WorldWideScience

Sample records for algebraic model checking

  1. Model Checking Processes Specified In Join-Calculus Algebra

    Directory of Open Access Journals (Sweden)

    Sławomir Piotr Maludziński

    2014-01-01

    Full Text Available This article presents a model checking tool used to verify concurrent systems specified in join-calculus algebra. The temporal properties of systems under verification are expressed in CTL logic. Join-calculus algebra with its operational semantics defined by the chemical abstract machine serves as the basic method for the specification of concurrent systems and their synchronization mechanisms, and allows the examination of more complex systems.

  2. Analysis of DIRAC's behavior using model checking with process algebra

    Science.gov (United States)

    Remenska, Daniela; Templon, Jeff; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Graciani Diaz, Ricardo; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof

    2012-12-01

    DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple; the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike conventional testing, it allows full control over the parallel processes execution, and supports exhaustive state-space exploration. We used the mCRL2 language and toolset to model the behavior of two related DIRAC subsystems: the workload and storage management system. Based on process algebra, mCRL2 allows defining custom data types as well as functions over these. This makes it suitable for modeling the data manipulations made by DIRAC's agents. By visualizing the state space and replaying scenarios with the toolkit's simulator, we have detected race-conditions and deadlocks in these systems, which, in several cases, were confirmed to occur in the reality. Several properties of interest were formulated and verified with the tool. Our future direction is automating the translation from DIRAC to a formal model.

  3. Analysis of DIRAC's behavior using model checking with process algebra

    CERN Document Server

    Remenska, Daniela; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Diaz, Ricardo Graciani; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof

    2012-01-01

    DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple, the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike con...

  4. Model Checking Process Algebra of Communicating Resources for Real-time Systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand

    2014-01-01

    and resource usage over a dense-time model. The semantic interpretation of PACOR is defined in the form of a timed transition system expressing the timed behavior and dynamic creation of processes. We define a translation of PACOR systems to Parameterized Stopwatch Automata (PSA). The translation preserves......This paper presents a new process algebra, called PACOR, for real-time systems which deals with resource constrained timed behavior as an improved version of the ACSR algebra. We define PACOR as a Process Algebra of Communicating Resources which allows to express preemptiveness, urgent ness...... the original semantics of PACOR and enables the verification of PACOR systems using symbolic model checking in UPPAAL and statistical model checking UPPAAL SMC. Finally we provide an example to illustrate system specification in PACOR, translation and verification....

  5. Model checking process algebra of communicating resources for real-time systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand

    2014-01-01

    , urgentness and resource usage over a dense-time model. The semantic interpretation of PACoR is defined in the form of a timed transition system expressing the timed behavior and dynamic creation of processes. We define a translation of PACoR systems to Parameterized Stopwatch Automata (PSA). The translation......This paper presents a new process algebra, called PACoR, for real-time systems which deals with resource- constrained timed behavior as an improved version of the ACSR algebra. We define PACoR as a Process Algebra of Communicating Resources which allows to explicitly express preemptiveness...... preserves the original semantics of PACoR and enables the verification of PACoR systems using symbolic model checking in Uppaal and statistical model checking UppaalSMC. Finally we provide an example to illustrate system specification in PACoR, translation and verification....

  6. LHCb: Analysing DIRAC's Behavior using Model Checking with Process Algebra

    CERN Multimedia

    Remenska, Daniela

    2012-01-01

    DIRAC is the Grid solution designed to support LHCb production activities as well as user data analysis. Based on a service-oriented architecture, DIRAC consists of many cooperating distributed services and agents delivering the workload to the Grid resources. Services accept requests from agents and running jobs, while agents run as light-weight components, fulfilling specific goals. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check for changes in the service states, and react to these accordingly. A characteristic of DIRAC's architecture is the relatively low complexity in the logic of each agent; the main source of complexity lies in their cooperation. These agents run concurrently, and communicate using the services' databases as a shared memory for synchronizing the state transitions. Although much effort is invested in making DIRAC reliable, entities occasionally get into inconsistent states, leadi...

  7. Performance evaluation:= (process algebra + model checking) x Markov chains

    NARCIS (Netherlands)

    Hermanns, H.; Katoen, J.P.; Larsen, Kim G.; Nielsen, Mogens

    2001-01-01

    Markov chains are widely used in practice to determine system performance and reliability characteristics. The vast majority of applications considers continuous-time Markov chains (CTMCs). This tutorial paper shows how successful model specification and analysis techniques from concurrency theory c

  8. Compositional encoding for bounded model checking

    Institute of Scientific and Technical Information of China (English)

    Jun SUN; Yang LIU; Jin Song DONG; Jing SUN

    2008-01-01

    Verification techniques like SAT-based bounded model checking have been successfully applied to a variety of system models. Applying bounded model checking to compositional process algebras is, however, a highly non-trivial task. One challenge is that the number of system states for process algebra models is not statically known, whereas exploring the full state space is computa-tionally expensive. This paper presents a compositional encoding of hierarchical processes as SAT problems and then applies state-of-the-art SAT solvers for bounded model checking. The encoding avoids exploring the full state space for complex systems so as to deal with state space explosion. We developed an automated analyzer which combines complementing model checking tech-niques (I.e., bounded model checking and explicit on-the-fly model checking) to validate system models against event-based temporal properties. The experiment results show the analyzer handles large systems.

  9. Symbolic model checking APSL

    Institute of Scientific and Technical Information of China (English)

    Wanwei LIU; Ji WANG; Huowang CHEN; Xiaodong MA; Zhaofei WANG

    2009-01-01

    Property specification language (PSL) is a specification language which has been accepted as an industrial standard. In PSL, SEREs are used as additional formula constructs. In this paper, we present a variant of PSL, namely APSL, which replaces SEREs with finite automata. APSL and PSL are of the exactly same expressiveness. Then, we extend the LTL symbolic model checking algorithm to that of APSL, and then present a tableau based APSL verification technique, which can be easily implemented via the BDD based symbolic approach. Moreover, we implement an extension of NuSMV, and this adapted version supports symbolic model checking of APSL. Experimental results show that this variant of PSL can be efficiently verified. Henceforth, symbolic model checking PSL can be carried out by a transformation from PSL to APSL and symbolic model checking APSL.

  10. Parallel Software Model Checking

    Science.gov (United States)

    2015-01-08

    JAN 2015 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Parallel Software Model Checking 5a. CONTRACT NUMBER 5b. GRANT NUMBER...AND ADDRESS(ES) Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 8. PERFORMING ORGANIZATION REPORT NUMBER 9...3: ∧ ≥ 10 ∧ ≠ 10 ⇒ : Parallel Software Model Checking Team Members Sagar Chaki, Arie Gurfinkel

  11. Model Checking Feature Interactions

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Pedersen, Thomas;

    2015-01-01

    This paper presents an offline approach to analyzing feature interactions in embedded systems. The approach consists of a systematic process to gather the necessary information about system components and their models. The model is first specified in terms of predicates, before being refined to t...... to timed automata. The consistency of the model is verified at different development stages, and the correct linkage between the predicates and their semantic model is checked. The approach is illustrated on a use case from home automation....

  12. Partial model checking

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif

    1995-01-01

    A major obstacle in applying finite-state model checking to the verification of large systems is the combinatorial explosion of the state space arising when many loosely coupled parallel processes are considered. The problem also known as the state-explosion problem has been attacked from various...... sides. This paper presents a new approach based on partial model checking where parts of the concurrent system are gradually removed while transforming the specification accordingly. When the intermediate specifications constructed in this manner can be kept small, the state-explosion problem is avoided....... Experimental results with a prototype implemented in Standard ML, shows that for Milner's Scheduler-an often used benchmark-this approach improves on the published results on binary decision diagrams and is comparable to results obtained using generalized decision diagrams. Specifications are expressed...

  13. Conditional Model Checking

    CERN Document Server

    Beyer, Dirk; Keremoglu, M Erkan; Wendler, Philipp

    2011-01-01

    Software model checking, as an undecidable problem, has three possible outcomes: (1) the program satisfies the specification, (2) the program does not satisfy the specification, and (3) the model checker fails. The third outcome usually manifests itself in a space-out, time-out, or one component of the verification tool giving up; in all of these failing cases, significant computation is performed by the verification tool before the failure, but no result is reported. We propose to reformulate the model-checking problem as follows, in order to have the verification tool report a summary of the performed work even in case of failure: given a program and a specification, the model checker returns a condition P ---usually a state predicate--- such that the program satisfies the specification under the condition P ---that is, as long as the program does not leave states in which P is satisfied. We are of course interested in model checkers that return conditions P that are as weak as possible. Instead of outcome ...

  14. Bounded Model Checking of CTL

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Tao; Cong-Hua Zhou; Zhong Chen; Li-Fu Wang

    2007-01-01

    Bounded Model Checking has been recently introduced as an efficient verification method for reactive systems.This technique reduces model checking of linear temporal logic to propositional satisfiability.In this paper we first present how quantified Boolean decision procedures can replace BDDs.We introduce a bounded model checking procedure for temporal logic CTL* which reduces model checking to the satisfiability of quantified Boolean formulas.Our new technique avoids the space blow up of BDDs, and extends the concept of bounded model checking.

  15. Model Checking as Static Analysis

    DEFF Research Database (Denmark)

    Zhang, Fuyuan

    Both model checking and static analysis are prominent approaches to detecting software errors. Model Checking is a successful formal method for verifying properties specified in temporal logics with respect to transition systems. Static analysis is also a powerful method for validating program...... properties which can predict safe approximations to program behaviors. In this thesis, we have developed several static analysis based techniques to solve model checking problems, aiming at showing the link between static analysis and model checking. We focus on logical approaches to static analysis......-calculus can be encoded as the intended model of SFP. Our research results have strengthened the link between model checking and static analysis. This provides a theoretical foundation for developing a unied tool for both model checking and static analysis techniques....

  16. Compositional and Quantitative Model Checking

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand

    2010-01-01

    This paper gives a survey of a composition model checking methodology and its succesfull instantiation to the model checking of networks of finite-state, timed, hybrid and probabilistic systems with respect; to suitable quantitative versions of the modal mu-calculus [Koz82]. The method is based...

  17. A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets

    Science.gov (United States)

    2014-11-01

    linear hybrid systems by linear algebraic methods. In SAS, volume 6337 of LNCS, pages 373–389. Springer, 2010. [19] E. W. Mayr. Membership in polynomial...383–394, 2009. [31] A. Tarski. A decision method for elementary algebra and geometry. Bull. Amer. Math. Soc., 59, 1951. [32] A. Tiwari. Abstractions...A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 November 2014 CMU

  18. MODEL IDENTIFICATION AND COMPUTER ALGEBRA.

    Science.gov (United States)

    Bollen, Kenneth A; Bauldry, Shawn

    2010-10-07

    Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods.

  19. Model Checking Algorithms for CTMDPs

    DEFF Research Database (Denmark)

    Buchholz, Peter; Hahn, Ernst Moritz; Hermanns, Holger

    2011-01-01

    Continuous Stochastic Logic (CSL) can be interpreted over continuoustime Markov decision processes (CTMDPs) to specify quantitative properties of stochastic systems that allow some external control. Model checking CSL formulae over CTMDPs requires then the computation of optimal control strategie...

  20. Coverage Metrics for Model Checking

    Science.gov (United States)

    Penix, John; Visser, Willem; Norvig, Peter (Technical Monitor)

    2001-01-01

    When using model checking to verify programs in practice, it is not usually possible to achieve complete coverage of the system. In this position paper we describe ongoing research within the Automated Software Engineering group at NASA Ames on the use of test coverage metrics to measure partial coverage and provide heuristic guidance for program model checking. We are specifically interested in applying and developing coverage metrics for concurrent programs that might be used to support certification of next generation avionics software.

  1. Towards Model Checking OCL

    NARCIS (Netherlands)

    Distefano, Dino; Katoen, Joost-Pieter; Rensink, Arend

    2000-01-01

    This paper presents a logic, called BOTL (Object-Based Temporal Logic), that facilitates the specification of dynamic and static properties of object-based systems. The logic is based on the branching temporal logic CTL and the Object Constraint Language (OCL). Eventually, the aim is to do model che

  2. Program Analysis as Model Checking

    DEFF Research Database (Denmark)

    Olesen, Mads Chr.

    and abstract interpretation. Model checking views the program as a finite automaton and tries to prove logical properties over the automaton model, or present a counter-example if not possible — with a focus on precision. Abstract interpretation translates the program semantics into abstract semantics...... problems as the other by a reformulation. This thesis argues that there is even a convergence on the practical level, and that a generalisation of the formalism of timed automata into lattice automata captures key aspects of both methods; indeed model checking timed automata can be formulated in terms...... of an abstract interpretation. For the generalisation to lattice automata to have benefit it is important that efficient tools exist. This thesis presents multi-core tools for efficient and scalable reachability and Büchi emptiness checking of timed/lattice automata. Finally, a number of case studies...

  3. Model checking of component connectors

    NARCIS (Netherlands)

    Izadi, Mohammad

    2011-01-01

    We present a framework for automata theoretic model checking of coordination systems specified in Reo coordination language. To this goal, we introduce Buchi automata of records (BAR) and their augmented version (ABAR) as an operational modeling formalism that covers several intended forms of behavi

  4. Direct Model Checking Matrix Algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Tao; Hans Kleine Büning; Li-Fu Wang

    2006-01-01

    During the last decade, Model Checking has proven its efficacy and power in circuit design, network protocol analysis and bug hunting. Recent research on automatic verification has shown that no single model-checking technique has the edge over all others in all application areas. So, it is very difficult to determine which technique is the most suitable for a given model. It is thus sensible to apply different techniques to the same model. However, this is a very tedious and time-consuming task, for each algorithm uses its own description language. Applying Model Checking in software design and verification has been proved very difficult. Software architectures (SA) are engineering artifacts that provide high-level and abstract descriptions of complex software systems. In this paper a Direct Model Checking (DMC) method based on Kripke Structure and Matrix Algorithm is provided. Combined and integrated with domain specific software architecture description languages (ADLs), DMC can be used for computing consistency and other critical properties.

  5. Statistical Model Checking for Product Lines

    DEFF Research Database (Denmark)

    ter Beek, Maurice H.; Legay, Axel; Lluch Lafuente, Alberto

    2016-01-01

    average cost of products (in terms of the attributes of the products’ features) and the probability of features to be (un)installed at runtime. The product lines must be modelled in QFLan, which extends the probabilistic feature-oriented language PFLan with novel quantitative constraints among features......We report on the suitability of statistical model checking for the analysis of quantitative properties of product line models by an extended treatment of earlier work by the authors. The type of analysis that can be performed includes the likelihood of specific product behaviour, the expected...... and on behaviour and with advanced feature installation options. QFLan is a rich process-algebraic specification language whose operational behaviour interacts with a store of constraints, neatly separating product configuration from product behaviour. The resulting probabilistic configurations and probabilistic...

  6. Model Checking Linearizability via Refinement

    Science.gov (United States)

    Liu, Yang; Chen, Wei; Liu, Yanhong A.; Sun, Jun

    Linearizability is an important correctness criterion for implementations of concurrent objects. Automatic checking of linearizability is challenging because it requires checking that 1) all executions of concurrent operations be serializable, and 2) the serialized executions be correct with respect to the sequential semantics. This paper describes a new method to automatically check linearizability based on refinement relations from abstract specifications to concrete implementations. Our method avoids the often difficult task of determining linearization points in implementations, but can also take advantage of linearization points if they are given. The method exploits model checking of finite state systems specified as concurrent processes with shared variables. Partial order reduction is used to effectively reduce the search space. The approach is built into a toolset that supports a rich set of concurrent operators. The tool has been used to automatically check a variety of implementations of concurrent objects, including the first algorithms for the mailbox problem and scalable NonZero indicators. Our system was able to find all known and injected bugs in these implementations.

  7. Dimer models and Calabi-Yau algebras

    CERN Document Server

    Broomhead, Nathan

    2008-01-01

    In this thesis we study dimer models, as introduced in string theory, which give a way of writing down a class of non-commutative `superpotential' algebras. Some examples are 3-dimensional Calabi-Yau algebras, as defined by Ginzburg, and some are not. We consider two types of `consistency' condition on dimer models, and show that a `geometrically consistent' model is `algebraically consistent'. Finally we prove that the algebras obtained from algebraically consistent dimer models are 3-dimensional Calabi-Yau algebras.

  8. Observable Algebra in Field Algebra of G-spin Models

    Institute of Scientific and Technical Information of China (English)

    蒋立宁

    2003-01-01

    Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra AH, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that AH is a C*-algebra. The correspondence between H and AH is strictly monotonic. Finally, a duality between D(H) and AH is given via an irreducible vacuum C*-representation of F.

  9. Timing analysis by model checking

    Science.gov (United States)

    Naydich, Dimitri; Guaspari, David

    2000-01-01

    The safety of modern avionics relies on high integrity software that can be verified to meet hard real-time requirements. The limits of verification technology therefore determine acceptable engineering practice. To simplify verification problems, safety-critical systems are commonly implemented under the severe constraints of a cyclic executive, which make design an expensive trial-and-error process highly intolerant of change. Important advances in analysis techniques, such as rate monotonic analysis (RMA), have provided a theoretical and practical basis for easing these onerous restrictions. But RMA and its kindred have two limitations: they apply only to verifying the requirement of schedulability (that tasks meet their deadlines) and they cannot be applied to many common programming paradigms. We address both these limitations by applying model checking, a technique with successful industrial applications in hardware design. Model checking algorithms analyze finite state machines, either by explicit state enumeration or by symbolic manipulation. Since quantitative timing properties involve a potentially unbounded state variable (a clock), our first problem is to construct a finite approximation that is conservative for the properties being analyzed-if the approximation satisfies the properties of interest, so does the infinite model. To reduce the potential for state space explosion we must further optimize this finite model. Experiments with some simple optimizations have yielded a hundred-fold efficiency improvement over published techniques.

  10. Algebraic Aspects of Orbifold Models

    CERN Document Server

    Bántay, P

    1994-01-01

    : Algebraic properties of orbifold models on arbitrary Riemann surfaces are investigated. The action of mapping class group transformations and of standard geometric operations is given explicitly. An infinite dimensional extension of the quantum group is presented.

  11. Algebraic Statistics for Network Models

    Science.gov (United States)

    2014-02-19

    AFRL-OSR-VA-TR-2014-0070 (DARPA) Algebraic Statistics for Network Models SONJA PETROVIC PENNSYLVANIA STATE UNIVERSITY 02/19/2014 Final Report...DARPA GRAPHS Phase I Algebraic Statistics for Network Models FA9550-12-1-0392 Sonja Petrović petrovic@psu.edu1 Department of Statistics Pennsylvania...Department of Statistics, Heinz College , Machine Learning Department, Cylab Carnegie Mellon University 1. Abstract This project focused on the family of

  12. FOUNDATION OF NUCLEAR ALGEBRAIC MODELS

    Institute of Scientific and Technical Information of China (English)

    周孝谦

    1990-01-01

    Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.

  13. Heteroscedasticity checks for regression models

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For checking on heteroscedasticity in regression models, a unified approach is proposed to constructing test statistics in parametric and nonparametric regression models. For nonparametric regression, the test is not affected sensitively by the choice of smoothing parameters which are involved in estimation of the nonparametric regression function. The limiting null distribution of the test statistic remains the same in a wide range of the smoothing parameters. When the covariate is one-dimensional, the tests are, under some conditions, asymptotically distribution-free. In the high-dimensional cases, the validity of bootstrap approximations is investigated. It is shown that a variant of the wild bootstrap is consistent while the classical bootstrap is not in the general case, but is applicable if some extra assumption on conditional variance of the squared error is imposed. A simulation study is performed to provide evidence of how the tests work and compare with tests that have appeared in the literature. The approach may readily be extended to handle partial linear, and linear autoregressive models.

  14. Heteroscedasticity checks for regression models

    Institute of Scientific and Technical Information of China (English)

    ZHU; Lixing

    2001-01-01

    [1]Carroll, R. J., Ruppert, D., Transformation and Weighting in Regression, New York: Chapman and Hall, 1988.[2]Cook, R. D., Weisberg, S., Diagnostics for heteroscedasticity in regression, Biometrika, 1988, 70: 1—10.[3]Davidian, M., Carroll, R. J., Variance function estimation, J. Amer. Statist. Assoc., 1987, 82: 1079—1091.[4]Bickel, P., Using residuals robustly I: Tests for heteroscedasticity, Ann. Statist., 1978, 6: 266—291.[5]Carroll, R. J., Ruppert, D., On robust tests for heteroscedasticity, Ann. Statist., 1981, 9: 205—209.[6]Eubank, R. L., Thomas, W., Detecting heteroscedasticity in nonparametric regression, J. Roy. Statist. Soc., Ser. B, 1993, 55: 145—155.[7]Diblasi, A., Bowman, A., Testing for constant variance in a linear model, Statist. and Probab. Letters, 1997, 33: 95—103.[8]Dette, H., Munk, A., Testing heteoscedasticity in nonparametric regression, J. R. Statist. Soc. B, 1998, 60: 693—708.[9]Müller, H. G., Zhao, P. L., On a semi-parametric variance function model and a test for heteroscedasticity, Ann. Statist., 1995, 23: 946—967.[10]Stute, W., Manteiga, G., Quindimil, M. P., Bootstrap approximations in model checks for regression, J. Amer. Statist. Asso., 1998, 93: 141—149.[11]Stute, W., Thies, G., Zhu, L. X., Model checks for regression: An innovation approach, Ann. Statist., 1998, 26: 1916—1939.[12]Shorack, G. R., Wellner, J. A., Empirical Processes with Applications to Statistics, New York: Wiley, 1986.[13]Efron, B., Bootstrap methods: Another look at the jackknife, Ann. Statist., 1979, 7: 1—26.[14]Wu, C. F. J., Jackknife, bootstrap and other re-sampling methods in regression analysis, Ann. Statist., 1986, 14: 1261—1295.[15]H rdle, W., Mammen, E., Comparing non-parametric versus parametric regression fits, Ann. Statist., 1993, 21: 1926—1947.[16]Liu, R. Y., Bootstrap procedures under some non-i.i.d. models, Ann. Statist., 1988, 16: 1696—1708.[17

  15. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2009-01-01

    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implications of remaining weaknesses of these tools. We believe that a principled engineering approach to designing...... and implementing abstractions will improve the applicability of model checking in practice....

  16. On the Model Properties of BCK Algebras

    Institute of Scientific and Technical Information of China (English)

    LIANGJun-qi

    2004-01-01

    This paper is devoted to the study of the logical properties of BCK algebras. For formalized BCK algebra theory T, it is proved that T is preserved under submodels and unions of chains; T is neither complete nor model complete, and hence there exist no builtin Skolem function. Moreover, the ultraproduct BCK algebras and the fuzzy ultraproduct of fuzzy subsets of BCK algebras were proposed by using the concept of ultrafilters with corresponding propertics of fuzzy ideals discussed.

  17. Model Checking of Boolean Process Models

    CERN Document Server

    Schneider, Christoph

    2011-01-01

    In the field of Business Process Management formal models for the control flow of business processes have been designed since more than 15 years. Which methods are best suited to verify the bulk of these models? The first step is to select a formal language which fixes the semantics of the models. We adopt the language of Boolean systems as reference language for Boolean process models. Boolean systems form a simple subclass of coloured Petri nets. Their characteristics are low tokens to model explicitly states with a subsequent skipping of activations and arbitrary logical rules of type AND, XOR, OR etc. to model the split and join of the control flow. We apply model checking as a verification method for the safeness and liveness of Boolean systems. Model checking of Boolean systems uses the elementary theory of propositional logic, no modal operators are needed. Our verification builds on a finite complete prefix of a certain T-system attached to the Boolean system. It splits the processes of the Boolean sy...

  18. Semantic Importance Sampling for Statistical Model Checking

    Science.gov (United States)

    2015-01-16

    approach called Statistical Model Checking (SMC) [16], which relies on Monte - Carlo -based simulations to solve this verification task more scalably...Conclusion Statistical model checking (SMC) is a prominent approach for rigorous analysis of stochastic systems using Monte - Carlo simulations. In this... Monte - Carlo simulations, for computing the bounded probability that a specific event occurs during a stochastic system’s execution. Estimating the

  19. Model Checking Software Systems: A Case Study.

    Science.gov (United States)

    1995-03-10

    gained. We suggest a radically different tack: model checking. The two formal objects compared are a finite state machine model of the software...simply terminates. 3.1.1. State Machine Model Let’s consider a simplified model with just one client, one server, and one file. The top graph

  20. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J

    2013-01-01

    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  1. Model Checking Discounted Temporal Properties

    NARCIS (Netherlands)

    Alfaro, de Luca; Faella, Marco; Henzinger, Thomas A.; Majumdar, Rupak; Stoelinga, Mariëlle

    2005-01-01

    Temporal logic is two-valued: formulas are interpreted as either true or false. When applied to the analysis of stochastic systems, or systems with imprecise formal models, temporal logic is therefore fragile: even small changes in the model can lead to opposite truth values for a specification. We

  2. Model Checking Discounted Temporal Properties

    NARCIS (Netherlands)

    Alfaro, de Luca; Faella, Marco; Henzinger, Thomas A.; Majumdar, Rupak; Stoelinga, Mariëlle

    2004-01-01

    Temporal logic is two-valued: formulas are interpreted as either true or false. When applied to the analysis of stochastic systems, or systems with imprecise formal models, temporal logic is therefore fragile: even small changes in the model can lead to opposite truth values for a specification. We

  3. Graded CTL Model Checking for Test Generation

    CERN Document Server

    Napoli, Margherita

    2011-01-01

    Recently there has been a great attention from the scientific community towards the use of the model-checking technique as a tool for test generation in the simulation field. This paper aims to provide a useful mean to get more insights along these lines. By applying recent results in the field of graded temporal logics, we present a new efficient model-checking algorithm for Hierarchical Finite State Machines (HSM), a well established symbolism long and widely used for representing hierarchical models of discrete systems. Performing model-checking against specifications expressed using graded temporal logics has the peculiarity of returning more counterexamples within a unique run. We think that this can greatly improve the efficacy of automatically getting test cases. In particular we verify two different models of HSM against branching time temporal properties.

  4. Posterior Predictive Model Checking in Bayesian Networks

    Science.gov (United States)

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  5. A Method for Model Checking Feature Interactions

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Le Guilly, Thibaut; Ravn, Anders Peter;

    2015-01-01

    This paper presents a method to check for feature interactions in a system assembled from independently developed concurrent processes as found in many reactive systems. The method combines and refines existing definitions and adds a set of activities. The activities describe how to populate the ...... the definitions with models to ensure that all interactions are captured. The method is illustrated on a home automation example with model checking as analysis tool. In particular, the modelling formalism is timed automata and the analysis uses UPPAAL to find interactions....

  6. A PSL Bounded Model Checking Method

    Institute of Scientific and Technical Information of China (English)

    YU Lei; ZHAO Zongtao

    2012-01-01

    SAT-based bounded model checking (BMC) is introduced as an important complementary technique to OBDD-based symbolic model checking, and is an efficient verification method for parallel and reactive systems. However, until now the properties verified by bounded model checking are very finite. Temporal logic PSL is a property specification language (IEEE-1850) describing parallel systems and is divided into two parts, i.e. the linear time logic FL and the branch time logic OBE. In this paper, the specification checked by BMC is extended to PSL and its algorithm is also proposed. Firstly, define the bounded semantics of PSL, and then reduce the bounded semantics into SAT by translating PSL specification formula and the state transition relation of the system to the propositional formula A and B, respectively. Finally, verify the satisfiability of the conjunction propositional formula of A and B. The algorithm results in the translation of the existential model checking of the temporal logic PSL into the satisfiability problem of propositional formula. An example of a queue controlling circuit is used to interpret detailedly the executing procedure of the algorithm.

  7. Algebraic Lens Distortion Model Estimation

    Directory of Open Access Journals (Sweden)

    Luis Alvarez

    2010-07-01

    Full Text Available A very important property of the usual pinhole model for camera projection is that 3D lines in the scene are projected to 2D lines. Unfortunately, wide-angle lenses (specially low-cost lenses may introduce a strong barrel distortion, which makes the usual pinhole model fail. Lens distortion models try to correct such distortion. We propose an algebraic approach to the estimation of the lens distortion parameters based on the rectification of lines in the image. Using the proposed method, the lens distortion parameters are obtained by minimizing a 4 total-degree polynomial in several variables. We perform numerical experiments using calibration patterns and real scenes to show the performance of the proposed method.

  8. Model checking Quasi Birth Death processes

    NARCIS (Netherlands)

    Remke, A.K.I.

    2004-01-01

    Quasi-Birth Death processes (QBDs) are a special class of infinite state CTMCs that combines a large degree of modeling expressiveness with efficient solution methods. This work adapts the well-known stochastic logic CSL for use on QBDs as CSL and presents model checking algorithms for so-called lev

  9. Statistical Model Checking for Stochastic Hybrid Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand

    2012-01-01

    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique ap...

  10. Model Checking as Static Analysis: Revisited

    DEFF Research Database (Denmark)

    Zhang, Fuyuan; Nielson, Flemming; Nielson, Hanne Riis

    2012-01-01

    We show that the model checking problem of the μ-calculus can be viewed as an instance of static analysis. We propose Succinct Fixed Point Logic (SFP) within our logical approach to static analysis as an extension of Alternation-free Least Fixed Logic (ALFP). We generalize the notion...

  11. Efficient CSL Model Checking Using Stratification

    DEFF Research Database (Denmark)

    Zhang, Lijun; Jansen, David N.; Nielson, Flemming;

    2012-01-01

    For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996 [ 1, 2]. Their proof can be turned into an approximation algorithm with worse than expone...

  12. Automata-Based CSL Model Checking

    DEFF Research Database (Denmark)

    Zhang, Lijun; Jansen, David N.; Nielson, Flemming;

    2011-01-01

    For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. The presented decision procedure, however, has exponential complexity. In this paper, we...

  13. Statistical Model Checking for Biological Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel

    2014-01-01

    Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic t...

  14. Software Model Checking for Verifying Distributed Algorithms

    Science.gov (United States)

    2014-10-28

    Verification procedure is an intelligent exhaustive search of the state space of the design Model Checking 6 Verifying Synchronous Distributed App...Distributed App Sagar Chaki, June 11, 2014 © 2014 Carnegie Mellon University Tool Usage Project webpage (http://mcda.googlecode.com) • Tutorial

  15. Model checking the HAVi leader election protocol

    NARCIS (Netherlands)

    Romijn, J.M.T.

    1999-01-01

    The HAVi specification proposes an architecture for audio/video interoperability in home networks. Part of the HAVi specification is a distributed leader election protocol. We have modelled this leader election protocol in Promela and Lotos and have checked several properties with the tools Spin a

  16. Model Checking the Remote Agent Planner

    Science.gov (United States)

    Khatib, Lina; Muscettola, Nicola; Havelund, Klaus; Norvig, Peter (Technical Monitor)

    2001-01-01

    This work tackles the problem of using Model Checking for the purpose of verifying the HSTS (Scheduling Testbed System) planning system. HSTS is the planner and scheduler of the remote agent autonomous control system deployed in Deep Space One (DS1). Model Checking allows for the verification of domain models as well as planning entries. We have chosen the real-time model checker UPPAAL for this work. We start by motivating our work in the introduction. Then we give a brief description of HSTS and UPPAAL. After that, we give a sketch for the mapping of HSTS models into UPPAAL and we present samples of plan model properties one may want to verify.

  17. Model Checking with Probabilistic Tabled Logic Programming

    CERN Document Server

    Gorlin, Andrey; Smolka, Scott A

    2012-01-01

    We present a formulation of the problem of probabilistic model checking as one of query evaluation over probabilistic logic programs. To the best of our knowledge, our formulation is the first of its kind, and it covers a rich class of probabilistic models and probabilistic temporal logics. The inference algorithms of existing probabilistic logic-programming systems are well defined only for queries with a finite number of explanations. This restriction prohibits the encoding of probabilistic model checkers, where explanations correspond to executions of the system being model checked. To overcome this restriction, we propose a more general inference algorithm that uses finite generative structures (similar to automata) to represent families of explanations. The inference algorithm computes the probability of a possibly infinite set of explanations directly from the finite generative structure. We have implemented our inference algorithm in XSB Prolog, and use this implementation to encode probabilistic model...

  18. Model Checking with Edge-Valued Decision Diagrams

    Science.gov (United States)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster

  19. Modeling digital switching circuits with linear algebra

    CERN Document Server

    Thornton, Mitchell A

    2014-01-01

    Modeling Digital Switching Circuits with Linear Algebra describes an approach for modeling digital information and circuitry that is an alternative to Boolean algebra. While the Boolean algebraic model has been wildly successful and is responsible for many advances in modern information technology, the approach described in this book offers new insight and different ways of solving problems. Modeling the bit as a vector instead of a scalar value in the set {0, 1} allows digital circuits to be characterized with transfer functions in the form of a linear transformation matrix. The use of transf

  20. Lagrangians for the W-Algebra Models

    CERN Document Server

    Gaite, J C

    1994-01-01

    The field algebra of the minimal models of W-algebras is amenable to a very simple description as a polynomial algebra generated by few elementary fields, corresponding to order parameters. Using this description, the complete Landau-Ginzburg lagrangians for these models are obtained. Perturbing these lagrangians we can explore their phase diagrams, which correspond to multicritical points with $D_n$ symmetry. In particular, it is shown that there is a perturbation for which the phase structure coincides with that of the IRF models of Jimbo et al.

  1. Model checking the HAVi leader election protocol

    OpenAIRE

    Romijn, J.M.T.

    1999-01-01

    The HAVi specification proposes an architecture for audio/video interoperability in home networks. Part of the HAVi specification is a distributed leader election protocol. We have modelled this leader election protocol in Promela and Lotos and have checked several properties with the tools Spin and Xtl (from the Caesar/Aldebaran package). It turns out that the protocol does not meet some safety properties and that there are situations in which the protocol may never converge to designate a l...

  2. Model-Checking with Edge-Valued Decision Diagrams

    Science.gov (United States)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.

  3. Statistical Model Checking of Rich Models and Properties

    DEFF Research Database (Denmark)

    Poulsen, Danny Bøgsted

    in undecidability issues for the traditional model checking approaches. Statistical model checking has proven itself a valuable supplement to model checking and this thesis is concerned with extending this software validation technique to stochastic hybrid systems. The thesis consists of two parts: the first part......Software is in increasing fashion embedded within safety- and business critical processes of society. Errors in these embedded systems can lead to human casualties or severe monetary loss. Model checking technology has proven formal methods capable of finding and correcting errors in software....... However, software is approaching the boundary in terms of the complexity and size that model checking can handle. Furthermore, software systems are nowadays more frequently interacting with their environment hence accurately modelling such systems requires modelling the environment as well - resulting...

  4. Model-Based Trace-Checking

    CERN Document Server

    Howard, Y; Gravell, A; Ferreira, C; Augusto, J C

    2011-01-01

    Trace analysis can be a useful way to discover problems in a program under test. Rather than writing a special purpose trace analysis tool, this paper proposes that traces can usefully be analysed by checking them against a formal model using a standard model-checker or else an animator for executable specifications. These techniques are illustrated using a Travel Agent case study implemented in J2EE. We added trace beans to this code that write trace information to a database. The traces are then extracted and converted into a form suitable for analysis by Spin, a popular model-checker, and Pro-B, a model-checker and animator for the B notation. This illustrates the technique, and also the fact that such a system can have a variety of models, in different notations, that capture different features. These experiments have demonstrated that model-based trace-checking is feasible. Future work is focussed on scaling up the approach to larger systems by increasing the level of automation.

  5. Model Checking over Paraconsistent Temporal Logic

    Institute of Scientific and Technical Information of China (English)

    CHEN Dong-huo; WANG Lin-zhang; CUI Jia-lin

    2008-01-01

    Classical logic cannot be used to effectively reason about concurrent systems with inconsistencies (inconsistencies often occur, especially in the early stage of the development, when large and complex concurrent systems are developed). In this paper, we propose the use of a guasi-classical temporal logic (QCTL) for supporting the verification of temporal properties of such systems even where the consistent model is not available. Our models are paraKripke structures ( extended standard Kripke structures), in which both a formula and its negation are satisfied in a same state, and properties to be verified are expressed by QCTL with paraKripke structures semantics. We introduce a novel notion of paraKripke models, which grasps the paraconsistent character of the entailment relation of QCTL. Furthermore, we explore the methodology of model checking over QCTL, and describe the detailed algorithm of implementing QCTL model checker. In the sequel, a simple example is presented, showing how to exploit the proposed model checking technique to verify the temporal properties of inconsistent concurrent systems.

  6. Automated Environment Generation for Software Model Checking

    Science.gov (United States)

    Tkachuk, Oksana; Dwyer, Matthew B.; Pasareanu, Corina S.

    2003-01-01

    A key problem in model checking open systems is environment modeling (i.e., representing the behavior of the execution context of the system under analysis). Software systems are fundamentally open since their behavior is dependent on patterns of invocation of system components and values defined outside the system but referenced within the system. Whether reasoning about the behavior of whole programs or about program components, an abstract model of the environment can be essential in enabling sufficiently precise yet tractable verification. In this paper, we describe an approach to generating environments of Java program fragments. This approach integrates formally specified assumptions about environment behavior with sound abstractions of environment implementations to form a model of the environment. The approach is implemented in the Bandera Environment Generator (BEG) which we describe along with our experience using BEG to reason about properties of several non-trivial concurrent Java programs.

  7. A Simple and Practical Linear Algebra Library Interface with Static Size Checking

    Directory of Open Access Journals (Sweden)

    Akinori Abe

    2015-12-01

    Full Text Available Linear algebra is a major field of numerical computation and is widely applied. Most linear algebra libraries (in most programming languages do not statically guarantee consistency of the dimensions of vectors and matrices, causing runtime errors. While advanced type systems—specifically, dependent types on natural numbers—can ensure consistency among the sizes of collections such as lists and arrays, such type systems generally require non-trivial changes to existing languages and application programs, or tricky type-level programming. We have developed a linear algebra library interface that verifies the consistency (with respect to dimensions of matrix operations by means of generative phantom types, implemented via fairly standard ML types and module system. To evaluate its usability, we ported to it a practical machine learning library from a traditional linear algebra library. We found that most of the changes required for the porting could be made mechanically, and changes that needed human thought are minor.

  8. Computational algebraic geometry of epidemic models

    Science.gov (United States)

    Rodríguez Vega, Martín.

