-receiver pair would like to reach. The network is modeled by a game where transmitters are considered as timed automata interacting with each other. The objectives are then translated into timed alternating-time temporal logic formulae and MC is exploited to know whether the desired properties are verified and determine a winning strategy.
Model-checking dense-time Duration Calculus
DEFF Research Database (Denmark)
Fränzle, Martin
2004-01-01
Since the seminal work of Zhou Chaochen, M. R. Hansen, and P. Sestoft on decidability of dense-time Duration Calculus [Zhou, Hansen, Sestoft, 1993] it is well-known that decidable fragments of Duration Calculus can only be obtained through withdrawal of much of the interesting vocabulary...... of this logic. While this was formerly taken as an indication that key-press verification of implementations with respect to elaborate Duration Calculus specifications were also impossible, we show that the model property is well decidable for realistic designs which feature natural constraints...... suitably sparser model classes we obtain model-checking procedures for rich subsets of Duration Calculus. Together with undecidability results also obtained, this sheds light upon the exact borderline between decidability and undecidability of Duration Calculi and related logics....
Boundary algebras and Kac modules for logarithmic minimal models
Morin-Duchesne, Alexi; Rasmussen, Jørgen; Ridout, David
2015-10-01
Virasoro Kac modules were originally introduced indirectly as representations whose characters arise in the continuum scaling limits of certain transfer matrices in logarithmic minimal models, described using Temperley-Lieb algebras. The lattice transfer operators include seams on the boundary that use Wenzl-Jones projectors. If the projectors are singular, the original prescription is to select a subspace of the Temperley-Lieb modules on which the action of the transfer operators is non-singular. However, this prescription does not, in general, yield representations of the Temperley-Lieb algebras and the Virasoro Kac modules have remained largely unidentified. Here, we introduce the appropriate algebraic framework for the lattice analysis as a quotient of the one-boundary Temperley-Lieb algebra. The corresponding standard modules are introduced and examined using invariant bilinear forms and their Gram determinants. The structures of the Virasoro Kac modules are inferred from these results and are found to be given by finitely generated submodules of Feigin-Fuchs modules. Additional evidence for this identification is obtained by comparing the formalism of lattice fusion with the fusion rules of the Virasoro Kac modules. These are obtained, at the character level, in complete generality by applying a Verlinde-like formula and, at the module level, in many explicit examples by applying the Nahm-Gaberdiel-Kausch fusion algorithm.
Tarmo: A Framework for Parallelized Bounded Model Checking
Wieringa, Siert; Heljanko, Keijo; 10.4204/EPTCS.14.5
2009-01-01
This paper investigates approaches to parallelizing Bounded Model Checking (BMC) for shared memory environments as well as for clusters of workstations. We present a generic framework for parallelized BMC named Tarmo. Our framework can be used with any incremental SAT encoding for BMC but for the results in this paper we use only the current state-of-the-art encoding for full PLTL. Using this encoding allows us to check both safety and liveness properties, contrary to an earlier work on distributing BMC that is limited to safety properties only. Despite our focus on BMC after it has been translated to SAT, existing distributed SAT solvers are not well suited for our application. This is because solving a BMC problem is not solving a set of independent SAT instances but rather involves solving multiple related SAT instances, encoded incrementally, where the satisfiability of each instance corresponds to the existence of a counterexample of a specific length. Our framework includes a generic architecture for a ...
A conceptual model of check dam hydraulics for gully control
Directory of Open Access Journals (Sweden)
C. Castillo
2013-09-01
Full Text Available There is little information in scientific literature regarding the modifications induced by check dam systems in flow regimes in restored gully reaches, despite it being a crucial issue for the design of conservation measures. Here, we develop a conceptual model to classify flow regimes in straight rectangular channels for initial and dam-filling conditions as well as a method of estimating efficiency in order to provide guidelines for optimal design. The model integrates several previous mathematical approaches for assessing the main processes involved (hydraulic jump HJ, impact flow, gradually varied flows. Its performance was compared with the simulations obtained from IBER, a bi-dimensional hydrodynamic model. The impact of check dam spacing (defined by the geometric factor of influence c on efficiency was explored. Eleven main classifications of flow regimes were identified depending on the element and level of influence. The model produced similar results when compared with IBER, but led to higher estimations of HJ and impact lengths. Total influence guaranteed maximum efficiency and HJ control defining the location of the optimal c. Geometric total influence (c = 1 was a valid criterion for the different stages of the structures in a wide range of situations provided that hydraulic roughness conditions remained high within the gully, e.g. through revegetation. Our total influence criterion involved shorter spacing than that habitually recommended in technical manuals for restoration, but was in line with those values found in spontaneous and stable step-pools systems, which might serve as a reference for man-made interventions.
Constrained WZWN models on G/{S⊗U(1)"n} and exchange algebra of G-primaries
Energy Technology Data Exchange (ETDEWEB)
Aoyama, Shogo, E-mail: spsaoya@ipc.shizuoka.ac.jp; Ishii, Katsuyuki
2013-11-11
Consistently constrained WZWN models on G/{S⊗U(1)"n} is given by constraining currents of the WZWN models with G. Poisson brackets are set up on the light-like plane. Using them we show the Virasoro algebra for the energy–momentum tensor of constrained WZWN models. We find a G-primary which satisfies a classical exchange algebra in an arbitrary representation of G. The G-primary and the constrained currents are also shown to obey the conformal transformation with respect to the energy–momentum tensor. It is checked that conformal weight of the constrained currents is 0. This is necessary for the consistency for our formulation of constrained WZWN models.
Geometric Model of Topological Insulators from the Maxwell Algebra
Palumbo, Giandomenico
2016-01-01
We propose a novel geometric model of three-dimensional topological insulators in presence of an external electromagnetic field. The gapped boundary of these systems supports relativistic quantum Hall states and is described by a Chern-Simons theory with a gauge connection that takes values in the Maxwell algebra. This represents a non-central extension of the Poincar\\'e algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, we derive a relativistic version of the Wen-Zee term, and we show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space.
Free particles from Brauer algebras in complex matrix models
Kimura, Yusuke; Turton, David
2009-01-01
The gauge invariant degrees of freedom of matrix models based on an N x N complex matrix, with U(N) gauge symmetry, contain hidden free particle structures. These are exhibited using triangular matrix variables via the Schur decomposition. The Brauer algebra basis for complex matrix models developed earlier is useful in projecting to a sector which matches the state counting of N free fermions on a circle. The Brauer algebra projection is characterized by the vanishing of a scale invariant laplacian constructed from the complex matrix. The special case of N=2 is studied in detail: the ring of gauge invariant functions as well as a ring of scale and gauge invariant differential operators are characterized completely. The orthonormal basis of wavefunctions in this special case is completely characterized by a set of five commuting Hamiltonians, which display free particle structures. Applications to the reduced matrix quantum mechanics coming from radial quantization in N=4 SYM are described. We propose that th...
Geometric Algebra Model of Distributed Representations
Patyk, Agnieszka
2010-01-01
Formalism based on GA is an alternative to distributed representation models developed so far --- Smolensky's tensor product, Holographic Reduced Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced by geometric products, interpretable in terms of geometry which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.
Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models
Directory of Open Access Journals (Sweden)
Sh. Khachatryan
2015-10-01
Full Text Available We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.
Tarmo: A Framework for Parallelized Bounded Model Checking
Directory of Open Access Journals (Sweden)
Siert Wieringa
2009-12-01
Full Text Available This paper investigates approaches to parallelizing Bounded Model Checking (BMC for shared memory environments as well as for clusters of workstations. We present a generic framework for parallelized BMC named Tarmo. Our framework can be used with any incremental SAT encoding for BMC but for the results in this paper we use only the current state-of-the-art encoding for full PLTL. Using this encoding allows us to check both safety and liveness properties, contrary to an earlier work on distributing BMC that is limited to safety properties only. Despite our focus on BMC after it has been translated to SAT, existing distributed SAT solvers are not well suited for our application. This is because solving a BMC problem is not solving a set of independent SAT instances but rather involves solving multiple related SAT instances, encoded incrementally, where the satisfiability of each instance corresponds to the existence of a counterexample of a specific length. Our framework includes a generic architecture for a shared clause database that allows easy clause sharing between SAT solver threads solving various such instances. We present extensive experimental results obtained with multiple variants of our Tarmo implementation. Our shared memory variants have a significantly better performance than conventional single threaded approaches, which is a result that many users can benefit from as multi-core and multi-processor technology is widely available. Furthermore we demonstrate that our framework can be deployed in a typical cluster of workstations, where several multi-core machines are connected by a network.
Algebraic Turbulence-Chemistry Interaction Model
Norris, Andrew T.
2012-01-01
The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.
Algebraic spin liquid in an exactly solvable spin model
Energy Technology Data Exchange (ETDEWEB)
Yao, Hong; Zhang, Shou-Cheng; Kivelson, Steven A.; /Stanford U., Phys. Dept.
2010-03-25
We have proposed an exactly solvable quantum spin-3/2 model on a square lattice. Its ground state is a quantum spin liquid with a half integer spin per unit cell. The fermionic excitations are gapless with a linear dispersion, while the topological 'vison' excitations are gapped. Moreover, the massless Dirac fermions are stable. Thus, this model is, to the best of our knowledge, the first exactly solvable model of half-integer spins whose ground state is an 'algebraic spin liquid.'
A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence
Institute of Scientific and Technical Information of China (English)
Yang Liu; Xuan-Dong Li; Yan Ma
2016-01-01
Stochastic model checking is a recent extension and generalization of the classical model checking, which focuses on quantitatively checking the temporal property of a system model. PCTL* is one of the important quantitative property specification languages, which is strictly more expressive than either PCTL (probabilistic computation tree logic) or LTL (linear temporal logic) with probability bounds. At present, PCTL* stochastic model checking algorithm is very complicated, and cannot provide any relevant explanation of why a formula does or does not hold in a given model. For dealing with this problem, an intuitive and succinct approach for PCTL* stochastic model checking with evidence is put forward in this paper, which includes: presenting the game semantics for PCTL* in release-PNF (release-positive normal form), defining the PCTL*stochastic model checking game, using strategy solving in game to achieve the PCTL*stochastic model checking, and refining winning strategy as the evidence to certify stochastic model checking result. The soundness and the completeness of game-based PCTL* stochastic model checking are proved, and its complexity matches the known lower and upper bounds. The game-based PCTL*stochastic model checking algorithm is implemented in a visual prototype tool, and its feasibility is demonstrated by an illustrative example.
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
An algebraic model of baryon spectroscopy
Bijker, R
1999-01-01
We discuss recent calculations of the mass spectrum, electromagnetic and strong couplings of baryon resonances. The calculations are done in a collective constituent model for the nucleon, in which the resonances are interpreted as rotations and vibrations of a symmetric top with a prescribed distribution of the charge and magnetization. We analyze recent data on eta-photo- and eta-electroproduction, and the tensor analyzing power in deuteron scattering.
A Multiple—Valued Algebra for Modeling MOS VLSI Circuits at Switch—Level
Institute of Scientific and Technical Information of China (English)
胡谋
1992-01-01
A multiple-valued algebra for modeling MOS VLSI circuits at switch-level is proposed in this paper,Its structure and properties are studied.This algebra can be used to transform a MOS digital circuit to a swith-level algebraic expression so as to generate the truth table for the circuit and to derive a Boolean expression for it.In the paper,methods to construct a switch-level algebraic expression for a circuit and methods to simplify expressions are given.This algebra provides a new tool for MOS VLSI circuit design and analysis.
Model Checking Vector Addition Systems with one zero-test
Bonet, Rémi; Leroux, Jérôme; Zeitoun, Marc
2012-01-01
We design a variation of the Karp-Miller algorithm to compute, in a forward manner, a finite representation of the cover (i.e., the downward closure of the reachability set) of a vector addition system with one zero-test. This algorithm yields decision procedures for several problems for these systems, open until now, such as place-boundedness or LTL model-checking. The proof techniques to handle the zero-test are based on two new notions of cover: the refined and the filtered cover. The refined cover is a hybrid between the reachability set and the classical cover. It inherits properties of the reachability set: equality of two refined covers is undecidable, even for usual Vector Addition Systems (with no zero-test), but the refined cover of a Vector Addition System is a recursive set. The second notion of cover, called the filtered cover, is the central tool of our algorithms. It inherits properties of the classical cover, and in particular, one can effectively compute a finite representation of this set, e...
Verification of Quantum Cryptography Protocols by Model Checking
Directory of Open Access Journals (Sweden)
Mohamed Elboukhari
2010-10-01
Full Text Available Unlike classical cryptography which is based on mathematical functions, Quantum Cryptography orQuantum Key Distribution (QKD exploits the laws of quantum physics to offer unconditionally securecommunication. The progress of research in this field allows the anticipation of QKD to be availableoutside of laboratories within the next few years and efforts are made to improve the performance andreliability of the implemented technologies. But despite this big progress, several challenges remain. Forexample the task of how to test the devices of QKD did not yet receive enough attention. These apparatusesbecome heterogeneous, complex and so demand a big verification effort. In this paper we propose to studyquantum cryptography protocols by applying the technique of probabilistic model checking. Using PRISMtool, we analyze the security of BB84 protocol and we are focused on the specific security property ofeavesdropper's information gain on the key derived from the implementation of this protocol. We show thatthis property is affected by the parameters of the eavesdropper’s power and the quantum channel.
Model Checking Classes of Metric LTL Properties of Object-Oriented Real-Time Maude Specifications
Erika Ábrahám; Peter Csaba Ölveczky; Daniela Lepri
2010-01-01
This paper presents a transformational approach for model checking two important classes of metric temporal logic (MTL) properties, namely, bounded response and minimum separation, for nonhierarchical object-oriented Real-Time Maude specifications. We prove the correctness of our model checking algorithms, which terminate under reasonable non-Zeno-ness assumptions when the reachable state space is finite. These new model checking features have been integrated into Real-Time Maude, and are use...
The Model Checking Problem for Propositional Intuitionistic Logic with One Variable is AC1-Complete
Weiss, Martin Mundhenk And Felix
2010-01-01
We investigate the complexity of the model checking problem for propositional intuitionistic logic. We show that the model checking problem for intuitionistic logic with one variable is complete for logspace-uniform AC1, and for intuitionistic logic with two variables it is P-complete. For superintuitionistic logics with one variable, we obtain NC1-completeness for the model checking problem and for the tautology problem.
The Modeling Library of Eavesdropping Methods in Quantum Cryptography Protocols by Model Checking
Yang, Fan; Yang, Guowu; Hao, Yujie
2016-07-01
The most crucial issue of quantum cryptography protocols is its security. There exists many ways to attack the quantum communication process. In this paper, we present a model checking method for modeling the eavesdropping in quantum information protocols. So when the security properties of a certain protocol are needed to be verified, we can directly use the models which are already built. Here we adopt the probabilistic model checking tool—PRISM to model these attack methods. The verification results show that the detection rate of eavesdropping is approximately close to 1 when enough photons are transmitted.
Proceedings Second International Workshop on Algebraic Methods in Model-based Software Engineering
Durán, Francisco
2011-01-01
Over the past years there has been quite a lot of activity in the algebraic community about using algebraic methods for providing support to model-driven software engineering. The aim of this workshop is to gather researchers working on the development and application of algebraic methods to provide rigorous support to model-based software engineering. The topics relevant to the workshop are all those related to the use of algebraic methods in software engineering, including but not limited to: formally specifying and verifying model-based software engineering concepts and related ones (MDE, UML, OCL, MOF, DSLs, ...); tool support for the above; integration of formal and informal methods; and theoretical frameworks (algebraic, rewriting-based, category theory-based, ...). The workshop's main goal is to examine, discuss, and relate the existing projects within the algebraic community that address common open-issues in model-driven software engineering.
A U(1) Current Algebra Model Coupled to 2D-Gravity
Stoilov, M.; Zaikov, R.
1993-01-01
We consider a simple model of a scalar field with $U(1)$ current algebra gauge symmetry coupled to $2D$-gravity in order to clarify the origin of Stuckelberg symmetry in the $w_{\\infty}$-gravity theory. An analogous symmetry takes place in our model too. The possible central extension of the complete symmetry algebra and the corresponding critical dimension have been found. The analysis of the Hamiltonian and the constraints shows that the generators of the current algebra, the reparametrizat...
Topological basis realization for BMW algebra and Heisenberg XXZ spin chain model
Liu, Bo; Xue, Kang; Wang, Gangcheng; Liu, Ying; Sun, Chunfang
2015-04-01
In this paper, we study three-dimensional (3D) reduced Birman-Murakami-Wenzl (BMW) algebra based on topological basis theory. Several examples of BMW algebra representations are reviewed. We also discuss a special solution of BMW algebra, which can be used to construct Heisenberg XXZ model. The theory of topological basis provides a useful method to solve quantum spin chain models. It is also shown that the ground state of XXZ spin chain is superposition state of topological basis.
A New Algebraic Modelling Approach to Distributed Problem-Solving in MAS
Institute of Scientific and Technical Information of China (English)
帅典勋; 邓志东
2002-01-01
This paper is devoted to a new algebraic modelling approach to distributed problem-solving in multi-agent systems (MAS), which is featured by a unified framework for describing and treating social behaviors, social dynamics and social intelligence. A conceptual architecture of algebraic modelling is presented. The algebraic modelling of typical social behaviors, social situation and social dynamics is discussed in the context of distributed problemsolving in MAS. The comparison and simulation on distributed task allocations and resource assignments in MAS show more advantages of the algebraic approach than other conventional methods.
Clifford algebras geometric modelling and chain geometries with application in kinematics
Klawitter, Daniel
2015-01-01
After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework. Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About...
The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders
Energy Technology Data Exchange (ETDEWEB)
Gurau, Razvan, E-mail: rgurau@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo (Canada)
2012-12-01
Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.
Algebraic Traveling Wave Solutions of a Non-local Hydrodynamic-type Model
International Nuclear Information System (INIS)
In this paper we consider the algebraic traveling wave solutions of a non-local hydrodynamic-type model. It is shown that algebraic traveling wave solutions exist if and only if an associated first order ordinary differential system has invariant algebraic curve. The dynamical behavior of the associated ordinary differential system is analyzed. Phase portraits of the associated ordinary differential system is provided under various parameter conditions. Moreover, we classify algebraic traveling wave solutions of the model. Some explicit formulas of smooth solitary wave and cuspon solutions are obtained
The Galois Correspondence in Field Algebra of G-spin Model
Institute of Scientific and Technical Information of China (English)
Li Ning JIANG; Mao Zheng GUO
2005-01-01
Suppose that G is a finite group and D(G) the double algebra of G. For a given subgroup H of G, there is a sub-Hopf algebra D(G; H) of D(G). This paper gives the concrete construction of a D(G; H)-invariant subspace (A)H in field algebra of G-spin model and proves that if H is a normal subgroup of G, then (A)H is Galois closed.
Model Checking and Model-based Testing in the Railway Domain
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth; Peleska, Jan
2015-01-01
This chapter describes some approaches and emerging trends for verification and model-based testing of railway control systems. We describe state-of-the-art methods and associated tools for verifying interlocking systems and their configuration data, using bounded model checking and k-induction. ...
PVeStA: A Parallel Statistical Model Checking and Quantitative Analysis Tool
AlTurki, Musab
2011-01-01
Statistical model checking is an attractive formal analysis method for probabilistic systems such as, for example, cyber-physical systems which are often probabilistic in nature. This paper is about drastically increasing the scalability of statistical model checking, and making such scalability of analysis available to tools like Maude, where probabilistic systems can be specified at a high level as probabilistic rewrite theories. It presents PVeStA, an extension and parallelization of the VeStA statistical model checking tool [10]. PVeStA supports statistical model checking of probabilistic real-time systems specified as either: (i) discrete or continuous Markov Chains; or (ii) probabilistic rewrite theories in Maude. Furthermore, the properties that it can model check can be expressed in either: (i) PCTL/CSL, or (ii) the QuaTEx quantitative temporal logic. As our experiments show, the performance gains obtained from parallelization can be very high. © 2011 Springer-Verlag.
Towards Symbolic Model-Based Mutation Testing: Combining Reachability and Refinement Checking
Aichernig, Bernhard K; 10.4204/EPTCS.80.7
2012-01-01
Model-based mutation testing uses altered test models to derive test cases that are able to reveal whether a modelled fault has been implemented. This requires conformance checking between the original and the mutated model. This paper presents an approach for symbolic conformance checking of action systems, which are well-suited to specify reactive systems. We also consider nondeterminism in our models. Hence, we do not check for equivalence, but for refinement. We encode the transition relation as well as the conformance relation as a constraint satisfaction problem and use a constraint solver in our reachability and refinement checking algorithms. Explicit conformance checking techniques often face state space explosion. First experimental evaluations show that our approach has potential to outperform explicit conformance checkers.
Lie algebraic similarity transformed Hamiltonians for lattice model systems
Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2015-01-01
We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.
Algebraic model for single-particle energies of $\\Lambda$ hypernuclei
Fortunato, L
2016-01-01
A model is proposed for the spectrum of $\\Lambda$ hypernuclei based on the $u(3)\\times u(2)$ Lie algebra, in which the internal degrees of freedom of the spin-1/2 $\\Lambda$ particle are treated in the Fermionic $u(2)$ scheme, while the motion of the hyperon inside a nucleus is described in the Bosonic $u(3)$ harmonic oscillator scheme. Within this model, a simple formula for single-particle energies of the $\\Lambda$ particle is obtained from the natural dynamical symmetry. The formula is applied to the experimental data on the reaction spectroscopy for the $^{89}_\\Lambda$Y and $^{51}_\\Lambda$V hypernuclei, providing a clear theoretical interpretation of the observed structures.
Infinite number of conserved quantities and extended conformal algebra in the Thirring model
Energy Technology Data Exchange (ETDEWEB)
Inoue, K.; Odaka, K.; Omote, M.
1988-02-01
It is shown that the Thirring model has an infinite number of local conserved quantities, explicit forms of which are presented. These quantities are shown to be expressed in terms of scattering parameters. It will be shown that in this model there exists an extended symmetry algebra that includes the Virasoro algebra as its subalgebra.
Combining Decision Diagrams and SAT Procedures for Efficient Symbolic Model Checking
DEFF Research Database (Denmark)
Williams, Poul Frederick; Biere, Armin; Clarke, Edmund M.;
2000-01-01
In this paper we show how to do symbolic model checking using Boolean Expression Diagrams (BEDs), a non-canonical representation for Boolean formulas, instead of Binary Decision Diagrams (BDDs), the traditionally used canonical representation. The method is based on standard fixed point algorithms......, combined with BDDs and SAT-solvers to perform satisfiability checking. As a result we are able to model check systems for which standard BDD-based methods fail. For example, we model check a liveness property of a 256 bit shift-and-add multiplier and we are able to find a previously undetected bug...... in the specification of a 16 bit multiplier. As opposed to Bounded Model Checking (BMC) our method is complete in practice. Our technique is based on a quantification procedure that allows us to eliminate quantifiers in Quantified Boolean Formulas (QBF). The basic step of this procedure is the up-one operation...
Algebraic models of deviant modal operators based on de Morgan and Kleene lattices
Cattaneo, G.; Ciucci, DE; Dubois, D.
2011-01-01
An algebraic model of a kind of modal extension of de Morgan logic is described under the name MDS5 algebra. The main properties of this algebra can be summarized as follows: (1) it is based on a de Morgan lattice, rather than a Boolean algebra; (2) a modal necessity operator that satisfies the axioms N, K, T, and 5 (and as a consequence also B and 4) of modal logic is introduced; it allows one to introduce a modal possibility by the usual combination of necessity operation and...
a Quality Analysis and Uncertainty Modeling Approach for Crowd-Sourcing Location Check-In Data
Zhou, M.; Hu, Q.; Wang, M.
2013-05-01
The location check-in data, developing along with social network, are considered as user-generated crowd-sourcing geospatial data. With massive data volume, abundance in contained information, and high up-to-date status, the check-in data provide a new data source for geographic information service represented by location-based service. However, there is a significant quality issue regarding to crowd-sourcing data, which has a direct influence to data availability. In this paper, a data quality analysis approach is designed for the location check-in data and a check-in data uncertainty model is proposed. First of all, the quality issue of location check-in data is discussed. Then, according to the characteristics of check-in data, a location check-in data quality analysis and data processing approach is proposed, using certain standard dataset as reference to conduct an affine transformation for the check-in dataset, during which the RANSAC algorithm is adopted for outlier elimination. Subsequently, combining GIS data uncertainty theory, an uncertainty model of processed check-in data is set up. At last, using location check-in data obtained from jiepang.com as experimental data and selected navigation data as data standard, multiple location check-in data quality analysis and uncertainty modeling experiments are conducted. By comprehensive analysis of experimental results, the feasibility of proposed location checkin data quality analysis and process approach and the availability of proposed uncertainty model are verified. The novel approach is proved to have a certain practical significance to the study of the quality issue of crowd-sourcing geographic data.
Phases and phase transitions in the algebraic microscopic shell model
Directory of Open Access Journals (Sweden)
Georgieva A. I.
