WorldWideScience

Sample records for algebraic geometry

  1. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2012-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  2. Real Algebraic Geometry

    CERN Document Server

    Mahé, Louis; Roy, Marie-Françoise

    1992-01-01

    Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...

  3. Algebra-Geometry of Piecewise Algebraic Varieties

    Institute of Scientific and Technical Information of China (English)

    Chun Gang ZHU; Ren Hong WANG

    2012-01-01

    Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.

  4. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  5. Reflexive functors in Algebraic Geometry

    OpenAIRE

    Sancho, Pedro

    2015-01-01

    Reflexive functors of modules naturally appear in Algebraic Geometry. In this paper we define a wide and elementary family of reflexive functors of modules, closed by tensor products and homomorphisms, in which Algebraic Geometry can be developed.

  6. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  7. Linear algebra and projective geometry

    CERN Document Server

    Baer, Reinhold

    2005-01-01

    Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. These focus on the representation of projective geometries by linear manifolds, of projectivities by semilinear transformations, of collineations by linear transformations, and of dualities by semilinear forms. These theorems lead to a reconstruction of the geometry that constituted the discussion's starting point, within algebra

  8. Hopf algebras in noncommutative geometry

    International Nuclear Information System (INIS)

    We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

  9. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  10. Algebraic geometry a concise dictionary

    CERN Document Server

    Rubei, Elena

    2014-01-01

    Algebraic geometry has a complicated, difficultlanguage. This bookcontains a definition, several references and the statements of the main theorems (without proofs) for every of the most common words in this subject. Some terms of relatedsubjects are included. It helps beginners that know some, but not all,basic facts of algebraic geometryto follow seminars and to read papers. The dictionaryform makes it easy and quick to consult.

  11. Linear algebra, geometry and transformation

    CERN Document Server

    Solomon, Bruce

    2014-01-01

    Vectors, Mappings and Linearity Numeric Vectors Functions Mappings and Transformations Linearity The Matrix of a Linear Transformation Solving Linear Systems The Linear SystemThe Augmented Matrix and RRE Form Homogeneous Systems in RRE Form Inhomogeneous Systems in RRE Form The Gauss-Jordan Algorithm Two Mapping Answers Linear Geometry Geometric Vectors Geometric/Numeric Duality Dot-Product Geometry Lines, Planes, and Hyperplanes System Geometry and Row/Column Duality The Algebra of Matrices Matrix Operations Special Matrices Matrix Inversion A Logical Digression The Logic of the Inversion Alg

  12. Moduli spaces in algebraic geometry

    International Nuclear Information System (INIS)

    This volume of the new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics contains the lecture notes of the School on Algebraic Geometry which took place at the Abdus Salam International Centre for Theoretical Physics from 26 July to 13 August 1999. The school consisted of 2 weeks of lecture courses and one week of conference. The topic of the school was moduli spaces. More specifically the lectures were divided into three subtopics: principal bundles on Riemann surfaces, moduli spaces of vector bundles and sheaves on projective varieties, and moduli spaces of curves

  13. Foliation theory in algebraic geometry

    CERN Document Server

    McKernan, James; Pereira, Jorge

    2016-01-01

    Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

  14. Commutative algebra with a view toward algebraic geometry

    CERN Document Server

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  15. Quantum fields, periods and algebraic geometry

    OpenAIRE

    Kreimer, Dirk

    2014-01-01

    We discuss how basic notions of graph theory and associated graph polynomials define questions for algebraic geometry, with an emphasis given to an analysis of the structure of Feynman rules as determined by those graph polynomials as well as algebraic structures of graphs. In particular, we discuss the appearance of renormalization scheme independent periods in quantum field theory.

  16. Primer for the algebraic geometry of sandpiles

    OpenAIRE

    Perkinson, David; Perlman, Jacob; Wilmes, John

    2011-01-01

    The Abelian Sandpile Model (ASM) is a game played on a graph realizing the dynamics implicit in the discrete Laplacian matrix of the graph. The purpose of this primer is to apply the theory of lattice ideals from algebraic geometry to the Laplacian matrix, drawing out connections with the ASM. An extended summary of the ASM and of the required algebraic geometry is provided. New results include a characterization of graphs whose Laplacian lattice ideals are complete intersection ideals; a new...

  17. Algebra and geometry of Hamilton's quaternions

    CERN Document Server

    Krishnaswami, Govind S

    2016-01-01

    Inspired by the relation between the algebra of complex numbers and plane geometry, William Rowan Hamilton sought an algebra of triples for application to three dimensional geometry. Unable to multiply and divide triples, he invented a non-commutative division algebra of quadruples, in what he considered his most significant work, generalizing the real and complex number systems. We give a motivated introduction to quaternions and discuss how they are related to Pauli matrices, rotations in three dimensions, the three sphere, the group SU(2) and the celebrated Hopf fibrations.

  18. Cluster algebras and Poisson geometry

    OpenAIRE

    Gekhtman, M.; Shapiro, M.; Vainshtein, A.

    2002-01-01

    We introduce a Poisson variety compatible with a cluster algebra structure and a compatible toric action on this variety. We study Poisson and topological properties of the union of generic orbits of this toric action. In particular, we compute the number of connected components of the union of generic toric orbits for cluster algebras over real numbers. As a corollary we compute the number of connected components of refined open Bruhat cells in Grassmanians G(k,n) over real numbers.

  19. Noncommutative Algebra and Noncommutative Geometry

    OpenAIRE

    Kratsios, Anastasis

    2014-01-01

    Divided into three parts, the first marks out enormous geometric issues with the notion of quasi-freenss of an algebra and seeks to replace this notion of formal smoothness with an approximation by means of a minimal unital commutative algebra's smoothness. The second part of this text is then, devoted to the approximating of properties of nc. schemes through the properties of two uniquely determined (classical) schemes estimating the nc. scheme in question in a maximal way from the inside an...

  20. Geometry of webs of algebraic curves

    OpenAIRE

    Hwang, Jun-Muk

    2016-01-01

    A family of algebraic curves covering a projective variety $X$ is called a web of curves on $X$ if it has only finitely many members through a general point of $X$. A web of curves on $X$ induces a web-structure, in the sense of local differential geometry, in a neighborhood of a general point of $X$. We study how the local differential geometry of the web-structure affects the global algebraic geometry of $X$. Under two geometric assumptions on the web-structure, the pairwise non-integrabili...

  1. Methods of algebraic geometry in control theory

    CERN Document Server

    Falb, Peter

    1999-01-01

    "Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...

  2. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Science.gov (United States)

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s. PMID:26806075

  3. Connecting Functions in Geometry and Algebra

    Science.gov (United States)

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  4. Classification of complex simple Lie algebras via projective geometry geometry

    OpenAIRE

    Landsberg, J. M.; Manivel, Laurent

    1999-01-01

    We present a new proof of the classification of complex simple Lie algebras via the projective geometry of homogeneous varieties. Our proof proceeds by constructing homogeneous varieties using the ideals of the secant and tangential varieties of homogeneous varieties already constructed. Our algorithms make no reference to root systems. Our proofs use properties of root systems, but not their classification.

  5. A Relationship between Geometry and Algebra

    CERN Document Server

    Bejarano, Jose Ricardo Arteaga

    2011-01-01

    The three key documents for study geometry are: 1) "The Elements" of Euclid, 2) the lecture by B. Riemann at G\\"ottingen in 1854 entitled "\\"Uber die Hypothesen welche der Geometrie zu Grunde liegen" (On the hypotheses which underlie geometry) and 3) the "Erlangen Program", a document written by F. Klein (1872) on his income as professor at the Faculty of Philosophy and the Senate of the Erlangen University. The latter document F. Klein introduces the concept of group as a tool to study geometry. The concept of a group of transformations of space was known at the time. The purpose of this informative paper is to show a relationship between geometry and algebra through an example, the projective plane. Erlangen program until today continues being a guideline of how to study geometry.

  6. Lattice Landau Gauge and Algebraic Geometry

    CERN Document Server

    Mehta, Dhagash; von Smekal, Lorenz; Williams, Anthony G

    2009-01-01

    Finding the global minimum of a multivariate function efficiently is a fundamental yet difficult problem in many branches of theoretical physics and chemistry. However, we observe that there are many physical systems for which the extremizing equations have polynomial-like non-linearity. This allows the use of Algebraic Geometry techniques to solve these equations completely. The global minimum can then straightforwardly be found by the second derivative test. As a warm-up example, here we study lattice Landau gauge for compact U(1) and propose two methods to solve the corresponding gauge-fixing equations. In a first step, we obtain all Gribov copies on one and two dimensional lattices. For simple 3x3 systems their number can already be of the order of thousands. We anticipate that the computational and numerical algebraic geometry methods employed have far-reaching implications beyond the simple but illustrating examples discussed here.

  7. PREFACE: Algebra, Geometry, and Mathematical Physics 2010

    Science.gov (United States)

    Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.

    2012-02-01

    This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants

  8. Classical versus Computer Algebra Methods in Elementary Geometry

    Science.gov (United States)

    Pech, Pavel

    2005-01-01

    Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…

  9. Differential geometry on Hopf algebras and quantum groups

    International Nuclear Information System (INIS)

    The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined

  10. Computational commutative and non-commutative algebraic geometry

    CERN Document Server

    Cojocaru, S; Ufnarovski, V

    2005-01-01

    This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.

  11. From geometry to algebra: the Euclidean way with technology

    Science.gov (United States)

    Ferrarello, Daniela; Flavia Mammana, Maria; Pennisi, Mario

    2016-05-01

    In this paper, we present the results of an experimental classroom activity, history-based with a phylogenetic approach, to achieve algebra properties through geometry. In particular, we used Euclidean propositions, processed them by a dynamic geometry system and translate them into algebraic special products.

  12. Software Engineering and Complexity in Effective Algebraic Geometry

    CERN Document Server

    Heintz, Joos; Paredes, Andres Rojas

    2011-01-01

    We introduce the notion of a robust parameterized arithmetic circuit for the evaluation of algebraic families of multivariate polynomials. Based on this notion, we present a computation model, adapted to Scientific Computing, which captures all known branching parsimonious symbolic algorithms in effective Algebraic Geometry. We justify this model by arguments from Software Engineering. Finally we exhibit a class of simple elimination problems of effective Algebraic Geometry which require exponential time to be solved by branching parsimonious algorithms of our computation model.

  13. Multiplier ideal sheaves in complex and algebraic geometry

    Institute of Scientific and Technical Information of China (English)

    Yum-Tong; Siu

    2005-01-01

    The application of the method of multiplier ideal sheaves to effective problems in algebraic geometry is briefly discussed. Then its application to the deformational invariance of plurigenera for general compact algebraic manifolds is presented and discussed.Finally its application to the conjecture of the finite generation of the canonical ring is explored, and the use of complex algebraic geometry in complex Neumann estimates is discussed.

  14. Vanishing theorems and effective results in algebraic geometry

    International Nuclear Information System (INIS)

    The School on Vanishing Theorems and Effective Results in Algebraic Geometry took place in ICTP, Trieste from 25 April 2000 to 12 May 2000. It was organized by J. P. Demailly (Universite de Grenoble I) and R. Lazarsfeld (University of Michigan). The main topics considered were vanishing theorems, multiplyer ideal sheaves and effective results in algebraic geometry, tight closure, geometry of higher dimensional projective and Kahler manifolds, hyperbolic algebraic varieties. The school consisted of two weeks of lectures and one week of conference. This volume contains the lecture notes of most of the lectures in the first two weeks

  15. Quantum groups and algebraic geometry in conformal field theory

    International Nuclear Information System (INIS)

    The classification of two-dimensional conformal field theories is described with algebraic geometry and group theory. This classification is necessary in a consistent formulation of a string theory. (author). 130 refs.; 4 figs.; schemes

  16. From combinatorial optimization to real algebraic geometry and back

    Directory of Open Access Journals (Sweden)

    Janez Povh

    2014-12-01

    Full Text Available In this paper, we explain the relations between combinatorial optimization and real algebraic geometry with a special focus to the quadratic assignment problem. We demonstrate how to write a quadratic optimization problem over discrete feasible set as a linear optimization problem over the cone of completely positive matrices. The latter formulation enables a hierarchy of approximations which rely on results from polynomial optimization, a sub-eld of real algebraic geometry.

  17. Singularities of theta divisors in algebraic geometry

    OpenAIRE

    Casalaina-Martin, Sebastian

    2012-01-01

    The singularities of theta divisors have played an important role in the study of algebraic varieties. This paper surveys some of the recent progress in this subject, using as motivation some well known results, especially those for Jacobians.

  18. Linking geometry and algebra with GeoGebra

    OpenAIRE

    Edwards, Julie-Ann; Jones, Keith

    2006-01-01

    GeoGebra is a software package and is so named because it combines geometry and algebra as equal mathematical partners in its representations. At one level, GeoGebra can be as a dynamic geometry system like other, commercially available, software. But this is only part of the story. Another window (the algebra part of GeoGebra) provides an insight into the relationship between the geometric aspects of figures and their algebraic representations. Here each equation or set of coordinates can be...

  19. Experimental and Theoretical Methods in Algebra, Geometry and Topology

    CERN Document Server

    Veys, Willem; Bridging Algebra, Geometry, and Topology

    2014-01-01

    Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference “Experimental and Theoretical Methods in Algebra, Geometry and Topology”, held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Ştefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research f...

  20. Automorphisms of associative algebras and noncommutative geometry

    International Nuclear Information System (INIS)

    A class of differential calculi is explored which is determined by a set of automorphisms of the underlying associative algebra. Several examples are presented. In particular, differential calculi on the quantum plane, the h-deformed plane and the quantum group GLp,q(2) are recovered in this way. Geometric structures such as metrics and compatible linear connections are introduced

  1. Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra

    CERN Document Server

    Cox, David A; O'Shea, Donal

    2015-01-01

    This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem, and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and, with some supplementation perhaps, for beginning graduate level courses in algebraic geom...

  2. Geometry, algebra and applications from mechanics to cryptography

    CERN Document Server

    Encinas, Luis; Gadea, Pedro; María, Mª

    2016-01-01

    This volume collects contributions written by different experts in honor of Prof. Jaime Muñoz Masqué. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.

  3. Quantum Clifford algebra from classical differential geometry

    International Nuclear Information System (INIS)

    We show the emergence of Clifford algebras of nonsymmetric bilinear forms as cotangent algebras of Kaluza-Klein (KK) spaces pertaining to teleparallel space-times. These spaces are canonically determined by the horizontal differential invariants of Finsler bundles of the type, B'(M)→S(M), where B'(M) is the set of all the tangent frames to a differentiable manifold M, and where S(M) is the sphere bundle. If M is space-time itself, M4, the 'geometric phase space', S(M4), has dimension seven. This reformulation of the horizontal invariants as pertaining to a KK space removes the mismatch between the dimensionality of the tangent frames to M4 and the dimensionality of S(M4). In the KK space, a symmetric tangent metric induces a cotangent metric which is not symmetric in general. An interior covariant derivative in the sense of Kaehler is defined. It involves the antisymmetric part of the cotangent metric, which thus enters electrodynamics and the Dirac equation

  4. Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology & Symplectic Geometry, Noncommutative Geometry and Physics

    CERN Document Server

    Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry

    2014-01-01

    Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...

  5. On the geometry underlying a real Lie algebra representation

    CERN Document Server

    Le-Bert, Rodrigo Vargas

    2012-01-01

    Let $G$ be a real Lie group with Lie algebra $\\mathfrak g$. Given a unitary representation $\\pi$ of $G$, one obtains by differentiation a representation $d\\pi$ of $\\mathfrak g$ by unbounded, skew-adjoint operators. Representations of $\\mathfrak g$ admitting such a description are called \\emph{integrable,} and they can be geometrically seen as the action of $\\mathfrak g$ by derivations on the algebra of representative functions $g\\mapsto$, which are naturally defined on the homogeneous space $M=G/\\ker\\pi$. In other words, integrable representations of a real Lie algebra can always be seen as realizations of that algebra by vector fields on a homogeneous manifold. Here we show how to use the coproduct of the universal enveloping algebra of $\\mathfrak g$ to generalize this to representations which are not necessarily integrable. The geometry now playing the role of $M$ is a locally homogeneous space. This provides the basis for a geometric approach to integrability questions regarding Lie algebra representations...

  6. Multi-loop Integrand Reduction with Computational Algebraic Geometry

    International Nuclear Information System (INIS)

    We discuss recent progress in multi-loop integrand reduction methods. Motivated by the possibility of an automated construction of multi-loop amplitudes via generalized unitarity cuts we describe a procedure to obtain a general parameterisation of any multi-loop integrand in a renormalizable gauge theory. The method relies on computational algebraic geometry techniques such as Gröbner bases and primary decomposition of ideals. We present some results for two and three loop amplitudes obtained with the help of the MACAULAY2 computer algebra system and the Mathematica package BASISDET

  7. Self-Similarity in Geometry, Algebra and Arithmetic

    OpenAIRE

    Rastegar, Arash

    2012-01-01

    We define the concept of self-similarity of an object by considering endomorphisms of the object as `similarity' maps. A variety of interesting examples of self-similar objects in geometry, algebra and arithmetic are introduced. Self-similar objects provide a framework in which, one can unite some results and conjectures in different mathematical frameworks. In some general situations, one can define a well-behaved notion of dimension for self-similar objects. Morphisms between self-similar o...

  8. Using concatenated algebraic geometry codes in channel polarization

    OpenAIRE

    Eid, Abdulla; Duursma, Iwan

    2013-01-01

    Polar codes were introduced by Arikan in 2008 and are the first family of error-correcting codes achieving the symmetric capacity of an arbitrary binary-input discrete memoryless channel under low complexity encoding and using an efficient successive cancellation decoding strategy. Recently, non-binary polar codes have been studied, in which one can use different algebraic geometry codes to achieve better error decoding probability. In this paper, we study the performance of binary polar code...

  9. Linking Geometry, Algebra and Calculus with GeoGebra

    OpenAIRE

    Böhm, Josef

    2012-01-01

    GeoGebra is a free, open-source, and multi-platform software that combines dynamic geometry, algebra and calculus in one easy-to-use package. Students from middle-school to university can use it in classrooms and at home. In this workshop, we will introduce the features of GeoGebra with a special focus on not very common applications of a dynamic geometry program. We will inform about plans for developing training and research networks connected to GeoGebra. We can expect that at the ti...

  10. Clifford Algebras in Symplectic Geometry and Quantum Mechanics

    OpenAIRE

    Binz, Ernst; de Gosson, Maurice A.; Hiley, Basil J.

    2011-01-01

    The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional s...

  11. Clifford algebras geometric modelling and chain geometries with application in kinematics

    CERN Document Server

    Klawitter, Daniel

    2015-01-01

    After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.  Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About...

  12. [Geometry and algebra of branches of the middle cerebral artery].

    Science.gov (United States)

    Blinkov, S M

    1986-01-01

    A classification of the cortical branches of the middle cerebral artery (MCA) is suggested by means of which each branch in any hemisphere can be qualified and identified in any variant of MCA branching. The principle of the classification consists in grouping the branches into arteries and trunks of the second, third, etc. order. Branches supplying blood to a certain sector of the lateral surface of the hemisphere are designated arteries. Their number and zone of branching are constant. Branches giving rise to 2 and more arteries are named trunks. Branching of the trunks, the number of trunks of the second, third, etc. order, and the site and type of origin of the arteries are extremely variable. Each trunk can be designated by a formula stating its order and the name of the artery supplied by this trunk. The arrangement of the MCA branches on the surface of the gyri and deep in the sulci, represented on the map of the lateral surface of the hemisphere, is designated conditionally as geometry of MCA branches. The order of branching of the trunks and the type of origin of the arteries, represented on abstract maps of the lateral surface of the hemisphere, are designated conditionally as algebra of the MCA branches. The variability of the geometry and algebra of the MCA branches must be taken into consideration in operations for extra-intracranial microanastomosis and in endovasal intervention on the MCA. PMID:3811741

  13. BSRLM Geometry Working Group: ways of linking geometry and algebra, the case of Geogebra

    OpenAIRE

    Hohenwarter, Markus; Jones, Keith

    2007-01-01

    This paper discusses ways of enhancing the teaching of mathematics through enabling learners to gain stronger links between geometry and algebra. The vehicle for this is consideration of the affordances of GeoGebra, a form of freely-available open-source software that provides a versatile tool for visualising mathematical ideas from elementary through to university level. Following exemplification of teaching ideas using GeoGebra for secondary school mathematics, the paper considers current e...

  14. Algebra

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.

  15. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  16. Lower bounds for the minimum distance of algebraic geometry codes

    DEFF Research Database (Denmark)

    Beelen, Peter

    A one-point AG-code is an algebraic geometry code based on a divisor whose support consists of one point. Since the discovery of the Feng-Rao lower bound for the minimum distance, there has been a renewed interest in such codes. This lower bound is also called the order bound. An alternative...... description of these codes in terms of order domains has been found. In my talk I will indicate how one can use the ideas behind the order bound to obtain a lower bound for the minimum distance of any AG-code. After this I will compare this generalized order bound with other known lower bounds, such as the...

  17. Limit Algebras of Differential Forms in Non-Commutative Geometry

    Indian Academy of Sciences (India)

    S J Bhatt; A Inoue

    2008-08-01

    Given a C∗-normed algebra A which is either a Banach ∗-algebra or a Frechet ∗-algebra, we study the algebras ∞A and A obtained by taking respectively the projective limit and the inductive limit of Banach ∗-algebras obtained by completing the universal graded differential algebra ∗A of abstract non-commutative differential forms over A. Various quantized integrals on ∞A induced by a K-cycle on A are considered. The GNS-representation of ∞A defined by a d-dimensional non-commutative volume integral on a d+-summable K-cycle on A is realized as the representation induced by the left action of A on ∗A. This supplements the representation A on the space of forms discussed by Connes (Ch. VI.1, Prop. 5, p. 550 of [C]).

  18. Algebra and Geometry of Hamilton's Quaternions: 'Well, Papa, Can You Multiply Triplets?'

    Indian Academy of Sciences (India)

    2016-06-01

    Inspired by the relation between the algebra ofcomplex numbers and plane geometry, WilliamRowan Hamilton sought an algebra of triples forapplication to three-dimensional geometry. Unableto multiply and divide triples, he inventeda non-commutative division algebra of quadruples,in what he considered his most significantwork, generalizing the real and complex numbersystems. We give a motivated introduction toquaternions and discuss how they are related toPauli matrices, rotations in three dimensions, thethree sphere, the group SU(2) and the celebratedHopf fibrations.

  19. Non commutative geometry methods for group C*-algebras

    International Nuclear Information System (INIS)

    This book is intended to provide a quick introduction to the subject. The exposition is scheduled in the sequence, as possible for more understanding for beginners. The author exposed a K-theoretic approach to study group C*-algebras: started in the elementary part, with one example of description of the structure of C*-algebra of the group of affine transformations of the real straight line, continued then for some special classes of solvable and nilpotent Lie groups. In the second advanced part, he introduced the main tools of the theory. In particular, the conception of multidimensional geometric quantization and the index of group C*-algebras were created and developed. (author). Refs

  20. A Clifford Algebra approach to the Discretizable Molecular Distance Geometry Problem

    OpenAIRE

    Andrioni, Alessandro

    2013-01-01

    The Discretizable Molecular Distance Geometry Problem (DMDGP) consists in a subclass of the Molecular Distance Geometry Problem for which an embedding in ${\\mathbb{R}^3}$ can be found using a Branch & Prune (BP) algorithm in a discrete search space. We propose a Clifford Algebra model of the DMDGP with an accompanying version of the BP algorithm.

  1. The role of difficulty and gender in numbers, algebra, geometry and mathematics achievement

    Science.gov (United States)

    Rabab'h, Belal Sadiq Hamed; Veloo, Arsaythamby; Perumal, Selvan

    2015-05-01

    This study aims to identify the role of difficulty and gender in numbers, algebra, geometry and mathematics achievement among secondary schools students in Jordan. The respondent of the study were 337 students from eight public secondary school in Alkoura district by using stratified random sampling. The study comprised of 179 (53%) males and 158 (47%) females students. The mathematics test comprises of 30 items which has eight items for numbers, 14 items for algebra and eight items for geometry. Based on difficulties among male and female students, the findings showed that item 4 (fractions - 0.34) was most difficult for male students and item 6 (square roots - 0.39) for females in numbers. For the algebra, item 11 (inequality - 0.23) was most difficult for male students and item 6 (algebraic expressions - 0.35) for female students. In geometry, item 3 (reflection - 0.34) was most difficult for male students and item 8 (volume - 0.33) for female students. Based on gender differences, female students showed higher achievement in numbers and algebra compare to male students. On the other hand, there was no differences between male and female students achievement in geometry test. This study suggest that teachers need to give more attention on numbers and algebra when teaching mathematics.