    2014-06-01

    Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

  9. Model Checking JAVA Programs Using Java Pathfinder

    Science.gov (United States)

    Havelund, Klaus; Pressburger, Thomas

    2000-01-01

    This paper describes a translator called JAVA PATHFINDER from JAVA to PROMELA, the "programming language" of the SPIN model checker. The purpose is to establish a framework for verification and debugging of JAVA programs based on model checking. This work should be seen in a broader attempt to make formal methods applicable "in the loop" of programming within NASA's areas such as space, aviation, and robotics. Our main goal is to create automated formal methods such that programmers themselves can apply these in their daily work (in the loop) without the need for specialists to manually reformulate a program into a different notation in order to analyze the program. This work is a continuation of an effort to formally verify, using SPIN, a multi-threaded operating system programmed in Lisp for the Deep-Space 1 spacecraft, and of previous work in applying existing model checkers and theorem provers to real applications.

  10. Exact linear modeling using Ore algebras

    CERN Document Server

    Schindelar, Kristina; Zerz, Eva

    2010-01-01

    Linear exact modeling is a problem coming from system identification: Given a set of observed trajectories, the goal is find a model (usually, a system of partial differential and/or difference equations) that explains the data as precisely as possible. The case of operators with constant coefficients is well studied and known in the systems theoretic literature, whereas the operators with varying coefficients were addressed only recently. This question can be tackled either using Gr\\"obner bases for modules over Ore algebras or by following the ideas from differential algebra and computing in commutative rings. In this paper, we present algorithmic methods to compute "most powerful unfalsified models" (MPUM) and their counterparts with variable coefficients (VMPUM) for polynomial and polynomial-exponential signals. We also study the structural properties of the resulting models, discuss computer algebraic techniques behind algorithms and provide several examples.

  11. Standard model physics from an algebra?

    CERN Document Server

    Furey, C

    2016-01-01

    This thesis constitutes a first attempt to derive aspects of standard model particle physics from little more than an algebra. Here, we argue that physical concepts such as particles, causality, and irreversible time may result from the algebra acting on itself. We then focus on a special case by considering the algebra $\\mathbb{R}\\otimes\\mathbb{C}\\otimes\\mathbb{H}\\otimes\\mathbb{O}$. Using nothing more than $\\mathbb{R}\\otimes\\mathbb{C}\\otimes\\mathbb{H}\\otimes\\mathbb{O}$ acting on itself, we set out to find standard model particle representations. From the complex quaternionic portion of the algebra, we find generalized ideals, and show that they describe concisely all of the Lorentz representations of the standard model. From the complex octonionic portion of the algebra, we find minimal left ideals, and show that they mirror the behaviour of a generation of quarks and leptons under $su(3)_c$ and $u(1)_{em}$. We then demonstrate a rudimentary electroweak model which yields a straightforward explanation as to ...

  12. Probabilistic Model--Checking of Quantum Protocols

    CERN Document Server

    Gay, S; Papanikolaou, N; Gay, Simon; Nagarajan, Rajagopal; Papanikolaou, Nikolaos

    2005-01-01

    We establish fundamental and general techniques for formal verification of quantum protocols. Quantum protocols are novel communication schemes involving the use of quantum-mechanical phenomena for representation, storage and transmission of data. As opposed to quantum computers, quantum communication systems can and have been implemented using present-day technology; therefore, the ability to model and analyse such systems rigorously is of primary importance. While current analyses of quantum protocols use a traditional mathematical approach and require considerable understanding of the underlying physics, we argue that automated verification techniques provide an elegant alternative. We demonstrate these techniques through the use of PRISM, a probabilistic model-checking tool. Our approach is conceptually simpler than existing proofs, and allows us to disambiguate protocol definitions and assess their properties. It also facilitates detailed analyses of actual implemented systems. We illustrate our techniqu...

  13. Quantum corrections of (fuzzy) spacetimes from a supersymmetric reduced model with Filippov 3-algebra

    OpenAIRE

    Tomino, Dan

    2010-01-01

    1-loop vacuum energies of (fuzzy) spacetimes from a supersymmetric reduced model with Filippov 3-algebra are discussed. A_{2,2} algebra, Nambu-Poisson algebra in flat spacetime, and a Lorentzian 3-algebra are examined as 3-algebras.

  14. Conformant Planning via Symbolic Model Checking

    CERN Document Server

    Cimatti, A; 10.1613/jair.774

    2011-01-01

    We tackle the problem of planning in nondeterministic domains, by presenting a new approach to conformant planning. Conformant planning is the problem of finding a sequence of actions that is guaranteed to achieve the goal despite the nondeterminism of the domain. Our approach is based on the representation of the planning domain as a finite state automaton. We use Symbolic Model Checking techniques, in particular Binary Decision Diagrams, to compactly represent and efficiently search the automaton. In this paper we make the following contributions. First, we present a general planning algorithm for conformant planning, which applies to fully nondeterministic domains, with uncertainty in the initial condition and in action effects. The algorithm is based on a breadth-first, backward search, and returns conformant plans of minimal length, if a solution to the planning problem exists, otherwise it terminates concluding that the problem admits no conformant solution. Second, we provide a symbolic representation ...

  15. A process algebra model of QED

    Science.gov (United States)

    Sulis, William

    2016-03-01

    The process algebra approach to quantum mechanics posits a finite, discrete, determinate ontology of primitive events which are generated by processes (in the sense of Whitehead). In this ontology, primitive events serve as elements of an emergent space-time and of emergent fundamental particles and fields. Each process generates a set of primitive elements, using only local information, causally propagated as a discrete wave, forming a causal space termed a causal tapestry. Each causal tapestry forms a discrete and finite sampling of an emergent causal manifold (space-time) M and emergent wave function. Interactions between processes are described by a process algebra which possesses 8 commutative operations (sums and products) together with a non-commutative concatenation operator (transitions). The process algebra possesses a representation via nondeterministic combinatorial games. The process algebra connects to quantum mechanics through the set valued process and configuration space covering maps, which associate each causal tapestry with sets of wave functions over M. Probabilities emerge from interactions between processes. The process algebra model has been shown to reproduce many features of the theory of non-relativistic scalar particles to a high degree of accuracy, without paradox or divergences. This paper extends the approach to a semi-classical form of quantum electrodynamics.

  16. Sigma-models and Homotopy Algebras

    CERN Document Server

    Zeitlin, Anton M

    2015-01-01

    We review the relation between homotopy algebras of conformal field theory and geometric structures arising in sigma models. In particular we formulate conformal invariance conditions, which in the quasi-classical limit are Einstein equations with extra fields, as generalized Maurer-Cartan equations.

  17. Analyzing Mode Confusion via Model Checking

    Science.gov (United States)

    Luettgen, Gerald; Carreno, Victor

    1999-01-01

    Mode confusion is one of the most serious problems in aviation safety. Today's complex digital flight decks make it difficult for pilots to maintain awareness of the actual states, or modes, of the flight deck automation. NASA Langley leads an initiative to explore how formal techniques can be used to discover possible sources of mode confusion. As part of this initiative, a flight guidance system was previously specified as a finite Mealy automaton, and the theorem prover PVS was used to reason about it. The objective of the present paper is to investigate whether state-exploration techniques, especially model checking, are better able to achieve this task than theorem proving and also to compare several verification tools for the specific application. The flight guidance system is modeled and analyzed in Murphi, SMV, and Spin. The tools are compared regarding their system description language, their practicality for analyzing mode confusion, and their capabilities for error tracing and for animating diagnostic information. It turns out that their strengths are complementary.

  18. Analyzing Interoperability of Protocols Using Model Checking

    Institute of Scientific and Technical Information of China (English)

    WUPeng

    2005-01-01

    In practical terms, protocol interoperability testing is still laborious and error-prone with little effect, even for those products that have passed conformance testing. Deadlock and unsymmetrical data communication are familiar in interoperability testing, and it is always very hard to trace their causes. The previous work has not provided a coherent way to analyze why the interoperability was broken among protocol implementations under test. In this paper, an alternative approach is presented to analyzing these problems from a viewpoint of implementation structures. Sequential and concurrent structures are both representative implementation structures, especially in event-driven development model. Our research mainly discusses the influence of sequential and concurrent structures on interoperability, with two instructive conclusions: (a) a sequential structure may lead to deadlock; (b) a concurrent structure may lead to unsymmetrical data communication. Therefore, implementation structures carry weight on interoperability, which may not gain much attention before. To some extent, they are decisive on the result of interoperability testing. Moreover, a concurrent structure with a sound task-scheduling strategy may contribute to the interoperability of a protocol implementation. Herein model checking technique is introduced into interoperability analysis for the first time. As the paper shows, it is an effective way to validate developers' selections on implementation structures or strategies.

  19. An algebraic approach to the Hubbard model

    CERN Document Server

    de Leeuw, Marius

    2015-01-01

    We study the algebraic structure of an integrable Hubbard-Shastry type lattice model associated with the centrally extended su(2|2) superalgebra. This superalgebra underlies Beisert's AdS/CFT worldsheet R-matrix and Shastry's R-matrix. The considered model specializes to the one-dimensional Hubbard model in a certain limit. We demonstrate that Yangian symmetries of the R-matrix specialize to the Yangian symmetry of the Hubbard model found by Korepin and Uglov. Moreover, we show that the Hubbard model Hamiltonian has an algebraic interpretation as the so-called secret symmetry. We also discuss Yangian symmetries of the A and B models introduced by Frolov and Quinn.

  20. Verifying Multi-Agent Systems via Unbounded Model Checking

    Science.gov (United States)

    Kacprzak, M.; Lomuscio, A.; Lasica, T.; Penczek, W.; Szreter, M.

    2004-01-01

    We present an approach to the problem of verification of epistemic properties in multi-agent systems by means of symbolic model checking. In particular, it is shown how to extend the technique of unbounded model checking from a purely temporal setting to a temporal-epistemic one. In order to achieve this, we base our discussion on interpreted systems semantics, a popular semantics used in multi-agent systems literature. We give details of the technique and show how it can be applied to the well known train, gate and controller problem. Keywords: model checking, unbounded model checking, multi-agent systems

  1. Map algebra and model algebra for integrated model building

    NARCIS (Netherlands)

    Schmitz, O.; Karssenberg, D.J.; Jong, K. de; Kok, J.-L. de; Jong, S.M. de

    2013-01-01

    Computer models are important tools for the assessment of environmental systems. A seamless workflow of construction and coupling of model components is essential for environmental scientists. However, currently available software packages are often tailored either to the construction of model compo

  2. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  3. Dynamic State Space Partitioning for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami; Kristensen, Lars Michael

    2009-01-01

    We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different...

  4. Algebra

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.

  5. Operator algebra of orbifold models

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R.; Vafa, C.; Verlinde, E.; Verlinde, H.

    1989-07-01

    We analyze the chiral properties of (orbifold) conformal field theories which are obtained from a given conformal field theory by modding out by a finite symmetry group. For a class of orbifolds, we derive the fusion rules by studying the modular transformation properties of the one-loop characters. The results are illustrated with explicit calculations of toroidal and c=1 models.

  6. Algebraic model of baryon resonances

    CERN Document Server

    Bijker, R

    1997-01-01

    We discuss recent calculations of electromagnetic form factors and strong decay widths of nucleon and delta resonances. The calculations are done in a collective constituent model of the nucleon, in which the baryons are interpreted as rotations and vibrations of an oblate top.

  7. Implementing Model-Check for Employee and Management Satisfaction

    Science.gov (United States)

    Jones, Corey; LaPha, Steven

    2013-01-01

    This presentation will discuss methods to which ModelCheck can be implemented to not only improve model quality, but also satisfy both employees and management through different sets of quality checks. This approach allows a standard set of modeling practices to be upheld throughout a company, with minimal interaction required by the end user. The presenter will demonstrate how to create multiple ModelCheck standards, preventing users from evading the system, and how it can improve the quality of drawings and models.

  8. Algebraic model of baryon structure

    CERN Document Server

    Bijker, R

    2000-01-01

    We discuss properties of baryon resonances belonging to the Nucleon, Delta, Sigma, Lambda, Xi and Omega families in a collective string-like model for the nucleon, in which the radial excitations are interpreted as rotations and vibrations of the string configuration. We find good overall agreement with the available data. The main discrepancies are found for low lying S-wave states, in particular N(1535), N(1650), Sigma(1750), Lambda*(1405), Lambda(1670) and Lambda(1800).

  9. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  10. Optimisation of BPMN Business Models via Model Checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2013-01-01

    We present a framework for the optimisation of business processes modelled in the business process modelling language BPMN, which builds upon earlier work, where we developed a model checking based method for the analysis of BPMN models. We define a structure for expressing optimisation goals...... for synthesized BPMN components, based on probabilistic computation tree logic and real-valued reward structures of the BPMN model, allowing for the specification of complex quantitative goals. We here present a simple algorithm, inspired by concepts from evolutionary algorithms, which iteratively generates...

  11. Multi-Matrix Models and Noncommutative Frobenius Algebras Obtained from Symmetric Groups and Brauer Algebras

    Science.gov (United States)

    Kimura, Yusuke

    2015-07-01

    It has been understood that correlation functions of multi-trace operators in SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand, such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.

  12. Multi-matrix models and Noncommutative Frobenius algebras obtained form symmetric groups and Brauer algebras

    CERN Document Server

    Kimura, Yusuke

    2014-01-01

    It has been understood that correlation functions of multi-trace operators in N=4 SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.

  13. The geometry of supersymmetric coset models and superconformal algebras

    CERN Document Server

    Papadopoulos, G

    1993-01-01

    An on-shell formulation of (p,q), 2\\leq p \\leq 4, 0\\leq q\\leq 4, supersymmetric coset models with target space the group G and gauge group a subgroup H of G is given. It is shown that there is a correspondence between the number of supersymmetries of a coset model and the geometry of the coset space G/H. The algebras of currents of supersymmetric coset models are superconformal algebras. In particular, the algebras of currents of (2,2) and (4,0) supersymmetric coset models are related to the N=2 Kazama-Suzuki and N=4 Van Proeyen superconformal algebras correspondingly.

  14. Modelling Chinese Smart Grid: A Stochastic Model Checking Case Study

    CERN Document Server

    Yüksel, Ender; Nielson, Flemming; Zhu, Huibiao; Huang, Heqing

    2012-01-01

    Cyber-physical systems integrate information and communication technology functions to the physical elements of a system for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues that require novel methods and applications. In this context, an important issue is the verification of certain quantitative properties of the system. In this technical report, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker.

  15. Model checking biological systems described using ambient calculus

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Priami, Corrado; Qualia, Paola;

    2005-01-01

    Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005.......Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005....

  16. Improved Bounded Model Checking for the Universal Fragment of CTL

    Institute of Scientific and Technical Information of China (English)

    Liang Xu; Wei Chen; Yan-Yan Xu; Wen-Hui Zhang

    2009-01-01

    SAT-based bounded model checking (BMC) has been introduced as a complementary technique to BDD-based symbolic model checking in recent years, and a lot of successful work has been done in this direction. The approach was first introduced by A. Biere et al. in checking linear temporal logic (LTL) formulae and then also adapted to check formulae of the universal fragment of computation tree logic (ACTL) by W. Penczek et al. As the efficiency of model checking is still an important issue, we present an improved BMC approach for ACTL based on Penczek's method. We consider two aspects of the approach. One is reduction of the number of variables and transitions in the k-model by distinguishing the temporal operator EX from the others. The other is simplification of the transformation of formulae by using uniform path encoding instead of a disjunction of all paths needed in the k-model. With these improvements, for an ACTI, formula, the length of the final encoding of the formula in the worst case is reduced. The improved approach is implemented in the tool BMV and is compared with the original one by applying both to two well known examples, mutual exclusion and dining philosophers. The comparison shows the advantages of the improved approach with respect to the efficiency of model checking.

  17. Model Checking-Based Testing of Web Applications

    Institute of Scientific and Technical Information of China (English)

    ZENG Hongwei; MIAO Huaikou

    2007-01-01

    A formal model representing the navigation behavior of a Web application as the Kripke structure is proposed and an approach that applies model checking to test case generation is presented. The Object Relation Diagram as the object model is employed to describe the object structure of a Web application design and can be translated into the behavior model. A key problem of model checking-based test generation for a Web application is how to construct a set of trap properties that intend to cause the violations of model checking against the behavior model and output of counterexamples used to construct the test sequences.We give an algorithm that derives trap properties from the object model with respect to node and edge coverage criteria.

  18. Monotonic Property in Field Algebra of G-Spin Model

    Institute of Scientific and Technical Information of China (English)

    蒋立宁

    2003-01-01

    Let F be the field algebra of G-spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G. The paper builds a correspondence between D(H) and the D(H)-invariant sub-C*-algebra AH in F, and proves that the correspondence is strictly monotonic.

  19. Extending Model Checking to Object Process Validation

    NARCIS (Netherlands)

    Rein, van H.

    2002-01-01

    Object-oriented techniques allow the gathering and modelling of system requirements in terms of an application area. The expression of data and process models at that level is a great asset in communication with non-technical people in that area, but it does not necessarily lead to consistent models

  20. Learning Markov Decision Processes for Model Checking

    DEFF Research Database (Denmark)

    Mao, Hua; Chen, Yingke; Jaeger, Manfred

    2012-01-01

    Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm on...

  1. Workflow Fault Tree Generation Through Model Checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2014-01-01

    We present a framework for the automated generation of fault trees from models of realworld process workflows, expressed in a formalised subset of the popular Business Process Modelling and Notation (BPMN) language. To capture uncertainty and unreliability in workflows, we extend this formalism...

  2. Schedulability of Herschel revisited using statistical model checking

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel

    2015-01-01

    Schedulability analysis is a main concern for several embedded applications due to their safety-critical nature. The classical method of response time analysis provides an efficient technique used in industrial practice. However, the method is based on conservative assumptions related to execution...... to obtain some guarantee on the (un)schedulability of the model even in the presence of undecidability. Two methods are considered: symbolic model checking and statistical model checking. Since the model uses stop-watches, the reachability problem becomes undecidable so we are using an over......-approximation technique. We can safely conclude that the system is schedulable for varying values of BCET. For the cases where deadlines are violated, we use polyhedra to try to confirm the witnesses. Our alternative method to confirm non-schedulability uses statistical model-checking (SMC) to generate counter...

  3. Multi-core and/or symbolic model checking

    NARCIS (Netherlands)

    Dijk, van Tom; Laarman, Alfons; Pol, van de Jaco; Luettgen, G.; Merz, S.

    2012-01-01

    We review our progress in high-performance model checking. Our multi-core model checker is based on a scalable hash-table design and parallel random-walk traversal. Our symbolic model checker is based on Multiway Decision Diagrams and the saturation strategy. The LTSmin tool is based on the PINS arc

  4. Symmetry and partial order reduction techniques in model checking Rebeca

    NARCIS (Netherlands)

    Jaghouri, M.M.; Sirjani, M.; Mousavi, M.R.; Movaghar, A.

    2007-01-01

    Rebeca is an actor-based language with formal semantics that can be used in modeling concurrent and distributed software and protocols. In this paper, we study the application of partial order and symmetry reduction techniques to model checking dynamic Rebeca models. Finding symmetry based equivalen

  5. 3D Object Recognition Based on Linear Lie Algebra Model

    Institute of Scientific and Technical Information of China (English)

    LI Fang-xing; WU Ping-dong; SUN Hua-fei; PENG Lin-yu

    2009-01-01

    A surface model called the fibre bundle model and a 3D object model based on linear Lie algebra model are proposed.Then an algorithm of 3D object recognition using the linear Lie algebra models is presented.It is a convenient recognition method for the objects which are symmetric about some axis.By using the presented algorithm,the representation matrices of the fibre or the base curve from only finite points of the linear Lie algebra model can be obtained.At last some recognition results of practicalities are given.

  6. Checking Flavour Models at Neutrino Facilities

    CERN Document Server

    Meloni, Davide

    2013-01-01

    In the recent years, the industry of model building has been the subject of the intense activity, especially after the measurement of a relatively large values of the reactor angle. Special attention has been devoted to the use of non-abelian discrete symmetries, thanks to their ability of reproducing some of the relevant features of the neutrino mixing matrix. In this paper, we consider two special relations between the leptonic mixing angles, arising from models based on S4 and A4, and study whether, and to which extent, they can be distinguished at superbeam facilities, namely T2K, NOvA and T2HK.

  7. Checking flavour models at neutrino facilities

    Energy Technology Data Exchange (ETDEWEB)

    Meloni, Davide, E-mail: meloni@fis.uniroma3.it

    2014-01-20

    In the recent years, the industry of model building has been the subject of the intense activity, especially after the measurement of a relatively large values of the reactor angle. Special attention has been devoted to the use of non-abelian discrete symmetries, thanks to their ability of reproducing some of the relevant features of the neutrino mixing matrix. In this Letter, we consider two special relations between the leptonic mixing angles, arising from models based on S{sub 4} and A{sub 4}, and study whether, and to which extent, they can be distinguished at superbeam facilities, namely T2K, NOνA and T2HK.

  8. CheckMATE 2: From the model to the limit

    CERN Document Server

    Dercks, Daniel; Kim, Jong Soo; Rolbiecki, Krzysztof; Tattersall, Jamie; Weber, Torsten

    2016-01-01

    We present the latest developments to the CheckMATE program that allows models of new physics to be easily tested against the recent LHC data. To achieve this goal, the core of CheckMATE now contains over 60 LHC analyses of which 12 are from the 13 TeV run. The main new feature is that CheckMATE 2 now integrates the Monte Carlo event generation via Madgraph and Pythia 8. This allows users to go directly from a SLHA file or UFO model to the result of whether a model is allowed or not. In addition, the integration of the event generation leads to a significant increase in the speed of the program. Many other improvements have also been made, including the possibility to now combine signal regions to give a total likelihood for a model.

  9. Model Checking Event-B by Encoding into Alloy

    CERN Document Server

    Matos, Paulo J

    2008-01-01

    As systems become ever more complex, verification becomes more main stream. Event-B and Alloy are two formal specification languages based on fairly different methodologies. While Event-B uses theorem provers to prove that invariants hold for a given specification, Alloy uses a SAT-based model finder. In some settings, Event-B invariants may not be proved automatically, and so the often difficult step of interactive proof is required. One solution for this problem is to validate invariants with model checking. This work studies the encoding of Event-B machines and contexts to Alloy in order to perform temporal model checking with Alloy's SAT-based engine.

  10. Preparing Secondary Mathematics Teachers: A Focus on Modeling in Algebra

    Science.gov (United States)

    Jung, Hyunyi; Mintos, Alexia; Newton, Jill

    2015-01-01

    This study addressed the opportunities to learn (OTL) modeling in algebra provided to secondary mathematics pre-service teachers (PSTs). To investigate these OTL, we interviewed five instructors of required mathematics and mathematics education courses that had the potential to include opportunities for PSTs to learn algebra at three universities.…

  11. Universality: Accurate Checks in Dyson's Hierarchical Model

    Science.gov (United States)

    Godina, J. J.; Meurice, Y.; Oktay, M. B.

    2003-06-01

    In this talk we present high-accuracy calculations of the susceptibility near βc for Dyson's hierarchical model in D = 3. Using linear fitting, we estimate the leading (γ) and subleading (Δ) exponents. Independent estimates are obtained by calculating the first two eigenvalues of the linearized renormalization group transformation. We found γ = 1.29914073 ± 10 -8 and, Δ = 0.4259469 ± 10-7 independently of the choice of local integration measure (Ising or Landau-Ginzburg). After a suitable rescaling, the approximate fixed points for a large class of local measure coincide accurately with a fixed point constructed by Koch and Wittwer.

  12. Distributed Maximality based CTL Model Checking

    Directory of Open Access Journals (Sweden)

    Djamel Eddine Saidouni

    2010-05-01

    Full Text Available In this paper we investigate an approach to perform a distributed CTL Model checker algorithm on a network of workstations using Kleen three value logic, the state spaces is partitioned among the network nodes, We represent the incomplete state spaces as a Maximality labeled Transition System MLTS which are able to express true concurrency. we execute in parallel the same algorithm in each node, for a certain property on an incomplete MLTS , this last compute the set of states which satisfy or which if they fail are assigned the value .The third value mean unknown whether true or false because the partial state space lacks sufficient information needed for a precise answer concerning the complete state space .To solve this problem each node exchange the information needed to conclude the result about the complete state space. The experimental version of the algorithm is currently being implemented using the functional programming language Erlang.

  13. Diagnostic checking for conditional heteroscedasticity models

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We suggest the score type tests for goodness-of-fit of conditional heteroscedasticity models in both univariate and multivariate time series.The tests can detect the alternatives converging to the null at a parametric rate.Weight functions are involved in the construction of the tests,which provides us with the flexibility to choose scores,especially under directional alternatives,for enhancing power performance.Furthermore,when the alternatives are not directional,we construct asymptotically distribution-free maximin tests for a large class of alternatives.A possibility to construct score-based omnibus tests is discussed when the alternative is saturated.The power performance is also investigated.A simulation study is carried out and a real data is analyzed.

  14. Using Model Checking for Analyzing Distributed Power Control Problems

    DEFF Research Database (Denmark)

    Brihaye, Thomas; Jungers, Marc; Lasaulce, Samson

    2010-01-01

    Model checking (MC) is a formal verification technique which has been known and still knows a resounding success in the computer science community. Realizing that the distributed power control ( PC) problem can be modeled by a timed game between a given transmitter and its environment, the authors...

  15. L∞-algebra models and higher Chern-Simons theories

    Science.gov (United States)

    Ritter, Patricia; Sämann, Christian

    2016-10-01

    We continue our study of zero-dimensional field theories in which the fields take values in a strong homotopy Lie algebra. In the first part, we review in detail how higher Chern-Simons theories arise in the AKSZ-formalism. These theories form a universal starting point for the construction of L∞-algebra models. We then show how to describe superconformal field theories and how to perform dimensional reductions in this context. In the second part, we demonstrate that Nambu-Poisson and multisymplectic manifolds are closely related via their Heisenberg algebras. As a byproduct of our discussion, we find central Lie p-algebra extensions of 𝔰𝔬(p + 2). Finally, we study a number of L∞-algebra models which are physically interesting and which exhibit quantized multisymplectic manifolds as vacuum solutions.

  16. The Complexity of Model Checking Higher-Order Fixpoint Logic

    DEFF Research Database (Denmark)

    Axelsson, Roland; Lange, Martin; Somla, Rafal

    2007-01-01

    of solving rather large parity games of small index. As a consequence of this we obtain an ExpTime upper bound on the expression complexity of each HFLk,m. The lower bound is established by a reduction from the word problem for alternating (k-1)-fold exponential space bounded Turing Machines. As a corollary...... provides complexity results for its model checking problem. In particular we consider its fragments HFLk,m which are formed using types of bounded order k and arity m only. We establish k-ExpTime-completeness for model checking each HFLk,m fragment. For the upper bound we reduce the problem to the problem...

  17. Fermi resonance-algebraic model for molecular vibrational spectra

    Institute of Scientific and Technical Information of China (English)

    侯喜文; 董世海; 谢汨; 马中骐

    1999-01-01

    A Fermi resonance-algebraic model is proposed for molecular vibrations, where a U(2) algebra is used for describing the vibrations of each bond, and Fermi resonances between stretching and bending modes are taken into account. The model for a bent molecule XY2 and a molecule XY3 is successfully applied to fitting the recently observed vibrational spectrum of the water molecule and arsine (AsH3), respectively, and the results are compared with those of other models. Calculations show that algebraic approaches can be used as an effective method to describe molecular vibrations with small standard deviations.

  18. An Extended Ontology Model and Ontology Checking Based on Description Logics

    Institute of Scientific and Technical Information of China (English)

    王洪伟; 蒋馥; 吴家春

    2004-01-01

    Ontology is defined as an explicit specification of a conceptualization. In this paper, an extended ontology model was constructed using description logics, which is a 5-tuples including term set, individual set, term definition set, instantiation assertion set and term restriction set. Based on the extended model, the issue on ontology checking was studied with the conclusion that the four kinds of term checking, including term satisfiability checking, term subsumption checking, term equivalence checking and term disjointness checking, can be reduced to the satisfiability checking, and satisfiability checking can be transformed into instantiation consistence checking.

  19. Action Algebras and Model Algebras in Denotational Semantics

    Science.gov (United States)

    Guedes, Luiz Carlos Castro; Haeusler, Edward Hermann

    This article describes some results concerning the conceptual separation of model dependent and language inherent aspects in a denotational semantics of a programming language. Before going into the technical explanation, the authors wish to relate a story that illustrates how correctly and precisely posed questions can influence the direction of research. By means of his questions, Professor Mosses aided the PhD research of one of the authors of this article and taught the other, who at the time was a novice supervisor, the real meaning of careful PhD supervision. The student’s research had been partially developed towards the implementation of programming languages through denotational semantics specification, and the student had developed a prototype [12] that compared relatively well to some industrial compilers of the PASCAL language. During a visit to the BRICS lab in Aarhus, the student’s supervisor gave Professor Mosses a draft of an article describing the prototype and its implementation experiments. The next day, Professor Mosses asked the supervisor, “Why is the generated code so efficient when compared to that generated by an industrial compiler?” and “You claim that the efficiency is simply a consequence of the Object- Orientation mechanisms used by the prototype programming language (C++); this should be better investigated. Pay more attention to the class of programs that might have this good comparison profile.” As a result of these aptly chosen questions and comments, the student and supervisor made great strides in the subsequent research; the advice provided by Professor Mosses made them perceive that the code generated for certain semantic domains was efficient because it mapped to the “right aspect” of the language semantics. (Certain functional types, used to represent mappings such as Stores and Environments, were pushed to the level of the object language (as in gcc). This had the side-effect of generating code for arrays in

  20. Model checking conditional CSL for continuous-time Markov chains

    DEFF Research Database (Denmark)

    Gao, Yang; Xu, Ming; Zhan, Naijun;

    2013-01-01

    In this paper, we consider the model-checking problem of continuous-time Markov chains (CTMCs) with respect to conditional logic. To the end, we extend Continuous Stochastic Logic introduced in Aziz et al. (2000) [1] to Conditional Continuous Stochastic Logic (CCSL) by introducing a conditional...

  1. Applied Bounded Model Checking for Interlocking System Designs

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Peleska, Jan; Pinger, Ralf

    2014-01-01

    of behavioural (operational) semantics. The former checks that the plant model – that is, the software components reflecting the physical components of the interlocking system – has been set up in an adequate way. The latter investigates trains moving through the network, with the objective to uncover potential...

  2. Lessons Learned Model Checking an Industrial Communications Library

    Science.gov (United States)

    2005-09-01

    Lecture Notes in Computer Science [LNCS], volume 2057). Toronto, Canada, May 19-20, 2001. Berlin...Model Checking,” 128-147. Integrated Formal Methods: The 4th International Conference (IFM 2004) ( Lecture Notes in Computer Science [LNCS], volume...on Computer Aided Verification (CAV 1990). ( Lecture Notes in Computer Science [LNCS], volume 531). New Brunswick, NJ, June 18-21, 1990.

  3. Model Checking Timed Automata with Priorities using DBM Subtraction

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Pettersson, Paul;

    2006-01-01

    In this paper we describe an extension of timed automata with priorities, and efficient algorithms to compute subtraction on DBMs (difference bounded matrices), needed in symbolic model-checking of timed automata with priorities. The subtraction is one of the few operations on DBMs that result in...

  4. Model checking abstract state machines with answer set programming

    OpenAIRE

    2006-01-01

    Answer Set Programming (ASP) is a logic programming paradigm that has been shown as a useful tool in various application areas due to its expressive modelling language. These application areas include Bourided Model Checking (BMC). BMC is a verification technique that is recognized for its strong ability of finding errors in computer systems. To apply BMC, a system needs to be modelled in a formal specification language, such as the widely used formalism of Abstract State Machines (ASMs). In ...

  5. Algebra model and security analysis for cryptographic protocols

    Institute of Scientific and Technical Information of China (English)

    HUAI Jinpeng; LI Xianxian

    2004-01-01

    More and more cryptographic protocols have been used to achieve various security requirements of distributed systems in the open network environment. However cryptographic protocols are very difficult to design and analyze due to the complexity of the cryptographic protocol execution, and a large number of problems are unsolved that range from the theory framework to the concrete analysis technique. In this paper, we build a new algebra called cryptographic protocol algebra (CPA) for describing the message operations with many cryptographic primitives, and proposed a new algebra model for cryptographic protocols based on the CPA. In the model, expanding processes of the participant's knowledge on the protocol runs are characterized with some algebraic notions such as subalgebra, free generator and polynomial algebra, and attack processes are modeled with a new notion similar to that of the exact sequence used in homological algebra. Then we develope a mathematical approach to the cryptographic protocol security analysis. By using algebraic techniques, we have shown that for those cryptographic protocols with some symmetric properties, the execution space generated by an arbitrary number of participants may boil down to a smaller space generated by several honest participants and attackers. Furthermore we discuss the composability problem of cryptographic protocols and give a sufficient condition under which the protocol composed of two correct cryptographic protocols is still correct, and we finally offer a counterexample to show that the statement may not be true when the condition is not met.

  6. Efficient family-based model checking via variability abstractions

    DEFF Research Database (Denmark)

    Dimovski, Aleksandar; Al-Sibahi, Ahmad Salim; Brabrand, Claus

    2016-01-01

    variational models using the standard version of (single-system) Spin. The variability abstractions are first defined as Galois connections on semantic domains. We then show how to use them for defining abstract family-based model checking, where a variability model is replaced with an abstract version of it......Many software systems are variational: they can be configured to meet diverse sets of requirements. They can produce a (potentially huge) number of related systems, known as products or variants, by systematically reusing common parts. For variational models (variational systems or families...... of related systems), specialized family-based model checking algorithms allow efficient verification of multiple variants, simultaneously, in a single run. These algorithms, implemented in a tool Snip, scale much better than ``the brute force'' approach, where all individual systems are verified using...

  7. Mixed Portmanteau Test for Diagnostic Checking of Time Series Models

    Directory of Open Access Journals (Sweden)

    Sohail Chand

    2014-01-01

    Full Text Available Model criticism is an important stage of model building and thus goodness of fit tests provides a set of tools for diagnostic checking of the fitted model. Several tests are suggested in literature for diagnostic checking. These tests use autocorrelation or partial autocorrelation in the residuals to criticize the adequacy of fitted model. The main idea underlying these portmanteau tests is to identify if there is any dependence structure which is yet unexplained by the fitted model. In this paper, we suggest mixed portmanteau tests based on autocorrelation and partial autocorrelation functions of the residuals. We derived the asymptotic distribution of the mixture test and studied its size and power using Monte Carlo simulations.

  8. Dynamical Algebraic Approach to the Modified Jaynes-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    许晶波; 邹旭波

    2001-01-01

    The modified Jaynes-Cummings model of a single two-level atom placed in the common domain of two cavities or interacting with two quantized modes is studied by a dynamical algebraic method. With the help of an SU(2) algebraic structure, we then obtain the eigenvalues, eigenstates, time evolution operator and atomic inversion operator for the system. We proceed to investigate the modified Jaynes-Cummings model governed by the Milburn equation and present the exact solution of the Milburn equation.

  9. Algebraic Modeling of Information Retrieval in XML Documents

    Science.gov (United States)

    Georgiev, Bozhidar; Georgieva, Adriana

    2009-11-01

    This paper presents an information retrieval approach in XML documents using tools, based on the linear algebra. The well-known transformation languages as XSLT (XPath) are grounded on the features of higher-order logic for manipulating hierarchical trees. The presented conception is compared to existing higher-order logic formalisms, where the queries are realized by both languages XSLT and XPath. The possibilities of the proposed linear algebraic model combined with hierarchy data models permit more efficient solutions for searching, extracting and manipulating semi-structured data with hierarchical structures avoiding the global navigation over the XML tree components. The main purpose of this algebraic model representation, applied to the hierarchical relationships in the XML data structures, is to make the implementation of linear algebra tools possible for XML data manipulations and to eliminate existing problems, related to regular grammars theory and also to avoid the difficulties, connected with higher -order logic (first-order logic, monadic second- order logic etc.).

  10. Logic Model Checking of Unintended Acceleration Claims in Toyota Vehicles

    Science.gov (United States)

    Gamble, Ed

    2012-01-01

    Part of the US Department of Transportation investigation of Toyota sudden unintended acceleration (SUA) involved analysis of the throttle control software, JPL Laboratory for Reliable Software applied several techniques including static analysis and logic model checking, to the software; A handful of logic models were build, Some weaknesses were identified; however, no cause for SUA was found; The full NASA report includes numerous other analyses

  11. Symbolic Model Checking and Analysis for E-Commerce Protocol

    Institute of Scientific and Technical Information of China (English)

    WEN Jing-Hua; ZHANG Mei; LI Xiang

    2005-01-01

    A new approach is proposed for analyzing non-repudiation and fairness of e-commerce protocols. The authentication e-mail protocol CMP1 is modeled as finite state machine and analyzed in two vital aspects - non-repudiation and fairness using SMV. As a result, the CMP1 protocol is not fair and we have improved it. This result shows that it is effective to analyze and check the new features of e-commerce protocols using SMV model checker

  12. Super Gelfand-Dickey Algebra And Integrable Models

    CERN Document Server

    Boukili, A El; Zemate, A

    2007-01-01

    The main task of this work concerns integrable models and supersymmetric extensions of the Gelfand-Dickey algebra of pseudo differential operators. The consistent and systematic study that we perform consists in describing in detail the relation existing between the algebra of (local and nonlocal) super differential operators on the ring of superfields $u_{\\frac{s}{2}}(z, \\theta), s\\in Z$ and the higher and lower spin extensions of the conformal algebra. In relation to integrable systems, the supersymmetric GD bracket play a pioneering role as it gives in some sense a guarantee of integrability of the associated non linear supersymmetric systems.

  13. Probabilistic Priority Message Checking Modeling Based on Controller Area Networks

    Science.gov (United States)

    Lin, Cheng-Min

    Although the probabilistic model checking tool called PRISM has been applied in many communication systems, such as wireless local area network, Bluetooth, and ZigBee, the technique is not used in a controller area network (CAN). In this paper, we use PRISM to model the mechanism of priority messages for CAN because the mechanism has allowed CAN to become the leader in serial communication for automobile and industry control. Through modeling CAN, it is easy to analyze the characteristic of CAN for further improving the security and efficiency of automobiles. The Markov chain model helps us to model the behaviour of priority messages.

  14. Using computer algebra and SMT-solvers to analyze a mathematical model of cholera propagation

    Science.gov (United States)

    Trujillo Arredondo, Mariana

    2014-06-01

    We analyze a mathematical model for the transmission of cholera. The model is already defined and involves variables such as the pathogen agent, which in this case is the bacterium Vibrio cholera, and the human population. The human population is divided into three classes: susceptible, infectious and removed. Using Computer Algebra, specifically Maple we obtain two equilibrium states: the disease free state and the endemic state. Using Maple it is possible to prove that the disease free state is locally asymptotically stable if and only if R0 1. Using the package Red-Log of the Computer algebra system Reduce and the SMT-Solver Z3Py it is possible to obtain numerical conditions for the model. The formula for the basic reproductive number makes a synthesis with all epidemic parameters in the model. Also it is possible to make numerical simulations which are very illustrative about the epidemic patters that are expected to be observed in real situations. We claim that these kinds of software are very useful in the analysis of epidemic models given that the symbolic computation provides algebraic formulas for the basic reproductive number and such algebraic formulas are very useful to derive control measures. For other side, computer algebra software is a powerful tool to make the stability analysis for epidemic models given that the all steps in the stability analysis can be made automatically: finding the equilibrium points, computing the jacobian, computing the characteristic polynomial for the jacobian, and applying the Routh-Hurwitz theorem to the characteristic polynomial. Finally, using SMT-Solvers is possible to make automatically checks of satisfiability, validity and quantifiers elimination being these computations very useful to analyse complicated epidemic models.

