Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Algebra-Geometry of Piecewise Algebraic Varieties
Institute of Scientific and Technical Information of China (English)
Chun Gang ZHU; Ren Hong WANG
2012-01-01
Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Algebra, Arithmetic, and Geometry
Tschinkel, Yuri
2009-01-01
The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Linear algebra and projective geometry
Baer, Reinhold
2005-01-01
Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. These focus on the representation of projective geometries by linear manifolds, of projectivities by semilinear transformations, of collineations by linear transformations, and of dualities by semilinear forms. These theorems lead to a reconstruction of the geometry that constituted the discussion's starting point, within algebra
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
Hopf algebras in noncommutative geometry
Varilly, J C
2001-01-01
We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of noncommutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups.
Lectures on Algebraic Geometry I
Harder, Gunter
2012-01-01
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho
Noncommutative algebra and geometry
De Concini, Corrado; Vavilov, Nikolai 0
2005-01-01
Finite Galois Stable Subgroups of Gln. Derived Categories for Nodal Rings and Projective Configurations. Crowns in Profinite Groups and Applications. The Galois Structure of Ambiguous Ideals in Cyclic Extensions of Degree 8. An Introduction to Noncommutative Deformations of Modules. Symmetric Functions, Noncommutative Symmetric Functions and Quasisymmetric Functions II. Quotient Grothendieck Representations. On the Strong Rigidity of Solvable Lie Algebras. The Role of Bergman in Invesigating Identities in Matrix Algebras with Symplectic Involution. The Triangular Structure of Ladder Functors.
Linear algebra, geometry and transformation
Solomon, Bruce
2014-01-01
Vectors, Mappings and Linearity Numeric Vectors Functions Mappings and Transformations Linearity The Matrix of a Linear Transformation Solving Linear Systems The Linear SystemThe Augmented Matrix and RRE Form Homogeneous Systems in RRE Form Inhomogeneous Systems in RRE Form The Gauss-Jordan Algorithm Two Mapping Answers Linear Geometry Geometric Vectors Geometric/Numeric Duality Dot-Product Geometry Lines, Planes, and Hyperplanes System Geometry and Row/Column Duality The Algebra of Matrices Matrix Operations Special Matrices Matrix Inversion A Logical Digression The Logic of the Inversion Alg
Foliation theory in algebraic geometry
McKernan, James; Pereira, Jorge
2016-01-01
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...
Commutative algebra with a view toward algebraic geometry
Eisenbud, David
1995-01-01
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...
Derived Algebraic Geometry II: Noncommutative Algebra
Lurie, Jacob
2007-01-01
In this paper, we present an infinity-categorical version of the theory of monoidal categories. We show that the infinity category of spectra admits an essentially unique monoidal structure (such that the tensor product preserves colimits in each variable), and thereby recover the classical smash-product operation on spectra. We develop a general theory of algebras in a monoidal infinity category, which we use to (re)prove some basic results in the theory of associative ring spectra. We also develop an infinity-categorical theory of monads, and prove a version of the Barr-Beck theorem.
Noncommutative geometry with graded differential Lie algebras
Wulkenhaar, Raimar
1997-06-01
Starting with a Hilbert space endowed with a representation of a unitary Lie algebra and an action of a generalized Dirac operator, we develop a mathematical concept towards gauge field theories. This concept shares common features with the Connes-Lott prescription of noncommutative geometry, differs from that, however, by the implementation of unitary Lie algebras instead of associative * -algebras. The general scheme is presented in detail and is applied to functions ⊗ matrices.
Algebra and geometry of Hamilton's quaternions
Krishnaswami, Govind S
2016-01-01
Inspired by the relation between the algebra of complex numbers and plane geometry, William Rowan Hamilton sought an algebra of triples for application to three dimensional geometry. Unable to multiply and divide triples, he invented a non-commutative division algebra of quadruples, in what he considered his most significant work, generalizing the real and complex number systems. We give a motivated introduction to quaternions and discuss how they are related to Pauli matrices, rotations in three dimensions, the three sphere, the group SU(2) and the celebrated Hopf fibrations.
Noncommutative Algebra and Noncommutative Geometry
2014-01-01
Divided into three parts, the first marks out enormous geometric issues with the notion of quasi-freenss of an algebra and seeks to replace this notion of formal smoothness with an approximation by means of a minimal unital commutative algebra's smoothness. The second part of this text is then, devoted to the approximating of properties of nc. schemes through the properties of two uniquely determined (classical) schemes estimating the nc. scheme in question in a maximal way from the inside an...
International conference on Algebraic and Complex Geometry
Kloosterman, Remke; Schütt, Matthias; Springer Proceedings in Mathematics & Statistics : Volume 71
2014-01-01
Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...
Weaving Geometry and Algebra Together
Cetner, Michelle
2015-01-01
When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…
Methods of algebraic geometry in control theory
Falb, Peter
1999-01-01
"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...
Connecting Functions in Geometry and Algebra
Steketee, Scott; Scher, Daniel
2016-01-01
One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
A Relationship between Geometry and Algebra
Bejarano, Jose Ricardo Arteaga
2011-01-01
The three key documents for study geometry are: 1) "The Elements" of Euclid, 2) the lecture by B. Riemann at G\\"ottingen in 1854 entitled "\\"Uber die Hypothesen welche der Geometrie zu Grunde liegen" (On the hypotheses which underlie geometry) and 3) the "Erlangen Program", a document written by F. Klein (1872) on his income as professor at the Faculty of Philosophy and the Senate of the Erlangen University. The latter document F. Klein introduces the concept of group as a tool to study geometry. The concept of a group of transformations of space was known at the time. The purpose of this informative paper is to show a relationship between geometry and algebra through an example, the projective plane. Erlangen program until today continues being a guideline of how to study geometry.
Algebraic Geometry over C-infinity rings
Joyce, Dominic
2010-01-01
If X is a smooth manifold then the R-algebra C^\\infty(X) of smooth functions c : X --> R is a "C-infinity ring". That is, for each smooth function f : R^n --> R there is an n-fold operation \\Phi_f : C^\\infty(X)^n --> C^\\infty(X) acting by \\Phi_f: (c_1,...,c_n) |--> f(c_1,...,c_n), and these operations \\Phi_f satisfy many natural identities. Thus, C^\\infty(X) actually has a far richer structure than the obvious R-algebra structure. We explain the foundations of a version of Algebraic Geometry in which rings or algebras are replaced by C-infinity rings. As schemes are the basic objects in Algebraic Geometry, the new basic objects are "C-infinity schemes", a category of geometric objects which generalize smooth manifolds, and whose morphisms generalize smooth maps. We also study quasicoherent and coherent sheaves on C-infinity schemes, and "C-infinity stacks", in particular Deligne-Mumford C-infinity stacks, a 2-category of geometric objects generalizing orbifolds. Many of these ideas are not new: C-infinity rin...
Algebraic Geometry of Topological Spaces I
Cortiñas, Guillermo
2009-01-01
We use techniques from both real and complex algebraic geometry to study K-theoretic and related invariants of the algebra C(X) of continuous complex-valued functions on a compact Hausdorff topological space X. For example, we prove a parametrized version of a theorem of Joseph Gubeladze; we show that if M is a countable, abelian, cancellative, torsion-free, seminormal monoid, and X is contractible, then every finitely generated projective module over C(X)[M] is free. The particular case when M=N^n gives a parametrized version of the celebrated theorem proved independently by Daniel Quillen and Andrei Suslin that finitely generated projective modules over a polynomial ring over a field are free. The conjecture of Jonathan Rosenberg which predicts the homotopy invariance of the negative algebraic K-theory of C(X) follows from the particular case when M=Z^n. We also give algebraic conditions for a functor from commutative algebras to abelian groups to be homotopy invariant on C*-algebras, and for a homology the...
Computational algebraic geometry of epidemic models
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
Algebraic geometry informs perturbative quantum field theory
Broadhurst, David
2014-01-01
Single-scale Feynman diagrams yield integrals that are periods, namely projective integrals of rational functions of Schwinger parameters. Algebraic geometry may therefore inform us of the types of number to which these integrals evaluate. We give examples at 3, 4 and 6 loops of massive Feynman diagrams that evaluate to Dirichlet $L$-series of modular forms and examples at 6, 7 and 8 loops of counterterms that evaluate to multiple zeta values or polylogarithms of the sixth root of unity. At 8 loops and beyond, algebraic geometry informs us that polylogs are insufficient for the evaluation of terms in the beta-function of $\\phi^4$ theory. Here, modular forms appear as obstructions to polylogarithmic evaluation.
Scattering Amplitudes via Algebraic Geometry Methods
DEFF Research Database (Denmark)
Søgaard, Mads
unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...... in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of tree-level amplitudes. Several explicit examples are provided...
Construction and decoding of a class of algebraic geometry codes
DEFF Research Database (Denmark)
Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd;
1989-01-01
A class of codes derived from algebraic plane curves is constructed. The concepts and results from algebraic geometry that were used are explained in detail; no further knowledge of algebraic geometry is needed. Parameters, generator and parity-check matrices are given. The main result...
PREFACE: Algebra, Geometry, and Mathematical Physics 2010
Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.
2012-02-01
This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants
Formalization and Implementation of Algebraic Methods in Geometry
Marić, Filip; Petrović, Danijela; Janičić, Predrag; 10.4204/EPTCS.79.4
2012-01-01
We describe our ongoing project of formalization of algebraic methods for geometry theorem proving (Wu's method and the Groebner bases method), their implementation and integration in educational tools. The project includes formal verification of the algebraic methods within Isabelle/HOL proof assistant and development of a new, open-source Java implementation of the algebraic methods. The project should fill-in some gaps still existing in this area (e.g., the lack of formal links between algebraic methods and synthetic geometry and the lack of self-contained implementations of algebraic methods suitable for integration with dynamic geometry tools) and should enable new applications of theorem proving in education.
CIME-CIRM course Rationality Problems in Algebraic Geometry
Pirola, Gian
2016-01-01
Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.
Noncommutative differential geometry, and the matrix representations of generalised algebras
Gratus, J.
1998-05-01
The underly ing algebra I or a noncummutative geometry is taken to be a matrix algebra, and the set of derivatives the ad joint of a subset of traceless matrices. This is sufficient to calculate the dual 1-forms, and show that the space of 1-firms is at free module over the algebra of matrices. The concept of a generalised algebra is delined and it is shown that this is required in order for the space of 2-forms to exist, The exterior derivative is generalised for higher-order forms and these are also shown to he free modules over the matrix algebra. Examples of mappings that preserve the differential Structure are peen, Also giken are four examples of matrix generalised algebras, and the corresponding noncommutntive geometries, including the cases where the generalised algebra corresponds to a representation of a Lie algebra or a q-deformed algebra.
Classical versus Computer Algebra Methods in Elementary Geometry
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
The Bell states in noncommutative algebraic geometry
Beil, Charlie
2014-10-01
We introduce new mathematical aspects of the Bell states using matrix factorizations, non-noetherian singularities, and noncommutative blowups. A matrix factorization of a polynomial p consists of two matrices ϕ1, ϕ2 such that ϕ1ϕ2 = ϕ2ϕ1 = p id. Using this notion, we show how the Bell states emerge from the separable product of two mixtures, by defining pure states over complex matrices rather than just the complex numbers. We then show in an idealized algebraic setting that pure states are supported on non-noetherian singularities. Moreover, we find that the collapse of a Bell state is intimately related to the representation theory of the noncommutative blowup along its singular support. This presents an exchange in geometry: the nonlocal commutative spacetime of the entangled state emerges from an underlying local noncommutative spacetime.
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads; Damgaard, Poul Henrik
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...
Computational commutative and non-commutative algebraic geometry
Cojocaru, S; Ufnarovski, V
2005-01-01
This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.
From geometry to algebra: the Euclidean way with technology
Ferrarello, Daniela; Flavia Mammana, Maria; Pennisi, Mario
2016-05-01
In this paper, we present the results of an experimental classroom activity, history-based with a phylogenetic approach, to achieve algebra properties through geometry. In particular, we used Euclidean propositions, processed them by a dynamic geometry system and translate them into algebraic special products.
Multiplier ideal sheaves in complex and algebraic geometry
Institute of Scientific and Technical Information of China (English)
Yum-Tong; Siu
2005-01-01
The application of the method of multiplier ideal sheaves to effective problems in algebraic geometry is briefly discussed. Then its application to the deformational invariance of plurigenera for general compact algebraic manifolds is presented and discussed.Finally its application to the conjecture of the finite generation of the canonical ring is explored, and the use of complex algebraic geometry in complex Neumann estimates is discussed.
Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory
Landau, Olav Arnfinn
2011-01-01
This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
Rukhsan-Ul-Haq
2016-12-01
Spin is a fundamental degree of freedom of matter and radiation.In quantum theory, spin is represented by Pauli matrices.Then the various algebraic properties of Pauli matricesare studied as properties of matrix algebra. What has beenshown in this article is that Pauli matrices are a representationof Clifford algebra of spin and hence all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a geometrical and henceintuitive way to understand quantum theory of spin, and isa natural formalism to study spin. Clifford algebraic formalismhas lot of applications in every field where spin plays animportant role.
Formalization and Implementation of Algebraic Methods in Geometry
Directory of Open Access Journals (Sweden)
Filip Marić
2012-02-01
Full Text Available We describe our ongoing project of formalization of algebraic methods for geometry theorem proving (Wu's method and the Groebner bases method, their implementation and integration in educational tools. The project includes formal verification of the algebraic methods within Isabelle/HOL proof assistant and development of a new, open-source Java implementation of the algebraic methods. The project should fill-in some gaps still existing in this area (e.g., the lack of formal links between algebraic methods and synthetic geometry and the lack of self-contained implementations of algebraic methods suitable for integration with dynamic geometry tools and should enable new applications of theorem proving in education.
Integrable systems in the realm of algebraic geometry
Vanhaecke, Pol
2001-01-01
This book treats the general theory of Poisson structures and integrable systems on affine varieties in a systematic way. Special attention is drawn to algebraic completely integrable systems. Several integrable systems are constructed and studied in detail and a few applications of integrable systems to algebraic geometry are worked out. In the second edition some of the concepts in Poisson geometry are clarified by introducting Poisson cohomology; the Mumford systems are constructed from the algebra of pseudo-differential operators, which clarifies their origin; a new explanation of the multi Hamiltonian structure of the Mumford systems is given by using the loop algebra of sl(2); and finally Goedesic flow on SO(4) is added to illustrate the linearizatin algorith and to give another application of integrable systems to algebraic geometry.
Using Geometry to teach and learn Linear Algebra
Gueudet, Ghislaine
2006-01-01
International audience; Linear algebra is a difficult topic for undergraduate students. In France, the focus of beginning linear algebra courses is the study of abstract vector spaces, with or without an inner product, rather than matrix operations as is common in many other countries. This paper presents a study of the possible uses of geometry and "geometrical intuition" in the teaching and learning of linear algebra. Fischbein's work on intuition in science and mathematics is used to analy...
Performance Analysis of a Decoding Algorithm for Algebraic Geometry Codes
DEFF Research Database (Denmark)
Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund; Høholdt, Tom
1998-01-01
We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is greater than or equal to [(dFR-1)/2]+1, where dFR is the Feng-Rao distance......We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is greater than or equal to [(dFR-1)/2]+1, where dFR is the Feng-Rao distance...
Recent results in the decoding of Algebraic geometry codes
DEFF Research Database (Denmark)
Høholdt, Tom; Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund
1998-01-01
We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is [(dFR-1)/2]+1, where dFR is the Feng-Rao distance......We analyse the known decoding algorithms for algebraic geometry codes in the case where the number of errors is [(dFR-1)/2]+1, where dFR is the Feng-Rao distance...
From combinatorial optimization to real algebraic geometry and back
Directory of Open Access Journals (Sweden)
Janez Povh
2014-12-01
Full Text Available In this paper, we explain the relations between combinatorial optimization and real algebraic geometry with a special focus to the quadratic assignment problem. We demonstrate how to write a quadratic optimization problem over discrete feasible set as a linear optimization problem over the cone of completely positive matrices. The latter formulation enables a hierarchy of approximations which rely on results from polynomial optimization, a sub-eld of real algebraic geometry.
The geometry of supersymmetric coset models and superconformal algebras
Papadopoulos, G
1993-01-01
An on-shell formulation of (p,q), 2\\leq p \\leq 4, 0\\leq q\\leq 4, supersymmetric coset models with target space the group G and gauge group a subgroup H of G is given. It is shown that there is a correspondence between the number of supersymmetries of a coset model and the geometry of the coset space G/H. The algebras of currents of supersymmetric coset models are superconformal algebras. In particular, the algebras of currents of (2,2) and (4,0) supersymmetric coset models are related to the N=2 Kazama-Suzuki and N=4 Van Proeyen superconformal algebras correspondingly.
Experimental and Theoretical Methods in Algebra, Geometry and Topology
Veys, Willem; Bridging Algebra, Geometry, and Topology
2014-01-01
Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference “Experimental and Theoretical Methods in Algebra, Geometry and Topology”, held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Ştefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research f...
Automorphisms of associative algebras and noncommutative geometry
Dimakis, A.; Müller-Hoissen, F.
2004-02-01
A class of differential calculi is explored which is determined by a set of automorphisms of the underlying associative algebra. Several examples are presented. In particular, differential calculi on the quantum plane, the h-deformed plane and the quantum group GLp,q(2) are recovered in this way. Geometric structures such as metrics and compatible linear connections are introduced.
Noncommutative spectral geometry, algebra doubling and the seeds of quantization
Sakellariadou, Mairi; Vitiello, Giuseppe
2011-01-01
A physical interpretation of the two-sheeted space, the most fundamental ingredient of noncommutative spectral geometry proposed by Connes as an approach to unification, is presented. It is shown that the doubling of the algebra is strictly related to dissipation. As a consequence, the doubling of the algebra is intimately related to the gauge structure of the theory. In a regime of completely deterministic dynamics, dissipation seems also to play a key role in the quantization of the theory, following 't Hooft's conjecture. It is thus argued that Connes' classical construction carries implicit in its feature of the doubling of the algebra the seeds of quantization.
Cox, David A; O'Shea, Donal
2015-01-01
This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem, and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and, with some supplementation perhaps, for beginning graduate level courses in algebraic geom...
Geometry, algebra and applications from mechanics to cryptography
Encinas, Luis; Gadea, Pedro; María, Mª
2016-01-01
This volume collects contributions written by different experts in honor of Prof. Jaime Muñoz Masqué. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.
Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry
2014-01-01
Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...
Many rational points coding theory and algebraic geometry
Hurt, Norman E
2003-01-01
This monograph presents a comprehensive treatment of recent results on algebraic geometry as they apply to coding theory and cryptography, with the goal the study of algebraic curves and varieties with many rational points. They book surveys recent developments on abelian varieties, in particular the classification of abelian surfaces, hyperelliptic curves, modular towers, Kloosterman curves and codes, Shimura curves and modular jacobian surfaces. Applications of abelian varieties to cryptography are presented including a discussion of hyperelliptic curve cryptosystems. The inter-relationship of codes and curves is developed building on Goppa's results on algebraic-geometry cods. The volume provides a source book of examples with relationships to advanced topics regarding Sato-Tate conjectures, Eichler-Selberg trace formula, Katz-Sarnak conjectures and Hecke operators.
Quantum potential physics, geometry and algebra
Licata, Ignazio
2014-01-01
Recently the interest in Bohm realist interpretation of quantum mechanics has grown. The important advantage of this approach lies in the possibility to introduce non-locality ab initio, and not as an “unexpected host”. In this book the authors give a detailed analysis of quantum potential, the non-locality term and its role in quantum cosmology and information. The different approaches to the quantum potential are analysed, starting from the original attempt to introduce a realism of particles trajectories (influenced by de Broglie’s pilot wave) to the recent dynamic interpretation provided by Goldstein, Durr, Tumulka and Zanghì, and the geometrodynamic picture, with suggestion about quantum gravity. Finally we focus on the algebraic reading of Hiley and Birkbeck school, that analyse the meaning of the non-local structure of the world, bringing important consequences for the space, time and information concepts.
Algebraic grid generation for complex geometries
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1991-01-01
An efficient computer program called GRID2D/3D has been developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2D and 3D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation. The distribution of grid points within the spatial domain is controlled by stretching functions and grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For 2D spatial domains the boundary curves are constructed by using either cubic or tension spline interpolation. For 3D spatial domains the boundary surfaces are constructed by using a new technique, developed in this study, referred to as 3D bidirectional Hermite interpolation.
Enumerative geometry, tau-functions and Heisenberg-Virasoro algebra
Alexandrov, A
2014-01-01
In this paper we establish relations between three enumerative geometry tau-functions, namely the Kontsevich-Witten, Hurwitz and Hodge tau-functions. The relations allow us to describe the tau-functions in terms of matrix integrals, Virasoro constraints and Kac-Schwarz operators. All constructed operators belong to the algebra (or group) of symmetries of the KP hierarchy.
Torsional Newton-Cartan geometry and the Schrodinger algebra
Bergshoeff, Eric A.; Hartong, Jelle; Rosseel, Jan
2015-01-01
We show that by gauging the Schrodinger algebra with critical exponent z and imposing suitable curvature constraints, that make diffeomorphisms equivalent to time and space translations, one obtains a geometric structure known as (twistless) torsional Newton-Cartan geometry (TTNC). This is a version
2008-01-01
Based on the distinction between the covariant and contravariant metric tensor components in the framework of the affine geometry approach and the s.c. "gravitational theories with covariant and contravariant connection and metrics", it is shown that a wide variety of third, fourth, fifth, seventh, tenth- degree algebraic equations exists in gravity theory. This is important in view of finding new solutions of the Einstein's equations, if they are treated as algebraic ones. Since the obtained...
Noncommutative spectral geometry, algebra doubling, and the seeds of quantization
Sakellariadou, Mairi; Stabile, Antonio; Vitiello, Giuseppe
2011-08-01
A physical interpretation of the two-sheeted space, the most fundamental ingredient of noncommutative spectral geometry proposed by Connes as an approach to unification, is presented. It is shown that the doubling of the algebra is related to dissipation and to the gauge structure of the theory, the gauge field acting as a reservoir for the matter field. In a regime of completely deterministic dynamics, dissipation appears to play a key role in the quantization of the theory, according to the ’t Hooft’s conjecture. It is thus argued that the noncommutative spectral geometry classical construction carries the seeds of quantization, implicit in its feature of the doubling of the algebra.
Prime factorization using quantum annealing and computational algebraic geometry
Dridi, Raouf; Alghassi, Hedayat
2017-02-01
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.
Prime factorization using quantum annealing and computational algebraic geometry
Dridi, Raouf; Alghassi, Hedayat
2017-01-01
We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians. PMID:28220854
Integral points on algebraic varieties an introduction to diophantine geometry
Corvaja, Pietro
2016-01-01
This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces.
Clifford Algebras in Symplectic Geometry and Quantum Mechanics
Binz, Ernst; de Gosson, Maurice A.; Hiley, Basil J.
2011-01-01
The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional s...
Chiral topological insulator on Nambu 3-algebraic geometry
Directory of Open Access Journals (Sweden)
Kazuki Hasebe
2014-09-01
Full Text Available Chiral topological insulator (AIII-class with Landau levels is constructed based on the Nambu 3-algebraic geometry. We clarify the geometric origin of the chiral symmetry of the AIII-class topological insulator in the context of non-commutative geometry of 4D quantum Hall effect. The many-body groundstate wavefunction is explicitly derived as a (l,l,l−1 Laughlin–Halperin type wavefunction with unique K-matrix structure. Fundamental excitation is identified with anyonic string-like object with fractional charge 1/(2(l−12+1. The Hall effect of the chiral topological insulators turns out be a color version of Hall effect, which exhibits a dual property of the Hall and spin-Hall effects.
Clifford algebras geometric modelling and chain geometries with application in kinematics
Klawitter, Daniel
2015-01-01
After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework. Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About...
Energy Technology Data Exchange (ETDEWEB)
Gargiulo, Maria Vittoria; Vitiello, Giuseppe [I.N.F.N., Salerno (Italy); Universita di Salerno, Dipartimento di Fisica, Salerno (Italy); Sakellariadou, Mairi [King' s College London, University of London, Department of Physics, London (United Kingdom)
2014-01-15
We study the physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of the strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogoliubov transformations and show the emergence of neutrino mixing. (orig.)
Doubling of the Algebra and Neutrino Mixing within Noncommutative Spectral Geometry
Gargiulo, Maria Vittoria; Vitiello, Giuseppe
2014-01-01
We study physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogogliubov transformations and show the emergence of neutrino mixing.