  2. Remarks on Bihamiltonian Geometry and Classical $W$-algebras

    CERN Document Server

    Dinar, Yassir

    2009-01-01

    We obtain a local bihamiltonian structure for any nilpotent element in a simple Lie algebra from the generalized bihamiltonian reduction. We prove that this structure can be obtained by performing Dirac or Drinfeld-Sokolov reductions. This implies that the reduced structures depend only on the nilpotent element but not on the choice of a good grading or an isotropic subspace.

  3. Spectral properties of sums of Hermitian matrices and algebraic geometry

    Science.gov (United States)

    Chau Huu-Tai, P.; Van Isacker, P.

    2016-04-01

    It is shown that all the eigenvectors of a sum of Hermitian matrices belong to the same algebraic variety. A polynomial system characterizing this variety is given and a set of nonlinear equations is derived which allows the construction of the variety. Moreover, in some specific cases, explicit expressions for the eigenvectors and eigenvalues can be obtained. Explicit solutions of selected models are also derived.

  4. Spectral properties of sums of Hermitian matrices and algebraic geometry

    International Nuclear Information System (INIS)

    It is shown that all the eigenvectors of a sum of Hermitian matrices belong to the same algebraic variety. A polynomial system characterizing this variety is given and a set of nonlinear equations is derived which allows the construction of the variety. Moreover, in some specific cases, explicit expressions for the eigenvectors and eigenvalues can be obtained. Explicit solutions of selected models are also derived. (paper)

  5. Inner Metric Geometry of Complex Algebraic Surfaces with Isolated Singularities

    OpenAIRE

    Birbrair, Lev; Fernandes, Alexandre

    2007-01-01

    We produce examples of complex algebraic surfaces with isolated singularities such that these singularities are not metrically conic, i.e. the germs of the surfaces near singular points are not bi-Lipschitz equivalent, with respect to the inner metric, to cones. The technique used to prove the nonexistence of the metric conic structure is related to a development of Metric Homology. The class of the examples is rather large and it includes some surfaces of Brieskorn.

  6. Projective BGG equations, algebraic sets, and compactifications of Einstein geometries

    CERN Document Server

    Cap, A; Hammerl, M

    2010-01-01

    For curved projective manifolds we introduce a notion of a normal tractor frame field, based around any point. This leads to canonical systems of (redundant) coordinates that generalise the usual homogeneous coordinates on projective space. These give preferred local maps to the model projective space that encode geometric contact with the model to a level that is optimal, in a suitable sense. In terms of the trivialisations arising from the special frames, normal solutions of classes of natural linear PDE (so-called first BGG equations) are shown to be necessarily polynomial in the generalised homogeneous coordinates; the polynomial system is the pull back of a polynomial system that solves the corresponding problem on the model. Thus questions concerning the zero locus of solutions, as well as related finer geometric and smooth data, are reduced to a study of the corresponding polynomial systems and algebraic sets. We show that a normal solution determines a canonical manifold stratification that reflects a...

  7. New Geometry with All Killing Vectors Spanning the Poincaré Algebra

    International Nuclear Information System (INIS)

    The new four-dimensional geometry whose Killing vectors span the Poincaré algebra is presented and its structure is analyzed. The new geometry can be regarded as the Poincaré-invariant solution of the degenerate extension of the vacuum Einstein field equations with a negative cosmological constant and provides a static cosmological spacetime with a Lobachevsky space. The motion of free particles in the spacetime is discussed. (general)

  8. Extended Conformal Algebra and Non-commutative Geometry in Particle Theory

    OpenAIRE

    Chagas-Filho, W.

    2004-01-01

    We show how an off shell invariance of the massless particle action allows the construction of an extension of the conformal space-time algebra and induces a non-commutative space-time geometry in bosonic and supersymmetric particle theories.

  9. Vladimir I. Arnold collected works : hydrodynamics, bifurcation theory, algebraic geometry : 1965-1972

    CERN Document Server

    Arnold, Vladimir I; Khesin, Boris; Marsden, Jerrold E; Varchenko, AN; Vassiliev, Victor A; Viro, Oleg Yanovich; Zakalyukin, Vladimir

    2013-01-01

    Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This second volume of his ""Collected Works"" focuses on hydrodynamics, bifurcation theory, and algebraic geometry.

  10. Quantum error-correcting codes from algebraic geometry codes of Castle type

    Science.gov (United States)

    Munuera, Carlos; Tenório, Wanderson; Torres, Fernando

    2016-07-01

    We study algebraic geometry codes producing quantum error-correcting codes by the CSS construction. We pay particular attention to the family of Castle codes. We show that many of the examples known in the literature in fact belong to this family of codes. We systematize these constructions by showing the common theory that underlies all of them.

  11. Algebraic Quantum Theory on Manifolds A Haag-Kastler Setting for Quantum Geometry

    CERN Document Server

    Rainer, M

    2000-01-01

    Motivated by the invariance of current representations of quantum gravity under diffeomorphisms much more general than isometries, the Haag-Kastler setting is extended to manifolds without metric background structure. First, the causal structure on a differentiable manifold M of arbitrary dimension (d+1>2) can be defined in purely topological terms, via cones (C-causality). Then, the general structure of a net of C*-algebras on a manifold M and its causal properties required for an algebraic quantum field theory can be described as an extension of the Haag-Kastler axiomatic framework. An important application is given with quantum geometry on a spatial slice within the causally exterior region of a topological horizon H, resulting in a net of Weyl algebras for states with an infinite number of intersection points of edges and transversal (d-1)-faces within any neighbourhood of the spatial boundary S^2.

  12. SAGA advances in ShApes, Geometry, and Algebra : results from the Marie Curie initial training network

    CERN Document Server

    Muntingh, Georg

    2014-01-01

    This book summarizes research carried out in workshops of the SAGA project, an Initial Training Network exploring the interplay of Shapes, Algebra, Geometry and Algorithms. Written by a combination of young and experienced researchers, the book introduces new ideas in an established context. Among the central topics are approximate and sparse implicitization and surface parametrization; algebraic tools for geometric computing; algebraic geometry for computer aided design applications and problems with industrial applications. Readers will encounter new methods for the (approximate) transition between the implicit and parametric representation; new algebraic tools for geometric computing; new applications of isogeometric analysis, and will gain insight into the emerging research field situated between algebraic geometry and computer aided geometric design.

  13. Preservice Elementary Mathematics Teachers' Geometric and Algebraic Proof Process with Dynamic Geometry Software

    Directory of Open Access Journals (Sweden)

    Sema İpek

    2011-01-01

    Full Text Available Dynamic Geometry Software (DGS has recently been used in mathematics courses. It helps students understand the mathematical concepts and methods easily and “provides an environment in which students can experiment freely, hence they can easily check their intuitions and conjectures in the process of looking for patterns, general properties, etc.” (Marrades & Gutierrez, 2000. Battista and Clements (1995 claimed that students should learn the proof of any theorem by using visual material. According to Jones (2005, DGS is an important tool for students and teachers to make conjectures and control them and also understand the relationship between concepts. In addition to students, teachers can use it to teach mathematical concepts. For instance, proof is a difficult issue to be explained by using paper-pencil methods. According to Nordström's (2004 research, teachers have difficulties while explaining the formal proofs in the textbooks. For this reason, mathematics teachers should know how to use DGS. Since, DGS provides visual and it helps be turned abstract mathematical concepts into concrete (Pandiscio, 2002. Preservice elementary mathematics teachers should learn how to use DGS to improve their future students' motivation in mathematics classes. They can use these programs to take students' interest on mathematical concepts and to provide efficient learning environment. In this study, it was aimed to determine the preservice elementary mathematics teachers' algebraic proof processes by the use of dynamic geometry software. For this purpose, a course was designed in accordance to DGS. During this course participants solved algebraic problems related to algebraic proofs by using DGS for 10 weeks. During the course, participants prepared reflection papers about their proof processes and the effects of DGS to their way of proving. Moreover, the researchers had interviews selected participants about geometric and algebraic proofs with DGS

  14. Algebraic structure of Robinson–Trautman and Kundt geometries in arbitrary dimension

    International Nuclear Information System (INIS)

    We investigate the Weyl tensor algebraic structure of a fully general family of D-dimensional geometries that admit a non-twisting and shear-free null vector field k. From the coordinate components of the curvature tensor we explicitly derive all Weyl scalars of various boost weights. This enables us to give a complete algebraic classification of the metrics in the case when the optically privileged null direction k is a (multiple) Weyl aligned null direction (WAND). No field equations are applied, so the results are valid not only in Einstein's gravity, including its extension to higher dimensions, but also in any metric gravitation theory that admits non-twisting and shear-free spacetimes. We prove that all such geometries are of type I(b), or more special, and we derive surprisingly simple necessary and sufficient conditions under which k is a double, triple or quadruple WAND. All possible algebraically special types, including the refinement to subtypes, are thus identified, namely II(a), II(b), II(c), II(d), III(a), III(b), N, O, IIi, IIIi, D, D(a), D(b), D(c), D(d), and their combinations. Some conditions are identically satisfied in four dimensions. We discuss both important subclasses, namely the Kundt family of geometries with the vanishing expansion (Θ=0) and the Robinson–Trautman family (Θ ≠ 0, and in particular Θ=1/r). Finally, we apply Einstein's field equations and obtain a classification of all Robinson–Trautman vacuum spacetimes. This reveals fundamental algebraic differences in the D>4 and D=4 cases, namely that in higher dimensions there only exist such spacetimes of types D(a) ≡ D(abd), D(c) ≡ D(bcd) and O. (paper)

  15. D-branes and synthetic/$C^{\\infty}$-algebraic symplectic/calibrated geometry, I: Lemma on a finite algebraicness property of smooth maps from Azumaya/matrix manifolds

    CERN Document Server

    Liu, Chien-Hao

    2015-01-01

    We lay down an elementary yet fundamental lemma concerning a finite algebraicness property of a smooth map from an Azumaya/matrix manifold with a fundamental module to a smooth manifold. This gives us a starting point to build a synthetic (synonymously, $C^{\\infty}$-algebraic) symplectic geometry and calibrated geometry that are both tailored to and guided by D-brane phenomena in string theory and along the line of our previous works D(11.1) (arXiv:1406.0929 [math.DG]) and D(11.2) (arXiv:1412.0771 [hep-th]).

  16. Bicomplex holomorphic functions the algebra, geometry and analysis of bicomplex numbers

    CERN Document Server

    Luna-Elizarrarás, M Elena; Struppa, Daniele C; Vajiac, Adrian

    2015-01-01

    The purpose of this book is to develop the foundations of the theory of holomorphicity on the ring of bicomplex numbers. Accordingly, the main focus is on expressing the similarities with, and differences from, the classical theory of one complex variable. The result is an elementary yet comprehensive introduction to the algebra, geometry and analysis of bicomplex numbers. Around the middle of the nineteenth century, several mathematicians (the best known being Sir William Hamilton and Arthur Cayley) became interested in studying number systems that extended the field of complex numbers. Hamilton famously introduced the quaternions, a skew field in real-dimension four, while almost simultaneously James Cockle introduced a commutative four-dimensional real algebra, which was rediscovered in 1892 by Corrado Segre, who referred to his elements as bicomplex numbers. The advantages of commutativity were accompanied by the introduction of zero divisors, something that for a while dampened interest in this subject. ...

  17. Weighted Traces on Algebras of Pseudo-Differential Operators and Geometry of Loop Groups

    OpenAIRE

    Cardona, A.; Ducourtioux, C.; Magnot, J. P.; Paycha, S.

    2000-01-01

    Using {\\it weighted traces} which are linear functionals of the type $$A\\to tr^Q(A):=(tr(A Q^{-z})-z^{-1} tr(A Q^{-z}))_{z=0}$$ defined on the whole algebra of (classical) pseudo-differential operators (P.D.O.s) and where $Q$ is some positive invertible elliptic operator, we investigate the geometry of loop groups in the light of the cohomology of pseudo-differential operators. We set up a geometric framework to study a class of infinite dimensional manifolds in which we recover some results ...

  18. Numbers as functions: the development of an idea in the Moscow school of algebraic geometry

    OpenAIRE

    Parshin, A. N.

    2009-01-01

    This is expanded text of a lecture delivered by the author at the conference "Mat\\'eriaux pour l'Histoire des Math\\'ematiques au XX\\`eme si\\`ecle", which took place in Nice in January 1996. The task was to describe one area in the development of arithmetical algebraic geometry in Moscow during the 1950s and 1960s. We shall begin by explaining the meaning of the analogy between numbers and functions, starting with the simplest concepts. In the second part we study a nontrivial example: the exp...

  19. A C*-algebra approach to noncommutative Lorentzian geometry of globally-hyperbolic spacetimes

    CERN Document Server

    Moretti, V

    2003-01-01

    The structure of globally hyperbolic spacetimes is investigated from the point of view of Connes' noncommutative geometry. No foliation of the spacetime by means of spacelike surfaces is employed, the complete Lorentzian geometry is considered. Connes' functional formula for the distance is generalized to the Lorentzian case using the d'Alembert operator and the causal functions of a globally hyperbolic spacetime (continuous functions which do not decrease along future-directed causal curves).The formula concerns the Lorentzian distance which determines the causal part of the Synge world function, satisfies an inverse triangular inequality and completely determines the topology, the differentiable structure, the metric tensor and the temporal orientation of a globally hyperbolic spacetime. Afterwards, using a C*-algebra approach, the spacetime causal structure and the Lorentzian distance are generalized into noncommutative structures. The generalized spacetime consists of a direct set of of Hilbert spaces and...

  20. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  1. Numbers as functions: the development of an idea in the Moscow school of algebraic geometry

    CERN Document Server

    Parshin, A N

    2009-01-01

    This is expanded text of a lecture delivered by the author at the conference "Mat\\'eriaux pour l'Histoire des Math\\'ematiques au XX\\`eme si\\`ecle", which took place in Nice in January 1996. The task was to describe one area in the development of arithmetical algebraic geometry in Moscow during the 1950s and 1960s. We shall begin by explaining the meaning of the analogy between numbers and functions, starting with the simplest concepts. In the second part we study a nontrivial example: the explicit formula for the law of reciprocity. In the third part we shall become acquainted with certain aspects of the "social" life of the Moscow school, in particular, with certain seminars, lectures, and books. In the final part we shall examine another example of this analogy: arithmetical surfaces and Arakelov theory.

  2. Algebraic geometry methods associated to the one-dimensional Hubbard model

    Science.gov (United States)

    Martins, M. J.

    2016-06-01

    In this paper we study the covering vertex model of the one-dimensional Hubbard Hamiltonian constructed by Shastry in the realm of algebraic geometry. We show that the Lax operator sits in a genus one curve which is not isomorphic but only isogenous to the curve suitable for the AdS/CFT context. We provide an uniformization of the Lax operator in terms of ratios of theta functions allowing us to establish relativistic like properties such as crossing and unitarity. We show that the respective R-matrix weights lie on an Abelian surface being birational to the product of two elliptic curves with distinct J-invariants. One of the curves is isomorphic to that of the Lax operator but the other is solely fourfold isogenous. These results clarify the reason the R-matrix can not be written using only difference of spectral parameters of the Lax operator.

  3. Axion Experiments to Algebraic Geometry: Testing Quantum Gravity via the Weak Gravity Conjecture

    CERN Document Server

    Heidenreich, Ben; Rudelius, Tom

    2016-01-01

    Common features of known quantum gravity theories may hint at the general nature of quantum gravity. The absence of continuous global symmetries is one such feature. This inspired the Weak Gravity Conjecture, which bounds masses of charged particles. We propose the Lattice Weak Gravity Conjecture, which further requires the existence of an infinite tower of particles of all possible charges under both abelian and nonabelian gauge groups and directly implies a cutoff for quantum field theory. It holds in a wide variety of string theory examples and has testable consequences for the real world and for pure mathematics. We sketch some implications of these ideas for models of inflation, for the QCD axion (and LIGO), for conformal field theory, and for algebraic geometry.

  4. Fast Erasure-and error decoding of algebraic geometry codes up to the Feng-Rao bound

    DEFF Research Database (Denmark)

    Høholdt, Tom; Jensen, Helge Elbrønd; Sakata, Shojiro; Leonard, Doug

    1998-01-01

    This correspondence gives an errata (that is erasure-and error-) decoding algorithm of one-point algebraic-geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-Massey algorithm and the voting procedure of Feng and Rao....

  5. Piecewise algebraic varieties

    Institute of Scientific and Technical Information of China (English)

    WANG Renhong; ZHU Chungang

    2004-01-01

    The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.

  6. From the topological development of matrix models to the topological string theory: arrangement of surfaces through algebraic geometry

    International Nuclear Information System (INIS)

    The 2-matrix model has been introduced to study Ising model on random surfaces. Since then, the link between matrix models and arrangement of discrete surfaces has strongly tightened. This manuscript aims to investigate these deep links and extend them beyond the matrix models, following my work's evolution. First, I take care to define properly the hermitian 2 matrix model which gives rise to generating functions of discrete surfaces equipped with a spin structure. Then, I show how to compute all the terms in the topological expansion of any observable by using algebraic geometry tools. They are obtained as differential forms on an algebraic curve associated to the model: the spectral curve. In a second part, I show how to define such differentials on any algebraic curve even if it does not come from a matrix model. I then study their numerous symmetry properties under deformations of the algebraic curve. In particular, I show that these objects coincide with the topological expansion of the observable of a matrix model if the algebraic curve is the spectral curve of this model. Finally, I show that the fine tuning of the parameters ensures that these objects can be promoted to modular invariants and satisfy the holomorphic anomaly equation of the Kodaira-Spencer theory. This gives a new hint that the Dijkgraaf-Vafa conjecture is correct. (author)

  7. Geometric Complexity Theory VI: the flip via saturated and positive integer programming in representation theory and algebraic geometry

    CERN Document Server

    Mulmuley, Ketan D

    2007-01-01

    This article belongs to a series on geometric complexity theory (GCT), an approach to the P vs. NP and related problems through algebraic geometry and representation theory. The basic principle behind this approach is called the flip. In essence, it reduces the negative hypothesis in complexity theory (the lower bound problems), such as the P vs. NP problem in characteristic zero, to the positive hypothesis in complexity theory (the upper bound problems): specifically, to showing that the problems of deciding nonvanishing of the fundamental structural constants in representation theory and algebraic geometry, such as the well known plethysm constants, belong to the complexity class P. In this article, we suggest a plan for implementing the flip, i.e., for showing that these decision problems belong to P. This is based on the reduction of the preceding complexity-theoretic positive hypotheses to mathematical positivity hypotheses: specifically, to showing that there exist positive formulae--i.e. formulae with ...

  8. Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination

    OpenAIRE

    Cohen, Cyril; Mahboubi, Assia

    2012-01-01

    International audience This paper describes a formalization of discrete real closed fields in the Coq proof assistant. This abstract structure captures for instance the theory of real algebraic numbers, a decidable subset of real numbers with good algorithmic properties. The theory of real algebraic numbers and more generally of semi-algebraic varieties is at the core of a number of effective methods in real analysis, including decision procedures for non linear arithmetic or optimization ...

  9. Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination

    OpenAIRE

    Mahboubi, Assia; Cohen, Cyril

    2012-01-01

    This paper describes a formalization of discrete real closed fields in the Coq proof assistant. This abstract structure captures for instance the theory of real algebraic numbers, a decidable subset of real numbers with good algorithmic properties. The theory of real algebraic numbers and more generally of semi-algebraic varieties is at the core of a number of effective methods in real analysis, including decision procedures for non linear arithmetic or optimization methods for real valued fu...

  10. Generalization of the twistor to Clifford algebras as a basis for geometry

    International Nuclear Information System (INIS)

    The Penrose twistor theory to a Clifford algebra is generated. This allows basic geometric forms and relationships to be expressed purely algebraically. In addition, by means of an inner automorphism of this algebra, it is possible to regard these forms and relationships as emerging from a deeper pre-space, which it is calling an implicate order. The way is then opened up for a new mode of description, that does not start from continuous space-time, but which allows this to emerge as a limiting case. (Author)

  11. Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry

    DEFF Research Database (Denmark)

    Müller, Stefan; Feliu, Elisenda; Regensburger, Georg;

    2016-01-01

    We give necessary and sufficient conditions in terms of sign vectors for the injectivity of families of polynomials maps with arbitrary real exponents defined on the positive orthant. Our work relates and extends existing injectivity conditions expressed in terms of Jacobian matrices and determin...... determinants. In the context of chemical reaction networks with power-law kinetics, our results can be used to preclude as well as to guarantee multiple positive steady states. In the context of real algebraic geometry, our results reveal the first ...

  12. Root systems from Toric Calabi-Yau Geometry. Towards new algebraic structures and symmetries in physics?

    CERN Document Server

    Torrente-Lujan, E

    2004-01-01

    The algebraic approach to the construction of the reflexive polyhedra that yield Calabi-Yau spaces in three or more complex dimensions with K3 fibres reveals graphs that include and generalize the Dynkin diagrams associated with gauge symmetries. In this work we continue to study the structure of graphs obtained from $CY_3$ reflexive polyhedra. We show how some particularly defined integral matrices can be assigned to these diagrams. This family of matrices and its associated graphs may be obtained by relaxing the restrictions on the individual entries of the generalized Cartan matrices associated with the Dynkin diagrams that characterize Cartan-Lie and affine Kac-Moody algebras. These graphs keep however the affine structure, as it was in Kac-Moody Dynkin diagrams. We presented a possible root structure for some simple cases. We conjecture that these generalized graphs and associated link matrices may characterize generalizations of these algebras.

  13. Algebraic structures, physics and geometry from a Unified Field Theoretical framework

    CERN Document Server

    Cirilo-Lombardo, Diego Julio

    2014-01-01

    Starting from a Unified Field Theory (UFT) proposed previously by the authors, the possible fermionic representations arising from the same spacetime are considered from the algebraic and geometrical viewpoint. We specifically demonstrate in this UFT general context that the underlying basis of the single geometrical structure P (G,M) (the principal fiber bundle over the real spacetime manifold M with structural group G) reflecting the symmetries of the different fields carry naturally a biquaternionic structure instead of a complex one. This fact allows us to analyze algebraically and to interpret physically in a straighforward way the Majorana and Dirac representations and the relation of such structures with the spacetime signature and non-hermitian (CP) dynamic operators. Also, from the underlying structure of the tangent space, the existence of hidden (super) symmetries and the possibility of supersymmetric extensions of these UFT models are given showing that Rothstein's theorem is incomplete for that d...

  14. Discrete differential geometry of triangle tiles and algebra of closed trajectories

    OpenAIRE

    Morikawa, Naoto

    2006-01-01

    This paper proposes a new mathematical framework that can be applied to biological problems such as analysis of the structures of proteins and protein complexes. In particular, it gives a new method for encoding the three-dimensional structure of a protein into a binary sequence, where proteins are approximated by a folded tetrahedron sequence. It also gives a new algebraic framework for describing molecular complexes and their interactions. For simplicity, we shall explain the framework in t...

  15. Non-geometric flux vacua, S-duality and algebraic geometry

    OpenAIRE

    Guarino, Adolfo; Weatherill, George James

    2008-01-01

    The four dimensional gauged supergravities descending from non-geometric string compactifications involve a wide class of flux objects which are needed to make the theory invariant under duality transformations at the effective level. Additionally, complex algebraic conditions involving these fluxes arise from Bianchi identities and tadpole cancellations in the effective theory. In this work we study a simple T and S-duality invariant gauged supergravity, that of a type IIB string compactifie...

  16. Algebraic Structures, Physics and Geometry from a Unified Field Theoretical Framework

    Science.gov (United States)

    Cirilo-Lombardo, Diego Julio

    2015-10-01

    Starting from a Unified Field Theory (UFT) proposed previously by the author, the possible fermionic representations arising from the same spacetime are considered from the algebraic and geometrical viewpoint. We specifically demonstrate in this UFT general context that the underlying basis of the single geometrical structure P( G, M) (the principal fiber bundle over the real spacetime manifold M with structural group G) reflecting the symmetries of the different fields carry naturally a biquaternionic structure instead of a complex one. This fact allows us to analyze algebraically and to interpret physically in a straighforward way the Majorana and Dirac representations and the relation of such structures with the spacetime signature and non-hermitian (CP) dynamic operators. Also, from the underlying structure of the tangent space, the existence of hidden (super) symmetries and the possibility of supersymmetric extensions of these UFT models are given showing that Rothstein's theorem is incomplete for that description. The importance of the Clifford algebras in the description of all symmetries, mainly the interaction of gravity with the other fields, is briefly discussed.