  15. Quasi hope algebras, group cohomology and orbifold models

    Science.gov (United States)

    Dijkgraaf, R.; Pasquier, V.; Roche, P.

    1991-01-01

    We construct non trivial quasi Hopf algebras associated to any finite group G and any element of H3( G, U(1)). We analyze in details the set of representations of these algebras and show that we recover the main interesting datas attached to particular orbifolds of Rational Conformal Field Theory or equivalently to the topological field theories studied by R. Dijkgraaf and E. Witten. This leads us to the construction of the R-matrix structure in non abelian RCFT orbifold models.

  16. Performance modeling and prediction for linear algebra algorithms

    OpenAIRE

    Iakymchuk, Roman

    2012-01-01

    This dissertation incorporates two research projects: performance modeling and prediction for dense linear algebra algorithms, and high-performance computing on clouds. The first project is focused on dense matrix computations, which are often used as computational kernels for numerous scientific applications. To solve a particular mathematical operation, linear algebra libraries provide a variety of algorithms. The algorithm of choice depends, obviously, on its performance. Performance of su...

  17. A Succinct Approach to Static Analysis and Model Checking

    DEFF Research Database (Denmark)

    Filipiuk, Piotr

    In a number of areas software correctness is crucial, therefore it is often desirable to formally verify the presence of various properties or the absence of errors. This thesis presents a framework for concisely expressing static analysis and model checking problems. The framework facilitates...... in the classical formulation of ALFP logic. Finally, we show that the logics and the associated solvers can be used for rapid prototyping. We illustrate that by a variety of case studies from static analysis and model checking....... rapid prototyping of new analyses and consists of variants of ALFP logic and associated solvers. First, we present a Lattice based Least Fixed Point Logic (LLFP) that allows interpretations over complete lattices satisfying Ascending Chain Condition. We establish a Moore Family result for LLFP...

  18. Model Checking Real-Time Value-Passing Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Chen; Zio-Ning Cao

    2004-01-01

    In this paper,to model check real-time value-passing systems,a formal language Timed Symbolic Transition Graph and a logic system named Timed Predicate μ-Calculus are proposed.An algorithm is presented which is local in that it generates and investigates the reachable state space in top-down fashion and maintains the partition for time evaluations as coarse as possible while on-the-fly instantiating data variables.It can deal with not only data variables with finite value domain,but also the so called data independent variables with infinite value domain.To authors knowledge,this is the first algorithm for model checking timed systems containing value-passing features.

  19. SMT-based Bounded Model Checking with Difference Logic Constraints

    CERN Document Server

    Bersani, Marcello M; Morzenti, Angelo; Pradella, Matteo; Rossi, Matteo; Pietro, Pierluigi San

    2010-01-01

    Traditional Bounded Model Checking (BMC) is based on translating the model checking problem into SAT, the Boolean satisfiability problem. This paper introduces an encoding of Linear Temporal Logic with Past operators (PLTL) into the Quantifier-Free Difference Logic with Uninterpreted Functions (QF-UFIDL). The resulting encoding is a simpler and more concise version of existing SATbased encodings, currently used in BMC. In addition, we present an extension of PLTL augmented with arithmetic relations over integers, which can express unbounded counters; as such, the extended logic is more expressive than PLTL. We introduce suitable restrictions and assumptions that are shown to make the verification problem for the extended logic decidable, and we define an encoding of the new logic into QF-UFIDL. Finally, a performance comparison with the SAT-based approach on purely PLTL examples shows significant improvements in terms of both execution time and memory occupation.

  20. Detecting feature interactions in Web services with model checking techniques

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As a platform-independent software system, a Web service is designed to offer interoperability among diverse and heterogeneous applications.With the introduction of service composition in the Web service creation, various message interactions among the atomic services result in a problem resembling the feature interaction problem in the telecommunication area.This article defines the problem as feature interaction in Web services and proposes a model checking-based detection method.In the method, the Web service description is translated to the Promela language - the input language of the model checker simple promela interpreter (SPIN), and the specific properties, expressed as linear temporal logic (LTL) formulas, are formulated according to our classification of feature interaction.Then, SPIN is used to check these specific properties to detect the feature interaction in Web services.

  1. Using Stochastic Model Checking to Provision Complex Business Services

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2012-01-01

    bounds on resources consumed during execution of business processes. Accurate resource provisioning is often central to ensuring the safe execution of a process. We first introduce a formalised core subset of the Business Process Modelling and Notation (BPMN), which we extend with probabilistic and non......-deterministic branching and reward annotations. We then develop an algorithm for the efficient translation of these models into the guarded command language used by the model checker PRISM, in turn enabling model checking of BPMN processes and allowing for the calculation of a wide range of quantitative properties...

  2. A Graphical μ-Calculus and Local Model Checking

    Institute of Scientific and Technical Information of China (English)

    林惠民

    2002-01-01

    A graphical notation for the propositionalμ-calculus, called modal graphs, ispresented. It is shown that both the textual and equational presentations of theμ-calculus canbe translated into modal graphs. A model checking algorithm based on such graphs is proposed.The algorithm is truly local in the sense that it only generates the parts of the underlyingsearch space which are necessary for the computation of the final result. The correctness of thealgorithm is proven and its complexity analysed.

  3. Model Checking with Multi-Threaded IC3 Portfolios

    Science.gov (United States)

    2015-01-15

    Model Checking with Multi-Threaded IC3 Portfolios Sagar Chaki and Derrick Karimi Software Engineering Institute, Carnegie Mellon University {chaki...different runs varies randomly depending on the thread interleaving. The use of a portfolio of solvers to maximize the likelihood of a quick solution is...investigated. Using the Extreme Value theorem, the runtime of each variant, as well as their portfolios is analysed statistically. A formula for the

  4. Approximating Attractors of Boolean Networks by Iterative CTL Model Checking.

    Science.gov (United States)

    Klarner, Hannes; Siebert, Heike

    2015-01-01

    This paper introduces the notion of approximating asynchronous attractors of Boolean networks by minimal trap spaces. We define three criteria for determining the quality of an approximation: "faithfulness" which requires that the oscillating variables of all attractors in a trap space correspond to their dimensions, "univocality" which requires that there is a unique attractor in each trap space, and "completeness" which requires that there are no attractors outside of a given set of trap spaces. Each is a reachability property for which we give equivalent model checking queries. Whereas faithfulness and univocality can be decided by model checking the corresponding subnetworks, the naive query for completeness must be evaluated on the full state space. Our main result is an alternative approach which is based on the iterative refinement of an initially poor approximation. The algorithm detects so-called autonomous sets in the interaction graph, variables that contain all their regulators, and considers their intersection and extension in order to perform model checking on the smallest possible state spaces. A benchmark, in which we apply the algorithm to 18 published Boolean networks, is given. In each case, the minimal trap spaces are faithful, univocal, and complete, which suggests that they are in general good approximations for the asymptotics of Boolean networks.

  5. Boundary algebras and Kac modules for logarithmic minimal models

    CERN Document Server

    Morin-Duchesne, Alexi; Ridout, David

    2015-01-01

    Virasoro Kac modules were initially introduced indirectly as representations whose characters arise in the continuum scaling limits of certain transfer matrices in logarithmic minimal models, described using Temperley-Lieb algebras. The lattice transfer operators include seams on the boundary that use Wenzl-Jones projectors. If the projectors are singular, the original prescription is to select a subspace of the Temperley-Lieb modules on which the action of the transfer operators is non-singular. However, this prescription does not, in general, yield representations of the Temperley-Lieb algebras and the Virasoro Kac modules have remained largely unidentified. Here, we introduce the appropriate algebraic framework for the lattice analysis as a quotient of the one-boundary Temperley-Lieb algebra. The corresponding standard modules are introduced and examined using invariant bilinear forms and their Gram determinants. The structures of the Virasoro Kac modules are inferred from these results and are found to be...

  6. A spatial operator algebra for manipulator modeling and control

    Science.gov (United States)

    Rodriguez, G.; Kreutz, K.; Milman, M.

    1988-01-01

    A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.

  7. Introduction of Virtualization Technology to Multi-Process Model Checking

    Science.gov (United States)

    Leungwattanakit, Watcharin; Artho, Cyrille; Hagiya, Masami; Tanabe, Yoshinori; Yamamoto, Mitsuharu

    2009-01-01

    Model checkers find failures in software by exploring every possible execution schedule. Java PathFinder (JPF), a Java model checker, has been extended recently to cover networked applications by caching data transferred in a communication channel. A target process is executed by JPF, whereas its peer process runs on a regular virtual machine outside. However, non-deterministic target programs may produce different output data in each schedule, causing the cache to restart the peer process to handle the different set of data. Virtualization tools could help us restore previous states of peers, eliminating peer restart. This paper proposes the application of virtualization technology to networked model checking, concentrating on JPF.

  8. Algebraic model of an oblate top

    CERN Document Server

    Bijker, R

    1996-01-01

    We consider an algebraic treatment of a three-body system. In particular, we develop the formalism for a system of three identical objects and discuss an application to nonstrange baryon resonances which are interpreted as vibrational and rotational excitations of an oblate symmetric top. We derive closed expressions for a set of elementary form factors that appear in the calculation of both electromagnetic, strong and weak couplings of baryons.

  9. A comparison between algebraic models of molecular spectroscopy

    CERN Document Server

    Bijker, R; Lemus, R; Arias, J M; Pérez-Bernal, F

    1998-01-01

    We discuss a symmetry-adapted algebraic (or vibron) model for molecular spectroscopy. The model is formulated in terms of tensor operators under the molecular point group. In this way, we have identified interactions that are absent in previous versions of the vibron model, in which the Hamiltonian is expressed in terms of Casimir operators and their products. The inclusion of these new interactions leads to reliable spectroscopic predictions. As an example we study the vibrational excitations of the methane molecule, and compare our results with those obtained in other algebraic models.

  10. Model-checking techniques based on cumulative residuals.

    Science.gov (United States)

    Lin, D Y; Wei, L J; Ying, Z

    2002-03-01

    Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.

  11. Model Checking Data Consistency for Cache Coherence Protocols

    Institute of Scientific and Technical Information of China (English)

    Hong Pan; Hui-Min Lin; Yi Lv

    2006-01-01

    A method for automatic verification of cache coherence protocols is presented, in which cache coherence protocols are modeled as concurrent value-passing processes, and control and data consistency requirement are described as formulas in first-orderμ-calculus. A model checker is employed to check if the protocol under investigation satisfies the required properties. Using this method a data consistency error has been revealed in a well-known cache coherence protocol.The error has been corrected, and the revised protocol has been shown free from data consistency error for any data domain size, by appealing to data independence technique.

  12. Optimizing ZigBee Security using Stochastic Model Checking

    CERN Document Server

    Yüksel, Ender; Nielson, Flemming; Fruth, Matthias; Kwiatkowska, Marta

    2012-01-01

    ZigBee is a fairly new but promising wireless sensor network standard that offers the advantages of simple and low resource communication. Nevertheless, security is of great concern to ZigBee, and enhancements are prescribed in the latest ZigBee specication: ZigBee-2007. In this technical report, we identify an important gap in the specification on key updates, and present a methodology for determining optimal key update policies and security parameters. We exploit the stochastic model checking approach using the probabilistic model checker PRISM, and assess the security needs for realistic application scenarios.

  13. Model Checking Workflow Net Based on Petri Net

    Institute of Scientific and Technical Information of China (English)

    ZHOU Conghua; CHEN Zhenyu

    2006-01-01

    The soundness is a very important criterion for the correctness of the workflow.Specifying the soundness with Computation Tree Logic (CTL) allows us to verify the soundness with symbolic model checkers.Therefore the state explosion problem in verifying soundness can be overcome efficiently.When the property is not satisfied by the system,model checking can give a counter-example, which can guide us to correct the workflow.In addition, relaxed soundness is another important criterion for the workflow.We also prove that Computation Tree Logic * (CTL * ) can be used to character the relaxed soundness of the workflow.

  14. Optimizing ZigBee Security using Stochastic Model Checking

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    ZigBee is a fairly new but promising wireless sensor network standard that offers the advantages of simple and low resource communication. Nevertheless, security is of great concern to ZigBee, and enhancements are prescribed in the latest ZigBee specication: ZigBee-2007. In this technical report......, we identify an important gap in the specification on key updates, and present a methodology for determining optimal key update policies and security parameters. We exploit the stochastic model checking approach using the probabilistic model checker PRISM, and assess the security needs for realistic...

  15. Network segregation in a model of misinformation and fact checking

    CERN Document Server

    Tambuscio, Marcella; Ciampaglia, Giovanni Luca; Ruffo, Giancarlo

    2016-01-01

    Misinformation under the form of rumor, hoaxes, and conspiracy theories spreads on social media at alarming rates. One hypothesis is that, since social media are shaped by homophily, belief in misinformation may be more likely to thrive on those social circles that are segregated from the rest of the network. One possible antidote is fact checking which, in some cases, is known to stop rumors from spreading further. However, fact checking may also backfire and reinforce the belief in a hoax. Here we take into account the combination of network segregation, finite memory and attention, and fact-checking efforts. We consider a compartmental model of two interacting epidemic processes over a network that is segregated between gullible and skeptic users. Extensive simulation and mean-field analysis show that a more segregated network facilitates the spread of a hoax only at low forgetting rates, but has no effect when agents forget at faster rates. This finding may inform the development of mitigation techniques ...

  16. Calculus and design of discrete velocity models using computer algebra

    Science.gov (United States)

    Babovsky, Hans; Grabmeier, Johannes

    2016-11-01

    In [2, 3], a framework for a calculus with Discrete Velocity Models (DVM) has been derived. The rotatonal symmetry of the discrete velocities can be modelled algebraically by the action of the cyclic group C4 - or including reflections of the dihedral group D4. Taking this point of view, the linearized collision operator can be represented in a compact form as a matrix of elements in the group algebra. Or in other words, by choosing a special numbering it exhibits a certain block structure which lets it appear as a matrix with entries in a certain polynomial ring. A convenient way for approaching such a structure is the use of a computer algebra system able to treat these (predefined) algebraic structures. We used the computer algebra system FriCAS/AXIOM [4, 5] for the generation of the velocity and the collision sets and for the analysis of the structure of the collision operator. Concerning the fluid dynamic limit, the system provides the characterization of sets of collisions and their contribution to the flow parameters. It allows the design of rotationally invariant symmetric models for prescribed Prandtl numbers. The implementation in FriCAS/AXIOM is explained and its results for a 25-velocity model are presented.

  17. Applying Model Checking to Industrial-Sized PLC Programs

    CERN Document Server

    AUTHOR|(CDS)2079190; Darvas, Daniel; Blanco Vinuela, Enrique; Tournier, Jean-Charles; Bliudze, Simon; Blech, Jan Olaf; Gonzalez Suarez, Victor M

    2015-01-01

    Programmable logic controllers (PLCs) are embedded computers widely used in industrial control systems. Ensuring that a PLC software complies with its specification is a challenging task. Formal verification has become a recommended practice to ensure the correctness of safety-critical software but is still underused in industry due to the complexity of building and managing formal models of real applications. In this paper, we propose a general methodology to perform automated model checking of complex properties expressed in temporal logics (\\eg CTL, LTL) on PLC programs. This methodology is based on an intermediate model (IM), meant to transform PLC programs written in various standard languages (ST, SFC, etc.) to different modeling languages of verification tools. We present the syntax and semantics of the IM and the transformation rules of the ST and SFC languages to the nuXmv model checker passing through the intermediate model. Finally, two real cases studies of \\CERN PLC programs, written mainly in th...

  18. Efficient Parallel Statistical Model Checking of Biochemical Networks

    Directory of Open Access Journals (Sweden)

    Paolo Ballarini

    2009-12-01

    Full Text Available We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture.

  19. SoS contract verification using statistical model checking

    Directory of Open Access Journals (Sweden)

    Alessandro Mignogna

    2013-11-01

    Full Text Available Exhaustive formal verification for systems of systems (SoS is impractical and cannot be applied on a large scale. In this paper we propose to use statistical model checking for efficient verification of SoS. We address three relevant aspects for systems of systems: 1 the model of the SoS, which includes stochastic aspects; 2 the formalization of the SoS requirements in the form of contracts; 3 the tool-chain to support statistical model checking for SoS. We adapt the SMC technique for application to heterogeneous SoS. We extend the UPDM/SysML specification language to express the SoS requirements that the implemented strategies over the SoS must satisfy. The requirements are specified with a new contract language specifically designed for SoS, targeting a high-level English- pattern language, but relying on an accurate semantics given by the standard temporal logics. The contracts are verified against the UPDM/SysML specification using the Statistical Model Checker (SMC PLASMA combined with the simulation engine DESYRE, which integrates heterogeneous behavioral models through the functional mock-up interface (FMI standard. The tool-chain allows computing an estimation of the satisfiability of the contracts by the SoS. The results help the system architect to trade-off different solutions to guide the evolution of the SoS.

  20. The $BC_{1}$ Elliptic model: algebraic forms, hidden algebra $sl(2)$, polynomial eigenfunctions

    CERN Document Server

    Turbiner, Alexander V

    2014-01-01

    The potential of the $BC_1$ elliptic model is a superposition of two Weierstrass functions with doubling of both periods (two coupling constants), the model degenerates to $A_1$ elliptic model characterized by the Lame Hamiltonian. It is shown that in space of $BC_1$ elliptic invariant the potential becomes a rational function while the flat space metric is polynomial. The model possesses the hidden $sl_2$ algebra for arbitrary coupling constants: it is equivalent to $sl_2$-quantum top in three different magnetic fields. It is shown that there exist three one-parametric families of coupling constants for which a finite number of polynomial eigenfunctions (up to a factor) occur.

  1. Model checking coalitional games in shortage resource scenarios

    Directory of Open Access Journals (Sweden)

    Dario Della Monica

    2013-07-01

    Full Text Available Verification of multi-agents systems (MAS has been recently studied taking into account the need of expressing resource bounds. Several logics for specifying properties of MAS have been presented in quite a variety of scenarios with bounded resources. In this paper, we study a different formalism, called Priced Resource-Bounded Alternating-time Temporal Logic (PRBATL, whose main novelty consists in moving the notion of resources from a syntactic level (part of the formula to a semantic one (part of the model. This allows us to track the evolution of the resource availability along the computations and provides us with a formalisms capable to model a number of real-world scenarios. Two relevant aspects are the notion of global availability of the resources on the market, that are shared by the agents, and the notion of price of resources, depending on their availability. In a previous work of ours, an initial step towards this new formalism was introduced, along with an EXPTIME algorithm for the model checking problem. In this paper we better analyze the features of the proposed formalism, also in comparison with previous approaches. The main technical contribution is the proof of the EXPTIME-hardness of the the model checking problem for PRBATL, based on a reduction from the acceptance problem for Linearly-Bounded Alternating Turing Machines. In particular, since the problem has multiple parameters, we show two fixed-parameter reductions.

  2. An Algebraic Solution for the Kermack-McKendrick Model

    CERN Document Server

    Carvalho, Alexsandro M

    2016-01-01

    We present an algebraic solution for the Susceptible-Infective-Removed (SIR) model originally presented by Kermack-McKendrick in 1927. Starting from the differential equation for the removed subjects presented by them in the original paper, we re-write it in a slightly different form in order to derive formally the solution, unless one integration. Then, using algebraic techniques and some well justified numerical assumptions we obtain an analytic solution for the integral. Finally, we compare the numerical solution of the differential equations of the SIR model with the analytically solution here proposed, showing an excellent agreement.

  3. Laser modeling a numerical approach with algebra and calculus

    CERN Document Server

    Csele, Mark Steven

    2014-01-01

    Offering a fresh take on laser engineering, Laser Modeling: A Numerical Approach with Algebra and Calculus presents algebraic models and traditional calculus-based methods in tandem to make concepts easier to digest and apply in the real world. Each technique is introduced alongside a practical, solved example based on a commercial laser. Assuming some knowledge of the nature of light, emission of radiation, and basic atomic physics, the text:Explains how to formulate an accurate gain threshold equation as well as determine small-signal gainDiscusses gain saturation and introduces a novel pass

  4. Algebraic models of hadron structure I. Nonstrange baryons

    CERN Document Server

    Bijker, R; Leviatan, A

    1994-01-01

    We introduce an algebraic framework for the description of baryons. Within this framework we study a collective string-like model and show that this model gives a good overall description of the presently available data. We discuss in particular masses and electromagnetic couplings, including the transition form factors that can be measured at new electron facilities.

  5. Algebraic models of hadron structure. I. Nonstrange baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R. [Univ. of Utrecht (Netherlands); Iachello, F. [Yale Univ., New Haven, CT (United States); Leviatan, A. [Hebrew Univ., Jerusalem (Israel)

    1994-11-15

    The authors introduce an algebraic framework for the description of baryons. Within this framework they study a collective string-like model and show that this model gives a good overall description of the presently available data. They discuss in particular masses and electromagnetic couplings, including the transition form factors that can be measured at new electron facilities. 44 refs., 15 figs., 11 tabs.

  6. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    Science.gov (United States)

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  7. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  8. Optical linear algebra processors: noise and error-source modeling.

    Science.gov (United States)

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  9. The Effects of the Content Enhancement Model in College Algebra

    Science.gov (United States)

    VanCleave, Janet Milleret

    2010-01-01

    The purpose of this study was to investigate The Content Enhancement Model in the field of college algebra in a mid-western community college. The Content Enhancement Model is a teaching technique that teachers use to help students acquire the content information by helping them identify, organize, comprehend, and memorize material. This study…

  10. Model Checking Degrees of Belief in a System of Agents

    Science.gov (United States)

    Raimondi, Franco; Primero, Giuseppe; Rungta, Neha

    2014-01-01

    Reasoning about degrees of belief has been investigated in the past by a number of authors and has a number of practical applications in real life. In this paper we present a unified framework to model and verify degrees of belief in a system of agents. In particular, we describe an extension of the temporal-epistemic logic CTLK and we introduce a semantics based on interpreted systems for this extension. In this way, degrees of beliefs do not need to be provided externally, but can be derived automatically from the possible executions of the system, thereby providing a computationally grounded formalism. We leverage the semantics to (a) construct a model checking algorithm, (b) investigate its complexity, (c) provide a Java implementation of the model checking algorithm, and (d) evaluate our approach using the standard benchmark of the dining cryptographers. Finally, we provide a detailed case study: using our framework and our implementation, we assess and verify the situational awareness of the pilot of Air France 447 flying in off-nominal conditions.

  11. An algebraic approach to modeling in software engineering

    Energy Technology Data Exchange (ETDEWEB)

    Loegel, G.J. [Superconducting Super Collider Lab., Dallas, TX (United States)]|[Michigan Univ., Ann Arbor, MI (United States); Ravishankar, C.V. [Michigan Univ., Ann Arbor, MI (United States)

    1993-09-01

    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ``computer science`` objects like abstract data types, but in practice software errors are often caused because ``real-world`` objects are improperly modeled. There is a large semantic gap between the customer`s objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form.

  12. Using Model Checking for Analyzing Distributed Power Control Problems

    Directory of Open Access Journals (Sweden)

    Thomas Brihaye

    2010-01-01

    Full Text Available Model checking (MC is a formal verification technique which has been known and still knows a resounding success in the computer science community. Realizing that the distributed power control (PC problem can be modeled by a timed game between a given transmitter and its environment, the authors wanted to know whether this approach can be applied to distributed PC. It turns out that it can be applied successfully and allows one to analyze realistic scenarios including the case of discrete transmit powers and games with incomplete information. The proposed methodology is as follows. We state some objectives a transmitter-receiver pair would like to reach. The network is modeled by a game where transmitters are considered as timed automata interacting with each other. The objectives are then translated into timed alternating-time temporal logic formulae and MC is exploited to know whether the desired properties are verified and determine a winning strategy.

  13. Model-checking dense-time Duration Calculus

    DEFF Research Database (Denmark)

    Fränzle, Martin

    2004-01-01

    Since the seminal work of Zhou Chaochen, M. R. Hansen, and P. Sestoft on decidability of dense-time Duration Calculus [Zhou, Hansen, Sestoft, 1993] it is well-known that decidable fragments of Duration Calculus can only be obtained through withdrawal of much of the interesting vocabulary...... of this logic. While this was formerly taken as an indication that key-press verification of implementations with respect to elaborate Duration Calculus specifications were also impossible, we show that the model property is well decidable for realistic designs which feature natural constraints...... suitably sparser model classes we obtain model-checking procedures for rich subsets of Duration Calculus. Together with undecidability results also obtained, this sheds light upon the exact borderline between decidability and undecidability of Duration Calculi and related logics....

  14. Application of Model-Checking Technology to Controller Synthesis

    DEFF Research Database (Denmark)

    David, Alexandre; Grunnet, Jacob Deleuran; Jessen, Jan Jacob

    2011-01-01

    its continuous environment, which is modelled and taken care of in our frameworks. Our first technique does it by using Matlab to discretise the problem and then Uppaal-tiga to solve the obtained timed game. This is implemented as a toolbox. The second technique relies on the user defining a timed......In this paper we present two frameworks that have been implemented to link traditional model-checking techniques to the domain of control. The techniques are based on solving a timed game and using the resulting solution (a strategy) as a controller. The obtained discrete controller must fit within...... game model in Uppaal- tiga. Then the strategy is automatically imported in Simulink as an S-function for simulation and validation purposes. We demonstrate the effectiveness of these frameworks in different case-studies....

  15. Fully Analyzing an Algebraic Polya Urn Model

    CERN Document Server

    Morcrette, Basile

    2012-01-01

    This paper introduces and analyzes a particular class of Polya urns: balls are of two colors, can only be added (the urns are said to be additive) and at every step the same constant number of balls is added, thus only the color compositions varies (the urns are said to be balanced). These properties make this class of urns ideally suited for analysis from an "analytic combinatorics" point-of-view, following in the footsteps of Flajolet-Dumas-Puyhaubert, 2006. Through an algebraic generating function to which we apply a multiple coalescing saddle-point method, we are able to give precise asymptotic results for the probability distribution of the composition of the urn, as well as local limit law and large deviation bounds.

  16. Quasi Hopf algebras, group cohomology and orbifold models

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. (Princeton Univ., NJ (USA). Joseph Henry Labs.); Pasquier, V. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Inst. de Recherche Fondamentale (IRF)); Roche, P. (Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique)

    1991-01-01

    We construct non trivial quasi Hopf algebras associated to any finite group G and any element of H{sup 3}(G,U)(1). We analyze in details the set of representations of these algebras and show that we recover the main interesting datas attached to particular orbifolds of Rational Conformal Field Theory or equivalently to the topological field theories studied by R. Dijkgraaf and E. Witten. This leads us to the construction of the R-matrix structure in non abelian RCFT orbifold models. (orig.).

  17. Algebraic approach to small-world network models

    Science.gov (United States)

    Rudolph-Lilith, Michelle; Muller, Lyle E.

    2014-01-01

    We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.

  18. Tarmo: A Framework for Parallelized Bounded Model Checking

    CERN Document Server

    Wieringa, Siert; Heljanko, Keijo; 10.4204/EPTCS.14.5

    2009-01-01

    This paper investigates approaches to parallelizing Bounded Model Checking (BMC) for shared memory environments as well as for clusters of workstations. We present a generic framework for parallelized BMC named Tarmo. Our framework can be used with any incremental SAT encoding for BMC but for the results in this paper we use only the current state-of-the-art encoding for full PLTL. Using this encoding allows us to check both safety and liveness properties, contrary to an earlier work on distributing BMC that is limited to safety properties only. Despite our focus on BMC after it has been translated to SAT, existing distributed SAT solvers are not well suited for our application. This is because solving a BMC problem is not solving a set of independent SAT instances but rather involves solving multiple related SAT instances, encoded incrementally, where the satisfiability of each instance corresponds to the existence of a counterexample of a specific length. Our framework includes a generic architecture for a ...

  19. Non-algebraic oscillations for predator-prey models

    OpenAIRE

    Ferragut, Antoni

    2014-01-01

    The authors are partially supported by grants MTM2008-03437 and 2009SGR-410. The first author is additionally partially supported by grants Juan de la Cierva and MTM2009-14163-C02-02. We prove that the limit cycle oscillations of the celebrated Rosenzweig-MacArthur differential system and other predator-prey models are non-algebraic.

  20. Continual Lie algebras and noncommutative counterparts of exactly solvable models

    Science.gov (United States)

    Zuevsky, A.

    2004-01-01

    Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.

  1. Algebraic Models of Hadron Structure; 2, Strange Baryons

    CERN Document Server

    Bijker, R; Leviatan, A

    2000-01-01

    The algebraic treatment of baryons is extended to strange resonances. Within this framework we study a collective string-like model in which the radial excitations are interpreted as rotations and vibrations of the strings. We derive a mass formula and closed expressions for strong and electromagnetic decay widths and use these to analyze the available experimental data.

  2. Form factors in an algebraic model of the nucleon

    CERN Document Server

    Bijker, R

    1995-01-01

    We study the electromagnetic form factors of the nucleon in a collective model of baryons. In an algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction.

  3. A conceptual model of check dam hydraulics for gully control

    Directory of Open Access Journals (Sweden)

    C. Castillo

    2013-09-01

    Full Text Available There is little information in scientific literature regarding the modifications induced by check dam systems in flow regimes in restored gully reaches, despite it being a crucial issue for the design of conservation measures. Here, we develop a conceptual model to classify flow regimes in straight rectangular channels for initial and dam-filling conditions as well as a method of estimating efficiency in order to provide guidelines for optimal design. The model integrates several previous mathematical approaches for assessing the main processes involved (hydraulic jump HJ, impact flow, gradually varied flows. Its performance was compared with the simulations obtained from IBER, a bi-dimensional hydrodynamic model. The impact of check dam spacing (defined by the geometric factor of influence c on efficiency was explored. Eleven main classifications of flow regimes were identified depending on the element and level of influence. The model produced similar results when compared with IBER, but led to higher estimations of HJ and impact lengths. Total influence guaranteed maximum efficiency and HJ control defining the location of the optimal c. Geometric total influence (c = 1 was a valid criterion for the different stages of the structures in a wide range of situations provided that hydraulic roughness conditions remained high within the gully, e.g. through revegetation. Our total influence criterion involved shorter spacing than that habitually recommended in technical manuals for restoration, but was in line with those values found in spontaneous and stable step-pools systems, which might serve as a reference for man-made interventions.

  4. How algebraic Bethe ansatz works for integrable model

    CERN Document Server

    Fadeev, L

    1996-01-01

    I study the technique of Algebraic Bethe Ansatz for solving integrable models and show how it works in detail on the simplest example of spin 1/2 XXX magnetic chain. Several other models are treated more superficially, only the specific details are given. Several parameters, appearing in these generalizations: spin s, anisotropy parameter \\ga, shift \\om in the alternating chain, allow to include in our treatment most known examples of soliton theory, including relativistic model of Quantum Field Theory.

  5. 2D sigma models and differential Poisson algebras

    Science.gov (United States)

    Arias, Cesar; Boulanger, Nicolas; Sundell, Per; Torres-Gomez, Alexander

    2015-08-01

    We construct a two-dimensional topological sigma model whose target space is endowed with a Poisson algebra for differential forms. The model consists of an equal number of bosonic and fermionic fields of worldsheet form degrees zero and one. The action is built using exterior products and derivatives, without any reference to a worldsheet metric, and is of the covariant Hamiltonian form. The equations of motion define a universally Cartan integrable system. In addition to gauge symmetries, the model has one rigid nilpotent supersymmetry corresponding to the target space de Rham operator. The rigid and local symmetries of the action, respectively, are equivalent to the Poisson bracket being compatible with the de Rham operator and obeying graded Jacobi identities. We propose that perturbative quantization of the model yields a covariantized differential star product algebra of Kontsevich type. We comment on the resemblance to the topological A model.

  6. 2D sigma models and differential Poisson algebras

    CERN Document Server

    Arias, Cesar; Sundell, Per; Torres-Gomez, Alexander

    2015-01-01

    We construct a two-dimensional topological sigma model whose target space is endowed with a Poisson algebra for differential forms. The model consists of an equal number of bosonic and fermionic fields of worldsheet form degrees zero and one. The action is built using exterior products and derivatives, without any reference to any worldsheet metric, and is of the covariant Hamiltonian form. The equations of motion define a universally Cartan integrable system. In addition to gauge symmetries, the model has one rigid nilpotent supersymmetry corresponding to the target space de Rham operator. The rigid and local symmetries of the action, respectively, are equivalent to the Poisson bracket being compatible with the de Rham operator and obeying graded Jacobi identities. We propose that perturbative quantization of the model yields a covariantized differential star product algebra of Kontsevich type. We comment on the resemblance to the topological A model.

  7. Cognitive load and modelling of an algebra problem

    Science.gov (United States)

    Chinnappan, Mohan

    2010-09-01

    In the present study, I examine a modelling strategy as employed by a teacher in the context of an algebra lesson. The actions of this teacher suggest that a modelling approach will have a greater impact on enriching student learning if we do not lose sight of the need to manage associated cognitive loads that could either aid or hinder the integration of core concepts with processes that are at play. Results here also show that modelling a problem that is set within an authentic context helps learners develop a better appreciation of variables and relations that constitute the model. The teacher's scaffolding actions revealed the use of strategies that foster the development of connected, meaningful and more useable algebraic knowledge.

  8. Tarmo: A Framework for Parallelized Bounded Model Checking

    Directory of Open Access Journals (Sweden)

    Siert Wieringa

    2009-12-01

    Full Text Available This paper investigates approaches to parallelizing Bounded Model Checking (BMC for shared memory environments as well as for clusters of workstations. We present a generic framework for parallelized BMC named Tarmo. Our framework can be used with any incremental SAT encoding for BMC but for the results in this paper we use only the current state-of-the-art encoding for full PLTL. Using this encoding allows us to check both safety and liveness properties, contrary to an earlier work on distributing BMC that is limited to safety properties only. Despite our focus on BMC after it has been translated to SAT, existing distributed SAT solvers are not well suited for our application. This is because solving a BMC problem is not solving a set of independent SAT instances but rather involves solving multiple related SAT instances, encoded incrementally, where the satisfiability of each instance corresponds to the existence of a counterexample of a specific length. Our framework includes a generic architecture for a shared clause database that allows easy clause sharing between SAT solver threads solving various such instances. We present extensive experimental results obtained with multiple variants of our Tarmo implementation. Our shared memory variants have a significantly better performance than conventional single threaded approaches, which is a result that many users can benefit from as multi-core and multi-processor technology is widely available. Furthermore we demonstrate that our framework can be deployed in a typical cluster of workstations, where several multi-core machines are connected by a network.

  9. A Game-Based Approach for PCTL* Stochastic Model Checking with Evidence

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Xuan-Dong Li; Yan Ma

    2016-01-01

    Stochastic model checking is a recent extension and generalization of the classical model checking, which focuses on quantitatively checking the temporal property of a system model. PCTL* is one of the important quantitative property specification languages, which is strictly more expressive than either PCTL (probabilistic computation tree logic) or LTL (linear temporal logic) with probability bounds. At present, PCTL* stochastic model checking algorithm is very complicated, and cannot provide any relevant explanation of why a formula does or does not hold in a given model. For dealing with this problem, an intuitive and succinct approach for PCTL* stochastic model checking with evidence is put forward in this paper, which includes: presenting the game semantics for PCTL* in release-PNF (release-positive normal form), defining the PCTL*stochastic model checking game, using strategy solving in game to achieve the PCTL*stochastic model checking, and refining winning strategy as the evidence to certify stochastic model checking result. The soundness and the completeness of game-based PCTL* stochastic model checking are proved, and its complexity matches the known lower and upper bounds. The game-based PCTL*stochastic model checking algorithm is implemented in a visual prototype tool, and its feasibility is demonstrated by an illustrative example.

  10. Constrained WZWN models on G/{S⊗U(1)"n} and exchange algebra of G-primaries

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shogo, E-mail: spsaoya@ipc.shizuoka.ac.jp; Ishii, Katsuyuki

    2013-11-11

    Consistently constrained WZWN models on G/{S⊗U(1)"n} is given by constraining currents of the WZWN models with G. Poisson brackets are set up on the light-like plane. Using them we show the Virasoro algebra for the energy–momentum tensor of constrained WZWN models. We find a G-primary which satisfies a classical exchange algebra in an arbitrary representation of G. The G-primary and the constrained currents are also shown to obey the conformal transformation with respect to the energy–momentum tensor. It is checked that conformal weight of the constrained currents is 0. This is necessary for the consistency for our formulation of constrained WZWN models.

  11. Model Theory in Algebra, Analysis and Arithmetic

    CERN Document Server

    Dries, Lou; Macpherson, H Dugald; Pillay, Anand; Toffalori, Carlo; Wilkie, Alex J

    2014-01-01

    Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

  12. Correspondences between WZNW models and CFTs with W-algebra symmetry

    CERN Document Server

    Creutzig, Thomas; Ronne, Peter B

    2015-01-01

    We study theories with W-algebra symmetries and their relation to WZNW models on (super-)groups. Correlation functions of the WZNW models are expressed in terms of correlators of CFTs with W-algebra symmetry. The symmetries of the theories involved in these correspondences are related by the Drinfeld-Sokolov reduction of Lie algebras to W-algebras. The W-algebras considered in this paper are the Bershadsky-Polyakov algebra for sl(3) and the quasi-superconformal algebra for generic sl(N|M). The quantum W-algebras obtained from affine sl(N) are constructed using embeddings of sl(2) into sl(N), and these can in turn be characterized by partitions of N. The above cases correspond to \\underline{N+2} = \\underline{2} + N \\underline{1} and its supergroup extension. Finally, sl(2N) and the correspondence corresponding to \\underline{2N} = N \\underline{2} is also analyzed.