2016-01-01
Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
Hinkelmann, Franziska; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2010-01-01
Motivation: Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, bounded Petri nets, and agent-based models. Simulation is a common practice for analyzing discrete models, but many systems are far too large to capture all the relevant dynamical features through simulation alone. Results: We convert discrete models into algebraic models and apply tools from computational algebra to analyze their dynamics. The key feature of biological systems that is exploited by our algorithms is their sparsity: while the number of nodes in a biological network may be quite large, each node is affected only by a small number of other nodes. In our experience with models arising in systems biology and random models, this structure leads to fast computations when using algebraic models, and thus efficient analysis. Availability: All algorithms and methods are available in our package Analysis of Dynamic Algebraic Models (ADAM), a user friendly web-interf...
Model checking and strategy synthesis for stochastic games: from theory to practice
Kwiatkowska, MZ
2016-01-01
Probabilistic model checking is an automatic procedure for establishing if a desired property holds in a probabilistic model, aimed at verifying quantitative probabilistic specifications such as the probability of a critical failure occurring or expected time to termination. Much progress has been made in recent years in algorithms, tools and applications of probabilistic model checking, as exemplified by the probabilistic model checker PRISM (www.prismmodelchecker.org). However, the unstoppa...
Checking Fine and Gray Subdistribution Hazards Model with Cumulative Sums of Residuals
Li, Jianing; Scheike, Thomas H.; Zhang, Mei-Jie
2014-01-01
Recently, Fine and Gray (1999) proposed a semi-parametric proportional regression model for the subdistribution hazard function which has been used extensively for analyzing competing risks data. However, failure of model adequacy could lead to severe bias in parameter estimation, and only a limited contribution has been made to check the model assumptions. In this paper, we present a class of analytical methods and graphical approaches for checking the assumptions of Fine and Gray’s model. T...
Re"modeling" College Algebra: An Active Learning Approach
Pinzon, D.; Pinzon, K.; Stackpole, M.
2016-01-01
In this paper, we discuss active learning in College Algebra at Georgia Gwinnett College. This approach has been used in more than 20 sections of College Algebra taught by the authors in the past four semesters. Students work in small, structured groups on guided inquiry activities after watching 15-20 minutes of videos before class. We discuss a…
Wei, Hui; Ren, Yuan; Wang, Zi Yan
2013-10-01
The implementation of Hubel-Wiesel hypothesis that orientation selectivity of a simple cell is based on ordered arrangement of its afferent cells has some difficulties. It requires the receptive fields (RFs) of those ganglion cells (GCs) and LGN cells to be similar in size and sub-structure and highly arranged in a perfect order. It also requires an adequate number of regularly distributed simple cells to match ubiquitous edges. However, the anatomical and electrophysiological evidence is not strong enough to support this geometry-based model. These strict regularities also make the model very uneconomical in both evolution and neural computation. We propose a new neural model based on an algebraic method to estimate orientations. This approach synthesizes the guesses made by multiple GCs or LGN cells and calculates local orientation information subject to a group of constraints. This algebraic model need not obey the constraints of Hubel-Wiesel hypothesis, and is easily implemented with a neural network. By using the idea of a satisfiability problem with constraints, we also prove that the precision and efficiency of this model are mathematically practicable. The proposed model makes clear several major questions which Hubel-Wiesel model does not account for. Image-rebuilding experiments are conducted to check whether this model misses any important boundary in the visual field because of the estimation strategy. This study is significant in terms of explaining the neural mechanism of orientation detection, and finding the circuit structure and computational route in neural networks. For engineering applications, our model can be used in orientation detection and as a simulation platform for cell-to-cell communications to develop bio-inspired eye chips. PMID:24427212
Sigma-model Solutions and Intersecting p-Branes Related to Lie Algebras
Grebeniuk, M. A.; Ivashchuk, V. D.
1998-01-01
A family of Majumdar-Papapetrou type solutions in sigma-model of p-brane origin is obtained for all direct sums of finite-dimensional simple Lie algebras. Several examples of p-brane dyonic configurations in D=10 (IIA) and D=11 supergravities corresponding to the Lie algebra sl(3,C) are considered.
Algebraic structures generating reaction-diffusion models: the activator-substrate system
Palese, Marcella
2015-01-01
We shall construct a class of nonlinear reaction-diffusion equations starting from an infinitesimal algebraic skeleton. Our aim is to explore the possibility of an algebraic foundation of integrability properties and of stability of equilibrium states associated with nonlinear models describing patterns formation.
Model Checking for a General Linear Model with Nonignorable Missing Covariates
Institute of Scientific and Technical Information of China (English)
Zhi-hua SUN; Wai-Cheung IP; Heung WONG
2012-01-01
In this paper,we investigate the model checking problem for a general linear model with nonignorable missing covariates.We show that,without any parametric model assumption for the response probability,the least squares method yields consistent estimators for the linear model even if only the complete data are applied.This makes it feasible to propose two testing procedures for the corresponding model checking problem:a score type lack-of-fit test and a test based on the empirical process.The asymptotic properties of the test statistics are investigated.Both tests are shown to have asymptotic power 1 for local alternatives converging to the null at the rate n-(r),0 ≤ (r) ＜ 1/2.Simulation results show that both tests perform satisfactorily.
Checking the new IRI model The bottomside B parameters
Mosert, M; Ezquer, R; Lazo, B; Miro, G
2002-01-01
Electron density profiles obtained at Pruhonice (50.0, 15.0), El Arenosillo (37.1, 353.2) and Havana (23, 278) were used to check the bottom-side B parameters BO (thickness parameter) and B1 (shape parameter) predicted by the new IRI - 2000 version. The electron density profiles were derived from ionograms using the ARP technique. The data base includes daytime and nighttime ionograms recorded under different seasonal and solar activity conditions. Comparisons with IRI predictions were also done. The analysis shows that: a) The parameter B1 given by IRI 2000 reproduces better the observed ARP values than the IRI-90 version and b) The observed BO values are in general well reproduced by both IRI versions: IRI-90 and IRI-2000.
Index-aware model order reduction methods applications to differential-algebraic equations
Banagaaya, N; Schilders, W H A
2016-01-01
The main aim of this book is to discuss model order reduction (MOR) methods for differential-algebraic equations (DAEs) with linear coefficients that make use of splitting techniques before applying model order reduction. The splitting produces a system of ordinary differential equations (ODE) and a system of algebraic equations, which are then reduced separately. For the reduction of the ODE system, conventional MOR methods can be used, whereas for the reduction of the algebraic systems new methods are discussed. The discussion focuses on the index-aware model order reduction method (IMOR) and its variations, methods for which the so-called index of the original model is automatically preserved after reduction.
Energy Technology Data Exchange (ETDEWEB)
Bracken, Anthony J.; Ge Xiangyu; Gould, Mark D.; Links, Jon; Zhou Huanqiang [Centre for Mathematical Physics, University of Queensland, Brisbane, QLD (Australia)
2001-06-01
Integrable extended Hubbard models arising from symmetric group solutions are examined in the framework of the graded quantum inverse scattering method. The Bethe ansatz equations for all these models are derived by using the algebraic Bethe ansatz method. (author)
An Approach to Checking 3D Model with Related Engineering Drawings
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
For some reasons, engineers build their product 3D mo del according to a set of related engineering drawings. The problem is how we ca n know the 3D model is correct. The manual checking is very boring and time cons uming, and still could not avoid mistakes. Thus, we could not confirm the model, maybe try checking again. It will effect the production preparing cycle greatly , and should be solved in a intelligent way. The difficulties are quite obvious, unlike word checking in a word processing package, ...
Deterministic Compilation of Temporal Safety Properties in Explicit State Model Checking
National Aeronautics and Space Administration — The translation of temporal logic specifications constitutes an essen- tial step in model checking and a major influence on the efficiency of formal verification...
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
Directory of Open Access Journals (Sweden)
Christian Appold
2010-06-01
Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.
Family-Based Model Checking Without a Family-Based Model Checker
DEFF Research Database (Denmark)
Dimovski, Aleksandar; Al-Sibahi, Ahmad Salim; Brabrand, Claus;
2015-01-01
be used to model-check variational models using the standard version of (single system) SPIN. The abstractions are first defined as Galois connections on semantic domains. We then show how to translate them into syntactic source-to-source transformations on variational models. This allows the use of SPIN...... with all its accumulated optimizations for efficient verification of variational models without any knowledge about variability. We demonstrate the practicality of this method on several examples using both the SNIP (family based) and SPIN (single system) model checkers....
Y(sl(2)) Algebra Application in Extended Hydrogen Atom and Monopole Models
Institute of Scientific and Technical Information of China (English)
TIAN Li-Jun; ZHANG Hong-Biao; JIN Shuo; XUE Kang
2004-01-01
We present the extended hydrogen atom and monopole-hydrogen atom theory through generalizing the usual hydrogen atom model and with a monopole model respectively, in which Y (sl(2) ) algebras are realized. We derive the Hamiltonians of the two models based on the Y(sl(2) ) and the generalized Pauli equation. The energy spectra of the systems are also given in terms of Yangian algebra and quantum mechanics.
Energy Technology Data Exchange (ETDEWEB)
Lahtinen, J. [VTT Technical Research Centre of Finland, Espoo (Finland); Launiainen, T.; Heljanko, K.; Ropponen, J. [Aalto Univ., Espoo (Finland). Dept. of Information and Computer Science
2012-07-01
Digital instrumentation and control (I and C) systems are challenging to verify. They enable complicated control functions, and the state spaces of the models easily become too large for comprehensive verification through traditional methods. Model checking is a formal method that can be used for system verification. A number of efficient model checking systems are available that provide analysis tools to determine automatically whether a given state machine model satisfies the desired safety properties. This report reviews the work performed in the Safety Evaluation and Reliability Analysis of Nuclear Automation (SARANA) project in 2011 regarding model checking. We have developed new, more exact modelling methods that are able to capture the behaviour of a system more realistically. In particular, we have developed more detailed fault models depicting the hardware configuration of a system, and methodology to model function-block-based systems asynchronously. In order to improve the usability of our model checking methods, we have developed an algorithm for model checking large modular systems. The algorithm can be used to verify properties of a model that could otherwise not be verified in a straightforward manner. (orig.)
The Standard Model as an extension of the noncommutative algebra of forms
Brouder, Christian; Besnard, Fabien
2015-01-01
The Standard Model of particle physics can be deduced from a small number of axioms within Connes' noncommutative geometry (NCG). Boyle and Farnsworth [New J. Phys. 16 (2014) 123027] proposed to interpret Connes' approach as an algebra extension in the sense of Eilenberg. By doing so, they could deduce three axioms of the NCG Standard Model (i.e. order zero, order one and massless photon) from the single requirement that the extended algebra be associative. However, their approach was only applied to the finite part of the model because it fails for the full model. By taking into account the differential graded structure of the algebra of noncommutative differential forms, we obtain a formulation where the same three axioms are deduced from the associativity of the extended differential graded algebra, but which is now compatible with the full Standard Model.
On Diagnostic Checking of Vector ARMA-GARCH Models with Gaussian and Student-t Innovations
Directory of Open Access Journals (Sweden)
Yongning Wang
2013-04-01
Full Text Available This paper focuses on the diagnostic checking of vector ARMA (VARMA models with multivariate GARCH errors. For a fitted VARMA-GARCH model with Gaussian or Student-t innovations, we derive the asymptotic distributions of autocorrelation matrices of the cross-product vector of standardized residuals. This is different from the traditional approach that employs only the squared series of standardized residuals. We then study two portmanteau statistics, called Q1(M and Q2(M, for model checking. A residual-based bootstrap method is provided and demonstrated as an effective way to approximate the diagnostic checking statistics. Simulations are used to compare the performance of the proposed statistics with other methods available in the literature. In addition, we also investigate the effect of GARCH shocks on checking a fitted VARMA model. Empirical sizes and powers of the proposed statistics are investigated and the results suggest a procedure of using jointly Q1(M and Q2(M in diagnostic checking. The bivariate time series of FTSE 100 and DAX index returns is used to illustrate the performance of the proposed portmanteau statistics. The results show that it is important to consider the cross-product series of standardized residuals and GARCH effects in model checking.
Quasi-exactly solvable models derived from the quasi-Gaudin algebra
Energy Technology Data Exchange (ETDEWEB)
Lee, Yuan-Harng; Links, Jon; Zhang Yaozhong, E-mail: jrl@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, Qld 4072 (Australia)
2011-12-02
The quasi-Gaudin algebra was introduced to construct integrable systems which are only quasi-exactly solvable. Using a suitable representation of the quasi-Gaudin algebra, we obtain a class of bosonic models which exhibit this curious property. These models have the notable feature that they do not preserve U(1) symmetry, which is typically associated with a non-conservation of particle number. An exact solution for the eigenvalues within the quasi-exactly solvable sector is obtained via the algebraic Bethe ansatz formalism. (fast track communication)
Verifying Real-time Commit Protocols Using Dense-time Model Checking Technology
Al-Bataineh, Omar I; French, Tim; Woodings, Terry
2012-01-01
The timed-based automata model, introduced by Alur and Dill, provides a useful formalism for describing real-time systems. Over the last two decades, several dense-time model checking tools have been developed based on that model. The paper considers the verification of real-time distributed commit protocols using dense-time model checking technology. More precisely, we model and verify the well-known timed two phase commit protocol in three different state-of-the-art real-time model checkers: UPPAAL, Rabbit, and RED, and compare the results.
Verifying Real-time Commit Protocols Using Dense-time Model Checking Technology
Al-Bataineh, Omar I.; Reynolds, Mark; French, Tim; Woodings, Terry
2012-01-01
The timed-based automata model, introduced by Alur and Dill, provides a useful formalism for describing real-time systems. Over the last two decades, several dense-time model checking tools have been developed based on that model. The paper considers the verification of real-time distributed commit protocols using dense-time model checking technology. More precisely, we model and verify the well-known timed two phase commit protocol in three different state-of-the-art real-time model checkers...
Currents algebra for an atom-molecule Bose-Einstein condensate model
Filho, Gilberto N. Santos
2016-01-01
I present an interconversion currents algebra for an atom-molecule Bose-Einstein condensate model and use it to get the quantum dynamics of the currents. For different choices of the Hamiltonian parameters I get different currents dynamics.
Heinicke, C; Heinicke, Christian; Hehl, Friedrich W.
2001-01-01
We survey the application of computer algebra in the context of gravitational theories. After some general remarks, we show of how to check the second Bianchi-identity by means of the Reduce package Excalc. Subsequently we list some computer algebra systems and packages relevant to applications in gravitational physics. We conclude by presenting a couple of typical examples.
Lie algebra solution of population models based on time-inhomogeneous Markov chains
House, Thomas
2011-01-01
Many natural populations are well modelled through time-inhomogeneous stochastic processes. Such processes have been analysed in the physical sciences using a method based on Lie algebras, but this methodology is not widely used for models with ecological, medical and social applications. This paper presents the Lie algebraic method, and applies it to three biologically well motivated examples. The result of this is a solution form that is often highly computationally advantageous.
PKreport: report generation for checking population pharmacokinetic model assumptions
Directory of Open Access Journals (Sweden)
Li Jun
2011-05-01
Full Text Available Abstract Background Graphics play an important and unique role in population pharmacokinetic (PopPK model building by exploring hidden structure among data before modeling, evaluating model fit, and validating results after modeling. Results The work described in this paper is about a new R package called PKreport, which is able to generate a collection of plots and statistics for testing model assumptions, visualizing data and diagnosing models. The metric system is utilized as the currency for communicating between data sets and the package to generate special-purpose plots. It provides ways to match output from diverse software such as NONMEM, Monolix, R nlme package, etc. The package is implemented with S4 class hierarchy, and offers an efficient way to access the output from NONMEM 7. The final reports take advantage of the web browser as user interface to manage and visualize plots. Conclusions PKreport provides 1 a flexible and efficient R class to store and retrieve NONMEM 7 output, 2 automate plots for users to visualize data and models, 3 automatically generated R scripts that are used to create the plots; 4 an archive-oriented management tool for users to store, retrieve and modify figures, 5 high-quality graphs based on the R packages, lattice and ggplot2. The general architecture, running environment and statistical methods can be readily extended with R class hierarchy. PKreport is free to download at http://cran.r-project.org/web/packages/PKreport/index.html.
Off-critical W∞ and Virasoro algebras as dynamical symmetries of the integrable models
International Nuclear Information System (INIS)
An infinite set of new non commuting conserved charges in a specific class of perturbed CFT's is founded and a criterion for their existence is presented. They appear to be higher momenta of the already known commuting conserved currents. The algebra they close consists of two non commuting W ∞ algebras. Various Virasoro subalgebras of the full symmetry algebra are founded. It is shown on the examples of the perturbed Ising and Potts models that one of them plays an essential role in the computation of the correlation functions of the fields of the theory. (author)
VERIFICATION OF CONFLICTION AND UNREACHABILITY IN RULE-BASED EXPERT SYSTEMS WITH MODEL CHECKING
Directory of Open Access Journals (Sweden)
Einollah pira
2014-03-01
Full Text Available It is important to find optimal solutions for structural errors in rule-based expert systems .Solutions to discovering such errors by using model checking techniques have already been proposed, but these solutions have problems such as state space explosion. In this paper, to overcome these problems, we model the rule-based systems as finite state transition systems and express confliction and unreachabilityas Computation Tree Logic (CTL logic formula and then use the technique of model checking to detect confliction and unreachability in rule-based systems with the model checker UPPAAL.
Membrane Matrix models and non-perturbative checks of gauge/gravity duality
O'Connor, Denjoe
2016-01-01
We compare the bosonic and maximally supersymmetric membrane models. We find that in Hoppe regulated form the bosonic membrane is well approximated by massive Gaussian quantum matrix models. In contrast the similarly regulated supersymmetric membrane, which is equivalent to the BFSS model, has a gravity dual description. We sketch recent progress in checking gauge/gravity duality in this context.
Practical Application of Model Checking in Software Verification
Havelund, Klaus; Skakkebaek, Jens Ulrik
1999-01-01
This paper presents our experiences in applying the JAVA PATHFINDER (J(sub PF)), a recently developed JAVA to SPIN translator, in the finding of synchronization bugs in a Chinese Chess game server application written in JAVA. We give an overview of J(sub PF) and the subset of JAVA that it supports and describe the abstraction and verification of the game server. Finally, we analyze the results of the effort. We argue that abstraction by under-approximation is necessary for abstracting sufficiently smaller models for verification purposes; that user guidance is crucial for effective abstraction; and that current model checkers do not conveniently support the computational models of software in general and JAVA in particular.
Model Checking Electronic Commerce Security Protocols Based on CTL
Institute of Scientific and Technical Information of China (English)
XIAO De-qin; ZHANG Huan-guo
2005-01-01
We present a model based on Computational Temporal Logic (CTL) methods for verifying security requirements of electronic commerce protocols. The model describes formally the authentication, confidentiality integrity,non-repudiation, denial of service and access control of the electronic commerce protocols. We illustrate as case study a variant of the Lu-Smolka protocol proposed by Lu-Smolka.Moreover, we have discovered two attacks that allow a dishonest user to purchase a good debiting the amount to another user. And also, we compared our work with relative research works and found that the formal way of this paper is more general to specify security protocols for E-Commerce.
Application of Model-Checking Technology to Controller Synthesis
DEFF Research Database (Denmark)
David, Alexandre; Grunnet, Jacob Deleuran; Jessen, Jan Jacob;
2011-01-01
its continuous environment, which is modelled and taken care of in our frameworks. Our first technique does it by using Matlab to discretise the problem and then Uppaal-tiga to solve the obtained timed game. This is implemented as a toolbox. The second technique relies on the user defining a timed...... game model in Uppaal- tiga. Then the strategy is automatically imported in Simulink as an S-function for simulation and validation purposes. We demonstrate the effectiveness of these frameworks in different case-studies....
Hypersonic: Model Analysis and Checking in the Cloud
DEFF Research Database (Denmark)
Acretoaie, Vlad; Störrle, Harald
2014-01-01
”. Objective: In this paper we investigate the conceptual and technical feasibility of a new software architecture for modeling tools, where certain advanced features are factored out of the client and moved towards the Cloud. With this approach we plan to address the above mentioned drawbacks of existing...
Efficient Proof Engines for Bounded Model Checking of Hybrid Systems
DEFF Research Database (Denmark)
Fränzle, Martin; Herde, Christian
2005-01-01
In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...
Dynamic Delayed Duplicate Detection for External Memory Model Checking
DEFF Research Database (Denmark)
Evangelista, Sami
2008-01-01
Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typica...
On the minimum weight states of the Lipkin model obeying the su(n)-algebra
Tsue, Yasuhiko; da Providencia, Joao; Yamamura, Masatoshi
2015-01-01
The minimum weight states of the Lipkin model consisting of n single-particle levels and obeying the su(n)-algebra are investigated systematically. The basic idea is to use the su(2)-algebra which is independent of the su(n)-algebra. This idea has been already presented by the present authors in the case of the conventional Lipkin model consisting of two single-particle levels and obeying the su(2)-algebra. If following this idea, the minimum weight states are determined for any fermion number occupying appropriately n single-particle levels. Naturally, the conventional minimum weight state is included: all fermions occupy energetically the lowest single-particle level in the absence of interaction.
CheckMATE: Confronting your Favourite New Physics Model with LHC Data
Drees, Manuel; Kim, Jong Soo; Schmeier, Daniel; Tattersall, Jamie
2013-01-01
In the first three years of running, the LHC has delivered a wealth of new data that is now being analysed. With over 20 fb$^{-1}$ of integrated luminosity, both ATLAS and CMS have performed many searches for new physics that theorists are eager to test their model against. However, tuning the detector simulations, understanding the particular analysis details and interpreting the results can be a tedious task. CheckMATE (Check Models At Terascale Energies) is a program package which accepts simulated event files in many formats for any model. The program then determines whether the model is excluded or not at 95% C.L. by comparing to many recent experimental analyses. Furthermore the program can calculate confidence limits and provide detailed information about signal regions of interest. It is simple to use and the program structure allows for easy extensions to upcoming LHC results in the future. CheckMATE can be found at: http://checkmate.hepforge.org
Using Runtime Analysis to Guide Model Checking of Java Programs
Havelund, Klaus; Norvig, Peter (Technical Monitor)
2001-01-01
This paper describes how two runtime analysis algorithms, an existing data race detection algorithm and a new deadlock detection algorithm, have been implemented to analyze Java programs. Runtime analysis is based on the idea of executing the program once. and observing the generated run to extract various kinds of information. This information can then be used to predict whether other different runs may violate some properties of interest, in addition of course to demonstrate whether the generated run itself violates such properties. These runtime analyses can be performed stand-alone to generate a set of warnings. It is furthermore demonstrated how these warnings can be used to guide a model checker, thereby reducing the search space. The described techniques have been implemented in the b e grown Java model checker called PathFinder.
Using Stochastic Model Checking to Provision Complex Business Services
DEFF Research Database (Denmark)
Herbert, Luke Thomas; Sharp, Robin
2012-01-01
We present a framework for modelling and analysis of real-world business workflows. Business processes regularly form the basis for the design of software services, and frequently display complex stochastic behaviour. The accurate evaluation of their qualitative aspects can allow for determining...... bounds on resources consumed during execution of business processes. Accurate resource provisioning is often central to ensuring the safe execution of a process. We first introduce a formalised core subset of the Business Process Modelling and Notation (BPMN), which we extend with probabilistic and non...... of business processes including transient probabilities, timing, occurrence and ordering of events, and best- and worst-case scenarios. The developments presented are illustrated using an example from the health-care industry....
Developing ontological model of computational linear algebra - preliminary considerations
Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Lirkov, I.
2013-10-01
The aim of this paper is to propose a method for application of ontologically represented domain knowledge to support Grid users. The work is presented in the context provided by the Agents in Grid system, which aims at development of an agent-semantic infrastructure for efficient resource management in the Grid. Decision support within the system should provide functionality beyond the existing Grid middleware, specifically, help the user to choose optimal algorithm and/or resource to solve a problem from a given domain. The system assists the user in at least two situations. First, for users without in-depth knowledge about the domain, it should help them to select the method and the resource that (together) would best fit the problem to be solved (and match the available resources). Second, if the user explicitly indicates the method and the resource configuration, it should "verify" if her choice is consistent with the expert recommendations (encapsulated in the knowledge base). Furthermore, one of the goals is to simplify the use of the selected resource to execute the job; i.e., provide a user-friendly method of submitting jobs, without required technical knowledge about the Grid middleware. To achieve the mentioned goals, an adaptable method of expert knowledge representation for the decision support system has to be implemented. The selected approach is to utilize ontologies and semantic data processing, supported by multicriterial decision making. As a starting point, an area of computational linear algebra was selected to be modeled, however, the paper presents a general approach that shall be easily extendable to other domains.