  17. Central simple Poisson algebras

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai; XU; Xiaoping

    2004-01-01

    Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.

  18. Editors' preface for the topical issue on Seven papers on Noncommutative Geometry and Operator Algebras

    Science.gov (United States)

    Guido, Daniele; Landi, Giovanni; Vassout, Stéphane

    2016-07-01

    This topical issue grew out of the International Conference "Noncommutative Geometry and Applications" held 16-21 June 2014 at Villa Mondragone, Frascati (Roma). The main purpose of the conference was to have a unified view of different incarnations of noncommutative geometry and its applications. The seven papers collected in the present topical issue represent a good sample of the topics covered at the workshop. The conference itself was one of the climaxes of the Franco-Italian project GREFI-GENCO, which was initiated in 2007 by CNRS and INDAM to promote and enhance collaboration and exchanges between French and Italian researchers in the area of noncommutative geometry.

  19. Lie algebra automorphisms as Lie point symmetries and the solution space for Bianchi Type I, II, IV, V vacuum geometries

    CERN Document Server

    Terzis, Petros A

    2010-01-01

    Lie group symmetry analysis for systems of coupled, nonlinear ordinary differential equations is performed in order to obtain the entire solution space to Einstein's field equations for vacuum Bianchi spacetime geometries. The symmetries used are the automorphisms of the Lie algebra of the corresponding three- dimensional isometry group acting on the hyper-surfaces of simultaneity for each Bianchi Type, as well as the scaling and the time reparametrization symmetry. The method is applied to Bianchi Types I; II; IV and V. The result is the acquisition, in each case, of the entire solution space of either Lorenzian of Euclidean signature. This includes all the known solutions for each Type and the general solution of Type IV (in terms of sixth Painlev\\'e transcendent PVI).

  20. Model theory and algebraic geometry an introduction to E. Hrushovski’s proof of the geometric Mordell-Lang conjecture

    CERN Document Server

    1998-01-01

    This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.

  1. The Interpretative Flexibility, Instrumental Evolution, and Institutional Adoption of Mathematical Software in Educational Practice: The Examples of Computer Algebra and Dynamic Geometry

    Science.gov (United States)

    Ruthven, Kenneth

    2008-01-01

    This article examines three important facets of the incorporation of new technologies into educational practice, focusing on emergent usages of the mathematical tools of computer algebra and dynamic geometry. First, it illustrates the interpretative flexibility of these tools, highlighting important differences in ways of conceptualizing and…

  2. The geometry of blueprints. Part I: Algebraic background and scheme theory

    CERN Document Server

    Lorscheid, Oliver

    2011-01-01

    A blueprint generalizes both commutative (semi-)rings and commutative monoids. This generalization allows a simultaneous treatment of ideals resp. congruences for rings and monoids and leads to a common scheme theory. In particular, it bridges the gap between usual schemes and $\\mathbb{F}_1$-schemes (after Kato, Deitmar and Connes-Consani). Beside this unification, the category of blueprints contains new interesting objects as "improved" cyclotomic field extensions $\\mathbb{F}_{1^n}$ of $\\mathbb{F}_1$ and "archimedean valuation rings". It also yields a notion of semi-ring schemes. This first paper lays the foundation for subsequent projects, which are devoted to the following problems: Tits' idea of Chevalley groups over $\\mathbb{F}_1$, congruence schemes, sheaf cohomology and $K$-theory and a unified view on analytic geometry over $\\mathbb{F}_1$, adic spaces (after Huber), analytic spaces (after Berkovich) and tropical geometry.

  3. Algebraic Groups

    DEFF Research Database (Denmark)

    2007-01-01

    The workshop continued a series of Oberwolfach meetings on algebraic groups, started in 1971 by Tonny Springer and Jacques Tits who both attended the present conference. This time, the organizers were Michel Brion, Jens Carsten Jantzen, and Raphaël Rouquier. During the last years, the subject of...... algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group-theorists, and to...

  4. Workshop on Commutative Algebra

    CERN Document Server

    Simis, Aron

    1990-01-01

    The central theme of this volume is commutative algebra, with emphasis on special graded algebras, which are increasingly of interest in problems of algebraic geometry, combinatorics and computer algebra. Most of the papers have partly survey character, but are research-oriented, aiming at classification and structural results.

  5. Fields and Forms on -Algebras

    Indian Academy of Sciences (India)

    Cătălin Ciupală

    2005-02-01

    In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.

  6. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  7. Relative Homological Algebra Volume 1

    CERN Document Server

    2011-01-01

    This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. The book is also suitable for an introductory course in commutative and ordinary homological algebra.

  8. Algebraic Geometry for Splines

    OpenAIRE

    2012-01-01

    List of papers. Papers 1 - 4 are removed from the thesis due to publisher restrictions. These papers are chapters 2 - 5 in the thesis. Paper 1 / Chapter 2: Bernard Mourrain, Nelly Villamizar. Homological techniques for the analysis of the dimension of triangular spline spaces. Journal of Symbolic Computation. Volume 50, March 2013, Pages 564–577. doi:10.1016/j.jsc.2012.10.002 Paper 2 / Chapter 3: Bernard Mourrain, Nelly Villamizar. On the dimension of splines on tetrahedral decomposit...

  9. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  10. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  11. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  12. Geometri

    DEFF Research Database (Denmark)

    Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...... matematik, geometri, og fysik til at forstå, hvad det er, der foregår....

  13. Differential geometry

    CERN Document Server

    Guggenheimer, Heinrich W

    1977-01-01

    This is a text of local differential geometry considered as an application of advanced calculus and linear algebra. The discussion is designed for advanced undergraduate or beginning graduate study, and presumes of readers only a fair knowledge of matrix algebra and of advanced calculus of functions of several real variables. The author, who is a Professor of Mathematics at the Polytechnic Institute of New York, begins with a discussion of plane geometry and then treats the local theory of Lie groups and transformation groups, solid differential geometry, and Riemannian geometry, leading to a

  14. Representations of fundamental groups of algebraic varieties

    CERN Document Server

    Zuo, Kang

    1999-01-01

    Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.

  15. Lie algebra automorphisms as Lie-point symmetries and the solution space for Bianchi type I, II, IV, V vacuum geometries

    Science.gov (United States)

    Terzis, Petros A.; Christodoulakis, T.

    2012-12-01

    Lie-group symmetry analysis for systems of coupled, nonlinear ordinary differential equations is performed in order to obtain the entire solution space to Einstein’s field equations for vacuum Bianchi spacetime geometries. The symmetries used are the automorphisms of the Lie algebra of the corresponding three-dimensional isometry group acting on the hyper-surfaces of simultaneity for each Bianchi type, as well as the scaling and the time reparametrization symmetry. A detailed application of the method is presented for Bianchi type IV. The result is the acquisition of the general solution of type IV in terms of sixth Painlevé transcendent PVI, along with the known pp-wave solution. For Bianchi types I, II, V the known entire solution space is attained and very briefly listed, along with two new type V solutions of Euclidean and neutral signature and a type I pp-wave metric.

  16. Brackets in representation algebras of Hopf algebras

    OpenAIRE

    Massuyeau, Gwenael; Turaev, Vladimir

    2015-01-01

    For any graded bialgebras $A$ and $B$, we define a commutative graded algebra $A_B$ representing the functor of so-called $B$-representations of $A$. When $A$ is a cocommutative graded Hopf algebra and $B$ is a commutative ungraded Hopf algebra, we introduce a method deriving a Gerstenhaber bracket in $A_B$ from a Fox pairing in $A$ and a balanced biderivation in $B$. Our construction is inspired by Van den Bergh's non-commutative Poisson geometry, and may be viewed as an algebraic generaliza...

  17. A Novel Approach of High-dimensional Image Restoration Based on Geometry Algebra%基于几何代数的散焦模糊高维图像恢复

    Institute of Scientific and Technical Information of China (English)

    户利利

    2012-01-01

    The geometry algebra can compute and analyze the high-dimensional space geometry in an easy way. Taking advantage of this property, the paper denotes the color image as one point in the geometry space by using the geometry algebra. The image transform can be treated on the language of geometry algebra as action of some transform. The image transform can be treated as the movements of the point in the high-dimensional space from the view of geometry. Beginning with the original blurred image, two further blurred images are got, then the restoral image can be obtained through the regressive curve derived from the three points in the geometry space which are mapped from the images by making use of geometry algebra. Experiments are presented to prove the availability of this method.%几何代数易于对高维空间几何进行计算和分析,应用几何代数的这一特性,将彩色图像表示为高维几何空间中的点元素,利用几何代数描述图像的变换关系,将图像的散焦变换看作是高维空间中点元素的平移运动.通过分析模糊图像以及其衍生出的相关模糊图像对应在高维几何空间中点之间的分布关系的研究,计算出空间中复原图像的点分布位置.实验结果验证了该方法的有效性.

  18. Geometric Algebras and Extensors

    OpenAIRE

    Fernandez, V. V.; Moya, A. M.; Rodrigues Jr., W. A.

    2007-01-01

    This is the first paper in a series (of four) designed to show how to use geometric algebras of multivectors and extensors to a novel presentation of some topics of differential geometry which are important for a deeper understanding of geometrical theories of the gravitational field. In this first paper we introduce the key algebraic tools for the development of our program, namely the euclidean geometrical algebra of multivectors Cl(V,G_{E}) and the theory of its deformations leading to met...

  19. Localization of Rota-Baxter algebras

    OpenAIRE

    Chu, Chenghao; Guo, Li

    2012-01-01

    A commutative Rota-Baxter algebra can be regarded as a commutative algebra that carries an abstraction of the integral operator. With the motivation of generalizing the study of algebraic geometry to Rota-Baxter algebra, we extend the central concept of localization for commutative algebras to commutative Rota-Baxter algebras. The existence of such a localization is proved and, under mild conditions, its explicit constructions are obtained. The existence of tensor products of commutative Rota...

  20. Left Artinian Algebraic Algebras

    Institute of Scientific and Technical Information of China (English)

    S. Akbari; M. Arian-Nejad

    2001-01-01

    Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.

  1. DG Poisson algebra and its universal enveloping algebra

    Science.gov (United States)

    Lü, JiaFeng; Wang, XingTing; Zhuang, GuangBin

    2016-05-01

    In this paper, we introduce the notions of differential graded (DG) Poisson algebra and DG Poisson module. Let $A$ be any DG Poisson algebra. We construct the universal enveloping algebra of $A$ explicitly, which is denoted by $A^{ue}$. We show that $A^{ue}$ has a natural DG algebra structure and it satisfies certain universal property. As a consequence of the universal property, it is proved that the category of DG Poisson modules over $A$ is isomorphic to the category of DG modules over $A^{ue}$. Furthermore, we prove that the notion of universal enveloping algebra $A^{ue}$ is well-behaved under opposite algebra and tensor product of DG Poisson algebras. Practical examples of DG Poisson algebras are given throughout the paper including those arising from differential geometry and homological algebra.

  2. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  3. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  4. Open problems on open algebraic varieties

    CERN Document Server

    Gurjar, R V; Kumar, N M; Miyanishi, M; Russell, P; Sakai, F; Wright, D; Zaidenberg, M G; Kaliman, Shulim; Kumar, N Mohan; Miyanishi, Masayoshi; Russell, Peter; Sakai, Fumio; Wright, David; Zaidenberg, Mikhail

    1995-01-01

    This report records a large number of open problems in Affine Algebraic Geometry that were proposed by participants in a Conference on Open Algebraic Varieties at the Centre de Recherches en Mathematiques in Montreal at December 1994.

  5. Discrimination in a General Algebraic Setting

    Directory of Open Access Journals (Sweden)

    Benjamin Fine

    2015-01-01

    Full Text Available Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.

  6. Clifford algebra and the projective model of Hyperbolic spaces

    OpenAIRE

    Sokolov, Andrey

    2016-01-01

    I apply the algebraic framework developed in [1] to study geometry of hyperbolic spaces in 1, 2, and 3 dimensions. The background material on projectivised Clifford algebras and their application to Cayley-Klein geometries is described in [2].

  7. Geometric Algebra for Physicists

    Science.gov (United States)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  8. Z$_3$-graded differential geometry of quantum plane

    OpenAIRE

    Celik, Salih

    2002-01-01

    In this work, the Z$_3$-graded differential geometry of the quantum plane is constructed. The corresponding quantum Lie algebra and its Hopf algebra structure are obtained. The dual algebra, i.e. universal enveloping algebra of the quantum plane is explicitly constructed and an isomorphism between the quantum Lie algebra and the dual algebra is given.

  9. Universal algebra

    CERN Document Server

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  10. Affine and Projective Geometry

    CERN Document Server

    Bennett, M K

    1995-01-01

    An important new perspective on AFFINE AND PROJECTIVE GEOMETRY. This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory

  11. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  12. On crossed product of algebras

    OpenAIRE

    Borowiec, A.; Marcinek, W.

    2000-01-01

    The concept of a crossed tensor product of algebras is studied from a few points of views. Some related constructions are considered. Crossed enveloping algebras and their representations are discussed. Applications to the noncommutative geometry and particle systems with generalized statistics are indicated.

  13. Noncommutative Geometry Year 2000

    OpenAIRE

    Connes, Alain

    2000-01-01

    We describe basic concepts of noncommutative geometry and a general construction extending the familiar duality between ordinary spaces and commutative algebras to a duality between Quotient spaces and Noncommutative algebras. Basic tools of the theory, K-theory, Cyclic cohomology, Morita equivalence, Operator theoretic index theorems, Hopf algebra symmetry are reviewed. They cover the global aspects of noncommutative spaces, such as the transformation $\\theta \\to 1/\\theta$ for the NC torus $...

  14. A non-commutative geometry approach to the representation theory of reductive $p$-adic groups: Homology of Hecke algebras, a survey and some new results

    OpenAIRE

    Nistor, Victor

    2004-01-01

    We survey some of the known results on the relation between the homology of the {\\em full} Hecke algebra of a reductive $p$-adic group $G$, and the representation theory of $G$. Let us denote by $\\CIc(G)$ the full Hecke algebra of $G$ and by $\\Hp_*(\\CIc(G))$ its periodic cyclic homology groups. Let $\\hat G$ denote the admissible dual of $G$. One of the main points of this paper is that the groups $\\Hp_*(\\CIc(G))$ are, on the one hand, directly related to the topology of $\\hat G$ and, on the o...

  15. Noncommutative geometry and Cayley-Smooth orders

    CERN Document Server

    Le Bruyn, Lieven

    2007-01-01

    Preface Introduction Noncommutative algebra Noncommutative geometryNoncommutative desingularizationsCayley-Hamilton Algebras Conjugacy classes of matrices Simultaneous conjugacy classesMatrix invariants and necklaces The trace algebraThe symmetric group Necklace relations Trace relations Cayley-Hamilton algebrasReconstructing Algebras Representation schemes Some algebraic geometry The Hilbert criterium Semisimple modules Some invariant theory Geometric reconstruction The Gerstenhaber-Hesselink theoremThe real moment mapÉtale Technology Étale topologyCentral simple algebrasSpectral sequencesTse

  16. Using the Quaternions to Compose Rotations. Applications of Linear Algebra to Geometry. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 313.

    Science.gov (United States)

    Solomon, Frederick

    This module applies linear algebraic methods to solve the following problem: If an object in a three-dimensional coordinate system is first rotated about a given axis through the origin by a given angle, and then rotated about another axis through the origin by another angle, there is a straightforward way to calculate the combined result of the…

  17. Vector geometry

    CERN Document Server

    Robinson, Gilbert de B

    2011-01-01

    This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

  18. Finitary Algebraic Superspace

    CERN Document Server

    Zapatrin, R R

    1998-01-01

    An algebraic scheme is suggested in which discretized spacetime turns out to be a quantum observable. As an example, a toy model producing spacetimes of four points with different topologies is presented. The possibility of incorporating this scheme into the framework of non-commutative differential geometry is discussed.

  19. Computational aspects of algebraic curves

    CERN Document Server

    Shaska, Tanush

    2005-01-01

    The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove

  20. Introduction to algebraic independence theory

    CERN Document Server

    Philippon, Patrice

    2001-01-01

    In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.

  1. Supertropical algebra

    OpenAIRE

    Izhakian, Zur; Rowen, Louis

    2008-01-01

    We develop the algebraic polynomial theory for "supertropical algebra," as initiated earlier over the real numbers by the first author. The main innovation there was the introduction of "ghost elements," which also play the key role in our structure theory. Here, we work somewhat more generally over an ordered monoid, and develop a theory which contains the analogs of several basic theorems of classical commutative algebra. This structure enables one to develop a Zariski-type algebraic geomet...

  2. Cartan calculus on quantum Lie algebras

    International Nuclear Information System (INIS)

    A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions au into one big algebra, the ''Cartan Calculus.''

  3. Geometric linear algebra, v.I

    CERN Document Server

    Lin, I-hsiung

    2005-01-01

    This accessible book for beginners uses intuitive geometric concepts to create abstract algebraic theory with a special emphasis on geometric characterizations. The book applies known results to describe various geometries and their invariants, and presents problems concerned with linear algebra, such as in real and complex analysis, differential equations, differentiable manifolds, differential geometry, Markov chains and transformation groups. The clear and inductive approach makes this book unique among existing books on linear algebra both in presentation and in content.

  4. The Algebraic Way

    Science.gov (United States)

    Hiley, B. J.

    In this chapter, we examine in detail the non-commutative symplectic algebra underlying quantum dynamics. By using this algebra, we show that it contains both the Weyl-von Neumann and the Moyal quantum algebras. The latter contains the Wigner distribution as the kernel of the density matrix. The underlying non-commutative geometry can be projected into either of two Abelian spaces, so-called `shadow phase spaces'. One of these is the phase space of Bohmian mechanics, showing that it is a fragment of the basic underlying algebra. The algebraic approach is much richer, giving rise to two fundamental dynamical time development equations which reduce to the Liouville equation and the Hamilton-Jacobi equation in the classical limit. They also include the Schrödinger equation and its wave-function, showing that these features are a partial aspect of the more general non-commutative structure. We discuss briefly the properties of this more general mathematical background from which the non-commutative symplectic algebra emerges.

  5. Automorphisms in Birational and Affine Geometry

    CERN Document Server

    Ciliberto, Ciro; Flenner, Hubert; McKernan, James; Prokhorov, Yuri; Zaidenberg, Mikhail

    2014-01-01

    The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference high...

  6. Representation Theory of Algebraic Groups and Quantum Groups

    CERN Document Server

    Gyoja, A; Shinoda, K-I; Shoji, T; Tanisaki, Toshiyuki

    2010-01-01

    Invited articles by top notch expertsFocus is on topics in representation theory of algebraic groups and quantum groupsOf interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics

  7. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  8. Complex Algebraic Varieties

    CERN Document Server

    Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf

    1992-01-01

    The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

  9. Algebra and Number Theory An Integrated Approach

    CERN Document Server

    Dixon, Martyn; Subbotin, Igor

    2011-01-01

    Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines-linear algebra, abstract algebra, and number theory-into one compr

  10. Distribution theory of algebraic numbers

    CERN Document Server

    Yang, Chung-Chun

    2008-01-01

    The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.

  11. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  12. Segal algebras in commutative Banach algebras

    OpenAIRE

    INOUE, Jyunji; TAKAHASI, Sin-Ei

    2014-01-01

    The notion of Reiter's Segal algebra in commutative group algebras is generalized to a notion of Segal algebra in more general classes of commutative Banach algebras. Then we introduce a family of Segal algebras in commutative Banach algebras under considerations and study some properties of them.

  13. The algebraic structure of the Onsager algebra

    OpenAIRE

    DATE, ETSURO; Roan, Shi-shyr

    2000-01-01

    We study the Lie algebra structure of the Onsager algebra from the ideal theoretic point of view. A structure theorem of ideals in the Onsager algebra is obtained with the connection to the finite-dimensional representations. We also discuss the solvable algebra aspect of the Onsager algebra through the formal Lie algebra theory.

  14. Course of analytical geometry

    CERN Document Server

    Sharipov, Ruslan

    2011-01-01

    This book is a regular textbook of analytical geometry covering vector algebra and its applications to describing straight lines, planes, and quadrics in two and three dimensions. The stress is made on vector algebra by using skew-angular coordinates and by introducing some notations and prerequisites for understanding tensors. The book is addressed to students specializing in mathematics, physics, engineering, and technologies and to students of other specialities where educational standards require learning this subject.

  15. Algebraic K-theory of generalized schemes

    DEFF Research Database (Denmark)

    Anevski, Stella Victoria Desiree

    Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry and...... geometry over the field with one element. It also permits the construction of important Arakelov theoretical objects, such as the completion \\Spec Z of Spec Z. In this thesis, we prove a projective bundle theorem for the eld with one element and compute the Chow rings of the generalized schemes Sp\\ec ZN...

  16. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  17. Zonotopal algebra

    OpenAIRE

    Holtz, Olga; Ron, Amos

    2007-01-01

    A wealth of geometric and combinatorial properties of a given linear endomorphism $X$ of $\\R^N$ is captured in the study of its associated zonotope $Z(X)$, and, by duality, its associated hyperplane arrangement ${\\cal H}(X)$. This well-known line of study is particularly interesting in case $n\\eqbd\\rank X \\ll N$. We enhance this study to an algebraic level, and associate $X$ with three algebraic structures, referred herein as {\\it external, central, and internal.} Each algebraic structure is ...

  18. Hom-Akivis algebras

    OpenAIRE

    Issa, A. Nourou

    2010-01-01

    Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-M...

  19. Assessing non-uniqueness: An algebraic approach

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, Don W.

    2002-09-16

    Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.

  20. The Geometry of Noncommutative Symmetries

    International Nuclear Information System (INIS)

    We discuss the notion of noncommutative symmetries based on Hopf algebras in the geometric models constructed within the framework of non-commutative geometry. We introduce and discuss several notions of non-commutative symmetries and outline the construction specific examples, for instance, finite algebras and the application of symmetries in the derivation of the Dirac operator for the noncommutative torus. (author)

  1. Enveloping algebras

    International Nuclear Information System (INIS)

    Since the works of Gelfand, Harish-Chandra, Kostant and Duflo, a new theory has earned its place in the field of mathematics, due to the abundance of its results and the coherence of its methods: the theory of enveloping algebras. This study is the first to present the whole subject in textbook form. The most recent results are included, as well as complete proofs, starting from the elementary theory of Lie algebras. (Auth.)

  2. Highlights of Noncommutative Spectral Geometry

    CERN Document Server

    Sakellariadou, Mairi

    2012-01-01

    A summary of noncommutative spectral geometry as an approach to unification is presented. The role of the doubling of the algebra, the seeds of quantization and some cosmological implications are briefly discussed.

  3. An Algebraic Approach to the Scattering Equations

    OpenAIRE

    Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui

    2015-01-01

    We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

  4. Reflexive functors of modules in Commutative Algebra

    OpenAIRE

    J. Navarro; Sancho, C.; Sancho, P.

    2012-01-01

    Reflexive functors of modules naturally appear in Algebraic Geometry, mainly in the theory of linear representations of group schemes, and in "duality theories". In this paper we study and determine reflexive functors and we give many properties of reflexive functors.

  5. Reflexive functors of modules in Commutative Algebra

    CERN Document Server

    Navarro, J; Sancho, P

    2012-01-01

    Reflexive functors of modules are ubiquitous in Algebraic Geometry, mainly in the theory of linear representations of group schemes, and in "duality theories". In this paper we study and determine reflexive functors and we give many properties of reflexive functors.

  6. Which multiplier algebras are $W^*$-algebras?

    OpenAIRE

    Akemann, Charles A.; Amini, Massoud; Asadi, Mohammad B.

    2013-01-01

    We consider the question of when the multiplier algebra $M(\\mathcal{A})$ of a $C^*$-algebra $\\mathcal{A}$ is a $ W^*$-algebra, and show that it holds for a stable $C^*$-algebra exactly when it is a $C^*$-algebra of compact operators. This implies that if for every Hilbert $C^*$-module $E$ over a $C^*$-algebra $\\mathcal{A}$, the algebra $B(E)$ of adjointable operators on $E$ is a $ W^*$-algebra, then $\\mathcal{A}$ is a $C^*$-algebra of compact operators. Also we show that a unital $C^*$-algebr...

  7. Algebraic entropy for algebraic maps

    International Nuclear Information System (INIS)

    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

  8. Homotopy DG algebras induce homotopy BV algebras

    OpenAIRE

    Terilla, John; Tradler, Thomas; Wilson, Scott O.

    2011-01-01

    Let TA denote the space underlying the tensor algebra of a vector space A. In this short note, we show that if A is a differential graded algebra, then TA is a differential Batalin-Vilkovisky algebra. Moreover, if A is an A-infinity algebra, then TA is a commutative BV-infinity algebra.