  13. Free particles from Brauer algebras in complex matrix models

    CERN Document Server

    Kimura, Yusuke; Turton, David

    2009-01-01

    The gauge invariant degrees of freedom of matrix models based on an N x N complex matrix, with U(N) gauge symmetry, contain hidden free particle structures. These are exhibited using triangular matrix variables via the Schur decomposition. The Brauer algebra basis for complex matrix models developed earlier is useful in projecting to a sector which matches the state counting of N free fermions on a circle. The Brauer algebra projection is characterized by the vanishing of a scale invariant laplacian constructed from the complex matrix. The special case of N=2 is studied in detail: the ring of gauge invariant functions as well as a ring of scale and gauge invariant differential operators are characterized completely. The orthonormal basis of wavefunctions in this special case is completely characterized by a set of five commuting Hamiltonians, which display free particle structures. Applications to the reduced matrix quantum mechanics coming from radial quantization in N=4 SYM are described. We propose that th...

  14. Geometric Model of Topological Insulators from the Maxwell Algebra

    CERN Document Server

    Palumbo, Giandomenico

    2016-01-01

    We propose a novel geometric model of three-dimensional topological insulators in presence of an external electromagnetic field. The gapped boundary of these systems supports relativistic quantum Hall states and is described by a Chern-Simons theory with a gauge connection that takes values in the Maxwell algebra. This represents a non-central extension of the Poincar\\'e algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, we derive a relativistic version of the Wen-Zee term, and we show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space.

  15. The Hidden Quantum Group of the 8-vertex Free Fermion Model q-Clifford Algebras

    CERN Document Server

    Cuerno, R; López, E; Sierra, G

    1993-01-01

    We prove in this paper that the elliptic $R$--matrix of the eight vertex free fermion model is the intertwiner $R$--matrix of a quantum deformed Clifford--Hopf algebra. This algebra is constructed by affinization of a quantum Hopf deformation of the Clifford algebra.

  16. Verification of Quantum Cryptography Protocols by Model Checking

    Directory of Open Access Journals (Sweden)

    Mohamed Elboukhari

    2010-10-01

    Full Text Available Unlike classical cryptography which is based on mathematical functions, Quantum Cryptography orQuantum Key Distribution (QKD exploits the laws of quantum physics to offer unconditionally securecommunication. The progress of research in this field allows the anticipation of QKD to be availableoutside of laboratories within the next few years and efforts are made to improve the performance andreliability of the implemented technologies. But despite this big progress, several challenges remain. Forexample the task of how to test the devices of QKD did not yet receive enough attention. These apparatusesbecome heterogeneous, complex and so demand a big verification effort. In this paper we propose to studyquantum cryptography protocols by applying the technique of probabilistic model checking. Using PRISMtool, we analyze the security of BB84 protocol and we are focused on the specific security property ofeavesdropper's information gain on the key derived from the implementation of this protocol. We show thatthis property is affected by the parameters of the eavesdropper’s power and the quantum channel.

  17. Model Checking Vector Addition Systems with one zero-test

    CERN Document Server

    Bonet, Rémi; Leroux, Jérôme; Zeitoun, Marc

    2012-01-01

    We design a variation of the Karp-Miller algorithm to compute, in a forward manner, a finite representation of the cover (i.e., the downward closure of the reachability set) of a vector addition system with one zero-test. This algorithm yields decision procedures for several problems for these systems, open until now, such as place-boundedness or LTL model-checking. The proof techniques to handle the zero-test are based on two new notions of cover: the refined and the filtered cover. The refined cover is a hybrid between the reachability set and the classical cover. It inherits properties of the reachability set: equality of two refined covers is undecidable, even for usual Vector Addition Systems (with no zero-test), but the refined cover of a Vector Addition System is a recursive set. The second notion of cover, called the filtered cover, is the central tool of our algorithms. It inherits properties of the classical cover, and in particular, one can effectively compute a finite representation of this set, e...

  18. Multi-Objective Model Checking of Markov Decision Processes

    CERN Document Server

    Etessami, Kousha; Vardi, Moshe Y; Yannakakis, Mihalis

    2008-01-01

    We study and provide efficient algorithms for multi-objective model checking problems for Markov Decision Processes (MDPs). Given an MDP, $M$, and given multiple linear-time ($\\omega$-regular or LTL) properties $\\varphi_i$, and probabilities $r_i \\in [0,1]$, $i=1,...,k$, we ask whether there exists a strategy $\\sigma$ for the controller such that, for all $i$, the probability that a trajectory of $M$ controlled by $\\sigma$ satisfies $\\varphi_i$ is at least $r_i$. We provide an algorithm that decides whether there exists such a strategy and if so produces it, and which runs in time polynomial in the size of the MDP. Such a strategy may require the use of both randomization and memory. We also consider more general multi-objective $\\omega$-regular queries, which we motivate with an application to assume-guarantee compositional reasoning for probabilistic systems. Note that there can be trade-offs between different properties: satisfying property $\\varphi_1$ with high probability may necessitate satisfying $\\var...

  19. Geometric Algebra Model of Distributed Representations

    CERN Document Server

    Patyk, Agnieszka

    2010-01-01

    Formalism based on GA is an alternative to distributed representation models developed so far --- Smolensky's tensor product, Holographic Reduced Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced by geometric products, interpretable in terms of geometry which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.

  20. Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models

    Directory of Open Access Journals (Sweden)

    Sh. Khachatryan

    2015-10-01

    Full Text Available We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.

  1. Model Adequacy Checks for Discrete Choice Dynamic Models

    CERN Document Server

    Kheifets, Igor

    2012-01-01

    This paper proposes new parametric model adequacy tests for possibly nonlinear and nonstationary time series models with noncontinuous data distribution, which is often the case in applied work. In particular, we consider the correct specification of parametric conditional distributions in dynamic discrete choice models, not only of some particular conditional characteristics such as moments or symmetry. Knowing the true distribution is important in many circumstances, in particular to apply efficient maximum likelihood methods, obtain consistent estimates of partial effects and appropriate predictions of the probability of future events. We propose a transformation of data which under the true conditional distribution leads to continuous uniform iid series. The uniformity and serial independence of the new series is then examined simultaneously. The transformation can be considered as an extension of the integral transform tool for noncontinuous data. We derive asymptotic properties of such tests taking into...

  2. The Model Checking Problem for Propositional Intuitionistic Logic with One Variable is AC1-Complete

    CERN Document Server

    Weiss, Martin Mundhenk And Felix

    2010-01-01

    We investigate the complexity of the model checking problem for propositional intuitionistic logic. We show that the model checking problem for intuitionistic logic with one variable is complete for logspace-uniform AC1, and for intuitionistic logic with two variables it is P-complete. For superintuitionistic logics with one variable, we obtain NC1-completeness for the model checking problem and for the tautology problem.

  3. Model-checking mean-field models: algorithms & applications

    NARCIS (Netherlands)

    Kolesnichenko, Anna Victorovna

    2014-01-01

    Large systems of interacting objects are highly prevalent in today's world. In this thesis we primarily address such large systems in computer science. We model such large systems using mean-field approximation, which allows to compute the limiting behaviour of an infinite population of identical o

  4. Family-Based Model Checking Without a Family-Based Model Checker

    DEFF Research Database (Denmark)

    Dimovski, Aleksandar; Al-Sibahi, Ahmad Salim; Brabrand, Claus

    2015-01-01

    (systems with variability), specialized family-based model checking algorithms allow efficient verification of multiple variants, simultaneously. These algorithms scale much better than ``brute force'' verification of individual systems, one-by-one. Nevertheless, they can deal with only very small...... variational models. We address two key problems of family-based model checking. First, we improve scalability by introducing abstractions that simplify variability. Second, we reduce the burden of maintaining specialized family-based model checkers, by showing how the presented variability abstractions can...... be used to model-check variational models using the standard version of (single system) SPIN. The abstractions are first defined as Galois connections on semantic domains. We then show how to translate them into syntactic source-to-source transformations on variational models. This allows the use of SPIN...

  5. Model building and model checking for biochemical processes.

    Science.gov (United States)

    Antoniotti, Marco; Policriti, Alberto; Ugel, Nadia; Mishra, Bud

    2003-01-01

    A central claim of computational systems biology is that, by drawing on mathematical approaches developed in the context of dynamic systems, kinetic analysis, computational theory and logic, it is possible to create powerful simulation, analysis, and reasoning tools for working biologists to decipher existing data, devise new experiments, and ultimately to understand functional properties of genomes, proteomes, cells, organs, and organisms. In this article, a novel computational tool is described that achieves many of the goals of this new discipline. The novelty of this system involves an automaton-based semantics of the temporal evolution of complex biochemical reactions starting from the representation given as a set of differential equations. The related tools also provide ability to qualitatively reason about the systems using a propositional temporal logic that can express an ordered sequence of events succinctly and unambiguously. The implementation of mathematical and computational models in the Simpathica and XSSYS systems is described briefly. Several example applications of these systems to cellular and biochemical processes are presented: the two most prominent are Leibler et al.'s repressilator (an artificial synthesized oscillatory network), and Curto- Voit-Sorribas-Cascante's purine metabolism reaction model.

  6. The Modeling Library of Eavesdropping Methods in Quantum Cryptography Protocols by Model Checking

    Science.gov (United States)

    Yang, Fan; Yang, Guowu; Hao, Yujie

    2016-07-01

    The most crucial issue of quantum cryptography protocols is its security. There exists many ways to attack the quantum communication process. In this paper, we present a model checking method for modeling the eavesdropping in quantum information protocols. So when the security properties of a certain protocol are needed to be verified, we can directly use the models which are already built. Here we adopt the probabilistic model checking tool—PRISM to model these attack methods. The verification results show that the detection rate of eavesdropping is approximately close to 1 when enough photons are transmitted.

  7. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  8. Algebraic Turbulence-Chemistry Interaction Model

    Science.gov (United States)

    Norris, Andrew T.

    2012-01-01

    The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.

  9. The operator algebra of orbifold models

    Science.gov (United States)

    Dijkgraaf, Robbert; Vafa, Cumrun; Verlinde, Erik; Verlinde, Herman

    1989-09-01

    We analyze the chiral properties of (orbifold) conformal field theories which are obtained from a given conformal field theory by modding out by a finite symmetry group. For a class of orbifolds, we derive the fusion rules by studying the modular transformation properties of the one-loop characters. The results are illustrated with explicit calculations of toroidal and c=1 models.

  10. A linear algebra model for quasispecies

    Science.gov (United States)

    García-Pelayo, Ricardo

    2002-06-01

    In the present work we present a simple model of the population genetics of quasispecies. We show that the error catastrophe arises because in Biology the mutation rates are almost zero and the mutations themselves are almost neutral. We obtain and discuss previously known results from the point of view of this model. New results are: the fitness of a sequence in terms of its abundance in the quasispecies, a formula for the stable distribution of a quasispecies in which the fitness depends only on the Hamming distance to the master sequence, the time it takes the master sequence to generate a stable quasispecies (such as in the infection by a virus) and the fitness of quasispecies.

  11. An algebraic model of baryon spectroscopy

    CERN Document Server

    Bijker, R

    1999-01-01

    We discuss recent calculations of the mass spectrum, electromagnetic and strong couplings of baryon resonances. The calculations are done in a collective constituent model for the nucleon, in which the resonances are interpreted as rotations and vibrations of a symmetric top with a prescribed distribution of the charge and magnetization. We analyze recent data on eta-photo- and eta-electroproduction, and the tensor analyzing power in deuteron scattering.

  12. Model Checking and Model-based Testing in the Railway Domain

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Peleska, Jan

    2015-01-01

    This chapter describes some approaches and emerging trends for verification and model-based testing of railway control systems. We describe state-of-the-art methods and associated tools for verifying interlocking systems and their configuration data, using bounded model checking and k-induction. ......This chapter describes some approaches and emerging trends for verification and model-based testing of railway control systems. We describe state-of-the-art methods and associated tools for verifying interlocking systems and their configuration data, using bounded model checking and k...

  13. Modelling and Analysis of Smart Grid: A Stochastic Model Checking Case Study

    DEFF Research Database (Denmark)

    Yuksel, Ender; Zhu, Huibiao; Nielson, Hanne Riis

    2012-01-01

    Cyber-physical systems integrate information and communication technology functions to the physical elements of a system for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues...... consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker....

  14. A Multiple—Valued Algebra for Modeling MOS VLSI Circuits at Switch—Level

    Institute of Scientific and Technical Information of China (English)

    胡谋

    1992-01-01

    A multiple-valued algebra for modeling MOS VLSI circuits at switch-level is proposed in this paper,Its structure and properties are studied.This algebra can be used to transform a MOS digital circuit to a swith-level algebraic expression so as to generate the truth table for the circuit and to derive a Boolean expression for it.In the paper,methods to construct a switch-level algebraic expression for a circuit and methods to simplify expressions are given.This algebra provides a new tool for MOS VLSI circuit design and analysis.

  15. Towards Symbolic Model-Based Mutation Testing: Combining Reachability and Refinement Checking

    CERN Document Server

    Aichernig, Bernhard K; 10.4204/EPTCS.80.7

    2012-01-01

    Model-based mutation testing uses altered test models to derive test cases that are able to reveal whether a modelled fault has been implemented. This requires conformance checking between the original and the mutated model. This paper presents an approach for symbolic conformance checking of action systems, which are well-suited to specify reactive systems. We also consider nondeterminism in our models. Hence, we do not check for equivalence, but for refinement. We encode the transition relation as well as the conformance relation as a constraint satisfaction problem and use a constraint solver in our reachability and refinement checking algorithms. Explicit conformance checking techniques often face state space explosion. First experimental evaluations show that our approach has potential to outperform explicit conformance checkers.

  16. PVeStA: A Parallel Statistical Model Checking and Quantitative Analysis Tool

    KAUST Repository

    AlTurki, Musab

    2011-01-01

    Statistical model checking is an attractive formal analysis method for probabilistic systems such as, for example, cyber-physical systems which are often probabilistic in nature. This paper is about drastically increasing the scalability of statistical model checking, and making such scalability of analysis available to tools like Maude, where probabilistic systems can be specified at a high level as probabilistic rewrite theories. It presents PVeStA, an extension and parallelization of the VeStA statistical model checking tool [10]. PVeStA supports statistical model checking of probabilistic real-time systems specified as either: (i) discrete or continuous Markov Chains; or (ii) probabilistic rewrite theories in Maude. Furthermore, the properties that it can model check can be expressed in either: (i) PCTL/CSL, or (ii) the QuaTEx quantitative temporal logic. As our experiments show, the performance gains obtained from parallelization can be very high. © 2011 Springer-Verlag.

  17. Proceedings Second International Workshop on Algebraic Methods in Model-based Software Engineering

    CERN Document Server

    Durán, Francisco

    2011-01-01

    Over the past years there has been quite a lot of activity in the algebraic community about using algebraic methods for providing support to model-driven software engineering. The aim of this workshop is to gather researchers working on the development and application of algebraic methods to provide rigorous support to model-based software engineering. The topics relevant to the workshop are all those related to the use of algebraic methods in software engineering, including but not limited to: formally specifying and verifying model-based software engineering concepts and related ones (MDE, UML, OCL, MOF, DSLs, ...); tool support for the above; integration of formal and informal methods; and theoretical frameworks (algebraic, rewriting-based, category theory-based, ...). The workshop's main goal is to examine, discuss, and relate the existing projects within the algebraic community that address common open-issues in model-driven software engineering.

  18. Topological basis realization for BMW algebra and Heisenberg XXZ spin chain model

    Science.gov (United States)

    Liu, Bo; Xue, Kang; Wang, Gangcheng; Liu, Ying; Sun, Chunfang

    2015-04-01

    In this paper, we study three-dimensional (3D) reduced Birman-Murakami-Wenzl (BMW) algebra based on topological basis theory. Several examples of BMW algebra representations are reviewed. We also discuss a special solution of BMW algebra, which can be used to construct Heisenberg XXZ model. The theory of topological basis provides a useful method to solve quantum spin chain models. It is also shown that the ground state of XXZ spin chain is superposition state of topological basis.

  19. A New Algebraic Modelling Approach to Distributed Problem-Solving in MAS

    Institute of Scientific and Technical Information of China (English)

    帅典勋; 邓志东

    2002-01-01

    This paper is devoted to a new algebraic modelling approach to distributed problem-solving in multi-agent systems (MAS), which is featured by a unified framework for describing and treating social behaviors, social dynamics and social intelligence. A conceptual architecture of algebraic modelling is presented. The algebraic modelling of typical social behaviors, social situation and social dynamics is discussed in the context of distributed problemsolving in MAS. The comparison and simulation on distributed task allocations and resource assignments in MAS show more advantages of the algebraic approach than other conventional methods.

  20. Clifford algebras geometric modelling and chain geometries with application in kinematics

    CERN Document Server

    Klawitter, Daniel

    2015-01-01

    After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.  Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About...

  1. The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Razvan, E-mail: rgurau@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo (Canada)

    2012-12-01

    Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.

  2. Evolving MultiAlgebras unify all usual sequential computation models

    CERN Document Server

    Grigorieff, Serge

    2010-01-01

    It is well-known that Abstract State Machines (ASMs) can simulate "step-by-step" any type of machines (Turing machines, RAMs, etc.). We aim to overcome two facts: 1) simulation is not identification, 2) the ASMs simulating machines of some type do not constitute a natural class among all ASMs. We modify Gurevich's notion of ASM to that of EMA ("Evolving MultiAlgebra") by replacing the program (which is a syntactic object) by a semantic object: a functional which has to be very simply definable over the static part of the ASM. We prove that very natural classes of EMAs correspond via "literal identifications" to slight extensions of the usual machine models and also to grammar models. Though we modify these models, we keep their computation approach: only some contingencies are modified. Thus, EMAs appear as the mathematical model unifying all kinds of sequential computation paradigms.

  3. Using Canonical Forms for Isomorphism Reduction in Graph-based Model Checking

    NARCIS (Netherlands)

    Kant, Gijs

    2010-01-01

    Graph isomorphism checking can be used in graph-based model checking to achieve symmetry reduction. Instead of one-to-one comparing the graph representations of states, canonical forms of state graphs can be computed. These canonical forms can be used to store and compare states. However, computing

  4. A Structural Model of Algebra Achievement: Computational Fluency and Spatial Visualisation as Mediators of the Effect of Working Memory on Algebra Achievement

    Science.gov (United States)

    Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.

    2009-01-01

    The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…

  5. Quantitative modelling and analysis of a Chinese smart grid: a stochastic model checking case study

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2014-01-01

    Cyber-physical systems integrate information and communication technology with the physical elements of a system, mainly for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues...... consumption.We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker....

  6. Model Checking for a General Linear Model with Nonignorable Missing Covariates

    Institute of Scientific and Technical Information of China (English)

    Zhi-hua SUN; Wai-Cheung IP; Heung WONG

    2012-01-01

    In this paper,we investigate the model checking problem for a general linear model with nonignorable missing covariates.We show that,without any parametric model assumption for the response probability,the least squares method yields consistent estimators for the linear model even if only the complete data are applied.This makes it feasible to propose two testing procedures for the corresponding model checking problem:a score type lack-of-fit test and a test based on the empirical process.The asymptotic properties of the test statistics are investigated.Both tests are shown to have asymptotic power 1 for local alternatives converging to the null at the rate n-(r),0 ≤ (r) < 1/2.Simulation results show that both tests perform satisfactorily.

  7. Checking the new IRI model The bottomside B parameters

    CERN Document Server

    Mosert, M; Ezquer, R; Lazo, B; Miro, G

    2002-01-01

    Electron density profiles obtained at Pruhonice (50.0, 15.0), El Arenosillo (37.1, 353.2) and Havana (23, 278) were used to check the bottom-side B parameters BO (thickness parameter) and B1 (shape parameter) predicted by the new IRI - 2000 version. The electron density profiles were derived from ionograms using the ARP technique. The data base includes daytime and nighttime ionograms recorded under different seasonal and solar activity conditions. Comparisons with IRI predictions were also done. The analysis shows that: a) The parameter B1 given by IRI 2000 reproduces better the observed ARP values than the IRI-90 version and b) The observed BO values are in general well reproduced by both IRI versions: IRI-90 and IRI-2000.

  8. Lie algebraic similarity transformed Hamiltonians for lattice model systems

    Science.gov (United States)

    Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2015-01-01

    We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.

  9. An Approach to Checking 3D Model with Related Engineering Drawings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    For some reasons, engineers build their product 3D mo del according to a set of related engineering drawings. The problem is how we ca n know the 3D model is correct. The manual checking is very boring and time cons uming, and still could not avoid mistakes. Thus, we could not confirm the model, maybe try checking again. It will effect the production preparing cycle greatly , and should be solved in a intelligent way. The difficulties are quite obvious, unlike word checking in a word processing package, ...

  10. Deterministic Compilation of Temporal Safety Properties in Explicit State Model Checking

    Data.gov (United States)

    National Aeronautics and Space Administration — The translation of temporal logic specifications constitutes an essen- tial step in model checking and a major influence on the efficiency of formal verification via...

  11. Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Directory of Open Access Journals (Sweden)

    Christian Appold

    2010-06-01

    Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.

  12. Correspondences between WZNW models and CFTs with W-algebra symmetry

    Science.gov (United States)

    Creutzig, Thomas; Hikida, Yasuaki; Rønne, Peter B.

    2016-02-01

    We study theories with W-algebra symmetries and their relation to WZNW-type models on (super-)groups generalizing the H 3 + WZNW to Liouville correspondence. Correlation functions of the WZNW models are expressed in terms of correlators of CFTs with W-algebra symmetry. The symmetries of the theories involved in these correspondences are related by the Drinfeld-Sokolov reduction of Lie algebras to W-algebras. The W-algebras considered in this paper are the Bershadsky-Polyakov algebra for sl(3) and the quasi-superconformal algebra for generic sl( N| M). The quantum W-algebras obtained from affine sl( N) are constructed using embeddings of sl(2) into sl( N), and these can in turn be characterized by partitions of N. The above cases correspond to N + 2 = 2 + N 1 and its supergroup extension. Finally, sl(2 N) and the correspondence corresponding to 2 N = N 2 is also analyzed. These are all W-algebras that are generated by fields of at most dimension two.

  13. Towards Symbolic Model Checking for Multi-Agent Systems via OBDDs

    Science.gov (United States)

    Raimondi, Franco; Lomunscio, Alessio

    2004-01-01

    We present an algorithm for model checking temporal-epistemic properties of multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a technique for the translation of interpreted systems into boolean formulae, and then present a model-checking algorithm based on this translation. The algorithm is based on OBDD's, as they offer a compact and efficient representation for boolean formulae.

  14. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  15. Family-Based Model Checking Without a Family-Based Model Checker

    DEFF Research Database (Denmark)

    Dimovski, Aleksandar; Al-Sibahi, Ahmad Salim; Brabrand, Claus;

    2015-01-01

    be used to model-check variational models using the standard version of (single system) SPIN. The abstractions are first defined as Galois connections on semantic domains. We then show how to translate them into syntactic source-to-source transformations on variational models. This allows the use of SPIN...... with all its accumulated optimizations for efficient verification of variational models without any knowledge about variability. We demonstrate the practicality of this method on several examples using both the SNIP (family based) and SPIN (single system) model checkers....

  16. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    CERN Document Server

    Hinkelmann, Franziska; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2010-01-01

    Motivation: Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, bounded Petri nets, and agent-based models. Simulation is a common practice for analyzing discrete models, but many systems are far too large to capture all the relevant dynamical features through simulation alone. Results: We convert discrete models into algebraic models and apply tools from computational algebra to analyze their dynamics. The key feature of biological systems that is exploited by our algorithms is their sparsity: while the number of nodes in a biological network may be quite large, each node is affected only by a small number of other nodes. In our experience with models arising in systems biology and random models, this structure leads to fast computations when using algebraic models, and thus efficient analysis. Availability: All algorithms and methods are available in our package Analysis of Dynamic Algebraic Models (ADAM), a user friendly web-interf...

  17. Model checking methodology for large systems, faults and asynchronous behaviour. SARANA 2011 work report

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J. [VTT Technical Research Centre of Finland, Espoo (Finland); Launiainen, T.; Heljanko, K.; Ropponen, J. [Aalto Univ., Espoo (Finland). Dept. of Information and Computer Science

    2012-07-01

    Digital instrumentation and control (I and C) systems are challenging to verify. They enable complicated control functions, and the state spaces of the models easily become too large for comprehensive verification through traditional methods. Model checking is a formal method that can be used for system verification. A number of efficient model checking systems are available that provide analysis tools to determine automatically whether a given state machine model satisfies the desired safety properties. This report reviews the work performed in the Safety Evaluation and Reliability Analysis of Nuclear Automation (SARANA) project in 2011 regarding model checking. We have developed new, more exact modelling methods that are able to capture the behaviour of a system more realistically. In particular, we have developed more detailed fault models depicting the hardware configuration of a system, and methodology to model function-block-based systems asynchronously. In order to improve the usability of our model checking methods, we have developed an algorithm for model checking large modular systems. The algorithm can be used to verify properties of a model that could otherwise not be verified in a straightforward manner. (orig.)

  18. A C *-Algebraic Model for Locally Noncommutative Spacetimes

    Science.gov (United States)

    Heller, Jakob G.; Neumaier, Nikolai; Waldmann, Stefan

    2007-06-01

    Locally noncommutative spacetimes provide a refined notion of noncommutative spacetimes where the noncommutativity is present only for small distances. Here we discuss a non-perturbative approach based on Rieffel’s strict deformation quantization. To this end, we extend the usual C *-algebraic results to a pro-C *-algebraic framework.

  19. Re"modeling" College Algebra: An Active Learning Approach

    Science.gov (United States)

    Pinzon, D.; Pinzon, K.; Stackpole, M.

    2016-01-01

    In this paper, we discuss active learning in College Algebra at Georgia Gwinnett College. This approach has been used in more than 20 sections of College Algebra taught by the authors in the past four semesters. Students work in small, structured groups on guided inquiry activities after watching 15-20 minutes of videos before class. We discuss a…

  20. A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.

    Science.gov (United States)

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2016-12-01

    Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions.

  1. A new algebraic transition model based on stress length function

    Science.gov (United States)

    Xiao, Meng-Juan; She, Zhen-Su

    2016-11-01

    Transition, as one of the two biggest challenges in turbulence research, is of critical importance for engineering application. For decades, the fundamental research seems to be unable to capture the quantitative details in real transition process. On the other hand, numerous empirical parameters in engineering transition models provide no unified description of the transition under varying physical conditions. Recently, we proposed a symmetry-based approach to canonical wall turbulence based on stress length function, which is here extended to describe the transition via a new algebraic transition model. With a multi-layer analytic form of the stress length function in both the streamwise and wall normal directions, the new model gives rise to accurate description of the mean field and friction coefficient, comparing with both the experimental and DNS results at different inlet conditions. Different types of transition process, such as the transition with varying incoming turbulence intensities or that with blow and suck disturbance, are described by only two or three model parameters, each of which has their own specific physical interpretation. Thus, the model enables one to extract physical information from both experimental and DNS data to reproduce the transition process, which may prelude to a new class of generalized transition model for engineering applications.

  2. A Modeling-Based College Algebra Course and Its Effect on Student Achievement

    Science.gov (United States)

    Ellington, Aimee J.

    2005-01-01

    In Fall 2004, Virginia Commonwealth University (VCU) piloted a modeling-based approach to college algebra. This paper describes the course and an assessment that was conducted to determine the effect of this approach on student achievement in comparison to a traditional approach to college algebra. The results show that compared with their…

  3. On Diagnostic Checking of Vector ARMA-GARCH Models with Gaussian and Student-t Innovations

    Directory of Open Access Journals (Sweden)

    Yongning Wang

    2013-04-01

    Full Text Available This paper focuses on the diagnostic checking of vector ARMA (VARMA models with multivariate GARCH errors. For a fitted VARMA-GARCH model with Gaussian or Student-t innovations, we derive the asymptotic distributions of autocorrelation matrices of the cross-product vector of standardized residuals. This is different from the traditional approach that employs only the squared series of standardized residuals. We then study two portmanteau statistics, called Q1(M and Q2(M, for model checking. A residual-based bootstrap method is provided and demonstrated as an effective way to approximate the diagnostic checking statistics. Simulations are used to compare the performance of the proposed statistics with other methods available in the literature. In addition, we also investigate the effect of GARCH shocks on checking a fitted VARMA model. Empirical sizes and powers of the proposed statistics are investigated and the results suggest a procedure of using jointly Q1(M and Q2(M in diagnostic checking. The bivariate time series of FTSE 100 and DAX index returns is used to illustrate the performance of the proposed portmanteau statistics. The results show that it is important to consider the cross-product series of standardized residuals and GARCH effects in model checking.

  4. Quasi-exact-solvability of the $A_{2}$ Elliptic model: algebraic form, $sl(3)$ hidden algebra, polynomial eigenfunctions

    CERN Document Server

    Sokolov, Vladimir V

    2014-01-01

    The potential of the $A_2$ quantum elliptic model (3-body Calogero elliptic model) is defined by the pairwise three-body interaction through Weierstrass $\\wp$-function and has a single coupling constant. A change of variables has been found, which are $A_2$ elliptic invariants. In those, the potential becomes a rational function, while the flat space metric as well as its associated vector are polynomials in two variables. It is shown the model possesses the hidden $sl_3$ algebra - the Hamiltonian is an element of the universal enveloping algebra $U_{sl_3}$ for arbitrary coupling constant - being equivalent to $sl_3$-quantum top. The integral in a form of the third order differential operator with polynomial coefficients is constructed explicitly, being also an element of the universal enveloping algebra $U_{sl_3}$. It is shown that there exists a discrete sequence of coupling constants for which a finite number of polynomial eigenfunctions up to a (non-singular) gauge factor occur.

  5. Verifying Real-time Commit Protocols Using Dense-time Model Checking Technology

    CERN Document Server

    Al-Bataineh, Omar I; French, Tim; Woodings, Terry

    2012-01-01

    The timed-based automata model, introduced by Alur and Dill, provides a useful formalism for describing real-time systems. Over the last two decades, several dense-time model checking tools have been developed based on that model. The paper considers the verification of real-time distributed commit protocols using dense-time model checking technology. More precisely, we model and verify the well-known timed two phase commit protocol in three different state-of-the-art real-time model checkers: UPPAAL, Rabbit, and RED, and compare the results.

  6. Quantitative Safety: Linking Proof-Based Verification with Model Checking for Probabilistic Systems

    CERN Document Server

    Ndukwu, Ukachukwu

    2009-01-01

    This paper presents a novel approach for augmenting proof-based verification with performance-style analysis of the kind employed in state-of-the-art model checking tools for probabilistic systems. Quantitative safety properties usually specified as probabilistic system invariants and modeled in proof-based environments are evaluated using bounded model checking techniques. Our specific contributions include the statement of a theorem that is central to model checking safety properties of proof-based systems, the establishment of a procedure; and its full implementation in a prototype system (YAGA) which readily transforms a probabilistic model specified in a proof-based environment to its equivalent verifiable PRISM model equipped with reward structures. The reward structures capture the exact interpretation of the probabilistic invariants and can reveal succinct information about the model during experimental investigations. Finally, we demonstrate the novelty of the technique on a probabilistic library cas...

  7. Index-aware model order reduction methods applications to differential-algebraic equations

    CERN Document Server

    Banagaaya, N; Schilders, W H A

    2016-01-01

    The main aim of this book is to discuss model order reduction (MOR) methods for differential-algebraic equations (DAEs) with linear coefficients that make use of splitting techniques before applying model order reduction. The splitting produces a system of ordinary differential equations (ODE) and a system of algebraic equations, which are then reduced separately. For the reduction of the ODE system, conventional MOR methods can be used, whereas for the reduction of the algebraic systems new methods are discussed. The discussion focuses on the index-aware model order reduction method (IMOR) and its variations, methods for which the so-called index of the original model is automatically preserved after reduction.

  8. Abstraction and Model Checking in the PEPA Plug-in for Eclipse

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew

    2010-01-01

    lead to very large Markov chains. One way of analysing such models is to use abstraction - constructing a smaller model that bounds the properties of the original. We present an extension to the PEPA plug-in for Eclipse that enables abstracting and model checking of PEPA models. This implements two new...

  9. Assessing Fit of Alternative Unidimensional Polytomous IRT Models Using Posterior Predictive Model Checking.

    Science.gov (United States)

    Li, Tongyun; Xie, Chao; Jiao, Hong

    2016-05-30

    This article explored the application of the posterior predictive model checking (PPMC) method in assessing fit for unidimensional polytomous item response theory (IRT) models, specifically the divide-by-total models (e.g., the generalized partial credit model). Previous research has primarily focused on using PPMC in model checking for unidimensional and multidimensional IRT models for dichotomous data, and has paid little attention to polytomous models. A Monte Carlo simulation was conducted to investigate the performance of PPMC in detecting different sources of misfit for the partial credit model family. Results showed that the PPMC method, in combination with appropriate discrepancy measures, had adequate power in detecting different sources of misfit for the partial credit model family. Global odds ratio and item total correlation exhibited specific patterns in detecting the absence of the slope parameter, whereas Yen's Q1 was found to be promising in the detection of misfit caused by the constant category intersection parameter constraint across items. (PsycINFO Database Record

  10. Hypersonic: Model Analysis and Checking in the Cloud

    DEFF Research Database (Denmark)

    Acretoaie, Vlad; Störrle, Harald

    2014-01-01

    Context: Modeling tools are traditionally delivered as monolithic desktop applications, optionally extended by plug-ins or special purpose central servers. This delivery model suffers from several drawbacks, ranging from poor scalability to diffcult maintenance and the proliferation of \\shelfware...... in combination with Prolog as an implementation language, we are able to transform MACH from a command line tool into the first Web-based model clone detection service with remarkably little effort....

  11. Closing open SDL-systems for model checking with DTSpin

    NARCIS (Netherlands)

    Ioustinova, N.; Sidorova, N.; Steffen, M.

    2002-01-01

    Model checkers like Spin can handle closed reactive systems, only. Thus to handle open systems, in particular when using assume-guarantee reasoning, we need to be able to close (sub-)systems, which is commonly done by adding an environment process. For models with asynchronous message-passing commun

  12. LTSmin: high-performance language-independent model checking

    NARCIS (Netherlands)

    Kant, Gijs; Laarman, Alfons; Meijer, Jeroen; Pol, van de Jaco; Blom, Stefan; Dijk, van Tom; Baier, Christel; Tinelli, Cesare

    2015-01-01

    In recent years, the LTSmin model checker has been extended with support for several new modelling languages, including probabilistic (Mapa) and timed systems (Uppaal). Also, connecting additional language front-ends or ad-hoc state-space generators to LTSmin was simplified using custom C-code. From

  13. PKreport: report generation for checking population pharmacokinetic model assumptions

    Directory of Open Access Journals (Sweden)

    Li Jun

    2011-05-01

    Full Text Available Abstract Background Graphics play an important and unique role in population pharmacokinetic (PopPK model building by exploring hidden structure among data before modeling, evaluating model fit, and validating results after modeling. Results The work described in this paper is about a new R package called PKreport, which is able to generate a collection of plots and statistics for testing model assumptions, visualizing data and diagnosing models. The metric system is utilized as the currency for communicating between data sets and the package to generate special-purpose plots. It provides ways to match output from diverse software such as NONMEM, Monolix, R nlme package, etc. The package is implemented with S4 class hierarchy, and offers an efficient way to access the output from NONMEM 7. The final reports take advantage of the web browser as user interface to manage and visualize plots. Conclusions PKreport provides 1 a flexible and efficient R class to store and retrieve NONMEM 7 output, 2 automate plots for users to visualize data and models, 3 automatically generated R scripts that are used to create the plots; 4 an archive-oriented management tool for users to store, retrieve and modify figures, 5 high-quality graphs based on the R packages, lattice and ggplot2. The general architecture, running environment and statistical methods can be readily extended with R class hierarchy. PKreport is free to download at http://cran.r-project.org/web/packages/PKreport/index.html.

  14. A Case Study in Model Checking Software Systems.

    Science.gov (United States)

    1996-04-01

    two formal objects compared are a nite state machine model of the software system, and as before, a speci cation written in some mathematical logic...C:Dt = ffg, and At = ffC = fSg. 4.1.1 State Machine Model The top graph in Figure 2 shows the state transition graphs for the client, and the bottom...follows from 2 above, because once the client discovers d is invalid it discards it. Thus At = ; or At = fdC = dSg. 4.3.1 State Machine Model For the Coda

  15. An Evaluation Framework for Energy Aware Buildings using Statistical Model Checking

    DEFF Research Database (Denmark)

    David, Alexandre; Du, DeHui; Larsen, Kim Guldstrand

    2012-01-01

    extend in this paper the modelling formalism of the tool Uppaal-smc to stochastic hybrid automata, thus providing the expressive power required for modeling complex cyber-physical systems. The application of Statistical Model Checking provides a highly scalable technique for analyzing performance...

  16. Practical Application of Model Checking in Software Verification

    Science.gov (United States)

    Havelund, Klaus; Skakkebaek, Jens Ulrik

    1999-01-01

    This paper presents our experiences in applying the JAVA PATHFINDER (J(sub PF)), a recently developed JAVA to SPIN translator, in the finding of synchronization bugs in a Chinese Chess game server application written in JAVA. We give an overview of J(sub PF) and the subset of JAVA that it supports and describe the abstraction and verification of the game server. Finally, we analyze the results of the effort. We argue that abstraction by under-approximation is necessary for abstracting sufficiently smaller models for verification purposes; that user guidance is crucial for effective abstraction; and that current model checkers do not conveniently support the computational models of software in general and JAVA in particular.

  17. Algebraic Statistical Model for Biochemical Network Dynamics Inference.

    Science.gov (United States)

    Linder, Daniel F; Rempala, Grzegorz A

    2013-12-01

    With modern molecular quantification methods, like, for instance, high throughput sequencing, biologists may perform multiple complex experiments and collect longitudinal data on RNA and DNA concentrations. Such data may be then used to infer cellular level interactions between the molecular entities of interest. One method which formalizes such inference is the stoichiometric algebraic statistical model (SASM) of [2] which allows to analyze the so-called conic (or single source) networks. Despite its intuitive appeal, up until now the SASM has been only heuristically studied on few simple examples. The current paper provides a more formal mathematical treatment of the SASM, expanding the original model to a wider class of reaction systems decomposable into multiple conic subnetworks. In particular, it is proved here that on such networks the SASM enjoys the so-called sparsistency property, that is, it asymptotically (with the number of observed network trajectories) discards the false interactions by setting their reaction rates to zero. For illustration, we apply the extended SASM to in silico data from a generic decomposable network as well as to biological data from an experimental search for a possible transcription factor for the heat shock protein 70 (Hsp70) in the zebrafish retina.

  18. Model Checking Electronic Commerce Security Protocols Based on CTL

    Institute of Scientific and Technical Information of China (English)

    XIAO De-qin; ZHANG Huan-guo

    2005-01-01

    We present a model based on Computational Temporal Logic (CTL) methods for verifying security requirements of electronic commerce protocols. The model describes formally the authentication, confidentiality integrity,non-repudiation, denial of service and access control of the electronic commerce protocols. We illustrate as case study a variant of the Lu-Smolka protocol proposed by Lu-Smolka.Moreover, we have discovered two attacks that allow a dishonest user to purchase a good debiting the amount to another user. And also, we compared our work with relative research works and found that the formal way of this paper is more general to specify security protocols for E-Commerce.