Model Checking Linear-Time Properties of Probabilistic Systems
Baier, Christel; Größer, Marcus; Ciesinski, Frank
This chapter is about the verification of Markov decision processes (MDPs) which incorporate one of the fundamental models for reasoning about probabilistic and nondeterministic phenomena in reactive systems. MDPs have their roots in the field of operations research and are nowadays used in a wide variety of areas including verification, robotics, planning, controlling, reinforcement learning, economics and semantics of randomized systems. Furthermore, MDPs served as the basis for the introduction of probabilistic automata which are related to weighted automata. We describe the use of MDPs as an operational model for randomized systems, e.g., systems that employ randomized algorithms, multi-agent systems or systems with unreliable components or surroundings. In this context we outline the theory of verifying ω-regular properties of such operational models. As an integral part of this theory we use ω-automata, i.e., finite-state automata over finite alphabets that accept languages of infinite words. Additionally, basic concepts of important reduction techniques are sketched, namely partial order reduction of MDPs and quotient system reduction of the numerical problem that arises in the verification of MDPs. Furthermore we present several undecidability and decidability results for the controller synthesis problem for partially observable MDPs.
The classical origin of quantum affine algebra in squashed sigma models
Kawaguchi, Io; Matsumoto, Takuya; Yoshida, Kentaroh
2012-01-01
We consider a quantum affine algebra realized in two-dimensional non-linear sigma models with target space three-dimensional squashed sphere. Its affine generators are explicitly constructed and the Poisson brackets are computed. The defining relations of quantum affine algebra in the sense of the Drinfeld first realization are satisfied at classical level. The relation to the Drinfeld second realization is also discussed including higher conserved charges. Finally we comment on a semiclassic...
International Nuclear Information System (INIS)
The reflection equation algebra of Sklyanin is extended to the supersymmetric case. A graded reflection equation algebra is proposed and the corresponding graded (supersymmetric) boundary quantum inverse scattering method (QISM) is formulated. As an application, integrable open-boundary conditions for the doped spin-1 chain of the supersymmetric t-J model are studied in the framework of the boundary QISM. Diagonal boundary K-matrices are found and four classes of integrable boundary terms are determined. (author)
Energy Technology Data Exchange (ETDEWEB)
Ben Said, Nader; Bregulla, Wolfgang; Kalk, Andreas [Westinghouse Electric Germany GmbH, Mannheim (Germany)
2009-07-01
Westinghouse Electric Germany GmbH has developed fluid dynamic models for medium-actuated armatures using the thermal hydraulic code RELAP5 in order to reach a more realistic description of the armature behavior including fluid-structure interactions in case of transient flow conditions in piping systems. The contribution is concerned with the modeling of damped check valves. The model allows the description of the behavior during opening and closure of a check armature. The calculated results show good agreement with the available measured data.
Formal Specification and Model-Checking of CSMA/CA Using Finite Precision Timed Automata
Institute of Scientific and Technical Information of China (English)
LI Liang; MA Hua-dong; LI Guang-yuan
2005-01-01
This paper presents the formal specification and model-checking of Carrier Sense Multiple Access with Collision Avoidance(CSMA/CA) protocol using the model checker we developed for real-time systems, which are specified as networks of finite precision timed automata. The CSMA/CA protocol proposed in the IEEE 802.11 standard is designed to reduce the probability of collision during a transmission in wireless random access environments. However, it does not eliminate completely the possibility of a collision between two or more frames transmitted simultaneously. We investigate what will give rise to a collision between frames and use our automatic verification tool for model-checking.
Checking Fine and Gray subdistribution hazards model with cumulative sums of residuals
DEFF Research Database (Denmark)
Li, Jianing; Scheike, Thomas; Zhang, Mei Jie
2015-01-01
estimation, and only a limited contribution has been made to check the model assumptions. In this paper, we present a class of analytical methods and graphical approaches for checking the assumptions of Fine and Gray’s model. The proposed goodness-of-fit test procedures are based on the cumulative sums...... of residuals, which validate the model in three aspects: (1) proportionality of hazard ratio, (2) the linear functional form and (3) the link function. For each assumption testing, we provide a p-values and a visualized plot against the null hypothesis using a simulation-based approach. We also consider...
Numerical modelling of granular flows: a reality check
Windows-Yule, C. R. K.; Tunuguntla, D. R.; Parker, D. J.
2016-07-01
Discrete particle simulations provide a powerful tool for the advancement of our understanding of granular media, and the development and refinement of the multitudinous techniques used to handle and process these ubiquitous materials. However, in order to ensure that this tool can be successfully utilised in a meaningful and reliable manner, it is of paramount importance that we fully understand the degree to which numerical models can be trusted to accurately and quantitatively recreate and predict the behaviours of the real-world systems they are designed to emulate. Due to the complexity and diverse variety of physical states and dynamical behaviours exhibited by granular media, a simulation algorithm capable of closely reproducing the behaviours of a given system may be entirely unsuitable for other systems with different physical properties, or even similar systems exposed to differing control parameters. In this paper, we focus on two widely used forms of granular flow, for which discrete particle simulations are shown to provide a full, quantitative replication of the behaviours of real industrial and experimental systems. We identify also situations for which quantitative agreement may fail are identified, but important general, qualitative trends are still recreated, as well as cases for which computational models are entirely unsuitable. By assembling this information into a single document, we hope not only to provide researchers with a useful point of reference when designing and executing future studies, but also to equip those involved in the design of simulation algorithms with a clear picture of the current strengths and shortcomings of contemporary models, and hence an improved knowledge of the most valuable areas on which to focus their work.
Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving
Engerman, Jason; Rusek, Matthew; Clariana, Roy
2014-01-01
This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…
On Derivations Of Genetic Algebras
International Nuclear Information System (INIS)
A genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. In application of genetics this algebra often has a basis corresponding to genetically different gametes, and the structure constant of the algebra encode the probabilities of producing offspring of various types. In this paper, we find the connection between the genetic algebras and evolution algebras. Moreover, we prove the existence of nontrivial derivations of genetic algebras in dimension two
Cascading Verification: An Integrated Method for Domain-Specific Model Checking
Zervoudakis, F.
2014-01-01
Model checking is an established formal method for verifying the desired behavioral properties of system models. But popular model checkers tend to support low-level modeling languages that require intricate models to represent even the simplest systems. Modeling complexity arises in part from the need to encode domain knowledge, including domain objects and concepts, and their relationships, at relatively low levels of abstraction. We will demonstrate that, once formalized, domain knowledge ...
Prototype of Automated PLC Model Checking Using Continuous Integration Tools
Lettrich, Michael
2015-01-01
To deal with the complexity of operating and supervising large scale industrial installations at CERN, often Programmable Logic Controllers (PLCs) are used. A failure in these control systems can cause a disaster in terms of economic loses, environmental damages or human losses. Therefore the requirements to software quality are very high. To provide PLC developers with a way to verify proper functionality against requirements, a Java tool named PLCverif has been developed which encapsulates and thus simplifies the use of third party model checkers. One of our goals in this project is to integrate PLCverif in development process of PLC programs. When the developer changes the program, all the requirements should be verified again, as a change on the code can produce collateral effects and violate one or more requirements. For that reason, PLCverif has been extended to work with Jenkins CI in order to trigger automatically the verication cases when the developer changes the PLC program. This prototype has been...
Model Checking Real Time Java Using Java PathFinder
Lindstrom, Gary; Mehlitz, Peter C.; Visser, Willem
2005-01-01
The Real Time Specification for Java (RTSJ) is an augmentation of Java for real time applications of various degrees of hardness. The central features of RTSJ are real time threads; user defined schedulers; asynchronous events, handlers, and control transfers; a priority inheritance based default scheduler; non-heap memory areas such as immortal and scoped, and non-heap real time threads whose execution is not impeded by garbage collection. The Robust Software Systems group at NASA Ames Research Center has JAVA PATHFINDER (JPF) under development, a Java model checker. JPF at its core is a state exploring JVM which can examine alternative paths in a Java program (e.g., via backtracking) by trying all nondeterministic choices, including thread scheduling order. This paper describes our implementation of an RTSJ profile (subset) in JPF, including requirements, design decisions, and current implementation status. Two examples are analyzed: jobs on a multiprogramming operating system, and a complex resource contention example involving autonomous vehicles crossing an intersection. The utility of JPF in finding logic and timing errors is illustrated, and the remaining challenges in supporting all of RTSJ are assessed.
A "Brutus" model checking of a spi-calculus dialect (Extended Abstract)
Gnesi, S.; Latella, D.; Lenzini, G.
2000-01-01
This paper proposes a preliminary framework in which protocols, expressed in a dialect of the spi-calculus, can be verified using model checking algorithms. In particular we define a formal semantics for a dialect of the spi-calculus based on labeled transition systems in such a way that the model c
Gamble, Ed; Holzmann, Gerard
2011-01-01
Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses
Requirements-level semantics and model checking of object-oriented statecharts
Eshuis, Rik; Jansen, David N.; Wieringa, Roel
2002-01-01
In this paper we define a requirements-level execution semantics for object-oriented statecharts and show how properties of a system specified by these statecharts can be model checked using tool support for model checkers. Our execution semantics is requirements-level because it uses the perfect te
Symmetric structure of field algebra of G-spin models determined by a normal subgroup
Energy Technology Data Exchange (ETDEWEB)
Xin, Qiaoling, E-mail: xinqiaoling0923@163.com; Jiang, Lining, E-mail: jianglining@bit.edu.cn [School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081 (China)
2014-09-15
Let G be a finite group and H a normal subgroup. D(H; G) is the crossed product of C(H) and CG which is only a subalgebra of D(G), the double algebra of G. One can construct a C*-subalgebra F{sub H} of the field algebra F of G-spin models, so that F{sub H} is a D(H; G)-module algebra, whereas F is not. Then the observable algebra A{sub (H,G)} is obtained as the D(H; G)-invariant subalgebra of F{sub H}, and there exists a unique C*-representation of D(H; G) such that D(H; G) and A{sub (H,G)} are commutants with each other.
Directory of Open Access Journals (Sweden)
R. Lestari
2012-12-01
Full Text Available Tujuan penelitian tindakan kelas ini untuk mengetahui pengaruh proses pembelajaran dengan menggunakan model pembelajaran kooperatif tipe Pair Checks pemecahan masalah terhadap peningkatan social skill siswa. Pada proses penerapan model pembelajaran kooperatif tipe Pair Checks pemecahan masalah siswa dibagi dalam kelompok-kelompok dan satu kelompok terdiri dari dua orang. Setiap kelompok berdiskusi untuk menyelesaikan suatu masalah, kemudian hasil diskusi kelompok akan dicek oleh pasangan dari kelompok lain. Metode Penelitian yang digunakan adalah penelitian tindakan kelas yang dilaksanakan dua siklus. Metode pengumpulan data menggunakan tes dan angket skala sikap, sedangkan teknik analisis data menggunakan teknik analisis data kuantitatif. Social Skill siswa dari siklus I ke siklus II mengalami peningkatan. Hal ini didapatkan dari data angket skala sikap siklus I ke siklus II ketuntasan klasikalnya meningkat dan sebagian besar siswa sudah memiliki social skill yang baik. Hasil belajar kognitif siswa juga mengalami peningkatan. Model pembelajaran kooperatif tipe Pair Checks pemecahan masalah dapat meningkatkan social skill siswa.This two cycles-action research aimed to know learning process applying cooperative learning model-pair checks problem solving type and improvement of studentâ€™s social skills. The process of the model was as follows: deviding students into some groups consisting of two students, solving problem by each group and checking result of the discussion by other groups. Data collection method used was test and the use of attitude scale questionnaire, while technique of data analysis used was quantitative data analysis technique. The data analysis result showed that there was an increase of studentâ€™s social skill and studentsâ€™ achievement from cycle one to two. It is concluded that cooperative learning model-pair checks problem solving type can enhance studentâ€™s social skills
DEFF Research Database (Denmark)
ter Beek, Maurice H.; Legay, Axel; Lluch Lafuente, Alberto;
2015-01-01
particular behaviour or of installing features at a specific moment or in a specific order. The enriched language (called PFLAN) allows us to specify models of software product lines with probabilistic configurations and behaviour, e.g. by considering a PFLAN semantics based on discrete-time Markov chains......We investigate the suitability of statistical model checking techniques for analysing quantitative properties of software product line models with probabilistic aspects. For this purpose, we enrich the feature-oriented language FLAN with action rates, which specify the likelihood of exhibiting....... The Maude implementation of PFLAN is combined with the distributed statistical model checker MultiVeStA to perform quantitative analyses of a simple product line case study. The presented analyses include the likelihood of certain behaviour of interest (e.g. product malfunctioning) and the expected average...
DiVinE-CUDA - A Tool for GPU Accelerated LTL Model Checking
Directory of Open Access Journals (Sweden)
Jiří Barnat
2009-12-01
Full Text Available In this paper we present a tool that performs CUDA accelerated LTL Model Checking. The tool exploits parallel algorithm MAP adjusted to the NVIDIA CUDA architecture in order to efficiently detect the presence of accepting cycles in a directed graph. Accepting cycle detection is the core algorithmic procedure in automata-based LTL Model Checking. We demonstrate that the tool outperforms non-accelerated version of the algorithm and we discuss where the limits of the tool are and what we intend to do in the future to avoid them.
Investigating modularity in the analysis of process algebra models of biochemical systems
Ciocchetta, Federica; Hillston, Jane; 10.4204/EPTCS.19.4
2010-01-01
Compositionality is a key feature of process algebras which is often cited as one of their advantages as a modelling technique. It is certainly true that in biochemical systems, as in many other systems, model construction is made easier in a formalism which allows the problem to be tackled compositionally. In this paper we consider the extent to which the compositional structure which is inherent in process algebra models of biochemical systems can be exploited during model solution. In essence this means using the compositional structure to guide decomposed solution and analysis. Unfortunately the dynamic behaviour of biochemical systems exhibits strong interdependencies between the components of the model making decomposed solution a difficult task. Nevertheless we believe that if such decomposition based on process algebras could be established it would demonstrate substantial benefits for systems biology modelling. In this paper we present our preliminary investigations based on a case study of the phero...
Rigidification of algebras over essentially algebraic theories
Rosicky, J
2012-01-01
Badzioch and Bergner proved a rigidification theorem saying that each homotopy simplicial algebra is weakly equivalent to a simplicial algebra. The question is whether this result can be extended from algebraic theories to finite limit theories and from simplicial sets to more general monoidal model categories. We will present some answers to this question.
Assessing the hydrological effect of the check dams in the Loess Plateau, China by model simulations
Directory of Open Access Journals (Sweden)
Y. D. Xu
2012-12-01
Full Text Available Check dams are commonly used for soil conservation. In the Loess Plateau of China, check dams have been widely constructed as the principal means to retain floodwater and intercept soil sediments since the 1970s. However, little research has been done to quantify the hydrological effects of the check dams.
In this research, the SWAT model (Soil and Water Assessment Tool was applied to simulate the runoff and sediment in the Yanhe watershed in the Loess Plateau. We treated the 1950s to 1960s as "reference period" since there were very few check dams during the period. The model was first calibrated and validated in the "reference period". The calibrated model was then used in the later periods to simulate the hydrological effects of the check dams.
The results showed that the check dams had a regulation effect on runoff and a retention effect on sediment. From 1984 to 1987, the runoff in rainy season (from May to October decreased by 14.7 to 25.9% due to the check dams, while in dry season (from November to the following April, runoff increased by 60.5 to 101.2%; the sediment in rainy season decreased by 34.6 to 48.0%. From 2006 to 2008, the runoff in rainy season decreased by 15.5 to 28.9%, and the runoff in dry season increased by 20.1 to 46.4%; the sediment in rainy season decreased by 79.4 to 85.5%.
Construction of the large number of in the Loess Plateau has enhanced the region's capacity to control the runoff and sediment. In the Yanhe watershed, the annual runoff was reduced by less than 14.3% due to the check dams; and the sediment in rainy season was blocked by up to 85.5%. Thus, check dams are effective measures for soil erosion control in the Loess Plateau.
Galois Correspondence in Field Algebra of G-spin Model
Institute of Scientific and Technical Information of China (English)
蒋立宁; 郭懋正
2003-01-01
@@ A C*-system is a pair (B, G) consisting of a unital C*-algebra B and a continuous group homomorphism α: G → Aut(B) where G is a compact group and Aut(B) the group of automor-phisms of B. If K is a normal subgroup of G and BK = {B∈ B: k(B) = B, k ∈ K}, then BK is a G-invariant C*-subalgebra of B. On the other hand, if A is a G-invariant C*-algebra with BG A B, set G (A) = {g ∈ G: g(A) = A, A ∈ A}, G (A) is a normal subgroup of G. Clearly K G(BK) and we call K Galois closed ifK = G(BK). Similarly, A BG(A) and we call A Galois closed if A = BG(A).
Models of stochastic gene expression and Weyl algebra
Vidal, Samuel,; Petitot, Michel; Boulier, François; Lemaire, François; Kuttler, Celine
2010-01-01
International audience; This paper presents a symbolic algorithm for computing the ODE systems which describe the evolution of the moments associated to a chemical reaction system, considered from a stochastic point of view. The algorithm, which is formulated in the Weyl algebra, seems more efficient than the corresponding method, based on partial derivatives. In particular, an efficient method for handling conservation laws is presented. The output of the algorithm can be used for a further ...
Nonparametric checks for count data models: an application to demand for health care in Spain
Álvarez, Begoña; Delgado, Miguel A.
1997-01-01
This paper presents model specification checking procedures for count data regression models which are consistent in the direction of nonparametric alternatives. The discussion is motivated in the context of a model of demand for health care in Spain. The parameters of the regression model are estimated by maximum likelihood based on Poisson and Negative Binomial specifications as well as by ordinary least squares and semiparametric generalized least squares. However, our interest is not only...
Incremental checking of Master Data Management model based on contextual graphs
Lamolle, Myriam; Menet, Ludovic; Le Duc, Chan
2015-10-01
The validation of models is a crucial step in distributed heterogeneous systems. In this paper, an incremental validation method is proposed in the scope of a Model Driven Engineering (MDE) approach, which is used to develop a Master Data Management (MDM) field represented by XML Schema models. The MDE approach presented in this paper is based on the definition of an abstraction layer using UML class diagrams. The validation method aims to minimise the model errors and to optimisethe process of model checking. Therefore, the notion of validation contexts is introduced allowing the verification of data model views. Description logics specify constraints that the models have to check. An experimentation of the approach is presented through an application developed in ArgoUML IDE.
Universal Algebras of Hurwitz Numbers
A. Mironov; Morozov, A; Natanzon, S.
2009-01-01
Infinite-dimensional universal Cardy-Frobenius algebra is constructed, which unifies all particular algebras of closed and open Hurwitz numbers and is closely related to the algebra of differential operators, familiar from the theory of Generalized Kontsevich Model.
Model based feasibility study on bidirectional check valves in wave energy converters
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole
2014-01-01
/Off and bidirectional check valves. Based on the analysis it is found that the energy production may be slightly improved by using bidirectional check valves as compared to on/off valves, due to a decrease in switching losses. Furthermore a reduction in high flow peaks are realised. The downside being increased...... valves in wave energy converters to improve the system efficiency. A single float arm of the Wavestar wave energy converter is modelled including the power take-off (PTO) system. The primary stage of the utilised PTO-system is a discrete fluid power force system consisting of a multi-chamber cylinder...... and multiple common pressure lines. The valve manifold, employed in the discrete PTO system and conventionally equipped with On/Off valves, is instead considered fitted with bidirectional check valves. The energy output from the primary stage is compared for PTO systems occupying respectively On...
A practical approach to model checking Duration Calculus using Presburger Arithmetic
DEFF Research Database (Denmark)
Hansen, Michael Reichhardt; Dung, Phan Anh; Brekling, Aske Wiid
2014-01-01
This paper investigates the feasibility of reducing a model-checking problem K ⊧ ϕ for discrete time Duration Calculus to the decision problem for Presburger Arithmetic. Theoretical results point at severe limitations of this approach: (1) the reduction in Fränzle and Hansen (Int J Softw Inform 3...... limits of the approach are illustrated by a family of examples....
Logic Column 19: Symbolic Model Checking for Temporal-Epistemic Logics
Lomuscio, Alessio
2007-01-01
This article surveys some of the recent work in verification of temporal epistemic logic via symbolic model checking, focusing on OBDD-based and SAT-based approaches for epistemic logics built on discrete and real-time branching time temporal logics.
Three Notes on the Complexity of Model Checking Fixpoint Logic with Chop
DEFF Research Database (Denmark)
Lange, Martin
2007-01-01
This paper provides lower complexity bounds of deterministic exponential time for the combined, data and expression complexity of Fixpoint Logic with Chop. This matches the previously known upper bound showing that its model checking problem is EXPTIME-complete, even when the transition system or...
Efficient model checking for duration calculus based on branching-time approximations
DEFF Research Database (Denmark)
Fränzle, Martin; Hansen, Michael Reichhardt
2008-01-01
Duration Calculus (abbreviated to DC) is an interval-based, metric-time temporal logic designed for reasoning about embedded real-time systems at a high level of abstraction. But the complexity of model checking any decidable fragment featuring both negation and chop, DC's only modality, is non...
Survey for Stochastic Model Checking%随机模型检验研究
Institute of Scientific and Technical Information of China (English)
刘阳; 李宣东; 马艳; 王林章
2015-01-01
随机模型检验作为模型检验理论的延伸和推广，可用于验证分析系统模型的定性或定量性质，其已经应用到随机分布式算法验证、通信协议性能分析甚至是系统生物学等跨学科领域。从20世纪90年代末至今，随机模型检验引起了形式验证等领域的广泛关注，并取得了很大的进展。该文追溯了随机模型检验的渊源，系统地概括了其最基本的原理及几类典型的 PCTL、概率的 LTL、PCTL*和 CSL 模型检验随机系统的算法框架。然后归纳总结了随机模型检验的主要研究方向及其进展，分析了基于随机模型检验的验证过程及其优势与劣势，并分类列出了目前出现的随机模型检验工具。最后介绍了随机模型检验的应用领域并指出了其未来的应用挑战。%Stochastic model checking is extension and generalization of the theory of model checking,which can verify and analyze system model quantitatively and qualitatively,and has been applied in the areas of verification of randomized distributed algorithms,performance analysis of communication protocols,and even the cross-disciplinary fields such as systems biology.Since the late 1990s,stochastic model checking has received widespread concern in the formal verification filed,and has made great progress.In this paper,we retrospect the origin of stochastic model checking,and discuss the basic principle of stochastic model checking systematically including the PCTL,LTL with probability bounds,PCTL* and CSL model checking algorithm.Then we summarize the main research direction and progress of stochastic model checking in recent years, analyze the verification process and advantages/disadvantages of stochastic model checking deeply, classify and list tools for stochastic model checking.Finally,we introduce the application areas of stochastic model checking and point out its future challenge.
Model Checking - My 27-Year Quest to Overcome the State Explosion Problem
Clarke, Ed
2009-01-01
Model Checking is an automatic verification technique for state-transition systems that are finite=state or that have finite-state abstractions. In the early 1980 s in a series of joint papers with my graduate students E.A. Emerson and A.P. Sistla, we proposed that Model Checking could be used for verifying concurrent systems and gave algorithms for this purpose. At roughly the same time, Joseph Sifakis and his student J.P. Queille at the University of Grenoble independently developed a similar technique. Model Checking has been used successfully to reason about computer hardware and communication protocols and is beginning to be used for verifying computer software. Specifications are written in temporal logic, which is particularly valuable for expressing concurrency properties. An intelligent, exhaustive search is used to determine if the specification is true or not. If the specification is not true, the Model Checker will produce a counterexample execution trace that shows why the specification does not hold. This feature is extremely useful for finding obscure errors in complex systems. The main disadvantage of Model Checking is the state-explosion problem, which can occur if the system under verification has many processes or complex data structures. Although the state-explosion problem is inevitable in worst case, over the past 27 years considerable progress has been made on the problem for certain classes of state-transition systems that occur often in practice. In this talk, I will describe what Model Checking is, how it works, and the main techniques that have been developed for combating the state explosion problem.
Machine Learning Methods in Statistical Model Checking and System Design – Tutorial
Bortolussi, Luca; Milios, Dimitrios; Sanguinetti, Guido
2015-01-01
Recent research has seen an increasingly fertile convergence of ideas from machine learning and formal modelling. Here we review some recently introduced methodologies for model checking and system design/parameter synthesis for logical properties against stochastic dynamical models. The crucial insight is a regularity result which states that the satisfaction probability of a logical formula is a smooth function of the parameters of a CTMC. This enables us to select an appropriate class of f...
Directory of Open Access Journals (Sweden)
Ravie c. Muniyandi
2010-01-01
Full Text Available Problem statement: Membrane computing formalism has provided better modeling capabilities for biological systems in comparison to conventional mathematical models. Model checking could be used to reason about the biological system in detail and with precision by verifying formally whether membrane computing model meets the properties of the system. Approach: This study was carried to investigate the preservation of properties of two biological systems that had been modeled and simulated in membrane computing by a method of model checking using PRISM. The two biological systems were prey-predator population and signal processing in the legend-receptor networks of protein TGF-ß. Results: The model checking of membrane computing model of the biological systems with five different properties showed that the properties of the biological systems could be preserved in the membrane computing model. Conclusion: Membrane computing model not only provides a better approach in representing and simulating a biological system but also able to sustain the basic properties of the system.