Doubling of the algebra and neutrino mixing within noncommutative spectral geometry
Gargiulo, Maria Vittoria; Sakellariadou, Mairi; Vitiello, Giuseppe
2014-01-01
We study the physical implications of the doubling of the algebra, an essential element in the construction of the noncommutative spectral geometry model, proposed by Connes and his collaborators as offering a geometric explanation for the standard model of the strong and electroweak interactions. Linking the algebra doubling to the deformed Hopf algebra, we build Bogoliubov transformations and show the emergence of neutrino mixing.
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.
Geometric algebra and information geometry for quantum computational software
Cafaro, Carlo
2017-03-01
The art of quantum algorithm design is highly nontrivial. Grover's search algorithm constitutes a masterpiece of quantum computational software. In this article, we use methods of geometric algebra (GA) and information geometry (IG) to enhance the algebraic efficiency and the geometrical significance of the digital and analog representations of Grover's algorithm, respectively. Specifically, GA is used to describe the Grover iterate and the discretized iterative procedure that exploits quantum interference to amplify the probability amplitude of the target-state before measuring the query register. The transition from digital to analog descriptions occurs via Stone's theorem which relates the (unitary) Grover iterate to a suitable (Hermitian) Hamiltonian that controls Schrodinger's quantum mechanical evolution of a quantum state towards the target state. Once the discrete-to-continuos transition is completed, IG is used to interpret Grover's iterative procedure as a geodesic path on the manifold of the parametric density operators of pure quantum states constructed from the continuous approximation of the parametric quantum output state in Grover's algorithm. Finally, we discuss the dissipationless nature of quantum computing, recover the quadratic speedup relation, and identify the superfluity of the Walsh-Hadamard operation from an IG perspective with emphasis on statistical mechanical considerations.
Clifford Algebras in Symplectic Geometry and Quantum Mechanics
Binz, Ernst; Hiley, Basil J
2011-01-01
The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional sub-space, Fa of the Euclidean three-space. This enables us to construct a Poisson Clifford algebra, H(F), of a finite dimensional phase space which will carry the dynamics. The quantum dynamics appears as a realization of H(F) in terms of a Clifford algebra consisting of Hermitian operators.
Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory
Sakellariadou, Mairi; Stabile, Antonio; Vitiello, Giuseppe
2013-06-01
We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.
Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory
Sakellariadou, Mairi; Vitiello, Giuseppe
2013-01-01
We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.
3D Cadastral Data Model Based on Conformal Geometry Algebra
Directory of Open Access Journals (Sweden)
Ji-yi Zhang
2016-02-01
Full Text Available Three-dimensional (3D cadastral data models that are based on Euclidean geometry (EG are incapable of providing a unified representation of geometry and topological relations for 3D spatial units in a cadastral database. This lack of unification causes problems such as complex expression structure and inefficiency in the updating of 3D cadastral objects. The inability of current cadastral data models to express cadastral objects in a unified manner can be attributed to the different expressions of dimensional objects. Because the hierarchical Grassmann structure corresponds to the hierarchical structure of dimensions in conformal geometric algebra (CGA, geometric objects in different dimensions can be constructed by outer products in a unified expression form, which enables the direct extension of two-dimensional (2D spatial representations to 3D spatial representations. The multivector structure in CGA can be employed to organize and store different dimensional objects in a multidimensional and unified manner. With the advantages of CGA in multidimensional expressions, a new 3D cadastral data model that is based on CGA is proposed in this paper. The geometries and topological relations of 3D spatial units can be represented in a unified form within the multivector structure. Detailed methods for 3D cadastral data model design based on CGA and data organization in CGA are introduced. The new cadastral data model is tested and analyzed with experimental data. The results indicate that the geometry and topological relations of 3D cadastral objects can be represented in a multidimensional manner with an intuitive topological structure and a unified dimensional expression.
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Integrand Reduction Reloaded: Algebraic Geometry and Finite Fields
Sameshima, Ray D.; Ferroglia, Andrea; Ossola, Giovanni
2017-01-01
The evaluation of scattering amplitudes in quantum field theory allows us to compare the phenomenological prediction of particle theory with the measurement at collider experiments. The study of scattering amplitudes, in terms of their symmetries and analytic properties, provides a theoretical framework to develop techniques and efficient algorithms for the evaluation of physical cross sections and differential distributions. Tree-level calculations have been known for a long time. Loop amplitudes, which are needed to reduce the theoretical uncertainty, are more challenging since they involve a large number of Feynman diagrams, expressed as integrals of rational functions. At one-loop, the problem has been solved thanks to the combined effect of integrand reduction, such as the OPP method, and unitarity. However, plenty of work is still needed at higher orders, starting with the two-loop case. Recently, integrand reduction has been revisited using algebraic geometry. In this presentation, we review the salient features of integrand reduction for dimensionally regulated Feynman integrals, and describe an interesting technique for their reduction based on multivariate polynomial division. We also show a novel approach to improve its efficiency by introducing finite fields. Supported in part by the National Science Foundation under Grant PHY-1417354.
Lower bounds for the minimum distance of algebraic geometry codes
DEFF Research Database (Denmark)
Beelen, Peter
, such as the Goppa bound, the Feng-Rao bound and the Kirfel-Pellikaan bound. I will finish my talk by giving several examples. Especially for two-point codes, the generalized order bound is fairly easy to compute. As an illustration, I will indicate how a lower bound can be obtained for the minimum distance of some......A one-point AG-code is an algebraic geometry code based on a divisor whose support consists of one point. Since the discovery of the Feng-Rao lower bound for the minimum distance, there has been a renewed interest in such codes. This lower bound is also called the order bound. An alternative...... description of these codes in terms of order domains has been found. In my talk I will indicate how one can use the ideas behind the order bound to obtain a lower bound for the minimum distance of any AG-code. After this I will compare this generalized order bound with other known lower bounds...
Limit Algebras of Differential Forms in Non-Commutative Geometry
Indian Academy of Sciences (India)
S J Bhatt; A Inoue
2008-08-01
Given a C∗-normed algebra A which is either a Banach ∗-algebra or a Frechet ∗-algebra, we study the algebras ∞A and A obtained by taking respectively the projective limit and the inductive limit of Banach ∗-algebras obtained by completing the universal graded differential algebra ∗A of abstract non-commutative differential forms over A. Various quantized integrals on ∞A induced by a K-cycle on A are considered. The GNS-representation of ∞A defined by a d-dimensional non-commutative volume integral on a d+-summable K-cycle on A is realized as the representation induced by the left action of A on ∗A. This supplements the representation A on the space of forms discussed by Connes (Ch. VI.1, Prop. 5, p. 550 of [C]).
Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza
2014-03-01
This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.
An algebraic formulation of causality for noncommutative geometry
Franco, Nicolas; Eckstein, Michał
2013-07-01
We propose an algebraic formulation of the notion of causality for spectral triples corresponding to globally hyperbolic manifolds with a well-defined noncommutative generalization. The causality is given by a specific cone of Hermitian elements respecting an algebraic condition based on the Dirac operator and a fundamental symmetry. We prove that in the commutative case the usual notion of causality is recovered. We show that, when the dimension of the manifold is even, the result can be extended in order to have an algebraic constraint suitable for a Lorentzian distance formula.
Algebra and Geometry of Hamilton's Quaternions: 'Well, Papa, Can You Multiply Triplets?'
Indian Academy of Sciences (India)
2016-06-01
Inspired by the relation between the algebra ofcomplex numbers and plane geometry, WilliamRowan Hamilton sought an algebra of triples forapplication to three-dimensional geometry. Unableto multiply and divide triples, he inventeda non-commutative division algebra of quadruples,in what he considered his most significantwork, generalizing the real and complex numbersystems. We give a motivated introduction toquaternions and discuss how they are related toPauli matrices, rotations in three dimensions, thethree sphere, the group SU(2) and the celebratedHopf fibrations.
Pure L-functions from algebraic geometry over finite fields
Wan, D
2000-01-01
This is an expository paper which gives a simple arithmetic introduction to the conjectures of Weil and Dwork concerning zeta functions of algebraic varieties over finite fields. A number of further open questions are raised.
On the noncommutative geometry of the endomorphism algebra of a vector bundle
Masson, Thierry
1999-09-01
In this paper we investigate some aspects of the noncummutative differential geometry based on derivations of the algebra of endomorphism of an oriented complex formation vector bundle. We relate it, in a natural way, to the geometry of the underlying principal bundle, we introduce on it a notion of metric and we study the cohomology of its complex of noncummutative differential forms.
The role of difficulty and gender in numbers, algebra, geometry and mathematics achievement
Rabab'h, Belal Sadiq Hamed; Veloo, Arsaythamby; Perumal, Selvan
2015-05-01
This study aims to identify the role of difficulty and gender in numbers, algebra, geometry and mathematics achievement among secondary schools students in Jordan. The respondent of the study were 337 students from eight public secondary school in Alkoura district by using stratified random sampling. The study comprised of 179 (53%) males and 158 (47%) females students. The mathematics test comprises of 30 items which has eight items for numbers, 14 items for algebra and eight items for geometry. Based on difficulties among male and female students, the findings showed that item 4 (fractions - 0.34) was most difficult for male students and item 6 (square roots - 0.39) for females in numbers. For the algebra, item 11 (inequality - 0.23) was most difficult for male students and item 6 (algebraic expressions - 0.35) for female students. In geometry, item 3 (reflection - 0.34) was most difficult for male students and item 8 (volume - 0.33) for female students. Based on gender differences, female students showed higher achievement in numbers and algebra compare to male students. On the other hand, there was no differences between male and female students achievement in geometry test. This study suggest that teachers need to give more attention on numbers and algebra when teaching mathematics.
Quaternions and Biquaternions: Algebra, Geometry and Physical Theories
Yefremov, A. P.
2005-01-01
The review of modern study of algebraic, geometric and differential properties of quaternionic (Q) numbers with their applications. Traditional and "tensor" formulation of Q-units with their possible representations are discussed and groups of Q-units transformations leaving Q-multiplication rule form-invariant are determined. A series of mathematical and physical applications is offered, among them use of Q-triads as a moveable frame, analysis of Q-spaces families, Q-formulation of Newtonian...
Spectral properties of sums of Hermitian matrices and algebraic geometry
Chau Huu-Tai, P.; Van Isacker, P.
2016-04-01
It is shown that all the eigenvectors of a sum of Hermitian matrices belong to the same algebraic variety. A polynomial system characterizing this variety is given and a set of nonlinear equations is derived which allows the construction of the variety. Moreover, in some specific cases, explicit expressions for the eigenvectors and eigenvalues can be obtained. Explicit solutions of selected models are also derived.
Fast Erasure and Error decoding of Algebraic Geometry Codes up to the Feng-Rao Bound
DEFF Research Database (Denmark)
Jensen, Helge Elbrønd; Sakata, S.; Leonard, D.;
1996-01-01
This paper gives an errata(that is erasure-and error-) decoding algorithm of one-point algebraic geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-massey algorithm and the votin procedure of Feng and Rao.......This paper gives an errata(that is erasure-and error-) decoding algorithm of one-point algebraic geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-massey algorithm and the votin procedure of Feng and Rao....
Noncommutative geometry in string and twisted Hopf algebra of diffeomorphism
Watamura, Satoshi
2011-09-01
We discuss the Hopf algebra structure in string theory and present the twist quantization as a unified formulation of the world sheet quantization of the string and the symmetry of the target spacetime. Applying it to the case with a nonzero B-field background, we explain a method to decompose the twist into two successive twists. There are two different possibilities of decomposition: The first is a natural decomposition from the viewpoint of the twist quantization, leading to a new type of twisted Poincaré symmetry. The second decomposition reveals the relation of our formulation to the twisted Poincaré symmetry on the Moyal type noncommutative space.
Projective BGG equations, algebraic sets, and compactifications of Einstein geometries
Cap, A; Hammerl, M
2010-01-01
For curved projective manifolds we introduce a notion of a normal tractor frame field, based around any point. This leads to canonical systems of (redundant) coordinates that generalise the usual homogeneous coordinates on projective space. These give preferred local maps to the model projective space that encode geometric contact with the model to a level that is optimal, in a suitable sense. In terms of the trivialisations arising from the special frames, normal solutions of classes of natural linear PDE (so-called first BGG equations) are shown to be necessarily polynomial in the generalised homogeneous coordinates; the polynomial system is the pull back of a polynomial system that solves the corresponding problem on the model. Thus questions concerning the zero locus of solutions, as well as related finer geometric and smooth data, are reduced to a study of the corresponding polynomial systems and algebraic sets. We show that a normal solution determines a canonical manifold stratification that reflects a...