  9. Cartan Calculus on Quantum Lie Algebras

    OpenAIRE

    Schupp, Peter; Watts, Paul; Zumino, Bruno

    1993-01-01

    A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions all into one big algebra, the ``Cartan Calculus''. (This is an extended version of a talk presented by P. Schupp at the XXII$^{th}$ International Conference on Differential Geo...

  10. Classical theory of algebraic numbers

    CERN Document Server

    Ribenboim, Paulo

    2001-01-01

    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  11. Kaluza-Klein Aspects of Noncommutative Geometry

    CERN Document Server

    Madore, J

    2015-01-01

    Using some elementary methods from noncommutative geometry a structure is given to a point of space-time which is different from and simpler than that which would come from extra dimensions. The structure is described by a supplementary factor in the algebra which in noncommutative geometry replaces the algebra of functions. Using different examples of algebras it is shown that the extra structure can be used to describe spin or isospin.

  12. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  13. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  14. Operator algebras and topology

    International Nuclear Information System (INIS)

    These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L2-cohomology, L2-Betti numbers and other L2-invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

  15. Clifford algebra, geometric algebra, and applications

    OpenAIRE

    Lundholm, Douglas; Svensson, Lars

    2009-01-01

    These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction (then called geometric algebra) with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra. The v...

  16. Cofree Hopf algebras on Hopf bimodule algebras

    OpenAIRE

    Fang, Xin; Jian, Run-Qiang

    2013-01-01

    We investigate a Hopf algebra structure on the cotensor coalgebra associated to a Hopf bimodule algebra which contains universal version of Clifford algebras and quantum groups as examples. It is shown to be the bosonization of the quantum quasi-shuffle algebra built on the space of its right coinvariants. The universal property and a Rota-Baxter algebra structure are established on this new algebra.

  17. On uniform topological algebras

    OpenAIRE

    Azhari, M. El

    2013-01-01

    The uniform norm on a uniform normed Q-algebra is the only uniform Q-algebra norm on it. The uniform norm on a regular uniform normed Q-algebra with unit is the only uniform norm on it. Let A be a uniform topological algebra whose spectrum M (A) is equicontinuous, then A is a uniform normed algebra. Let A be a regular semisimple commutative Banach algebra, then every algebra norm on A is a Q-algebra norm on A.

  18. Generalized exterior algebras

    OpenAIRE

    Marchuk, Nikolay

    2011-01-01

    Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann alg...

  19. Word Hopf algebras

    OpenAIRE

    Hazewinkel, Michiel

    2004-01-01

    Two important generalizations of the Hopf algebra of symmetric functions are the Hopf algebra of noncommutative symmetric functions and its graded dual the Hopf algebra of quasisymmetric functions. A common generalization of the latter is the selfdual Hopf algebra of permutations (MPR Hopf algebra). This latter Hopf algebra can be seen as a Hopf algebra of endomorphisms of a Hopf algebra. That turns out to be a fruitful way of looking at things and gives rise to wide ranging further generaliz...

  20. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  1. Lie algebras

    CERN Document Server

    Jacobson, Nathan

    1979-01-01

    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  2. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  3. Abstract algebra

    CERN Document Server

    Deskins, W E

    1996-01-01

    This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop

  4. GOLDMAN ALGEBRA, OPERS AND THE SWAPPING ALGEBRA

    OpenAIRE

    Labourie, François

    2012-01-01

    We define a Poisson Algebra called the {\\em swapping algebra} using the intersection of curves in the disk. We interpret a subalgebra of the fraction algebra of the swapping algebra -- called the {\\em algebra of multifractions} -- as an algebra of functions on the space of cross ratios and thus as an algebra of functions on the Hitchin component as well as on the space of $\\mathsf{SL}_n(\\mathbb R)$-opers with trivial holonomy. We relate this Poisson algebra to the Atiyah--Bott--Goldman symple...

  5. Towards relativistic quantum geometry

    Science.gov (United States)

    Ridao, Luis Santiago; Bellini, Mauricio

    2015-12-01

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner-Nordström black-hole is studied.

  6. Towards relativistic quantum geometry

    Directory of Open Access Journals (Sweden)

    Luis Santiago Ridao

    2015-12-01

    Full Text Available We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  7. Smarandache Jordan Algebras - abstract

    OpenAIRE

    Vasantha Kandasamy, W. B.; Christopher, S.; A. Victor Devadoss

    2004-01-01

    We prove a S-commutative Jordan Algebra is a S-weakly commutative Jordan algebra. We define a S-Jordan algebra to be S-simple Jordan algebras if the S-Jordan algebra has no S-Jordan ideals. We obtain several other interesting notions and results on S-Jordan algebras.

  8. Mirkovic-Vilonen polytopes and Khovanov-Lauda-Rouquier algebras

    OpenAIRE

    Tingley, Peter; Webster, Ben

    2012-01-01

    We describe how Mirkovic-Vilonen polytopes arise naturally from the categorification of Lie algebras using Khovanov-Lauda-Rouquier algebras. This gives an explicit description of the unique crystal isomorphism between simple representations of the KLR algebra and MV polytopes. MV polytopes, as defined from the geometry of the affine Grassmannian, only make sense for finite dimensional semi-simple Lie algebras, but our construction actually gives a map from the infinity crystal to polytopes in...

  9. N(o)ther-type theorem of piecewise algebraic curves on quasi-cross-cut partition

    Institute of Scientific and Technical Information of China (English)

    ZHU ChunGang; WANG RenHong

    2009-01-01

    Nother's theorem of algebraic curves plays an important role in classical algebraic geome-try. As the zero set of a bivariate spline, the piecewise algebraic curve is a generalization of the classical algebraic curve. Nother-type theorem of piecewise algebraic curves is very important to construct the Lagrange interpolation sets for bivariate spline spaces. In this paper, using the characteristics of quasi-cross-cut partition, properties of bivariate splines and results in algebraic geometry, the Nother-type theorem of piecewise algebraic curves on the quasi-cross-cut is presented.

  10. Nther-type theorem of piecewise algebraic curves on quasi-cross-cut partition

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Nther’s theorem of algebraic curves plays an important role in classical algebraic geometry. As the zero set of a bivariate spline, the piecewise algebraic curve is a generalization of the classical algebraic curve. Nther-type theorem of piecewise algebraic curves is very important to construct the Lagrange interpolation sets for bivariate spline spaces. In this paper, using the characteristics of quasi-cross-cut partition, properties of bivariate splines and results in algebraic geometry, the Nther-type theorem of piecewise algebraic curves on the quasi-cross-cut is presented.

  11. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez

    2001-02-01

    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  12. Algebraic Topology

    CERN Document Server

    Oliver, Bob; Pawałowski, Krzystof

    1991-01-01

    As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.

  13. Actions and invariants of algebraic groups

    CERN Document Server

    Ferrer Santos, Walter

    2005-01-01

    Actions and Invariants of Algebraic Groups presents a self-contained introduction to geometric invariant theory that links the basic theory of affine algebraic groups to Mumford''s more sophisticated theory. The authors systematically exploit the viewpoint of Hopf algebra theory and the theory of comodules to simplify and compactify many of the relevant formulas and proofs.The first two chapters introduce the subject and review the prerequisites in commutative algebra, algebraic geometry, and the theory of semisimple Lie algebras over fields of characteristic zero. The authors'' early presentation of the concepts of actions and quotients helps to clarify the subsequent material, particularly in the study of homogeneous spaces. This study includes a detailed treatment of the quasi-affine and affine cases and the corresponding concepts of observable and exact subgroups.Among the many other topics discussed are Hilbert''s 14th problem, complete with examples and counterexamples, and Mumford''s results on quotien...

  14. An introduction to Clifford algebras and spinors

    CERN Document Server

    Vaz, Jayme

    2016-01-01

    This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and ...

  15. Wavelets and quantum algebras

    International Nuclear Information System (INIS)

    A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed suq(2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

  16. The Onsager Algebra

    OpenAIRE

    El-Chaar, Caroline

    2012-01-01

    In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. U...

  17. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  18. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...

  19. On Nonlinear Systems and Algebraic Geometry

    OpenAIRE

    Banks, S. P.

    1983-01-01

    The theory of linear systems has been developed over many years into a unified collection of results based on the application of linear mathematics. In the state space theory the properties of linear operators have been used to obtain results in controllability, stability etc and in the frequency domain the spectral representation of such operators can be used to generalise classical s-domain methods (see Banks 1983).

  20. Exotic Elliptic Algebras

    OpenAIRE

    Chirvasitu, Alex; Smith, S. Paul

    2015-01-01

    This paper examines a general method for producing twists of a comodule algebra by tensoring it with a torsor then taking co-invariants. We examine the properties that pass from the original algebra to the twisted algebra and vice versa. We then examine the special case where the algebra is a 4-dimensional Sklyanin algebra viewed as a comodule algebra over the Hopf algebra of functions on the non-cyclic group of order 4 with the torsor being the 2x2 matrix algebra. The twisted algebra is an "...

  1. Nonmonotonic logics and algebras

    Institute of Scientific and Technical Information of China (English)

    CHAKRABORTY Mihir Kr; GHOSH Sujata

    2008-01-01

    Several nonmonotonie logic systems together with their algebraic semantics are discussed. NM-algebra is defined.An elegant construction of an NM-algebra starting from a Boolean algebra is described which gives rise to a few interesting algebraic issues.

  2. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  3. Cluster algebras in mathematical physics

    International Nuclear Information System (INIS)

    This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm

  4. Dynamical systems of algebraic origin

    CERN Document Server

    Schmidt, Klaus

    1995-01-01

    Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...

  5. Universal Hyperbolic Geometry I: Trigonometry

    OpenAIRE

    Wildberger, N J

    2009-01-01

    Hyperbolic geometry is developed in a purely algebraic fashion from first principles, without a prior development of differential geometry. The natural connection with the geometry of Lorentz, Einstein and Minkowski comes from a projective point of view, with trigonometric laws that extend to `points at infinity', here called `null points', and beyond to `ideal points' associated to a hyperboloid of one sheet. The theory works over a general field not of characteristic two, and the main laws ...

  6. On the relation of Manin's quantum plane and quantum Clifford algebras

    International Nuclear Information System (INIS)

    In a recent work we have shown that quantum Clifford algebras - i.e. Clifford algebras of an arbitrary bilinear form - are closely related to the deformed structures as q-spin groups, Hecke algebras, q-Young operators and deformed tensor products. The question to relate Manin's approach to quantum Clifford algebras is addressed here. Explicit computations using the CLIFFORD Maple package are exhibited. The meaning of non-commutative geometry is reexamined and interpreted in Clifford algebraic terms. (author)

  7. Rigid current Lie algebras

    OpenAIRE

    Goze, Michel; Remm, Elisabeth

    2006-01-01

    A current Lie algebra is contructed from a tensor product of a Lie algebra and a commutative associative algebra of dimension greater than 2. In this work we are interested in deformations of such algebras and in the problem of rigidity. In particular we prove that a current Lie algebra is rigid if it is isomorphic to a direct product gxg...xg where g is a rigid Lie algebra.

  8. Solvable quadratic Lie algebras

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.

  9. Graded cluster algebras

    OpenAIRE

    Grabowski, Jan

    2015-01-01

    In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite type cluster algebras without coefficients, giving a full classification. Translating ...

  10. Particle families and the division algebras

    International Nuclear Information System (INIS)

    It is suggested that an algebra formed of the hypercomplex number systems (division algebras) is in large measure responsible for the symmetries to which the elementary particles are subject, the multiplets into which they fall and even the geometry in which they exist. In this new approach to applying the hypercomplex number systems the standard symmetry is derived as a subgroup of an SO(32) symmetry of a hypercomplex inner product. (author)

  11. Forty questions on singularities of algebraic varieties

    OpenAIRE

    Hauser, Herwig; Schicho, Josef

    2011-01-01

    The reader will find in this article a collection of problems, questions and exercises related to the singularities of algebraic and analytic varieties. Many of them are inspired by the work and mathematical conception of Hironaka: they are concrete, involve basic ideas and techniques from geometry and algebra, and they can immediately be attacked from scratch. Some problems rely on or use results proven by Hironaka. Simple and double asterisques indicate the more difficult pro...

  12. Algebraic and geometric structures of Special Relativity

    OpenAIRE

    Giulini, Domenico

    2006-01-01

    I review, some of the algebraic and geometric structures that underlie the theory of Special Relativity. This includes a discussion of relativity as a symmetry principle, derivations of the Lorentz group, its composition law, its Lie algebra, comparison with the Galilei group, Einstein synchronization, the lattice of causally and chronologically complete regions in Minkowski space, rigid motion (the Noether-Herglotz theorem), and the geometry of rotating reference frames. Representation-theor...

  13. Piecewise-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is a small step toward the Koszul-type algebras. The piecewise-Koszul algebras are,in general, a new class of quadratic algebras but not the classical Koszul ones, simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases. We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A), and show an A∞-structure on E(A). Relations between Koszul algebras and piecewise-Koszul algebras are discussed. In particular, our results are related to the third question of Green-Marcos.

  14. On vertex Leibniz algebras

    OpenAIRE

    Li, Haisheng; Tan, Shaobin; Wang, Qing

    2012-01-01

    In this paper, we study a notion of what we call vertex Leibniz algebra. This notion naturally extends that of vertex algebra without vacuum, which was previously introduced by Huang and Lepowsky. We show that every vertex algebra without vacuum can be naturally extended to a vertex algebra. On the other hand, we show that a vertex Leibniz algebra can be embedded into a vertex algebra if and only if it admits a faithful module. To each vertex Leibniz algebra we associate a vertex algebra with...

  15. Bihamiltonian Reductions and $W_n$-Algebras

    CERN Document Server

    Casati, P; Magri, F; Pedroni, M; Casati, Paolo; Falqui, Gregorio; Magri, Franco; Pedroni, Marco

    1997-01-01

    We discuss the geometry of the Marsden-Ratiu reduction theorem for a bihamiltonian manifold. We consider the case of the manifolds associated with the Gel'fand-Dickey theory, i.e., loop algebras over sl(n+1). We provide an explicit identification, tailored on the MR reduction, of the Adler-Gel'fand-Dickey brackets with the Poisson brackets on the MR-reduced bihamiltonian manifold N. Such an identification relies on a suitable immersion of the space of sections of the cotangent bundle of N into the algebra of pseudo differential operators connected to geometrical features of the theory of (classical) W_n algebras.

  16. Yoneda algebras of almost Koszul algebras

    Indian Academy of Sciences (India)

    Zheng Lijing

    2015-11-01

    Let be an algebraically closed field, a finite dimensional connected (, )-Koszul self-injective algebra with , ≥ 2. In this paper, we prove that the Yoneda algebra of is isomorphic to a twisted polynomial algebra $A^!$ [ ; ] in one indeterminate of degree +1 in which $A^!$ is the quadratic dual of , is an automorphism of $A^!$, and = () for each $t \\in A^!$. As a corollary, we recover Theorem 5.3 of [2].

  17. Seminar on K-Theory, Arithmetic and Geometry

    CERN Document Server

    1987-01-01

    This volume of research papers is an outgrowth of the Manin Seminar at Moscow University, devoted to K-theory, homological algebra and algebraic geometry. The main topics discussed include additive K-theory, cyclic cohomology, mixed Hodge structures, theory of Virasoro and Neveu-Schwarz algebras.

  18. Algebra cohomology over a commutative algebra revisited

    OpenAIRE

    Pirashvili, Teimuraz

    2003-01-01

    The aim of this paper is to give a relatively easy bicomplex which computes the Shukla, or Quillen cohomology in the category of associative algebras over a commutative algebra $A$, in the case when $A$ is an algebra over a field.

  19. WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY

    Institute of Scientific and Technical Information of China (English)

    TaoChangli; LuShijie; ChenPeixin

    2002-01-01

    Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.

  20. The Covariant Picard Groupoid in Differential Geometry

    OpenAIRE

    Waldmann, Stefan

    2005-01-01

    In this article we discuss some general results on the covariant Picard groupoid in the context of differential geometry and interpret the problem of lifting Lie algebra actions to line bundles in the Picard groupoid approach.

  1. Elementary differential geometry

    CERN Document Server

    O'Neill, Barrett

    2006-01-01

    Written primarily for students who have completed the standard first courses in calculus and linear algebra, ELEMENTARY DIFFERENTIAL GEOMETRY, REVISED SECOND EDITION, provides an introduction to the geometry of curves and surfaces. The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard. This revision of the Second Edition p

  2. Enveloping algebras of some quantum Lie algebras

    OpenAIRE

    Pourkia, Arash

    2014-01-01

    We define a family of Hopf algebra objects, $H$, in the braided category of $\\mathbb{Z}_n$-modules (known as anyonic vector spaces), for which the property $\\psi^2_{H\\otimes H}=id_{H\\otimes H}$ holds. We will show that these anyonic Hopf algebras are, in fact, the enveloping (Hopf) algebras of particular quantum Lie algebras, also with the property $\\psi^2=id$. Then we compute the braided periodic Hopf cyclic cohomology of these Hopf algebras. For that, we will show the following fact: analog...

  3. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    OpenAIRE

    Cassidy, T.; Phan, C.; Shelton, B.

    2010-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  4. Elementary differential geometry

    CERN Document Server

    Pressley, Andrew

    2001-01-01

    Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques It is a subject that contains some of the most beautiful and profound results in mathematics yet many of these are accessible to higher-level undergraduates Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there The book will provide an invaluable resource to all those taking a first course in differential geometry, for their lecture...

  5. Idempotents of Clifford Algebras

    OpenAIRE

    Ablamowicz, R.; Fauser, B.; Podlaski, K.; Rembielinski, J.

    2003-01-01

    A classification of idempotents in Clifford algebras C(p,q) is presented. It is shown that using isomorphisms between Clifford algebras C(p,q) and appropriate matrix rings, it is possible to classify idempotents in any Clifford algebra into continuous families. These families include primitive idempotents used to generate minimal one sided ideals in Clifford algebras. Some low dimensional examples are discussed.

  6. Historical Topics in Algebra.

    Science.gov (United States)

    National Council of Teachers of Mathematics, Inc., Reston, VA.

    This is a reprint of the historical capsules dealing with algebra from the 31st Yearbook of NCTM,"Historical Topics for the Mathematics Classroom." Included are such themes as the change from a geometric to an algebraic solution of problems, the development of algebraic symbolism, the algebraic contributions of different countries, the origin and…

  7. Generalized Quantum Current Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liu

    2001-01-01

    Two general families of new quantum-deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enables one to define "tensor products" of these algebras. The standard quantum affine algebras turn out to be a very special case of the two algebra families, in which case the infinite Hopf family structure degenerates into a standard Hopf algebra. The relationship between the two algebraic families as well as thefr various special examples are discussed, and the free boson representation is also considered.

  8. On fermionic Novikov algebras

    International Nuclear Information System (INIS)

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in formal variational calculus. They are a class of left-symmetric algebras with commutative right multiplication operators, which can be viewed as bosonic. Fermionic Novikov algebras are a class of left-symmetric algebras with anti-commutative right multiplication operators. They correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we commence a study on fermionic Novikov algebras from the algebraic point of view. We will show that any fermionic Novikov algebra in dimension ≤3 must be bosonic. Moreover, we give the classification of real fermionic Novikov algebras on four-dimensional nilpotent Lie algebras and some examples in higher dimensions. As a corollary, we obtain kinds of four-dimensional real fermionic Novikov algebras which are not bosonic. All of these examples will serve as a guide for further development including the application in physics

  9. The three-dimensional origin of the classifying algebra

    OpenAIRE

    Fuchs, Jurgen; Schweigert, Christoph; Stigner, Carl

    2009-01-01

    It is known that reflection coefficients for bulk fields of a rational conformal field theory in the presence of an elementary boundary condition can be obtained as representation matrices of irreducible representations of the classifying algebra, a semisimple commutative associative complex algebra. We show how this algebra arises naturally from the three-dimensional geometry of factorization of correlators of bulk fields on the disk. This allows us to derive explicit expressions for the str...

  10. Algebraically periodic translation surfaces

    OpenAIRE

    Calta, Kariane; Smillie, John

    2007-01-01

    Algebraically periodic directions on translation surfaces were introduced by Calta in her study of genus two translation surfaces. We say that a translation surface with three or more algebraically periodic directions is an algebraically periodic surface. We show that for an algebraically periodic surface the slopes of the algebraically periodic directions are given by a number field which we call the periodic direction field. We show that translation surfaces with pseudo-Anosov automorphisms...

  11. Clifford Algebra with Mathematica

    OpenAIRE

    Aragon-Camarasa, G.; Aragon-Gonzalez, G; Aragon, J. L.; Rodriguez-Andrade, M. A.

    2008-01-01

    The Clifford algebra of a n-dimensional Euclidean vector space provides a general language comprising vectors, complex numbers, quaternions, Grassman algebra, Pauli and Dirac matrices. In this work, a package for Clifford algebra calculations for the computer algebra program Mathematica is introduced through a presentation of the main ideas of Clifford algebras and illustrative examples. This package can be a useful computational tool since allows the manipulation of all these mathematical ob...

  12. Linear algebra a first course with applications to differential equations

    CERN Document Server

    Apostol, Tom M

    2014-01-01

    Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.

  13. Piecewise-Koszul algebras

    Institute of Scientific and Technical Information of China (English)

    Jia-feng; Lü

    2007-01-01

    [1]Priddy S.Koszul resolutions.Trans Amer Math Soc,152:39-60 (1970)[2]Beilinson A,Ginszburg V,Soergel W.Koszul duality patterns in representation theory.J Amer Math Soc,9:473-525 (1996)[3]Aquino R M,Green E L.On modules with linear presentations over Koszul algebras.Comm Algebra,33:19-36 (2005)[4]Green E L,Martinez-Villa R.Koszul and Yoneda algebras.Representation theory of algebras (Cocoyoc,1994).In:CMS Conference Proceedings,Vol 18.Providence,RI:American Mathematical Society,1996,247-297[5]Berger R.Koszulity for nonquadratic algebras.J Algebra,239:705-734 (2001)[6]Green E L,Marcos E N,Martinez-Villa R,et al.D-Koszul algebras.J Pure Appl Algebra,193:141-162(2004)[7]He J W,Lu D M.Higher Koszul Algebras and A-infinity Algebras.J Algebra,293:335-362 (2005)[8]Green E L,Marcos E N.δ-Koszul algebras.Comm Algebra,33(6):1753-1764 (2005)[9]Keller B.Introduction to A-infinity algebras and modules.Homology Homotopy Appl,3:1-35 (2001)[10]Green E L,Martinez-Villa R,Reiten I,et al.On modules with linear presentations.J Algebra,205(2):578-604 (1998)[11]Keller B.A-infinity algebras in representation theory.Contribution to the Proceedings of ICRA Ⅸ.Beijing:Peking University Press,2000[12]Lu D M,Palmieri J H,Wu Q S,et al.A∞-algebras for ring theorists.Algebra Colloq,11:91-128 (2004)[13]Weibel C A.An Introduction to homological algebra.Cambridge Studies in Avanced Mathematics,Vol 38.Cambridge:Cambridge University Press,1995

  14. From Cayley-Dickson Algebras to Combinatorial Grassmannians

    Czech Academy of Sciences Publication Activity Database

    Saniga, M.; Holweck, F.; Pracna, Petr

    2015-01-01

    Roč. 3, č. 4 (2015), s. 1192-1221. ISSN 2227-7390 Institutional support: RVO:61388955 Keywords : Cayley-Dickson algebra s * Veldkamp spaces * finite geometries Subject RIV: CF - Physical ; Theoretical Chemistry

  15. Maps from the enveloping algebra of the positive Witt algebra to regular algebras

    OpenAIRE

    Sierra, Susan J.; Walton, Chelsea

    2015-01-01

    We construct homomorphisms from the universal enveloping algebra of the positive (part of the) Witt algebra to several different Artin-Schelter regular algebras, and determine their kernels and images. As a result, we produce elementary proofs that the universal enveloping algebras of the Virasoro algebra, the Witt algebra, and the positive Witt algebra are neither left nor right noetherian.

  16. Duality principle and braided geometry

    CERN Document Server

    Majid, S

    1994-01-01

    We give an overview of a new kind symmetry in physics which exists between observables and states and which is made possible by the language of Hopf algebras and quantum geometry. It has been proposed by the author as a feature of Planck scale physics. More recent work includes corresponding results at the semiclassical level of Poisson-Lie groups and at the level of braided groups and braided geometry.

  17. Geometry Euclid and beyond

    CERN Document Server

    Hartshorne, Robin

    2000-01-01

    In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...