Pârvu, Ovidiu; Gilbert, David
2016-01-01
Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour
Pârvu, Ovidiu; Gilbert, David
2016-01-01
Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour
Mathematical modelling in engineering: A proposal to introduce linear algebra concepts
Directory of Open Access Journals (Sweden)
Andrea Dorila Cárcamo
2016-03-01
Full Text Available The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts: span and spanning set. This was applied to first year engineering students. Results suggest that this type of instructional design contributes to the construction of these mathematical concepts and can also favour first year engineering students understanding of key linear algebra concepts and potentiate the development of higher order skills.
The algebraic Bethe ansatz for rational braid-monoid lattice models
Martins, M J
1997-01-01
In this paper we study isotropic integrable systems based on the braid-monoid algebra. These systems constitute a large family of rational multistate vertex models and are realized in terms of the B_n, C_n and D_n Lie algebra and by the superalgebra Osp(n|2m). We present a unified formulation of the quantum inverse scattering method for many of these lattice models. The appropriate fundamental commutation rules are found, allowing us to construct the eigenvectors and the eigenvalues of the transfer matrix associated to the B_n, C_n, D_n, Osp(2n-1|2), Osp(2|2n-2), Osp(2n-2|2) and Osp(1|2n) models. The corresponding Bethe Ansatz equations can be formulated in terms of the root structure of the underlying algebra.
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
The Algebraic Cluster Model: Structure of 16O
Bijker, R
2016-01-01
We discuss an algebraic treatment of four-body clusters which includes both continuous and discrete symmetries. In particular, tetrahedral configurations with T(d) symmetry are analyzed with respect to the energy spectrum, transition form factors and B(EL) values. It is concluded that the low-lying spectrum of 16O can be described by four alpha-particles at the vertices of a regular tetrahedron, not as a rigid structure but rather a more floppy structure with relatively large rotation-vibration interactions and Coriolis forces.
An algebraic model of Coulomb scattering with spin
Energy Technology Data Exchange (ETDEWEB)
Levay, P. [School of Physics, University of Melbourne, Parkville (Australia); Department of Theoretical Physics, Institute of Physics, Technical University, Budapest (Hungary); Amos, K. [School of Physics, University of Melbourne, Parkville (Australia)
2001-05-11
A new matrix-valued realization for the so(3,1) algebra leads to a natural generalization of the Coulomb scattering problem of a particle with spin. The underlying su(2) gauge structure of this realization recasts the scattering problem into a familiar form, namely, the Coulomb scattering problem of a collection of dyons (particles having both electric and magnetic charges). Using this equivalent form and the results of Zwanziger for such systems, the scattering matrix can be calculated in the helicity formalism. (author)
Shafarevich, I
1994-01-01
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
de Brito, G P; Gomes, Y M P; Junior, J T Guaitolini; Nikoofard, V
2016-01-01
In this paper we introduce a modified covariant quantum algebra based in the so-called Quesne-Tkachuk algebra. By means of a deformation procedure we arrive at a class of higher derivative models of gravity. The study of the particle spectra of these models reveals an equivalence with the physical content of the well-known renormalizable and super-renormalizable higher derivative gravities. The particle spectrum exhibits the presence of spurious complex ghosts and, in light of this problem, we suggest an interesting interpretation in the context of minimal length theories. Also, a discussion regarding the non-relativistic potential energy is proposed.
Algebraic Specifications, Higher-order Types and Set-theoretic Models
DEFF Research Database (Denmark)
Kirchner, Hélène; Mosses, Peter David
2001-01-01
In most algebraic specification frameworks, the type system is restricted to sorts, subsorts, and first-order function types. This is in marked contrast to the so-called model-oriented frameworks, which provide higer-order types, interpreted set-theoretically as Cartesian products, function spaces......, and power-sets. This paper presents a simple framework for algebraic specifications with higher-order types and set-theoretic models. It may be regarded as the basis for a Horn-clause approximation to the Z framework, and has the advantage of being amenable to prototyping and automated reasoning. Standard...
Construction of the Model of the Lambda Calculus System with Algebraic Operators
Institute of Scientific and Technical Information of China (English)
陆汝占; 张政; 等
1991-01-01
A lambda system with algebraic operators,Lambda-plus system,is introduced.After giving the definitions of the system,we present a sufficient condition for formulating a model of the system.Finally,a model of such system is constructed.
Hopf Algebra Structure of a Model Quantum Field Theory
Solomon, A I; Blasiak, P; Horzela, A; Penson, K A
2006-01-01
Recent elegant work on the structure of Perturbative Quantum Field Theory (PQFT) has revealed an astonishing interplay between analysis(Riemann Zeta functions), topology (Knot theory), combinatorial graph theory (Feynman Diagrams) and algebra (Hopf structure). The difficulty inherent in the complexities of a fully-fledged field theory such as PQFT means that the essential beauty of the relationships between these areas can be somewhat obscured. Our intention is to display some, although not all, of these structures in the context of a simple zero-dimensional field theory; i.e. a quantum theory of non-commuting operators which do not depend on spacetime. The combinatorial properties of these boson creation and annihilation operators, which is our chosen example, may be described by graphs, analogous to the Feynman diagrams of PQFT, which we show possess a Hopf algebra structure. Our approach is based on the partition function for a boson gas. In a subsequent note in these Proceedings we sketch the relationship...
Mathematical modelling in engineering: an alternative way to teach Linear Algebra
Domínguez-García, S.; García-Planas, M. I.; Taberna, J.
2016-10-01
Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).
Towards Support for Software Model Checking: Improving the Efficiency of Formal Specifications
Directory of Open Access Journals (Sweden)
Salamah Salamah
2011-01-01
presented in this paper provides improved LTL specifications for patterns and scopes over those originally provided by Prospec. This improvement comes in the efficiency of the LTL formulas as measured in terms of the number of states in the Büchi automaton generated for the formula. Minimizing the size of the Büchi automata for an LTL specification provides a significant improvement for model checking software systems using such tools as the highly acclaimed Spin model checker.
A note on probabilistic models over strings: the linear algebra approach.
Bouchard-Côté, Alexandre
2013-12-01
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.
A note on probabilistic models over strings: the linear algebra approach.
Bouchard-Côté, Alexandre
2013-12-01
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems. PMID:24135792
Left Artinian Algebraic Algebras
Institute of Scientific and Technical Information of China (English)
S. Akbari; M. Arian-Nejad
2001-01-01
Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.
HyLTL: a temporal logic for model checking hybrid systems
Directory of Open Access Journals (Sweden)
Davide Bresolin
2013-08-01
Full Text Available The model-checking problem for hybrid systems is a well known challenge in the scientific community. Most of the existing approaches and tools are limited to safety properties only, or operates by transforming the hybrid system to be verified into a discrete one, thus loosing information on the continuous dynamics of the system. In this paper we present a logic for specifying complex properties of hybrid systems called HyLTL, and we show how it is possible to solve the model checking problem by translating the formula into an equivalent hybrid automaton. In this way the problem is reduced to a reachability problem on hybrid automata that can be solved by using existing tools.
Stochastic Semantics and Statistical Model Checking for Networks of Priced Timed Automata
David, Alexandre; Legay, Axel; Mikučionis, Marius; Poulsen, Danny Bøgsted; van Vliet, Jonas; Wang, Zheng
2011-01-01
This paper offers a natural stochastic semantics of Networks of Priced Timed Automata (NPTA) based on races between components. The semantics provides the basis for satisfaction of probabilistic Weighted CTL properties (PWCTL), conservatively extending the classical satisfaction of timed automata with respect to TCTL. In particular the extension allows for hard real-time properties of timed automata expressible in TCTL to be refined by performance properties, e.g. in terms of probabilistic guarantees of time- and cost-bounded properties. A second contribution of the paper is the application of Statistical Model Checking (SMC) to efficiently estimate the correctness of non-nested PWCTL model checking problems with a desired level of confidence, based on a number of independent runs of the NPTA. In addition to applying classical SMC algorithms, we also offer an extension that allows to efficiently compare performance properties of NPTAs in a parametric setting. The third contribution is an efficient tool implem...
Directory of Open Access Journals (Sweden)
Nacer Tabib
2016-01-01
Full Text Available This paper proposes a new framework based on Binary Decision Diagrams (BDD for the graph distribution problem in the context of explicit model checking. The BDD are yet used to represent the state space for a symbolic verification model checking. Thus, we took advantage of high compression ratio of BDD to encode not only the state space, but also the place where each state will be put. So, a fitness function that allows a good balance load of states over the nodes of an homogeneous network is used. Furthermore, a detailed explanation of how to calculate the inter-site edges between different nodes based on the adapted data structure is presented.
Combining search space partition and search Space partition and abstraction for LTL model checking
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The state space explosion problem is still the key obstacle for applying model checking to systems of industrial size.Abstraction-based methods have been particularly successful in this regard.This paper presents an approach based on refinement of search space partition and abstraction which combines these two techniques for reducing the complexity of model checking.The refinement depends on the representation of each portion of search space. Especially, search space can be refined stepwise to get a better reduction. As reported in the case study, the Integration of search space partition and abstraction improves the efficiencyof verification with respect to the requirement of memory and obtains significant advantage over the use of each of them in isolation.
On the Model Checking of the SpaceWire Link Interface
Directory of Open Access Journals (Sweden)
Jie Zhang
2013-02-01
Full Text Available In this paper we display a practical approach adopted for the formal verification of SpaceWire using model checking to solve state explosion. SpaceWire is a high-speed, full-duplex serial bus standard which is applied in aerospace, so its functions have a very high accuracy requirements. In order to prove the design of the SpaceWire was faithfully implements the SpaceWire protocol’s specification , we present our experience on the model checking of SpaceWire link interface using the Cadence SMV tool. We applied environment state machine to overcome state explosion and successfully verified a number of relevant properties about transmitter and controller of the SpaceWire in reasonable CPU time.
Institute of Scientific and Technical Information of China (English)
ZHANG WenHui (张文辉)
2003-01-01
Memory is one of the critical resources in model checking. This paper discusses a strategy for reducing peak memory in model checking by case-based partitioning of the search space. This strategy combines model checking for verification of different cases and static analysis or expert judgment for guaranteeing the completeness of the cases. Description of the static analysis is based on using PROMELA as the modeling language. The strategy is applicable to a subset of models including models for verification of certain aspects of protocols.
Analysis of DGNB-DK criteria for BIM-based Model Checking automatization
DEFF Research Database (Denmark)
Gade, Peter; Svidt, Kjeld; Jensen, Rasmus Lund
This report includes the results of an analysis of the automation potential of the Danish edition of building sustainability assessment method Deutsche Gesellschaft für Nachhaltiges Bauen (DGNB) for office buildings version 2014 1.1. The analysis investigate the criteria related to DGNB-DK and if......-DK and if they would be suited for automation through the technological concept BIM-based Model Checking (BMC)....
Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra
Domínguez-García, S.; García-Planas, M. I.; Taberna, J.
2016-01-01
Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…
Institute of Scientific and Technical Information of China (English)
JIN Shuo; XIE Bing-Hao; ZHANG Hong-Biao; GE Mo-Lin
2004-01-01
Some analytical solutions of generalized two-mode harmonic oscillators model are obtained by utilizing an algebraic diagonalization method. We find two types of eigenstates which are formulated as extended SU(1,1), SU(2)squeezed number states respectively. Some statistical properties of these states are also discussed.
Algebraic Bethe Ansatz for O(2N) sigma models with integrable diagonal boundaries
Gombor, Tamas
2015-01-01
The finite volume problem of O(2N) sigma models with integrable diagonal boundaries on a finite interval is investigated. The double row transfer matrix is diagonalized by Algebraic Bethe Ansatz. The boundary Bethe Yang equations for the particle rapidities and the accompanying Bethe Ansatz equations are derived.
A Novel Algorithm for Intrusion Detection Based on RASL Model Checking
Directory of Open Access Journals (Sweden)
Weijun Zhu
2013-01-01
Full Text Available The interval temporal logic (ITL model checking (MC technique enhances the power of intrusion detection systems (IDSs to detect concurrent attacks due to the strong expressive power of ITL. However, an ITL formula suffers from difficulty in the description of the time constraints between different actions in the same attack. To address this problem, we formalize a novel real-time interval temporal logic—real-time attack signature logic (RASL. Based on such a new logic, we put forward a RASL model checking algorithm. Furthermore, we use RASL formulas to describe attack signatures and employ discrete timed automata to create an audit log. As a result, RASL model checking algorithm can be used to automatically verify whether the automata satisfy the formulas, that is, whether the audit log coincides with the attack signatures. The simulation experiments show that the new approach effectively enhances the detection power of the MC-based intrusion detection methods for a number of telnet attacks, p-trace attacks, and the other sixteen types of attacks. And these experiments indicate that the new algorithm can find several types of real-time attacks, whereas the existing MC-based intrusion detection approaches cannot do that.
Model checking software for phylogenetic trees using distribution and database methods.
Requeno, José Ignacio; Colom, José Manuel
2013-01-01
Model checking, a generic and formal paradigm stemming from computer science based on temporal logics, has been proposed for the study of biological properties that emerge from the labeling of the states defined over the phylogenetic tree. This strategy allows us to use generic software tools already present in the industry. However, the performance of traditional model checking is penalized when scaling the system for large phylogenies. To this end, two strategies are presented here. The first one consists of partitioning the phylogenetic tree into a set of subgraphs each one representing a subproblem to be verified so as to speed up the computation time and distribute the memory consumption. The second strategy is based on uncoupling the information associated to each state of the phylogenetic tree (mainly, the DNA sequence) and exporting it to an external tool for the management of large information systems. The integration of all these approaches outperforms the results of monolithic model checking and helps us to execute the verification of properties in a real phylogenetic tree. PMID:24231143
Combination of Model Checking and Theorem Proving to Verify Embedded Software
Institute of Scientific and Technical Information of China (English)
XIAO Jian-yu; ZHANG De-yun; DONG Hao; CHEN Hai-quan
2005-01-01
In this paper, a scheme of combining model checking and theorem proving techniques to verify high trustworthy embedded software is proposed. The software model described in state machine of unified model language is transformed into the input modeling language of a model checker in which the model is analyzed with associated property specifications expressed in temporal logic. The software model which has been verified by model checker is then transformed into abstract specifications of a theorem prover , in which the model will be refined, verified and translated into source C code. The transformation rules from state machine to input language of model checker and abstract specifications of theorem prover are given. The experiment shows that the proposed scheme can effectively improve the development and verification of high trustworthy embedded software.
Kink states in P(φ)2-models. (An algebraic approach)
International Nuclear Information System (INIS)
Several two-dimensional quantum field theory models have more than one vacuum state. Familiar examples are the Sine-Gordon and the φ24-model. It is known that in these models there are also states, called kink states, which interpolate different vacua. A general construction scheme for kink states in the framework of algebraic quantum field theory is developed in a previous paper. However, for the application of this method, the crucial condition is the split property for wedge algebras in the vacuum representations of the considered models. It is believed that the vacuum representations of P(φ)2-models fulfill this condition, but a rigorous proof is only known for the massive free scalar field. Therefore, we investigate in a construction of kink states which can directly be applied to P(φ)2-model, by making use of the properties of the dynamic of a P(φ)2-model. (orig.)
Deskins, W E
1996-01-01
This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop
Combinatorics of solvable lattice models, and modular representations of Hecke algebras
Foda, O E; Okado, M; Thibon, J Y; Welsh, Trevor A; Foda, Omar; Leclerc, Bernard; Okado, Masato; Thibon, Jean-Yves; Welsh, Trevor A.
1997-01-01
We review and motivate recently-observed relationships between exactly solvable lattice models and modular representations of Hecke algebras. Firstly, we describe how the set of $n$-regular partitions label both of the following classes of objects: 1. The spectrum of unrestricted solid-on-solid lattice models based on level-1 representations of the affine algebras $\\sl_n$, 2. The irreducible representations of type-A Hecke algebras at roots of unity: $H_m(\\sqrt[n]{1})$. Secondly, we show that a certain subset of the $n$-regular partitions label both of the following classes of objects: 1. The spectrum of restricted solid-on-solid lattice models based on cosets of affine algebras $(sl(n)^_1 \\times sl(n)^_1)/ sl(n)^_2$. 2. Jantzen-Seitz (JS) representations of $H_m(\\sqrt[n]{1})$: irreducible representations that remain irreducible under restriction to $H_{m-1}(\\sqrt[n]{1})$. Using the above relationships, we characterise the JS representations of $H_m(\\sqrt[n]{1})$ and show that the generating series that count...
Model-Checking Real-Time Properties of an Aircraft Landing Gear System Using Fiacre
Berthomieu, Bernard; Dal Zilio, Silvano; Fronc, Lukasz
2014-01-01
International audience We describe our experience with modeling the landing gear system of an aircraft using the formal specification language Fiacre. Our model takes into account the behavior and timing properties of both the physical parts and the control software of this system. We use this formal model to check safety and real-time properties on the system but also to find a safe bound on the maximal time needed for all gears to be down and locked (assuming the absence of failures). Ou...
Model Checking Verification and Validation at JPL and the NASA Fairmont IV and V Facility
Schneider, Frank; Easterbrook, Steve; Callahan, Jack; Montgomery, Todd
1999-01-01
We show how a technology transfer effort was carried out. The successful use of model checking on a pilot JPL flight project demonstrates the usefulness and the efficacy of the approach. The pilot project was used to model a complex spacecraft controller. Software design and implementation validation were carried out successfully. To suggest future applications we also show how the implementation validation step can be automated. The effort was followed by the formal introduction of the modeling technique as a part of the JPL Quality Assurance process.
Combining Explicit and Symbolic Approaches for Better On-the-Fly LTL Model Checking
Duret-Lutz, Alexandre; Poitrenaud, Denis; Thierry-Mieg, Yann
2011-01-01
We present two new hybrid techniques that replace the synchronized product used in the automata-theoretic approach for LTL model checking. The proposed products are explicit graphs of aggregates (symbolic sets of states) that can be interpreted as B\\"uchi automata. These hybrid approaches allow on the one hand to use classical emptiness-check algorithms and build the graph on-the-fly, and on the other hand, to have a compact encoding of the state space thanks to the symbolic representation of the aggregates. The Symbolic Observation Product assumes a globally stuttering property (e.g., LTL \\ X) to aggregate states. The Self-Loop Aggregation Product} does not require the property to be globally stuttering (i.e., it can tackle full LTL), but dynamically detects and exploits a form of stuttering where possible. Our experiments show that these two variants, while incomparable with each other, can outperform other existing approaches.
Model-Checking the Higher-Dimensional Modal mu-Calculus
Lange, Martin; 10.4204/EPTCS.77.6
2012-01-01
The higher-dimensional modal mu-calculus is an extension of the mu-calculus in which formulas are interpreted in tuples of states of a labeled transition system. Every property that can be expressed in this logic can be checked in polynomial time, and conversely every polynomial-time decidable problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined in the higher-dimensional modal mu-calculus. We exemplify the latter connection by giving several examples of decision problems which reduce to model checking of the higher-dimensional modal mu-calculus for some fixed formulas. This way generic model checking algorithms for the logic can then be used via partial evaluation in order to obtain algorithms for theses problems which may benefit from improvements that are well-established in the field of program verification, namely on-the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as well, here exemplarily done for process...
Sediment depositions upstream of open check dams: new elements from small scale models
Piton, Guillaume; Le Guern, Jules; Carbonari, Costanza; Recking, Alain
2015-04-01
numbers that the flows tend to adopt? New small scale model experiments have been undertaken focusing on depositions processes and their related hydraulics. Accurate photogrammetric measurements allowed us to better describe the deposition processes3. Large Scale Particle Image Velocimetry (LS-PIV) was performed to determine surface velocity fields in highly active channels with low grain submersion4. We will present preliminary results of our experiments showing the new elements we observed in massive deposit dynamics. REFERENCES 1.Armanini, A., Dellagiacoma, F. & Ferrari, L. From the check dam to the development of functional check dams. Fluvial Hydraulics of Mountain Regions 37, 331-344 (1991). 2.Piton, G. & Recking, A. Design of sediment traps with open check dams: a review, part I: hydraulic and deposition processes. (Accepted by the) Journal of Hydraulic Engineering 1-23 (2015). 3.Le Guern, J. Ms Thesis: Modélisation physique des plages de depot : analyse de la dynamique de remplissage.(2014) . 4.Carbonari, C. Ms Thesis: Small scale experiments of deposition processes occuring in sediment traps, LS-PIV measurments and geomorphological descriptions. (in preparation).
An Efficient Explicit-time Description Method for Timed Model Checking
Wang, Hao; 10.4204/EPTCS.14.6
2009-01-01
Timed model checking, the method to formally verify real-time systems, is attracting increasing attention from both the model checking community and the real-time community. Explicit-time description methods verify real-time systems using general model constructs found in standard un-timed model checkers. Lamport proposed an explicit-time description method using a clock-ticking process (Tick) to simulate the passage of time together with a group of global variables to model time requirements. Two methods, the Sync-based Explicit-time Description Method using rendezvous synchronization steps and the Semaphore-based Explicit-time Description Method using only one global variable were proposed; they both achieve better modularity than Lamport's method in modeling the real-time systems. In contrast to timed automata based model checkers like UPPAAL, explicit-time description methods can access and store the current time instant for future calculations necessary for many real-time systems, especially those with p...
Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems
DEFF Research Database (Denmark)
Becker, Bernd; Behle, Markus; Eisenbrand, Fritz;
2004-01-01
We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit...... verication, bounded plan- ning and heuristic search, combinatorial optimization and integer programming. Af- ter sketching the overall verication ow we present rst results indicating that the combination and tight integration of dierent verication engines is a rst step to pave the way to fully automated BMC...
A computer code for calculations in the algebraic collective model of the atomic nucleus
Welsh, T A
2016-01-01
A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1,1) x SO(5) dynamical group. This, in particular, obviates the use of coefficients of fractional parentage. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [pi x q x pi]_0 and [pi x pi]_{LM}, where q_M are the model's quadrupole moments, and pi_N are corresponding conjugate momenta (-2>=M,N<=2). The code also provides ready access to SO(3)-reduced SO(5) Clebsch-Gordan coefficients through data files provided with the code.
Model Checking and Code Generation for UML Diagrams Using Graph Transformation
Directory of Open Access Journals (Sweden)
Wafa Chama
2012-12-01
Full Text Available UML is considered as the standard for object-oriented modelling language adopted by the ObjectManagement Group. However, UML has been criticized due to the lack of formal semantics and theambiguity of its models. In other hands, UML models can be mathematically verified and checked by usingits equivalent formal representation. So, in this paper, we propose an approach and a tool based on graphtransformation to perform an automatic mapping for verification purposes. This transformation aims tobridge the gap between informal and formal notations and allows a formal verification of concurrent UMLmodels using Maude language. We consider both static (Class Diagram and dynamic (StateChart andCommunication Diagrams features of concurrent object-oriented system. Then, we use Maude LTL ModelChecker to verify the formal model obtained (Automatic Code Generation Maude. The meta-modellingAToM3 tool is used. A case study is presented to illustrate our approach.
An Algebraic Watchdog for Wireless Network Coding
Kim, MinJi; Barros, Joao; Koetter, Ralf
2009-01-01
In this paper, we propose a scheme, called the algebraic watchdog for wireless network coding, in which nodes can detect malicious behaviors probabilistically, police their downstream neighbors locally using overheard messages, and, thus, provide a secure global self-checking network. Unlike traditional Byzantine detection protocols which are receiver-based, this protocol gives the senders an active role in checking the node downstream. This work is inspired by Marti et al's watchdog-pathrater, which attempts to detect and mitigate the effects of routing misbehavior. We present a graphical model to understand the inference process nodes execute to police their downstream neighbors; as well as to compute, analyze, and approximate the probabilities of misdetection and false detection. In addition, we present an algebraic analysis of the performance using an hypothesis testing framework, that provides exact formulae for probabilities of false detection and misdetection. Detailed description of the graphical mode...
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Directory of Open Access Journals (Sweden)
Marcus Völp
2012-11-01
Full Text Available Reliability in terms of functional properties from the safety-liveness spectrum is an indispensable requirement of low-level operating-system (OS code. However, with evermore complex and thus less predictable hardware, quantitative and probabilistic guarantees become more and more important. Probabilistic model checking is one technique to automatically obtain these guarantees. First experiences with the automated quantitative analysis of low-level operating-system code confirm the expectation that the naive probabilistic model checking approach rapidly reaches its limits when increasing the numbers of processes. This paper reports on our work-in-progress to tackle the state explosion problem for low-level OS-code caused by the exponential blow-up of the model size when the number of processes grows. We studied the symmetry reduction approach and carried out our experiments with a simple test-and-test-and-set lock case study as a representative example for a wide range of protocols with natural inter-process dependencies and long-run properties. We quickly see a state-space explosion for scenarios where inter-process dependencies are insignificant. However, once inter-process dependencies dominate the picture models with hundred and more processes can be constructed and analysed.