  19. Mathematical modelling in engineering: A proposal to introduce linear algebra concepts

    OpenAIRE

    Andrea Dorila Cárcamo; Joan Vicenç Gómez; Josep María Fortuny

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts:  span and spanning set. This was applied to first year e...

  20. Mathematical modelling in engineering: a proposal to introduce linear algebra concepts

    OpenAIRE

    Cárcamo Bahamonde, Andrea Dorila; Gómez Urgellés, Joan Vicenç; Fortuny Aymeni, José María

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts: span and spanning set. This was applied to first year engineeri...

  1. Mathematical modelling in engineering: a proposal to introduce linear algebra concepts

    OpenAIRE

    Cárcamo Bahamonde, Andrea; Gómez Urgellés, Joan Vicenç; Fortuny Aymemi, Josep Maria

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts: span and spanning set. This was applied to first year engineer...

  2. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami

    2008-01-01

    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typical...

  3. UML Statechart Fault Tree Generation By Model Checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Herbert-Hansen, Zaza Nadja Lee

    of the popular Business Process Modelling and Nota-tion (BPMN) language. To capture uncertainty and unreliability in workflows, we extend this formalism with probabilistic non-deterministic branching.We present an algorithm that allows for exhaustive gen-eration of possible error states that could arise in ex...

  4. Hypersonic: Model Analysis and Checking in the Cloud

    DEFF Research Database (Denmark)

    Acretoaie, Vlad; Störrle, Harald

    2014-01-01

    ”. Objective: In this paper we investigate the conceptual and technical feasibility of a new software architecture for modeling tools, where certain advanced features are factored out of the client and moved towards the Cloud. With this approach we plan to address the above mentioned drawbacks of existing...

  5. Model-Checking Real-Time Control Programs

    DEFF Research Database (Denmark)

    Iversen, T. K.; Kristoffersen, K. J.; Larsen, Kim Guldstrand

    2000-01-01

    In this paper, we present a method for automatic verification of real-time control programs running on LEGO(R) RCX(TM) bricks using the verification tool UPPALL. The control programs, consisting of a number of tasks running concurrently, are automatically translated into the mixed automata model...

  6. Efficient Proof Engines for Bounded Model Checking of Hybrid Systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2005-01-01

    In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...

  7. CheckMATE: Confronting your Favourite New Physics Model with LHC Data

    CERN Document Server

    Drees, Manuel; Kim, Jong Soo; Schmeier, Daniel; Tattersall, Jamie

    2013-01-01

    In the first three years of running, the LHC has delivered a wealth of new data that is now being analysed. With over 20 fb$^{-1}$ of integrated luminosity, both ATLAS and CMS have performed many searches for new physics that theorists are eager to test their model against. However, tuning the detector simulations, understanding the particular analysis details and interpreting the results can be a tedious task. CheckMATE (Check Models At Terascale Energies) is a program package which accepts simulated event files in many formats for any model. The program then determines whether the model is excluded or not at 95% C.L. by comparing to many recent experimental analyses. Furthermore the program can calculate confidence limits and provide detailed information about signal regions of interest. It is simple to use and the program structure allows for easy extensions to upcoming LHC results in the future. CheckMATE can be found at: http://checkmate.hepforge.org

  8. The Standard Model as an extension of the noncommutative algebra of forms

    CERN Document Server

    Brouder, Christian; Besnard, Fabien

    2015-01-01

    The Standard Model of particle physics can be deduced from a small number of axioms within Connes' noncommutative geometry (NCG). Boyle and Farnsworth [New J. Phys. 16 (2014) 123027] proposed to interpret Connes' approach as an algebra extension in the sense of Eilenberg. By doing so, they could deduce three axioms of the NCG Standard Model (i.e. order zero, order one and massless photon) from the single requirement that the extended algebra be associative. However, their approach was only applied to the finite part of the model because it fails for the full model. By taking into account the differential graded structure of the algebra of noncommutative differential forms, we obtain a formulation where the same three axioms are deduced from the associativity of the extended differential graded algebra, but which is now compatible with the full Standard Model.

  9. Generalized exterior algebras

    CERN Document Server

    Marchuk, Nikolay

    2011-01-01

    Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann algebra and Clifford algebra. Specialists consider models of gravity that based on a mathematical formalism with two metric tensors. We hope that the considered in this paper 2-metric exterior algebra can be useful for development of this model in gravitation theory. Especially in description of fermions in presence of a gravity field.

  10. Using Runtime Analysis to Guide Model Checking of Java Programs

    Science.gov (United States)

    Havelund, Klaus; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes how two runtime analysis algorithms, an existing data race detection algorithm and a new deadlock detection algorithm, have been implemented to analyze Java programs. Runtime analysis is based on the idea of executing the program once. and observing the generated run to extract various kinds of information. This information can then be used to predict whether other different runs may violate some properties of interest, in addition of course to demonstrate whether the generated run itself violates such properties. These runtime analyses can be performed stand-alone to generate a set of warnings. It is furthermore demonstrated how these warnings can be used to guide a model checker, thereby reducing the search space. The described techniques have been implemented in the b e grown Java model checker called PathFinder.

  11. Optimizing ZigBee Security using Stochastic Model Checking

    OpenAIRE

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming; Fruth, Matthias; Kwiatkowska, Marta

    2012-01-01

    ZigBee is a fairly new but promising wireless sensor network standard that offers the advantages of simple and low resource communication. Nevertheless, security is of great concern to ZigBee, and enhancements are prescribed in the latest ZigBee specication: ZigBee-2007. In this technical report, we identify an important gap in the specification on key updates, and present a methodology for determining optimal key update policies and security parameters. We exploit the stochastic model checki...

  12. 3D Cadastral Data Model Based on Conformal Geometry Algebra

    Directory of Open Access Journals (Sweden)

    Ji-yi Zhang

    2016-02-01

    Full Text Available Three-dimensional (3D cadastral data models that are based on Euclidean geometry (EG are incapable of providing a unified representation of geometry and topological relations for 3D spatial units in a cadastral database. This lack of unification causes problems such as complex expression structure and inefficiency in the updating of 3D cadastral objects. The inability of current cadastral data models to express cadastral objects in a unified manner can be attributed to the different expressions of dimensional objects. Because the hierarchical Grassmann structure corresponds to the hierarchical structure of dimensions in conformal geometric algebra (CGA, geometric objects in different dimensions can be constructed by outer products in a unified expression form, which enables the direct extension of two-dimensional (2D spatial representations to 3D spatial representations. The multivector structure in CGA can be employed to organize and store different dimensional objects in a multidimensional and unified manner. With the advantages of CGA in multidimensional expressions, a new 3D cadastral data model that is based on CGA is proposed in this paper. The geometries and topological relations of 3D spatial units can be represented in a unified form within the multivector structure. Detailed methods for 3D cadastral data model design based on CGA and data organization in CGA are introduced. The new cadastral data model is tested and analyzed with experimental data. The results indicate that the geometry and topological relations of 3D cadastral objects can be represented in a multidimensional manner with an intuitive topological structure and a unified dimensional expression.

  13. Modeling of feed water check valves using RELAP5; Modellierung von Speisewasserrueckschlagventilen in RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Ben Said, Nader; Bregulla, Wolfgang; Kalk, Andreas [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2009-07-01

    Westinghouse Electric Germany GmbH has developed fluid dynamic models for medium-actuated armatures using the thermal hydraulic code RELAP5 in order to reach a more realistic description of the armature behavior including fluid-structure interactions in case of transient flow conditions in piping systems. The contribution is concerned with the modeling of damped check valves. The model allows the description of the behavior during opening and closure of a check armature. The calculated results show good agreement with the available measured data.

  14. Quasi-exactly solvable models derived from the quasi-Gaudin algebra

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuan-Harng; Links, Jon; Zhang Yaozhong, E-mail: jrl@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, Qld 4072 (Australia)

    2011-12-02

    The quasi-Gaudin algebra was introduced to construct integrable systems which are only quasi-exactly solvable. Using a suitable representation of the quasi-Gaudin algebra, we obtain a class of bosonic models which exhibit this curious property. These models have the notable feature that they do not preserve U(1) symmetry, which is typically associated with a non-conservation of particle number. An exact solution for the eigenvalues within the quasi-exactly solvable sector is obtained via the algebraic Bethe ansatz formalism. (fast track communication)

  15. Numerical modelling of granular flows: a reality check

    Science.gov (United States)

    Windows-Yule, C. R. K.; Tunuguntla, D. R.; Parker, D. J.

    2016-07-01

    Discrete particle simulations provide a powerful tool for the advancement of our understanding of granular media, and the development and refinement of the multitudinous techniques used to handle and process these ubiquitous materials. However, in order to ensure that this tool can be successfully utilised in a meaningful and reliable manner, it is of paramount importance that we fully understand the degree to which numerical models can be trusted to accurately and quantitatively recreate and predict the behaviours of the real-world systems they are designed to emulate. Due to the complexity and diverse variety of physical states and dynamical behaviours exhibited by granular media, a simulation algorithm capable of closely reproducing the behaviours of a given system may be entirely unsuitable for other systems with different physical properties, or even similar systems exposed to differing control parameters. In this paper, we focus on two widely used forms of granular flow, for which discrete particle simulations are shown to provide a full, quantitative replication of the behaviours of real industrial and experimental systems. We identify also situations for which quantitative agreement may fail are identified, but important general, qualitative trends are still recreated, as well as cases for which computational models are entirely unsuitable. By assembling this information into a single document, we hope not only to provide researchers with a useful point of reference when designing and executing future studies, but also to equip those involved in the design of simulation algorithms with a clear picture of the current strengths and shortcomings of contemporary models, and hence an improved knowledge of the most valuable areas on which to focus their work.

  16. Solitons on Noncommutative Torus as Elliptic Algebras and Elliptic Models

    CERN Document Server

    Hou, B Y; Shi, K J; Yue, R H; Hou, Bo-Yu; Peng, Dan-tao; Shi, Kang-Jie; Yue, Rui-Hong

    2001-01-01

    For the noncommutative torus ${\\cal T}$, in case of the N.C. parameter $\\theta = \\frac{Z}{n}$ and the area of ${\\cal T}$ is an integer, we construct the basis of Hilbert space ${\\cal H}_n$ in terms of $\\theta$ functions of the positions of $n$ solitons. The Wilson loop wrapping the solitons around the torus generates the algebra ${\\cal A}_n$. We find that ${\\cal A}_n$ is isomorphic to the $Z_n \\times Z_n$ Heisenberg group on $\\theta$ functions. We find the explicit form for the solitons local translation operators, show that it is the generators $g$ of an elliptic $su(n)$, which transform covariantly by the global gauge transformation of the Wilson loop in ${\\cal A}_n$. Then by acting on ${\\cal H}_n$ we establish the isomorphism of ${\\cal A}_n$ and $g$. Then it is easy to give the projection operators corresponding to the solitons and the ABS construction for generating solitons. We embed this $g$ into elliptic Gaudin and C.M. models to give the dynamics. For $\\theta$ generic case, we introduce the crossing p...

  17. Cross-entropy optimisation of importance sampling parameters for statistical model checking

    CERN Document Server

    Jégourel, Cyrille; Sedwards, Sean

    2012-01-01

    Statistical model checking avoids the exponential growth of states associated with probabilistic model checking by estimating properties from multiple executions of a system and by giving results within confidence bounds. Rare properties are often very important but pose a particular challenge for simulation-based approaches, hence a key objective under these circumstances is to reduce the number and length of simulations necessary to produce a given level of confidence. Importance sampling is a well-established technique that achieves this, however to maintain the advantages of statistical model checking it is necessary to find good importance sampling distributions without considering the entire state space. Motivated by the above, we present a simple algorithm that uses the notion of cross-entropy to find the optimal parameters for an importance sampling distribution. In contrast to previous work, our algorithm uses a low dimensional vector of parameters to define this distribution and thus avoids the ofte...

  18. Local Model Checking of Weighted CTL with Upper-Bound Constraints

    DEFF Research Database (Denmark)

    Jensen, Jonas Finnemann; Larsen, Kim Guldstrand; Srba, Jiri

    2013-01-01

    graphs. We implement all algorithms in a publicly available tool prototype and evaluate them on several experiments. The principal conclusion is that our local algorithm is the most efficient one with an order of magnitude improvement for model checking problems with a high number of “witnesses”.......We present a symbolic extension of dependency graphs by Liu and Smolka in order to model-check weighted Kripke structures against the logic CTL with upper-bound weight constraints. Our extension introduces a new type of edges into dependency graphs and lifts the computation of fixed-points from...... boolean domain to nonnegative integers in order to cope with the weights. We present both global and local algorithms for the fixed-point computation on symbolic dependency graphs and argue for the advantages of our approach compared to the direct encoding of the model checking problem into dependency...

  19. Prototype of Automated PLC Model Checking Using Continuous Integration Tools

    CERN Document Server

    Lettrich, Michael

    2015-01-01

    To deal with the complexity of operating and supervising large scale industrial installations at CERN, often Programmable Logic Controllers (PLCs) are used. A failure in these control systems can cause a disaster in terms of economic loses, environmental damages or human losses. Therefore the requirements to software quality are very high. To provide PLC developers with a way to verify proper functionality against requirements, a Java tool named PLCverif has been developed which encapsulates and thus simplifies the use of third party model checkers. One of our goals in this project is to integrate PLCverif in development process of PLC programs. When the developer changes the program, all the requirements should be verified again, as a change on the code can produce collateral effects and violate one or more requirements. For that reason, PLCverif has been extended to work with Jenkins CI in order to trigger automatically the verication cases when the developer changes the PLC program. This prototype has been...

  20. Model-Checking Web Services Business Activity Protocols

    DEFF Research Database (Denmark)

    Marques, Abinoam P.; Ravn, Anders Peter; Srba, Jiri

    2013-01-01

    Web Services Business Activity specification defines two coordination protocols BAwCC (Business Agreement with Coordination Completion) and BAwPC (Business Agreement with Participant Completion)that ensure a consistent agreement on the outcome of long-running distributed applications. In order...... to verify fundamental properties of the protocols we provide formal analyses in the model checker UPPAAL.Our analyses are supported by a newly developed tool chain,where in the first step we translatetables with state-transition protocol descriptionsinto an intermediate XML format, and in the second step we...... translate this format into a network of communicating state machines directly suitable for verification in UPPAAL.Our results show that the WS-BA protocols, as described in the standard specification, violate correct operation by reaching invalid statesfor all underlying communication media except...

  1. On the Model Properties of BCK Algebras%关于BCK代数的模型论性质

    Institute of Scientific and Technical Information of China (English)

    梁俊奇

    2004-01-01

    This paper is devoted to the study of the logical properties of BCK algebras.For formalized BCK algebra theory T, it is proved that T is preserved under submodels and unions of chains; T is neither complete nor model complete, and hence there exist no builtin Skolem function. Moreover, the ultraproduct BCK algebras and the fuzzy ultraproduct of fuzzy subsets of BCK algebras were proposed by using the concept of ultrafilters with corresponding propertics of fuzzy ideals discussed.

  2. A "Brutus" model checking of a spi-calculus dialect (Extended Abstract)

    NARCIS (Netherlands)

    Gnesi, S.; Latella, D.; Lenzini, G.

    2000-01-01

    This paper proposes a preliminary framework in which protocols, expressed in a dialect of the spi-calculus, can be verified using model checking algorithms. In particular we define a formal semantics for a dialect of the spi-calculus based on labeled transition systems in such a way that the model c

  3. Logic Model Checking of Unintended Acceleration Claims in the 2005 Toyota Camry Electronic Throttle Control System

    Science.gov (United States)

    Gamble, Ed; Holzmann, Gerard

    2011-01-01

    Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses

  4. Analysis of an emergency diesel generator control system by compositional model checking. MODSAFE 2010 work report

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J.; Bjoerkman, K.; Valkonen, J.; Frits, J.; Niemelae, I.

    2010-12-15

    Digital instrumentation and control (I and C) systems containing programmable logic controllers are challenging to verify. They enable complicated control functions and the state spaces (number of distinct values of inputs, outputs and internal memory) of the designs easily become too large for comprehensive manual inspection. Model checking is a formal method that can be used for verifying that systems have been correctly designed. A number of efficient model checking systems are available which provide analysis tools that are able to determine automatically whether a given state machine model satisfies the desired safety properties. The practical case analysed in this research project is called an 'emergency diesel generator control system' and its purpose is to provide reserve power to critical devices and computers that must be available without interruption. This report describes 1) the development of a compositional approach for checking the models in large system designs, 2) the development of a modular model checking approach for modelling function block diagrams with the Uppaal model checker and 3) the experience of utilising the new modelling approaches in practice. (orig.)

  5. On model checking the dynamics of object-based software : a foundational approach

    NARCIS (Netherlands)

    Distefano, Dino Salvo

    2003-01-01

    This dissertation is concerned with software verication, in particular automated techniques to assess the correct functioning of object-based programs. We focus on the dynamic aspects of these programs and consider model-checking based verication techniques. The major obstacle to the design of model

  6. PENERAPAN MODEL PEMBELAJARAN KOOPERATIF TIPE PAIR CHECKS PEMECAHAN MASALAH UNTUK MENINGKATKAN SOCIAL SKILL SISWA

    Directory of Open Access Journals (Sweden)

    R. Lestari

    2012-12-01

    Full Text Available Tujuan penelitian tindakan kelas ini untuk mengetahui pengaruh proses pembelajaran dengan menggunakan model pembelajaran kooperatif tipe Pair Checks pemecahan masalah terhadap peningkatan social skill siswa. Pada proses penerapan model pembelajaran kooperatif tipe Pair Checks pemecahan masalah siswa dibagi dalam kelompok-kelompok dan satu kelompok terdiri dari dua orang. Setiap kelompok berdiskusi untuk menyelesaikan suatu masalah, kemudian hasil diskusi kelompok akan dicek oleh pasangan dari kelompok lain. Metode Penelitian yang digunakan adalah penelitian tindakan kelas yang dilaksanakan dua siklus. Metode pengumpulan data menggunakan tes dan angket skala sikap, sedangkan teknik analisis data menggunakan teknik analisis data kuantitatif. Social Skill siswa dari siklus I ke siklus II mengalami peningkatan. Hal ini didapatkan dari data angket skala sikap siklus I ke siklus II ketuntasan klasikalnya meningkat dan sebagian besar siswa sudah memiliki social skill yang baik. Hasil belajar kognitif siswa juga mengalami peningkatan. Model pembelajaran kooperatif tipe Pair Checks pemecahan masalah dapat meningkatkan social skill siswa.This two cycles-action research aimed to know learning process applying cooperative learning model-pair checks problem solving type and improvement of student’s social skills. The process of the model was as follows: deviding students into some groups consisting of two students, solving problem by each group and checking result of the discussion by other groups. Data collection method used was test and the use of attitude scale questionnaire, while technique of data analysis used was quantitative data analysis technique. The data analysis result showed that there was an increase of student’s social skill and students’ achievement from cycle one to two. It is concluded that cooperative learning model-pair checks problem solving type can enhance student’s social skills

  7. Lie algebra solution of population models based on time-inhomogeneous Markov chains

    CERN Document Server

    House, Thomas

    2011-01-01

    Many natural populations are well modelled through time-inhomogeneous stochastic processes. Such processes have been analysed in the physical sciences using a method based on Lie algebras, but this methodology is not widely used for models with ecological, medical and social applications. This paper presents the Lie algebraic method, and applies it to three biologically well motivated examples. The result of this is a solution form that is often highly computationally advantageous.

  8. DiVinE-CUDA - A Tool for GPU Accelerated LTL Model Checking

    Directory of Open Access Journals (Sweden)

    Jiří Barnat

    2009-12-01

    Full Text Available In this paper we present a tool that performs CUDA accelerated LTL Model Checking. The tool exploits parallel algorithm MAP adjusted to the NVIDIA CUDA architecture in order to efficiently detect the presence of accepting cycles in a directed graph. Accepting cycle detection is the core algorithmic procedure in automata-based LTL Model Checking. We demonstrate that the tool outperforms non-accelerated version of the algorithm and we discuss where the limits of the tool are and what we intend to do in the future to avoid them.

  9. Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic

    DEFF Research Database (Denmark)

    Bulychev, Petr; David, Alexandre; Larsen, Kim Guldstrand

    2012-01-01

    We present a novel approach and implementation for ana- lysing weighted timed automata (WTA) with respect to the weighted metric temporal logic (WMTL≤ ). Based on a stochastic semantics of WTAs, we apply statistical model checking (SMC) to estimate and test probabilities of satisfaction with desi......We present a novel approach and implementation for ana- lysing weighted timed automata (WTA) with respect to the weighted metric temporal logic (WMTL≤ ). Based on a stochastic semantics of WTAs, we apply statistical model checking (SMC) to estimate and test probabilities of satisfaction...

  10. Quantitative Analysis of Probabilistic Models of Software Product Lines with Statistical Model Checking

    DEFF Research Database (Denmark)

    ter Beek, Maurice H.; Legay, Axel; Lluch Lafuente, Alberto

    2015-01-01

    We investigate the suitability of statistical model checking techniques for analysing quantitative properties of software product line models with probabilistic aspects. For this purpose, we enrich the feature-oriented language FLAN with action rates, which specify the likelihood of exhibiting...... particular behaviour or of installing features at a specific moment or in a specific order. The enriched language (called PFLAN) allows us to specify models of software product lines with probabilistic configurations and behaviour, e.g. by considering a PFLAN semantics based on discrete-time Markov chains....... The Maude implementation of PFLAN is combined with the distributed statistical model checker MultiVeStA to perform quantitative analyses of a simple product line case study. The presented analyses include the likelihood of certain behaviour of interest (e.g. product malfunctioning) and the expected average...

  11. Quantum trigonometric Calogero-Sutherland model and irreducible characters for the exceptional algebra E8

    OpenAIRE

    Fernández Núñez, José; García Fuertes, Wifredo; Perelomov, Askold M.

    2008-01-01

    [EN] We express the Hamiltonian of the quantum trigonometric Calogero-Sutherland model for the Lie algebra E8 and coupling constant k=1 by using the fundamental irreducible characters of the algebra as dynamical independent variables. Then, we compute the second order characters of the algebra and some higher order characters.[ES] Expresamos el hamiltoniano del modelo trigonométrico Calogero-Sutherland cuántico para el álgebra de Lie E8 y el acoplamiento constante k = 1 mediante el uso de los...

  12. Assessing the hydrological effect of the check dams in the Loess Plateau, China by model simulations

    Directory of Open Access Journals (Sweden)

    Y. D. Xu

    2012-12-01

    Full Text Available Check dams are commonly used for soil conservation. In the Loess Plateau of China, check dams have been widely constructed as the principal means to retain floodwater and intercept soil sediments since the 1970s. However, little research has been done to quantify the hydrological effects of the check dams.

    In this research, the SWAT model (Soil and Water Assessment Tool was applied to simulate the runoff and sediment in the Yanhe watershed in the Loess Plateau. We treated the 1950s to 1960s as "reference period" since there were very few check dams during the period. The model was first calibrated and validated in the "reference period". The calibrated model was then used in the later periods to simulate the hydrological effects of the check dams.

    The results showed that the check dams had a regulation effect on runoff and a retention effect on sediment. From 1984 to 1987, the runoff in rainy season (from May to October decreased by 14.7 to 25.9% due to the check dams, while in dry season (from November to the following April, runoff increased by 60.5 to 101.2%; the sediment in rainy season decreased by 34.6 to 48.0%. From 2006 to 2008, the runoff in rainy season decreased by 15.5 to 28.9%, and the runoff in dry season increased by 20.1 to 46.4%; the sediment in rainy season decreased by 79.4 to 85.5%.

    Construction of the large number of in the Loess Plateau has enhanced the region's capacity to control the runoff and sediment. In the Yanhe watershed, the annual runoff was reduced by less than 14.3% due to the check dams; and the sediment in rainy season was blocked by up to 85.5%. Thus, check dams are effective measures for soil erosion control in the Loess Plateau.

  13. Algebraic Stress Model with RNG ε-Equation for Simulating Confined Strongly Swirling Turbulent Flows

    Institute of Scientific and Technical Information of China (English)

    Xu Jiangrong; Yao Qiang; Cao Xingyu; Cen Kefa

    2001-01-01

    Strongly swirl flow simulation are still under developing. In this paper, ε equation based on the Renormalization Group theory is used into algebraic stress model. Standard k-ε model, algebraic stress model by Jiang Zhang[5]and present model (RNG-ASM) are applied simultaneously to simulating the confined strongly swirling flow.The Simulating results by RNG-ASM model are compared to the results by other two model, it is shown that the predictions by this model display reasonable agreement with experimental data, and lead to greater improvement than Zhang's ASM turbulence model[5].

  14. Incremental checking of Master Data Management model based on contextual graphs

    Science.gov (United States)

    Lamolle, Myriam; Menet, Ludovic; Le Duc, Chan

    2015-10-01

    The validation of models is a crucial step in distributed heterogeneous systems. In this paper, an incremental validation method is proposed in the scope of a Model Driven Engineering (MDE) approach, which is used to develop a Master Data Management (MDM) field represented by XML Schema models. The MDE approach presented in this paper is based on the definition of an abstraction layer using UML class diagrams. The validation method aims to minimise the model errors and to optimisethe process of model checking. Therefore, the notion of validation contexts is introduced allowing the verification of data model views. Description logics specify constraints that the models have to check. An experimentation of the approach is presented through an application developed in ArgoUML IDE.

  15. Developing ontological model of computational linear algebra - preliminary considerations

    Science.gov (United States)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Lirkov, I.

    2013-10-01

    The aim of this paper is to propose a method for application of ontologically represented domain knowledge to support Grid users. The work is presented in the context provided by the Agents in Grid system, which aims at development of an agent-semantic infrastructure for efficient resource management in the Grid. Decision support within the system should provide functionality beyond the existing Grid middleware, specifically, help the user to choose optimal algorithm and/or resource to solve a problem from a given domain. The system assists the user in at least two situations. First, for users without in-depth knowledge about the domain, it should help them to select the method and the resource that (together) would best fit the problem to be solved (and match the available resources). Second, if the user explicitly indicates the method and the resource configuration, it should "verify" if her choice is consistent with the expert recommendations (encapsulated in the knowledge base). Furthermore, one of the goals is to simplify the use of the selected resource to execute the job; i.e., provide a user-friendly method of submitting jobs, without required technical knowledge about the Grid middleware. To achieve the mentioned goals, an adaptable method of expert knowledge representation for the decision support system has to be implemented. The selected approach is to utilize ontologies and semantic data processing, supported by multicriterial decision making. As a starting point, an area of computational linear algebra was selected to be modeled, however, the paper presents a general approach that shall be easily extendable to other domains.

  16. su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong; JIN Shuo; LIN Bing-Sheng; XIE Bing-Hao; JING Si-Cong; YU Zhao-Xian; HOU Jing-Min

    2008-01-01

    The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) aigebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics.

  17. Bandwidth and Wavefront Reduction for Static Variable Ordering in Symbolic Model Checking

    NARCIS (Netherlands)

    Meijer, Jeroen; Pol, van de Jaco

    2015-01-01

    We demonstrate the applicability of bandwidth and wavefront reduction algorithms to static variable ordering. In symbolic model checking event locality plays a major role in time and memory usage. For example, in Petri nets event locality can be captured by dependency matrices, where nonzero entries

  18. A practical approach to model checking Duration Calculus using Presburger Arithmetic

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt; Dung, Phan Anh; Brekling, Aske Wiid

    2014-01-01

    This paper investigates the feasibility of reducing a model-checking problem K ⊧ ϕ for discrete time Duration Calculus to the decision problem for Presburger Arithmetic. Theoretical results point at severe limitations of this approach: (1) the reduction in Fränzle and Hansen (Int J Softw Inform 3...

  19. Logic Column 19: Symbolic Model Checking for Temporal-Epistemic Logics

    CERN Document Server

    Lomuscio, Alessio

    2007-01-01

    This article surveys some of the recent work in verification of temporal epistemic logic via symbolic model checking, focusing on OBDD-based and SAT-based approaches for epistemic logics built on discrete and real-time branching time temporal logics.

  20. Three Notes on the Complexity of Model Checking Fixpoint Logic with Chop

    DEFF Research Database (Denmark)

    Lange, Martin

    2007-01-01

    This paper provides lower complexity bounds of deterministic exponential time for the combined, data and expression complexity of Fixpoint Logic with Chop. This matches the previously known upper bound showing that its model checking problem is EXPTIME-complete, even when the transition system or...

  1. Efficient model checking for duration calculus based on branching-time approximations

    DEFF Research Database (Denmark)

    Fränzle, Martin; Hansen, Michael Reichhardt

    2008-01-01

    Duration Calculus (abbreviated to DC) is an interval-based, metric-time temporal logic designed for reasoning about embedded real-time systems at a high level of abstraction. But the complexity of model checking any decidable fragment featuring both negation and chop, DC's only modality, is non...

  2. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check...

  3. Survey for Stochastic Model Checking%随机模型检验研究

    Institute of Scientific and Technical Information of China (English)

    刘阳; 李宣东; 马艳; 王林章

    2015-01-01

    随机模型检验作为模型检验理论的延伸和推广,可用于验证分析系统模型的定性或定量性质,其已经应用到随机分布式算法验证、通信协议性能分析甚至是系统生物学等跨学科领域。从20世纪90年代末至今,随机模型检验引起了形式验证等领域的广泛关注,并取得了很大的进展。该文追溯了随机模型检验的渊源,系统地概括了其最基本的原理及几类典型的 PCTL、概率的 LTL、PCTL*和 CSL 模型检验随机系统的算法框架。然后归纳总结了随机模型检验的主要研究方向及其进展,分析了基于随机模型检验的验证过程及其优势与劣势,并分类列出了目前出现的随机模型检验工具。最后介绍了随机模型检验的应用领域并指出了其未来的应用挑战。%Stochastic model checking is extension and generalization of the theory of model checking,which can verify and analyze system model quantitatively and qualitatively,and has been applied in the areas of verification of randomized distributed algorithms,performance analysis of communication protocols,and even the cross-disciplinary fields such as systems biology.Since the late 1990s,stochastic model checking has received widespread concern in the formal verification filed,and has made great progress.In this paper,we retrospect the origin of stochastic model checking,and discuss the basic principle of stochastic model checking systematically including the PCTL,LTL with probability bounds,PCTL* and CSL model checking algorithm.Then we summarize the main research direction and progress of stochastic model checking in recent years, analyze the verification process and advantages/disadvantages of stochastic model checking deeply, classify and list tools for stochastic model checking.Finally,we introduce the application areas of stochastic model checking and point out its future challenge.

  4. Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving

    Science.gov (United States)

    Engerman, Jason; Rusek, Matthew; Clariana, Roy

    2014-01-01

    This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…

  5. Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving

    Science.gov (United States)

    Engerman, Jason; Rusek, Matthew; Clariana, Roy

    2014-01-01

    This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…

  6. Model Checking - My 27-Year Quest to Overcome the State Explosion Problem

    Science.gov (United States)

    Clarke, Ed

    2009-01-01

    Model Checking is an automatic verification technique for state-transition systems that are finite=state or that have finite-state abstractions. In the early 1980 s in a series of joint papers with my graduate students E.A. Emerson and A.P. Sistla, we proposed that Model Checking could be used for verifying concurrent systems and gave algorithms for this purpose. At roughly the same time, Joseph Sifakis and his student J.P. Queille at the University of Grenoble independently developed a similar technique. Model Checking has been used successfully to reason about computer hardware and communication protocols and is beginning to be used for verifying computer software. Specifications are written in temporal logic, which is particularly valuable for expressing concurrency properties. An intelligent, exhaustive search is used to determine if the specification is true or not. If the specification is not true, the Model Checker will produce a counterexample execution trace that shows why the specification does not hold. This feature is extremely useful for finding obscure errors in complex systems. The main disadvantage of Model Checking is the state-explosion problem, which can occur if the system under verification has many processes or complex data structures. Although the state-explosion problem is inevitable in worst case, over the past 27 years considerable progress has been made on the problem for certain classes of state-transition systems that occur often in practice. In this talk, I will describe what Model Checking is, how it works, and the main techniques that have been developed for combating the state explosion problem.

  7. Model Checking Games for a Fair Branching-Time Temporal Epistemic Logic

    Science.gov (United States)

    Huang, Xiaowei; van der Meyden, Ron

    Model checking games are instances of Hintikka's game semantics for logic used for purposes of debugging systems verification models. Previous work in the area has developed these games for branching time logic. The paper develops an extension to a logic that adds epistemic operators, and interprets the branching time operators with respect to fairness constraints. The implementation of the extended games in the epistemic model checker MCK is described.

  8. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking.

    Science.gov (United States)

    Pârvu, Ovidiu; Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour

  9. Symmetric structure of field algebra of G-spin models determined by a normal subgroup

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qiaoling, E-mail: xinqiaoling0923@163.com; Jiang, Lining, E-mail: jianglining@bit.edu.cn [School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081 (China)

    2014-09-15

    Let G be a finite group and H a normal subgroup. D(H; G) is the crossed product of C(H) and CG which is only a subalgebra of D(G), the double algebra of G. One can construct a C*-subalgebra F{sub H} of the field algebra F of G-spin models, so that F{sub H} is a D(H; G)-module algebra, whereas F is not. Then the observable algebra A{sub (H,G)} is obtained as the D(H; G)-invariant subalgebra of F{sub H}, and there exists a unique C*-representation of D(H; G) such that D(H; G) and A{sub (H,G)} are commutants with each other.

  10. Model Checking the Biological Model of Membrane Computing with Probabilistic Symbolic Model Checker by Using Two Biological Systems

    Directory of Open Access Journals (Sweden)

    Ravie c. Muniyandi

    2010-01-01

    Full Text Available Problem statement: Membrane computing formalism has provided better modeling capabilities for biological systems in comparison to conventional mathematical models. Model checking could be used to reason about the biological system in detail and with precision by verifying formally whether membrane computing model meets the properties of the system. Approach: This study was carried to investigate the preservation of properties of two biological systems that had been modeled and simulated in membrane computing by a method of model checking using PRISM. The two biological systems were prey-predator population and signal processing in the legend-receptor networks of protein TGF-ß. Results: The model checking of membrane computing model of the biological systems with five different properties showed that the properties of the biological systems could be preserved in the membrane computing model. Conclusion: Membrane computing model not only provides a better approach in representing and simulating a biological system but also able to sustain the basic properties of the system.

  11. Investigating modularity in the analysis of process algebra models of biochemical systems

    CERN Document Server

    Ciocchetta, Federica; Hillston, Jane; 10.4204/EPTCS.19.4

    2010-01-01

    Compositionality is a key feature of process algebras which is often cited as one of their advantages as a modelling technique. It is certainly true that in biochemical systems, as in many other systems, model construction is made easier in a formalism which allows the problem to be tackled compositionally. In this paper we consider the extent to which the compositional structure which is inherent in process algebra models of biochemical systems can be exploited during model solution. In essence this means using the compositional structure to guide decomposed solution and analysis. Unfortunately the dynamic behaviour of biochemical systems exhibits strong interdependencies between the components of the model making decomposed solution a difficult task. Nevertheless we believe that if such decomposition based on process algebras could be established it would demonstrate substantial benefits for systems biology modelling. In this paper we present our preliminary investigations based on a case study of the phero...

  12. Rigidification of algebras over essentially algebraic theories

    CERN Document Server

    Rosicky, J

    2012-01-01

    Badzioch and Bergner proved a rigidification theorem saying that each homotopy simplicial algebra is weakly equivalent to a simplicial algebra. The question is whether this result can be extended from algebraic theories to finite limit theories and from simplicial sets to more general monoidal model categories. We will present some answers to this question.

  13. Bayesian analysis for OPC modeling with film stack properties and posterior predictive checking

    Science.gov (United States)

    Burbine, Andrew; Fenger, Germain; Sturtevant, John; Fryer, David

    2016-10-01

    The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and analysis techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper expands upon Bayesian analysis methods for parameter selection in lithographic models by increasing the parameter set and employing posterior predictive checks. Work continues with a Markov chain Monte Carlo (MCMC) search algorithm to generate posterior distributions of parameters. Models now include wafer film stack refractive indices, n and k, as parameters, recognizing the uncertainties associated with these values. Posterior predictive checks are employed as a method to validate parameter vectors discovered by the analysis, akin to cross validation.

  14. CheckMATE: Confronting your favourite new physics model with LHC data

    Science.gov (United States)

    Drees, Manuel; Dreiner, Herbert K.; Kim, Jong Soo; Schmeier, Daniel; Tattersall, Jamie

    2015-02-01

    In the first three years of running, the LHC has delivered a wealth of new data that is now being analysed. With over 20 fb-1 of integrated luminosity, both ATLAS and CMS have performed many searches for new physics that theorists are eager to test their model against. However, tuning the detector simulations, understanding the particular analysis details and interpreting the results can be a tedious task. CheckMATE (Check Models At Terascale Energies) is a program package which accepts simulated event files in many formats for any model. The program then determines whether the model is excluded or not at 95% C.L. by comparing to many recent experimental analyses. Furthermore the program can calculate confidence limits and provide detailed information about signal regions of interest. It is simple to use and the program structure allows for easy extensions to upcoming LHC results in the future.

  15. Galois Correspondence in Field Algebra of G-spin Model

    Institute of Scientific and Technical Information of China (English)

    蒋立宁; 郭懋正

    2003-01-01

    @@ A C*-system is a pair (B, G) consisting of a unital C*-algebra B and a continuous group homomorphism α: G → Aut(B) where G is a compact group and Aut(B) the group of automor-phisms of B. If K is a normal subgroup of G and BK = {B∈ B: k(B) = B, k ∈ K}, then BK is a G-invariant C*-subalgebra of B. On the other hand, if A is a G-invariant C*-algebra with BG A B, set G (A) = {g ∈ G: g(A) = A, A ∈ A}, G (A) is a normal subgroup of G. Clearly K G(BK) and we call K Galois closed ifK = G(BK). Similarly, A BG(A) and we call A Galois closed if A = BG(A).

  16. Models of stochastic gene expression and Weyl algebra

    OpenAIRE

    Vidal, Samuel,; Petitot, Michel; Boulier, François; Lemaire, François; Kuttler, Celine

    2010-01-01

    International audience; This paper presents a symbolic algorithm for computing the ODE systems which describe the evolution of the moments associated to a chemical reaction system, considered from a stochastic point of view. The algorithm, which is formulated in the Weyl algebra, seems more efficient than the corresponding method, based on partial derivatives. In particular, an efficient method for handling conservation laws is presented. The output of the algorithm can be used for a further ...