Abstract algebra, projective geometry and time encoding of quantum information
Planat, M R P; Planat, Michel R. P.; Saniga, Metod
2005-01-01
Algebraic geometrical concepts are playing an increasing role in quantum applications such as coding, cryptography, tomography and computing. We point out here the prominent role played by Galois fields viewed as cyclotomic extensions of the integers modulo a prime characteristic $p$. They can be used to generate efficient cyclic encoding, for transmitting secrete quantum keys, for quantum state recovery and for error correction in quantum computing. Finite projective planes and their generalization are the geometric counterpart to cyclotomic concepts, their coordinatization involves Galois fields, and they have been used repetitively for enciphering and coding. Finally the characters over Galois fields are fundamental for generating complete sets of mutually unbiased bases, a generic concept of quantum information processing and quantum entanglement. Gauss sums over Galois fields ensure minimum uncertainty under such protocols. Some Galois rings which are cyclotomic extensions of the integers modulo 4 are al...
Quantum error-correcting codes from algebraic geometry codes of Castle type
Munuera, Carlos; Tenório, Wanderson; Torres, Fernando
2016-10-01
We study algebraic geometry codes producing quantum error-correcting codes by the CSS construction. We pay particular attention to the family of Castle codes. We show that many of the examples known in the literature in fact belong to this family of codes. We systematize these constructions by showing the common theory that underlies all of them.
Performance analysis of a decoding algorithm for algebraic-geometry codes
DEFF Research Database (Denmark)
Høholdt, Tom; Jensen, Helge Elbrønd; Nielsen, Rasmus Refslund
1999-01-01
The fast decoding algorithm for one point algebraic-geometry codes of Sakata, Elbrond Jensen, and Hoholdt corrects all error patterns of weight less than half the Feng-Rao minimum distance. In this correspondence we analyze the performance of the algorithm for heavier error patterns. It turns out...
Arnold, Vladimir I; Khesin, Boris; Marsden, Jerrold E; Varchenko, AN; Vassiliev, Victor A; Viro, Oleg Yanovich; Zakalyukin, Vladimir
2013-01-01
Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This second volume of his ""Collected Works"" focuses on hydrodynamics, bifurcation theory, and algebraic geometry.
Muntingh, Georg
2014-01-01
This book summarizes research carried out in workshops of the SAGA project, an Initial Training Network exploring the interplay of Shapes, Algebra, Geometry and Algorithms. Written by a combination of young and experienced researchers, the book introduces new ideas in an established context. Among the central topics are approximate and sparse implicitization and surface parametrization; algebraic tools for geometric computing; algebraic geometry for computer aided design applications and problems with industrial applications. Readers will encounter new methods for the (approximate) transition between the implicit and parametric representation; new algebraic tools for geometric computing; new applications of isogeometric analysis, and will gain insight into the emerging research field situated between algebraic geometry and computer aided geometric design.
Geometry of moduli stacks of (k , l) -stable vector bundles over algebraic curves
Mata-Gutiérrez, O.; Neumann, Frank
2017-01-01
We study the geometry of the moduli stack of vector bundles of fixed rank and degree over an algebraic curve by introducing a filtration made of open substacks build from (k , l) -stable vector bundles. The concept of (k , l) -stability was introduced by Narasimhan and Ramanan to study the geometry of the coarse moduli space of stable bundles. We will exhibit the stacky picture and analyse the geometric and cohomological properties of the moduli stacks of (k , l) -stable vector bundles. For particular pairs (k , l) of integers we also show that these moduli stacks admit coarse moduli spaces and we discuss their interplay.
Bicomplex holomorphic functions the algebra, geometry and analysis of bicomplex numbers
Luna-Elizarrarás, M Elena; Struppa, Daniele C; Vajiac, Adrian
2015-01-01
The purpose of this book is to develop the foundations of the theory of holomorphicity on the ring of bicomplex numbers. Accordingly, the main focus is on expressing the similarities with, and differences from, the classical theory of one complex variable. The result is an elementary yet comprehensive introduction to the algebra, geometry and analysis of bicomplex numbers. Around the middle of the nineteenth century, several mathematicians (the best known being Sir William Hamilton and Arthur Cayley) became interested in studying number systems that extended the field of complex numbers. Hamilton famously introduced the quaternions, a skew field in real-dimension four, while almost simultaneously James Cockle introduced a commutative four-dimensional real algebra, which was rediscovered in 1892 by Corrado Segre, who referred to his elements as bicomplex numbers. The advantages of commutativity were accompanied by the introduction of zero divisors, something that for a while dampened interest in this subject. ...
Algebraic geometry tools for the study of entanglement: an application to spin squeezed states
Bernardi, Alessandra; Carusotto, Iacopo
2012-03-01
A short review of algebraic geometry tools for the decomposition of tensors and polynomials is given from the point of view of applications to quantum and atomic physics. Examples of application to assemblies of indistinguishable two-level bosonic atoms are discussed using modern formulations of the classical Sylvester algorithm for the decomposition of homogeneous polynomials in two variables. In particular, the symmetric rank and symmetric border rank of spin squeezed states are calculated as well as their Schrödinger-cat-like decomposition as the sum of macroscopically different coherent spin states; Fock states provide an example of states for which the symmetric rank and the symmetric border rank are different.
Ezawa, Z. F.; Tsitsishvili, G.; Hasebe, K.
2003-03-01
Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of N-component electrons at the integer filling factor ν=k⩽N. The basic algebra is the SU(N)-extended W∞. A specific feature is that noncommutative geometry leads to a spontaneous development of SU(N) quantum coherence by generating the exchange Coulomb interaction. The effective Hamiltonian is the Grassmannian GN,k sigma model, and the dynamical field is the Grassmannian GN,k field, describing k(N-k) complex Goldstone modes and one kind of topological solitons (Grassmannian solitons).
A C*-algebra approach to noncommutative Lorentzian geometry of globally-hyperbolic spacetimes
Moretti, V
2003-01-01
The structure of globally hyperbolic spacetimes is investigated from the point of view of Connes' noncommutative geometry. No foliation of the spacetime by means of spacelike surfaces is employed, the complete Lorentzian geometry is considered. Connes' functional formula for the distance is generalized to the Lorentzian case using the d'Alembert operator and the causal functions of a globally hyperbolic spacetime (continuous functions which do not decrease along future-directed causal curves).The formula concerns the Lorentzian distance which determines the causal part of the Synge world function, satisfies an inverse triangular inequality and completely determines the topology, the differentiable structure, the metric tensor and the temporal orientation of a globally hyperbolic spacetime. Afterwards, using a C*-algebra approach, the spacetime causal structure and the Lorentzian distance are generalized into noncommutative structures. The generalized spacetime consists of a direct set of of Hilbert spaces and...
Norén, Patrik
2013-01-01
Algebraic statistics brings together ideas from algebraic geometry, commutative algebra, and combinatorics to address problems in statistics and its applications. Computer algebra provides powerful tools for the study of algorithms and software. However, these tools are rarely prepared to address statistical challenges and therefore new algebraic results need often be developed. This way of interplay between algebra and statistics fertilizes both disciplines. Algebraic statistics is a relativ...
Numerical algebraic geometry for model selection and its application to the life sciences.
Gross, Elizabeth; Davis, Brent; Ho, Kenneth L; Bates, Daniel J; Harrington, Heather A
2016-10-01
Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology.
Boolean Algebra. Geometry Module for Use in a Mathematics Laboratory Setting.
Brotherton, Sheila; And Others
This module is recommended as an honors unit to follow a unit on logic. There are four basic parts: (1) What is a Boolean Algebra; (2) Using Boolean Algebra to Prove Theorems; (3) Using Boolean Algebra to Simplify Logical Statements; and (4) Circuit Problems with Logic and Boolean Algebra. Of these, sections 1, 2, and 3 are primarily written…
Geometry of the gauge algebra in noncommutative Yang-Mills theory
Lizzi, Fedele; Zampini, Alessandro; Szabo, Richard J.
2001-08-01
A detailed description of the infinite-dimensional Lie algebra of star-gauge transformations in non-commutative Yang-Mills theory is presented. Various descriptions of this algebra are given in terms of inner automorphisms of the underlying deformed algebra of functions on spacetime, of deformed symplectic diffeomorphisms, of the infinite unitary Lie algebra u(∞), and of the C*-algebra of compact operators on a quantum mechanical Hilbert space. The spacetime and string interpretations are also elucidated.
Geometry of the Gauge Algebra in Noncommutative Yang-Mills Theory
Lizzi, F; Zampini, A
2001-01-01
A detailed description of the infinite-dimensional Lie algebra of star-gauge transformations in noncommutative Yang-Mills theory is presented. Various descriptions of this algebra are given in terms of inner automorphisms of the underlying deformed algebra of functions on spacetime, of deformed symplectic diffeomorphisms, of the infinite unitary Lie algebra, and of the algebra of compact operators on a quantum mechanical Hilbert space. The spacetime and string interpretations are also elucidated.
Fast Erasure-and error decoding of algebraic geometry codes up to the Feng-Rao bound
DEFF Research Database (Denmark)
Høholdt, Tom; Jensen, Helge Elbrønd; Sakata, Shojiro;
1998-01-01
This correspondence gives an errata (that is erasure-and error-) decoding algorithm of one-point algebraic-geometry codes up to the Feng-Rao designed minimum distance using Sakata's multidimensional generalization of the Berlekamp-Massey algorithm and the voting procedure of Feng and Rao....
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Shafarevich, I
1994-01-01
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
Institute of Scientific and Technical Information of China (English)
WANG Renhong; ZHU Chungang
2004-01-01
The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.
DEFF Research Database (Denmark)
Müller, Stefan; Feliu, Elisenda; Regensburger, Georg;
2016-01-01
We give necessary and sufficient conditions in terms of sign vectors for the injectivity of families of polynomials maps with arbitrary real exponents defined on the positive orthant. Our work relates and extends existing injectivity conditions expressed in terms of Jacobian matrices and determin...... and determinants. In the context of chemical reaction networks with power-law kinetics, our results can be used to preclude as well as to guarantee multiple positive steady states. In the context of real algebraic geometry, our results reveal the first ...
Bizi, Nadir; Besnard, Fabien
2016-01-01
An analogy with real Clifford algebras on even-dimensional vector spaces suggests to assign a space dimension and a time dimension (modulo 8) to an algebra (represented over a complex Hilbert space) containing two self-adjoint involutions and an anti-unitary operator with specific commutation relations. It is shown that this assignment is compatible with the tensor product, in the sense that a tensor product of such algebras corresponds to the addition of the space and time dimensions. This could provide an interpretation of the presence of such algebras in PT-symmetric Hamiltonians or the description of topological matter. This construction is used to build the tensor product of Lorentzian (and more generally pseudo-Riemannian) spectral triples, defined over a Krein space. The application to the standard model of particles suggests the identity of the time and space dimensions of the total (manifold+finite algebra) spectral triple. It also suggests the emergence of the pseudo-orthogonal group SO(4,6) in a gr...
A Lie-Algebra model for a noncommutative space time geometry
Doerfel, B D
2002-01-01
We propose a Lie-algebra model for noncommutative coordinate and momentum space . Based on a rigid commutation relation for the commutators of space time operators the model is quite constrained if one tries to keep Lorentz invariance as much as possible. We discuss the question of invariants esp. the definition of a mass.
Algebraic structures, physics and geometry from a Unified Field Theoretical framework
Cirilo-Lombardo, Diego Julio
2014-01-01
Starting from a Unified Field Theory (UFT) proposed previously by the authors, the possible fermionic representations arising from the same spacetime are considered from the algebraic and geometrical viewpoint. We specifically demonstrate in this UFT general context that the underlying basis of the single geometrical structure P (G,M) (the principal fiber bundle over the real spacetime manifold M with structural group G) reflecting the symmetries of the different fields carry naturally a biquaternionic structure instead of a complex one. This fact allows us to analyze algebraically and to interpret physically in a straighforward way the Majorana and Dirac representations and the relation of such structures with the spacetime signature and non-hermitian (CP) dynamic operators. Also, from the underlying structure of the tangent space, the existence of hidden (super) symmetries and the possibility of supersymmetric extensions of these UFT models are given showing that Rothstein's theorem is incomplete for that d...