Directory of Open Access Journals (Sweden)
Christian Krause
2011-11-01
Full Text Available The assurance of quality of service properties is an important aspect of service-oriented software engineering. Notations for so-called service level agreements (SLAs, such as the Web Service Level Agreement (WSLA language, provide a formal syntax to specify such assurances in terms of (legally binding contracts between a service provider and a customer. On the other hand, formal methods for veriﬁcation of probabilistic real-time behavior have reached a level of expressiveness and efﬁciency which allows to apply them in real-world scenarios. In this paper, we suggest to employ the recently introduced model of Interval Probabilistic Timed Automata (IPTA for formal veriﬁcation of QoS properties of service-oriented systems. Speciﬁcally, we show that IPTA in contrast to Probabilistic Timed Automata (PTA are able to capture the guarantees speciﬁed in SLAs directly. A particular challenge in the analysis of IPTA is the fact that their naive semantics usually yields an inﬁnite set of states and inﬁnitely-branching transitions. However, using symbolic representations, IPTA can be analyzed rather efﬁciently. We have developed the ﬁrst implementation of an IPTA model checker by extending the PRISM tool and show that model checking IPTA is only slightly more expensive than model checking comparable PTA.
Lochbihler, Andreas
2012-01-01
The Java programming language provides safety and security guarantees such as type safety and its security architecture. They distinguish it from other mainstream programming languages like C and C++. In this work, we develop a machine-checked model of concurrent Java and the Java memory model and investigate the impact of concurrency on these guarantees. From the formal model, we automatically obtain an executable verified compiler to bytecode and a validated virtual machine.
Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic
DEFF Research Database (Denmark)
Bulychev, Petr; David, Alexandre; Larsen, Kim Guldstrand;
2012-01-01
We present a novel approach and implementation for ana- lysing weighted timed automata (WTA) with respect to the weighted metric temporal logic (WMTL≤ ). Based on a stochastic semantics of WTAs, we apply statistical model checking (SMC) to estimate and test probabilities of satisfaction...... often exact and ex- perimentally tight. The technique is implemented in the new tool Casaal that we seamlessly connect to Uppaal-smc in a tool chain. We demon- strate the applicability of our technique and the efficiency of our imple- mentation through a number of case-studies....
Lefschetz, Solomon
2012-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
An Evaluation Framework for Energy Aware Buildings using Statistical Model Checking
DEFF Research Database (Denmark)
David, Alexandre; Du, DeHui; Larsen, Kim Guldstrand;
2012-01-01
properties of this formalisms. A particular kind of cyber-physical systems are Smart Grids which together with Intelligent, Energy Aware Buildings will play a major role in achieving an energy efficient society of the future. In this paper we present a framework in Uppaal-smc for energy aware buildings......Cyber-physical systems are to be found in numerous applications throughout society. The principal barrier to develop trustworthy cyber-physical systems is the lack of expressive modelling and specification for- malisms supported by efficient tools and methodologies. To overcome this barrier, we...... extend in this paper the modelling formalism of the tool Uppaal-smc to stochastic hybrid automata, thus providing the expressive power required for modeling complex cyber-physical systems. The application of Statistical Model Checking provides a highly scalable technique for analyzing performance...
Bringing Automated Model Checking to PLC Program Development - A CERN Case Study
Fernandez Adiego, B; Tournier, J-C; Blanco Vinuela, E; Gonzalez Suarez, V M
2014-01-01
Verification of critical software is a high priority but a challenging task for industrial control systems. Model checking appears to be an appropriate approach for this purpose. However, this technique is not widely used in industry yet, due to some obstacles. The main obstacles encountered when trying to apply formal verification techniques at industrial installations are the difficulty of creating models out of PLC programs and defining formally the specification requirements. In addition, models produced out of real-life programs have a huge state space, thus preventing the verification due to performance issues. Our work at CERN (European Organization for Nuclear Research) focuses on developing efficient automatic verification methods for industrial critical installations based on PLC (Programmable Logic Controller) control systems. In this paper, we present a tool generating automatically formal models out of PLC code. The tool implements a general methodology which can support several input languages, ...
International Nuclear Information System (INIS)
Recent developments and applications of an algebraic version of Bohr's collective model, known as the algebraic collective model (ACM), have shown that fully converged calculations can be performed for a large range of Hamiltonians. Examining the algebraic structure underlying the Bohr model (BM) has also clarified its relationship with the interacting boson model (IBM), with which it has related solvable limits and corresponding dynamical symmetries. In particular, the algebraic structure of the IBM is obtained as a compactification of the BM and conversely the BM is regained in various contraction limits of the IBM. In a previous paper, corresponding contractions were identified and confirmed numerically for axially-symmetric states of relatively small deformation. In this paper, we extend the comparisons to realistic deformations and compare results of the two models in the rotor-vibrator limit. These models describe rotations and vibrations about an axially symmetric prolate or oblate rotor, and rotations and vibrations of a triaxial rotor. It is determined that most of the standard results of the BM can be obtained as contraction limits of the IBM in its U(5)-SO(6) dynamical symmetries.
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Meadow enriched ACP process algebras
J.A. Bergstra; Middelburg, C.A.
2009-01-01
We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization of the notion of an ACP process algebra to processes in which data are involved. In meadow enriched ACP process algebras, the mathematical structure for data is a meadow.
Hopf Bifurcation of a Differential-Algebraic Bioeconomic Model with Time Delay
Directory of Open Access Journals (Sweden)
Xiaojian Zhou
2012-01-01
Full Text Available We investigate the dynamics of a differential-algebraic bioeconomic model with two time delays. Regarding time delay as a bifurcation parameter, we show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Using the theories of normal form and center manifold, we also give the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical tests are provided to verify our theoretical analysis.
Algebraic and relational models for a system based on a poset of two elements
Iturrioz, Luisa
2014-01-01
The aim of this paper is to present a very simple set of conditions, necessary for the management of knowledge of a poset $T$ of two agents, which are partially ordered by the capabilities available in the system. We build up a formal system and we elaborate suitable semantic models in order to derive information from the poset. The system is related to three-valued Heyting algebras with Boolean operators.
On the algebraic structure of self-dual gauge fields and sigma models
International Nuclear Information System (INIS)
An extensive and detailed analysis of self-dual Gauge Fields, in particular with axial symmetry, is presented, culminating in a purely algebraic procedure to generate solutions. The method which is particularly suited for the construction of multimonopole solutions for a theory with arbitrary G, is also applicable to a wide class of nonlinear sigma models. The relevant symmetries as well as the associated linear problems which underly the exact solubility of the problem, are constructed and discussed in detail. (author)
Another algebraic variational principle for the spectral curve of matrix models
Eynard, B
2014-01-01
We propose an alternative variational principle whose critical point is the algebraic plane curve associated to a matrix model (the spectral curve, i.e. the large $N$ limit of the resolvent). More generally, we consider a variational principle that is equivalent to the problem of finding a plane curve with given asymptotics and given cycle integrals. This variational principle is not given by extremization of the energy, but by the extremization of an "entropy".
RSOS models and Jantzen-Seitz representations of Hecke algebras at roots of unity
Foda, Omar; Leclerc, Bernard; Okado, Masato; Thibon, Jean-Yves; Welsh, Trevor A.
1997-01-01
A special family of partitions occurs in two apparently unrelated contexts: the evaluation of 1-dimensional configuration sums of certain RSOS models, and the modular representation theory of symmetric groups or their Hecke algebras $H_m$. We provide an explanation of this coincidence by showing how the irreducible $H_m$-modules which remain irreducible under restriction to $H_{m-1}$ (Jantzen-Seitz modules) can be determined from the decomposition of a tensor product of representations of aff...
Svetoslav Markov
2005-01-01
This survey paper aims to promote certain novel mathematical tools, such as computer algebra systems, enclosure methods and interval analysis, to the mathematical modelling and optimization of biotechnological processes.
Directory of Open Access Journals (Sweden)
Svetoslav Markov
2005-12-01
Full Text Available This survey paper aims to promote certain novel mathematical tools, such as computer algebra systems, enclosure methods and interval analysis, to the mathematical modelling and optimization of biotechnological processes.
Directory of Open Access Journals (Sweden)
G. Bussi
2013-08-01
Full Text Available Soil loss and sediment transport in Mediterranean areas are driven by complex non-linear processes which have been only partially understood. Distributed models can be very helpful tools for understanding the catchment-scale phenomena which lead to soil erosion and sediment transport. In this study, a modelling approach is proposed to reproduce and evaluate erosion and sediment yield processes in a Mediterranean catchment (Rambla del Poyo, Valencia, Spain. Due to the lack of sediment transport records for model calibration and validation, a detailed description of the alluvial stratigraphy infilling a check dam that drains a 12.9 km2 sub-catchment was used as indirect information of sediment yield data. These dam infill sediments showed evidences of at least 15 depositional events (floods over the time period 1990–2009. The TETIS model, a distributed conceptual hydrological and sediment model, was coupled to the Sediment Trap Efficiency for Small Ponds (STEP model for reproducing reservoir retention, and it was calibrated and validated using the sedimentation volume estimated for the depositional units associated with discrete runoff events. The results show relatively low net erosion rates compared to other Mediterranean catchments (0.136 Mg ha−1 yr−1, probably due to the extensive outcrops of limestone bedrock, thin soils and rather homogeneous vegetation cover. The simulated sediment production and transport rates offer model satisfactory results, further supported by in-site palaeohydrological evidences and spatial validation using additional check dams, showing the great potential of the presented data assimilation methodology for the quantitative analysis of sediment dynamics in ungauged Mediterranean basins.
Model Checking Artificial Intelligence Based Planners: Even the Best Laid Plans Must Be Verified
Smith, Margaret H.; Holzmann, Gerard J.; Cucullu, Gordon C., III; Smith, Benjamin D.
2005-01-01
Automated planning systems (APS) are gaining acceptance for use on NASA missions as evidenced by APS flown On missions such as Orbiter and Deep Space 1 both of which were commanded by onboard planning systems. The planning system takes high level goals and expands them onboard into a detailed of action fiat the spacecraft executes. The system must be verified to ensure that the automatically generated plans achieve the goals as expected and do not generate actions that would harm the spacecraft or mission. These systems are typically tested using empirical methods. Formal methods, such as model checking, offer exhaustive or measurable test coverage which leads to much greater confidence in correctness. This paper describes a formal method based on the SPIN model checker. This method guarantees that possible plans meet certain desirable properties. We express the input model in Promela, the language of SPIN and express the properties of desirable plans formally.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
Directory of Open Access Journals (Sweden)
Blekherman Grigoriy
2011-07-01
Full Text Available Abstract Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM, which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides
Vibrational spectrum of CF4 isotopes in an algebraic model
Indian Academy of Sciences (India)
Joydeep Choudhury; Srinivasa Rao Karumuri; Nirmal Kumar Sarkar; Ramendu Bhattacharjee
2009-11-01
n this paper the stretching vibrational modes of CF4 isotopes are calculated up to first overtone using the one-dimensional vibron model for the first time. The model Hamiltonian so constructed seems to describe the C–F stretching modes accurately using a relatively small set of well-defined parameters.
From Clifford Algebra of Nonrelativistic Phase Space to Quarks and Leptons of the Standard Model
Żenczykowski, Piotr
2015-01-01
We review a recently proposed Clifford-algebra approach to elementary particles. We start with: (1) a philosophical background that motivates a maximally symmetric treatment of position and momentum variables, and: (2) an analysis of the minimal conceptual assumptions needed in quark mass extraction procedures. With these points in mind, a variation on Born's reciprocity argument provides us with an unorthodox view on the problem of mass. The idea of space quantization suggests then the linearization of the nonrelativistic quadratic form ${\\bf p}^2 +{\\bf x}^2$ with position and momentum satisfying standard commutation relations. This leads to the 64-dimensional Clifford algebra ${Cl}_{6,0}$ of nonrelativistic phase space within which one identifies the internal quantum numbers of a single Standard Model generation of elementary particles (i.e. weak isospin, hypercharge, and color). The relevant quantum numbers are naturally linked to the symmetries of macroscopic phase space. It is shown that the obtained pha...
A deformation of quantum affine algebra in squashed Wess-Zumino-Novikov-Witten models
Energy Technology Data Exchange (ETDEWEB)
Kawaguchi, Io; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)
2014-06-01
We proceed to study infinite-dimensional symmetries in two-dimensional squashed Wess-Zumino-Novikov-Witten models at the classical level. The target space is given by squashed S³ and the isometry is SU(2){sub L}×U(1){sub R}. It is known that SU(2){sub L} is enhanced to a couple of Yangians. We reveal here that an infinite-dimensional extension of U(1){sub R} is a deformation of quantum affine algebra, where a new deformation parameter is provided with the coefficient of the Wess-Zumino term. Then we consider the relation between the deformed quantum affine algebra and the pair of Yangians from the viewpoint of the left-right duality of monodromy matrices. The integrable structure is also discussed by computing the r/s-matrices that satisfy the extended classical Yang-Baxter equation. Finally, two degenerate limits are discussed.
Algebraic nonlinear collective motion
Troupe, J.; Rosensteel, G.
1999-01-01
Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real number $\\Lambda$. The $\\Lambda=0$ solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear g...
Heidergott, Bernd; van der Woude, Jacob
2014-01-01
Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, compu
A new algebraic structure in the standard model of particle physics
Boyle, Latham
2016-01-01
We introduce a new formulation of non-commutative geometry (NCG): we explain its mathematical advantages and its success in capturing the structure of the standard model of particle physics. The idea, in brief, is to represent $A$ (the algebra of differential forms on some possibly-noncommutative space) on $H$ (the Hilbert space of spinors on that space); and to reinterpret this representation as a simple super-algebra $B=A\\oplus H$ with even part $A$ and odd part $H$. $B$ is the fundamental object in our approach: we show that (nearly) all of the basic axioms and assumptions of the traditional ("spectral triple") formulation of NCG are elegantly recovered from the simple requirement that $B$ should be a differential graded $\\ast$-algebra (or "$\\ast$-DGA"). But this requirement also yields other, new, geometrical constraints. When we apply our formalism to the NCG traditionally used to describe the standard model of particle physics, we find that these new constraints are physically meaningful and phenomenolo...
Cellular modelling using P systems and process algebra
Institute of Scientific and Technical Information of China (English)
Francisco J.Romero-Campero; Marian Gheorghe; Gabriel Ciobanu; John M. Auld; Mario J. Pérez-Jiménez
2007-01-01
In this paper various molecular chemical interactions are modelled under different computational paradigms. P systems and π-calculus are used to describe intra-cellular reactions like protein-protein interactions and gene regulation control.
Algebraic statistics computational commutative algebra in statistics
Pistone, Giovanni; Wynn, Henry P
2000-01-01
Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.
The standard model of quantum physics in Clifford algebra
Daviau, Claude
2016-01-01
We extend to gravitation our previous study of a quantum wave for all particles and antiparticles of each generation (electron + neutrino + u and d quarks for instance). This wave equation is form invariant under Cl3*, then relativistic invariant. It is gauge invariant under the gauge group of the standard model, with a mass term: this was impossible before, and the consequence was an impossibility to link gauge interactions and gravitation.
Safety properties test data selection from an algebraic model of Lustre programs
International Nuclear Information System (INIS)
In the context to validate an industrial software, which is a set of reactive programs, we are confronted with the safety properties verification problem. This thesis reports an experience in which our goal is to generate the test data satisfying a safety property. The software to be validated is designed with the SAGA tool, in which a view can be regarded as a program of a programming language called LUSTRE. We adapt a test data generation tool called LOFT to this kind of programs. In this way, we consider the functional testing method on which the LOFT tool is based. Given any LUSTRE program, we try to give it an algebraic model because LOFT treats algebraic specifications. So, our task consists In defining a formal framework in which any LUSTRE program can be translated into a LOFT module: based on an operational semantics of the LUSTRE language, the flow types 'T-flow' are specified with the constructive algebraic formalism, then implemented in a LOFT modules base. Next, in a test selection process assisted by LOFT, a safety property Is expressed by an equation to join other control hypotheses, and to guide the test data selection. Some concrete test data set are generated in this way on some significant examples. This experience confirm the feasibility of formal method on test data selection for the reactive programs. (author)
Villarreal, Rafael
2015-01-01
The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.
Application of a hazard-based visual predictive check to evaluate parametric hazard models.
Huh, Yeamin; Hutmacher, Matthew M
2016-02-01
Parametric models used in time to event analyses are evaluated typically by survival-based visual predictive checks (VPC). Kaplan-Meier survival curves for the observed data are compared with those estimated using model-simulated data. Because the derivative of the log of the survival curve is related to the hazard--the typical quantity modeled in parametric analysis--isolation, interpretation and correction of deficiencies in the hazard model determined by inspection of survival-based VPC's is indirect and thus more difficult. The purpose of this study is to assess the performance of nonparametric hazard estimators of hazard functions to evaluate their viability as VPC diagnostics. Histogram-based and kernel-smoothing estimators were evaluated in terms of bias of estimating the hazard for Weibull and bathtub-shape hazard scenarios. After the evaluation of bias, these nonparametric estimators were assessed as a method for VPC evaluation of the hazard model. The results showed that nonparametric hazard estimators performed reasonably at the sample sizes studied with greater bias near the boundaries (time equal to 0 and last observation) as expected. Flexible bandwidth and boundary correction methods reduced these biases. All the nonparametric estimators indicated a misfit of the Weibull model when the true hazard was a bathtub shape. Overall, hazard-based VPC plots enabled more direct interpretation of the VPC results compared to survival-based VPC plots. PMID:26563504
Taming Numbers and Durations in the Model Checking Integrated Planning System
Edelkamp, S
2011-01-01
The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiven...
Asymptotic Solutions of Algebraic Reynolds Stress Model Applied to Rough Bottom Open Channel Flow
Directory of Open Access Journals (Sweden)
Soualmia Amel
2014-05-01
Full Text Available We interpret experimental results on the structure of an open channel flow with a strong transverse variation of the bottom roughness. Knowing the wall parameters, we analyze the behavior of Reynolds stress components by using asymptotic solutions of an algebraic stress model developed in the wall and free surface regions. This analysis allowed us to emphasize effects of secondary flows on the production of turbulence near the wall, and the capability of this model to predict the normal components of the Reynolds tensor in the wall and free surface regions when the turbulent shear stresses are well predicted.
An extended set of Fortran Basic Linear Algebra Subprograms: model implementation and test programs
Energy Technology Data Exchange (ETDEWEB)
Dongarra, J.J.; Du Croz, J.; Hammarling, S.; Hanson, R.J.
1987-01-01
This paper describes a model implementation and test software for the Level 2 Basic Linear Algebra Subprograms (Level 2 BLAS). The Level 2 BLAS are targeted at matrix-vector operations with the aim of providing more efficient, but portable, implementations of algorithms on high-performance computers. The model implementation provides a portable set of Fortran 77 Level 2 BLAS for machines where specialized implementations do not exist or are not required. The test software aims to verify that specialized implementations meet the specification of the Level 2 BLAS and that implementations are correctly installed.
Generalized model of double random phase encoding based on linear algebra
Nakano, Kazuya; Takeda, Masafumi; Suzuki, Hiroyuki; Yamaguchi, Masahiro
2013-01-01
We propose a generalized model for double random phase encoding (DRPE) based on linear algebra. We defined the DRPE procedure in six steps. The first three steps form an encryption procedure, while the later three steps make up a decryption procedure. We noted that the first (mapping) and second (transform) steps can be generalized. As an example of this generalization, we used 3D mapping and a transform matrix, which is a combination of a discrete cosine transform and two permutation matrices. Finally, we investigated the sensitivity of the proposed model to errors in the decryption key.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept-wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
On the numerical simulation of active scalar,a new explicit algebraic expression on active scalar flux was derived based on Wikstrm,Wallin and Johansson model (aWWJ model). Reynolds stress algebraic expressions were added by a term to account for the buoyancy effect. The new explicit Reynolds stress and active scalar flux model was then established. Governing equations of this model were solved by finite volume method with unstructured grids. The thermal shear stratified cylinder wake flow was computed by this new model. The computational results are in good agreement with laboratorial measurements. This work is the development on modeling of explicit algebraic Reynolds stress and scalar flux,and is also a further modification of the aWWJ model for complex situations such as a shear stratified flow.
Institute of Scientific and Technical Information of China (English)
HUA ZuLin; GU Li; XING LingHang; DAI WenHong
2009-01-01
On the numerical simulation of active scalar, a new explicit algebraic expression on active scalar flux was derived based on Wikstrom, Wallin and Johansson model (aWWJ model). Reynolds stress algebraic expressions were added by a term to account for the buoyancy effect. The new explicit Reynolds stress and active scalar flux model was then established. Governing equations of this model were solved by finite volume method with unstructured grids. The thermal shear stratified cylinder wake flow was computed by this new model. The computational results are in good agreement with Laboratorial measurements. This work is the development on modeling of explicit algebraic Reynolds stress and scalar flux, and is also a further modification of the aWWJ model for complex situations such as a shear stratified flow.
Using process algebra to develop predator-prey models of within-host parasite dynamics.
McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel
2013-07-21
As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system.
Checking the Adequacy of Fit of Models from Split-Plot Designs
DEFF Research Database (Denmark)
Almini, A. A.; Kulahci, Murat; Montgomery, D. C.
2009-01-01
One of the main features that distinguish split-plot experiments from other experiments is that they involve two types of experimental errors: the whole-plot (WP) error and the subplot (SP) error. Taking this into consideration is very important when computing measures of adequacy of fit for split......-plot models. In this article, we propose the computation of two R-2, R-2-adjusted, prediction error sums of squares (PRESS), and R-2-prediction statistics to measure the adequacy of fit for the WP and the SP submodels in a split-plot design. This is complemented with the graphical analysis of the two types...... of errors to check for any violation of the underlying assumptions and the adequacy of fit of split-plot models. Using examples, we show how computing two measures of model adequacy of fit for each split-plot design model is appropriate and useful as they reveal whether the correct WP and SP effects have...
A computer code for calculations in the algebraic collective model of the atomic nucleus
Welsh, T. A.; Rowe, D. J.
2016-03-01
A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.
Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models
Srinivasan, Seshasai
2013-01-01
Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.
Modeling boyciana-fish-human interaction with partial differential algebraic equations.
Jiang, Yushan; Zhang, Qingling; Wang, Haiyan
2016-07-01
Under the influence of human population distribution, the boyciana-fish ecological system is considered. First, the system can be described as a nonlinear partial differential algebraic equations system (PDAEs) with Neumann boundary conditions and ratio-dependent functional response. Second, we examine the system's persistence properties: the loacl stabilities of positive steady states, the absorbtion region and the global stability. And the proposed approach is illustrated by numerical simulation. Finally, by using the realistic data collected in the past fourteen years, the PDAEs parameter optimization model is built to predict the boyciana population. PMID:27155570
RSOS models and Jantzen-Seitz representations of Hecke algebras at roots of unity
Foda, O E; Okado, M; Thibon, J Y; Welsh, Trevor A; Foda, Omar; Leclerc, Bernard; Okado, Masato; Thibon, Jean-Yves; Welsh, Trevor A.
1997-01-01
A special family of partitions occurs in two apparently unrelated contexts: the evaluation of 1-dimensional configuration sums of certain RSOS models, and the modular representation theory of symmetric groups or their Hecke algebras $H_m$. We provide an explanation of this coincidence by showing how the irreducible $H_m$-modules which remain irreducible under restriction to $H_{m-1}$ (Jantzen-Seitz modules) can be determined from the decomposition of a tensor product of representations of affine $\\sl_n$.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
An Algebraic Graphical Model for Decision with Uncertainties, Feasibilities, and Utilities
Pralet, C; Verfaillie, G; 10.1613/jair.2151
2011-01-01
Numerous formalisms and dedicated algorithms have been designed in the last decades to model and solve decision making problems. Some formalisms, such as constraint networks, can express "simple" decision problems, while others are designed to take into account uncertainties, unfeasible decisions, and utilities. Even in a single formalism, several variants are often proposed to model different types of uncertainty (probability, possibility...) or utility (additive or not). In this article, we introduce an algebraic graphical model that encompasses a large number of such formalisms: (1) we first adapt previous structures from Friedman, Chu and Halpern for representing uncertainty, utility, and expected utility in order to deal with generic forms of sequential decision making; (2) on these structures, we then introduce composite graphical models that express information via variables linked by "local" functions, thanks to conditional independence; (3) on these graphical models, we finally define a simple class ...
Extended FRAM by Integrating with Model Checking to Effectively Explore Hazard Evolution
Directory of Open Access Journals (Sweden)
Guihuan Duan
2015-01-01
Full Text Available Functional Resonance Analysis Method (FRAM, which defines a systemic framework to model complex systems from the perspective of function and views accidents as emergent phenomenon of function’s variability, is playing an increasingly significant role in the development of systemic accident theory. However, as FRAM is typically taken as a theoretic method, there is a lack of specific approaches or supportive tools to bridge the theory and practice. To fill the gap and contribute to the development of FRAM, (1 function’s variability was described further, with the rules of interaction among variability of different functions being determined and (2 the technology of model checking (MC was used for the analysis of function’s variability to automatically search the potential paths that could lead to hazards. By means of MC, system’s behaviors (normal or abnormal are simulated and the counter example(s that violates the safety constraints and requirements can be provided, if there is any, to improve the system design. The extended FRAM approach was applied to a typical air accident analysis, with more details drawn than the conclusions in the accident report issued officially by Agenzia Nazionale per la Sicurezza del Volo (ANSV.
Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua
2014-11-01
Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.