  17. Abstraction for Epistemic Model Checking of Dining Cryptographers-based Protocols

    CERN Document Server

    Al-Bataineh, Omar I

    2010-01-01

    The paper describes an abstraction for protocols that are based on multiple rounds of Chaum's Dining Cryptographers protocol. It is proved that the abstraction preserves a rich class of specifications in the logic of knowledge, including specifications describing what an agent knows about other agents' knowledge. This result can be used to optimize model checking of Dining Cryptographers-based protocols, and applied within a methodology for knowledge-based program implementation and verification. Some case studies of such an application are given, for a protocol that uses the Dining Cryptographers protocol as a primitive in an anonymous broadcast system. Performance results are given for model checking knowledge-based specifications in the concrete and abstract models of this protocol, and some new conclusions about the protocol are derived.

  18. Mathematical Modelling and the Learning Trajectory: Tools to Support the Teaching of Linear Algebra

    Science.gov (United States)

    Cárcamo Bahamonde, Andrea Dorila; Fortuny Aymemí, Josep Maria; Gómez i Urgellés, Joan Vicenç

    2017-01-01

    In this article we present a didactic proposal for teaching linear algebra based on two compatible theoretical models: emergent models and mathematical modelling. This proposal begins with a problematic situation related to the creation and use of secure passwords, which leads students toward the construction of the concepts of spanning set and…

  19. Designing Tasks for Math Modeling in College Algebra: A Critical Review

    Science.gov (United States)

    Staats, Susan; Robertson, Douglas

    2014-01-01

    Over the last decade, the pedagogical approach known as mathematical modeling has received increased interest in college algebra classes in the United States. Math modeling assignments ask students to develop their own problem-solving tools to address non-routine, realistic scenarios. The open-ended quality of modeling activities creates dilemmas…

  20. BCS Ground State and XXZ Antiferromagnetic Model as SU(2), SU(1,1) Coherent States: An Algebraic Diagonalization Method

    Institute of Scientific and Technical Information of China (English)

    XIE Bing-Hao; ZHANG Hong-Biao; CHEN Jing-Ling

    2002-01-01

    An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.

  1. STATE SPACE GENERATION FRAMEWORK BASED ON BINARY DECISION DIAGRAM FOR DISTRIBUTED EXPLICIT MODEL CHECKING

    Directory of Open Access Journals (Sweden)

    Nacer Tabib

    2016-01-01

    Full Text Available This paper proposes a new framework based on Binary Decision Diagrams (BDD for the graph distribution problem in the context of explicit model checking. The BDD are yet used to represent the state space for a symbolic verification model checking. Thus, we took advantage of high compression ratio of BDD to encode not only the state space, but also the place where each state will be put. So, a fitness function that allows a good balance load of states over the nodes of an homogeneous network is used. Furthermore, a detailed explanation of how to calculate the inter-site edges between different nodes based on the adapted data structure is presented.

  2. Combining search space partition and search Space partition and abstraction for LTL model checking

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The state space explosion problem is still the key obstacle for applying model checking to systems of industrial size.Abstraction-based methods have been particularly successful in this regard.This paper presents an approach based on refinement of search space partition and abstraction which combines these two techniques for reducing the complexity of model checking.The refinement depends on the representation of each portion of search space. Especially, search space can be refined stepwise to get a better reduction. As reported in the case study, the Integration of search space partition and abstraction improves the efficiencyof verification with respect to the requirement of memory and obtains significant advantage over the use of each of them in isolation.

  3. On the Model Checking of the SpaceWire Link Interface

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-02-01

    Full Text Available In this paper we display a practical approach adopted for the formal verification of SpaceWire using model checking to solve state explosion. SpaceWire is a high-speed, full-duplex serial bus standard which is applied in aerospace, so its functions have a very high accuracy requirements. In order to prove the design of the SpaceWire was faithfully implements the SpaceWire protocol’s specification , we present our experience on the model checking of SpaceWire link interface using the Cadence SMV tool. We applied environment state machine to overcome state explosion and successfully  verified  a number of relevant properties about transmitter and controller of the SpaceWire in reasonable CPU time.  

  4. HyLTL: a temporal logic for model checking hybrid systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2013-08-01

    Full Text Available The model-checking problem for hybrid systems is a well known challenge in the scientific community. Most of the existing approaches and tools are limited to safety properties only, or operates by transforming the hybrid system to be verified into a discrete one, thus loosing information on the continuous dynamics of the system. In this paper we present a logic for specifying complex properties of hybrid systems called HyLTL, and we show how it is possible to solve the model checking problem by translating the formula into an equivalent hybrid automaton. In this way the problem is reduced to a reachability problem on hybrid automata that can be solved by using existing tools.

  5. Combining Static Analysis and Case-Based Search Space Partitioning for Reducing Peak Memory in Model Checking

    Institute of Scientific and Technical Information of China (English)

    ZHANG WenHui (张文辉)

    2003-01-01

    Memory is one of the critical resources in model checking. This paper discusses a strategy for reducing peak memory in model checking by case-based partitioning of the search space. This strategy combines model checking for verification of different cases and static analysis or expert judgment for guaranteeing the completeness of the cases. Description of the static analysis is based on using PROMELA as the modeling language. The strategy is applicable to a subset of models including models for verification of certain aspects of protocols.

  6. Mathematical modelling in engineering: A proposal to introduce linear algebra concepts

    Directory of Open Access Journals (Sweden)

    Andrea Dorila Cárcamo

    2016-03-01

    Full Text Available The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasize the development of mathematical abilities primarily associated with modelling and interpreting, which aren´t limited only to calculus abilities. Considering this, an instructional design was elaborated based on mathematic modelling and emerging heuristic models for the construction of specific linear algebra concepts:  span and spanning set. This was applied to first year engineering students. Results suggest that this type of instructional design contributes to the construction of these mathematical concepts and can also favour first year engineering students understanding of key linear algebra concepts and potentiate the development of higher order skills.

  7. The algebraic Bethe ansatz for rational braid-monoid lattice models

    CERN Document Server

    Martins, M J

    1997-01-01

    In this paper we study isotropic integrable systems based on the braid-monoid algebra. These systems constitute a large family of rational multistate vertex models and are realized in terms of the B_n, C_n and D_n Lie algebra and by the superalgebra Osp(n|2m). We present a unified formulation of the quantum inverse scattering method for many of these lattice models. The appropriate fundamental commutation rules are found, allowing us to construct the eigenvectors and the eigenvalues of the transfer matrix associated to the B_n, C_n, D_n, Osp(2n-1|2), Osp(2|2n-2), Osp(2n-2|2) and Osp(1|2n) models. The corresponding Bethe Ansatz equations can be formulated in terms of the root structure of the underlying algebra.

  8. Model-checking ATL under Imperfect Information and Perfect Recall Semantics is Undecidable

    CERN Document Server

    Dima, Catalin

    2011-01-01

    We propose a formal proof of the undecidability of the model checking problem for alternating- time temporal logic under imperfect information and perfect recall semantics. This problem was announced to be undecidable according to a personal communication on multi-player games with imperfect information, but no formal proof was ever published. Our proof is based on a direct reduction from the non-halting problem for Turing machines.

  9. A Quantum Computing Approach to Model Checking for Advanced Manufacturing Problems

    Science.gov (United States)

    2014-07-01

    by using faster languages . The algorithm has several parameters that can be used to try to improve convergence and behavior. In this project we...the abstract models, and reformulated the counterexample checking problem in Linear Temporal Logic (LTL). We wrote a program that read abstract...be reformulated and submitted to the DW2 to be solved. We worked with the NuSMV system developed by Fondazione Bruno Kessler (FBK), CMU, and the

  10. Analysis of DGNB-DK criteria for BIM-based Model Checking automatization

    DEFF Research Database (Denmark)

    Gade, Peter; Svidt, Kjeld; Jensen, Rasmus Lund

    This report includes the results of an analysis of the automation potential of the Danish edition of building sustainability assessment method Deutsche Gesellschaft für Nachhaltiges Bauen (DGNB) for office buildings version 2014 1.1. The analysis investigate the criteria related to DGNB-DK and if......-DK and if they would be suited for automation through the technological concept BIM-based Model Checking (BMC)....

  11. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    Science.gov (United States)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  12. A Novel Algorithm for Intrusion Detection Based on RASL Model Checking

    Directory of Open Access Journals (Sweden)

    Weijun Zhu

    2013-01-01

    Full Text Available The interval temporal logic (ITL model checking (MC technique enhances the power of intrusion detection systems (IDSs to detect concurrent attacks due to the strong expressive power of ITL. However, an ITL formula suffers from difficulty in the description of the time constraints between different actions in the same attack. To address this problem, we formalize a novel real-time interval temporal logic—real-time attack signature logic (RASL. Based on such a new logic, we put forward a RASL model checking algorithm. Furthermore, we use RASL formulas to describe attack signatures and employ discrete timed automata to create an audit log. As a result, RASL model checking algorithm can be used to automatically verify whether the automata satisfy the formulas, that is, whether the audit log coincides with the attack signatures. The simulation experiments show that the new approach effectively enhances the detection power of the MC-based intrusion detection methods for a number of telnet attacks, p-trace attacks, and the other sixteen types of attacks. And these experiments indicate that the new algorithm can find several types of real-time attacks, whereas the existing MC-based intrusion detection approaches cannot do that.

  13. An algebraic model of Coulomb scattering with spin

    Energy Technology Data Exchange (ETDEWEB)

    Levay, P. [School of Physics, University of Melbourne, Parkville (Australia); Department of Theoretical Physics, Institute of Physics, Technical University, Budapest (Hungary); Amos, K. [School of Physics, University of Melbourne, Parkville (Australia)

    2001-05-11

    A new matrix-valued realization for the so(3,1) algebra leads to a natural generalization of the Coulomb scattering problem of a particle with spin. The underlying su(2) gauge structure of this realization recasts the scattering problem into a familiar form, namely, the Coulomb scattering problem of a collection of dyons (particles having both electric and magnetic charges). Using this equivalent form and the results of Zwanziger for such systems, the scattering matrix can be calculated in the helicity formalism. (author)

  14. The algebraic cluster model: Structure of 16O

    Science.gov (United States)

    Bijker, R.; Iachello, F.

    2017-01-01

    We discuss an algebraic treatment of four-body clusters which includes both continuous and discrete symmetries. In particular, tetrahedral configurations with Td symmetry are analyzed with respect to the energy spectrum, transition form factors and B (EL) values. It is concluded that the low-lying spectrum of 16O can be described by four α particles at the vertices of a regular tetrahedron, not as a rigid structure but rather a more floppy structure with relatively large rotation-vibration interactions and Coriolis forces.

  15. The Algebraic Cluster Model: Structure of 16O

    CERN Document Server

    Bijker, R

    2016-01-01

    We discuss an algebraic treatment of four-body clusters which includes both continuous and discrete symmetries. In particular, tetrahedral configurations with T(d) symmetry are analyzed with respect to the energy spectrum, transition form factors and B(EL) values. It is concluded that the low-lying spectrum of 16O can be described by four alpha-particles at the vertices of a regular tetrahedron, not as a rigid structure but rather a more floppy structure with relatively large rotation-vibration interactions and Coriolis forces.

  16. Combination of Model Checking and Theorem Proving to Verify Embedded Software

    Institute of Scientific and Technical Information of China (English)

    XIAO Jian-yu; ZHANG De-yun; DONG Hao; CHEN Hai-quan

    2005-01-01

    In this paper, a scheme of combining model checking and theorem proving techniques to verify high trustworthy embedded software is proposed. The software model described in state machine of unified model language is transformed into the input modeling language of a model checker in which the model is analyzed with associated property specifications expressed in temporal logic. The software model which has been verified by model checker is then transformed into abstract specifications of a theorem prover , in which the model will be refined, verified and translated into source C code. The transformation rules from state machine to input language of model checker and abstract specifications of theorem prover are given. The experiment shows that the proposed scheme can effectively improve the development and verification of high trustworthy embedded software.

  17. Effective models of quantum gravity induced by Planck scale modifications in the covariant quantum algebra

    CERN Document Server

    de Brito, G P; Gomes, Y M P; Junior, J T Guaitolini; Nikoofard, V

    2016-01-01

    In this paper we introduce a modified covariant quantum algebra based in the so-called Quesne-Tkachuk algebra. By means of a deformation procedure we arrive at a class of higher derivative models of gravity. The study of the particle spectra of these models reveals an equivalence with the physical content of the well-known renormalizable and super-renormalizable higher derivative gravities. The particle spectrum exhibits the presence of spurious complex ghosts and, in light of this problem, we suggest an interesting interpretation in the context of minimal length theories. Also, a discussion regarding the non-relativistic potential energy is proposed.

  18. Algebraic Specifications, Higher-order Types and Set-theoretic Models

    DEFF Research Database (Denmark)

    Kirchner, Hélène; Mosses, Peter David

    2001-01-01

    , and power-sets. This paper presents a simple framework for algebraic specifications with higher-order types and set-theoretic models. It may be regarded as the basis for a Horn-clause approximation to the Z framework, and has the advantage of being amenable to prototyping and automated reasoning. Standard......In most algebraic  specification frameworks, the type system is restricted to sorts, subsorts, and first-order function types. This is in marked contrast to the so-called model-oriented frameworks, which provide higer-order types, interpreted set-theoretically as Cartesian products, function spaces...

  19. Algebra V homological algebra

    CERN Document Server

    Shafarevich, I

    1994-01-01

    This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

  20. A Lie-Algebra model for a noncommutative space time geometry

    CERN Document Server

    Doerfel, B D

    2002-01-01

    We propose a Lie-algebra model for noncommutative coordinate and momentum space . Based on a rigid commutation relation for the commutators of space time operators the model is quite constrained if one tries to keep Lorentz invariance as much as possible. We discuss the question of invariants esp. the definition of a mass.

  1. Algebraic Bethe Ansatz Solution to CN Vertex Model with Open Boundary Conditions

    Institute of Scientific and Technical Information of China (English)

    LI Guang-Liang; SHI Kang-Jie; YUE Rui-Hong

    2005-01-01

    We present three diagonal reflecting matrices for the CN vertex model with open boundary conditions and exactly solve the model by using the algebraic Bethe ansatz. The eigenvector is constructed and the eigenvalue and the associated Bethe equations are achieved. All the unwanted terms are cancelled out by three kinds of identities.

  2. Construction of the Model of the Lambda Calculus System with Algebraic Operators

    Institute of Scientific and Technical Information of China (English)

    陆汝占; 张政; 等

    1991-01-01

    A lambda system with algebraic operators,Lambda-plus system,is introduced.After giving the definitions of the system,we present a sufficient condition for formulating a model of the system.Finally,a model of such system is constructed.

  3. A rule-based approach to model checking of UML state machines

    Science.gov (United States)

    Grobelna, Iwona; Grobelny, Michał; Stefanowicz, Łukasz

    2016-12-01

    In the paper a new approach to formal verification of control process specification expressed by means of UML state machines in version 2.x is proposed. In contrast to other approaches from the literature, we use the abstract and universal rule-based logical model suitable both for model checking (using the nuXmv model checker), but also for logical synthesis in form of rapid prototyping. Hence, a prototype implementation in hardware description language VHDL can be obtained that fully reflects the primary, already formally verified specification in form of UML state machines. Presented approach allows to increase the assurance that implemented system meets the user-defined requirements.

  4. Mathematical modelling in engineering: an alternative way to teach Linear Algebra

    Science.gov (United States)

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-10-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).

  5. Hopf Algebra Structure of a Model Quantum Field Theory

    CERN Document Server

    Solomon, A I; Blasiak, P; Horzela, A; Penson, K A

    2006-01-01

    Recent elegant work on the structure of Perturbative Quantum Field Theory (PQFT) has revealed an astonishing interplay between analysis(Riemann Zeta functions), topology (Knot theory), combinatorial graph theory (Feynman Diagrams) and algebra (Hopf structure). The difficulty inherent in the complexities of a fully-fledged field theory such as PQFT means that the essential beauty of the relationships between these areas can be somewhat obscured. Our intention is to display some, although not all, of these structures in the context of a simple zero-dimensional field theory; i.e. a quantum theory of non-commuting operators which do not depend on spacetime. The combinatorial properties of these boson creation and annihilation operators, which is our chosen example, may be described by graphs, analogous to the Feynman diagrams of PQFT, which we show possess a Hopf algebra structure. Our approach is based on the partition function for a boson gas. In a subsequent note in these Proceedings we sketch the relationship...

  6. Combining Explicit and Symbolic Approaches for Better On-the-Fly LTL Model Checking

    CERN Document Server

    Duret-Lutz, Alexandre; Poitrenaud, Denis; Thierry-Mieg, Yann

    2011-01-01

    We present two new hybrid techniques that replace the synchronized product used in the automata-theoretic approach for LTL model checking. The proposed products are explicit graphs of aggregates (symbolic sets of states) that can be interpreted as B\\"uchi automata. These hybrid approaches allow on the one hand to use classical emptiness-check algorithms and build the graph on-the-fly, and on the other hand, to have a compact encoding of the state space thanks to the symbolic representation of the aggregates. The Symbolic Observation Product assumes a globally stuttering property (e.g., LTL \\ X) to aggregate states. The Self-Loop Aggregation Product} does not require the property to be globally stuttering (i.e., it can tackle full LTL), but dynamically detects and exploits a form of stuttering where possible. Our experiments show that these two variants, while incomparable with each other, can outperform other existing approaches.

  7. A note on probabilistic models over strings: the linear algebra approach.

    Science.gov (United States)

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  8. Sediment depositions upstream of open check dams: new elements from small scale models

    Science.gov (United States)

    Piton, Guillaume; Le Guern, Jules; Carbonari, Costanza; Recking, Alain

    2015-04-01

    numbers that the flows tend to adopt? New small scale model experiments have been undertaken focusing on depositions processes and their related hydraulics. Accurate photogrammetric measurements allowed us to better describe the deposition processes3. Large Scale Particle Image Velocimetry (LS-PIV) was performed to determine surface velocity fields in highly active channels with low grain submersion4. We will present preliminary results of our experiments showing the new elements we observed in massive deposit dynamics. REFERENCES 1.Armanini, A., Dellagiacoma, F. & Ferrari, L. From the check dam to the development of functional check dams. Fluvial Hydraulics of Mountain Regions 37, 331-344 (1991). 2.Piton, G. & Recking, A. Design of sediment traps with open check dams: a review, part I: hydraulic and deposition processes. (Accepted by the) Journal of Hydraulic Engineering 1-23 (2015). 3.Le Guern, J. Ms Thesis: Modélisation physique des plages de depot : analyse de la dynamique de remplissage.(2014) . 4.Carbonari, C. Ms Thesis: Small scale experiments of deposition processes occuring in sediment traps, LS-PIV measurments and geomorphological descriptions. (in preparation).

  9. An Efficient Explicit-time Description Method for Timed Model Checking

    CERN Document Server

    Wang, Hao; 10.4204/EPTCS.14.6

    2009-01-01

    Timed model checking, the method to formally verify real-time systems, is attracting increasing attention from both the model checking community and the real-time community. Explicit-time description methods verify real-time systems using general model constructs found in standard un-timed model checkers. Lamport proposed an explicit-time description method using a clock-ticking process (Tick) to simulate the passage of time together with a group of global variables to model time requirements. Two methods, the Sync-based Explicit-time Description Method using rendezvous synchronization steps and the Semaphore-based Explicit-time Description Method using only one global variable were proposed; they both achieve better modularity than Lamport's method in modeling the real-time systems. In contrast to timed automata based model checkers like UPPAAL, explicit-time description methods can access and store the current time instant for future calculations necessary for many real-time systems, especially those with p...

  10. Space and time dimensions of algebras with applications to Lorentzian noncommutative geometry and the standard model

    CERN Document Server

    Bizi, Nadir; Besnard, Fabien

    2016-01-01

    An analogy with real Clifford algebras on even-dimensional vector spaces suggests to assign a space dimension and a time dimension (modulo 8) to an algebra (represented over a complex Hilbert space) containing two self-adjoint involutions and an anti-unitary operator with specific commutation relations. It is shown that this assignment is compatible with the tensor product, in the sense that a tensor product of such algebras corresponds to the addition of the space and time dimensions. This could provide an interpretation of the presence of such algebras in PT-symmetric Hamiltonians or the description of topological matter. This construction is used to build the tensor product of Lorentzian (and more generally pseudo-Riemannian) spectral triples, defined over a Krein space. The application to the standard model of particles suggests the identity of the time and space dimensions of the total (manifold+finite algebra) spectral triple. It also suggests the emergence of the pseudo-orthogonal group SO(4,6) in a gr...

  11. Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems

    DEFF Research Database (Denmark)

    Becker, Bernd; Behle, Markus; Eisenbrand, Fritz

    2004-01-01

    We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit...... verication, bounded plan- ning and heuristic search, combinatorial optimization and integer programming. Af- ter sketching the overall verication ow we present rst results indicating that the combination and tight integration of dierent verication engines is a rst step to pave the way to fully automated BMC...

  12. Left Artinian Algebraic Algebras

    Institute of Scientific and Technical Information of China (English)

    S. Akbari; M. Arian-Nejad

    2001-01-01

    Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.

  13. Model Checking and Code Generation for UML Diagrams Using Graph Transformation

    Directory of Open Access Journals (Sweden)

    Wafa Chama

    2012-12-01

    Full Text Available UML is considered as the standard for object-oriented modelling language adopted by the ObjectManagement Group. However, UML has been criticized due to the lack of formal semantics and theambiguity of its models. In other hands, UML models can be mathematically verified and checked by usingits equivalent formal representation. So, in this paper, we propose an approach and a tool based on graphtransformation to perform an automatic mapping for verification purposes. This transformation aims tobridge the gap between informal and formal notations and allows a formal verification of concurrent UMLmodels using Maude language. We consider both static (Class Diagram and dynamic (StateChart andCommunication Diagrams features of concurrent object-oriented system. Then, we use Maude LTL ModelChecker to verify the formal model obtained (Automatic Code Generation Maude. The meta-modellingAToM3 tool is used. A case study is presented to illustrate our approach.

  14. Algebraic partial Boolean algebras

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)

    2003-04-04

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.

  15. Gup-Based and Snyder Noncommutative Algebras, Relativistic Particle Models, Deformed Symmetries and Interaction: a Unified Approach

    Science.gov (United States)

    Pramanik, Souvik; Ghosh, Subir

    2013-10-01

    We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.

  16. Elliptic Algebra and Integrable Models for Solitons on Noncommutative Torus ${\\cal T}$

    CERN Document Server

    Hou, B Y; Hou, Bo-Yu; Peng, Dan-Tao

    2002-01-01

    We study the algebra ${\\cal A}_n$ and the basis of the Hilbert space ${\\cal H}_n$ in terms of the $\\theta$ functions of the positions of $n$ solitons. Then we embed the Heisenberg group as the quantum operator factors in the representation of the transfer matrice of various integrable models. Finally we generalize our result to the generic $\\theta$ case.

  17. Elliptic Algebra and Integrable Models for Solitons on Noncommutative Torus {T}

    Science.gov (United States)

    Hou, Bo-Yu; Peng, Dan-Tao

    2002-11-01

    We study the algebra {A}n, the basis of the Hilbert space {H}n in terms of θ functions of the positions of n solitons. Then we embed the Heisenberg group as the quantum operator factors in the representation of the transfer matrices of various integrable models. Finally we generalize our result to the generic θ case.

  18. Elliptic Algebra and Integrable Models for Solitons on Noncommutative Torus T

    Science.gov (United States)

    Hou, Bo-Yu; Peng, Dan-Tao

    We study the algebra An, the basis of the Hilbert space Hn in terms of θ functions of the positions of n solitons. Then we embed the Heisenberg group as the quantum operator factors in the representation of the transfer matrices of various integrable models. Finally we generalize our result to the generic θ case.

  19. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    Science.gov (United States)

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  20. Implementing a Flipped Instructional Model in College Algebra: Profiles of Student Activity

    Science.gov (United States)

    Lesseig, Kristin; Krouss, Paul

    2017-01-01

    Flipped instruction is increasing in popularity, however research that moves beyond descriptions of its implementation in mathematics classes is lacking. We sought to better understand how students taking an introductory college algebra course used the resources provided within a flipped instructional model and how students viewed such resources…

  1. Algebraic Bethe Ansatz for O(2N) sigma models with integrable diagonal boundaries

    CERN Document Server

    Gombor, Tamas

    2015-01-01

    The finite volume problem of O(2N) sigma models with integrable diagonal boundaries on a finite interval is investigated. The double row transfer matrix is diagonalized by Algebraic Bethe Ansatz. The boundary Bethe Yang equations for the particle rapidities and the accompanying Bethe Ansatz equations are derived.

  2. Algebra of timed frames

    NARCIS (Netherlands)

    Bergstra, J.A.; Fokkink, W.J.; Middelburg, C.A.

    2008-01-01

    Timed frames are introduced as objects that can form a basis of a model theory for discrete time process algebra. An algebraic setting for timed frames is proposed and results concerning its connection with discrete time process algebra are given. The presented theory of timed frames captures the ba

  3. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  4. Model Checking Probabilistic Real-Time Properties for Service-Oriented Systems with Service Level Agreements

    Directory of Open Access Journals (Sweden)

    Christian Krause

    2011-11-01

    Full Text Available The assurance of quality of service properties is an important aspect of service-oriented software engineering. Notations for so-called service level agreements (SLAs, such as the Web Service Level Agreement (WSLA language, provide a formal syntax to specify such assurances in terms of (legally binding contracts between a service provider and a customer. On the other hand, formal methods for verification of probabilistic real-time behavior have reached a level of expressiveness and efficiency which allows to apply them in real-world scenarios. In this paper, we suggest to employ the recently introduced model of Interval Probabilistic Timed Automata (IPTA for formal verification of QoS properties of service-oriented systems. Specifically, we show that IPTA in contrast to Probabilistic Timed Automata (PTA are able to capture the guarantees specified in SLAs directly. A particular challenge in the analysis of IPTA is the fact that their naive semantics usually yields an infinite set of states and infinitely-branching transitions. However, using symbolic representations, IPTA can be analyzed rather efficiently. We have developed the first implementation of an IPTA model checker by extending the PRISM tool and show that model checking IPTA is only slightly more expensive than model checking comparable PTA.

  5. Chiefly Symmetric: Results on the Scalability of Probabilistic Model Checking for Operating-System Code

    Directory of Open Access Journals (Sweden)

    Marcus Völp

    2012-11-01

    Full Text Available Reliability in terms of functional properties from the safety-liveness spectrum is an indispensable requirement of low-level operating-system (OS code. However, with evermore complex and thus less predictable hardware, quantitative and probabilistic guarantees become more and more important. Probabilistic model checking is one technique to automatically obtain these guarantees. First experiences with the automated quantitative analysis of low-level operating-system code confirm the expectation that the naive probabilistic model checking approach rapidly reaches its limits when increasing the numbers of processes. This paper reports on our work-in-progress to tackle the state explosion problem for low-level OS-code caused by the exponential blow-up of the model size when the number of processes grows. We studied the symmetry reduction approach and carried out our experiments with a simple test-and-test-and-set lock case study as a representative example for a wide range of protocols with natural inter-process dependencies and long-run properties. We quickly see a state-space explosion for scenarios where inter-process dependencies are insignificant. However, once inter-process dependencies dominate the picture models with hundred and more processes can be constructed and analysed.

  6. Combinatorics of solvable lattice models, and modular representations of Hecke algebras

    CERN Document Server

    Foda, O E; Okado, M; Thibon, J Y; Welsh, Trevor A; Foda, Omar; Leclerc, Bernard; Okado, Masato; Thibon, Jean-Yves; Welsh, Trevor A.

    1997-01-01

    We review and motivate recently-observed relationships between exactly solvable lattice models and modular representations of Hecke algebras. Firstly, we describe how the set of $n$-regular partitions label both of the following classes of objects: 1. The spectrum of unrestricted solid-on-solid lattice models based on level-1 representations of the affine algebras $\\sl_n$, 2. The irreducible representations of type-A Hecke algebras at roots of unity: $H_m(\\sqrt[n]{1})$. Secondly, we show that a certain subset of the $n$-regular partitions label both of the following classes of objects: 1. The spectrum of restricted solid-on-solid lattice models based on cosets of affine algebras $(sl(n)^_1 \\times sl(n)^_1)/ sl(n)^_2$. 2. Jantzen-Seitz (JS) representations of $H_m(\\sqrt[n]{1})$: irreducible representations that remain irreducible under restriction to $H_{m-1}(\\sqrt[n]{1})$. Using the above relationships, we characterise the JS representations of $H_m(\\sqrt[n]{1})$ and show that the generating series that count...

  7. Combining Decision Diagrams and SAT Procedures for Efficient Symbolic Model Checking

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Biere, Armin; Clarke, Edmund M.

    2000-01-01

    in the specification of a 16 bit multiplier. As opposed to Bounded Model Checking (BMC) our method is complete in practice. Our technique is based on a quantification procedure that allows us to eliminate quantifiers in Quantified Boolean Formulas (QBF). The basic step of this procedure is the up-one operation...... for BEDs. In addition we list a number of important optimizations to reduce the number of basic steps. In particular the optimization rule of quantification-by-substitution turned out to be very useful: exists x : {g /\\ ( x f )} = g[f/x]. The rule is used (1) during fixed point iterations, (2) for deciding...

  8. Applying Model Checking to Generate Model-Based Integration Tests from Choreography Models

    Science.gov (United States)

    Wieczorek, Sebastian; Kozyura, Vitaly; Roth, Andreas; Leuschel, Michael; Bendisposto, Jens; Plagge, Daniel; Schieferdecker, Ina

    Choreography models describe the communication protocols between services. Testing of service choreographies is an important task for the quality assurance of service-based systems as used e.g. in the context of service-oriented architectures (SOA). The formal modeling of service choreographies enables a model-based integration testing (MBIT) approach. We present MBIT methods for our service choreography modeling approach called Message Choreography Models (MCM). For the model-based testing of service choreographies, MCMs are translated into Event-B models and used as input for our test generator which uses the model checker ProB.

  9. Global identifiability of linear compartmental models--a computer algebra algorithm.

    Science.gov (United States)

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  10. An Integrated Approach of Model checking and Temporal Fault Tree for System Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kwang Yong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-10-15

    Digitalization of instruments and control systems in nuclear power plants offers the potential to improve plant safety and reliability through features such as increased hardware reliability and stability, and improved failure detection capability. It however makes the systems and their safety analysis more complex. Originally, safety analysis was applied to hardware system components and formal methods mainly to software. For software-controlled or digitalized systems, it is necessary to integrate both. Fault tree analysis (FTA) which has been one of the most widely used safety analysis technique in nuclear industry suffers from several drawbacks as described in. In this work, to resolve the problems, FTA and model checking are integrated to provide formal, automated and qualitative assistance to informal and/or quantitative safety analysis. Our approach proposes to build a formal model of the system together with fault trees. We introduce several temporal gates based on timed computational tree logic (TCTL) to capture absolute time behaviors of the system and to give concrete semantics to fault tree gates to reduce errors during the analysis, and use model checking technique to automate the reasoning process of FTA.

  11. Bringing Automated Model Checking to PLC Program Development - A CERN Case Study

    CERN Document Server

    Fernandez Adiego, B; Tournier, J-C; Blanco Vinuela, E; Gonzalez Suarez, V M

    2014-01-01

    Verification of critical software is a high priority but a challenging task for industrial control systems. Model checking appears to be an appropriate approach for this purpose. However, this technique is not widely used in industry yet, due to some obstacles. The main obstacles encountered when trying to apply formal verification techniques at industrial installations are the difficulty of creating models out of PLC programs and defining formally the specification requirements. In addition, models produced out of real-life programs have a huge state space, thus preventing the verification due to performance issues. Our work at CERN (European Organization for Nuclear Research) focuses on developing efficient automatic verification methods for industrial critical installations based on PLC (Programmable Logic Controller) control systems. In this paper, we present a tool generating automatically formal models out of PLC code. The tool implements a general methodology which can support several input languages, ...

  12. Algebraic Statistics

    OpenAIRE

    Norén, Patrik

    2013-01-01

    Algebraic statistics brings together ideas from algebraic geometry, commutative algebra, and combinatorics to address problems in statistics and its applications. Computer algebra provides powerful tools for the study of algorithms and software. However, these tools are rarely prepared to address statistical challenges and therefore new algebraic results need often be developed. This way of interplay between algebra and statistics fertilizes both disciplines. Algebraic statistics is a relativ...

  13. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment

    Directory of Open Access Journals (Sweden)

    G. Bussi

    2013-08-01

    Full Text Available Soil loss and sediment transport in Mediterranean areas are driven by complex non-linear processes which have been only partially understood. Distributed models can be very helpful tools for understanding the catchment-scale phenomena which lead to soil erosion and sediment transport. In this study, a modelling approach is proposed to reproduce and evaluate erosion and sediment yield processes in a Mediterranean catchment (Rambla del Poyo, Valencia, Spain. Due to the lack of sediment transport records for model calibration and validation, a detailed description of the alluvial stratigraphy infilling a check dam that drains a 12.9 km2 sub-catchment was used as indirect information of sediment yield data. These dam infill sediments showed evidences of at least 15 depositional events (floods over the time period 1990–2009. The TETIS model, a distributed conceptual hydrological and sediment model, was coupled to the Sediment Trap Efficiency for Small Ponds (STEP model for reproducing reservoir retention, and it was calibrated and validated using the sedimentation volume estimated for the depositional units associated with discrete runoff events. The results show relatively low net erosion rates compared to other Mediterranean catchments (0.136 Mg ha−1 yr−1, probably due to the extensive outcrops of limestone bedrock, thin soils and rather homogeneous vegetation cover. The simulated sediment production and transport rates offer model satisfactory results, further supported by in-site palaeohydrological evidences and spatial validation using additional check dams, showing the great potential of the presented data assimilation methodology for the quantitative analysis of sediment dynamics in ungauged Mediterranean basins.

  14. An Algebraic Watchdog for Wireless Network Coding

    CERN Document Server

    Kim, MinJi; Barros, Joao; Koetter, Ralf

    2009-01-01

    In this paper, we propose a scheme, called the algebraic watchdog for wireless network coding, in which nodes can detect malicious behaviors probabilistically, police their downstream neighbors locally using overheard messages, and, thus, provide a secure global self-checking network. Unlike traditional Byzantine detection protocols which are receiver-based, this protocol gives the senders an active role in checking the node downstream. This work is inspired by Marti et al's watchdog-pathrater, which attempts to detect and mitigate the effects of routing misbehavior. We present a graphical model to understand the inference process nodes execute to police their downstream neighbors; as well as to compute, analyze, and approximate the probabilities of misdetection and false detection. In addition, we present an algebraic analysis of the performance using an hypothesis testing framework, that provides exact formulae for probabilities of false detection and misdetection. Detailed description of the graphical mode...

  15. Algebraic approach to electro-optic modulation of light: Exactly solvable multimode quantum model

    CERN Document Server

    Miroshnichenko, George P; Trifanov, Alexander I; Gleim, Artur V

    2016-01-01

    We theoretically study electro-optic light modulation based on the quantum model where the linear electro-optic effect and the externally applied microwave field result in the interaction between optical cavity modes. The model assumes that the number of interacting modes is finite and effects of the mode overlapping coefficient on the strength of the intermode interaction can be taken into account through dependence of the coupling coefficient on the mode characteristics. We show that, under certain conditions, the model is exactly solvable and, in the semiclassical approximation where the microwave field is treated as a classical mode, can be analyzed using the technique of the Jordan mappings for the su(2) Lie algebra. Analytical results are applied to study effects of light modulation on the frequency dependence of the photon counting rate. We also establish the conditions of validity of the semiclassical approximation by applying the methods of polynomially deformed Lie algebras for analysis of the model...

  16. A computer code for calculations in the algebraic collective model of the atomic nucleus

    CERN Document Server

    Welsh, T A

    2016-01-01

    A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1,1) x SO(5) dynamical group. This, in particular, obviates the use of coefficients of fractional parentage. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [pi x q x pi]_0 and [pi x pi]_{LM}, where q_M are the model's quadrupole moments, and pi_N are corresponding conjugate momenta (-2>=M,N<=2). The code also provides ready access to SO(3)-reduced SO(5) Clebsch-Gordan coefficients through data files provided with the code.

  17. Aspects of U-duality in BLG models with Lorentzian metric 3-algebras

    CERN Document Server

    Kobo, Takayuki; Shiba, Shotaro

    2009-01-01

    In our previous paper, it was shown that BLG model based on a Lorentzian metric 3-algebra gives Dp-brane action whose worldvolume is compactified on torus T^d (d=p-2). Here the 3-algebra was a generalized one with d+1 pairs of Lorentzian metric generators and expressed in terms of a loop algebra with central extensions. In this paper, we derive the precise relation between the coupling constant of the super Yang-Mills, the moduli of T^d and some R-R flux with VEV's of ghost fields associated with Lorentzian metric generators. In particular, for d=1, we derive the Yang-Mills action with theta term and show that SL(2,Z) Montonen-Olive duality is realized as the rotation of two VEV's. Furthermore, some moduli parameters such as NS-NS 2-form flux are identified as the deformation parameters of the 3-algebras. By combining them, we recover most of the moduli parameters which are required by U-duality symmetry.

  18. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  19. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  20. Intrinsic and collective structure of an algebraic model of molecular rotation-vibration spectra

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Kirson, M.W.

    1988-11-15

    A geometrical framework is provided for a recently proposed interacting boson model of molecular rotation-vibration spectra. An intrinsic state is defined by way of a boson condensate parametrized in terms of shape variables and is used to generate an energy surface. The global minimum of the energy surface determines an equilibrium condensate which serves as the basis for an exact separation of the Hamiltonian into intrinsic and collective parts. A Bogoliubov treatment of the intrinsic part produces, in leading order, the normal modes of vibration and their frequencies, the collective degrees of freedom being represented by zero-frequency Goldstone modes associated with spontaneous symmetry breaking in the condensate. The method is very useful in interpreting numerical results of the algebraic model, in identifying the capabilities and inadequacies of the Hamiltonian, and in constructing appropriate algebraic Hamiltonians for specific molecules. copyright 1988 Academic Press, Inc.

  1. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  2. Enabling model checking for collaborative process analysis: from BPMN to `Network of Timed Automata'

    Science.gov (United States)

    Mallek, Sihem; Daclin, Nicolas; Chapurlat, Vincent; Vallespir, Bruno

    2015-04-01

    Interoperability is a prerequisite for partners involved in performing collaboration. As a consequence, the lack of interoperability is now considered a major obstacle. The research work presented in this paper aims to develop an approach that allows specifying and verifying a set of interoperability requirements to be satisfied by each partner in the collaborative process prior to process implementation. To enable the verification of these interoperability requirements, it is necessary first and foremost to generate a model of the targeted collaborative process; for this research effort, the standardised language BPMN 2.0 is used. Afterwards, a verification technique must be introduced, and model checking is the preferred option herein. This paper focuses on application of the model checker UPPAAL in order to verify interoperability requirements for the given collaborative process model. At first, this step entails translating the collaborative process model from BPMN into a UPPAAL modelling language called 'Network of Timed Automata'. Second, it becomes necessary to formalise interoperability requirements into properties with the dedicated UPPAAL language, i.e. the temporal logic TCTL.