Guido, Daniele; Landi, Giovanni; Vassout, Stéphane
2016-07-01
This topical issue grew out of the International Conference "Noncommutative Geometry and Applications" held 16-21 June 2014 at Villa Mondragone, Frascati (Roma). The main purpose of the conference was to have a unified view of different incarnations of noncommutative geometry and its applications. The seven papers collected in the present topical issue represent a good sample of the topics covered at the workshop. The conference itself was one of the climaxes of the Franco-Italian project GREFI-GENCO, which was initiated in 2007 by CNRS and INDAM to promote and enhance collaboration and exchanges between French and Italian researchers in the area of noncommutative geometry.
Central simple Poisson algebras
Institute of Scientific and Technical Information of China (English)
SU Yucai; XU Xiaoping
2004-01-01
Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.
Big Bang, Blow Up, and Modular Curves: Algebraic Geometry in Cosmology
Manin, Yuri I
2014-01-01
We introduce some algebraic geometric models in cosmology related to the "boundaries" of space--time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point $x$. This creates a boundary which consists of the projective space of tangent directions to $x$ and possibly of the light cone of $x$. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from "the end of previous aeon" of the expanding and cooling Universe to the "beginning of the next aeon" is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Bing Bang boundary.
de Gosson, Maurice A
2012-01-01
A positive definite symmetric matrix {\\sigma} qualifies as a quantum mechanical covariance matrix if and only if {\\sigma}+(1/2)i\\hbar{\\Omega}\\geq0 where {\\Omega} is the standard symplectic matrix. This well-known condition is a strong version of the uncertainty principle, which can be reinterpreted in terms of the topological notion of symplectic capacity, closely related to Gromov's non-squeezing theorem. We show that a recent refinement of the latter leads to a new class of geometric invariants. These are the volumes of the orthogonal projections of the covariance ellipsoid on symplectic subspaces of the phase space. We compare these geometric invariants to the algebraic "universal quantum invariants" of Dodonov and Serafini.
Ezawa, Z F; Hasebe, K
2003-01-01
Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of $N$-component electrons at the integer filling factor $\
Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers
Tomiczková, Svetlana; Lávicka, Miroslav
2015-01-01
It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…
Connecting Gr\\"obner Bases Programs with Coq to do Proofs in Algebra, Geometry and Arithmetics
Pottier, Loïc
2010-01-01
We describe how we connected three programs that compute Groebner bases to Coq, to do automated proofs on algebraic, geometrical and arithmetical expressions. The result is a set of Coq tactics and a certificate mechanism (downloadable at http://www-sop.inria.fr/marelle/Loic.Pottier/gb-keappa.tgz). The programs are: F4, GB \\, and gbcoq. F4 and GB are the fastest (up to our knowledge) available programs that compute Groebner bases. Gbcoq is slow in general but is proved to be correct (in Coq), and we adapted it to our specific problem to be efficient. The automated proofs concern equalities and non-equalities on polynomials with coefficients and indeterminates in R or Z, and are done by reducing to Groebner computation, via Hilbert's Nullstellensatz. We adapted also the results of Harrison, to allow to prove some theorems about modular arithmetics. The connection between Coq and the programs that compute Groebner bases is done using the "external" tactic of Coq that allows to call arbitrary programs accepting ...
Workshop on Commutative Algebra
Simis, Aron
1990-01-01
The central theme of this volume is commutative algebra, with emphasis on special graded algebras, which are increasingly of interest in problems of algebraic geometry, combinatorics and computer algebra. Most of the papers have partly survey character, but are research-oriented, aiming at classification and structural results.
The Application And Research Of Algebra And Geometry%代数与几何结合的应用问题研究
Institute of Scientific and Technical Information of China (English)
马艳琴
2012-01-01
In many areas of modern engineering,the computer graphics display a strong power.Geometry processes problems by algebraic method and algebra visualization,the combination of algebraic and geometric methods in engineering and technology applications have been quite extensive and in-depth,these practical problems prompted us to algebra and geometry more closely together.Using matrix algebra methods and matlab software can not only use geometric intuition to make some Abstract algebra concepts and theories become more easy acceptable,but also deal with some more difficult geometric problem.%在现代工程技术的许多领域里,计算机图形显示了强大的威力.几何问题代数化处理,代数问题可视化处理,使得代数与几何的结合方法在工程技术中的应用相当地广泛和深入,这些实际问题也促使我们把代数与几何更加紧密地结合在一起.运用矩阵代数的方法和matlab软件不仅可以借助几何直观使一些抽象的代数概念和理论变得比较容易接受,而且也可借助它处理解析几何中一些原本比较困难的问题。
Indian Academy of Sciences (India)
Cătălin Ciupală
2005-02-01
In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Pedoe, Dan
1988-01-01
""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he
Dimitrov, Bogdan G
2009-01-01
On the base of the distinction between covariant and contravariant metric tensor components, a new (multivariable) cubic algebraic equation for reparametrization invariance of the gravitational Lagrangian has been derived and parametrized with complicated non - elliptic functions, depending on the (elliptic) Weierstrass function and its derivative. This is different from standard algebraic geometry, where only two-dimensional cubic equations are parametrized with elliptic functions and not multivariable ones. Physical applications of the approach have been considered in reference to theories with extra dimensions. The s.c. "length function" l(x) has been introduced and found as a solution of quasilinear differential equations in partial derivatives for two different cases of "compactification + rescaling" and "rescaling + compactification". New physically important relations (inequalities) between the parameters in the action are established, which cannot be derived in the case $l=1$ of the standard gravitati...
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Chisolm, Eric
2012-01-01
This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...
Guggenheimer, Heinrich W
1977-01-01
This is a text of local differential geometry considered as an application of advanced calculus and linear algebra. The discussion is designed for advanced undergraduate or beginning graduate study, and presumes of readers only a fair knowledge of matrix algebra and of advanced calculus of functions of several real variables. The author, who is a Professor of Mathematics at the Polytechnic Institute of New York, begins with a discussion of plane geometry and then treats the local theory of Lie groups and transformation groups, solid differential geometry, and Riemannian geometry, leading to a
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Representations of fundamental groups of algebraic varieties
Zuo, Kang
1999-01-01
Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.
DEFF Research Database (Denmark)
2007-01-01
of algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group......-theorists, and to stimulate contacts between participants. Each of the first four days was dedicated to one area of research that has recently seen decisive progress: \\begin{itemize} \\item structure and classification of wonderful varieties, \\item finite reductive groups and character sheaves, \\item quantum cohomology...... of homogeneous varieties, \\item representation categories and their connections to orbits and flag varieties. \\end{itemize} The first three days started with survey talks that will help to make the subject accessible to the next generation. The talks on the last day introduced to several recent advances...
A Novel Approach of High-dimensional Image Restoration Based on Geometry Algebra%基于几何代数的散焦模糊高维图像恢复
Institute of Scientific and Technical Information of China (English)
户利利
2012-01-01
The geometry algebra can compute and analyze the high-dimensional space geometry in an easy way. Taking advantage of this property, the paper denotes the color image as one point in the geometry space by using the geometry algebra. The image transform can be treated on the language of geometry algebra as action of some transform. The image transform can be treated as the movements of the point in the high-dimensional space from the view of geometry. Beginning with the original blurred image, two further blurred images are got, then the restoral image can be obtained through the regressive curve derived from the three points in the geometry space which are mapped from the images by making use of geometry algebra. Experiments are presented to prove the availability of this method.%几何代数易于对高维空间几何进行计算和分析,应用几何代数的这一特性,将彩色图像表示为高维几何空间中的点元素,利用几何代数描述图像的变换关系,将图像的散焦变换看作是高维空间中点元素的平移运动.通过分析模糊图像以及其衍生出的相关模糊图像对应在高维几何空间中点之间的分布关系的研究,计算出空间中复原图像的点分布位置.实验结果验证了该方法的有效性.
Perturbation semigroup of matrix algebras
Neumann, N.; Suijlekom, W.D. van
2016-01-01
In this article we analyze the structure of the semigroup of inner perturbations in noncommutative geometry. This perturbation semigroup is associated to a unital associative *-algebra and extends the group of unitary elements of this *-algebra. We compute the perturbation semigroup for all matrix algebras.
具有优良渐近参数的代数几何码%ALGEBRAIC GEOMETRY CODES WITH GOOD ASYMPTOTIC PARAMETERS
Institute of Scientific and Technical Information of China (English)
胡万宝
2007-01-01
In this paper,we discuss a class of algebraic geometry codes (A-G codes) with good asymptotic parameters.Based on some analyses on a relation amony divisor class number, number of rational divisors of high degrees,and parameters of A-G codes,we obtain an asymptotic bound of a class, which is better than both the Gilbert-Varshamov and the Xing bounds.Our result shows that these two bounds can be improved significantly around the two points where they intersect.%本文讨论了一类具有好的渐近参数的代数几何码.通过对除子类数、高次有理除子数以及代数几何码的参数分析,得到一类码其渐近界优于Gilbert-Varshamov界和Xing界.在这两个界的交点处,渐近界有所改进.
Categorical Algebra and its Applications
1988-01-01
Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.
Left Artinian Algebraic Algebras
Institute of Scientific and Technical Information of China (English)
S. Akbari; M. Arian-Nejad
2001-01-01
Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.
Algebraic partial Boolean algebras
Energy Technology Data Exchange (ETDEWEB)
Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)
2003-04-04
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Discrimination in a General Algebraic Setting
Directory of Open Access Journals (Sweden)
Benjamin Fine
2015-01-01
Full Text Available Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.
Discrimination in a General Algebraic Setting.
Fine, Benjamin; Gaglione, Anthony; Lipschutz, Seymour; Spellman, Dennis
2015-01-01
Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.
Discrimination in a General Algebraic Setting
Fine, Benjamin; Gaglione, Anthony; Lipschutz, Seymour; Spellman, Dennis
2015-01-01
Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras. PMID:26171421
Significant advancement in algebraic geometry
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
@@ Supported by a grant for Distinguished Young Scholars of the National Natural Science Foundation of China,Prof.SUN Xiaotao with the CAS Academy of Mathematics and Systems Science has recently achieved a research breakthrough in revealing the deep relationship between stability of vector bundles and Frobenius morphism.It is considered as significant work with important theoretical value.
Enumerative Algebraic Geometry of Conics
2008-10-01
projective plane CP2 . When we first introduced the parameter space RP5 we noted that its points are in one-to-one correspondence with the equations of...example x2 + y2 + 1 = 0 and x2 + y2 + 3 = 0 both define the empty set. But in CP2 these equations become X 2 + Y 2 + Z2 = 0 and X 2 + Y 2 + 3Z2 = 0 and...they define different complex curves. Points in CP5 are in one-to-one correspondence with conic curves in CP2 . This fact follows from the observation
Levin, A. M.; Olshanetsky, M. A.; Zotov, A. V.
2016-08-01
We construct twisted Calogero-Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D'Hoker-Phong and Bordner-Corrigan-Sasaki-Takasaki systems. In addition, we construct the corresponding twisted classical dynamical r-matrices and the Knizhnik-Zamolodchikov-Bernard equations related to the automorphisms of Lie algebras.
Linear connections on matrix geometries
Madore, J; Mourad, J; Madore, John; Masson, Thierry; Mourad, Jihad
1994-01-01
A general definition of a linear connection in noncommutative geometry has been recently proposed. Two examples are given of linear connections in noncommutative geometries which are based on matrix algebras. They both possess a unique metric connection.
Robinson, Gilbert de B
2011-01-01
This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom
Noncommutative geometry and Cayley-Smooth orders
Le Bruyn, Lieven
2007-01-01
Preface Introduction Noncommutative algebra Noncommutative geometryNoncommutative desingularizationsCayley-Hamilton Algebras Conjugacy classes of matrices Simultaneous conjugacy classesMatrix invariants and necklaces The trace algebraThe symmetric group Necklace relations Trace relations Cayley-Hamilton algebrasReconstructing Algebras Representation schemes Some algebraic geometry The Hilbert criterium Semisimple modules Some invariant theory Geometric reconstruction The Gerstenhaber-Hesselink theoremThe real moment mapÉtale Technology Étale topologyCentral simple algebrasSpectral sequencesTse
Relationships between "Higher Algebra" and "Analytic Geometry" by Some Examples%例谈《高等代数》与《解析几何》的关联
Institute of Scientific and Technical Information of China (English)
宋元凤; 李武明
2012-01-01
This paper elaborates the relationships between "higher algebra" and "analytic geometry" by the follow ing four aspects: determinant and vector, system of linear equations and plane, matrix and curve of second order, matrix and quadric surface.%文中从行列式与向量关系、线性方程组与面面关系、矩阵与二次曲线关系、矩阵与二次曲面关系四个方面对《高等代数》与《解析几何》相通性进行了阐述．
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Abhyankar, Shreeram Shankar
1964-01-01
This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from
Clifford Algebras and Their Decomposition into Conjugate Fermionic Heisenberg Algebras
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent; Kato La, V.