Pavelle, Richard; And Others
1981-01-01
Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)
Izhakian, Zur; Rowen, Louis
2008-01-01
We develop the algebraic polynomial theory for "supertropical algebra," as initiated earlier over the real numbers by the first author. The main innovation there was the introduction of "ghost elements," which also play the key role in our structure theory. Here, we work somewhat more generally over an ordered monoid, and develop a theory which contains the analogs of several basic theorems of classical commutative algebra. This structure enables one to develop a Zariski-type algebraic geomet...
Nissen, Edward W.
2011-12-01
The future of particle accelerators is moving towards the intensity frontier; the need to place more particles into a smaller space is a common requirement of nearly all applications of particle accelerators. Putting large numbers of particles in a small space means that the mutual repulsion of these charged particles becomes a significant factor, this effect is called space charge. In this work we develop a series of differential algebra based methods to simulate the effects of space charge in particle accelerators. These methods were used to model the University of Maryland Electron Ring, a small 3.8 meter diameter 10 KeV electron storage ring designed to observe the effects of space charge in a safe, cost effective manner. The methods developed here are designed to not only simulate the effects of space charge on the motions of the test particles in the system but to add their effects to the transfer map of the system. Once they have been added useful information about the beam, such as tune shifts and chromaticities, can be extracted directly from the map. In order to make the simulation self consistent, the statistical moments of the distribution are used to create a self consistent Taylor series representing the distribution function, which is combined with pre-stored integrals solved using a Duffy transformation to find the potential. This method can not only find the map of the system, but also advance the particles under most conditions. For conditions where it cannot be used to accurately advance the particles a differential algebra based fast multipole method is implemented. By using differential algebras to create local expansions, noticeable time savings are found.
Lorentz invariant noncommutative algebra for cosmological models coupled to a perfect fluid
Energy Technology Data Exchange (ETDEWEB)
Abreu, Everton M.C.; Marcial, Mateus V.; Mendes, Albert C.R.; Oliveira, Wilson [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Universidade Federal de Juiz de Fora, MG (Brazil)
2013-07-01
Full text: In current theoretical physics there is a relevant number of theoretical investigations that lead to believe that at the first moments of our Universe, the geometry was not commutative and the dominating physics at that time was ruled by the laws of noncommutative (NC) geometry. Therefore, the idea is that the physics of the early moments can be constructed based on these concepts. The first published work using the idea of a NC spacetime were carried out by Snyder who believed that NC principles could make the quantum field theory infinities disappear. However, it did not occur and Snyder's ideas were put to sleep for a long time. The main modern motivations that rekindle the investigation about NC field theories came from string theory and quantum gravity. In the context of quantum mechanics for example, R. Banerjee discussed how NC structures appear in planar quantum mechanics providing a useful way for obtaining them. The analysis was based on the NC algebra used in planar quantum mechanics that was originated from 't Hooft's analysis on dissipation and quantization. In this work we carry out a NC algebra analysis of the Friedmann-Robert-Walker model, coupled to a perfect fluid and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. (author)
Algebraic solutions for two-level pairing model in IBM-2 and IVBM
Jalili-Majarshin, A.; Jafarizadeh, M. A.; Fouladi, N.
2016-09-01
In this paper the affine SU(1,1) approach is applied to numerically solve two pairing problems. A dynamical symmetry limit of the two-fluid interacting boson model-2 (IBM-2) and of the interacting vector boson model (IVBM) defined through the chains U_{π}(6) ⊗ U_{ν}(6) supset SO_{π}(5)⊗ SO_{ν}(5) supset SO_{π}(3) ⊗ SO_{ν}(3) supset SO(3) and U(6) supset U_{π}(3) ⊗ U_{ν}(3) supset SO_{π}(3) ⊗ SO_{ν}(3) supset SO(3) are introduced, respectively. The quantum phase transition between spherical and γ-soft shapes in medium-mass nuclei is analyzed using U(5) leftrightarrow SO(6) transitional nuclei in IBM-2 and one case U_{π}(3) ⊗ U_{ν}(3) leftrightarrow SO(6) transitional nuclei in IVBM found by using an infinite dimensional algebraic method based on affine SU(1,1) Lie algebra. The calculated energy spectra, energy ratio and energy staggering of Mo isotopes are compared with experimental results. The interplay between phase transitions and configuration mixing of intruder excitations between spherical vibrations and the γ-soft shapes in Mo isotopes is succinctly addressed and displays fingerprints of the transitional dynamical symmetry E(5).
A note on the "logarithmic-W_3" octuplet algebra and its Nichols algebra
Semikhatov, A M
2013-01-01
We describe a Nichols-algebra-motivated construction of an octuplet chiral algebra that is a "W_3-counterpart" of the triplet algebra of (p,1) logarithmic models of two-dimensional conformal field theory.
McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron
2011-03-01
Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.
Norman, Laura M.; Niraula, Rewati
2016-01-01
The objective of this study was to evaluate the effect of check dam infrastructure on soil and water conservation at the catchment scale using the Soil and Water Assessment Tool (SWAT). This paired watershed study includes a watershed treated with over 2000 check dams and a Control watershed which has none, in the West Turkey Creek watershed, Southeast Arizona, USA. SWAT was calibrated for streamflow using discharge documented during the summer of 2013 at the Control site. Model results depict the necessity to eliminate lateral flow from SWAT models of aridland environments, the urgency to standardize geospatial soils data, and the care for which modelers must document altering parameters when presenting findings. Performance was assessed using the percent bias (PBIAS), with values of ±2.34%. The calibrated model was then used to examine the impacts of check dams at the Treated watershed. Approximately 630 tons of sediment is estimated to be stored behind check dams in the Treated watershed over the 3-year simulation, increasing water quality for fish habitat. A minimum precipitation event of 15 mm was necessary to instigate the detachment of soil, sediments, or rock from the study area, which occurred 2% of the time. The resulting watershed model is useful as a predictive framework and decision-support tool to consider long-term impacts of restoration and potential for future restoration.
Meadow enriched ACP process algebras
J.A. Bergstra; C.A. Middelburg
2009-01-01
We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization o
Algebraic turbulent heat flux model for prediction of thermal stratification in piping system
International Nuclear Information System (INIS)
The effect of stratification on the flow in bounded geometries is studied through computational fluid dynamics (CFD) and two different modeling of the turbulent heat flux, namely constant turbulent Prandtl number and Algebraic Heat Flux Model (AHFM). The main feature of the work is the evaluation of the effect of buoyancy on the thermal quantities, velocity field and related pressure drop. It has been stated the superiority of the AHFM for the evaluation of turbulent heat flux and temperature field together with a correct evaluation of the thickness of the thermal layer (i.e stratification persistence), in comparison with the simple eddy diffusivity approach. However the adopted model shows over-prediction of the momentum transport in the vertical direction in comparison with the experimental data introducing higher uncertainties for the obtained pressure drop and related Fanning friction factor. (author)
New solutions from algebraic equations for the Skyrme model coupled to a scalar meson
Energy Technology Data Exchange (ETDEWEB)
Braghin, Fabio L. [Universidade Federal do Rio Grande do Norte (IIF/UFRN), Natal, RN (Brazil). Inst. Internacional de Fisica
2010-07-01
Full text: In this work a modified Skyrme model is considered such as to incorporate the interaction of the hedgehog with a scalar field, based on a previous work. The Skyrme model is a model of the nucleon in which the baryon emerges as a topological soliton and its coupling to a scalar field can either correspond to the coupling to the lightest scalar isoscalar meson sigma and also to implement the spontaneous breakdown of chiral symmetry in a consistent way. Therefore it can be related to modifications of a dense interacting medium and it becomes suitable for investigating the role of the symmetry breaking and its restoration. A transcendental algebraic equation is found to be enough to extract a new class of profile solutions of the skyrmion in a constant background. The mass of the corresponding topological soliton was found to decrease considerably in the case small masses are associated to the scalar field. (author)
DEFF Research Database (Denmark)
Vester, Steen
2015-01-01
We study the complexity of the model-checking problem for the branching-time logic CTL ∗ and the alternating-time temporal logics ATL/ATL ∗ in one-counter processes and one-counter games respectively. The complexity is determined for all three logics when integer weights are input in unary (non...
Tsue, Yasuhiko; Providência, Constança; Providência, João da; Yamamura, Masatoshi
2016-08-01
The minimum weight states of the Lipkin model consisting of n single-particle levels and obeying the SU(n) algebra are investigated systematically. The basic idea is to use the SU(2) algebra, which is independent of the SU(n) algebra. This idea has already been presented by the present authors in the case of the conventional Lipkin model consisting of two single-particle levels and obeying the SU(2) algebra. If this idea is followed, the minimum weight states are determined for any fermion number appropriately occupying n single-particle levels. Naturally, the conventional minimum weight state is included: all fermions occupy energetically the lowest single-particle level in the absence of interaction. The cases n=2, 3, 4, and 5 are discussed in some detail.
Warner, Zachary B.
2013-01-01
This study compared an expert-based cognitive model of domain mastery with student-based cognitive models of task performance for Integrated Algebra. Interpretations of student test results are limited by experts' hypotheses of how students interact with the items. In reality, the cognitive processes that students use to solve each item may be…
Automated parameter estimation for biological models using Bayesian statistical model checking
Hussain, Faraz; Langmead, Christopher J.; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram; Jha, Sumit K.
2015-01-01
Background Probabilistic models have gained widespread acceptance in the systems biology community as a useful way to represent complex biological systems. Such models are developed using existing knowledge of the structure and dynamics of the system, experimental observations, and inferences drawn from statistical analysis of empirical data. A key bottleneck in building such models is that some system variables cannot be measured experimentally. These variables are incorporated into the mode...
Analysis of an algebraic model for the chromophore vibrations of CF$_3$CHFI
Jung, C; Taylor, H S
2004-01-01
We extract the dynamics implicit in an algebraic fitted model Hamiltonian for the hydrogen chromophore's vibrational motion in the molecule $CF_3CHFI$. The original model has 4 degrees of freedom, three positions and one representing interbond couplings. A conserved polyad allows the reduction to 3 degrees of freedom. For most quantum states we can identify the underlying motion that when quantized gives the said state. Most of the classifications, identifications and assignments are done by visual inspection of the already available wave function semiclassically transformed from the number representation to a representation on the reduced dimension toroidal configuration space corresponding to the classical action and angle variables. The concentration of the wave function density to lower dimensional subsets centered on idealized simple lower dimensional organizing structures and the behavior of the phase along such organizing centers already reveals the atomic motion. Extremely little computational work is...
Structure of 23Al from a multi-channel algebraic scattering model based on mirror symmetry
Fraser, P. R.; Kadyrov, A. S.; Massen-Hane, K.; Amos, K.; Canton, L.; Karataglidis, S.; van der Knijff, D.; Bray, I.
2016-09-01
The proton-rich nucleus 23Al has a ground state just 123 keV below the one-proton emission threshold, and as a result comparatively little is known experimentally about its properties, as with many such nuclei. Theoretical investigations have tended to model exclusively the ground and first one to three excited states known. In this paper, we theoretically model most of the known spectrum, and predict what states may as yet be unobserved. We use the multichannel algebraic scattering method to describe states as resonances of a valence proton coupled to a 22Mg rotor core. Six states with low-excitation energies and defined {J}π are matched, and we make the first prediction of the properties of four others and propound the possible existence of several more.
Two types of loop algebras and their expanding Lax integrable models
Institute of Scientific and Technical Information of China (English)
Yue Chao; Zhang Yu-Feng; Wei Yuan
2007-01-01
Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx+[U,V]=0,but in this paper,a new integrable hierarchy possessing bi-Hamiltonian structure is worked out by selecting V with spectral potentials.Then its expanding Lax integrable model of the hierarchy possessing a simple Hamiltonian operator (J) is presented by constructing a subalgebra (G) of the loop algebra (A)2.As linear expansions of the above-mentioned integrable hierarchy and its expanding Lax integrable model with respect to their dimensional numbers,their (2+1)-dimensional forms are derived from a (2+1)-dimensional zero-curvature equation.
Structure of $^{23}$Al from a multi-channel algebraic scattering model based on mirror symmetry
Fraser, P R; Massen-Hane, K; Amos, K; Canton, L; Karataglidis, S; van der Knijff, D; Bray, I
2016-01-01
The proton-rich nucleus $^{23}$Al has a ground state just 123 keV below the proton drip-line, and as a result comparatively little is known experimentally about its properties, as with many such nuclei. Theoretical investigations have tended to model exclusively the ground and first one to three excited states known. In this paper, we theoretically model most of the known spectrum, and predict what states may as yet be unobserved. We use the multichannel algebraic scattering (MCAS) method to describe states as resonances of a valence proton coupled to a $^{22}$Mg rotor core. Six states with low-excitation energies and defined $J^\\pi$ are matched, and we make the first prediction of the properties of four others and propound the possible existence of several more.
Conceptual Explanation for the Algebra in the Noncommutative Approach to the Standard Model
Chamseddine, Ali H.; Connes, Alain
2007-11-01
The purpose of this Letter is to remove the arbitrariness of the ad hoc choice of the algebra and its representation in the noncommutative approach to the standard model, which was begging for a conceptual explanation. We assume as before that space-time is the product of a four-dimensional manifold by a finite noncommmutative space F. The spectral action is the pure gravitational action for the product space. To remove the above arbitrariness, we classify the irreducible geometries F consistent with imposing reality and chiral conditions on spinors, to avoid the fermion doubling problem, which amounts to have total dimension 10 (in the K-theoretic sense). It gives, almost uniquely, the standard model with all its details, predicting the number of fermions per generation to be 16, their representations and the Higgs breaking mechanism, with very little input.
Conceptual explanation for the algebra in the noncommutative approach to the standard model.
Chamseddine, Ali H; Connes, Alain
2007-11-01
The purpose of this Letter is to remove the arbitrariness of the ad hoc choice of the algebra and its representation in the noncommutative approach to the standard model, which was begging for a conceptual explanation. We assume as before that space-time is the product of a four-dimensional manifold by a finite noncommmutative space F. The spectral action is the pure gravitational action for the product space. To remove the above arbitrariness, we classify the irreducible geometries F consistent with imposing reality and chiral conditions on spinors, to avoid the fermion doubling problem, which amounts to have total dimension 10 (in the K-theoretic sense). It gives, almost uniquely, the standard model with all its details, predicting the number of fermions per generation to be 16, their representations and the Higgs breaking mechanism, with very little input.
Energy Technology Data Exchange (ETDEWEB)
Lashkevich, Michael; Pugai, Yaroslav [Landau Institute for Theoretical Physics, 142432 Chernogolovka, Moscow Region (Russian Federation); Moscow Institute of Physics and Technology, 141707 Dolgoprudny, Moscow Region (Russian Federation)
2013-12-11
We continue the study of form factors of descendant operators in the sinh- and sine-Gordon models in the framework of the algebraic construction proposed in [1]. We find the algebraic construction to be related to a particular limit of the tensor product of the deformed Virasoro algebra and a suitably chosen Heisenberg algebra. To analyze the space of local operators in the framework of the form factor formalism we introduce screening operators and construct singular and cosingular vectors in the Fock spaces related to the free field realization of the obtained algebra. We show that the singular vectors are expressed in terms of the degenerate Macdonald polynomials with rectangular partitions. We study the matrix elements that contain a singular vector in one chirality and a cosingular vector in the other chirality and find them to lead to the resonance identities already known in the conformal perturbation theory. Besides, we give a new derivation of the equation of motion in the sinh-Gordon theory, and a new representation for conserved currents.
ALGEBRAIC ANOSOV ACTIONS OF NILPOTENT LIE GROUPS
Barbot, Thierry; Maquera, Carlos
2013-01-01
40 pages International audience In this paper we classify algebraic Anosov actions of nilpotent Lie groups on closed manifolds, extending the previous results by P. Tomter. We show that they are all nil-suspensions over either suspensions of Anosov actions of Z^k on nilmanifolds, or (modified) Weyl chamber actions. We check the validity of the generalized Verjovsky conjecture in this algebraic context. We also point out an intimate relation between algebraic Anosov actions and Cartan su...
Jorgensen, PET
1987-01-01
Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e
W-algebras, new rational models and completeness of the c=1 classification
International Nuclear Information System (INIS)
Two series of W-algebras with two generators are constructed from chiral vertex operators of a free field representation. If c=1-24k, there exists a W(2,3k) algebra for k element of Z+/2 and a W(2,8k) algebra for k element of Z+/4. All possible lowest-weight representations, their characters and fusion rules are calculated proving that these theories are rational. It is shown, that these non-unitary theories complete the classification of all rational theories with effective central charge ceff=1. The results are generalized to the case of extended supersymmetric conformal algebras. (orig.)
W-algebras, new rational models and completeness of the c=1 classification
International Nuclear Information System (INIS)
Two series of W-algebras with two generators are constructed from chiral vertex operators of a free field representation. If c = 1 - 24 k, there exists a W(2,3k) algebra for kelement of Z+/2 and a W (2,8k) algebra for k element of Z+/4. All possible lowest-weight representations, their characters and fusion rules are calculated proving that these therories are rational. It is shown, that these non-unitary theories complete the classification of all rational therories with effective central charge ceff = 1. The results are generalized to the case of extended supersymmetric conformal algebras. (orig.)
Model Checking for a Class of Performance Properties of Fluid Stochastic Models
Bujorianu, L.M.; Bujorianu, M.C.; Horváth, A.; Telek, M.
2006-01-01
Recently, there is an explosive development of fluid approa- ches to computer and distributed systems. These approaches are inherently stochastic and generate continuous state space models. Usually, the performance measures for these systems are defined using probabilities of reaching certain sets o
International Nuclear Information System (INIS)
Several two dimensional quantum field theory models have more than one vacuum state. An investigation of super selection sectors in two dimensions from an axiomatic point of view suggests that there should be also states, called soliton or kink states, which interpolate different vacua. Familiar quantum field theory models, for which the existence of kink states have been proven, are the Sine-Gordon and the φ42-model. In order to establish the existence of kink states for a larger class of models, we investigate the following question: Which are sufficient conditions a pair of vacuum states has to fulfill, such that an interpolating kink state can be constructed? We discuss the problem in the framework of algebraic quantum field theory which includes, for example, the P(φ)2-models. We identify a large class of vacuum states, including the vacua of the P(φ)2-models, the Yukawa2-like models and special types of Wess-Zumino models, for which there is a natural way to construct an interpolating kink state. In two space-time dimensions, massive particle states are kink states. We apply the Haag-Ruelle collision theory to kink sectors in order to analyze the asymptotic scattering states. We show that for special configurations of n kinks the scattering states describe n freely moving non interacting particles. (orig.)
Poisson bracket algebra for chiral group elements in the WZNW model
Bimonte, G; Simoni, A; Stern, A
1992-01-01
We examine the Wess-Zumino-Novikov-Witten (WZNW) model on a circle and compute the Poisson bracket algebra for left and right moving chiral group elements. Our computations apply for arbitrary groups and boundary conditions, the latter being characterized by the monodromy matrix. Unlike in previous treatments, they do not require specifying a particular parametrization of the group valued fields in terms of angles spanning the group. We do however find it necessary to make a gauge choice, as the chiral group elements are not gauge invariant observables. (On the other hand, the quadratic form of the Poisson brackets may be defined independent of a gauge fixing.) Gauge invariant observables can be formed from the monodromy matrix and these observables are seen to commute in the quantum theory.
Approach method of the solutions of algebraic models of the N body problem
International Nuclear Information System (INIS)
We have studied a class of algebraic eigenvalue problems that generate tridiagonal matrices. The Lipkin Hamiltonian was chosen as representative. Three methods have been implemented, whose extension to more general many body problems seems possible i) Degenerate Linked Cluster Theory (LCT), which disregards special symmetries of the interaction and defines a hierarchy of approximation based on model spaces at fixed number of particle-hole excitation of the unperturbed Hamiltonian. The method works for small perturbations but does not yield a complete description. ii) A new linearization method that replaces the matrix to be diagonalized by local (tangent) approximations by harmonic matrices. This method generalizes LCT and is a posteriori reminiscent of semi-classical ones. However of is simpler, more precise and yields a complete description of spectra. iii) A global way to characterize spectra based on Gershgorine-Hadamard disks
Algebraic geometry methods associated to the one-dimensional Hubbard model
Martins, M. J.
2016-06-01
In this paper we study the covering vertex model of the one-dimensional Hubbard Hamiltonian constructed by Shastry in the realm of algebraic geometry. We show that the Lax operator sits in a genus one curve which is not isomorphic but only isogenous to the curve suitable for the AdS/CFT context. We provide an uniformization of the Lax operator in terms of ratios of theta functions allowing us to establish relativistic like properties such as crossing and unitarity. We show that the respective R-matrix weights lie on an Abelian surface being birational to the product of two elliptic curves with distinct J-invariants. One of the curves is isomorphic to that of the Lax operator but the other is solely fourfold isogenous. These results clarify the reason the R-matrix can not be written using only difference of spectral parameters of the Lax operator.
Killing scalar of non-linear σ-model on G/H realizing the classical exchange algebra
Directory of Open Access Journals (Sweden)
Shogo Aoyama
2014-10-01
Full Text Available The Poisson brackets for non-linear σ-models on G/H are set up on the light-like plane. A quantity which transforms irreducibly by the Killing vectors, called Killing scalar, is constructed in an arbitrary representation of G. It is shown to satisfy the classical exchange algebra.
Killing scalar of non-linear σ-model on G/H realizing the classical exchange algebra
Energy Technology Data Exchange (ETDEWEB)
Aoyama, Shogo, E-mail: spsaoya@ipc.shizuoka.ac.jp
2014-10-07
The Poisson brackets for non-linear σ-models on G/H are set up on the light-like plane. A quantity which transforms irreducibly by the Killing vectors, called Killing scalar, is constructed in an arbitrary representation of G. It is shown to satisfy the classical exchange algebra.
Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models
Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.
2016-10-01
We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.
Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models
Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.
2016-08-01
We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.
Energy Technology Data Exchange (ETDEWEB)
Odesskii, A V [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)
2002-12-31
This survey is devoted to associative Z{sub {>=}}{sub 0}-graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.
The algebra of the general Markov model on phylogenetic trees and networks.
Sumner, J G; Holland, B R; Jarvis, P D
2012-04-01
It is known that the Kimura 3ST model of sequence evolution on phylogenetic trees can be extended quite naturally to arbitrary split systems. However, this extension relies heavily on mathematical peculiarities of the associated Hadamard transformation, and providing an analogous augmentation of the general Markov model has thus far been elusive. In this paper, we rectify this shortcoming by showing how to extend the general Markov model on trees to include incompatible edges; and even further to more general network models. This is achieved by exploring the algebra of the generators of the continuous-time Markov chain together with the “splitting” operator that generates the branching process on phylogenetic trees. For simplicity, we proceed by discussing the two state case and then show that our results are easily extended to more states with little complication. Intriguingly, upon restriction of the two state general Markov model to the parameter space of the binary symmetric model, our extension is indistinguishable from the Hadamard approach only on trees; as soon as any incompatible splits are introduced the two approaches give rise to differing probability distributions with disparate structure. Through exploration of a simple example, we give an argument that our extension to more general networks has desirable properties that the previous approaches do not share. In particular, our construction allows for convergent evolution of previously divergent lineages; a property that is of significant interest for biological applications.
Karassiov, V. P.; A. A. Gusev; Vinitsky, S. I.
2001-01-01
We compare exact and SU(2)-cluster approximate calculation schemes to determine dynamics of the second-harmonic generation model using its reformulation in terms of a polynomial Lie algebra $su_{pd}(2)$ and related spectral representations of the model evolution operator realized in algorithmic forms. It enabled us to implement computer experiments exhibiting a satisfactory accuracy of the cluster approximations in a large range of characteristic model parameters.
Energy Technology Data Exchange (ETDEWEB)
Littlefield, R.J.; Maschhoff, K.J.
1991-04-01
Many linear algebra algorithms utilize an array of processors across which matrices are distributed. Given a particular matrix size and a maximum number of processors, what configuration of processors, i.e., what size and shape array, will execute the fastest The answer to this question depends on tradeoffs between load balancing, communication startup and transfer costs, and computational overhead. In this paper we analyze in detail one algorithm: the blocked factored Jacobi method for solving dense eigensystems. A performance model is developed to predict execution time as a function of the processor array and matrix sizes, plus the basic computation and communication speeds of the underlying computer system. In experiments on a large hypercube (up to 512 processors), this model has been found to be highly accurate (mean error {approximately} 2%) over a wide range of matrix sizes (10 {times} 10 through 200 {times} 200) and processor counts (1 to 512). The model reveals, and direct experiment confirms, that the tradeoffs mentioned above can be surprisingly complex and counterintuitive. We propose decision procedures based directly on the performance model to choose configurations for fastest execution. The model-based decision procedures are compared to a heuristic strategy and shown to be significantly better. 7 refs., 8 figs., 1 tab.
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...
Algebra-Geometry of Piecewise Algebraic Varieties
Institute of Scientific and Technical Information of China (English)
Chun Gang ZHU; Ren Hong WANG
2012-01-01
Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.