  18. Contemporary developments in algebraic K-theory

    International Nuclear Information System (INIS)

    The School and Conference on Algebraic K-theory which took place at ICTP July 8-26, 2002 was a follow-up to the earlier one in 1997, and like its predecessor, the 2002 meeting endeavoured to emphasise the multidisciplinary aspects of the subject. However, one special feature of the 2002 School and Conference is that the whole activity was dedicated to H. Bass, one of the founders of Algebraic K-theory, on the occasion of his seventieth birthday. The School during the first two weeks, July 8 to 19 was devoted to expository lectures meant to explore and highlight connections between K-theory and several other areas of mathematics - Algebraic Topology, Number theory, Algebraic Geometry, Representation theory, and Non-commutative Geometry. This volume, constituting the Proceedings of the School, is dedicated to H. Bass. The Proceedings of the Conference during the last week July 22 - 26, which will appear in Special issues of K-theory, is also dedicated to H. Bass. The opening contribution by M. Karoubi to this volume consists of a comprehensive survey of developments in K-theory in the last forty-five years, and covers a very broad spectrum of the subject, including Topological K-theory, Atiyah-Singer index theorem, K-theory of Banach algebras, Higher Algebraic K-theory, Cyclic Homology etc. J. Berrick's contribution on 'Algebraic K-theory and Algebraic Topology' treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers. The contributions by M. Kolster titled 'K-theory and Arithmetics' includes such topics as values of zeta functions and relations to K-theory, K-theory of integers in number fields and associated conjectures, Etale cohomology, Iwasawa theory etc. A.O. Kuku's contributions on 'K-theory and Representation theory

  19. Higher algebraic K-theory an overview

    CERN Document Server

    Lluis-Puebla, Emilio; Gillet, Henri; Soulé, Christophe; Snaith, Victor

    1992-01-01

    This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.

  20. The geometry of SU(3)

    International Nuclear Information System (INIS)

    The group SU(3) is parameterized in terms of generalized open-quotes Euler anglesclose quotes. The differential operators of SU(3) corresponding to the Lie Algebra elements are obtained, the invariant forms are found, the group invariant volume element is found, and some relevant comments about the geometry of the group manifold are made

  1. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  2. Workshop on Lie Algebras

    CERN Document Server

    Osborn, J

    1989-01-01

    During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.

  3. Relation between dual S-algebras and BE-algebras

    Directory of Open Access Journals (Sweden)

    Arsham Borumand Saeid

    2015-05-01

    Full Text Available In this paper, we investigate the relationship between dual (Weak Subtraction algebras, Heyting algebras and BE-algebras. In fact, the purpose of this paper is to show that BE-algebra is a generalization of Heyting algebra and dual (Weak Subtraction algebras. Also, we show that a bounded commutative self distributive BE-algebra is equivalent to the Heyting algebra.  

  4. Geometry of hypersurfaces

    CERN Document Server

    Cecil, Thomas E

    2015-01-01

    This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hy...

  5. C*-algebras and operator theory

    CERN Document Server

    Murphy, Gerald J

    1990-01-01

    This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

  6. Representations of twisted current algebras

    OpenAIRE

    Lau, Michael

    2013-01-01

    We use evaluation representations to give a complete classification of the finite-dimensional simple modules of twisted current algebras. This generalizes and unifies recent work on multiloop algebras, current algebras, equivariant map algebras, and twisted forms.

  7. Hom-alternative algebras and Hom-Jordan algebras

    CERN Document Server

    Makhlouf, Abdenacer

    2009-01-01

    The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra.

  8. Cellularity of diagram algebras as twisted semigroup algebras

    CERN Document Server

    Wilcox, Stewart

    2010-01-01

    The Temperley-Lieb and Brauer algebras and their cyclotomic analogues, as well as the partition algebra, are all examples of twisted semigroup algebras. We prove a general theorem about the cellularity of twisted semigroup algebras of regular semigroups. This theorem, which generalises a recent result of East about semigroup algebras of inverse semigroups, allows us to easily reproduce the cellularity of these algebras.

  9. Lie Algebra of Noncommutative Inhomogeneous Hopf Algebra

    OpenAIRE

    Lagraa, M.; Touhami, N.

    1997-01-01

    We construct the vector space dual to the space of right-invariant differential forms construct from a first order differential calculus on inhomogeneous quantum group. We show that this vector space is equipped with a structure of a Hopf algebra which closes on a noncommutative Lie algebra satisfying a Jacobi identity.

  10. Realizations of Galilei algebras

    International Nuclear Information System (INIS)

    All inequivalent realizations of the Galilei algebras of dimensions not greater than five are constructed using the algebraic approach proposed by Shirokov. The varieties of the deformed Galilei algebras are discussed and families of one-parametric deformations are presented in explicit form. It is also shown that a number of well-known and physically interesting equations and systems are invariant with respect to the considered Galilei algebras or their deformations. (paper)

  11. Homotopy Algebras for Operads

    OpenAIRE

    Leinster, Tom

    2000-01-01

    We present a definition of homotopy algebra for an operad, and explore its consequences. The paper should be accessible to topologists, category theorists, and anyone acquainted with operads. After a review of operads and monoidal categories, the definition of homotopy algebra is given. Specifically, suppose that M is a monoidal category in which it makes sense to talk about algebras for some operad P. Then our definition says what a homotopy P-algebra in M is, provided only that some of the ...

  12. Algebraic statistics computational commutative algebra in statistics

    CERN Document Server

    Pistone, Giovanni; Wynn, Henry P

    2000-01-01

    Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.

  13. Quantum Lie algebra solitons

    International Nuclear Information System (INIS)

    We construct a special type of quantum soliton solutions for quantized affine Toda models. The elements of the principal Heisenberg subalgebra in the affinised quantum Lie algebra are found. Their eigenoperators inside the quantized universal enveloping algebra for an affine Lie algebra are constructed to generate quantum soliton solutions

  14. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  15. Connecting Arithmetic to Algebra

    Science.gov (United States)

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  16. Clifford Algebras and Graphs

    OpenAIRE

    Khovanova, Tanya

    2008-01-01

    I show how to associate a Clifford algebra to a graph. I describe the structure of these Clifford graph algebras and provide many examples and pictures. I describe which graphs correspond to isomorphic Clifford algebras and also discuss other related sets of graphs. This construction can be used to build models of representations of simply-laced compact Lie groups.

  17. Algebraic formulation of duality

    International Nuclear Information System (INIS)

    Two dimensional lattice spin (chiral) models over (possibly non-abelian) compact groups are formulated in terms of a generalized Pauli algebra. Such models over cyclic groups are written in terms of the generalized Clifford algebra. An automorphism of this algebra is shown to exist and to lead to the duality transformation

  18. Backgrounds of arithmetic and geometry an introduction

    CERN Document Server

    Miron, Radu

    1995-01-01

    The book is an introduction to the foundations of Mathematics. The use of the constructive method in Arithmetic and the axiomatic method in Geometry gives a unitary understanding of the backgrounds of geometry, of its development and of its organic link with the study of real numbers and algebraic structures.

  19. Bases of Schur algebras associated to cellularly stratified diagram algebras

    CERN Document Server

    Bowman, C

    2011-01-01

    We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.

  20. A first course in geometry

    CERN Document Server

    Walsh, Edward T

    2014-01-01

    This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl

  1. Group identities on the units of algebraic algebras with applications to restricted enveloping algebras

    OpenAIRE

    Jespers, Eric; Riley, David; Siciliano, Salvatore

    2007-01-01

    An algebra is called a GI-algebra if its group of units satisfies a group identity. We provide positive support for the following two open problems. 1. Does every algebraic GI-algebra satisfy a polynomial identity? 2. Is every algebraically generated GI-algebra locally finite?

  2. Non-Commutative Geometry and Twisted Conformal Symmetry

    OpenAIRE

    Matlock, Peter

    2005-01-01

    The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted co-product. This allows for the definition of conformal symmetry in a non-commutative background geometry. The twisted co-product is reviewed for the Poincar\\'e algebra and the construction is then extended to the full conformal algebra. It is demonstrated that conformal invariance need not be viewed as incompatible with non-commutative geometry; the non-commutativity of the coordinates appears as a consequence...

  3. Line bundles and the Thom construction in noncommutative geometry

    OpenAIRE

    Beggs, E. J.; Brzezinski, T.

    2010-01-01

    The idea of a line bundle in classical geometry is transferred to noncommutative geometry by the idea of a Morita context. From this we can construct Z and N graded algebras, the Z graded algebra being a Hopf-Galois extension. A non-degenerate Hermitian metric gives a star structure on this algebra, and an additional star operation on the line bundle gives a star operation on the N graded algebra. In this case, we can carry out the associated circle bundle and Thom constructions. Starting wit...

  4. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  5. Split Malcev Algebras

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado

    2012-05-01

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.

  6. The Colombeau Quaternion Algebra

    OpenAIRE

    Cortes, W.; Ferrero, M. A.; Juriaans, S. O.

    2008-01-01

    We introduce the Colombeau Quaternio Algebra and study its algebraic structure. We also study the dense ideal, dense in the algebraic sense, of the algebra of Colombeau generalized numbers and use this show the existence of a maximal ting of quotions which is Von Neumann regular. Recall that it is already known that then algebra of COlombeau generalized numbers is not Von Neumann regular. We also use the study of the dense ideals to give a criteria for a generalized holomorphic function to sa...

  7. 正交几何椭圆拟合与代数拟合及椭圆定义的迭代拟合的比较分析%Comparing and Analyzing of Orthogonal Geometry Ellipse Fitting, Algebra Fitting and Ellipse Fitting

    Institute of Scientific and Technical Information of China (English)

    张彦军

    2012-01-01

    通过把正交几何椭圆拟合与代数拟合和椭圆定义的迭代拟合进行比较分析,考虑到原有拟合存在的缺陷,充分应用正交的概念及最小二乘法(LS)原理和方法的优点,对椭圆进行正交的几何拟合.实验表明,正交几何拟合很好地弥补了其它拟合方法的缺陷,取得良好的效果.%Passing comparing orthogonal geometry ellipse fitting method with algebra method and ellipse definition method, in consideration of the defect of original method, full applied advantage of orthogonal concept and least square (LS) principle, this paper carries orthogonal geometry fitting method on ellipse.The experiment expressed that orthogonal geometry fitting method make up other method nicely and obtained good result.

  8. A Note on Z* algebras

    OpenAIRE

    Taghavi, Ali

    2013-01-01

    We study some properies of $Z^{*}$ algebras, thos C^* algebra which all positive elements are zero divisors. We show by means of an example that an extension of a Z* algebra by a Z* algebra is not necessarily Z* algebra. However we prove that an extension of a non Z* algebra by a non Z* algebra is again a Z^* algebra. As an application of our methods, we prove that evey compact subset of the positive cones of a C* algebra has an upper bound in the algebra.

  9. 2-Local derivations on matrix algebras over commutative regular algebras

    OpenAIRE

    Ayupov, Sh. A.; Kudaybergenov, K. K.; Alauadinov, A. K.

    2012-01-01

    The paper is devoted to 2-local derivations on matrix algebras over commutative regular algebras. We give necessary and sufficient conditions on a commutative regular algebra to admit 2-local derivations which are not derivations. We prove that every 2-local derivation on a matrix algebra over a commutative regular algebra is a derivation. We apply these results to 2-local derivations on algebras of measurable and locally measurable operators affiliated with type I von Neumann algebras.

  10. Operator Algebras of Functions

    CERN Document Server

    Mittal, Meghna

    2009-01-01

    We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a vector-valued reproducing kernel Hilbert space. We use these to further develop a quantized function theory for various domains that extends and unifies Agler's theory of commuting contractions and the Arveson-Drury-Popescu theory of commuting row contractions. We obtain analogous factorization theorems, prove that the algebras that we obtain are dual operator algebras and show that for many domains, supremums over all commuting tuples of operators satisfying certain inequalities are obtained over all commuting tuples of matrices.

  11. Lie n-algebras of BPS charges

    CERN Document Server

    Sati, Hisham

    2015-01-01

    We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane...

  12. On Derivations Of Genetic Algebras

    International Nuclear Information System (INIS)

    A genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. In application of genetics this algebra often has a basis corresponding to genetically different gametes, and the structure constant of the algebra encode the probabilities of producing offspring of various types. In this paper, we find the connection between the genetic algebras and evolution algebras. Moreover, we prove the existence of nontrivial derivations of genetic algebras in dimension two

  13. A vector space approach to geometry

    CERN Document Server

    Hausner, Melvin

    2010-01-01

    The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.

  14. On Generalized I-Algebras and 4-valued Modal Algebras

    CERN Document Server

    Figallo, Aldo V

    2012-01-01

    In this paper we establish a new characterization of 4-valued modal algebras considered by A. Monteiro. In order to obtain this characterization we introduce a new class of algebras named generalized I-algebras. This class contains strictly the class of C-algebras defined by Y. Komori as an algebraic counterpart of the infinite-valued implicative Lukasiewicz propositional calculus. On the other hand, the relationship between I-algebras and conmutative BCK-algebras, defined by S. Tanaka in 1975, allows us to say that in a certain sense G-algebras are also a generalization of these latter algebras

  15. Quantum entanglement and geometry of determinantal varieties

    CERN Document Server

    Chen, H

    2001-01-01

    From the consideration of checking mixed states by separable pure states, we introduce algebraic sets, which are determinantal varieties in complex projective spaces or products of complex projective spaces, for mixed states in bipartite or multipartite quantum systems as their invariants under local unitary transformations. The algebraic sets of the mixed states are independent of eigenvalues and only measure the geometric positions of eigenvectors. Thus complex differential geometry and algebraic geometry of these determinantal varieties turn to be powerful tools for the study of quantum entanglement of both bipartite and multipartite mixed states. The algebraic sets have to be the sum of linear subspaces if the mixed states are separable. Examples of the entangled mixed states which are invariant under partial transposition (thus bound entanglement) are constructed systematically from this new separability criterion. The relation of these invariants and Schmidt numbers of the mixed states is anlysised and ...

  16. Omni-Lie Color Algebras and Lie Color 2-Algebras

    OpenAIRE

    Zhang, Tao

    2013-01-01

    Omni-Lie color algebras over an abelian group with a bicharacter are studied. The notions of 2-term color $L_{\\infty}$-algebras and Lie color 2-algebras are introduced. It is proved that there is a one-to-one correspondence between Lie color 2-algebras and 2-term color $L_{\\infty}$-algebras.

  17. Stable endomorphism algebras of modules over special biserial algebras

    OpenAIRE

    Schröer, Jan; Zimmermann, Alexander

    2002-01-01

    We prove that the stable endomorphism algebra of a module without self-extensions over a special biserial algebra is a gentle algebra. In particular, it is again special biserial. As a consequence, any algebra which is derived equivalent to a gentle algebra is gentle.

  18. $L_{\\infty}$ algebra structures of Lie algebra deformations

    OpenAIRE

    Gao, Jining

    2004-01-01

    In this paper,we will show how to kill the obstructions to Lie algebra deformations via a method which essentially embeds a Lie algebra into Strong homotopy Lie algebra or $L_{\\infty}$ algebra. All such obstructions have been transfered to the revelvant $L_{\\infty}$ algebras which contain only three terms

  19. Multivariate calculus and geometry

    CERN Document Server

    Dineen, Seán

    2014-01-01

    Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.

  20. Evolution algebras and their applications

    CERN Document Server

    Tian, Jianjun Paul

    2008-01-01

    Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

  1. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  2. Finite-dimensional (*)-serial algebras

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Let A be a finite-dimensional associative algebra with identity over a field k. In this paper we introduce the concept of (*)-serial algebras which is a generalization of serial algebras. We investigate the properties of (*)-serial algebras, and we obtain suficient and necessary conditions for an associative algebra to be (*)-serial.

  3. Commutative combinatorial Hopf algebras

    OpenAIRE

    Hivert, F.; Novelli, J. -C.; Thibon, J. -Y.

    2006-01-01

    We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures, and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its non-commutative dual is realized in three different ways, in particular as the Grossman-Larson algebra of heap ordered trees. Extensions to endofunctions, parking functions, set compositions, set partitions, planar binary tre...

  4. Algebraic nonlinear collective motion

    OpenAIRE

    Troupe, J.; Rosensteel, G.

    1999-01-01

    Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real number $\\Lambda$. The $\\Lambda=0$ solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear g...

  5. A quantum field algebra

    OpenAIRE

    Brouder, Christian

    2002-01-01

    The Laplace Hopf algebra created by Rota and coll. is generalized to provide an algebraic tool for combinatorial problems of quantum field theory. This framework encompasses commutation relations, normal products, time-ordered products and renormalisation. It considers the operator product and the time-ordered product as deformations of the normal product. In particular, it gives an algebraic meaning to Wick's theorem and it extends the concept of Laplace pairing to prove that the renormalise...

  6. Symmetric Extended Ockham Algebras

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; Jie Fang

    2003-01-01

    The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30

  7. Algebraic classification of Robinson-Trautman spacetimes

    CERN Document Server

    Podolsky, Jiri

    2016-01-01

    We consider a general class of four-dimensional geometries admitting a null vector field that has no twist and no shear but has an arbitrary expansion. We explicitly present the Petrov classification of such Robinson-Trautman (and Kundt) gravitational fields, based on the algebraic properties of the Weyl tensor. In particular, we determine all algebraically special subcases when the optically privileged null vector field is a multiple principal null direction (PND), as well as all the cases when it remains a single PND. No field equations are a priori applied, so that our classification scheme can be used in any metric theory of gravity in four dimensions. In the classic Einstein theory this reproduces previous results for vacuum spacetimes, possibly with a cosmological constant, pure radiation and electromagnetic field, but can be applied to an arbitrary matter content. As non-trivial explicit examples we investigate specific algebraic properties of the Robinson-Trautman spacetimes with a free scalar field, ...

  8. Cayley-Dickson and Clifford Algebras as Twisted Group Algebras

    OpenAIRE

    Bales, John W.

    2011-01-01

    The effect of some properties of twisted groups on the associated algebras, particularly Cayley-Dickson and Clifford algebras. It is conjectured that the Hilbert space of square-summable sequences is a Cayley-Dickson algebra.

  9. Quiver W-algebras

    CERN Document Server

    Kimura, Taro

    2015-01-01

    For a quiver with weighted arrows we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al., and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

  10. Lectures in general algebra

    CERN Document Server

    Kurosh, A G; Stark, M; Ulam, S

    1965-01-01

    Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the

  11. Algebraic extensions of fields

    CERN Document Server

    McCarthy, Paul J

    1991-01-01

    ""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta

  12. Basic notions of algebra

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    2005-01-01

    This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches

  13. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  14. Fundamentals of Hopf algebras

    CERN Document Server

    Underwood, Robert G

    2015-01-01

    This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras.  The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras.  The book may be used as the main text or as a supplementary text for a graduate algebra course.  Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...

  15. Relations Between BZMVdM-Algebra and Other Algebras

    Institute of Scientific and Technical Information of China (English)

    高淑萍; 邓方安; 刘三阳

    2003-01-01

    Some properties of BZMVdM-algebra are proved, and a new operator is introduced. It is shown that the substructure of BZMVdM-algebra can produce a quasi-lattice implication algebra. The relations between BZMVdM-algebra and other algebras are discussed in detail. A pseudo-distance function is defined in linear BZMVdM-algebra, and its properties are derived.

  16. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    NARCIS (Netherlands)

    Hijligenberg, N.W. van den; Martini, R.

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g

  17. Tubular algebras and affine Kac-Moody algebras

    Institute of Scientific and Technical Information of China (English)

    Zheng-xin CHEN; Ya-nan LIN

    2007-01-01

    The purpose of this paper is to construct quotient algebras L(A)C1/I(A) of complex degenerate composition Lie algebras L(A)C1 by some ideals, where L(A)C1 is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)C1/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)C1 generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)C1 generated by simple A-modules.

  18. Tubular algebras and affine Kac-Moody algebras

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of this paper is to construct quotient algebras L(A)1C/I(A) of complex degenerate composition Lie algebras L(A)1C by some ideals, where L(A)1C is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)1C/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)1C generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)1C generated by simple A-modules.

  19. Universal Algebras of Hurwitz Numbers

    OpenAIRE

    A. Mironov; Morozov, A; Natanzon, S.

    2009-01-01

    Infinite-dimensional universal Cardy-Frobenius algebra is constructed, which unifies all particular algebras of closed and open Hurwitz numbers and is closely related to the algebra of differential operators, familiar from the theory of Generalized Kontsevich Model.

  20. Tilting theory and cluster algebras

    OpenAIRE

    Reiten, Idun

    2010-01-01

    We give an introduction to the theory of cluster categories and cluster tilted algebras. We include some background on the theory of cluster algebras, and discuss the interplay with cluster categories and cluster tilted algebras.

  1. Essential linear algebra with applications a problem-solving approach

    CERN Document Server

    Andreescu, Titu

    2014-01-01

    This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory;  • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them.   Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course.    ...

  2. Un peu de geometrie tropicale

    CERN Document Server

    Brugalle, Erwan

    2009-01-01

    This basic introduction to tropical geometry is hopefully accessible to a first years student in mathematics. The topics discussed here are basic tropical algebra, tropical plane curves, some tropical intersections, and Viro's patchworking. I tried as much as possible to illustrate each new definition with concrete examples and nice pictures. As the title suggests, this text is in French. A Portuguese (Brazil) version, as well as correction of exercises, can be found at http://people.math.jussieu.fr/~brugalle/largerpubli.html

  3. Symplectic $C_\\infty$-algebras

    OpenAIRE

    Hamilton, Alastair; Lazarev, Andrey

    2007-01-01

    In this paper we show that a strongly homotopy commutative (or $C_\\infty$-) algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic $C_\\infty$-algebra (an $\\infty$-generalisation of a commutative Frobenius algebra introduced by Kontsevich). This result relies on the algebraic Hodge decomposition of the cyclic Hochschild cohomology of a $\\ci$-algebra and does not generalize to algebras over other operads.

  4. On algebraic volume density property

    OpenAIRE

    Kaliman, Shulim; Kutzschebauch, Frank

    2012-01-01

    A smooth affine algebraic variety $X$ equipped with an algebraic volume form $\\omega$ has the algebraic volume density property (AVDP) if the Lie algebra generated by completely integrable algebraic vector fields of $\\omega$-divergence zero coincides with the space of all algebraic vector fields of $\\omega$-divergence zero. We develop an effective criterion of verifying whether a given $X$ has AVDP. As an application of this method we establish AVDP for any homogeneous space $X=G/R$ that admi...

  5. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yuan YAO; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  6. Maximal and reduced Roe algebras of coarsely embeddable spaces

    CERN Document Server

    Spakula, Jan

    2011-01-01

    Gong, Wang and Yu introduced a maximal, or universal, version of the Roe C*-algebra associated to a metric space. We study the relationship between this maximal Roe algebra and the usual version, in both the uniform and non-uniform cases. The main result is that if a (uniformly discrete, bounded geometry) metric space X coarsely embeds in a Hilbert space, then the canonical map between the maximal and usual (uniform) Roe algebras induces an isomorphism on K-theory. We also give a simple proof that if X has property A, then the maximal and usual (uniform) Roe algebras are the same. These two results are natural coarse-geometric analogues of certain well-known implications of a-T-menability and amenability for group C*-algebras. The techniques used are E-theoretic, building on work of Higson-Kasparov-Trout and Yu.

  7. Four-manifolds, geometries and knots

    OpenAIRE

    Hillman, Jonathan

    2002-01-01

    The goal of this book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such manifolds and knots. The first chapter is purely algebraic. The rest of the book may be divided into three parts: general results on homotopy and surgery (Chapters 2-6), geometries and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-...

  8. Loop Quantum Gravity Vacuum with Nondegenerate Geometry

    Directory of Open Access Journals (Sweden)

    Hanno Sahlmann

    2012-05-01

    Full Text Available In loop quantum gravity, states of the gravitational field turn out to be excitations over a vacuum state that is sharply peaked on a degenerate spatial geometry. While this vacuum is singled out as fundamental due to its invariance properties, it is also important to consider states that describe non-degenerate geometries. Such states have features of Bose condensate ground states. We discuss their construction for the Lie algebra as well as the Weyl algebra setting, and point out possible applications in effective field theory, Loop Quantum Cosmology, as well as further generalizations.

  9. Algebraic Systems Biology: A Case Study for the Wnt Pathway

    OpenAIRE

    Gross, Elizabeth; Harrington, Heather A.; Rosen, Zvi; Sturmfels, Bernd

    2015-01-01

    Steady state analysis of dynamical systems for biological networks give rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here the variety is described by a polynomial system in 19 unknowns and 36 parameters. Current methods from computational algebraic geometry and combinatorics are applied to analyze this model.