2016-10-01
We discuss a construction scheme for Clifford numbers of arbitrary dimension. The scheme is based upon performing direct products of the Pauli spin and identity matrices. Conjugate fermionic algebras can then be formed by considering linear combinations of the Clifford numbers and the Hermitian conjugates of such combinations. Fermionic algebras are important in investigating systems that follow Fermi-Dirac statistics. We will further comment on the applications of Clifford algebras to Fueter analyticity, twistors, color algebras, M-theory and Leech lattice as well as unification of ancient and modern geometries through them.
Directory of Open Access Journals (Sweden)
Sinan AYDIN
2009-04-01
Full Text Available Linear algebra is a basic course followed in mathematics, science, and engineering university departments.Generally, this course is taken in either the first or second year but there have been difficulties in teachingand learning. This type of active algebra has resulted in an increase in research by mathematics educationresearchers. But there is insufficient information on this subject in Turkish and therefore it has not beengiven any educational status. This paper aims to give a general overview of this subject in teaching andlearning. These education studies can be considered quadruple: a the history of linear algebra, b formalismobstacles of linear algebra and cognitive flexibility to improve teaching and learning, c the relation betweenlinear algebra and geometry, d using technology in the teaching and learning linear algebra.Mathematicseducation researchers cannot provide an absolute solution to overcome the teaching and learning difficultiesof linear algebra. Epistemological analyses and experimental teaching have shown the learning difficulties.Given these results, further advice and assistance can be offered locally.
Introduction to algebraic independence theory
Philippon, Patrice
2001-01-01
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.
Pavelle, Richard; And Others
1981-01-01
Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)
2013-01-01
The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.
Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio
2014-01-01
This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.
Representation Theory of Algebraic Groups and Quantum Groups
Gyoja, A; Shinoda, K-I; Shoji, T; Tanisaki, Toshiyuki
2010-01-01
Invited articles by top notch expertsFocus is on topics in representation theory of algebraic groups and quantum groupsOf interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Adaptive Algebraic Multigrid Methods
Energy Technology Data Exchange (ETDEWEB)
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Issa, A Nourou
2010-01-01
Non-Hom-associative algebras and Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms.
Energy Technology Data Exchange (ETDEWEB)
Odesskii, A V [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)
2002-12-31
This survey is devoted to associative Z{sub {>=}}{sub 0}-graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.
Institute of Scientific and Technical Information of China (English)
王元金; 陈萍清
2001-01-01
This artice is discussed the significan ce of combinin g higher algebra and analytic geometry as one course and its merit.And it is to give some advice and suggestion on the basic teaching requirements of higher alg ebra and analytic geometry towards 21 century.By teaching and studying the cours e,it may be organic related the two subjects.It is necessary that we remind the reciprocal utilization of the two subjects,reform the pattern of traditional tea ching,reinforce the teaching of the basic conceptions and basic theories,reinfor ce the training of the logical reasonig,stimulate the students' thirst for knowl edge,cultivate their habits of research.It make them learn to grasp the method o f higher algebra and analytic geometry to analyze the problem,solve the problem and establish the new ideas gradually.%论述了把高等代数与解析几 何合并成一门课的意义及其内在的合理性．对这两门课面向21世纪教学的基本要求提出一些 看法和建议：通过本课程教学，要把二者有机地揉合在一起．注意两门知识的交互应用，改 革传统的教学模式，加强基本概念、基本理论的教学，加强逻辑推理方面的训练，激发学生 的求知欲，培养他们的探索精神，逐步学会运用几何与代数相结合的方法分析问题，解决问 题，在潜移默化中树立和锻炼创新意识．
Distribution theory of algebraic numbers
Yang, Chung-Chun
2008-01-01
The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.
Algebraic Methods to Design Signals
2015-08-27
algebraic number theory, finite geometry, and combinatorics in designing signals as a by- product of new combinatorial designs and the corresponding... constructions of cyclic 2-class partially balanced incomplete block designs using cyclotomy in finite fields. Our results give theoretical explanations of the...very small. We call the constructed sequences perfect sequences and they serve as perfect algebraic/combinatorial objects in designing signals for
Homology theory on algebraic varieties
Wallace, Andrew H
1958-01-01
Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n
Introduction to applied algebraic systems
Reilly, Norman R
2009-01-01
This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as
Higher geometry an introduction to advanced methods in analytic geometry
Woods, Frederick S
2005-01-01
For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...
Cavanagh, Sean
2009-01-01
As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…
Algebra II textbook for students of mathematics
Gorodentsev, Alexey L
2017-01-01
This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Algebra I textbook for students of mathematics
Gorodentsev, Alexey L
2016-01-01
This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Kaluza-Klein Aspects of Noncommutative Geometry
Madore, J
2015-01-01
Using some elementary methods from noncommutative geometry a structure is given to a point of space-time which is different from and simpler than that which would come from extra dimensions. The structure is described by a supplementary factor in the algebra which in noncommutative geometry replaces the algebra of functions. Using different examples of algebras it is shown that the extra structure can be used to describe spin or isospin.
An Algebraic Approach to the Scattering Equations
Huang, Rijun; Feng, Bo; He, Yang-Hui
2015-01-01
We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Geometry from Information Geometry
Caticha, Ariel
2015-01-01
We use the method of maximum entropy to model physical space as a curved statistical manifold. It is then natural to use information geometry to explain the geometry of space. We find that the resultant information metric does not describe the full geometry of space but only its conformal geometry -- the geometry up to local changes of scale. Remarkably, this is precisely what is needed to model "physical" space in general relativity.
Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel
2010-01-01
We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
Institute of Scientific and Technical Information of China (English)
姜月萍
2014-01-01
本文针对线性代数与解析几何课程教学的现状，以及Matlab软件的特性，分析了利用Matlab软件进行教学改革的必要性。为激发学生的学习兴趣，提高学生的学习积极性，培养学生的知识应用能力，提出了教学方法改革、教学内容改革和训练方式改革三方面的教改措施。%According to the status of the curriculum of linear algebra and analytic geometry, and the characteristic of Matlab software, this paper analyzes the necessity of reform in education with Matlab software. To stimulate students' interest in learning, improve students' learning initiative, train students' application ability, three areas of education reform measures are proposed: the reform of teaching methods, the reform of teaching contents and the reform of training methods.
McKeague, Charles P
1981-01-01
Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e
McKeague, Charles P
1986-01-01
Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra
Computer algebra in spacetime embedding
Roque, Waldir L
2014-01-01
In this paper we describe an algorithm to determine the vectors normal to a space-time V4 embedded in a pseudo-Euclidean manifold M4+n. An application of this algorithm is given considering the Schwarzchild space-time geometry embedded in a 6 dimensional pseudo-Euclidean manifold, using the algebraic computing system REDUCE.
Algebraic aspects of gauge theories
Zharinov, V. V.
2014-08-01
Gauge theories are primary tools in modern elementary particle physics. The generally recognized mathematical foundations of these theories are in differential geometry, namely, in the theory of connections in a principal fiber bundle. We propose another approach to the mathematical description of gauge theories based on a combination of algebraic and geometric methods.
Aiken, Brenda L.
The Commonwealth of Virginia requires high school students to receive a passing grade in core courses and a passing score on End-of-Course Standards of Learning (EOC SOL) tests to receive verified credits that lead to a Virginia high school diploma. These tests are believed to accurately reflect what students should know and be able to do in order to experience success in their endeavors beyond high school. For some students remediation is required to experience success on EOC SOL tests. This study sought to determine the effect of a County's public high school summer remediation program on student gains on EOC SOL tests in Algebra I, Biology, Chemistry, Geometry, and World History and Geography II. Specifically, the purpose of the study sought to determine the following: (a) If significant gains were made by students who attended the summer remediation program; (b) If significant gains were made by students who did not attend the summer remediation program; (c) If there were differences in gain scores of students who attended and those who did not attend the summer remediation program; and (d) If there were differences in gain scores among students who attended the summer remediation program related to school site, gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. The results of the study indicate that students who attended and those who did not attend the summer remediation program made significant gains. However, the gains for students who attended the summer remediation program were significantly greater than the gains made by students who did not attend. The study also found that there were no significant differences in gain scores among students who attended the summer remediation program related to gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. There were significant differences in Algebra I gain scores related to school site. Recommendations for
Affine transformation crossed product like algebras and noncommutative surfaces
Arnlind, Joakim
2009-01-01
Several classes of *-algebras associated to the action of an affine transformation are considered, and an investigation of the interplay between the different classes of algebras is initiated. Connections are established that relate representations of *-algebras, geometry of algebraic surfaces, dynamics of affine transformations, graphs and algebras coming from a quantization procedure of Poisson structures. In particular, algebras related to surfaces being inverse images of fourth order polynomials (in R^3) are studied in detail, and a close link between representation theory and geometric properties is established for compact as well as non-compact surfaces.
Nther-type theorem of piecewise algebraic curves on quasi-cross-cut partition
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Nther’s theorem of algebraic curves plays an important role in classical algebraic geometry. As the zero set of a bivariate spline, the piecewise algebraic curve is a generalization of the classical algebraic curve. Nther-type theorem of piecewise algebraic curves is very important to construct the Lagrange interpolation sets for bivariate spline spaces. In this paper, using the characteristics of quasi-cross-cut partition, properties of bivariate splines and results in algebraic geometry, the Nther-type theorem of piecewise algebraic curves on the quasi-cross-cut is presented.
N(o)ther-type theorem of piecewise algebraic curves on quasi-cross-cut partition
Institute of Scientific and Technical Information of China (English)
ZHU ChunGang; WANG RenHong
2009-01-01
Nother's theorem of algebraic curves plays an important role in classical algebraic geome-try. As the zero set of a bivariate spline, the piecewise algebraic curve is a generalization of the classical algebraic curve. Nother-type theorem of piecewise algebraic curves is very important to construct the Lagrange interpolation sets for bivariate spline spaces. In this paper, using the characteristics of quasi-cross-cut partition, properties of bivariate splines and results in algebraic geometry, the Nother-type theorem of piecewise algebraic curves on the quasi-cross-cut is presented.
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.
Marchuk, Nikolay
2011-01-01
Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann alg...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Directory of Open Access Journals (Sweden)
G.C. Rao
2012-11-01
Full Text Available A C- algebra is the algebraic form of the 3-valued conditional logic, which was introduced by F. Guzman and C. C. Squier in 1990. In this paper, some equivalent conditions for a C- algebra to become a boolean algebra in terms of congruences are given. It is proved that the set of all central elements B(A is isomorphic to the Boolean algebra of all C-algebras Sa, where a B(A. It is also proved that B(A is isomorphic to the Boolean algebra of all C-algebras Aa, where a B(A.
Basic algebraic topology and its applications
Adhikari, Mahima Ranjan
2016-01-01
This book provides an accessible introduction to algebraic topology, a ﬁeld at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book oﬀers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. T...
An introduction to Clifford algebras and spinors
Vaz, Jayme
2016-01-01
This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and i...
The isomorphism problem for some universal operator algebras
Davidson, Kenneth R; Shalit, Orr Moshe
2010-01-01
This paper addresses the isomorphism problem for the universal operator algebras generated by a row contraction subject to homogeneous polynomial relations. We find that two such algebras are isometrically isomorphic if and only if the defining polynomial relations are the same up to a unitary change of variables, and that this happens if and only if the associated subproduct systems are isomorphic. The proof makes use of the complex analytic structure of the character space, together with some recent results on subproduct systems. Restricting attention to commutative operator algebras defined by radical relations yields strong resemblances with classical algebraic geometry. These commutative operator algebras turn out to be algebras of analytic functions on algebraic varieties. We prove a projective Nullstellensatz connecting closed ideals and their zero sets. Under some technical assumptions, we find that two such algebras are isomorphic as algebras if and only if they are similar, and we obtain a clear geo...
Allenby, Reg
1995-01-01
As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Indian Academy of Sciences (India)
Tomás L Gómez
2001-02-01
This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.