The algebraic structure of the Onsager algebra
DATE, ETSURO; Roan, Shi-shyr
2000-01-01
We study the Lie algebra structure of the Onsager algebra from the ideal theoretic point of view. A structure theorem of ideals in the Onsager algebra is obtained with the connection to the finite-dimensional representations. We also discuss the solvable algebra aspect of the Onsager algebra through the formal Lie algebra theory.
G/G gauged WZW-matter model, Bethe Ansatz for q-boson model and Commutative Frobenius algebra
Energy Technology Data Exchange (ETDEWEB)
Okuda, Satoshi [Department of Physics, Rikkyo University,Toshima, Tokyo 171-8501 (Japan); Yoshida, Yutaka [High Energy Accelerator Research Organization (KEK),Tsukuba, Ibaraki 305-0801 (Japan)
2014-03-03
We investigate the correspondence between two dimensional topological gauge theories and quantum integrable systems discovered by Moore, Nekrasov, Shatashvili. This correspondence means that the hidden quantum integrable structure exists in the topological gauge theories. We showed the correspondence between the G/G gauged WZW model and the phase model in JHEP 11 (2012) 146 (arXiv:1209.3800). In this paper, we study a one-parameter deformation for this correspondence and show that the G/G gauged WZW model coupled to additional matters corresponds to the q-boson model. Furthermore, we investigate this correspondence from the viewpoint of the commutative Frobenius algebra, the axiom of the two dimensional topological quantum field theory.
Saldarriaga Vargas, Clarita
When there are diseases affecting large populations where the social, economic and cultural diversity is significant within the same region, the biological parameters that determine the behavior of the dispersion disease analysis are affected by the selection of different individuals. Therefore and because of the variety and magnitude of the communities at risk of contracting dengue disease around all over the world, suggest defining differentiated populations with individual contributions in the results of the dispersion dengue disease analysis. In this paper those conditions were taken in account when several epidemiologic models were analyzed. Initially a stability analysis was done for a SEIR mathematical model of Dengue disease without differential susceptibility. Both free disease and endemic equilibrium states were found in terms of the basic reproduction number and were defined in the Theorem (3.1). Then a DSEIR model was solved when a new susceptible group was introduced to consider the effects of important biological parameters of non-homogeneous populations in the spreading analysis. The results were compiled in the Theorem (3.2). Finally Theorems (3.3) and (3.4) resumed the basic reproduction numbers for three and n different susceptible groups respectively, giving an idea of how differential susceptibility affects the equilibrium states. The computations were done using an algorithmic method implemented in Maple 11, a general-purpose computer algebra system.
Algebraic stress model for axial flow in a bare rod-bundle
International Nuclear Information System (INIS)
The problem of predicting transport properties for momentum and heat across the boundaries of interconnected channels has been the subject of many investigations. In the particular case of axial flow through rod-bundles, transport coefficients for channel faces aligned with rod centers are known to be considerably higher than those calculated by simple isotropic theories. And yet, it was been found that secondary flows play only a minor role in this overall transport, being turbulence highly enhanced across that hypothetical surface. In order to numerically predict the correct amount of the quantity being transported, the approach taken by many investigators was then to artificially increase the diffusion coefficient obtained via a simple isopropic theory (usually the standard k-ε model) and numerically match the correct experimentally observed mixing rates. The present paper reports an attempt to describe the turbulent stresses by means of an Algebraic Stress Model for turbulence. Relative turbulent kinetic energy distribution in all three directions are presented and compared with experiments in a square lattice. The strong directional dependence of transport terms are then obtained via a model for the Reynolds stresses. The results identify a need for a better representation of the mean-flow field part of the pressure-strain correlation term
Calculus domains modelled using an original bool algebra based on polygons
Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.
2016-08-01
Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.
Energy Technology Data Exchange (ETDEWEB)
Choudhury, A.G.; Chowdhury, A.R. [Jadavpur Univ., Calcutta (India)
1996-08-01
Intertwining relations for the quantum R-matrix of the SU{sub p,q}(2) invariant spin chain are obtained and the corresponding face model is deduced. An important difference is seen to arise due to the asymmetry generated by the parameters p and q, which leads to a asymmetric face model. An algebraic Bethe ansatz is set up and solved with the help of these intertwining vectors.
Zhang, Yue; Zheng, Yan; Liu, Xi; Zhang, Qingling; Li, Aihua
2016-11-01
This study considers a class of differential algebraic stage-structured bio-economic models with stochastic fluctuations. The stochastic bio-economic model is simplified to an Itô equation using the stochastic averaging method. The stochastic stability, Hopf bifurcation, and P-bifurcation are discussed based on the singular boundary theory of the diffusion process for the system and the invariant measure theory of dynamic systems. Numerical simulations are presented to illustrate our main results.
Model checking of time Petri nets using the state class timed automaton
DEFF Research Database (Denmark)
Lime, Didier; Roux, Olivier H.
2006-01-01
behavioral semantics of the TPN (the initial TPN and the obtained TA are proved timed-bisimilar). It allows us to check real-time properties on TPN by using the state class TA. This can be done efficiently thanks to a reduction of the number of clocks. We have implemented the method, and give some...... experimental results illustrating the efficiency of the translation algorithm in terms of number of clocks. Using the state class TA, we also give a framework for expressing and efficiently verifying TCTL properties on the initial TPN....
Coherent States and Schwinger Models for Pseudo Generalization of the Heisenberg Algebra
Fakhri, H.; Mojaveri, B.; Dehghani, A.
We show that the non-Hermitian Hamiltonians of the simple harmonic oscillator with {PT} and {C} symmetries involve a pseudo generalization of the Heisenberg algebra via two pairs of creation and annihilation operators which are {T}-pseudo-Hermiticity and {P}-anti-pseudo-Hermiticity of each other. The non-unitary Heisenberg algebra is represented by each of the pair of the operators in two different ways. Consequently, the coherent and the squeezed coherent states are calculated in two different approaches. Moreover, it is shown that the approach of Schwinger to construct the su(2), su(1, 1) and sp(4, ℝ) unitary algebras is promoted so that unitary algebras with more linearly dependent number of generators are made.
C*-index of observable algebras in G-spin model
Institute of Scientific and Technical Information of China (English)
JIANG; Lining
2005-01-01
In two-dimensional lattice spin systems in which the spins take values in a finite group G,one can define a field algebra F which carries an action of a Hopf algebra D(G),the double algebra of G and moreover,an action of D(G; H),which is a subalgebra of D(G) determined by a subgroup H of G,so that F becomes a modular algebra.The concrete construction of D(G; H)-invariant subspace AH in F is given.By constructing the quasi-basis of conditional expectation γG of AH onto AG,the C*-index of γG is exactly the index of H in G.
Chisolm, Eric
2012-01-01
This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...
Mokler, Claus
2009-01-01
The face monoid described in [M1] acts on the integrable highest weight modules of a symmetrizable Kac-Moody algebra. It has similar structural properties as a reductive algebraic monoid whose unit group is a Kac-Moody group. We found in [M5] two natural extensions of the action of the Kac-Moody group on its building to actions of the face monoid on the building. Now we give an algebraic geometric model of one of these actions of the face monoid. The building is obtained as a part of the spectrum of homogeneous prime ideals of the Cartan algebra of the Kac-Moody group. We describe the full spectrum of homogeneous prime ideals of the Cartan algebra.
Issa, A. Nourou
2010-01-01
Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-M...
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Holtz, Olga; Ron, Amos
2007-01-01
A wealth of geometric and combinatorial properties of a given linear endomorphism $X$ of $\\R^N$ is captured in the study of its associated zonotope $Z(X)$, and, by duality, its associated hyperplane arrangement ${\\cal H}(X)$. This well-known line of study is particularly interesting in case $n\\eqbd\\rank X \\ll N$. We enhance this study to an algebraic level, and associate $X$ with three algebraic structures, referred herein as {\\it external, central, and internal.} Each algebraic structure is ...
Institute of Scientific and Technical Information of China (English)
XIEBing_Hao; ZHANGHong－Biao; 等
2002-01-01
An algebraic diagonalization method is proposed.As two examples,the Hamiltonians of BCS ground state under mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized by using SU(2),SU(1,1) Lie algebraic method,respectively.Meanwhile,the eignenstates of the above two models are revealed to be SU(2),SU(1,1) coherent states,respectively,The relation between the usual Bogoliubov-Valatin transformation and the algebraic method in a special case is also discussed.
几何模型在线性代数教学中的应用%Application of Geometric Model in Linear Algebra Teaching
Institute of Scientific and Technical Information of China (English)
席政军
2013-01-01
Through analyzing the relationship between geometric model and linear algebra, this article focuses on the application of geometric model in linear algebra, and discusses the classroom teaching of linear algebra.%本文通过几何模型与线性代数之间的关系，重点讨论几何模型在线性代数中的应用，并对线性代数课堂教学进行了初步探讨。
Directory of Open Access Journals (Sweden)
Murali Bosukonda
2011-01-01
Full Text Available This paper reveals mathematical models of the simplest Mamdani PI/PD controllers which employ two fuzzy sets (N: negative and P: positive on the universe of discourse (UoD of each of two input variables (displacement and velocity and three fuzzy sets (N: negative, Z: zero, and P: positive on the UoD of output variable (control output in the case of PD, and incremental control output in the case of PI. The basic constituents of these models are algebraic product/minimum AND, bounded sum/algebraic sum/maximum OR, algebraic product inference, three linear fuzzy control rules, and Center of Sums (CoS defuzzification. Properties of all these models are investigated. It is shown that all these controllers are different nonlinear PI/PD controllers with their proportional and derivative gains changing with the inputs. The proposed models are significant and useful to control community as they are completely new and qualitatively different from those reported in the literature.
Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields
Fiorenza, Domenico; Schreiber, Urs
2013-01-01
We formalize higher dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type sigma-model branes (open brane ending on background brane) are encoded precisely in (super-) L-infinity-extension theory and how the resulting "extended (super-)spacetimes" formalize spacetimes containing sigma model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super p-brane spectrum of superstring/M-theory is realized this way, including the pure sigma-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional spacetime with an M2-brane condensate turns out to be the ...
Institute of Scientific and Technical Information of China (English)
ZHAO xiao-Song; L(U) Jian-Qin
2009-01-01
Both the PIC(Particle-In-Cell) model and the Lie algebraic method can be used to simulate the transport of intense continuous beams.The PIC model is to calculate the space charge field,which is blended into the external field,and then simulate the trajectories of particles in the total field;the Lie algebraic method is to simulate the intense continuous beam transport with transport matrixes.Two simulation codes based on the two methods are developed respectively,and the simulated results of transport in a set of electrostatic lenses are compared.It is found that the results from the two codes are in agreement with each other.and both approaches have their own merits.
Surfaces immersed in su(N+1) Lie algebras obtained from the CP{sup N} sigma models
Energy Technology Data Exchange (ETDEWEB)
Grundland, A M [Centre de Recherches Mathematiques, Universite de Montreal, CP 6128, Succ. Centre-ville, Montreal (Ciheam) H3C 3J7 (Canada) Universite du Quebec, Trois-Rivieres CP500 (QC) G9A 5H7 (Canada); Strasburger, A [Department of Mathematical Economics, Warsaw Agricultural University, ul. Nowoursynowska 166, 02-787 Warsaw (Poland); Zakrzewski, W J [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)
2006-07-21
We study some geometrical aspects of two-dimensional orientable surfaces arising from the study of CP{sup N} sigma models. To this aim we employ an identification of R{sup N(N+2)} with the Lie algebra su(N+1) by means of which we construct a generalized Weierstrass formula for immersion of such surfaces. The structural elements of the surface like its moving frame, the Gauss-Weingarten and the Gauss-Codazzi-Ricci equations are expressed in terms of the solution of the CP{sup N} model defining it. Further, the first and second fundamental forms, the Gaussian curvature, the mean curvature vector, the Willmore functional and the topological charge of surfaces are expressed in terms of this solution. We present detailed implementation of these results for surfaces immersed in su(2) and su(3) Lie algebras.
On some spurious mode issues in shallow-water models using a linear algebra approach
Le Roux, D. Y.; Sène, A.; Rostand, V.; Hanert, E.
Numerical methods that are usually employed in ocean modelling are typically finite-difference, finite and spectral-element techniques. For most of these methods the coupling between the momentum and continuity equations is a delicate problem and it usually leads to spurious solutions in the representation of inertia-gravity waves. The spurious modes have a wide range of characteristics and may take the form of pressure (surface-elevation), velocity and/or Coriolis modes. The modes usually cause aliasing and an accumulation of energy in the smallest-resolvable scale, leading to noisy solutions. The Fourier analysis has proven practical and beneficial to describe the spurious solutions of several classical schemes. However it is restricted to uniform meshes on which the variables are regularly distributed. In this paper, a linear algebra approach is proposed to study the existence and the behaviour of stationary spurious modes associated with zero frequency, for some popular finite-difference and finite-element grids. The present approach is performed on uniform meshes but it applies equally well to regular as well as unstructured meshes with irregular geometry for the finite-element schemes.
Tze, Chia-Hsiung; Nam, Soonkeon
1989-08-01
Exploiting the unique connection between the division algebras of the complex numbers ( C), quaternions ( H), octonions ( Ω) and the essential Hopf maps S2 n - 1 → Sn with n = 2, 4, 8, we study Sn - 2 -membrane solitons in three D-dimensional KP(1) σ-models with a Hopf term, (D, K) = (3, C), (7, H), and (15, Ω). We present a comprehensive analysis of their topological phase entanglements. Extending Polyakov's approach to Fermi-Bose transmutations to higher dimensions, we detail a geometric regularization of Gauss' linking coefficient, its connections to the self-linking, twisting, writhing numbers of the Feynman paths of the solitons in their thin membrane limit. Alternative forms of the Hopf invariant show the latter as an Aharonov-Bohm-Berry phase of topologically massive, rank ( n - 1) antisymmetric tensor U(1) gauge fields coupled to the Sn - 2 -membranes. Via a K-bundle formulation of the dynamics of electrically and magnetically charged extended objects these phases are shown to induce a dyon-like structure on these membranes. We briefly discuss the connections to harmonic mappings, higher dimensional monopoles and instantons. We point out the relevance of the Gauss-Bonnet-Chern theorem on the connection between spin and statistics. By way of the topology of the infinite groups of sphere mappings Sn → Sn, n = 2, 4, 8, we also analyze the implications of the Hopf phases on the fractional spin and statistics of the membranes.
$\\eta_{c}$ Elastic and Transition Form Factors: Contact Interaction and Algebraic Model
Bedolla, Marco A; Cobos-Martínez, J J; Bashir, Adnan
2016-01-01
For the flavor-singlet heavy quark system of charmonia in the pseudoscalar ($\\eta_c(1S)$) channel, we calculate the elastic (EFF) and transition form factors (TFF) ($\\eta_c(1S) \\rightarrow \\gamma \\gamma^*$) for a wide range of photon momentum transfer squared ($Q^2$). The framework for this analysis is provided by a symmetry-preserving Schwinger-Dyson equation (SDE) and Bethe-Salpeter equation (BSE) treatment of a vector$\\times$vector contact interaction (CI). We also employ an algebraic model (AM), developed earlier to describe the light quark systems. It correctly correlates infrared and ultraviolet dynamics of quantum chromodynamics (QCD). The CI results agree with the lattice data for low $Q^2$. For $Q^2 \\geqslant Q_0^2$, the results start deviating from the lattice results by more than $20 \\%$. $Q_0^2 \\thickapprox 2.5 {\\rm GeV}^2$ for the EFF and $\\thickapprox 25 {\\rm GeV}^2$ for the TFF. We also present the results for the EFF, TFF as well as $\\eta_c(1S)$ parton distribution amplitude for the AM. Wherev...
McKeague, Charles P
1986-01-01
Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra
McKeague, Charles P
1981-01-01
Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e
Dima, Cuatualin; Guelev, Dimitar; 10.4204/EPTCS.25.12
2010-01-01
We present a variant of ATL with distributed knowledge operators based on a synchronous and perfect recall semantics. The coalition modalities in this logic are based on partial observation of the full history, and incorporate a form of cooperation between members of the coalition in which agents issue their actions based on the distributed knowledge, for that coalition, of the system history. We show that model-checking is decidable for this logic. The technique utilizes two variants of games with imperfect information and partially observable objectives, as well as a subset construction for identifying states whose histories are indistinguishable to the considered coalition.
Directory of Open Access Journals (Sweden)
Cătălin Dima
2010-06-01
Full Text Available We present a variant of ATL with distributed knowledge operators based on a synchronous and perfect recall semantics. The coalition modalities in this logic are based on partial observation of the full history, and incorporate a form of cooperation between members of the coalition in which agents issue their actions based on the distributed knowledge, for that coalition, of the system history. We show that model-checking is decidable for this logic. The technique utilizes two variants of games with imperfect information and partially observable objectives, as well as a subset construction for identifying states whose histories are indistinguishable to the considered coalition.
Which multiplier algebras are $W^*$-algebras?
Akemann, Charles A.; Amini, Massoud; Asadi, Mohammad B.
2013-01-01
We consider the question of when the multiplier algebra $M(\\mathcal{A})$ of a $C^*$-algebra $\\mathcal{A}$ is a $ W^*$-algebra, and show that it holds for a stable $C^*$-algebra exactly when it is a $C^*$-algebra of compact operators. This implies that if for every Hilbert $C^*$-module $E$ over a $C^*$-algebra $\\mathcal{A}$, the algebra $B(E)$ of adjointable operators on $E$ is a $ W^*$-algebra, then $\\mathcal{A}$ is a $C^*$-algebra of compact operators. Also we show that a unital $C^*$-algebr...
A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen, Yao-Deng; Yang, Hong-Wei; Gao, Yu-Fang; Yin, Bao-Shu; Feng, Xing-Ru
2015-09-01
A generalized Boussinesq equation that includes the dissipation effect is derived to describe a kind of algebraic Rossby solitary waves in a rotating fluid by employing perturbation expansions and stretching transformations of time and space. Using this equation, the conservation laws of algebraic Rossby solitary waves are discussed. It is found that the mass, the momentum, the energy, and the velocity of center of gravity of the algebraic solitary waves are conserved in the propagation process. Finally, the analytical solution of the equation is generated. Based on the analytical solution, the properties of the algebraic solitary waves and the dissipation effect are discussed. The results point out that, similar to classic solitary waves, the dissipation can cause the amplitude and the speed of solitary waves to decrease; however, unlike classic solitary waves, the algebraic solitary waves can split during propagation and the decrease of the detuning parameter can accelerate the occurrence of the solitary waves fission phenomenon. Project supported by the Shandong Provincial Key Laboratory of Marine Ecology and Environment and Disaster Prevention and Mitigation Project, China (Grant No. 2012010), the National Natural Science Foundation of China (Grant Nos. 41205082 and 41476019), the Special Funds for Theoretical Physics of the National Natural Science Foundation of China (Grant No. 11447205), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.
Song, Yunquan; Lin, Lu; Jian, Ling
2016-07-01
Single-index varying-coefficient model is an important mathematical modeling method to model nonlinear phenomena in science and engineering. In this paper, we develop a variable selection method for high-dimensional single-index varying-coefficient models using a shrinkage idea. The proposed procedure can simultaneously select significant nonparametric components and parametric components. Under defined regularity conditions, with appropriate selection of tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. Moreover, due to the robustness of the check loss function to outliers in the finite samples, our proposed variable selection method is more robust than the ones based on the least squares criterion. Finally, the method is illustrated with numerical simulations.
Directory of Open Access Journals (Sweden)
Yuan-Shyi Peter Chiu
2013-02-01
Full Text Available This study uses mathematical modeling along with an algebraic technique to resolve the production-distribution policy for a single-producer multi-retailer integrated inventory system with scrap in production. We assume that a product is manufactured through an imperfect production process where all nonconforming items will be picked up and scrapped in each production cycle. After the entire lot is quality assured, multiple shipments will be delivered synchronously to m different retailers in each cycle. The objective is to determine the optimal replenishment lot size and optimal number of shipments that minimizes total expected costs for such a specific supply chains system. Conventional method is by the use of differential calculus on system cost function to derive the optimal policy (Chiu et al al., 2012c, whereas the proposed algebraic approach is a straightforward method that enables practitioners who may not have sufficient knowledge of calculus to understand and manage more effectively the real-life systems.
QuickChecking Static Analysis Properties
DEFF Research Database (Denmark)
Midtgaard, Jan; Møller, Anders
2015-01-01
A static analysis can check programs for potential errors. A natural question that arises is therefore: who checks the checker? Researchers have given this question varying attention, ranging from basic testing techniques, informal monotonicity arguments, thorough pen-and-paper soundness proofs......, to verified fixed point checking. In this paper we demonstrate how quickchecking can be useful for testing a range of static analysis properties with limited effort. We show how to check a range of algebraic lattice properties, to help ensure that an implementation follows the formal specification...... of a lattice. Moreover, we offer a number of generic, type-safe combinators to check transfer functions and operators on lattices, to help ensure that these are, e.g., monotone, strict, or invariant. We substantiate our claims by quickchecking a type analysis for the Lua programming language...
Algebraic totality, towards completeness
Tasson, Christine
2009-01-01
Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans ${\\mathcal{B}}$ and a conditional operator, which can be interpreted in this model. We prove completeness at type ${\\mathcal{B}}^n\\to{\\mathcal{B}}$ for every n by an algebraic metho...
Lazeroms, W. M.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.; Svensson, G.
2014-12-01
Turbulent flows with buoyancy effects occur in many situations, both in industry and in the atmosphere. It is challenging to correctly model such flows, especially in the case of stably stratified turbulence, where vertical motions are damped by buoyancy forces. For this purpose, we have derived a so-called explicit algebraic model for the Reynolds stresses and turbulent heat flux that gives accurate predictions in flows with buoyancy effects. Although inspired by turbulence models from engineering, the main aim of our work is to improve the parametrization of turbulence in the atmospheric boundary layer (ABL). Explicit algebraic turbulence models are a class of parametrizations that, on the one hand, are more advanced than standard eddy-diffusivity relations. On the other hand, they are signficantly easier to handle numerically than models that require the solution of the full flux-budget equations. To derive the algebraic model, we apply the assumption that transport terms of dimensionless fluxes can be neglected. Careful considerations of the algebra lead to a consistent formulation of the Reynolds stresses and turbulent heat flux, which is more general and robust than previous models of a similar kind. The model is shown to give good results compared to direct numerical simulations of engineering test cases, such as turbulent channel flow. Recent work has been aimed at testing the model in an atmospheric context. The first of these tests makes use of the GABLS1 case, in which a stable atmospheric boundary layer develops through a constant surface cooling rate. The model is able to give good predictions of this case compared to LES (see attached figure). Interestingly, the results are very close to the outcome of the recently developed Energy-Flux-Budget (EFB) closure by Zilitinkevich et al. (2013). A detailed discussion of the similarities and differences between these models will be given, which can give insight in the more general gap between engineering and
Chiu, Yuan-Shyi Peter; Chou, Chung-Li; Chang, Huei-Hsin; Chiu, Singa Wang
2016-01-01
A multi-customer finite production rate (FPR) model with quality assurance and discontinuous delivery policy was investigated in a recent paper (Chiu et al. in J Appl Res Technol 12(1):5-13, 2014) using differential calculus approach. This study employs mathematical modeling along with a two-phase algebraic method to resolve such a specific multi-customer FPR model. As a result, the optimal replenishment lot size and number of shipments can be derived without using the differential calculus. Such a straightforward method may assist practitioners who with insufficient knowledge of calculus in learning and managing the real multi-customer FPR systems more effectively. PMID:27186457
Institute of Scientific and Technical Information of China (English)
WANG Renhong; ZHU Chungang
2004-01-01
The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.
A Deductive Approach towards Reasoning about Algebraic Transition Systems
Jun Fu; Jinzhao Wu; Hongyan Tan
2015-01-01
Algebraic transition systems are extended from labeled transition systems by allowing transitions labeled by algebraic equations for modeling more complex systems in detail. We present a deductive approach for specifying and verifying algebraic transition systems. We modify the standard dynamic logic by introducing algebraic equations into modalities. Algebraic transition systems are embedded in modalities of logic formulas which specify properties of algebraic transition systems. The semanti...
Djurfeldt, Mikael
2012-07-01
The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.
Hazewinkel, Michiel
2004-01-01
Two important generalizations of the Hopf algebra of symmetric functions are the Hopf algebra of noncommutative symmetric functions and its graded dual the Hopf algebra of quasisymmetric functions. A common generalization of the latter is the selfdual Hopf algebra of permutations (MPR Hopf algebra). This latter Hopf algebra can be seen as a Hopf algebra of endomorphisms of a Hopf algebra. That turns out to be a fruitful way of looking at things and gives rise to wide ranging further generaliz...
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Proposing and Testing a Model to Explain Traits of Algebra Preparedness
Venenciano, Linda; Heck, Ronald
2016-01-01
Early experiences with theoretical thinking and generalization in measurement are hypothesized to develop constructs we name here as logical reasoning and preparedness for algebra. Based on work of V. V. Davydov (1975), the Measure Up (MU) elementary grades experimental mathematics curriculum uses quantities of area, length, volume, and mass to…
Caglayan, Günhan
2013-01-01
This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…
Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations
Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie
2015-01-01
The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…
Developing Pre-Algebraic Thinking in Generalizing Repeating Pattern Using SOLO Model
Lian, Lim Hooi; Yew, Wun Thiam
2011-01-01
In this paper, researchers discussed the application of the generalization perspective in helping the primary school pupils to develop their pre-algebraic thinking in generalizing repeating pattern. There are two main stages of the generalization perspective had been adapted, namely investigating and generalizing the pattern. Since the Biggs and…
Algebraic Squares: Complete and Incomplete.