  10. Automorphism groups of some algebras

    Institute of Scientific and Technical Information of China (English)

    PARK Hong Goo; LEE Jeongsig; CHOI Seul Hee; CHEN XueQing; NAM Ki-Bong

    2009-01-01

    The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m, m+n).

  11. Automorphism groups of some algebras

    Institute of Scientific and Technical Information of China (English)

    PARK; Hong; Goo; LEE; Jeongsig; CHOI; Seul; Hee; NAM; Ki-Bong

    2009-01-01

    The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m,m + n).

  12. Computer algebra in gravity

    CERN Document Server

    Heinicke, C; Heinicke, Christian; Hehl, Friedrich W.

    2001-01-01

    We survey the application of computer algebra in the context of gravitational theories. After some general remarks, we show of how to check the second Bianchi-identity by means of the Reduce package Excalc. Subsequently we list some computer algebra systems and packages relevant to applications in gravitational physics. We conclude by presenting a couple of typical examples.

  13. Generalized Schur Algebras

    OpenAIRE

    May, Robert D.

    2016-01-01

    Left and right "generalized Schur algebras", previously introduced by the author, are defined and analyzed. Filtrations of these algebras lead, in most cases, to parameterizations of the their irreducible representations over fields of characteristic 0 and fields of positive characteristic p.

  14. Computing upper cluster algebras

    OpenAIRE

    Matherne, Jacob; Muller, Greg

    2013-01-01

    This paper develops techniques for producing presentations of upper cluster algebras. These techniques are suited to computer implementation, and will always succeed when the upper cluster algebra is totally coprime and finitely generated. We include several examples of presentations produced by these methods.

  15. Lineare Algebra I & II

    OpenAIRE

    Greuel, Gert-Martin

    2000-01-01

    Inhalte der Grundvorlesungen Lineare Algebra I und II im Winter- und Sommersemester 1999/2000: Gruppen, Ringe, Körper, Vektorräume, lineare Abbildungen, Determinanten, lineare Gleichungssysteme, Polynomring, Eigenwerte, Jordansche Normalform, endlich-dimensionale Hilberträume, Hauptachsentransformation, multilineare Algebra, Dualraum, Tensorprodukt, äußeres Produkt, Einführung in Singular.

  16. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  17. Algebraic Differential Characters

    CERN Document Server

    Esnault, H

    1996-01-01

    We give a construction of algebraic differential characters, receiving classes of algebraic bundles with connection, lifitng the Chern-Simons invariants defined with S. Bloch, the classes in the Chow group and the analytic secondary invariants if the variety is defined over the field of complex numbers.

  18. On Hadamard algebras

    Directory of Open Access Journals (Sweden)

    Carlos C. Peña

    2000-05-01

    Full Text Available Topological algebras of sequences of complex numbers are introduced, endowed with a Hadamard product type. The complex homomorphisms on these algebras are characterized, and units, prime cyclic ideals, prime closed ideals, and prime minimal ideals, discussed. Existence of closed and maximal ideals are investigated, and it is shown that the Jacobson and nilradicals are both trivial.

  19. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…

  20. The Jacobi Identity beyond Lie Algebras

    OpenAIRE

    Nishimura, Hirokazu

    2009-01-01

    Frolicher and Nijenhuis recognized well in the middle of the previous century that the Lie bracket and its Jacobi identity could and should exist beyond Lie algebras. Nevertheless the conceptual meaning of their discovery has been obscured by the messy techniques they exploited. The principal objective in this paper is to show that the double dualization functor in a cartesian closed category as well as synthetic differential geometry provides an adequate framework, in which their discovery's...

  1. Elements of mathematics algebra

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  2. Introduction to noncommutative algebra

    CERN Document Server

    Brešar, Matej

    2014-01-01

    Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.

  3. Noncommutative spectral geometry, dissipation and the origin of quantization

    OpenAIRE

    Sakellariadou, Mairi; Stabile, Antonio; Vitiello, Giuseppe

    2012-01-01

    We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation and to the gauge structure of the theory. We then argue, following 't Hooft's conjecture, that noncommutative spectral geometry classical construction carries implicit in its feature of the doubling of the algebra the seeds of quantization.

  4. On left Hopf algebras within the framework of inhomogeneous quantum groups for particle algebras

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Romo, Suemi [Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico (Mexico)

    2012-10-15

    We deal with some matters needed to construct concrete left Hopf algebras for inhomogeneous quantum groups produced as noncommutative symmetries of fermionic and bosonic creation/annihilation operators. We find a map for the bidimensional fermionic case, produced as in Manin's [Quantum Groups and Non-commutative Hopf Geometry (CRM Univ. de Montreal, 1988)] seminal work, named preantipode that fulfills all the necessary requirements to be left but not right on the generators of the algebra. Due to the complexity and importance of the full task, we consider our result as an important step that will be extended in the near future.

  5. On left Hopf algebras within the framework of inhomogeneous quantum groups for particle algebras

    International Nuclear Information System (INIS)

    We deal with some matters needed to construct concrete left Hopf algebras for inhomogeneous quantum groups produced as noncommutative symmetries of fermionic and bosonic creation/annihilation operators. We find a map for the bidimensional fermionic case, produced as in Manin's [Quantum Groups and Non-commutative Hopf Geometry (CRM Univ. de Montréal, 1988)] seminal work, named preantipode that fulfills all the necessary requirements to be left but not right on the generators of the algebra. Due to the complexity and importance of the full task, we consider our result as an important step that will be extended in the near future.

  6. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  7. Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras

    OpenAIRE

    Ashihara, Takahiro; Miyamoto, Masahiko

    2008-01-01

    If a vertex operator algebra $V=\\oplus_{n=0}^{\\infty}V_n$ satisfies $\\dim V_0=1, V_1=0$, then $V_2$ has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set $Sym_d(\\C)$ of symmetric matrices of degree $d$ becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, central charges influence the properties of vertex operator algebras. In t...

  8. Homotopy commutative algebra and 2-nilpotent Lie algebra

    OpenAIRE

    Dubois-Violette, Michel; Popov, Todor

    2012-01-01

    The homotopy transfer theorem due to Tornike Kadeishvili induces the structure of a homotopy commutative algebra, or $C_{\\infty}$-algebra, on the cohomology of the free 2-nilpotent Lie algebra. The latter $C_{\\infty}$-algebra is shown to be generated in degree one by the binary and the ternary operations.

  9. The Planar Algebra of a Semisimple and Cosemisimple Hopf Algebra

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; V S Sunder

    2006-11-01

    To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection between (the isomorphism classes, on both sides, of) such objects.

  10. Semigroups and computer algebra in algebraic structures

    Science.gov (United States)

    Bijev, G.

    2012-11-01

    Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.

  11. Algebraic K-theory and algebraic topology

    International Nuclear Information System (INIS)

    This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers

  12. Resolution of stringy singularities by non-commutative algebras

    International Nuclear Information System (INIS)

    In this paper we propose a unified approach to (topological) string theory on certain singular spaces in their large volume limit. The approach exploits the non-commutative structure of D-branes, so the space is described by an algebraic geometry of non-commutative rings. The paper is devoted to the study of examples of these algebras. In our study there is an auxiliary commutative algebraic geometry of the center of the (local) algebras which plays an important role as the target space geometry where closed strings propagate. The singularities that are resolved will be the singularities of this auxiliary geometry. The singularities are resolved by the non-commutative algebra if the local non-commutative rings are regular. This definition guarantees that D-branes have a well defined K-theory class. Homological factors also play an important role. They describe the intersection theory of D-branes and lead to a formal definition of local quivers at singularities, which can be computed explicitly for many types of singularities. These results can be interpreted in terms of the derived category of coherent sheaves over the non-commutative rings, giving a non-commutative version of recent work by M. Douglas. We also describe global features like the Betti numbers of compact singular Calabi-Yau threefolds via global holomorphic sections of cyclic homology classes. (author)

  13. A new algebra which transmutes to the braided algebra

    OpenAIRE

    Yildiz, A

    1999-01-01

    We find a new braided Hopf structure for the algebra satisfied by the entries of the braided matrix $BSL_q(2)$. A new nonbraided algebra whose coalgebra structure is the same as the braided one is found to be a two parameter deformed algebra. It is found that this algebra is not a comodule algebra under adjoint coaction. However, it is shown that for a certain value of one of the deformation parameters the braided algebra becomes a comodule algebra under the coaction of this nonbraided algebr...

  14. Certain Clifford-like algebra and quantum vertex algebras

    OpenAIRE

    Li, Haisheng; Tan, Shaobin; Wang, Qing

    2015-01-01

    In this paper, we study in the context of quantum vertex algebras a certain Clifford-like algebra introduced by Jing and Nie. We establish bases of PBW type and classify its $\\mathbb N$-graded irreducible modules by using a notion of Verma module. On the other hand, we introduce a new algebra, a twin of the original algebra. Using this new algebra we construct a quantum vertex algebra and we associate $\\mathbb N$-graded modules for Jing-Nie's Clifford-like algebra with $\\phi$-coordinated modu...

  15. Linear algebraic groups

    CERN Document Server

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  16. Local covariant quantum field theory over spectral geometries

    CERN Document Server

    Paschke, M; Paschke, Mario; Verch, Rainer

    2004-01-01

    A framework which combines ideas from Connes' noncommutative geometry, or spectral geometry, with recent ideas on generally covariant quantum field theory, is proposed in the present work. A certain type of spectral geometries modelling (possibly noncommutative) globally hyperbolic spacetimes is introduced in terms of so-called globally hyperbolic spectral triples. The concept is further generalized to a category of globally hyperbolic spectral geometries whose morphisms describe the generalization of isometric embeddings. Then a local generally covariant quantum field theory is introduced as a covariant functor between such a category of globally hyperbolic spectral geometries and the category of involutive algebras (or *-algebras). Thus, a local covariant quantum field theory over spectral geometries assigns quantum fields not just to a single noncommutative geometry (or noncommutative spacetime), but simultaneously to ``all'' spectral geometries, while respecting the covariance principle demanding that qua...

  17. Algebraic points on meromorphic curves

    CERN Document Server

    Herblot, Mathilde

    2012-01-01

    The classic Schneider-Lang theorem in transcendence theory asserts that there are only finitely many points at which algebraically independent complex meromorphic functions of finite order of growth can simultaneously take values in a number field, when satisfying a polynomial differential equation with coefficients in this given number field. In this article, we are interested in generalizing this theorem in two directions. First, instead of considering meromorphic functions on C we consider holomorphic maps on an affine curve over the field C or C_p. This extends a statement of D. Bertrand, which applies to meromorphic functions on P^1(C) or P^1(C_p) minus a finite subset of points. Secondly, we deal with algebraic values taken by the functions, instead of rational values as in the classic setting, inspired by a work of D. Bertrand. We prove a geometric statement extending those two results, using the slopes method, written in the language of Arakelov geometry. In the complex case, we recover a special case...

  18. The Stabilized Poincare-Heisenberg algebra: a Clifford algebra viewpoint

    OpenAIRE

    Gresnigt, N. G.; Renaud, P. F.; Butler, P. H.

    2006-01-01

    The stabilized Poincare-Heisenberg algebra (SPHA) is the Lie algebra of quantum relativistic kinematics generated by fifteen generators. It is obtained from imposing stability conditions after attempting to combine the Lie algebras of quantum mechanics and relativity which by themselves are stable, however not when combined. In this paper we show how the sixteen dimensional Clifford algebra CL(1,3) can be used to generate the SPHA. The Clifford algebra path to the SPHA avoids the traditional ...

  19. Algebraic Signal Processing Theory

    OpenAIRE

    Pueschel, Markus; Moura, Jose M. F.

    2006-01-01

    This paper presents an algebraic theory of linear signal processing. At the core of algebraic signal processing is the concept of a linear signal model defined as a triple (A, M, phi), where familiar concepts like the filter space and the signal space are cast as an algebra A and a module M, respectively, and phi generalizes the concept of the z-transform to bijective linear mappings from a vector space of, e.g., signal samples, into the module M. A signal model provides the structure for a p...

  20. Transgression and Clifford algebras

    OpenAIRE

    Rohr, Rudolf Philippe

    2007-01-01

    Let $W$ be a differential (not necessarily commutative) algebra which carries a free action of a polynomial algebra $SP$ with homogeneous generators $p_1, >..., p_r$. We show that for $W$ acyclic, the cohomology of the quotient $H(W/)$ is isomorphic to a Clifford algebra $\\text{Cl}(P,B)$, where the (possibly degenerate) bilinear form $B$ depends on $W$. This observation is an analogue of an old result of Borel in a non-commutative context. As an application, we study the case of $W$ given by ...

  1. Symplectic algebraic dynamics algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the algebraic dynamics solution of ordinary differential equations andintegration of  ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.

  2. On Griess Algebras

    OpenAIRE

    Michael Roitman

    2003-01-01

    In this paper we prove that for any commutative (but in general non-associative) algebra $A$ with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra $V = V_0 \\oplus V_2 \\oplus V_3\\oplus ...$, such that $\\dim V_0 = 1$ and $V_2$ contains $A$. We can choose $V$ so that if $A$ has a unit $e$, then $2e$ is the Virasoro element of $V$, and if $G$ is a finite group of automorphisms of $A$, then $G$ acts on $V$ as well. In addition, the algebra $V$ can be chosen with...

  3. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  4. Diassociative algebras and their derivations

    International Nuclear Information System (INIS)

    The paper concerns the derivations of diassociative algebras. We introduce one important class of diassociative algebras, give simple properties of the right and left multiplication operators in diassociative algebras. Then we describe the derivations of complex diassociative algebras in dimension two and three

  5. Algebraic Systems Biology: A Case Study for the Wnt Pathway.

    Science.gov (United States)

    Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd

    2016-01-01

    Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics. PMID:26645985

  6. Commutative and Non-commutative Parallelogram Geometry: an Experimental Approach

    OpenAIRE

    Bertram, Wolfgang

    2013-01-01

    By "parallelogram geometry" we mean the elementary, "commutative", geometry corresponding to vector addition, and by "trapezoid geometry" a certain "non-commutative deformation" of the former. This text presents an elementary approach via exercises using dynamical software (such as geogebra), hopefully accessible to a wide mathematical audience, from undergraduate students and high school teachers to researchers, proceeding in three steps: (1) experimental geometry, (2) algebra (linear algebr...

  7. Commutative and Non-commutative Parallelogram Geometry: en Experimental Approach

    OpenAIRE

    Bertram, Wolfgang

    2013-01-01

    By ''parallelogram geometry'' we mean the elementary, ''commutative'', geometry corresponding to vector addition, and by ''trapezoid geometry'' a certain ''non-commutative deformation'' of the former. This text presents an elementary approach via exercises using dynamical software (such as geogebra), hopefully accessible to a wide mathematical audience, from undergraduate students and high school teachers to researchers, proceeding in three steps: (1) experimental geometry, (2) algebra (linea...

  8. Generalizing the Connes Moscovici Hopf algebra to contain all rooted trees

    Energy Technology Data Exchange (ETDEWEB)

    Agarwala, Susama [Mathematical Institute, Radcliff Observatory Quarter, Oxford University, Woodstock Road, Oxford (United Kingdom); Delaney, Colleen [University of California Santa Barbara, South Hall, Room 6607, Santa Barbara, California 93106 (United States)

    2015-04-15

    This paper defines a generalization of the Connes-Moscovici Hopf algebra, H(1), that contains the entire Hopf algebra of rooted trees. A relationship between the former, a much studied object in non-commutative geometry, and the latter, a much studied object in perturbative quantum field theory, has been established by Connes and Kreimer. The results of this paper open the door to study the cohomology of the Hopf algebra of rooted trees.

  9. Generalizing the Connes Moscovici Hopf algebra to contain all rooted trees

    Science.gov (United States)

    Agarwala, Susama; Delaney, Colleen

    2015-04-01

    This paper defines a generalization of the Connes-Moscovici Hopf algebra, H ( 1 ) , that contains the entire Hopf algebra of rooted trees. A relationship between the former, a much studied object in non-commutative geometry, and the latter, a much studied object in perturbative quantum field theory, has been established by Connes and Kreimer. The results of this paper open the door to study the cohomology of the Hopf algebra of rooted trees.

  10. Generalizing the Connes Moscovici Hopf algebra to contain all rooted trees

    International Nuclear Information System (INIS)

    This paper defines a generalization of the Connes-Moscovici Hopf algebra, H(1), that contains the entire Hopf algebra of rooted trees. A relationship between the former, a much studied object in non-commutative geometry, and the latter, a much studied object in perturbative quantum field theory, has been established by Connes and Kreimer. The results of this paper open the door to study the cohomology of the Hopf algebra of rooted trees

  11. Perspectives in Analysis, Geometry, and Topology

    CERN Document Server

    Itenberg, I V; Passare, Mikael

    2012-01-01

    The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.

  12. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  13. Differential Geometry and Lie Groups for Physicists

    Science.gov (United States)

    Fecko, Marián.

    2011-03-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  14. Irreducible Lie-Yamaguti algebras

    OpenAIRE

    Benito, Pilar; Elduque, Alberto; Martín-Herce, Fabián

    2008-01-01

    Lie-Yamaguti algebras (or generalized Lie triple systems) are binary-ternary algebras intimately related to reductive homogeneous spaces. The Lie-Yamaguti algebras which are irreducible as modules over their Lie inner derivation algebra are the algebraic counterpart of the isotropy irreducible homogeneous spaces. These systems will be shown to split into three disjoint types: adjoint type, non-simple type and generic type. The systems of the first two types will be classified and most of them...

  15. Hom-power associative algebras

    OpenAIRE

    Yau, Donald

    2010-01-01

    A generalization of power associative algebra, called Hom-power associative algebra, is studied. The main result says that a multiplicative Hom-algebra is Hom-power associative if and only if it satisfies two identities of degrees three and four. It generalizes Albert's result that power associativity is equivalent to third and fourth power associativity. In particular, multiplicative right Hom-alternative algebras and non-commutative Hom-Jordan algebras are Hom-power associative.

  16. Unitary spaces on Clifford algebras

    OpenAIRE

    Marchuk, N. G.; Shirokov, D. S.

    2007-01-01

    For the complex Clifford algebra Cl(p,q) of dimension n=p+q we define a Hermitian scalar product. This scalar product depends on the signature (p,q) of Clifford algebra. So, we arrive at unitary spaces on Clifford algebras. With the aid of Hermitian idempotents we suggest a new construction of, so called, normal matrix representations of Clifford algebra elements. These representations take into account the structure of unitary space on Clifford algebra.

  17. Natural Editing of Algebraic Expressions

    OpenAIRE

    Nicaud, Jean-François

    2007-01-01

    We call “natural editing of algebraic expressions” the editing of algebraic expressions in their natural representation, the one that is used on paper and blackboard. This is an issue we have investigated in the Aplusix project, a project which develops a system aiming at helping students to learn algebra. The paper summarises first the Aplusix project. Second it presents a notion of algebraic expressions, of representations of algebraic expressions. The last section develops ideas about natu...

  18. Meadow enriched ACP process algebras

    OpenAIRE

    J.A. Bergstra; Middelburg, C.A.

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization of the notion of an ACP process algebra to processes in which data are involved. In meadow enriched ACP process algebras, the mathematical structure for data is a meadow.

  19. The Algebra of -relations

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; R Srinivasan; V S Sunder

    2000-08-01

    In this paper, we study a tower $\\{A^G_n(d):n≥ 1\\}$ of finite-dimensional algebras; here, represents an arbitrary finite group, denotes a complex parameter, and the algebra $A^G_n(d)$ has a basis indexed by `-stable equivalence relations' on a set where acts freely and has 2 orbits. We show that the algebra $A^G_n(d)$ is semi-simple for all but a finite set of values of , and determine the representation theory (or, equivalently, the decomposition into simple summands) of this algebra in the `generic case'. Finally we determine the Bratteli diagram of the tower $\\{A^G_n(d): n≥ 1\\}$ (in the generic case).

  20. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  1. Beautiful geometry

    CERN Document Server

    Maor, Eli

    2014-01-01

    If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

  2. Geometry, Renormalization, And Supersymmetry

    CERN Document Server

    Berg, G M

    2001-01-01

    This thesis is about understanding, applying and improving quantum field theory. We compute renormalization group flows as the evolution of a “coarse-graining” operator without the need for a Euclidean formulation. Renormalization is cast in the form of a Lie algebra of (in general infinite) matrices that generate, by exponentiation, counterterms for diagrams with subdivergences. These results may shed light on noncommutative geometry. We check our results in a scalar three-loop example. Then, we consider the renormalization of a certain supersymmetric gauge theory, the low-energy limit of a string model. We compare results to those computed directly in the string model and find agreement. Finally, we discuss the possibility of detecting quantum-mechanical phases distinguishing the two Pin groups, double covers of the full Lorentz group. Majorana fermions, if detected, would provide an important testing ground; such particles can restrict the choice of Pin group.

  3. Hopf Algebra of Sashes

    OpenAIRE

    Law, Shirley

    2014-01-01

    International audience A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. The goal of this paper is to find an intrinsic combinatorial description of a particular one of these Hopf subalgebras. This Hopf algebra has a natural basis given by permutations that we call Pell permutations. The...

  4. Holomorphically Equivalent Algebraic Embeddings

    OpenAIRE

    Feller, Peter; Stampfli, Immanuel

    2014-01-01

    We prove that two algebraic embeddings of a smooth variety $X$ in $\\mathbb{C}^m$ are the same up to a holomorphic coordinate change, provided that $2 \\dim X + 1$ is smaller than or equal to $m$. This improves an algebraic result of Nori and Srinivas. For the proof we extend a technique of Kaliman using generic linear projections of $\\mathbb{C}^m$.

  5. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  6. Star Algebra Projectors

    OpenAIRE

    Gaiotto, Davide; Rastelli, Leonardo; Sen, Ashoke; Zwiebach, Barton

    2002-01-01

    Surface states are open string field configurations which arise from Riemann surfaces with a boundary and form a subalgebra of the star algebra. We find that a general class of star algebra projectors arise from surface states where the open string midpoint reaches the boundary of the surface. The projector property of the state and the split nature of its wave-functional arise because of a nontrivial feature of conformal maps of nearly degenerate surfaces. Moreover, all such projectors are i...

  7. Elementary linear algebra

    CERN Document Server

    Andrilli, Stephen

    2010-01-01

    Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl

  8. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  9. On isomorphisms of integral table algebras

    Institute of Scientific and Technical Information of China (English)

    FAN; Yun(樊恽); SUN; Daying(孙大英)

    2002-01-01

    For integral table algebras with integral table basis T, we can consider integral R-algebra RT over a subring R of the ring of the algebraic integers. It is proved that an R-algebra isomorphism between two integral table algebras must be an integral table algebra isomorphism if it is compatible with the so-called normalizings of the integral table algebras.

  10. An invitation to web geometry

    CERN Document Server

    Vitório Pereira, Jorge

    2015-01-01

    This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which  webs are carrying the maximal possible number of abelian relations. The book offers complete proofs of both Chern’s bound and Trépreau’s algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented.

  11. Lie algebra of the q-Poincare group and q-Heisenberg commutation relations

    International Nuclear Information System (INIS)

    The authors discuss quantum orthogonal groups and their real forms. They review the construction of inhomogeneous orthogonal q-groups and their q-Lie algebras. The geometry of the q-Poincare group naturally induces a well defined q-deformed Heisenberg algebra of hermitian q-Minkowski coordinates xa and momenta pa

  12. Topological ∗-algebras with *-enveloping Algebras II

    Indian Academy of Sciences (India)

    S J Bhatt

    2001-02-01

    Universal *-algebras *() exist for certain topological ∗-algebras called algebras with a *-enveloping algebra. A Frechet ∗-algebra has a *-enveloping algebra if and only if every operator representation of maps into bounded operators. This is proved by showing that every unbounded operator representation , continuous in the uniform topology, of a topological ∗-algebra , which is an inverse limit of Banach ∗-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-* algebra () of . Given a *-dynamical system (, , ), any topological ∗-algebra containing (, ) as a dense ∗-subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If $G = \\mathbb{R}$, if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ∗-automorphisms: then the smooth Schwartz crossed product $S(\\mathbb{R}, B, )$ satisfies $E(S(\\mathbb{R}, B, )) = C^*(\\mathbb{R}, A, )$. When is a Lie group, the ∞-elements ∞(), the analytic elements () as well as the entire analytic elements () carry natural topologies making them algebras with a *-enveloping algebra. Given a non-unital *-algebra , an inductive system of ideals is constructed satisfying $A = C^*-\\mathrm{ind} \\lim I_$; and the locally convex inductive limit $\\mathrm{ind}\\lim I_$ is an -convex algebra with the *-enveloping algebra and containing the Pedersen ideal of . Given generators with weakly Banach admissible relations , we construct universal topological ∗-algebra (, ) and show that it has a *-enveloping algebra if and only if (, ) is *-admissible.