  3. Taming Numbers and Durations in the Model Checking Integrated Planning System

    CERN Document Server

    Edelkamp, S

    2011-01-01

    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiven...

  4. Verification of communication protocols in web services model-checking service compositions

    CERN Document Server

    Tari, Zahir; Mukherjee, Anshuman

    2014-01-01

    Gathers recent advancements in the field of self-organizing wireless sensor networks and provides readers with the essential, state-of-the-art information about sensor networking. In the near future, wireless sensor networks will become an integral part of our day-to-day life. To solve different sensor networking related issues, researchers have put a great deal of effort into coming up with innovative ideas. Verification of Communication Protocols in Web Services: Model-Checking Service Compositions gathers recent advancements in the field of self-organizing wireless sensor networks and provides readers with integral information about sensor networking. It introduces current technological trends, particularly in node organization, and provides implementation details of each networking type to help readers set up sensor networks in their related job fields. In addition, it identifies the limitations of current technologies, as well as future research directions.

  5. Continuous Verification of Large Embedded Software using SMT-Based Bounded Model Checking

    CERN Document Server

    Cordeiro, Lucas; Marques-Silva, Joao

    2009-01-01

    The complexity of software in embedded systems has increased significantly over the last years so that software verification now plays an important role in ensuring the overall product quality. In this context, SAT-based bounded model checking has been successfully applied to discover subtle errors, but for larger applications, it often suffers from the state space explosion problem. This paper describes a new approach called continuous verification to detect design errors as quickly as possible by looking at the Software Configuration Management (SCM) system and by combining dynamic and static verification to reduce the state space to be explored. We also give a set of encodings that provide accurate support for program verification and use different background theories in order to improve scalability and precision in a completely automatic way. A case study from the telecommunications domain shows that the proposed approach improves the error-detection capability and reduces the overall verification time by...

  6. On the algebraic area of lattice walks and the Hofstadter model

    Science.gov (United States)

    Ouvry, Stéphane; Wagner, Stephan; Wu, Shuang

    2016-12-01

    We consider the generating function of the algebraic area of lattice walks, evaluated at a root of unity, and its relation to the Hofstadter model. In particular, we obtain an expression for the generating function of the nth moments of the Hofstadter Hamiltonian in terms of a complete elliptic integral, evaluated at a rational function. This, in turn, gives us both exact and asymptotic formulas for these moments.

  7. The Wheeler-DeWitt Equation in Filćhenkov Model: The Lie Algebraic Approach

    Science.gov (United States)

    Panahi, H.; Zarrinkamar, S.; Baradaran, M.

    2016-11-01

    The Wheeler-DeWitt equation in Filćhenkov model with terms related to strings, dust, relativistic matter, bosons and fermions, and ultra stiff matter is solved in a quasi-exact analytical manner via the Lie algebraic approach. In the calculations, using the representation theory of sl(2), the general (N+1)-dimensional matrix equation is constructed whose determinant yields the solutions of the problem.

  8. Another algebraic variational principle for the spectral curve of matrix models

    CERN Document Server

    Eynard, B

    2014-01-01

    We propose an alternative variational principle whose critical point is the algebraic plane curve associated to a matrix model (the spectral curve, i.e. the large $N$ limit of the resolvent). More generally, we consider a variational principle that is equivalent to the problem of finding a plane curve with given asymptotics and given cycle integrals. This variational principle is not given by extremization of the energy, but by the extremization of an "entropy".

  9. Dynamics of vibrational chaos and entanglement in triatomic molecules: Lie algebraic model

    Institute of Scientific and Technical Information of China (English)

    Zhai Liang-Jun; Zheng Yu-Jun; Ding Shi-Liang

    2012-01-01

    In this paper,the dynamics of chaos and the entanglement in triatomic molecnlar vibrations are investigated.On the classical aspect,we study the chaotic trajectories in the phase space.We employ the linear entropy to examine the dynamical entanglement of the two bonds on the quantum aspect.The correspondence between the classical chaos and the quantum dynamical entanglement is also investigated.As an example,we apply our algebraic model to molecule H2O.

  10. Hopf Bifurcation of a Differential-Algebraic Bioeconomic Model with Time Delay

    Directory of Open Access Journals (Sweden)

    Xiaojian Zhou

    2012-01-01

    Full Text Available We investigate the dynamics of a differential-algebraic bioeconomic model with two time delays. Regarding time delay as a bifurcation parameter, we show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Using the theories of normal form and center manifold, we also give the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical tests are provided to verify our theoretical analysis.

  11. Mathematical-logical modeling of regulations on mining safety. [Boolean algebra analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fajkos, A.; Suchan, L.

    1979-09-01

    Complexity of the logical structure of mine safety regulations results from the complexity of mining problems. This complexity sometimes makes it difficult to precisely formulate mining safety regulations and to monitor their observance by the miners. It is suggested that mathematical- logical modeling can be an efficient tool in analyzing mine safety regulations. A short description of the method based on Boolean algebra, and three examples of its use in the field of mine safety regulations are presented. (2 refs.) (In Czech)

  12. On the Use of Computer Algebra Systems and Enclosure Methods in the Modelling and Optimization of Biotechnological Processes

    Directory of Open Access Journals (Sweden)

    Svetoslav Markov

    2005-12-01

    Full Text Available This survey paper aims to promote certain novel mathematical tools, such as computer algebra systems, enclosure methods and interval analysis, to the mathematical modelling and optimization of biotechnological processes.

  13. Dynamic modelling of check valves in shipping terminals; Modelagem dinamica de valvulas de retencao em terminais maritimos

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Luis F.G.; Barreto, Claudio V.; Sarmento, Renata C. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT)

    2005-07-01

    As usual a shipping terminal contains a header and its diameter is smaller than the main pipeline diameter. This diameter reduction amplifies the effects caused by hydraulic transients. It was noticed during simulations that check valves without dynamic modeling may introduce some error in the maximum pressure results without a dynamic model approach. The current paper uses commercial pipeline simulation software to model the dynamic behavior of the check valves. It was studied the header diameter influence and how the check valve model type may change the maximum pressure in the pipeline. It was proved that even a pipeline that works with low pressure and small elevation drop needs a detailed valve modeling to prevent the calculation of unreal pressure values in the region with diameter reduction. (author)

  14. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    Directory of Open Access Journals (Sweden)

    Blekherman Grigoriy

    2011-07-01

    Full Text Available Abstract Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM, which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides

  15. Rich Counter-Examples for Temporal-Epistemic Logic Model Checking

    CERN Document Server

    Busard, Simon; 10.4204/EPTCS.78.4

    2012-01-01

    Model checking verifies that a model of a system satisfies a given property, and otherwise produces a counter-example explaining the violation. The verified properties are formally expressed in temporal logics. Some temporal logics, such as CTL, are branching: they allow to express facts about the whole computation tree of the model, rather than on each single linear computation. This branching aspect is even more critical when dealing with multi-modal logics, i.e. logics expressing facts about systems with several transition relations. A prominent example is CTLK, a logic that reasons about temporal and epistemic properties of multi-agent systems. In general, model checkers produce linear counter-examples for failed properties, composed of a single computation path of the model. But some branching properties are only poorly and partially explained by a linear counter-example. This paper proposes richer counter-example structures called tree-like annotated counter-examples (TLACEs), for properties in Action-R...

  16. Vibrational spectrum of CF4 isotopes in an algebraic model

    Indian Academy of Sciences (India)

    Joydeep Choudhury; Srinivasa Rao Karumuri; Nirmal Kumar Sarkar; Ramendu Bhattacharjee

    2009-11-01

    n this paper the stretching vibrational modes of CF4 isotopes are calculated up to first overtone using the one-dimensional vibron model for the first time. The model Hamiltonian so constructed seems to describe the C–F stretching modes accurately using a relatively small set of well-defined parameters.

  17. From Clifford Algebra of Nonrelativistic Phase Space to Quarks and Leptons of the Standard Model

    CERN Document Server

    Żenczykowski, Piotr

    2015-01-01

    We review a recently proposed Clifford-algebra approach to elementary particles. We start with: (1) a philosophical background that motivates a maximally symmetric treatment of position and momentum variables, and: (2) an analysis of the minimal conceptual assumptions needed in quark mass extraction procedures. With these points in mind, a variation on Born's reciprocity argument provides us with an unorthodox view on the problem of mass. The idea of space quantization suggests then the linearization of the nonrelativistic quadratic form ${\\bf p}^2 +{\\bf x}^2$ with position and momentum satisfying standard commutation relations. This leads to the 64-dimensional Clifford algebra ${Cl}_{6,0}$ of nonrelativistic phase space within which one identifies the internal quantum numbers of a single Standard Model generation of elementary particles (i.e. weak isospin, hypercharge, and color). The relevant quantum numbers are naturally linked to the symmetries of macroscopic phase space. It is shown that the obtained pha...

  18. A deformation of quantum affine algebra in squashed Wess-Zumino-Novikov-Witten models

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Io; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2014-06-01

    We proceed to study infinite-dimensional symmetries in two-dimensional squashed Wess-Zumino-Novikov-Witten models at the classical level. The target space is given by squashed S³ and the isometry is SU(2){sub L}×U(1){sub R}. It is known that SU(2){sub L} is enhanced to a couple of Yangians. We reveal here that an infinite-dimensional extension of U(1){sub R} is a deformation of quantum affine algebra, where a new deformation parameter is provided with the coefficient of the Wess-Zumino term. Then we consider the relation between the deformed quantum affine algebra and the pair of Yangians from the viewpoint of the left-right duality of monodromy matrices. The integrable structure is also discussed by computing the r/s-matrices that satisfy the extended classical Yang-Baxter equation. Finally, two degenerate limits are discussed.

  19. Max plus at work modeling and analysis of synchronized systems a course on max-plus algebra and its applications

    CERN Document Server

    Heidergott, Bernd; van der Woude, Jacob

    2014-01-01

    Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, compu

  20. Checking the Adequacy of Fit of Models from Split-Plot Designs

    DEFF Research Database (Denmark)

    Almini, A. A.; Kulahci, Murat; Montgomery, D. C.

    2009-01-01

    One of the main features that distinguish split-plot experiments from other experiments is that they involve two types of experimental errors: the whole-plot (WP) error and the subplot (SP) error. Taking this into consideration is very important when computing measures of adequacy of fit for split......-plot models. In this article, we propose the computation of two R-2, R-2-adjusted, prediction error sums of squares (PRESS), and R-2-prediction statistics to measure the adequacy of fit for the WP and the SP submodels in a split-plot design. This is complemented with the graphical analysis of the two types...... of errors to check for any violation of the underlying assumptions and the adequacy of fit of split-plot models. Using examples, we show how computing two measures of model adequacy of fit for each split-plot design model is appropriate and useful as they reveal whether the correct WP and SP effects have...

  1. A new algebraic structure in the standard model of particle physics

    CERN Document Server

    Boyle, Latham

    2016-01-01

    We introduce a new formulation of non-commutative geometry (NCG): we explain its mathematical advantages and its success in capturing the structure of the standard model of particle physics. The idea, in brief, is to represent $A$ (the algebra of differential forms on some possibly-noncommutative space) on $H$ (the Hilbert space of spinors on that space); and to reinterpret this representation as a simple super-algebra $B=A\\oplus H$ with even part $A$ and odd part $H$. $B$ is the fundamental object in our approach: we show that (nearly) all of the basic axioms and assumptions of the traditional ("spectral triple") formulation of NCG are elegantly recovered from the simple requirement that $B$ should be a differential graded $\\ast$-algebra (or "$\\ast$-DGA"). But this requirement also yields other, new, geometrical constraints. When we apply our formalism to the NCG traditionally used to describe the standard model of particle physics, we find that these new constraints are physically meaningful and phenomenolo...

  2. Cellular modelling using P systems and process algebra

    Institute of Scientific and Technical Information of China (English)

    Francisco J.Romero-Campero; Marian Gheorghe; Gabriel Ciobanu; John M. Auld; Mario J. Pérez-Jiménez

    2007-01-01

    In this paper various molecular chemical interactions are modelled under different computational paradigms. P systems and π-calculus are used to describe intra-cellular reactions like protein-protein interactions and gene regulation control.

  3. Realizability algebras II : new models of ZF + DC

    CERN Document Server

    Krivine, Jean-Louis

    2010-01-01

    Using the proof-program (Curry-Howard) correspondence, we give a new method to obtain models of ZF and relative consistency results. We show the relative consistency of ZF + DC + some unusual properties for the power set of R.

  4. Algebraic statistics computational commutative algebra in statistics

    CERN Document Server

    Pistone, Giovanni; Wynn, Henry P

    2000-01-01

    Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.

  5. Rich Counter-Examples for Temporal-Epistemic Logic Model Checking

    Directory of Open Access Journals (Sweden)

    Simon Busard

    2012-02-01

    Full Text Available Model checking verifies that a model of a system satisfies a given property, and otherwise produces a counter-example explaining the violation. The verified properties are formally expressed in temporal logics. Some temporal logics, such as CTL, are branching: they allow to express facts about the whole computation tree of the model, rather than on each single linear computation. This branching aspect is even more critical when dealing with multi-modal logics, i.e. logics expressing facts about systems with several transition relations. A prominent example is CTLK, a logic that reasons about temporal and epistemic properties of multi-agent systems. In general, model checkers produce linear counter-examples for failed properties, composed of a single computation path of the model. But some branching properties are only poorly and partially explained by a linear counter-example. This paper proposes richer counter-example structures called tree-like annotated counter-examples (TLACEs, for properties in Action-Restricted CTL (ARCTL, an extension of CTL quantifying paths restricted in terms of actions labeling transitions of the model. These counter-examples have a branching structure that supports more complete description of property violations. Elements of these counter-examples are annotated with parts of the property to give a better understanding of their structure. Visualization and browsing of these richer counter-examples become a critical issue, as the number of branches and states can grow exponentially for deeply-nested properties. This paper formally defines the structure of TLACEs, characterizes adequate counter-examples w.r.t. models and failed properties, and gives a generation algorithm for ARCTL properties. It also illustrates the approach with examples in CTLK, using a reduction of CTLK to ARCTL. The proposed approach has been implemented, first by extending the NuSMV model checker to generate and export branching counter

  6. River flow forecasting. Part 2. Algebraic development of linear modelling techniques

    Science.gov (United States)

    Kachroo, R. K.; Liang, G. C.

    1992-04-01

    The role of linear input-output models in hydrological forecasting is discussed. The algebraic analysis of linear systems with single or multiple input and single output is presented in outline. The least squares method of system identification is discussed in the context of recursive and off-line estimation, with and without volumetric and shape constraints. An alternative means of imposing shape constraints, via parametric modelling, is also discussed. A procedure for 'updating' is presented for models used in real-time forecasting.

  7. Teaching Algebra and Geometry Concepts by Modeling Telescope Optics

    Science.gov (United States)

    Siegel, Lauren M.; Dickinson, Gail; Hooper, Eric J.; Daniels, Mark

    2008-01-01

    This article describes preparation and delivery of high school mathematics lessons that integrate mathematics and astronomy through The Geometer's Sketchpad models, traditional proof, and inquiry-based activities. The lessons were created by a University of Texas UTeach preservice teacher as part of a project-based field experience in which high…

  8. A branch-and-bound methodology within algebraic modelling systems

    NARCIS (Netherlands)

    Bisschop, J.J.; Heerink, J.B.J.; Kloosterman, G.

    1998-01-01

    Through the use of application-specific branch-and-bound directives it is possible to find solutions to combinatorial models that would otherwise be difficult or impossible to find by just using generic branch-and-bound techniques within the framework of mathematical programming. {\\sc Minto} is an e

  9. Optlang: An algebraic modeling language for mathematical optimization

    DEFF Research Database (Denmark)

    Jensen, Kristian; Cardoso, Joao; Sonnenschein, Nikolaus

    2016-01-01

    Optlang is a Python package implementing a modeling language for solving mathematical optimization problems, i.e., maximizing or minimizing an objective function over a set of variables subject to a number of constraints. It provides a common native Python interface to a series of optimization...

  10. The standard model of quantum physics in Clifford algebra

    CERN Document Server

    Daviau, Claude

    2016-01-01

    We extend to gravitation our previous study of a quantum wave for all particles and antiparticles of each generation (electron + neutrino + u and d quarks for instance). This wave equation is form invariant under Cl3*, then relativistic invariant. It is gauge invariant under the gauge group of the standard model, with a mass term: this was impossible before, and the consequence was an impossibility to link gauge interactions and gravitation.

  11. Simulation Modeling of a Check-in and Medication Reconciliation Ambulatory Clinic Kiosk

    Directory of Open Access Journals (Sweden)

    Blake Lesselroth

    2011-01-01

    Full Text Available Gaps in information about patient medication adherence may contribute to preventable adverse drug events and patient harm. Hence, health-quality advocacy groups, including the Joint Commission, have called for the implementation of standardized processes to collect and compare patient medication lists. This manuscript describes the implementation of a self-service patient kiosk intended to check in patients for a clinic appointment and collect a medication adherence history, which is then available through the electronic health record. We used business process engineering and simulation modeling to analyze existing workflow, evaluate technology impact on clinic throughput, and predict future infrastructure needs. Our empiric data indicated that a multi-function healthcare kiosk offers a feasible platform to collect medical history data. Furthermore, our simulation model showed a non-linear association between patient arrival rate, kiosk number, and estimated patient wait times. This study provides important data to help administrators and healthcare executives predict infrastructure needs when considering the use of self-service kiosks.

  12. Steady state analysis of Boolean molecular network models via model reduction and computational algebra

    Science.gov (United States)

    2014-01-01

    Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate

  13. ALGEBRAIC TURBULENCE MODEL WITH MEMORY FOR COMPUTATION OF 3-D TURBULENT BOUNDARY LAYERS WITH VALIDATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept-wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.

  14. An extended set of Fortran Basic Linear Algebra Subprograms: model implementation and test programs

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.; Du Croz, J.; Hammarling, S.; Hanson, R.J.

    1987-01-01

    This paper describes a model implementation and test software for the Level 2 Basic Linear Algebra Subprograms (Level 2 BLAS). The Level 2 BLAS are targeted at matrix-vector operations with the aim of providing more efficient, but portable, implementations of algorithms on high-performance computers. The model implementation provides a portable set of Fortran 77 Level 2 BLAS for machines where specialized implementations do not exist or are not required. The test software aims to verify that specialized implementations meet the specification of the Level 2 BLAS and that implementations are correctly installed.

  15. Generalized model of double random phase encoding based on linear algebra

    Science.gov (United States)

    Nakano, Kazuya; Takeda, Masafumi; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2013-01-01

    We propose a generalized model for double random phase encoding (DRPE) based on linear algebra. We defined the DRPE procedure in six steps. The first three steps form an encryption procedure, while the later three steps make up a decryption procedure. We noted that the first (mapping) and second (transform) steps can be generalized. As an example of this generalization, we used 3D mapping and a transform matrix, which is a combination of a discrete cosine transform and two permutation matrices. Finally, we investigated the sensitivity of the proposed model to errors in the decryption key.

  16. New explicit algebraic stress and flux model for active scalar and simulation of shear stratified cylinder wake flow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On the numerical simulation of active scalar,a new explicit algebraic expression on active scalar flux was derived based on Wikstrm,Wallin and Johansson model (aWWJ model). Reynolds stress algebraic expressions were added by a term to account for the buoyancy effect. The new explicit Reynolds stress and active scalar flux model was then established. Governing equations of this model were solved by finite volume method with unstructured grids. The thermal shear stratified cylinder wake flow was computed by this new model. The computational results are in good agreement with laboratorial measurements. This work is the development on modeling of explicit algebraic Reynolds stress and scalar flux,and is also a further modification of the aWWJ model for complex situations such as a shear stratified flow.

  17. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    Science.gov (United States)

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system.

  18. Prediction of heat transfer to supercritical fluids by the use of Algebraic Heat Flux Models

    Energy Technology Data Exchange (ETDEWEB)

    Pucciarelli, Andrea, E-mail: andrea.pucciarelli@yahoo.it [Università di Pisa, Dipartimento di Ingegneria Civile e Industriale, Largo Lucio Lazzarino 2, 56126 Pisa (Italy); Sharabi, Medhat, E-mail: Medhat.Sharabi@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI, Switzerland and Mechanical Power Engineering Department, Mansoura University, 35516 Mansoura (Egypt); Ambrosini, Walter, E-mail: walter.ambrosini@ing.unipi.it [Università di Pisa, Dipartimento di Ingegneria Civile e Industriale, Largo Lucio Lazzarino 2, 56126 Pisa (Italy)

    2016-02-15

    Highlights: • The Algebraic Heat Flux Model is considered for modelling the turbulence heat flux. • A relation based on AHFM for determining Pr{sub tur} is proposed. • Results are compared with heat transfer to supercritical fluids experimental data. - Abstract: The paper discusses capabilities and limitations of Algebraic Heat Flux Models in predicting heat transfer to supercritical fluids. The model was implemented in a commercial code and used as a basis for obtaining an advanced definition of the turbulent Prandtl number and an improved estimate of the buoyancy production of turbulence kinetic energy. A comparison between the obtained results and experimental data available in literature is performed highlighting promising features, in particular when dealing with trans-pseudo-critical conditions. Experimental conditions using different fluids where analysed showing improvements with respect to two-equation turbulence models; a reference DNS calculation is considered as well for comparison. Calculated wall temperature values are in general well reproduced by the methodology and sensitivity analyses show that improvements may be obtained in future works by selecting case-specific AHFM parameters in association with different turbulence models.

  19. Model analysis of check dam impacts on long-term sediment and water budgets in southeast Arizona, USA

    Science.gov (United States)

    Norman, Laura M.; Niraula, Rewati

    2016-01-01

    The objective of this study was to evaluate the effect of check dam infrastructure on soil and water conservation at the catchment scale using the Soil and Water Assessment Tool (SWAT). This paired watershed study includes a watershed treated with over 2000 check dams and a Control watershed which has none, in the West Turkey Creek watershed, Southeast Arizona, USA. SWAT was calibrated for streamflow using discharge documented during the summer of 2013 at the Control site. Model results depict the necessity to eliminate lateral flow from SWAT models of aridland environments, the urgency to standardize geospatial soils data, and the care for which modelers must document altering parameters when presenting findings. Performance was assessed using the percent bias (PBIAS), with values of ±2.34%. The calibrated model was then used to examine the impacts of check dams at the Treated watershed. Approximately 630 tons of sediment is estimated to be stored behind check dams in the Treated watershed over the 3-year simulation, increasing water quality for fish habitat. A minimum precipitation event of 15 mm was necessary to instigate the detachment of soil, sediments, or rock from the study area, which occurred 2% of the time. The resulting watershed model is useful as a predictive framework and decision-support tool to consider long-term impacts of restoration and potential for future restoration.

  20. A computer code for calculations in the algebraic collective model of the atomic nucleus

    Science.gov (United States)

    Welsh, T. A.; Rowe, D. J.

    2016-03-01

    A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.

  1. Modeling pedestrian movement at the hall of high-speed railway station during the check-in process

    Science.gov (United States)

    Tang, Tie-Qiao; Shao, Yi-Xiao; Chen, Liang

    2017-02-01

    With the rapid development of high speed railway (HSR), the pedestrians at HSR station have been very crowded since the demand of passengers rapidly increases. In this paper, we use a cellular automaton (CA) model to study the passengers' motion at the hall of HSR station during the check-in process. The simulation results show that the passenger's arrival rate in the hall and the service efficiency of ticket barrier have significant effects on the complex phenomena occurring in the hall, the boarding efficiency and the number of passengers in the hall during the check-in process. The simulation results can help readers to better understand the passengers' motion behaviors, the complex phenomena occurring in the hall during the check-in process, and what factors influence the boarding efficiency.

  2. On the Complexity of Model-Checking Branching and Alternating-Time Temporal Logics in One-Counter Systems

    DEFF Research Database (Denmark)

    Vester, Steen

    2015-01-01

    We study the complexity of the model-checking problem for the branching-time logic CTL ∗  and the alternating-time temporal logics ATL/ATL ∗  in one-counter processes and one-counter games respectively. The complexity is determined for all three logics when integer weights are input in unary (non...

  3. The Classroom Check-Up: A Classwide Teacher Consultation Model for Increasing Praise and Decreasing Disruptive Behavior

    Science.gov (United States)

    Reinke, Wendy M.; Lewis-Palmer, Teri; Merrell, Kenneth

    2008-01-01

    School-based consultation typically focuses on individual student problems and on a small number of students rather than on changing the classroom system. The Classroom Check-Up was developed as a classwide consultation model to address the need for classroom-level support while minimizing treatment integrity problems common to school-based…

  4. Algebraic arctic curves in the domain-wall six-vertex model

    CERN Document Server

    Colomo, F

    2010-01-01

    The arctic curve, i.e. the spatial curve separating ordered (or `frozen') and disordered (or `temperate) regions, of the six-vertex model with domain wall boundary conditions is discussed for the root-of-unity vertex weights. In these cases the curve is described by algebraic equations which can be worked out explicitly from the parametric solution for this curve. Some interesting examples are discussed in detail. The upper bound on the maximal degree of the equation in a generic root-of-unity case is obtained.

  5. RSOS models and Jantzen-Seitz representations of Hecke algebras at roots of unity

    CERN Document Server

    Foda, O E; Okado, M; Thibon, J Y; Welsh, Trevor A; Foda, Omar; Leclerc, Bernard; Okado, Masato; Thibon, Jean-Yves; Welsh, Trevor A.

    1997-01-01

    A special family of partitions occurs in two apparently unrelated contexts: the evaluation of 1-dimensional configuration sums of certain RSOS models, and the modular representation theory of symmetric groups or their Hecke algebras $H_m$. We provide an explanation of this coincidence by showing how the irreducible $H_m$-modules which remain irreducible under restriction to $H_{m-1}$ (Jantzen-Seitz modules) can be determined from the decomposition of a tensor product of representations of affine $\\sl_n$.

  6. Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models

    CERN Document Server

    Srinivasan, Seshasai

    2013-01-01

    Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.

  7. Chaos Control in Three Dimensional Cancer Model by State Space Exact Linearization Based on Lie Algebra

    Directory of Open Access Journals (Sweden)

    Mohammad Shahzad

    2016-05-01

    Full Text Available This study deals with the control of chaotic dynamics of tumor cells, healthy host cells, and effector immune cells in a chaotic Three Dimensional Cancer Model (TDCM by State Space Exact Linearization (SSEL technique based on Lie algebra. A non-linear feedback control law is designed which induces a coordinate transformation thereby changing the original chaotic TDCM system into a controlled one linear system. Numerical simulation has been carried using Mathematica that witness the robustness of the technique implemented on the chosen chaotic system.

  8. Modeling boyciana-fish-human interaction with partial differential algebraic equations.

    Science.gov (United States)

    Jiang, Yushan; Zhang, Qingling; Wang, Haiyan

    2016-07-01

    Under the influence of human population distribution, the boyciana-fish ecological system is considered. First, the system can be described as a nonlinear partial differential algebraic equations system (PDAEs) with Neumann boundary conditions and ratio-dependent functional response. Second, we examine the system's persistence properties: the loacl stabilities of positive steady states, the absorbtion region and the global stability. And the proposed approach is illustrated by numerical simulation. Finally, by using the realistic data collected in the past fourteen years, the PDAEs parameter optimization model is built to predict the boyciana population.

  9. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    Energy Technology Data Exchange (ETDEWEB)

    Cirilo António, N., E-mail: nantonio@math.ist.utl.pt [Centro de Análise Funcional e Aplicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Manojlović, N., E-mail: nmanoj@ualg.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto 2, PT-1649-003 Lisboa (Portugal); Departamento de Matemática, F.C.T., Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro (Portugal); Salom, I., E-mail: isalom@ipb.ac.rs [Institute of Physics, University of Belgrade, P.O. Box 57, 11080 Belgrade (Serbia)

    2014-12-15

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  10. Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model

    Science.gov (United States)

    Cirilo António, N.; Manojlović, N.; Salom, I.

    2014-12-01

    We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.

  11. An Algebraic Graphical Model for Decision with Uncertainties, Feasibilities, and Utilities

    CERN Document Server

    Pralet, C; Verfaillie, G; 10.1613/jair.2151

    2011-01-01

    Numerous formalisms and dedicated algorithms have been designed in the last decades to model and solve decision making problems. Some formalisms, such as constraint networks, can express "simple" decision problems, while others are designed to take into account uncertainties, unfeasible decisions, and utilities. Even in a single formalism, several variants are often proposed to model different types of uncertainty (probability, possibility...) or utility (additive or not). In this article, we introduce an algebraic graphical model that encompasses a large number of such formalisms: (1) we first adapt previous structures from Friedman, Chu and Halpern for representing uncertainty, utility, and expected utility in order to deal with generic forms of sequential decision making; (2) on these structures, we then introduce composite graphical models that express information via variables linked by "local" functions, thanks to conditional independence; (3) on these graphical models, we finally define a simple class ...

  12. Numerical algebraic geometry for model selection and its application to the life sciences.

    Science.gov (United States)

    Gross, Elizabeth; Davis, Brent; Ho, Kenneth L; Bates, Daniel J; Harrington, Heather A

    2016-10-01

    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology.

  13. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    Science.gov (United States)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  14. Algebraic model for bubble tracking in horizontal gas-liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Felipe G.C. de; Tisserant, Hendy R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica e de Materiais; Mazza, Ricardo A.; Rosa, Eugenio S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2008-07-01

    The current work extends the concept of unit-cell applied in gas-liquid slug flow models to predict the evolution of the gas and liquid flow properties along a horizontal pipe. The motivation of this model is its simplicity, easiness of application and low computational cost. It is a useful tool of reference data generation in order to check the consistency of numerical slug tracking models. The potential of the model is accessed by comparing the gas bubbles and liquid slug sizes, the translational bubble velocity and the pressure drop against experimental data. (author)

  15. Computer Algebra.

    Science.gov (United States)

    Pavelle, Richard; And Others

    1981-01-01

    Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)

  16. Algebraic Topology

    OpenAIRE

    2013-01-01

    The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.

  17. A posteriori testing of algebraic flame surface density models for LES

    Science.gov (United States)

    Ma, T.; Stein, O. T.; Chakraborty, N.; Kempf, A. M.

    2013-06-01

    In the application of Large Eddy Simulation (LES) to premixed combustion, the unknown filtered chemical source term can be modelled by the generalised flame surface density (FSD) using algebraic models for the wrinkling factor Ξ. The present study compares the behaviour of the various models by first examining the effect of sub-grid turbulent velocity fluctuation on Ξ through a one-dimensional analysis and by the LES of the ORACLES burner (Nguyen, Bruel, and Reichstadt, Flow, Turbulence and Combustion Vol. 82 [2009], pp. 155-183) and the Volvo Rig (Sjunnesson, Nelsson, and Max, Laser Anemometry, Vol. 3 [1991], pp. 83-90; Sjunnesson, Henrikson, and Löfström, AIAA Journal, Vol. 28 [1992], pp. AIAA-92-3650). Several sensitivity studies on parameters such as the turbulent viscosity and the grid resolution are also carried out. A statistically 1-D analysis of turbulent flame propagation reveals that counter gradient transport of the progress variable needs to be accounted for to obtain a realistic flame thickness from the simulations using algebraic FSD based closure. The two burner setups are found to operate mainly within the wrinkling/corrugated flamelet regime based on the premixed combustion diagram for LES (Pitsch and Duchamp de Lageneste, Proceedings of the Combustion Institute, Vol. 29 [2002], pp. 2001-2008) and this suggests that the models are operating within their ideal range. The performance of the algebraic models are then assessed by comparing velocity statistics, followed by a detailed error analysis for the ORACLES burner. Four of the tested models were found to perform reasonably well against experiments, and one of these four further excels in being the most grid-independent. For the Volvo Rig, more focus is placed upon the comparison of temperature data and identifying changes in flame structure amongst the different models. It is found that the few models which largely over-predict velocities in the ORACLES case and volume averaged ? in a

  18. Entanglement in a model for Hawking radiation: An Application of Quadratic Algebras

    CERN Document Server

    Bambah, Bindu A; Shreecharan, T; Prasad, K Siva

    2012-01-01

    Quadratic polynomially deformed $su(1,1)$ and $su(2)$ algebras are utilised in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of a) infalling plus outgoing modes and b) black hole modes plus the infalling modes,using the Janus-faced nature of the model.The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Lastly, we study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance.

  19. A note on the "logarithmic-W_3" octuplet algebra and its Nichols algebra

    OpenAIRE

    Semikhatov, A M

    2013-01-01

    We describe a Nichols-algebra-motivated construction of an octuplet chiral algebra that is a "W_3-counterpart" of the triplet algebra of (p,1) logarithmic models of two-dimensional conformal field theory.

  20. Noncommutative Field Theory on Yang's Space-Time Algebra, Covariant Moyal Star Product and Matrix Model

    CERN Document Server

    Tanaka, S

    2004-01-01

    Noncommutative field theory on Yang's quantized space-time algebra (YSTA) is studied. It gives a theoretical framework to reformulate the matrix model as quantum mechanics of $D_0$ branes in a Lorentz-covariant form. The so-called kinetic term ($\\sim {\\hat{P_i}}^2)$ and potential term ($\\sim {[\\hat{X_i},\\hat{X_j}]}^2)$ of $D_0$ branes in the matrix model are described now in terms of Casimir operator of $SO(D,1)$, a subalgebra of the primary algebra $SO(D+1,1)$ which underlies YSTA with two contraction- parameters, $\\lambda$ and $R$. $D$-dimensional noncommutative space-time and momentum operators $\\hat{X_\\mu}$ and $\\hat{P_\\mu}$ in YSTA show a distinctive spectral structure, that is, space-components $\\hat{X_i}$ and $\\hat{P_i}$ have discrete eigenvalues, and time-components $\\hat{X_0}$ and $\\hat{P_0}$ continuous eigenvalues, consistently with Lorentz-covariance. According to the method of Lorentz-covariant Moyal star product proper to YSTA, the field equation of $D_0$ brane on YSTA is derived in a nontrivial ...

  1. Lorentz invariant noncommutative algebra for cosmological models coupled to a perfect fluid

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Everton M.C.; Marcial, Mateus V.; Mendes, Albert C.R.; Oliveira, Wilson [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Universidade Federal de Juiz de Fora, MG (Brazil)

    2013-07-01

    Full text: In current theoretical physics there is a relevant number of theoretical investigations that lead to believe that at the first moments of our Universe, the geometry was not commutative and the dominating physics at that time was ruled by the laws of noncommutative (NC) geometry. Therefore, the idea is that the physics of the early moments can be constructed based on these concepts. The first published work using the idea of a NC spacetime were carried out by Snyder who believed that NC principles could make the quantum field theory infinities disappear. However, it did not occur and Snyder's ideas were put to sleep for a long time. The main modern motivations that rekindle the investigation about NC field theories came from string theory and quantum gravity. In the context of quantum mechanics for example, R. Banerjee discussed how NC structures appear in planar quantum mechanics providing a useful way for obtaining them. The analysis was based on the NC algebra used in planar quantum mechanics that was originated from 't Hooft's analysis on dissipation and quantization. In this work we carry out a NC algebra analysis of the Friedmann-Robert-Walker model, coupled to a perfect fluid and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. (author)

  2. ηc elastic and transition form factors: Contact interaction and algebraic model

    Science.gov (United States)

    Bedolla, Marco A.; Raya, Khépani; Cobos-Martínez, J. J.; Bashir, Adnan

    2016-05-01

    For the flavor-singlet heavy-quark system of charmonia in the pseudoscalar [ηc(1 S ) ] channel, we calculate the elastic (EFF) and transition form factors (TFFs) [ηc(1 S )→γ γ* ] for a wide range of photon momentum transfer squared (Q2). The framework for this analysis is provided by a symmetry-preserving Schwinger-Dyson equation and Bethe-Salpeter equation treatment of a vector×vector contact interaction. We also employ an algebraic model, developed earlier to describe the light-quark systems. It correctly correlates infrared and ultraviolet dynamics of quantum chromodynamics (QCD). The contact interaction results agree with the lattice data for low Q2. For Q2≥Q02 , the results start deviating from the lattice results by more than 20%. Q02≈2.5 GeV2 for the EFF, and ≈25 GeV2 for the TFF. We also present the results for the EFF, TFF, and ηc(1 S ) parton distribution amplitude for the algebraic model. Wherever the comparison is possible, these results are in excellent agreement with the lattice, perturbative QCD, results obtained through a Schwinger-Dyson equation-Bethe-Salpeter equation study, employing refined truncations, and the experimental findings of the BABAR experiment.

  3. Algebraic solutions for two-level pairing model in IBM-2 and IVBM

    Science.gov (United States)

    Jalili-Majarshin, A.; Jafarizadeh, M. A.; Fouladi, N.

    2016-09-01

    In this paper the affine SU(1,1) approach is applied to numerically solve two pairing problems. A dynamical symmetry limit of the two-fluid interacting boson model-2 (IBM-2) and of the interacting vector boson model (IVBM) defined through the chains U_{π}(6) ⊗ U_{ν}(6) supset SO_{π}(5)⊗ SO_{ν}(5) supset SO_{π}(3) ⊗ SO_{ν}(3) supset SO(3) and U(6) supset U_{π}(3) ⊗ U_{ν}(3) supset SO_{π}(3) ⊗ SO_{ν}(3) supset SO(3) are introduced, respectively. The quantum phase transition between spherical and γ-soft shapes in medium-mass nuclei is analyzed using U(5) leftrightarrow SO(6) transitional nuclei in IBM-2 and one case U_{π}(3) ⊗ U_{ν}(3) leftrightarrow SO(6) transitional nuclei in IVBM found by using an infinite dimensional algebraic method based on affine SU(1,1) Lie algebra. The calculated energy spectra, energy ratio and energy staggering of Mo isotopes are compared with experimental results. The interplay between phase transitions and configuration mixing of intruder excitations between spherical vibrations and the γ-soft shapes in Mo isotopes is succinctly addressed and displays fingerprints of the transitional dynamical symmetry E(5).

  4. A rigorous approach to investigating common assumptions about disease transmission: Process algebra as an emerging modelling methodology for epidemiology.

    Science.gov (United States)

    McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron

    2011-03-01

    Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.

  5. Model Checking for a Class of Performance Properties of Fluid Stochastic Models

    NARCIS (Netherlands)

    Bujorianu, L.M.; Bujorianu, M.C.; Horváth, A.; Telek, M.