Gardella, Francis J.
2000-01-01
Illustrates ways of using algebra tiles to give students a visual model of competing squares that appear in algebra as well as in higher mathematics. Such visual representations give substance to the symbolic manipulation and give students who do not learn symbolically a way of understanding the underlying concepts of completing the square. (KHR)
International Nuclear Information System (INIS)
Research highlights: → The computed DNS statistics indicate that a gradient-transport scheme can be applied to the vertical and spanwise scalar flux components. → The streamwise scalar flux is characterized by a counter-gradient transport mechanism in the wake region close to the obstacle. → The wake profiles of scalar fluctuations and the shape of probability density functions do not suggest a significant flapping movement of the scalar plume. → The evaluation of scalar dispersion models must include a careful assessment of the computed mean velocity field and Reynolds stress tensor. → Algebraic models provide an improved prediction of the mean concentration field as compared to the standard eddy-diffusivity model. -- Abstract: The dispersion of a passive scalar downstream of a wall-mounted cube is examined using direct numerical simulations and turbulence models applied to the Reynolds equations. The scalar is released from a circular source located on top of the obstacle, which is immersed in a developing boundary-layer flow. Direct simulations are performed to give insight into the mixing process and to provide a reference database for turbulence closures. Algebraic flux models are evaluated against the standard eddy-diffusivity representation. Coherent structures periodically released from the cube top are responsible for a counter-diffusion mechanism appearing in the streamwise scalar flux. Alternating vortex pairs form from the lateral edges of the cube, but the intensity profiles and probability density functions of scalar fluctuations suggest that they do not cause a significant flapping movement of the scalar plume. The gradient-transport scheme is consistent with the vertical and spanwise scalar flux components. From the comparative study with our direct simulations, we further stress that Reynolds stress predictions must be carefully evaluated along with scalar flux closures in order to establish the reliability of Reynolds
GOLDMAN ALGEBRA, OPERS AND THE SWAPPING ALGEBRA
Labourie, François
2012-01-01
We define a Poisson Algebra called the {\\em swapping algebra} using the intersection of curves in the disk. We interpret a subalgebra of the fraction algebra of the swapping algebra -- called the {\\em algebra of multifractions} -- as an algebra of functions on the space of cross ratios and thus as an algebra of functions on the Hitchin component as well as on the space of $\\mathsf{SL}_n(\\mathbb R)$-opers with trivial holonomy. We relate this Poisson algebra to the Atiyah--Bott--Goldman symple...
Directory of Open Access Journals (Sweden)
G.C. Rao
2012-11-01
Full Text Available A C- algebra is the algebraic form of the 3-valued conditional logic, which was introduced by F. Guzman and C. C. Squier in 1990. In this paper, some equivalent conditions for a C- algebra to become a boolean algebra in terms of congruences are given. It is proved that the set of all central elements B(A is isomorphic to the Boolean algebra of all C-algebras Sa, where a B(A. It is also proved that B(A is isomorphic to the Boolean algebra of all C-algebras Aa, where a B(A.
Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N
2015-01-01
Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Allenby, Reg
1995-01-01
As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
A method for model checking UML statecharts%一种UML状态图模型检测方法
Institute of Scientific and Technical Information of China (English)
张涛; 黄少滨; 黄宏涛; 吕天阳; 刘刚
2011-01-01
The aim of this paper is to find various errors and inconsistencies of system design in the early stages of the development process. A method for model checking UML statecharts was proposed, and was used to verify the consistency of the design model and the requirement specifications. The elements of UML statecharts were defined by a tuple system, and the middle representation of the UML statecharts - SC - was given. Based on the definition of operational semantics of SC, the statechart was converted into a state transition system with KRIPKE semantics, and the property which the system must meet was expressed as a linear temporal logic formula. Finally, a model checking method was given to verify whether the state transition system could meet the conditions of the linear temporal logic formula. This method can convert more elements of statecharts, it can also reduce the state space of transition system of statecharts and improve the efficiency of the model checking.%为在开发过程早期发现系统设计的各种错误与不一致,提出一种UML状态图模型检测方法,用于验证设计模型与需求规约间的一致性.该方法通过元组定义UML状态图的主要元素,给出状态图的中间表示形式SC.基于SC上定义的操作语义,该方法将状态图转换为具有KRIPKE语义结构的状态迁移系统,并将系统需满足的性质表示为线性时序逻辑公式,用模型检测技术验证状态迁移系统对线性时序逻辑公式的满足性.该方法可以转换更多的状态图元素,缩减状态图迁移系统的状态空间及提高模型检测效率.
Towards automated software model checking using graph transformation systems and Bogor
Institute of Scientific and Technical Information of China (English)
Vahid RAFE; Adel T.RAHMANI
2009-01-01
Graph transformation systems have become a general formal modeling language to describe many models in software development process. Behavioral modeling of dynamic systems and model-to-model transformations are only a few examples in which graphs have been used to software development. But even the perfect graph transformation system must be equipped with automated analysis capabilities to let users understand whether such a formal specification fulfills their requirements. In this paper,we present a new solution to verify graph transformation systems using the Bogor model checker. The attributed graph grammars (AGG)-Iike graph transformation systems are translated to Bandera intermediate representation (BIR), the input language of Bogor,and Bogor verifies the model against some interesting properties defined by combining linear temporal logic (LTL) and special-purpose graph rules. Experimental results are encouraging, showing that in most cases oar solution improves existing approaches in terms of both performance and expressiveness.
Sato, Kimiko; ODA, MEGUMI
2011-01-01
A questionnaire survey was administered to 317 parents who attended infant health check-ups in City B, Okayama Prefecture between October, 2008 and March, 2009. The questionnaire survey studied 7 factors based on the PRECEDE-PROCEED Model. We analysed factors that affected oral health behaviour and attendance at scheduled dental health check-ups. The survey containing 22 items concerning matters such as 'QOL' and 'health problems' was posted to parents and guardians in advance, and then colle...
THE EXPERIMENTAL CHECK OF RELIABILITY OF MATHEMATICAL MODELS OF FRICTION JOINTS
Directory of Open Access Journals (Sweden)
A. Yu. Klyukin
2011-07-01
Full Text Available Problem statement. Up to now, there has been no model describing work of friction joints on high-strength bolts in elastic stage. All previous models describe the structure after macrodis-placement when bolt was subjected to shearing and crushing. There also has been no model of complex joint with gusset and linings.Results and conclusions. The bolted joint model involving substitution of the friction rigidity for elastic links is presented. Stresses in complex joints of metal bridge are determined experimentally. The results obtained with the use of the model are compared with experimental results. Stresses at the points of joint beyond the reach of experiment are calculated. Experimental results supported the validity of the model.
Logic Model Checking of Time-Periodic Real-Time Systems
Florian, Mihai; Gamble, Ed; Holzmann, Gerard
2012-01-01
In this paper we report on the work we performed to extend the logic model checker SPIN with built-in support for the verification of periodic, real-time embedded software systems, as commonly used in aircraft, automobiles, and spacecraft. We first extended the SPIN verification algorithms to model priority based scheduling policies. Next, we added a library to support the modeling of periodic tasks. This library was used in a recent application of the SPIN model checker to verify the engine control software of an automobile, to study the feasibility of software triggers for unintended acceleration events.
Automated evolutionary restructuring of workflows to minimise errors via stochastic model checking
DEFF Research Database (Denmark)
Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter
2014-01-01
This paper presents a framework for the automated restructuring of workflows that allows one to minimise the impact of errors on a production workflow. The framework allows for the modelling of workflows by means of a formalised subset of the Business Process Modelling and Notation (BPMN) languag...... of the production workflows and the expression of the goals require manual input....
Spatial-Operator Algebra For Robotic Manipulators
Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.
1991-01-01
Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.
Indian Academy of Sciences (India)
Tomás L Gómez
2001-02-01
This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.
Oliver, Bob; Pawałowski, Krzystof
1991-01-01
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
DEFF Research Database (Denmark)
Herbert, Luke Thomas; Hansen, Zaza Nadja Lee
2016-01-01
This article presents a framework for the automated restructuring of stochastic workflows to reduce the impact of faults. The framework allows for the modelling of workflows by means of a formalised subset of the BPMN workflow language. We extend this modelling formalism to describe faults...... to model resources, associated with a workflow. The approach is fully automated and only the modelling of the production workflows, potential faults and the expression of the goals require manual input. We present the design of a software tool implementing this framework and explore the practical utility...... of this approach through an industrial case study in which the risk of production failures and their impact are reduced by restructuring the workflow....
Kick, Alexander
2007-01-01
We present a reduction algorithm which reduces Kripke structures by eliminating transitions from the model which do not affect the visible components of the model. These are exactly the variables contained in the specification formula. The reduction algorithm preserves the truth of special CTL formulae. In contrast to formula-dependent reduction algorithms presented so far, which are mostly computationally expensive, our algorithm needs only one pass through the reachable ...
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Brat, Guillaume P.; Martinie, Celia; Palanque, Philippe
2013-01-01
During early phases of the development of an interactive system, future system properties are identified (through interaction with end users in the brainstorming and prototyping phase of the application, or by other stakehold-ers) imposing requirements on the final system. They can be specific to the application under development or generic to all applications such as usability principles. Instances of specific properties include visibility of the aircraft altitude, speed… in the cockpit and the continuous possibility of disengaging the autopilot in whatever state the aircraft is. Instances of generic properties include availability of undo (for undoable functions) and availability of a progression bar for functions lasting more than four seconds. While behavioral models of interactive systems using formal description techniques provide complete and unambiguous descriptions of states and state changes, it does not provide explicit representation of the absence or presence of properties. Assessing that the system that has been built is the right system remains a challenge usually met through extensive use and acceptance tests. By the explicit representation of properties and the availability of tools to support checking these properties, it becomes possible to provide developers with means for systematic exploration of the behavioral models and assessment of the presence or absence of these properties. This paper proposes the synergistic use two tools for checking both generic and specific properties of interactive applications: Petshop and Java PathFinder. Petshop is dedicated to the description of interactive system behavior. Java PathFinder is dedicated to the runtime verification of Java applications and as an extension dedicated to User Interfaces. This approach is exemplified on a safety critical application in the area of interactive cockpits for large civil aircrafts.
Wang, Dan; Wang, Linxiang; Melnik, Roderick
2016-07-01
In the current paper, a nonlinear differential algebraic approach is proposed for the modeling of hysteretic dynamics of polycrystalline ferromagnetic materials. The model is constructed by employing a phenomenological theory to the magnetization orientation switching. For the modeling of hysteresis in polycrystalline ferromagnetic materials, the single crystal model is applied to each magnetic domain along its own principal axis. The overall dynamics of the polycrystalline materials is obtained by taking a weighted combination of the dynamics of all magnetic domains. The weight function for the combination is taken as the distribution function of the principal axes. Numerical simulations are performed and comparisons with its experimental counterparts are presented. The hysteretic dynamics caused by orientation switching processes is accurately captured by the proposed model. Minor hysteresis loops associated with partial-amplitude loadings are also captured. Rate dependence of the hysteresis loops are inherently incorporated into the model due to its differential nature.
Can We Efficiently Check Concurrent Programs Under Relaxed Memory Models in Maude?
DEFF Research Database (Denmark)
Arrahman, Yehia Abd; Andric, Marina; Beggiato, Alessandro;
2014-01-01
to the state space explosion. Several techniques have been proposed to mitigate those problems so to make verification under relaxed memory models feasible. We discuss how to adopt some of those techniques in a Maude-based approach to language prototyping, and suggest the use of other techniques that have been......Relaxed memory models offer suitable abstractions of the actual optimizations offered by multi-core architectures and by compilers of concurrent programming languages. Using such abstractions for verification purposes is challenging in part due to their inherent non-determinism which contributes...
Institute of Scientific and Technical Information of China (English)
Chun-Zheng CAO; Jin-Guan LIN
2012-01-01
The aim of this paper is to study the tests for variance heterogeneity and/or autocorrelation in nonlinear regression models with elliptical and AR(1) errors.The elliptical class includes several symmetric multivariate distributions such as normal,Student-t,power exponential,among others.Several diagnostic tests using score statistics and their adjustment are constructed.The asymptotic properties,including asymptotic chi-square and approximate powers under local alternatives of the score statistics,are studied.The properties of test statistics are investigated through Monte Carlo simulations.A data set previously analyzed under normal errors is reanalyzed under elliptical models to illustrate our test methods.
Institute of Scientific and Technical Information of China (English)
O.G.Martynenko; V.N.Korovkin
1992-01-01
An algebraic model of turbulence,involving buyancy forces,is used for calculating velocity and temperature fields in plane turbulent vertical jets in a non-homogeneous stagnant medium,A new approach to the solution of the governing system of partial differential differental equations (Continuity ,Conservation of momentum,heat (buoyancy),turbulent kinetic energy,dissipation rate and mean quadratic temperature fluctuation)is suggested which is based on the intrduction of mathematical variables.Comparison is made between the results of the present calculations with experimental and numerical data of ther authors.
Construction and decoding of a class of algebraic geometry codes
DEFF Research Database (Denmark)
Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd;
1989-01-01
A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result is a decod...... is a decoding algorithm which turns out to be a generalization of the Peterson algorithm for decoding BCH decoder codes......A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result...
Learning and Model-checking Networks of I/O Automata
DEFF Research Database (Denmark)
Mao, Hua; Jaeger, Manfred
2012-01-01
We introduce a new statistical relational learning (SRL) approach in which models for structured data, especially network data, are constructed as networks of communicating nite probabilistic automata. Leveraging existing automata learning methods from the area of grammatical inference, we can le...
Model checking a cache coherence protocol for a Java DSM implementation
Pang, J.; Fokkink, W.J.; Hofman, R.; Veldema, R.
2007-01-01
Jackal is a fine-grained distributed shared memory implementation of the Java programming language. It aims to implement Java's memory model and allows multithreaded Java programs to run unmodified on a distributed memory system. It employs a multiple-writer cache coherence protocol. In this paper,
Fluid-structure interaction model to check up discharging pipe system
International Nuclear Information System (INIS)
Within phenomena group that occur in a pipelines system that lead some fluid in stationary state, the loss of lateral stability is which one of the more common and important of them since it is showed in periodic vibrations or aleatories, way against whose effects it will have to be designed the piping to avoid catastrophic failures. The present work is a part of the realized effort for incorporating to the programs of digital computers used for the structural analysis of piping systems based in the finite element method. It is a model that includes the lateral effect that induces the fluid on the pipes. For this effect was planted and obtained a model or element for straight pipes segments. It was through the use of analytical variational methods and polynomial approximations (typical techniques using in finite elements). When were effected the calculations of characteristic frequencies in straight pipe sections configurations. It was obtained concordance with the analytical predictions. There fore it was demonstrated that the model is correct. A continuation of this work will be to obtain the models for curved segments of piping. (Author)
Zapatrin, R R
1998-01-01
An algebraic scheme is suggested in which discretized spacetime turns out to be a quantum observable. As an example, a toy model producing spacetimes of four points with different topologies is presented. The possibility of incorporating this scheme into the framework of non-commutative differential geometry is discussed.
Clifford algebra, geometric algebra, and applications
Lundholm, Douglas
2009-01-01
These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction (then called geometric algebra) with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra. The various applications presented include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
O'Hanlon, Angela L.
2011-01-01
The purpose of the study was to determine the effect of pacing and scheduling of algebra coursework on assigned 9th-grade students who traditionally would qualify for pre-algebra instruction and same course 9th-grade students who traditionally would qualify for standard algebra instruction. Students were selected based on completion of first-year…
Central simple Poisson algebras
Institute of Scientific and Technical Information of China (English)
SU; Yucai; XU; Xiaoping
2004-01-01
Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.
El-Chaar, Caroline
2012-01-01
In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. U...
Directory of Open Access Journals (Sweden)
Jörg Becker
2012-11-01
Full Text Available With a steady increase of regulatory requirements for business processes, automation support of compliance management is a field garnering increasing attention in Information Systems research. Several approaches have been developed to support compliance checking of process models. One major challenge for such approaches is their ability to handle different modeling techniques and compliance rules in order to enable widespread adoption and application. Applying a structured literature search strategy, we reflect and discuss compliance-checking approaches in order to provide an insight into their generalizability and evaluation. The results imply that current approaches mainly focus on special modeling techniques and/or a restricted set of types of compliance rules. Most approaches abstain from real-world evaluation which raises the question of their practical applicability. Referring to the search results, we propose a roadmap for further research in model-based business process compliance checking.
A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints
Kothari, Sunil; 10.4204/EPTCS.42.3
2010-01-01
We present formalized proofs verifying that the first-order unification algorithm defined over lists of satisfiable constraints generates a most general unifier (MGU), which also happens to be idempotent. All of our proofs have been formalized in the Coq theorem prover. Our proofs show that finite maps produced by the unification algorithm provide a model of the axioms characterizing idempotent MGUs of lists of constraints. The axioms that serve as the basis for our verification are derived from a standard set by extending them to lists of constraints. For us, constraints are equalities between terms in the language of simple types. Substitutions are formally modeled as finite maps using the Coq library Coq.FSets.FMapInterface. Coq's method of functional induction is the main proof technique used in proving many of the axioms.
A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints
Directory of Open Access Journals (Sweden)
Sunil Kothari
2010-12-01
Full Text Available We present formalized proofs verifying that the first-order unification algorithm defined over lists of satisfiable constraints generates a most general unifier (MGU, which also happens to be idempotent. All of our proofs have been formalized in the Coq theorem prover. Our proofs show that finite maps produced by the unification algorithm provide a model of the axioms characterizing idempotent MGUs of lists of constraints. The axioms that serve as the basis for our verification are derived from a standard set by extending them to lists of constraints. For us, constraints are equalities between terms in the language of simple types. Substitutions are formally modeled as finite maps using the Coq library Coq.FSets.FMapInterface. Coq's method of functional induction is the main proof technique used in proving many of the axioms.
On decidability and model checking for a first order modal logic for value-passing processes
Institute of Scientific and Technical Information of China (English)
薛锐; 林惠民
2003-01-01
A semantic interpretation of a first order extension of Hennessy-Milner logic for value-passing processes, named HML(FO), is presented. The semantics is based on symbolic transitiongraphs with assignment. It is shown that the satisfiability of the two-variable sub-logic HML(FO2) ofHML(FO) is decidable, and the complexity discussed. Finally, a decision procedure for model checkingthe value-passing processes with respect to HML(FO2) is obtained.
Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with Z2n Grading
Institute of Scientific and Technical Information of China (English)
KE San-Min; LI Xin-Ying; WANG Chun; YUE Rui-Hong
2011-01-01
The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with Z2n grading is derived using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution. When n = 2, our results coincide with the results given by Magro for the pure spinor description of AdS5 × S5 string theory (when the ghost terms are omitted).%The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with Z2n grading is derived using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints.This enables us to show that the conserved charges of the theory are in involution.When n =2,our results coincide with the results given by Magro for the pure spinor description of AdS5 × S5 string theory (when the ghost terms are omitted).Bena,Polchinski and Roiban[1] found an infinite number of non-local classically conserved charges for the Grecn-Schwarz superstring in AdS5 × S5 background.[2] Similar results were obtained for some other strings[3-9] that propagate in AdS space-time,as discussed in Refs.[7 9].Vallilo[10] showed that such charges also exist in the pure-spinor formalism of the superstring in AdS5 × S5.Bianchi and Klǔson[11] gave the current algebra of the pure-spinor superstring.Berkovits[12] proved that the nonlocal charges in the string theory are BRST-invariant and physical.
José, Marco V; Morgado, Eberto R; Govezensky, Tzipe
2011-07-01
Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.
Kang, Soo Hoon; Lim, Yaeji; Lee, Hyuk; Kim, Joungyoun; Chi, Sangah; Min, Yang Won; Min, Byung-Hoon; Lee, Jun Haeng; Son, Hee Jung; Ryu, Seungho; Rhee, Poong-Lyul; Kim, Jae J
2016-01-01
Erosive esophagitis is a major risk factor for Barrett esophagus and esophageal adenocarcinoma. Information regarding the putative risk factors for developing erosive esophagitis is considerably heterogeneous; thus, a risk model is required to clinically predict the incidence of erosive esophagitis. This study was to derive and validate a predictive model for the incidence of developing erosive esophagitis after negative index endoscopy in a population subjected to routine health check-ups. This retrospective cohort study of health check-ups included 11,535 patients who underwent repeated screening endoscopy after >3 years from a negative index endoscopy. We used logistic regression analysis to predict the incidence of erosive esophagitis, and a Simple Prediction of Erosive Esophagitis Development score for risk assessment was developed and internally validated using the split-sample approach. The development and validation cohorts included 5765 patients (675 with erosive esophagitis [11.7%]) and 5770 patients (670 with erosive esophagitis [11.6%]), respectively. The final model included sex, smoking behavior, body mass index, hypertension, and the triglyceride level as variables. This model predicted 667 cases of erosive esophagitis, yielding an expected-to-observed ratio of 1.00 (95% confidence interval [CI], 0.92-1.07). A simplified 5-item risk scoring system based on coefficients was developed, with a risk of erosive esophagitis of 6.2% (95% CI, 5.2-7.1) for the low-risk group (score ≤2), 15.1% (95% CI, 13.5-16.6) for the intermediate-risk group (score ≤3, 4), and 18.2% (95% CI, 15.2-21.3) for the high-risk group (score ≥5). The discriminative performance of the risk-prediction score was consistent in the derivation cohort and validation cohort (c-statistics 0.68 and 0.64, respectively); the calibration was good (Brier score 0.099 and 0.1, respectively). In conclusion, a simple risk-scoring model using putative risk factors can predict the future
Faria, J. M.; Mahomad, S.; Silva, N.
2009-05-01
The deployment of complex safety-critical applications requires rigorous techniques and powerful tools both for the development and V&V stages. Model-based technologies are increasingly being used to develop safety-critical software, and arguably, turning to them can bring significant benefits to such processes, however, along with new challenges. This paper presents the results of a research project where we tried to extend current V&V methodologies to be applied on UML/SysML models and aiming at answering the demands related to validation issues. Two quite different but complementary approaches were investigated: (i) model checking and the (ii) extraction of robustness test-cases from the same models. These two approaches don't overlap and when combined provide a wider reaching model/design validation ability than each one alone thus offering improved safety assurance. Results are very encouraging, even though they either fell short of the desired outcome as shown for model checking, or still appear as not fully matured as shown for robustness test case extraction. In the case of model checking, it was verified that the automatic model validation process can become fully operational and even expanded in scope once tool vendors help (inevitably) to improve the XMI standard interoperability situation. For the robustness test case extraction methodology, the early approach produced interesting results but need further systematisation and consolidation effort in order to produce results in a more predictable fashion and reduce reliance on expert's heuristics. Finally, further improvements and innovation research projects were immediately apparent for both investigated approaches, which point to either circumventing current limitations in XMI interoperability on one hand and bringing test case specification onto the same graphical level as the models themselves and then attempting to automate the generation of executable test cases from its standard UML notation.
Directory of Open Access Journals (Sweden)
Wanda Vrasti
2012-03-01
Full Text Available Over the past couple of months history has been unfolding with dizzying speed. The #occupy model of leaderless, demandless direct action, which in the beginning no one with only a slim understanding of how capitalism works thought could become anything more than a facile if charming jab at anti-corporate activism, has gone viral. Every morning we wake up to new reports about ‘occupying X’, where X can be anything from cities, campuses, boardrooms, buildings, highways, and public events, all the way to academic disciplines. What originally seemed like a romantic fantasy about temporary autonomous zones now feels like history. And no one likes to find themselves on thewrong side of history, especially not intellectuals, let alone intellectuals in the business of explaining global politics.
Directory of Open Access Journals (Sweden)
Bonura Carlo A
2001-04-01
Full Text Available Abstract Background A previous report showed that the open field behavior of rats sensitized to the dopamine agonist quinpirole satisfies 5 performance criteria for compulsive checking behavior. In an effort to extend the parallel between the drug-induced phenomenon and human obsessive-compulsive disorder (OCD, the present study investigated whether the checking behavior of quinpirole rats is subject to interruption, which is an attribute characteristic of OCD compulsions. For this purpose, the rat's home-cage was placed into the open field at the beginning or the middle of a 2-hr test. Results Introduction of the home-cage reduced checking behavior, as rats stayed inside the cage. After 40 min, checking resurfaced, as quinpirole rats exited the home-cage often. An unfamiliar cage had no such effects on quinpirole rats or saline controls. Conclusions Checking behavior induced by quinpirole is not irrepressible but can be suspended. Results strengthen the quinpirole preparation as an animal model of OCD compulsive checking.
Closed nominal rewriting and efficiently computable nominal algebra equality
Directory of Open Access Journals (Sweden)
Maribel Fernández
2010-09-01
Full Text Available We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of the lambda-calculus and first-order logic.