  13. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    OpenAIRE

    Hijligenberg, van den, N.W.; Martini, R.

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g)$. The construction of such differential structures is interpreted in terms of colour Lie superalgebras.

  14. L-o cto-algebras

    Institute of Scientific and Technical Information of China (English)

    An Hui-hui; Wang Zhi-chun

    2016-01-01

    L-octo-algebra with 8 operations as the Lie algebraic analogue of octo-algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo-algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri-algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.

  15. Axis Problem of Rough 3-Valued Algebras

    Institute of Scientific and Technical Information of China (English)

    Jianhua Dai; Weidong Chen; Yunhe Pan

    2006-01-01

    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  16. Spinors in Physics and Geometry

    Science.gov (United States)

    Trautman, A.; Furlan, G.

    1988-11-01

    The Table of Contents for the full book PDF is as follows: * Preface * Killing Spinors According to O. Hijazi and Applications * Self-Duality Conditions Satisfied by the Spin Connections on Spheres * Maslov Index and Half - Forms * Spin - 3/2 Fields on Black Hole Spacetimes * Indecomposable Conformal Spinors and Operator Product Expansions in a Massless QED Model * Nonlinear Spinor Representations * Nonlinear Wave Equations for Intrinsic Spinor Coordinates * Twistors - "Spinors" of SU(2,2), Their Generalizations and Achievements * Spinors, Reflections and Clifford Algebras: A Review * overline {SL}(n, R) Spinors for Particles, Gravity and Superstrings * Spinors on Compact Riemann Surfaces * Simple Spinors as Urfelder * Applications of Cartan Spinors to Differential Geometry in Higher Dimensions * Killing Spinors on Spheres and Projective Spaces * Spinor Structures on Homogeneous Riemannian Spaces * Classical Strings and Minimal Surfaces * Representing Spinors with Differential Forms * Inequalities for Spinors Norms in Clifford Algebras * The Importance of Spin * The Theory of World Spinors * Final List of Participants

  17. Path operator algebras in conformal quantum field theories

    International Nuclear Information System (INIS)

    Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)

  18. A2-Planar Algebras I

    CERN Document Server

    Evans, David E

    2009-01-01

    We give a diagrammatic representation of the A_2-Temperley-Lieb algebra, and show that it is isomorphic to Wenzl's representation of a Hecke algebra. Generalizing Jones's notion of a planar algebra, we construct an A_2-planar algebra which will capture the structure contained in the SU(3) ADE subfactors. We show that the subfactor for an SU(3) ADE graph with a flat connection has a description as a flat A_2-planar algebra, and give the A_2-planar algebra description of the dual subfactor.

  19. Algebra II workbook for dummies

    CERN Document Server

    Sterling, Mary Jane

    2014-01-01

    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  20. Simple Algebras of Invariant Operators

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Shen; J.D.H. Smith

    2001-01-01

    Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.

  1. Simple algebras of Weyl type

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Over a field F of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector space A[D]=A[D] from any pair of a commutative associative algebra A with an identity element and the polynomial algebra [D] of a commutative derivation subalgebra D of A. We prove that A[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only if A is D-simple and A[D] acts faithfully on A. Thus we obtain a lot of simple algebras.

  2. Non-commutative Zariski geometries and their classical limit

    OpenAIRE

    Zilber, B.

    2007-01-01

    We undertake a case study of two series of nonclassical Zariski geometries. We show that these geometries can be realised as representations of certain noncommutative $C^*$-algebras and introduce a natural limit construction which for each of the two series produces a classical U(1)-gauge field over a 2-dimensional Riemann surface.

  3. Algebraic mesh quality metrics

    Energy Technology Data Exchange (ETDEWEB)

    KNUPP,PATRICK

    2000-04-24

    Quality metrics for structured and unstructured mesh generation are placed within an algebraic framework to form a mathematical theory of mesh quality metrics. The theory, based on the Jacobian and related matrices, provides a means of constructing, classifying, and evaluating mesh quality metrics. The Jacobian matrix is factored into geometrically meaningful parts. A nodally-invariant Jacobian matrix can be defined for simplicial elements using a weight matrix derived from the Jacobian matrix of an ideal reference element. Scale and orientation-invariant algebraic mesh quality metrics are defined. the singular value decomposition is used to study relationships between metrics. Equivalence of the element condition number and mean ratio metrics is proved. Condition number is shown to measure the distance of an element to the set of degenerate elements. Algebraic measures for skew, length ratio, shape, volume, and orientation are defined abstractly, with specific examples given. Combined metrics for shape and volume, shape-volume-orientation are algebraically defined and examples of such metrics are given. Algebraic mesh quality metrics are extended to non-simplical elements. A series of numerical tests verify the theoretical properties of the metrics defined.

  4. Developments and retrospectives in Lie theory algebraic methods

    CERN Document Server

    Penkov, Ivan; Wolf, Joseph

    2014-01-01

    This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those  workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics.  Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Algebraic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research.  Mos...

  5. Noncommutative geometry

    CERN Document Server

    Connes, Alain

    1994-01-01

    This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat

  6. Preschool Geometry

    CERN Document Server

    Levenson, Esther; Tsamir, Pessia

    2011-01-01

    Recently the issue of early childhood mathematics has come to the fore and with it the importance of teaching geometrical concepts and reasoning from a young age. Geometry is a key domain mentioned in many national curricula and may also support the learning of other mathematical topics, such as number and patterns. This book is based on the rich experience (research and practice) of the authors and is devoted entirely to the learning and teaching of geometry in preschool. The first part of the book is dedicated to children's geometrical thinking, building concept images in line with concept d

  7. Geometry Revealed

    CERN Document Server

    Berger, Marcel

    2010-01-01

    Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,

  8. Automatic Deduction in Dynamic Geometry using Sage

    CERN Document Server

    Botana, Francisco; 10.4204/EPTCS.79.3

    2012-01-01

    We present a symbolic tool that provides robust algebraic methods to handle automatic deduction tasks for a dynamic geometry construction. The main prototype has been developed as two different worksheets for the open source computer algebra system Sage, corresponding to two different ways of coding a geometric construction. In one worksheet, diagrams constructed with the open source dynamic geometry system GeoGebra are accepted. In this worksheet, Groebner bases are used to either compute the equation of a geometric locus in the case of a locus construction or to determine the truth of a general geometric statement included in the GeoGebra construction as a boolean variable. In the second worksheet, locus constructions coded using the common file format for dynamic geometry developed by the Intergeo project are accepted for computation. The prototype and several examples are provided for testing. Moreover, a third Sage worksheet is presented in which a novel algorithm to eliminate extraneous parts in symboli...

  9. Rings of quotients of incidence algebras and path algebras

    DEFF Research Database (Denmark)

    Esparza, Eduardo Ortega

    2006-01-01

    We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets and...... finite quivers, respectively. The geometric background of these algebras gives us an intuitive idea of the construction of their maximal ring of quotients....

  10. Fast decoding of codes from algebraic plane curves

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd;

    1992-01-01

    Improvement to an earlier decoding algorithm for codes from algebraic geometry is presented. For codes from an arbitrary regular plane curve the authors correct up to d*/2-m2 /8+m/4-9/8 errors, where d* is the designed distance of the code and m is the degree of the curve. The complexity of finding...

  11. Differential operators on non-commutative algebras

    OpenAIRE

    Hazewinkel, Michiel

    2013-01-01

    There is a relatively well-known description of the algebra of (higher order) left differential operators on commutative algebras. This note gives a construction of similar flavor for algebras of differential operators on not necessarily commutative algebras.

  12. A concrete approach to abstract algebra from the integers to the insolvability of the quintic

    CERN Document Server

    Bergen, Jeffrey

    2010-01-01

    A Concrete Approach to Abstract Algebra begins with a concrete and thorough examination of familiar objects like integers, rational numbers, real numbers, complex numbers, complex conjugation and polynomials, in this unique approach, the author builds upon these familar objects and then uses them to introduce and motivate advanced concepts in algebra in a manner that is easier to understand for most students. The text will be of particular interest to teachers and future teachers as it links abstract algebra to many topics wich arise in courses in algebra, geometry, trigonometry, preca

  13. Poisson algebras for non-linear field theories in the Cahiers topos

    CERN Document Server

    Benini, Marco

    2016-01-01

    We develop an approach to construct Poisson algebras for non-linear scalar field theories that is based on the Cahiers topos model for synthetic differential geometry. In this framework the solution space of the field equation carries a natural smooth structure and, following Zuckerman's ideas, we can endow it with a presymplectic current. We formulate the Hamiltonian vector field equation in this setting and show that it selects a family of observables which forms a Poisson algebra. Our approach provides a clean splitting between geometric and algebraic aspects of the construction of a Poisson algebra, which are sufficient to guarantee existence, and analytical aspects that are crucial to analyze its properties.

  14. Bundles of Banach algebras

    Directory of Open Access Journals (Sweden)

    D. A. Robbins

    1994-12-01

    Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.

  15. Resonant algebras and gravity

    CERN Document Server

    Durka, R

    2016-01-01

    We explore the $S$-expansion framework to analyze freedom in closing the multiplication tables for the abelian semigroups. Including possibility of the zero element in the resonant decomposition and relating the Lorentz generator with the semigroup identity element leads to the wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results we find not only all the Maxwell algebras of type $\\mathfrak{B}_m$, $\\mathfrak{C}_m$, and recently introduced $\\mathfrak{D}_m$, but we also produce new examples. We discuss some prospects concerning further enlarging the algebras and provide all necessary constituents for constructing the gravity actions based on the obtained results.

  16. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  17. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  18. On Griess Algebras

    Directory of Open Access Journals (Sweden)

    Michael Roitman

    2008-08-01

    Full Text Available In this paper we prove that for any commutative (but in general non-associative algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V_0 oplus V2 oplus V3 oplus ..., such that dim V_0 = 1 and V_2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.

  19. On Griess Algebras

    Science.gov (United States)

    Roitman, Michael

    2008-08-01

    In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V0 Å V2 Å V3 Å ¼, such that dim V0 = 1 and V2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.

  20. Commutative post-Lie algebra structures on Lie algebras

    OpenAIRE

    Burde, Dietrich; Moens, Wolfgang Alexander

    2015-01-01

    We show that any CPA-structure (commutative post-Lie algebra structure) on a perfect Lie algebra is trivial. Furthermore we give a general decomposition of inner CPA-structures, and classify all CPA-structures on parabolic subalgebras of simple Lie algebras.

  1. The Planar Algebra Associated to a Kac Algebra

    Indian Academy of Sciences (India)

    Vijay Kodiyalam; Zeph Landau; V S Sunder

    2003-02-01

    We obtain (two equivalent) presentations – in terms of generators and relations-of the planar algebra associated with the subfactor corresponding to (an outer action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that the antipode of the Kac algebra agrees with the `rotation on 2-boxes'.

  2. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Science.gov (United States)

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  3. Molecular Geometry.

    Science.gov (United States)

    Desseyn, H. O.; And Others

    1985-01-01

    Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…

  4. Structure of Solvable Quadratic Lie Algebras

    Institute of Scientific and Technical Information of China (English)

    ZHU Lin-sheng

    2005-01-01

    @@ Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras.

  5. Frobenius Splitting in Commutative Algebra

    OpenAIRE

    Smith, Karen E.; ZHANG, WENLIANG

    2014-01-01

    This is a survey of Frobenius splitting techniques in commutative algebra, based on the first author's lectures at the introductory workshop for the special year in commutative algebra at MSRI in fall 2012.

  6. Linear Mappings of Quaternion Algebra

    OpenAIRE

    Kleyn, Aleks

    2011-01-01

    In the paper I considered linear and antilinear automorphisms of quaternion algebra. I proved the theorem that there is unique expansion of R-linear mapping of quaternion algebra relative to the given set of linear and antilinear automorphisms.

  7. Cluster algebras and derived categories

    CERN Document Server

    Keller, Bernhard

    2012-01-01

    This is an introductory survey on cluster algebras and their (additive) categorification using derived categories of Ginzburg algebras. After a gentle introduction to cluster combinatorics, we review important examples of coordinate rings admitting a cluster algebra structure. We then present the general definition of a cluster algebra and describe the interplay between cluster variables, coefficients, c-vectors and g-vectors. We show how c-vectors appear in the study of quantum cluster algebras and their links to the quantum dilogarithm. We then present the framework of additive categorification of cluster algebras based on the notion of quiver with potential and on the derived category of the associated Ginzburg algebra. We show how the combinatorics introduced previously lift to the categorical level and how this leads to proofs, for cluster algebras associated with quivers, of some of Fomin-Zelevinsky's fundamental conjectures.

  8. Phantom energy from graded algebras

    OpenAIRE

    Chaves, Max; Singleton, Douglas

    2006-01-01

    We construct a model of phantom energy using the graded Lie algebra SU(2/1). The negative kinetic energy of the phantom field emerges naturally from the graded Lie algebra, resulting in an equation of state with w

  9. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  10. $\\sigma $ -Approximately Contractible Banach Algebras

    OpenAIRE

    Momeni, M; Yazdanpanah, T.; Mardanbeigi, M. R.

    2012-01-01

    We investigate $\\sigma $ -approximate contractibility and $\\sigma $ -approximate amenability of Banach algebras, which are extensions of usual notions of contractibility and amenability, respectively, where $\\sigma $ is a dense range or an idempotent bounded endomorphism of the corresponding Banach algebra.

  11. Projector bases and algebraic spinors

    International Nuclear Information System (INIS)

    In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors

  12. Order Units in a *-Algebra

    Indian Academy of Sciences (India)

    Anil K Karn

    2003-02-01

    Order unit property of a positive element in a *-algebra is defined. It is proved that precisely projections satisfy this order theoretic property. This way, unital hereditary *-subalgebras of a *-algebra are characterized.

  13. Algebra & trigonometry I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  14. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 3-5, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  15. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  16. Lie 2-algebra models

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Patricia [Centro de Estudios Científicos (CECs),Avenida Arturo Prat 514, Valdivia (Chile); Sämann, Christian [Maxwell Institute for Mathematical Sciences,Department of Mathematics, Heriot-Watt University,Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom)

    2014-04-09

    In this paper, we begin the study of zero-dimensional field theories with fields taking values in a semistrict Lie 2-algebra. These theories contain the IKKT matrix model and various M-brane related models as special cases. They feature solutions that can be interpreted as quantized 2-plectic manifolds. In particular, we find solutions corresponding to quantizations of ℝ{sup 3}, S{sup 3} and a five-dimensional Hpp-wave. Moreover, by expanding a certain class of Lie 2-algebra models around the solution corresponding to quantized ℝ{sup 3}, we obtain higher BF-theory on this quantized space.

  17. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  18. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  19. Lie 2-algebra models

    International Nuclear Information System (INIS)

    In this paper, we begin the study of zero-dimensional field theories with fields taking values in a semistrict Lie 2-algebra. These theories contain the IKKT matrix model and various M-brane related models as special cases. They feature solutions that can be interpreted as quantized 2-plectic manifolds. In particular, we find solutions corresponding to quantizations of ℝ3, S3 and a five-dimensional Hpp-wave. Moreover, by expanding a certain class of Lie 2-algebra models around the solution corresponding to quantized ℝ3, we obtain higher BF-theory on this quantized space

  20. Recollements of extension algebras

    Institute of Scientific and Technical Information of China (English)

    CHEN; Qinghua(陈清华); LIN; Yanan(林亚南)

    2003-01-01

    Let A be a finite-dimensional algebra over arbitrary base field k. We prove: if the unbounded derived module category D-(Mod-A) admits symmetric recollement relative to unbounded derived module categories of two finite-dimensional k-algebras B and C:D-(Mod- B) ( ) D-(Mod- A) ( ) D-(Mod- C),then the unbounded derived module category D-(Mod - T(A)) admits symmetric recollement relative to the unbounded derived module categories of T(B) and T(C):D-(Mod - T(B)) ( ) D-(Mod - T(A)) ( ) D-(Mod - T(C)).

  1. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  2. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  3. Selectivity in Quaternion Algebras

    OpenAIRE

    Linowitz, Benjamin

    2010-01-01

    We prove an integral version of the classical Albert-Brauer-Hasse-Noether theorem regarding quaternion algebras over number fields. Let $\\mathfrak A$ be a quaternion algebra over a number field $K$ and assume that $\\mathfrak A$ satisfies the Eichler condition; that is, there exists an archimedean prime of $K$ which does not ramify in $\\mathfrak A$. Let $\\Omega$ be a commutative, quadratic $\\mathcal{O}_K$-order and let $\\mathcal{R}\\subset \\mathfrak A$ be an order of full rank. Assume that ther...

  4. Helmholtz algebraic solitons

    International Nuclear Information System (INIS)

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  5. Lie algebra cohomology

    International Nuclear Information System (INIS)

    We calculate the cohomology of the BRS operator s modulo an auxiliary differential operator t where both operators act on invariant polynomials in anticommuting variables Ci and commuting variables Xi. Ci and Xi transform according to the adjoint representation of the Lie algebra of a compact Lie group. The cohomology classes of s modulo t are related to the solutions of the consistency equations which have to be satisfied by anomalies of Yang-Mills theories. The present investigation completes the proof of the completeness and nontriviality of these solutions and, as a by-product, determines the cohomology of the underlying Lie algebra. (orig.)

  6. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  7. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  8. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  9. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1975-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  10. Derivations of generalized Weyl algebras

    Institute of Scientific and Technical Information of China (English)

    SU; Yucai(苏育才)

    2003-01-01

    A class of the associative and Lie algebras A[D] = A × F[D] of Weyl type are studied, where Ais a commutative associative algebra with an identity element over a field F of characteristic zero, and F[D] isthe polynomial algebra of a finite dimensional commutative subalgebra of locally finite derivations of A suchthat A is D-simple. The derivations of these associative and Lie algebras are precisely determined.

  11. Optimal Algorithm for Algebraic Factoring

    Institute of Scientific and Technical Information of China (English)

    支丽红

    1997-01-01

    This paper presents on optimized method for factoring multivariate polynomials over algebraic extension fields defined by an irreducible ascending set. The basic idea is to convert multivariate polynomials to univariate polynomials and algebraic extension fields to algebraic number fields by suitable integer substituteions.Then factorize the univariate polynomials over the algebraic number fields.Finally,construct mulativariate factors of the original polynomial by Hensel lemma and TRUEFACTOR test.Some examples with timing are included.

  12. INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra"

    CERN Document Server

    Delucchi, Emanuele; Moci, Luca

    2015-01-01

    Combinatorics plays a prominent role in contemporary mathematics, due to the vibrant development it has experienced in the last two decades and its many interactions with other subjects. This book arises from the INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra,'' which was held in Cortona in September 2013. The event brought together emerging and leading researchers at the crossroads of Combinatorics, Topology and Algebra, with a particular focus on new trends in subjects such as: hyperplane arrangements; discrete geometry and combinatorial topology; polytope theory and triangulations of manifolds; combinatorial algebraic geometry and commutative algebra; algebraic combinatorics; and combinatorial representation theory. The book is divided into two parts. The first expands on the topics discussed at the conference by providing additional background and explanations, while the second presents original contributions on new trends in the topics addressed by the conference.

  13. Automorphism groups of pointed Hopf algebras

    Institute of Scientific and Technical Information of China (English)

    YANG Shilin

    2007-01-01

    The group of Hopf algebra automorphisms for a finite-dimensional semisimple cosemisimple Hopf algebra over a field k was considered by Radford and Waterhouse. In this paper, the groups of Hopf algebra automorphisms for two classes of pointed Hopf algebras are determined. Note that the Hopf algebras we consider are not semisimple Hopf algebras.

  14. An invitation to noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2008-01-01

    This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke

  15. Quanta of Geometry and Unification

    CERN Document Server

    Chamseddine, Ali H

    2016-01-01

    This is a tribute to Abdus Salam's memory whose insight and creative thinking set for me a role model to follow. In this contribution I show that the simple requirement of volume quantization in space-time (with Euclidean signature) uniquely determines the geometry to be that of a noncommutative space whose finite part is based on an algebra that leads to Pati-Salam grand unified models. The Standard Model corresponds to a special case where a mathematical constraint (order one condition) is satisfied. This provides evidence that Salam was a visionary who was generations ahead of his time.

  16. Integral geometry and representation theory

    CERN Document Server

    Gel'fand, I M; Vilenkin, N Ya

    1966-01-01

    Generalized Functions, Volume 5: Integral Geometry and Representation Theory is devoted to the theory of representations, focusing on the group of two-dimensional complex matrices of determinant one.This book emphasizes that the theory of representations is a good example of the use of algebraic and geometric methods in functional analysis, in which transformations are performed not on the points of a space, but on the functions defined on it. The topics discussed include Radon transform on a real affine space, integral transforms in the complex domain, and representations of the group of comp

  17. Hyperholomorphic functions on commutative algebras

    OpenAIRE

    Pogorui, Anatoliy A.

    2006-01-01

    In this paper we study properties of hyperholomorphic functions on commutative finite algebras. It is investigated the Cauchy-Riemann type conditions for hyperholomorphic functions. We prove that a hyperholomorphic function on a commutative finite algebra can be expanded in a Taylor series. We also present a technique for computing zeros of polynomials in some commutative algebras.

  18. Challenges in Computational Commutative Algebra

    OpenAIRE

    Abbott, John

    2006-01-01

    In this paper we consider a number of challenges from the point of view of the CoCoA project one of whose tasks is to develop software specialized for computations in commutative algebra. Some of the challenges extend considerably beyond the boundary of commutative algebra, and are addressed to the computer algebra community as a whole.

  19. An Algebra of Reversible Computation

    OpenAIRE

    Wang, Yong

    2014-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules, basic reversible processes algebra (BRPA), algebra of reversible communicating processes (ARCP), recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  20. Spinors in the hyperbolic algebra

    OpenAIRE

    Ulrych, S.

    2006-01-01

    The three-dimensional universal complex Clifford algebra is used to represent relativistic vectors in terms of paravectors. In analogy to the Hestenes spacetime approach spinors are introduced in an algebraic form. This removes the dependance on an explicit matrix representation of the algebra.

  1. 'Twisted duality' for Clifford Algebras

    OpenAIRE

    Robinson, P. L.

    2014-01-01

    Viewing the complex Clifford algebra $C(V)$ of a real inner product space $V$ as a superalgebra, we offer several proofs of the fact that if $W$ is a subspace of the complexification of $V$ then the supercommutant of the Clifford algebra $C(W)$ is precisely the Clifford algebra $C(W^{\\perp})$.

  2. Computer Algebra in Particle Physics

    OpenAIRE

    Weinzierl, Stefan

    2002-01-01

    These lectures given to graduate students in theoretical particle physics, provide an introduction to the ``inner workings'' of computer algebra systems. Computer algebra has become an indispensable tool for precision calculations in particle physics. A good knowledge of the basics of computer algebra systems allows one to exploit these systems more efficiently.

  3. Meadow enriched ACP process algebras

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2009-01-01

    We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization o

  4. Skein algebras and cluster algebras of marked surfaces

    OpenAIRE

    Muller, Greg

    2012-01-01

    This paper defines several algebras associated to an oriented surface S with a finite set of marked points on the boundary. The first is the skein algebra Sk_q(S), which is spanned by links in the surface which are allowed to have endpoints at the marked points, modulo several locally defined relations. The product is given by superposition of links. A basis of this algebra is given, as well as several algebraic results. When S is triangulable, the quantum cluster algebra A_q(S) and quantum u...

  5. The Maximal Graded Left Quotient Algebra of a Graded Algebra

    Institute of Scientific and Technical Information of China (English)

    Gonzalo ARANDA PINO; Mercedes SILES MOLINA

    2006-01-01

    We construct the maximal graded left quotient algebra of every graded algebra A without homogeneous total right zero divisors as the direct limit of graded homomorphisms (of left A-modules)from graded dense left ideals of A into a graded left quotient algebra of A. In the case of a superalgebra,and with some extra hypothesis, we prove that the component in the neutral element of the group of the maximal graded left quotient algebra coincides with the maximal left quotient algebra of the component in the neutral element of the group of the superalgebra.

  6. The Power of Algebra.

    Science.gov (United States)

    Boiteau, Denise; Stansfield, David

    This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative Numbers"; and (5) "Using Positive…

  7. Questions on Algebraic Varieties

    CERN Document Server

    Marchionna, E

    2011-01-01

    P. Dolbeault: Residus et courants.- D. Mumford: Varieties defined by quadratic equations.- A. Neron: Hauteurs et theorie des intersections.- A. Seidenberg: Report on analytic product.- C.S. Seshadri: Moduli of p-vector bundles over an algebraic curve.- O. Zariski: Contributions to the problem of equi-singularity.