Oliver, Bob; Pawałowski, Krzystof
1991-01-01
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
Homology theory on algebraic varieties
Wallace, Andrew H
2014-01-01
Concise and authoritative, this monograph is geared toward advanced undergraduate and graduate students. The main theorems whose proofs are given here were first formulated by Lefschetz and have since turned out to be of fundamental importance in the topological aspects of algebraic geometry. The proofs are fairly elaborate and involve a considerable amount of detail; therefore, some appear in separate chapters that include geometrical descriptions and diagrams.The treatment begins with a brief introduction and considerations of linear sections of an algebraic variety as well as singular and h
Artin, E
2011-01-01
This classic text, written by one of the foremost mathematicians of the 20th century, is now available in a low-priced paperback edition. Exposition is centered on the foundations of affine geometry, the geometry of quadratic forms, and the structure of the general linear group. Context is broadened by the inclusion of projective and symplectic geometry and the structure of symplectic and orthogonal groups.
Multilinear Computing and Multilinear Algebraic Geometry
2016-08-10
enormous amount of interest and work purport- ing to extend compressive sensing /sparse recovery (for vectors) and matrix completion (for matrices) to...tensors. The PI has shown that this is impossible. The reason is as follows. Compressed sensing relies crucially on the fact that the l1-norm is a convex
Reflective modular forms in algebraic geometry
Gritsenko, Valery
2010-01-01
We prove that the existence of a strongly reflective modular form of a large weight implies that the Kodaira dimension of the corresponding modular variety is negative or, in some special case, it is equal to zero. Using the Jacobi lifting we construct three towers of strongly reflective modular forms with the simplest possible divisor. In particular we obtain a Jacobi lifting construction of the Borcherds-Enriques modular form Phi_4 and Jacobi liftings of automorphic discriminants of the K\\"ahler moduli of Del Pezzo surfaces constructed recently by Yoshikawa. We obtain also three modular varieties of dimension 4, 6 and 7 of Kodaira dimension 0.
Multilinear Computing and Multilinear Algebraic Geometry
2016-08-10
landmark paper titled “Most tensor problems are NP-hard” (see [14] in Section 3) in the Journal of the ACM, the premier journal in Computer Science ...tensor rank. We determine all nonneg- ative typical ranks for cubical nonnegative tensors and show that the direct sum conjecture is true for...Higher-order cone programming,” Machine Learning Thematic Trimester, International Centre for Mathematics and Computer Science , Toulouse, France
Seminar on K-Theory, Arithmetic and Geometry
1987-01-01
This volume of research papers is an outgrowth of the Manin Seminar at Moscow University, devoted to K-theory, homological algebra and algebraic geometry. The main topics discussed include additive K-theory, cyclic cohomology, mixed Hodge structures, theory of Virasoro and Neveu-Schwarz algebras.
MSc Thesis: Presentation of Certain New Trends in Noncommutative Geometry
Buachalla, Réamonn Ó
2011-01-01
MSc thesis of the author offering an introduction to the operator algebraic approach to noncommutative geometry, with a treatment of some more advanced elements such as the noncommutative geometry of quantum groups, fuzzy physics, and compact quantum metric spaces.
Dynamical systems of algebraic origin
Schmidt, Klaus
1995-01-01
Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...
Nonmonotonic logics and algebras
Institute of Scientific and Technical Information of China (English)
CHAKRABORTY Mihir Kr; GHOSH Sujata
2008-01-01
Several nonmonotonie logic systems together with their algebraic semantics are discussed. NM-algebra is defined.An elegant construction of an NM-algebra starting from a Boolean algebra is described which gives rise to a few interesting algebraic issues.
Iachello, F
1995-01-01
1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters
Elementary differential geometry
Pressley, Andrew
2001-01-01
Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques It is a subject that contains some of the most beautiful and profound results in mathematics yet many of these are accessible to higher-level undergraduates Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there The book will provide an invaluable resource to all those taking a first course in differential geometry, for their lecture...
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Solvable quadratic Lie algebras
Institute of Scientific and Technical Information of China (English)
ZHU; Linsheng
2006-01-01
A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.
DÍaz, R.; Rivas, M.
2010-01-01
In order to study Boolean algebras in the category of vector spaces we introduce a prop whose algebras in set are Boolean algebras. A probabilistic logical interpretation for linear Boolean algebras is provided. An advantage of defining Boolean algebras in the linear category is that we are able to study its symmetric powers. We give explicit formulae for products in symmetric and cyclic Boolean algebras of various dimensions and formulate symmetric forms of the inclusion-exclusion principle.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
It is a small step toward the Koszul-type algebras. The piecewise-Koszul algebras are,in general, a new class of quadratic algebras but not the classical Koszul ones, simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases. We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A), and show an A∞-structure on E(A). Relations between Koszul algebras and piecewise-Koszul algebras are discussed. In particular, our results are related to the third question of Green-Marcos.
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Zheng Lijing
2015-11-01
Let be an algebraically closed field, a finite dimensional connected (, )-Koszul self-injective algebra with , ≥ 2. In this paper, we prove that the Yoneda algebra of is isomorphic to a twisted polynomial algebra $A^!$ [ ; ] in one indeterminate of degree +1 in which $A^!$ is the quadratic dual of , is an automorphism of $A^!$, and = () for each $t \\in A^!$. As a corollary, we recover Theorem 5.3 of [2].
Marchuk, Nikolay
2011-01-01
Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann algebra and Clifford algebra. Specialists consider models of gravity that based on a mathematical formalism with two metric tensors. We hope that the considered in this paper 2-metric exterior algebra can be useful for development of this model in gravitation theory. Especially in description of fermions in presence of a gravity field.
WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY
Institute of Scientific and Technical Information of China (English)
TaoChangli; LuShijie; ChenPeixin
2002-01-01
Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.
Rigidification of algebras over essentially algebraic theories
Rosicky, J
2012-01-01
Badzioch and Bergner proved a rigidification theorem saying that each homotopy simplicial algebra is weakly equivalent to a simplicial algebra. The question is whether this result can be extended from algebraic theories to finite limit theories and from simplicial sets to more general monoidal model categories. We will present some answers to this question.
Hartshorne, Robin
2000-01-01
In recent years, I have been teaching a junior-senior-level course on the classi cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa rately. The remainder of the book is an exploration of questions that arise natu rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...
Riemannian manifolds as Lie-Rinehart algebras
Pessers, Victor; van der Veken, Joeri
2016-07-01
In this paper, we show how Lie-Rinehart algebras can be applied to unify and generalize the elementary theory of Riemannian geometry. We will first review some necessary theory on a.o. modules, bilinear forms and derivations. We will then translate some classical theory on Riemannian geometry to the setting of Rinehart spaces, a special kind of Lie-Rinehart algebras. Some generalized versions of classical results will be obtained, such as the existence of a unique Levi-Civita connection, inducing a Levi-Civita connection on a submanifold, and the construction of spaces with constant sectional curvature.
Colimits, Stanley-Reisner algebras, and loop spaces
Panov, Taras; RAY, NIGEL; Vogt, Rainer
2002-01-01
We study diagrams associated with a finite simplicial complex K, in various algebraic and topological categories. We relate their colimits to familiar structures in algebra, combinatorics, geometry and topology. These include: right-angled Artin and Coxeter groups (and their complex analogues, which we call circulation groups); Stanley-Reisner algebras and coalgebras; Davis and Januszkiewicz's spaces DJ(K) associated with toric manifolds and their generalisations; and coordinate subspace arra...
Spectral Metric Spaces on Extensions of C*-Algebras
Hawkins, Andrew; Zacharias, Joachim
2017-03-01
We construct spectral triples on C*-algebraic extensions of unital C*-algebras by stable ideals satisfying a certain Toeplitz type property using given spectral triples on the quotient and ideal. Our construction behaves well with respect to summability and produces new spectral quantum metric spaces out of given ones. Using our construction we find new spectral triples on the quantum 2- and 3-spheres giving a new perspective on these algebras in noncommutative geometry.
Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations
2014-07-01
non- linear hybrid systems by linear algebraic methods. In Radhia Cousot and Matthieu Martel, editors, SAS, volume 6337 of LNCS, pages 373–389. Springer...Tarski. A decision method for elementary algebra and geometry. Bulletin of the American Mathematical Society, 59, 1951. [36] Wolfgang Walter. Ordinary...Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 July 2014
Energy Technology Data Exchange (ETDEWEB)
Byrd, M.
1997-10-01
The group SU(3) is parameterized in terms of generalized {open_quotes}Euler angles{close_quotes}. The differential operators of SU(3) corresponding to the Lie Algebra elements are obtained, the invariant forms are found, the group invariant volume element is found, and some relevant comments about the geometry of the group manifold are made.
The Yoneda algebra of a K_2 algebra need not be another K_2 algebra
Cassidy, T.; Phan, Van C.; Shelton, B.
2008-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
Algebraic cobordism theory attached to algebraic equivalence
Krishna, Amalendu
2012-01-01
After the algebraic cobordism theory of Levine-Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence. We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the zero-th semi-topological K-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory. We compute our cobordism theory for some low dimensional or special types of varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.
Cecil, Thomas E
2015-01-01
This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hy...
Probabilistic Concurrent Kleene Algebra
Directory of Open Access Journals (Sweden)
Annabelle McIver
2013-06-01
Full Text Available We provide an extension of concurrent Kleene algebras to account for probabilistic properties. The algebra yields a unified framework containing nondeterminism, concurrency and probability and is sound with respect to the set of probabilistic automata modulo probabilistic simulation. We use the resulting algebra to generalise the algebraic formulation of a variant of Jones' rely/guarantee calculus.
Linear algebra a first course with applications to differential equations
Apostol, Tom M
2014-01-01
Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.
Generalized Quantum Current Algebras
Institute of Scientific and Technical Information of China (English)
ZHAO Liu
2001-01-01
Two general families of new quantum-deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enables one to define "tensor products" of these algebras. The standard quantum affine algebras turn out to be a very special case of the two algebra families, in which case the infinite Hopf family structure degenerates into a standard Hopf algebra. The relationship between the two algebraic families as well as thefr various special examples are discussed, and the free boson representation is also considered.
El-Chaar, Caroline
2012-01-01
In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. Using this fourth realization, we explicitly describe all its ideals.
Perturbations of planar algebras
Das, Paramita; Gupta, Ved Prakash
2010-01-01
We introduce the concept of {\\em weight} of a planar algebra $P$ and construct a new planar algebra referred as the {\\em perturbation of $P$} by the weight. We establish a one-to-one correspondence between pivotal structures on 2-categories and perturbations of planar algebras by weights. To each bifinite bimodule over $II_1$-factors, we associate a {\\em bimodule planar algebra} bimodule corresponds naturally with sphericality of the bimodule planar algebra. As a consequence of this, we reproduce an extension of Jones' theorem (of associating 'subfactor planar algebras' to extremal subfactors). Conversely, given a bimodule planar algebra, we construct a bifinite bimodule whose associated bimodule planar algebra is the one which we start with using perturbations and Jones-Walker-Shlyakhtenko-Kodiyalam-Sunder method of reconstructing an extremal subfactor from a subfactor planar algebra. We show that the perturbation class of a bimodule planar algebra contains a unique spherical unimodular bimodule planar algeb...
Yangians and transvector algebras
Molev, A. I.
1998-01-01
Olshanski's centralizer construction provides a realization of the Yangian for the Lie algebra gl(n) as a subalgebra in the projective limit of a chain of centralizers in the universal enveloping algebras. We give a modified version of this construction based on a quantum analog of Sylvester's theorem. We then use it to get an algebra homomorphism from the Yangian to the transvector algebra associated with the general linear Lie algebras. The results are applied to identify the elementary rep...
An introduction to incidence geometry
De Bruyn, Bart
2016-01-01
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...
Noncommutative physics on Lie algebras, Z_2^n lattices and Clifford algebras
Majid, S
2004-01-01
We survey noncommutative spacetimes with coordinates being enveloping algebras of Lie algebras. We also explain how to do differential geometry on noncommutative spaces that are obtained from commutative ones via a Moyal-product type cocycle twist, such as the noncommutative torus, $\\theta$-spaces and Clifford algebras. The latter are noncommutative deformations of the finite lattice $(Z_2)^n$ and we compute their noncommutative de Rham cohomology and moduli of solutions of Maxwell's equations. We exactly quantize noncommutative U(1)-Yang-Mills theory on $Z_2\\times Z_2$ in a path integral approach.