    2006-01-01

    Recently, there is an explosive development of fluid approa- ches to computer and distributed systems. These approaches are inherently stochastic and generate continuous state space models. Usually, the performance measures for these systems are defined using probabilities of reaching certain sets o

  6. A Monte Carlo study to check the hadronic interaction models by a new EAS hybrid experiment in Tibet

    CERN Document Server

    Zhang, Ying; Jiang, L; Chen, D; Ding, L K; Shibata, M; Katayose, Y; Hotta, N; Ohnishi, M; Ouchi, T; Saito, T

    2013-01-01

    A new EAS hybrid experiment has been designed by constructing a YAC (Yangbajing Air shower Core) detector array inside the existing Tibet-III air shower array. The first step of YAC, called "YAC-I", consists of 16 plastic scintillator units (4 rows times 4 columns) each with an area of 40 cm * 50 cm which is used to check hadronic interaction models used in AS simulations. A Monte Carlo study shows that YAC-I can record high energy electromagnetic component in the core region of air showers induced by primary particles of several tens TeV energies where the primary composition is directly measured by space experiments. It may provide a direct check of the hadronic interaction models currently used in the air shower simulations in the corresponding energy region. In present paper, the method of the observation and the sensitivity of the characteristics of the observed events to the different interaction models are discussed.

  7. A possible framework of the Lipkin model obeying the SU(n) algebra in arbitrary fermion number. I: The SU(2) algebras extended from the conventional fermion pair and determination of the minimum weight states

    Science.gov (United States)

    Tsue, Yasuhiko; Providência, Constança; Providência, João da; Yamamura, Masatoshi

    2016-08-01

    The minimum weight states of the Lipkin model consisting of n single-particle levels and obeying the SU(n) algebra are investigated systematically. The basic idea is to use the SU(2) algebra, which is independent of the SU(n) algebra. This idea has already been presented by the present authors in the case of the conventional Lipkin model consisting of two single-particle levels and obeying the SU(2) algebra. If this idea is followed, the minimum weight states are determined for any fermion number appropriately occupying n single-particle levels. Naturally, the conventional minimum weight state is included: all fermions occupy energetically the lowest single-particle level in the absence of interaction. The cases n=2, 3, 4, and 5 are discussed in some detail.

  8. Conceptual Model-Based Problem Solving That Facilitates Algebra Readiness: An Exploratory Study with Computer-Assisted Instruction

    Science.gov (United States)

    Xin, Yan Ping; Si, Luo; Hord, Casey; Zhang, Dake; Cetinas, Suleyman; Park, Joo Young

    2012-01-01

    The study explored the effects of a computer-assisted COnceptual Model-based Problem-Solving (COMPS) program on multiplicative word-problem-solving performance of students with learning disabilities or difficulties. The COMPS program emphasizes mathematical modeling with algebraic expressions of relations. Participants were eight fourth and fifth…

  9. Algebraic circuits

    CERN Document Server

    Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio

    2014-01-01

    This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.

  10. Nonlinear $\\hat{W}_{\\infty}$ Current Algebra in the SL(2,R)/U(1) Coset Model

    CERN Document Server

    Yu, F; Yu, Feng; Wu, Yong-Shi

    1992-01-01

    Previously we have established that the second Hamiltonian structure of the KP hierarchy is a nonlinear deformation, called $\\hat{W}_{\\infty}$, of the linear, centerless $W_{\\infty}$ algebra. In this letter we present a free-field realization for all generators of $\\hat{W}_{\\infty}$ in terms of two scalars as well as an elegant generating function for the $\\hat{W}_{\\infty}$ currents in the classical conformal $SL(2,R)/U(1)$ coset model. After quantization, a quantum deformation of $\\hat{W}_{\\infty}$ appears as the hidden current algebra in this model. The $\\hat{W}_{\\infty}$ current algebra results in an infinite set of commuting conserved charges, which might give rise to $W$-hair for the 2d black hole arising in the corresponding string theory at level $k=9/4$.

  11. Free Differential Algebras and Pure Spinor Action in IIB Superstring Sigma Models

    CERN Document Server

    Oda, Ichiro

    2011-01-01

    In this paper we extend to the case of IIB superstring sigma models the method proposed in hep-th/10023500 to derive the pure spinor approach for type IIA sigma models. In particular, starting from the (Free) Differential Algebra and superspace parametrization of type IIB supergravity, extended to include the BRST differential and all the ghosts, we derive the BRST transformations of fields and ghosts as well as the standard pure spinor constraints for the ghosts $\\lambda $ related to supersymmetry. Moreover, using the method first proposed by us, we derive the pure spinor action for type IIB superstrings in curved supergravity backgrounds (on shell), in full agreement with the action first obtained by Berkovits and Howe.

  12. Free differential algebras and pure spinor action in IIB superstring sigma models

    Science.gov (United States)

    Oda, Ichiro; Tonin, Mario

    2011-06-01

    In this paper we extend to the case of IIB superstring sigma models the method proposed in hep-th/10023500 to derive the pure spinor approach for type IIA sigma models. In particular, starting from the (Free) Differential Algebra and superspace parametrization of type IIB supergravity, extended to include the BRST differential and all the ghosts, we derive the BRST transformations of fields and ghosts as well as the standard pure spinor constraints for the ghosts λ related to supersymmetry. Moreover, using the method first proposed by us, we derive the pure spinor action for type IIB superstrings in curved supergravity backgrounds (on shell), in full agreement with the action first obtained by Berkovits and Howe.

  13. Conceptual Explanation for the Algebra in the Noncommutative Approach to the Standard Model

    Science.gov (United States)

    Chamseddine, Ali H.; Connes, Alain

    2007-11-01

    The purpose of this Letter is to remove the arbitrariness of the ad hoc choice of the algebra and its representation in the noncommutative approach to the standard model, which was begging for a conceptual explanation. We assume as before that space-time is the product of a four-dimensional manifold by a finite noncommmutative space F. The spectral action is the pure gravitational action for the product space. To remove the above arbitrariness, we classify the irreducible geometries F consistent with imposing reality and chiral conditions on spinors, to avoid the fermion doubling problem, which amounts to have total dimension 10 (in the K-theoretic sense). It gives, almost uniquely, the standard model with all its details, predicting the number of fermions per generation to be 16, their representations and the Higgs breaking mechanism, with very little input.

  14. Conceptual explanation for the algebra in the noncommutative approach to the standard model.

    Science.gov (United States)

    Chamseddine, Ali H; Connes, Alain

    2007-11-09

    The purpose of this Letter is to remove the arbitrariness of the ad hoc choice of the algebra and its representation in the noncommutative approach to the standard model, which was begging for a conceptual explanation. We assume as before that space-time is the product of a four-dimensional manifold by a finite noncommmutative space F. The spectral action is the pure gravitational action for the product space. To remove the above arbitrariness, we classify the irreducible geometries F consistent with imposing reality and chiral conditions on spinors, to avoid the fermion doubling problem, which amounts to have total dimension 10 (in the K-theoretic sense). It gives, almost uniquely, the standard model with all its details, predicting the number of fermions per generation to be 16, their representations and the Higgs breaking mechanism, with very little input.

  15. Anomaly in RTT relation for DIM algebra and network matrix models

    CERN Document Server

    Awata, H; Mironov, A; Morozov, A; Morozov, An; Ohkubo, Y; Zenkevich, Y

    2016-01-01

    We discuss the recent proposal of arXiv:1608.05351 about generalization of the RTT relation to network matrix models. We show that the RTT relation in these models is modified by a nontrivial, but essentially abelian anomaly cocycle, which we explicitly evaluate for the free field representations of the quantum toroidal algebra. This cocycle is responsible for the braiding, which permutes the external legs in the q-deformed conformal block and its 5d/6d gauge theory counterpart, i.e. the non-perturbative Nekrasov functions. Thus, it defines their modular properties and symmetry. We show how to cancel the anomaly using a construction somewhat similar to the anomaly matching condition in gauge theory. We also describe the singular limit to the affine Yangian (4d Nekrasov functions), which breaks the spectral duality.

  16. Analysis of an algebraic model for the chromophore vibrations of CF$_3$CHFI

    CERN Document Server

    Jung, C; Taylor, H S

    2004-01-01

    We extract the dynamics implicit in an algebraic fitted model Hamiltonian for the hydrogen chromophore's vibrational motion in the molecule $CF_3CHFI$. The original model has 4 degrees of freedom, three positions and one representing interbond couplings. A conserved polyad allows the reduction to 3 degrees of freedom. For most quantum states we can identify the underlying motion that when quantized gives the said state. Most of the classifications, identifications and assignments are done by visual inspection of the already available wave function semiclassically transformed from the number representation to a representation on the reduced dimension toroidal configuration space corresponding to the classical action and angle variables. The concentration of the wave function density to lower dimensional subsets centered on idealized simple lower dimensional organizing structures and the behavior of the phase along such organizing centers already reveals the atomic motion. Extremely little computational work is...

  17. Modeling and Simulation of Tandem Tollbooth Operations with Max-Algebra Approach

    Science.gov (United States)

    Hong, Young-Chae; Kim, Dong-Kyu; Kho, Seung-Young; Kim, Soo Wook; Yang, Hongsuk

    This study proposes a new model to simulate tandem tollbooth system in order to enhance planning and management of toll plaza facilities. A discrete-event stochastic microscopic simulation model is presented and developed to evaluate the operational performance of tandem tollbooth. Traffic behavior is represented using a set of mathematical and logical algorithms. Modified versions of Max-algebra approach are integrated into this new algorithm to simulate traffic operation at toll plazas. Computational results show that the benefit of tandem tollbooth depends on the number of serial tollbooth, service time and reaction time of drivers. The capacity of tandem tollbooth increases when service time follows a normal distribution rather than negative exponential distribution. Specifically, the lower variance of service time is, the better capacity tollbooth has. In addition, the ratio of driver's reaction time to service time affects the increasing ratio of the capacity extended by tollbooth.

  18. Two types of loop algebras and their expanding Lax integrable models

    Institute of Scientific and Technical Information of China (English)

    Yue Chao; Zhang Yu-Feng; Wei Yuan

    2007-01-01

    Though various integrable hierarchies of evolution equations were obtained by choosing proper U in zero-curvature equation Ut-Vx+[U,V]=0,but in this paper,a new integrable hierarchy possessing bi-Hamiltonian structure is worked out by selecting V with spectral potentials.Then its expanding Lax integrable model of the hierarchy possessing a simple Hamiltonian operator (J) is presented by constructing a subalgebra (G) of the loop algebra (A)2.As linear expansions of the above-mentioned integrable hierarchy and its expanding Lax integrable model with respect to their dimensional numbers,their (2+1)-dimensional forms are derived from a (2+1)-dimensional zero-curvature equation.

  19. Automatd generation of models and counterexamples and its application to open questions in Ternary Boolean algebra

    Energy Technology Data Exchange (ETDEWEB)

    Winker, S.; Wos, L.

    1978-01-01

    The purposes of this paper are to answer certain previously unanswered questions in the field of Ternary Boolean algebra; to describe the method, by use of an automated theorem-proving program as an invaluable aid, by which these answers were obtained; and to give informally the characteristics of those problems to which the method can be successfully applied. The approach under study begins with known facts in the form of axioms and lemmas of the field being investigated, finds by means of certain specified inference rules new facts, and continues to reason from the expanding set of facts until the problem at hand is solved or the procedure is interrupted. The solution often takes the form of a finite model or of a counter-example to the underlying conjecture. The model and/or counterexample is generated with the aid of an already existing automated theorem-proving procedure and without any recourse to any additional programing.

  20. Form factors in sinh- and sine-Gordon models, deformed Virasoro algebra, Macdonald polynomials and resonance identities

    Energy Technology Data Exchange (ETDEWEB)

    Lashkevich, Michael; Pugai, Yaroslav [Landau Institute for Theoretical Physics, 142432 Chernogolovka, Moscow Region (Russian Federation); Moscow Institute of Physics and Technology, 141707 Dolgoprudny, Moscow Region (Russian Federation)

    2013-12-11

    We continue the study of form factors of descendant operators in the sinh- and sine-Gordon models in the framework of the algebraic construction proposed in [1]. We find the algebraic construction to be related to a particular limit of the tensor product of the deformed Virasoro algebra and a suitably chosen Heisenberg algebra. To analyze the space of local operators in the framework of the form factor formalism we introduce screening operators and construct singular and cosingular vectors in the Fock spaces related to the free field realization of the obtained algebra. We show that the singular vectors are expressed in terms of the degenerate Macdonald polynomials with rectangular partitions. We study the matrix elements that contain a singular vector in one chirality and a cosingular vector in the other chirality and find them to lead to the resonance identities already known in the conformal perturbation theory. Besides, we give a new derivation of the equation of motion in the sinh-Gordon theory, and a new representation for conserved currents.

  1. Form factors in sinh- and sine-Gordon models, deformed Virasoro algebra, Macdonald polynomials and resonance identities

    CERN Document Server

    Lashkevich, Michael

    2013-01-01

    We continue the study of form factors of descendant operators in the sinh- and sine-Gordon models in the framework of the algebraic construction proposed in [arXiv:0812.4776]. We find the algebraic construction to be related to a particular limit of the tensor product of the deformed Virasoro algebra and a suitably chosen Heisenberg algebra. To analyze the space of local operators in the framework of the form factor formalism we introduce screening operators and construct singular and cosingular vectors in the Fock spaces related to the free field realization of the obtained algebra. We show that the singular vectors are expressed in terms of the degenerate Macdonald polynomials with rectangular partitions. We study the matrix elements that contain a singular vector in one chirality and a cosingular vector in the other chirality and find them to lead to the resonance identities already known in the conformal perturbation theory. Besides, we give a new derivation of the equation of motion in the sinh-Gordon th...

  2. Operators and representation theory canonical models for algebras of operators arising in quantum mechanics

    CERN Document Server

    Jorgensen, PET

    1987-01-01

    Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e

  3. Construction and decoding of a class of algebraic geometry codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd;

    1989-01-01

    A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result...

  4. Lie-Algebraic Approach for Pricing Zero-Coupon Bonds in Single-Factor Interest Rate Models

    Directory of Open Access Journals (Sweden)

    C. F. Lo

    2013-01-01

    Full Text Available The Lie-algebraic approach has been applied to solve the bond pricing problem in single-factor interest rate models. Four of the popular single-factor models, namely, the Vasicek model, Cox-Ingersoll-Ross model, double square-root model, and Ahn-Gao model, are investigated. By exploiting the dynamical symmetry of their bond pricing equations, analytical closed-form pricing formulae can be derived in a straightfoward manner. Time-varying model parameters could also be incorporated into the derivation of the bond price formulae, and this has the added advantage of allowing yield curves to be fitted. Furthermore, the Lie-algebraic approach can be easily extended to formulate new analytically tractable single-factor interest rate models.

  5. Subtraction of point sources from interferometric radio images through an algebraic forward modeling scheme

    CERN Document Server

    Bernardi, G; Ord, S M; Greenhill, L J; Pindor, B; Wayth, R B; Wyithe, J S B

    2010-01-01

    We present a method for subtracting point sources from interferometric radio images via forward modeling of the instrument response and involving an algebraic nonlinear minimization. The method is applied to simulated maps of the Murchison Wide-field Array but is generally useful in cases where only image data are available. After source subtraction, the residual maps have no statistical difference to the expected thermal noise distribution at all angular scales, indicating high effectiveness in the subtraction. Simulations indicate that the errors in recovering the source parameters decrease with increasing signal-to-noise ratio, which is consistent with the theoretical measurement errors. In applying the technique to simulated snapshot observations with the Murchison Wide-field Array, we found that all 101 sources present in the simulation were recovered with an average position error of 10 arcsec and an average flux density error of 0.15%. This led to a dynamic range increase of approximately 3 orders of m...

  6. Modelling and temporal performances evaluation of networked control systems using (max, +) algebra

    Science.gov (United States)

    Ammour, R.; Amari, S.

    2015-01-01

    In this paper, we address the problem of temporal performances evaluation of producer/consumer networked control systems. The aim is to develop a formal method for evaluating the response time of this type of control systems. Our approach consists on modelling, using Petri nets classes, the behaviour of the whole architecture including the switches that support multicast communications used by this protocol. (max, +) algebra formalism is then exploited to obtain analytical formulas of the response time and the maximal and minimal bounds. The main novelty is that our approach takes into account all delays experienced at the different stages of networked automation systems. Finally, we show how to apply the obtained results through an example of networked control system.

  7. New insights in the standard model of quantum physics in Clifford algebra

    CERN Document Server

    Daviau, Claude

    2013-01-01

    Why Clifford algebra is the true mathematical frame of the standard model of quantum physics. Why the time is everywhere oriented and why the left side shall never become the right side. Why positrons have also a positive proper energy. Why there is a Planck constant. Why a mass is not a charge. Why a system of particles implies the existence of the inverse of the individual wave function. Why a fourth neutrino should be a good candidate for black matter. Why concepts as “parity” and “reverse” are essential. Why the electron of a H atom is in only one bound state. Plus 2 very remarkable identities, and the invariant wave equations that they imply. Plus 3 generations and 4 neutrinos. Plus 5 dimensions in the space and 6 dimensions in space-time…

  8. Killing scalar of non-linear σ-model on G/H realizing the classical exchange algebra

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shogo, E-mail: spsaoya@ipc.shizuoka.ac.jp

    2014-10-07

    The Poisson brackets for non-linear σ-models on G/H are set up on the light-like plane. A quantity which transforms irreducibly by the Killing vectors, called Killing scalar, is constructed in an arbitrary representation of G. It is shown to satisfy the classical exchange algebra.

  9. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    Science.gov (United States)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-10-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  10. Hom-Akivis algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Non-Hom-associative algebras and Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms.

  11. The Moyal Momentum algebra applied to (theta)-deformed 2d conformal models and KdV-hierarchies

    CERN Document Server

    Boulahoual, A

    2002-01-01

    The properties of the Das-Popowicz Moyal momentum algebra that we introduce in hep-th/0207242 are reexamined in details and used to discuss some aspects of integrable models and 2d conformal field theories. Among the results presented, we setup some useful convention notations which lead to extract some non trivial properties of the Moyal momentum algebra. We use the particular sub-algebra sl(n)-{Sigma}_{n}^{(0,n)} to construct the sl(2)-Liouville conformal model and its sl(3)-Toda extension. We show also that the central charge, a la Feigin-Fuchs, associated to the spin-2 conformal current of the (theta)-Liouville model is given by c(theta)=1+24.theta^{2}. Moreover, the results obtained for the Das-Popowicz Mm algebra are applied to study systematically some properties of the Moyal KdV and Boussinesq hierarchies generalizing some known results. We discuss also the primarity condition of conformal $w_{\\theta}$-currents and interpret this condition as being a dressing gauge symmetry in the Moyal momentum space...

  12. Elliptic algebras

    Energy Technology Data Exchange (ETDEWEB)

    Odesskii, A V [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2002-12-31

    This survey is devoted to associative Z{sub {>=}}{sub 0}-graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.

  13. The algebra of the general Markov model on phylogenetic trees and networks.

    Science.gov (United States)

    Sumner, J G; Holland, B R; Jarvis, P D

    2012-04-01

    It is known that the Kimura 3ST model of sequence evolution on phylogenetic trees can be extended quite naturally to arbitrary split systems. However, this extension relies heavily on mathematical peculiarities of the associated Hadamard transformation, and providing an analogous augmentation of the general Markov model has thus far been elusive. In this paper, we rectify this shortcoming by showing how to extend the general Markov model on trees to include incompatible edges; and even further to more general network models. This is achieved by exploring the algebra of the generators of the continuous-time Markov chain together with the “splitting” operator that generates the branching process on phylogenetic trees. For simplicity, we proceed by discussing the two state case and then show that our results are easily extended to more states with little complication. Intriguingly, upon restriction of the two state general Markov model to the parameter space of the binary symmetric model, our extension is indistinguishable from the Hadamard approach only on trees; as soon as any incompatible splits are introduced the two approaches give rise to differing probability distributions with disparate structure. Through exploration of a simple example, we give an argument that our extension to more general networks has desirable properties that the previous approaches do not share. In particular, our construction allows for convergent evolution of previously divergent lineages; a property that is of significant interest for biological applications.

  14. Choosing processor array configuration by performance modeling for a highly parallel linear algebra algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Littlefield, R.J.; Maschhoff, K.J.

    1991-04-01

    Many linear algebra algorithms utilize an array of processors across which matrices are distributed. Given a particular matrix size and a maximum number of processors, what configuration of processors, i.e., what size and shape array, will execute the fastest The answer to this question depends on tradeoffs between load balancing, communication startup and transfer costs, and computational overhead. In this paper we analyze in detail one algorithm: the blocked factored Jacobi method for solving dense eigensystems. A performance model is developed to predict execution time as a function of the processor array and matrix sizes, plus the basic computation and communication speeds of the underlying computer system. In experiments on a large hypercube (up to 512 processors), this model has been found to be highly accurate (mean error {approximately} 2%) over a wide range of matrix sizes (10 {times} 10 through 200 {times} 200) and processor counts (1 to 512). The model reveals, and direct experiment confirms, that the tradeoffs mentioned above can be surprisingly complex and counterintuitive. We propose decision procedures based directly on the performance model to choose configurations for fastest execution. The model-based decision procedures are compared to a heuristic strategy and shown to be significantly better. 7 refs., 8 figs., 1 tab.

  15. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  16. Algebraic and group structure for bipartite anisotropic Ising model on a non-local basis

    Science.gov (United States)

    Delgado, Francisco

    2015-01-01

    Entanglement is considered a basic physical resource for modern quantum applications as Quantum Information and Quantum Computation. Interactions based on specific physical systems able to generate and sustain entanglement are subject to deep research to get understanding and control on it. Atoms, ions or quantum dots are considered key pieces in quantum applications because they are elements in the development toward a scalable spin-based quantum computer through universal and basic quantum operations. Ising model is a type of interaction generating entanglement in quantum systems based on matter. In this work, a general bipartite anisotropic Ising model including an inhomogeneous magnetic field is analyzed in a non-local basis. This model summarizes several particular models presented in literature. When evolution is expressed in the Bell basis, it shows a regular block structure suggesting a SU(2) decomposition. Then, their algebraic properties are analyzed in terms of a set of physical parameters which define their group structure. In particular, finite products of pulses in this interaction are analyzed in terms of SU(4) covering. Thus, evolution denotes remarkable properties, in particular those related potentially with entanglement and control, which give a fruitful arena for further quantum developments and generalization.

  17. Kiddie Algebra

    Science.gov (United States)

    Cavanagh, Sean

    2009-01-01

    As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…

  18. QuickChecking Static Analysis Properties

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Møller, Anders

    2015-01-01

    , to verified fixed point checking. In this paper we demonstrate how quickchecking can be useful for testing a range of static analysis properties with limited effort. We show how to check a range of algebraic lattice properties, to help ensure that an implementation follows the formal specification...... of a lattice. Moreover, we offer a number of generic, type-safe combinators to check transfer functions and operators on lattices, to help ensure that these are, e.g., monotone, strict, or invariant. We substantiate our claims by quickchecking a type analysis for the Lua programming language...

  19. G/G gauged WZW-matter model, Bethe Ansatz for q-boson model and Commutative Frobenius algebra

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Satoshi [Department of Physics, Rikkyo University,Toshima, Tokyo 171-8501 (Japan); Yoshida, Yutaka [High Energy Accelerator Research Organization (KEK),Tsukuba, Ibaraki 305-0801 (Japan)

    2014-03-03

    We investigate the correspondence between two dimensional topological gauge theories and quantum integrable systems discovered by Moore, Nekrasov, Shatashvili. This correspondence means that the hidden quantum integrable structure exists in the topological gauge theories. We showed the correspondence between the G/G gauged WZW model and the phase model in JHEP 11 (2012) 146 (arXiv:1209.3800). In this paper, we study a one-parameter deformation for this correspondence and show that the G/G gauged WZW model coupled to additional matters corresponds to the q-boson model. Furthermore, we investigate this correspondence from the viewpoint of the commutative Frobenius algebra, the axiom of the two dimensional topological quantum field theory.

  20. Algebra-Geometry of Piecewise Algebraic Varieties

    Institute of Scientific and Technical Information of China (English)

    Chun Gang ZHU; Ren Hong WANG

    2012-01-01

    Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.

  1. Numerical Simulation of the Whole Three—Dimensional Flow in a Stirred Tank with Anisotropic Algebraic Stress Model

    Institute of Scientific and Technical Information of China (English)

    SUNHaiyan; WANGWeijing; 等

    2002-01-01

    In accordance to the anisotropic feature of turbulent flow, an anisotropic algebraic stress model is adopted to predict the turbulent flow field and turbulent characteristics generated by a Rushton disc turbine with the improved inner-outer iterative procedure. The predicted turbulent flow is compared with experimental data and the simulation by the standard κ-ε turbulence model. The anisotropic algebraic stress model is found to give better prediction than the standard κ-ε turbulence model. The predicted turbulent flow field is in accordance to experimental data and the trend of the turbulence intensity can be effectively reflected in the simulation. The distribution of turbulent shear rate in the stirred tanks was simulated with the established numerical procedure.

  2. Model-Checking an Alternating-time Temporal Logic with Knowledge, Imperfect Information, Perfect Recall and Communicating Coalitions

    Directory of Open Access Journals (Sweden)

    Cătălin Dima

    2010-06-01

    Full Text Available We present a variant of ATL with distributed knowledge operators based on a synchronous and perfect recall semantics. The coalition modalities in this logic are based on partial observation of the full history, and incorporate a form of cooperation between members of the coalition in which agents issue their actions based on the distributed knowledge, for that coalition, of the system history. We show that model-checking is decidable for this logic. The technique utilizes two variants of games with imperfect information and partially observable objectives, as well as a subset construction for identifying states whose histories are indistinguishable to the considered coalition.

  3. Living on the Edge: A Toy Model for Holographic Reconstruction of Algebras with Centers

    CERN Document Server

    Donnelly, William; Marolf, Donald; Wien, Jason

    2016-01-01

    We generalize the Pastawski-Yoshida-Harlow-Preskill (HaPPY) holographic quantum error-correcting code to provide a toy model for bulk gauge fields or linearized gravitons. The key new elements are the introduction of degrees of freedom on the links (edges) of the associated tensor network and their connection to further copies of the HaPPY code by an appropriate isometry. The result is a model in which boundary regions allow the reconstruction of bulk algebras with central elements living on the interior edges of the (greedy) entanglement wedge, and where these central elements can also be reconstructed from complementary boundary regions. In addition, the entropy of boundary regions receives both Ryu-Takayanagi-like contributions and further corrections that model the $\\frac{\\delta \\text{Area}}{4G_N}$ term of Faulkner, Lewkowycz, and Maldacena. Comparison with Yang-Mills theory then suggests that this $\\frac{\\delta \\text{Area}}{4G_N}$ term can be reinterpreted as a part of the bulk entropy of gravitons under...

  4. Mathematical Model for Dengue Epidemics with Differential Susceptibility and Asymptomatic Patients Using Computer Algebra

    Science.gov (United States)

    Saldarriaga Vargas, Clarita

    When there are diseases affecting large populations where the social, economic and cultural diversity is significant within the same region, the biological parameters that determine the behavior of the dispersion disease analysis are affected by the selection of different individuals. Therefore and because of the variety and magnitude of the communities at risk of contracting dengue disease around all over the world, suggest defining differentiated populations with individual contributions in the results of the dispersion dengue disease analysis. In this paper those conditions were taken in account when several epidemiologic models were analyzed. Initially a stability analysis was done for a SEIR mathematical model of Dengue disease without differential susceptibility. Both free disease and endemic equilibrium states were found in terms of the basic reproduction number and were defined in the Theorem (3.1). Then a DSEIR model was solved when a new susceptible group was introduced to consider the effects of important biological parameters of non-homogeneous populations in the spreading analysis. The results were compiled in the Theorem (3.2). Finally Theorems (3.3) and (3.4) resumed the basic reproduction numbers for three and n different susceptible groups respectively, giving an idea of how differential susceptibility affects the equilibrium states. The computations were done using an algorithmic method implemented in Maple 11, a general-purpose computer algebra system.

  5. Calculus domains modelled using an original bool algebra based on polygons

    Science.gov (United States)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2016-08-01

    Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.

  6. Dynamical analysis of a differential algebraic bio-economic model with stage-structured and stochastic fluctuations

    Science.gov (United States)

    Zhang, Yue; Zheng, Yan; Liu, Xi; Zhang, Qingling; Li, Aihua

    2016-11-01

    This study considers a class of differential algebraic stage-structured bio-economic models with stochastic fluctuations. The stochastic bio-economic model is simplified to an Itô equation using the stochastic averaging method. The stochastic stability, Hopf bifurcation, and P-bifurcation are discussed based on the singular boundary theory of the diffusion process for the system and the invariant measure theory of dynamic systems. Numerical simulations are presented to illustrate our main results.

  7. Odd q-state clock spin-glass models in three dimensions, asymmetric phase diagrams, and multiple algebraically ordered phases.

    Science.gov (United States)

    Ilker, Efe; Berker, A Nihat

    2014-12-01

    Distinctive orderings and phase diagram structures are found, from renormalization-group theory, for odd q-state clock spin-glass models in d=3 dimensions. These models exhibit asymmetric phase diagrams, as is also the case for quantum Heisenberg spin-glass models. No finite-temperature spin-glass phase occurs. For all odd q≥5, algebraically ordered antiferromagnetic phases occur. One such phase is dominant and occurs for all q≥5. Other such phases occupy small low-temperature portions of the phase diagrams and occur for 5≤q≤15. All algebraically ordered phases have the same structure, determined by an attractive finite-temperature sink fixed point where a dominant and a subdominant pair states have the only nonzero Boltzmann weights. The phase transition critical exponents quickly saturate to the high q value.

  8. C*-index of observable algebras in G-spin model

    Institute of Scientific and Technical Information of China (English)

    JIANG; Lining

    2005-01-01

    In two-dimensional lattice spin systems in which the spins take values in a finite group G,one can define a field algebra F which carries an action of a Hopf algebra D(G),the double algebra of G and moreover,an action of D(G; H),which is a subalgebra of D(G) determined by a subgroup H of G,so that F becomes a modular algebra.The concrete construction of D(G; H)-invariant subspace AH in F is given.By constructing the quasi-basis of conditional expectation γG of AH onto AG,the C*-index of γG is exactly the index of H in G.

  9. Modifications of the law of the wall and algebraic turbulence modelling for separated boundary layers

    Science.gov (United States)

    Baldwin, B. S.; Maccormack, R. W.

    1976-01-01

    Various modifications of the conventional algebraic eddy viscosity turbulence model are investigated for application to separated flows. Friction velocity is defined in a way that avoids singular behavior at separation and reattachment but reverts to the conventional definition for flows with small pressure gradients. This leads to a modified law of the wall for separated flows. The effect on the calculated flow field of changes in the model that affect the eddy viscosity at various distances from the wall are determined by (1) switching from Prandtl's form to an inner layer formula due to Clauser at various distances from the wall, (2) varying the constant in the Van Driest damping factor, (3) using Clauser's inner layer formula all the way to the wall, and (4) applying a relaxation procedure in the evaluation of the constant in Clauser's inner layer formula. Numerical solutions of the compressible Navier-Stokes equations are used to determine the effects of the modifications. Experimental results from shock-induced separated flows at Mach numbers 2.93 and 8.45 are used for comparison. For these cases improved predictions of wall pressure distribution and positions of separation and reattachment are obtained from the relaxation version of the Clauser inner layer eddy viscosity formula.

  10. Geometric Algebra

    CERN Document Server

    Chisolm, Eric

    2012-01-01

    This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...

  11. Abstract algebra

    CERN Document Server

    Garrett, Paul B

    2007-01-01

    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  12. 几何模型在线性代数教学中的应用%Application of Geometric Model in Linear Algebra Teaching

    Institute of Scientific and Technical Information of China (English)

    席政军

    2013-01-01

    Through analyzing the relationship between geometric model and linear algebra, this article focuses on the application of geometric model in linear algebra, and discusses the classroom teaching of linear algebra.%本文通过几何模型与线性代数之间的关系,重点讨论几何模型在线性代数中的应用,并对线性代数课堂教学进行了初步探讨。

  13. BCS Ground State and XXZ Antiferromagnetic Model as SU(2),SU(1,1) Coherent States:AN Algebraic Diagonalization Method

    Institute of Scientific and Technical Information of China (English)

    XIEBing_Hao; ZHANGHong-Biao; 等

    2002-01-01

    An algebraic diagonalization method is proposed.As two examples,the Hamiltonians of BCS ground state under mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized by using SU(2),SU(1,1) Lie algebraic method,respectively.Meanwhile,the eignenstates of the above two models are revealed to be SU(2),SU(1,1) coherent states,respectively,The relation between the usual Bogoliubov-Valatin transformation and the algebraic method in a special case is also discussed.

  14. Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields

    CERN Document Server

    Fiorenza, Domenico; Schreiber, Urs

    2013-01-01

    We formalize higher dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type sigma-model branes (open brane ending on background brane) are encoded precisely in (super-) L-infinity-extension theory and how the resulting "extended (super-)spacetimes" formalize spacetimes containing sigma model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super p-brane spectrum of superstring/M-theory is realized this way, including the pure sigma-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional spacetime with an M2-brane condensate turns out to be the ...

  15. Comparison of the PIC model and the Lie algebraic metnod in the simulation of intense continuous beam transport

    Institute of Scientific and Technical Information of China (English)

    ZHAO xiao-Song; L(U) Jian-Qin

    2009-01-01

    Both the PIC(Particle-In-Cell) model and the Lie algebraic method can be used to simulate the transport of intense continuous beams.The PIC model is to calculate the space charge field,which is blended into the external field,and then simulate the trajectories of particles in the total field;the Lie algebraic method is to simulate the intense continuous beam transport with transport matrixes.Two simulation codes based on the two methods are developed respectively,and the simulated results of transport in a set of electrostatic lenses are compared.It is found that the results from the two codes are in agreement with each other.and both approaches have their own merits.

  16. The noncommutative U(1) Higgs-Kibble model in the enveloping-algebra formalism and its renormalizability

    CERN Document Server

    Martín, C P; Tamarit, C

    2007-01-01

    We discuss the renormalizability of the noncommutative U(1)Higgs-Kibble model formulated within the enveloping-algebra approach. We consider both the phase of the model with unbroken gauge symmetry and the phase with spontaneously broken gauge symmetry. We show that against all odds the gauge sector of the model is always one-loop renormalizable at first order in theta^{mu nu}, perhaps, hinting at the existence of a new symmetry of the gauge sector of the model. However, we also show that the matter sector of the model is non-renormalizable whatever the phase.

  17. The noncommutative U(1) Higgs-Kibble model in the enveloping-algebra formalism and its renormalizability

    Science.gov (United States)

    Martín, Carmelo P.; Sánchez-Ruiz, Domingo; Tamarit, Carlos

    2007-02-01

    We discuss the renormalizability of the noncommutative U(1) Higgs-Kibble model formulated within the enveloping-algebra approach. We consider both the phase of the model with unbroken gauge symmetry and the phase with spontaneously broken gauge symmetry. We show that against all odds the gauge sector of the model is always one-loop renormalizable at first order in θμν, perhaps, hinting at the existence of a new symmetry of the gauge sector of the model. However, we also show that the matter sector of the model is non-renormalizable whatever the phase.

  18. On some spurious mode issues in shallow-water models using a linear algebra approach

    Science.gov (United States)

    Le Roux, D. Y.; Sène, A.; Rostand, V.; Hanert, E.

    Numerical methods that are usually employed in ocean modelling are typically finite-difference, finite and spectral-element techniques. For most of these methods the coupling between the momentum and continuity equations is a delicate problem and it usually leads to spurious solutions in the representation of inertia-gravity waves. The spurious modes have a wide range of characteristics and may take the form of pressure (surface-elevation), velocity and/or Coriolis modes. The modes usually cause aliasing and an accumulation of energy in the smallest-resolvable scale, leading to noisy solutions. The Fourier analysis has proven practical and beneficial to describe the spurious solutions of several classical schemes. However it is restricted to uniform meshes on which the variables are regularly distributed. In this paper, a linear algebra approach is proposed to study the existence and the behaviour of stationary spurious modes associated with zero frequency, for some popular finite-difference and finite-element grids. The present approach is performed on uniform meshes but it applies equally well to regular as well as unstructured meshes with irregular geometry for the finite-element schemes.

  19. "Generalized" algebraic Bethe ansatz, Gaudin-type models and Zp-graded classical r-matrices

    Science.gov (United States)

    Skrypnyk, T.

    2016-12-01

    We consider quantum integrable systems associated with reductive Lie algebra gl (n) and Cartan-invariant non-skew-symmetric classical r-matrices. We show that under certain restrictions on the form of classical r-matrices "nested" or "hierarchical" Bethe ansatz usually based on a chain of subalgebras gl (n) ⊃ gl (n - 1) ⊃ . . . ⊃ gl (1) is generalized onto the other chains or "hierarchies" of subalgebras. We show that among the r-matrices satisfying such the restrictions there are "twisted" or Zp-graded non-skew-symmetric classical r-matrices. We consider in detail example of the generalized Gaudin models with and without external magnetic field associated with Zp-graded non-skew-symmetric classical r-matrices and find the spectrum of the corresponding Gaudin-type hamiltonians using nested Bethe ansatz scheme and a chain of subalgebras gl (n) ⊃ gl (n -n1) ⊃ gl (n -n1 -n2) ⊃ gl (n - (n1 + . . . +np-1)), where n1 +n2 + . . . +np = n.

  20. $\\eta_{c}$ Elastic and Transition Form Factors: Contact Interaction and Algebraic Model

    CERN Document Server

    Bedolla, Marco A; Cobos-Martínez, J J; Bashir, Adnan

    2016-01-01

    For the flavor-singlet heavy quark system of charmonia in the pseudoscalar ($\\eta_c(1S)$) channel, we calculate the elastic (EFF) and transition form factors (TFF) ($\\eta_c(1S) \\rightarrow \\gamma \\gamma^*$) for a wide range of photon momentum transfer squared ($Q^2$). The framework for this analysis is provided by a symmetry-preserving Schwinger-Dyson equation (SDE) and Bethe-Salpeter equation (BSE) treatment of a vector$\\times$vector contact interaction (CI). We also employ an algebraic model (AM), developed earlier to describe the light quark systems. It correctly correlates infrared and ultraviolet dynamics of quantum chromodynamics (QCD). The CI results agree with the lattice data for low $Q^2$. For $Q^2 \\geqslant Q_0^2$, the results start deviating from the lattice results by more than $20 \\%$. $Q_0^2 \\thickapprox 2.5 {\\rm GeV}^2$ for the EFF and $\\thickapprox 25 {\\rm GeV}^2$ for the TFF. We also present the results for the EFF, TFF as well as $\\eta_c(1S)$ parton distribution amplitude for the AM. Wherev...