  8. Algebraic topology and concurrency

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...

  9. Thinking Visually about Algebra

    Science.gov (United States)

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  10. Observable Algebra in Field Algebra of G-spin Models

    Institute of Scientific and Technical Information of China (English)

    蒋立宁

    2003-01-01

    Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra AH, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that AH is a C*-algebra. The correspondence between H and AH is strictly monotonic. Finally, a duality between D(H) and AH is given via an irreducible vacuum C*-representation of F.

  11. Riemannian geometry

    CERN Document Server

    Petersen, Peter

    2016-01-01

    Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

  12. Geometrie coniugate

    Directory of Open Access Journals (Sweden)

    Leonardo Paris

    2012-06-01

    Full Text Available Lo studio degli ingranaggi si basa sulle geometrie coniugate in cui due curve o due superfici si mantengono costantemente in contatto pur se in movimento reciproco. La teoria geometrica degli ingranaggi fino alla fine del XIX secolo era uno dei molteplici rami nelle applicazioni della Geometria Descrittiva. Lo studio si basa sulla conoscenza delle principali proprietà delle curve piane e gobbe e delle loro derivate. La specificità del tema è che queste geometrie nel momento in cui si devono relazionare con le loro coniugate, devono rispettare dei vincoli che altrimenti non avrebbero. Si vuole evidenziare attraverso casi concreti il ruolo della geometria descrittiva nel passaggio dal teorico al pratico riproponendo in chiave informatica, temi e procedure di indagine spesso passati in secondo piano se non addirittura dimenticati.

  13. Certain associative algebras similar to $U(sl_{2})$ and Zhu's algebra $A(V_{L})$

    OpenAIRE

    Dong, Chongying; Li, Haisheng; Mason, Geoffrey

    1996-01-01

    It is proved that Zhu's algebra for vertex operator algebra associated to a positive-definite even lattice of rank one is a finite-dimensional semiprimitive quotient algebra of certain associative algebra introduced by Smith. Zhu's algebra for vertex operator algebra associated to any positive-definite even lattice is also calculated and is related to a generalization of Smith's algebra.

  14. Quantum algebra of $N$ superspace

    CERN Document Server

    Hatcher, N; Stephany, J

    2006-01-01

    We identify the quantum algebra of position and momentum operators for a quantum system in superspace bearing an irreducible representation of the super Poinca\\'e algebra. This algebra is noncommutative for the position operators. We use the properties of superprojectors in D=4 $N$ superspace to construct explicit position and momentum operators satisfying the algebra. They act on wave functions corresponding to different supermultiplets classified by its superspin. We show that the quantum algebra associated to the massive superparticle is a particular case described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently.

  15. The q-Brauer algebras

    OpenAIRE

    Nguyen, Tien Dung

    2013-01-01

    This thesis studies structural properties of the q-Brauer algebra over a commutative ring with identity or a field of any characteristic p ≥ 0. Over a commutative ring with identity we first construct a cell basis for the q-Brauer algebra and then show that the q-Brauer algebra is a cellular algebra in the sense of Graham and Lehrer. Subsequently, we classify all simple modules, up to isomorphism, of the q-Brauer algebra over a field of any characteristic. This classification is reprove...

  16. Combinatorial Hopf algebras from renormalization

    CERN Document Server

    Brouder, Christian; Menous, Frederic

    2009-01-01

    In this paper we describe the right-sided combinatorial Hopf structure of three Hopf algebras appearing in the context of renormalization in quantum field theory: the non-commutative version of the Fa\\`a di Bruno Hopf algebra, the non-commutative version of the charge renormalization Hopf algebra on planar binary trees for quantum electrodynamics, and the non-commutative version of the Pinter renormalization Hopf algebra on any bosonic field. We also describe two general ways to define the associative product in such Hopf algebras, the first one by recursion, and the second one by grafting and shuffling some decorated rooted trees.

  17. On FRT-Clifford Algebras

    OpenAIRE

    Heckenberger, I.; Schueler, A.

    2000-01-01

    We study the q-Clifford algebras Cl_q(N,c), called FRT-Clifford algebras, introduced by Faddeev, Reshetikhin and Takhtajan. It is shown that Cl_q(N,c) acts on the q-exterior algebra \\Lambda(O_q^N). Moreover, explicit formulas for the embedding of U_q(so_N) into Cl_q(N,c) and its relation to the vector and spin representations of U_q(so_N) are given and proved. Key Words: q-Clifford algebra, Drinfeld-Jimbo algebra, spin representation

  18. On ultraproducts of operator algebras

    Institute of Scientific and Technical Information of China (English)

    LI; Weihua

    2005-01-01

    Some basic questions on ultraproducts of C*-algebras and yon Neumann algebras, including the relation to K-theory of C*-algebras are considered. More specifically,we prove that under certain conditions, the K-groups of ultraproduct of C*-algebras are isomorphic to the ultraproduct of respective K-groups of C*-algebras. We also show that the ultraproducts of factors of type Ⅱ1 are prime, i.e. not isomorphic to any non-trivial tensor product.

  19. Ockham Algebras Arising from Monoids

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; H.J. Silva; J.C. Varlet

    2001-01-01

    An Ockham algebra (L; f) is of boolean shape if its lattice reduct L is boolean and f is not the complementation. We investigate a natural construction of Ockham algebras of boolean shape from any given monoid. Of particular interest is the question of when such algebras are subdirectly irreducible. In settling this, we obtain what is probably the first example of a subdirectly irreducible Ockham algebra that does not belong to the generalized variety Kω. We also prove that every semigroup can be embedded in the monoid of endomorphisms of an Ockham algebra of boolean shape.

  20. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  1. Final Report: Geometry And Elementary Particle Physics

    International Nuclear Information System (INIS)

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  2. Rigid geometry of curves and their Jacobians

    CERN Document Server

    Lütkebohmert, Werner

    2016-01-01

    This book presents some of the most important aspects of rigid geometry, namely its applications to the study of smooth algebraic curves, of their Jacobians, and of abelian varieties - all of them defined over a complete non-archimedean valued field. The text starts with a survey of the foundation of rigid geometry, and then focuses on a detailed treatment of the applications. In the case of curves with split rational reduction there is a complete analogue to the fascinating theory of Riemann surfaces. In the case of proper smooth group varieties the uniformization and the construction of abelian varieties are treated in detail. Rigid geometry was established by John Tate and was enriched by a formal algebraic approach launched by Michel Raynaud. It has proved as a means to illustrate the geometric ideas behind the abstract methods of formal algebraic geometry as used by Mumford and Faltings. This book should be of great use to students wishing to enter this field, as well as those already working in it.

  3. The Green formula and heredity of algebras

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [1]Green, J. A., Hall algebras, hereditary algebras and quantum groups, Invent. Math. 1995, 120: 361-377.[2]Ringel, C. M., Green's theorem on Hall algebras, in Representations of Algebras and Related Topics, CMS Conference Proceedings 19, Providence, 1996, 185-245.[3]Xiao J., Drinfeld double and Ringel-Green theory of Hall Algebras, J. Algebra, 1997, 190: 100-144.[4]Sevenhant, B., Van den Bergh, M., A relation between a conjecture of Kac and the structure of the Hall algebra,J. Pure Appl. Algebra, 2001, 160: 319-332.[5]Deng B., Xiao, J., On double Ringel-Hall algebras, J. Algebra, 2002, 251: 110-149.

  4. Notes on Piecewise-Koszul Algebras

    Institute of Scientific and Technical Information of China (English)

    Jia Feng L(U); Xiao Lan YU

    2011-01-01

    The relationships between piecewise-Koszul algebras and other "Koszul-type" algebras are discussed.. The Yoneda-Ext algebra and the dual algebra of a piecewise-Koszul algebra are studied, and a sufficient condition for the dual algebra A to be piecewise-Koszul is given. Finally, by studying the trivial extension algebras of the path algebras of Dynkin quivers in bipartite orientation, we give explicit constructions for piecewise-Koszul algebras with arbitrary "period" and piecewise-Koszul algebras with arbitrary "jump-degree".

  5. Groups and Geometries : Siena Conference

    CERN Document Server

    Kantor, William; Lunardon, Guglielmo; Pasini, Antonio; Tamburini, Maria

    1998-01-01

    On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi­ tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of f...

  6. Geometry of strings and fields

    CERN Document Server

    2013-01-01

    Ever since the birth of string theory, interaction with geometry has been one of the primary driving forces that has led to progress in superstring theory. On one hand, string theory has generated many new geometrical concepts; and on the other hand new ideas from geometry have often found their first applications in string theory. These topics include vertex algebras, conformal field theory, mirror symmetry, topological field theory and string theory, exact solutions of supersymmetric gauge theory and noncommutative field theory. Recent exciting developments include the matrix model approach to N=1 gauge theory, open string mirror symmetry, the derived category approach to D-branes on Calabi-Yau manifolds, geometric transitions, proof of the N=2 Seiberg-Witten solution by instanton methods, wall crossing formulas, the relation between Langlands program and supersymmetric gauge theories, indications of integrable structures in super Yang-Mills theory and AdS string theory. The program will be devoted to geome...

  7. Geometry of Membrane Sigma Models

    CERN Document Server

    Vysoky, Jan

    2015-01-01

    String theory still remains one of the promising candidates for a unification of the theory of gravity and quantum field theory. One of its essential parts is relativistic description of moving multi-dimensional objects called membranes (or p-branes) in a curved spacetime. On the classical field theory level, they are described by an action functional extremalising the volume of a manifold swept by a propagating membrane. This and related field theories are collectively called membrane sigma models. Differential geometry is an important mathematical tool in the study of string theory. It turns out that string and membrane backgrounds can be conveniently described using objects defined on a direct sum of tangent and cotangent bundles of the spacetime manifold. Mathematical field studying such object is called generalized geometry. Its integral part is the theory of Leibniz algebroids, vector bundles with a Leibniz algebra bracket on its module of smooth sections. Special cases of Leibniz algebroids are better ...

  8. Twin TQFTs and Frobenius Algebras

    Directory of Open Access Journals (Sweden)

    Carmen Caprau

    2013-01-01

    Full Text Available We introduce the category of singular 2-dimensional cobordisms and show that it admits a completely algebraic description as the free symmetric monoidal category on a twin Frobenius algebra, by providing a description of this category in terms of generators and relations. A twin Frobenius algebra (C,W,z,z∗ consists of a commutative Frobenius algebra C, a symmetric Frobenius algebra W, and an algebra homomorphism z:C→W with dual z∗:W→C, satisfying some extra conditions. We also introduce a generalized 2-dimensional Topological Quantum Field Theory defined on singular 2-dimensional cobordisms and show that it is equivalent to a twin Frobenius algebra in a symmetric monoidal category.

  9. Abstract algebra structure and application

    CERN Document Server

    Finston, David R

    2014-01-01

    This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.

  10. Algebraic connectivity and graph robustness.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T. (University of New Mexico)

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  11. Proposition Algebra with Projective Limits

    CERN Document Server

    Bergstra, J A

    2008-01-01

    Sequential logic deviates from propositional logic by taking into account that atomic propositions yield different Boolean values at different times during the sequential evaluation of a single proposition. Reactive valuations capture this dynamics of a proposition's environment. This logic is phrased as an equationally specified algebra rather than in the form of proof rules. It is strictly more general than Boolean algebra to the extent that the classical connectives fail to be expressively complete in the sequential case. The proposition algebra PRA is developed in a fashion similar to the process algebra ACP and the program algebra PGA via an algebraic specification which has a meaningful initial algebra for which a range of courser congruences are considered important as well. In addition infinite objects (that is propositions, processes and programs respectively) are preferably dealt with by means of an inverse limit construction which allows the transfer of knowledge concerning finite objects to facts ...

  12. On Dunkl angular momenta algebra

    Science.gov (United States)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  13. $A\\mathcal{T}$-Algebras and Extensions of $AT$-Algebras

    Indian Academy of Sciences (India)

    Hongliang Yao

    2010-04-01

    Lin and Su classified $A\\mathcal{T}$-algebras of real rank zero. This class includes all $A\\mathbb{T}$-algebras of real rank zero as well as many *-algebras which are not stably finite. An $A\\mathcal{T}$-algebra often becomes an extension of an $A\\mathbb{T}$-algebra by an -algebra. In this paper, we show that there is an essential extension of an $A\\mathbb{T}$-algebra by an -algebra which is not an $A\\mathcal{T}$-algebra. We describe a characterization of an extension of an $A\\mathbb{T}$-algebra by an -algebra if is an $A\\mathcal{T}$-algebra.

  14. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  15. Valued Graphs and the Representation Theory of Lie Algebras

    Directory of Open Access Journals (Sweden)

    Joel Lemay

    2012-07-01

    Full Text Available Quivers (directed graphs, species (a generalization of quivers and their representations play a key role in many areas of mathematics including combinatorics, geometry, and algebra. Their importance is especially apparent in their applications to the representation theory of associative algebras, Lie algebras, and quantum groups. In this paper, we discuss the most important results in the representation theory of species, such as Dlab and Ringel’s extension of Gabriel’s theorem, which classifies all species of finite and tame representation type. We also explain the link between species and K-species (where K is a field. Namely, we show that the category of K -species can be viewed as a subcategory of the category of species. Furthermore, we prove two results about the structure of the tensor ring of a species containing no oriented cycles. Specifically, we prove that two such species have isomorphic tensor rings if and only if they are isomorphic as “crushed” species, and we show that if K is a perfect field, then the tensor algebra of a K -species tensored with the algebraic closure of K is isomorphic to, or Morita equivalent to, the path algebra of a quiver.

  16. Teaching Algebra and Geometry Concepts by Modeling Telescope Optics

    Science.gov (United States)

    Siegel, Lauren M.; Dickinson, Gail; Hooper, Eric J.; Daniels, Mark

    2008-01-01

    This article describes preparation and delivery of high school mathematics lessons that integrate mathematics and astronomy through The Geometer's Sketchpad models, traditional proof, and inquiry-based activities. The lessons were created by a University of Texas UTeach preservice teacher as part of a project-based field experience in which high…

  17. EPH-classifications in Geometry, Algebra, Analysis and Arithmetic

    OpenAIRE

    Rastegar, Arash

    2015-01-01

    Trichotomy of Elliptic-Parabolic-Hyperbolic appears in many different areas of mathematics. All of these are named after the very first example of trichotomy, which is formed by ellipses, parabolas, and hyperbolas as conic sections. We try to understand if these classifications are justified and if similar mathematical phenomena is shared among different cases EPH-classification is used.

  18. Promoting Problem Solving across Geometry and Algebra by Using Technology

    Science.gov (United States)

    Erbas, A. Kursat; Ledford, Sara D.; Orrill, Chandra Hawley; Polly, Drew

    2005-01-01

    Technology is a powerful tool in assisting students in problem solving by allowing for multiple representations. The vignette offered in this article provides insight into ways to solve open-ended problems using multiple technologies.

  19. Galilean-covariant Clifford algebras in the phase space representation

    International Nuclear Information System (INIS)

    We apply the Galilean covariant formulation of quantum dynamics to derive the phase-space representation of the Pauli-Schroedinger equation for the density matrix of spin-1/2 particles in the presence of an electromagnetic field. The Liouville operator for the particle with spin follows from using the Wigner-Moyal transformation and a suitable Clifford algebra constructed on the phase space of a (4+1)-dimensional spacetime with Galilean geometry. Connections with the algebraic formalism of thermofield dynamics are also investigated. (author)

  20. Some topics pertaining to algebras of linear operators

    OpenAIRE

    Semmes, Stephen

    2002-01-01

    On the one hand the algebras of linear operators here act on finite-dimensional vector spaces, and on the other hand the point of view is generally an analysts'. Also, one might think of algebras as being used to add more data to basic geometry as on a graph, for instance. Of course this is a common theme which is considered in numerous settings. From an analysts' perspective, compact groups, their representations, and more general topological groups and their representations are basic object...

  1. On branchwise implicative BCI-algebras

    OpenAIRE

    Muhammad Anwar Chaudhry

    2002-01-01

    We introduce a new class of BCI-algebras, namely the class of branchwise implicative BCI-algebras. This class contains the class of implicative BCK-algebras, the class of weakly implicative BCI-algebras (Chaudhry, 1990), and the class of medial BCI-algebras. We investigate necessary and sufficient conditions for two types of BCI-algebras to be branchwise implicative BCI-algebras.

  2. Algebras of quasi-quaternion type

    OpenAIRE

    Ladkani, Sefi

    2014-01-01

    We define algebras of quasi-quaternion type, which are symmetric algebras of tame representation type whose stable module category has certain structure similar to that of the algebras of quaternion type introduced by Erdmann. We observe that symmetric tame algebras that are also 2-CY-tilted are of quasi-quaternion type. We present a combinatorial construction of such algebras by introducing the notion of triangulation quivers. The class of algebras that we get contains Erdmann's algebras of ...

  3. Free Malcev algebra of rank three

    OpenAIRE

    Kornev, Alexandr

    2011-01-01

    We find a basis of the free Malcev algebra on three free generators over a field of characteristic zero. The specialty and semiprimity of this algebra are proved. In addition, we prove the decomposability of this algebra into subdirect sum of the free Lie algebra rank three and the free algebra of rank three of variety of Malcev algebras generated by a simple seven-dimensional Malcev algebra.

  4. Barcelona Conference on Algebraic Topology

    CERN Document Server

    Castellet, Manuel; Cohen, Frederick

    1992-01-01

    The papers in this collection, all fully refereed, original papers, reflect many aspects of recent significant advances in homotopy theory and group cohomology. From the Contents: A. Adem: On the geometry and cohomology of finite simple groups.- D.J. Benson: Resolutions and Poincar duality for finite groups.- C. Broto and S. Zarati: On sub-A*-algebras of H*V.- M.J. Hopkins, N.J. Kuhn, D.C. Ravenel: Morava K-theories of classifying spaces and generalized characters for finite groups.- K. Ishiguro: Classifying spaces of compact simple lie groups and p-tori.- A.T. Lundell: Concise tables of James numbers and some homotopyof classical Lie groups and associated homogeneous spaces.- J.R. Martino: Anexample of a stable splitting: the classifying space of the 4-dim unipotent group.- J.E. McClure, L. Smith: On the homotopy uniqueness of BU(2) at the prime 2.- G. Mislin: Cohomologically central elements and fusion in groups.

  5. Combinatorics and commutative algebra

    CERN Document Server

    Stanley, Richard P

    1996-01-01

    Some remarkable connections between commutative algebra and combinatorics have been discovered in recent years. This book provides an overview of two of the main topics in this area. The first concerns the solutions of linear equations in nonnegative integers. Applications are given to the enumeration of integer stochastic matrices (or magic squares), the volume of polytopes, combinatorial reciprocity theorems, and related results. The second topic deals with the face ring of a simplicial complex, and includes a proof of the Upper Bound Conjecture for Spheres. An introductory chapter giving background information in algebra, combinatorics and topology broadens access to this material for non-specialists. New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors. Included in this chapter is an outline of the proof of McMullen's g-conjecture for simplicial polytopes based on toric varieties, as well as a discussion of the face rings of such special ...

  6. Operator product expansion algebra

    International Nuclear Information System (INIS)

    The Operator Product Expansion (OPE) is a theoretical tool for studying the short distance behaviour of products of local quantum fields. Over the past 40 years, the OPE has not only found widespread computational application in high-energy physics, but, on a more conceptual level, it also encodes fundamental information on algebraic structures underlying quantum field theories. I review new insights into the status and properties of the OPE within Euclidean perturbation theory, addressing in particular the topics of convergence and ''factorisation'' of the expansion. Further, I present a formula for the ''deformation'' of the OPE algebra caused by a quartic interaction. This formula can be used to set up a novel iterative scheme for the perturbative computation of OPE coefficients, based solely on the zeroth order coefficients (and renormalisation conditions) as initial input.

  7. Topological convolution algebras

    CERN Document Server

    Alpay, Daniel

    2012-01-01

    In this paper we introduce a new family of topological convolution algebras of the form $\\bigcup_{p\\in\\mathbb N} L_2(S,\\mu_p)$, where $S$ is a Borel semi-group in a locally compact group $G$, which carries an inequality of the type $\\|f*g\\|_p\\le A_{p,q}\\|f\\|_q\\|g\\|_p$ for $p > q+d$ where $d$ pre-assigned, and $A_{p,q}$ is a constant. We give a sufficient condition on the measures $\\mu_p$ for such an inequality to hold. We study the functional calculus and the spectrum of the elements of these algebras, and present two examples, one in the setting of non commutative stochastic distributions, and the other related to Dirichlet series.

  8. Testing algebraic geometric codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Property testing was initially studied from various motivations in 1990’s. A code C  GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.

  9. q-Witt Algebras, q-Virasoro algebra, q-Lie Algebras, q-Holomorph Structure and Representations

    OpenAIRE

    Hu, Naihong

    2005-01-01

    For q generic or a primitive l-th root of unity, q-Witt algebras are described by means of q-divided power algebras. The structure of the universal q-central extension of the q-Witt algebra, the q-Virasoro algebra, is also determined. q-Lie algebras are investigated and the q-PBW theorem for the universal enveloping algebras of q-Lie algebras is proved. A realization of a class of representations of the q-Witt algebras is given. Based on it, the q-holomorph structure for the q-Witt algebras i...

  10. Light Cone Current Algebra

    OpenAIRE

    Fritzsch, H.; Gell-Mann, M.

    2003-01-01

    This talk follows by a few months a talk by the same authors on nearly the same subject at the Coral Gables Conference. The ideas presented here are basically the same, but with some amplification, some change of viewpoint, and a number of new questions for the future. For our own convenience, we have transcribed the Coral Gables paper, but with an added ninth section, entitled "Problems of light cone current algebra", dealing with our present views and emphasizing research topics that requir...

  11. Logic, Algebra and Implication

    Czech Academy of Sciences Publication Activity Database

    Cintula, Petr; Noguera, Carles

    Rio de Janeiro : ECEME - Escola de Comando e Estado -Maior do Exército, 2013 - (Béziau, J.; Buchsbaum, A.; Costa-Leite, A.; Altair, A.). s. 34-35 [UniLog 2013. World Congress and School on Universal Logic /4./. 29.03.2013-07.04.2013, Rio de Janeiro] Institutional support: RVO:67985807 Keywords : abstract algebraic logic * consequence relations * weakly implicative logics Subject RIV: BA - General Mathematics

  12. Clifford Algebras and Spinors

    International Nuclear Information System (INIS)

    Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)

  13. Modern algebra essentials

    CERN Document Server

    Lutfiyya, Lutfi A

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  14. The Algebra Artist

    Science.gov (United States)

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  15. Algebra & trigonometry II essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  16. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  17. Semisimple Metacyclic Group Algebras

    Indian Academy of Sciences (India)

    Gurmeet K Bakshi; Shalini Gupta; Inder Bir S Passi

    2011-11-01

    Given a group of order $p_1p_2$, where $p_1,p_2$ are primes, and $\\mathbb{F}_q$, a finite field of order coprime to $p_1p_2$, the object of this paper is to compute a complete set of primitive central idempotents of the semisimple group algebra $\\mathbb{F}_q[G]$. As a consequence, we obtain the structure of $\\mathbb{F}_q[G]$ and its group of automorphisms.

  18. Vertex Algebras, Kac-Moody Algebras, and the Monster

    Science.gov (United States)

    Borcherds, Richard E.

    1986-05-01

    It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The ``Moonshine'' representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.

  19. Finite quantum physics and noncommutative geometry

    International Nuclear Information System (INIS)

    Conventional discrete approximations of a manifold do not preserve its nontrivial topological features. In this article we describe an approximation scheme due to Sorkin which reproduces physically important aspects of manifold topology with striking fidelity. The approximating topological spaces in this scheme are partially ordered sets (posets). Now, in ordinary quantum physics on a manifold M, continuous probability densities generate the commutative C*-algebra C(M) of continuous functions on M. It has a fundamental physical significance, containing the information to reconstruct the topology of M, and serving to specify the domains of observables like the Hamiltonian. For a poset, the role of this algebra is assumed by a noncommutative C*-algebra A. As noncommutative geometries are based on noncommutative C*-algebra, we therefore have a remarkable connection between finite approximations to quantum physics and noncommutative geometries. Varies methods for doing quantum physics using A are explored. Particular attention is paid to developing numerically viable approximation schemes which at the same time preserve important topological features of continuum physics. (author). 21 refs, 13 figs

  20. Further linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...