Institute of Scientific and Technical Information of China (English)
Jia-feng; Lü
2007-01-01
[1]Priddy S.Koszul resolutions.Trans Amer Math Soc,152:39-60 (1970)[2]Beilinson A,Ginszburg V,Soergel W.Koszul duality patterns in representation theory.J Amer Math Soc,9:473-525 (1996)[3]Aquino R M,Green E L.On modules with linear presentations over Koszul algebras.Comm Algebra,33:19-36 (2005)[4]Green E L,Martinez-Villa R.Koszul and Yoneda algebras.Representation theory of algebras (Cocoyoc,1994).In:CMS Conference Proceedings,Vol 18.Providence,RI:American Mathematical Society,1996,247-297[5]Berger R.Koszulity for nonquadratic algebras.J Algebra,239:705-734 (2001)[6]Green E L,Marcos E N,Martinez-Villa R,et al.D-Koszul algebras.J Pure Appl Algebra,193:141-162(2004)[7]He J W,Lu D M.Higher Koszul Algebras and A-infinity Algebras.J Algebra,293:335-362 (2005)[8]Green E L,Marcos E N.δ-Koszul algebras.Comm Algebra,33(6):1753-1764 (2005)[9]Keller B.Introduction to A-infinity algebras and modules.Homology Homotopy Appl,3:1-35 (2001)[10]Green E L,Martinez-Villa R,Reiten I,et al.On modules with linear presentations.J Algebra,205(2):578-604 (1998)[11]Keller B.A-infinity algebras in representation theory.Contribution to the Proceedings of ICRA Ⅸ.Beijing:Peking University Press,2000[12]Lu D M,Palmieri J H,Wu Q S,et al.A∞-algebras for ring theorists.Algebra Colloq,11:91-128 (2004)[13]Weibel C A.An Introduction to homological algebra.Cambridge Studies in Avanced Mathematics,Vol 38.Cambridge:Cambridge University Press,1995
Adler, Irving
1967-01-01
This richly detailed overview surveys the development and evolution of geometrical ideas and concepts from ancient times to the present. In addition to the relationship between physical and mathematical spaces, it examines the interactions of geometry, algebra, and calculus. The text proves many significant theorems and employs several important techniques. Chapters on non- Euclidean geometry and projective geometry form brief, self-contained treatments.More than 100 exercises with answers and 200 diagrams illuminate the text. Teachers, students (particularly those majoring in mathematics educa
Walsh, Edward T
2014-01-01
This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl
Higher algebraic K-theory an overview
Lluis-Puebla, Emilio; Gillet, Henri; Soulé, Christophe; Snaith, Victor
1992-01-01
This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.
Goldmann, H
1990-01-01
The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.
C*-algebras and operator theory
Murphy, Gerald J
1990-01-01
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Exceptional geometry and Borcherds superalgebras
Palmkvist, Jakob
2015-01-01
We study generalized diffeomorphisms in exceptional geometry with U-duality group E_{n(n)} from an algebraic point of view. By extending the Lie algebra e_n to an infinite-dimensional Borcherds superalgebra, involving also the extension to e_{n+1}, the generalized Lie derivatives can be expressed in a simple way, and the expressions take the same form for any n less than 8. The closure of the transformations then follows from the Jacobi identity and the grading of e_{n+1} with respect to e_n.
Abian, Alexander
1973-01-01
Linear Associative Algebras focuses on finite dimensional linear associative algebras and the Wedderburn structure theorems.The publication first elaborates on semigroups and groups, rings and fields, direct sum and tensor product of rings, and polynomial and matrix rings. The text then ponders on vector spaces, including finite dimensional vector spaces and matrix representation of vectors. The book takes a look at linear associative algebras, as well as the idempotent and nilpotent elements of an algebra, ideals of an algebra, total matrix algebras and the canonical forms of matrices, matrix
Clifford Algebra with Mathematica
Aragon-Camarasa, G; Aragon, J L; Rodriguez-Andrade, M A
2008-01-01
The Clifford algebra of a n-dimensional Euclidean vector space provides a general language comprising vectors, complex numbers, quaternions, Grassman algebra, Pauli and Dirac matrices. In this work, a package for Clifford algebra calculations for the computer algebra program Mathematica is introduced through a presentation of the main ideas of Clifford algebras and illustrative examples. This package can be a useful computational tool since allows the manipulation of all these mathematical objects. It also includes the possibility of visualize elements of a Clifford algebra in the 3-dimensional space.
Institute of Scientific and Technical Information of China (English)
PENG Jia-yin
2011-01-01
The notions of norm and distance in BCI-algebras are introduced,and some basic properties in normed BCI-algebras are given.It is obtained that the isomorphic(homomorphic)image and inverse image of a normed BCI-algebra are still normed BCI-algebras.The relations of normaled properties between BCI-algebra and Cartesian product of BCIalgebras are investigated.The limit notion of sequence of points in normed BCI-algebras is introduced,and its related properties are investigated.
Boicescu, V; Georgescu, G; Rudeanu, S
1991-01-01
The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.
A vector space approach to geometry
Hausner, Melvin
2010-01-01
The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.
Hom-alternative algebras and Hom-Jordan algebras
Makhlouf, Abdenacer
2009-01-01
The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra.
Cellularity of diagram algebras as twisted semigroup algebras
Wilcox, Stewart
2010-01-01
The Temperley-Lieb and Brauer algebras and their cyclotomic analogues, as well as the partition algebra, are all examples of twisted semigroup algebras. We prove a general theorem about the cellularity of twisted semigroup algebras of regular semigroups. This theorem, which generalises a recent result of East about semigroup algebras of inverse semigroups, allows us to easily reproduce the cellularity of these algebras.
Index Theorems on Torsional Geometries
Kimura, Tetsuji
2007-01-01
We study various topological invariants on a differential geometry in the presence of a totally anti-symmetric torsion H under the closed condition dH=0. By using the identification between the Clifford algebra on a geometry and the canonical quantization condition of fermion in the quantum mechanics, we construct the N=1 quantum mechanical sigma model in the Hamiltonian formalism and extend this model to N=2 system, equipped with the totally anti-symmetric tensor associated with the torsion on the target space geometry. Next we construct transition elements in the Lagrangian path integral formalism and apply them to the analyses of the Witten indices in supersymmetric systems. We improve the formulation of the Dirac index on the torsional geometry which has already been studied. We also formulate the Euler characteristic and the Hirzebruch signature on the torsional geometry.
Multivariate calculus and geometry
Dineen, Seán
2014-01-01
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
Lie Algebra of Noncommutative Inhomogeneous Hopf Algebra
Lagraa, M
1997-01-01
We construct the vector space dual to the space of right-invariant differential forms construct from a first order differential calculus on inhomogeneous quantum group. We show that this vector space is equipped with a structure of a Hopf algebra which closes on a noncommutative Lie algebra satisfying a Jacobi identity.
Categories and Commutative Algebra
Salmon, P
2011-01-01
L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.
Algebraic statistics computational commutative algebra in statistics
Pistone, Giovanni; Wynn, Henry P
2000-01-01
Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.
The Geometry of Noncommutative Space-Time
Mendes, R. Vilela
2016-10-01
Stabilization, by deformation, of the Poincaré-Heisenberg algebra requires both the introduction of a fundamental lentgh and the noncommutativity of translations which is associated to the gravitational field. The noncommutative geometry structure that follows from the deformed algebra is studied both for the non-commutative tangent space and the full space with gravity. The contact points of this approach with the work of David Finkelstein are emphasized.
Unifying Ancient and Modern Geometries Through Octonions
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent
2016-01-01
We show the first unified description of some of the oldest known geometries such as the Pappus’ theorem with more modern ones like Desargues' theorem, Monge's theorem and Ceva's theorem, through octonions, the highest normed division algebra in eight dimensions. We also show important applications in hadronic physics, giving a full description of the algebra of color applicable to quark physics, and comment on further applications.
Connecting Arithmetic to Algebra
Darley, Joy W.; Leapard, Barbara B.
2010-01-01
Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…
Bergstra, J.A.; Fokkink, W.J.; Middelburg, C.A.
2008-01-01
Timed frames are introduced as objects that can form a basis of a model theory for discrete time process algebra. An algebraic setting for timed frames is proposed and results concerning its connection with discrete time process algebra are given. The presented theory of timed frames captures the ba
Deficiently Extremal Gorenstein Algebras
Indian Academy of Sciences (India)
Pavinder Singh
2011-08-01
The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.
REAL PIECEWISE ALGEBRAIC VARIETY
Institute of Scientific and Technical Information of China (English)
Ren-hong Wang; Yi-sheng Lai
2003-01-01
We give definitions of real piecewise algebraic variety and its dimension. By using the techniques of real radical ideal, P-radical ideal, affine Hilbert polynomial, Bernstein-net form of polynomials on simplex, and decomposition of semi-algebraic set, etc., we deal with the dimension of the real piecewise algebraic variety and real Nullstellensatz in Cμ spline ring.
Bases of Schur algebras associated to cellularly stratified diagram algebras
Bowman, C
2011-01-01
We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.
Sati, Hisham
2015-01-01
We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane...
Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Indian Academy of Sciences (India)
Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado
2012-05-01
We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.
Weak Lie symmetry and extended Lie algebra
Energy Technology Data Exchange (ETDEWEB)
Goenner, Hubert [Institute for Theoretical Physics, Friedrich-Hund-Platz 1, University of Goettingen, D-37077 Gottingen (Germany)
2013-04-15
The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
The Hall Algebra of Cyclic Serial Algebra
Institute of Scientific and Technical Information of China (English)
郭晋云
1994-01-01
In this paper, orders <1 and <2 on ((Z)+)nm are introduced and also regarded as orders on the isomorphism classes of finite modules of finite .cyclic algebra R with n simple modules and all the indecomposable projective modules have length m through a one-to-one correspondence between ((Z)+)nm and the isomorphism classes of finite R modules. Using this we prove that the Hall algebra of a cyclic serial algebra is identified with its Loewy subalgebra, and its rational extension has a basis of BPW type, and is a (((Z)+)nm, <2) filtered ring with the associated graded ring as an iterated skew polynomial ring. These results are also generalized to the Hall algebra of a tube over a finite field.
Rodger, Alison
1995-01-01
Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans
Noncommutative spectral geometry, dissipation and the origin of quantization
Sakellariadou, Mairi; Vitiello, Giuseppe
2012-01-01
We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation and to the gauge structure of the theory. We then argue, following 't Hooft's conjecture, that noncommutative spectral geometry classical construction carries implicit in its feature of the doubling of the algebra the seeds of quantization.
Algebraic classification of Robinson-Trautman spacetimes
Podolsky, Jiri
2016-01-01
We consider a general class of four-dimensional geometries admitting a null vector field that has no twist and no shear but has an arbitrary expansion. We explicitly present the Petrov classification of such Robinson-Trautman (and Kundt) gravitational fields, based on the algebraic properties of the Weyl tensor. In particular, we determine all algebraically special subcases when the optically privileged null vector field is a multiple principal null direction (PND), as well as all the cases when it remains a single PND. No field equations are a priori applied, so that our classification scheme can be used in any metric theory of gravity in four dimensions. In the classic Einstein theory this reproduces previous results for vacuum spacetimes, possibly with a cosmological constant, pure radiation and electromagnetic field, but can be applied to an arbitrary matter content. As non-trivial explicit examples we investigate specific algebraic properties of the Robinson-Trautman spacetimes with a free scalar field, ...
Evolution algebras and their applications
Tian, Jianjun Paul
2008-01-01
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.
Finite-dimensional (*)-serial algebras
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Let A be a finite-dimensional associative algebra with identity over a field k. In this paper we introduce the concept of (*)-serial algebras which is a generalization of serial algebras. We investigate the properties of (*)-serial algebras, and we obtain suficient and necessary conditions for an associative algebra to be (*)-serial.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
On the Toroidal Leibniz Algebras
Institute of Scientific and Technical Information of China (English)
Dong LIU; Lei LIN
2008-01-01
Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras gOC[t±11 ,...,t±v1] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Developable algebraic surfaces
Institute of Scientific and Technical Information of China (English)
CHEN Dongren; WANG Guojin
2004-01-01
An algebraic surface can be defined by an implicit polynomial equation F(x,y,z)=0. In this paper, general characterizations of developable algebraic surfaces of arbitrary degree are presented. Using the shift operators of the subscripts of Bézier ordinates, the uniform apparent discriminants of developable algebraic surfaces to their Bézier ordinates are given directly. To degree 2 algebraic surfaces, which are widely used in computer aided geometric design and graphics, all possible developable surface types are obtained. For more conveniently applying algebraic surfaces of high degree to computer aided geometric design, the notion of ε-quasi-developable surfaces is introduced, and an example of using a quasi-developable algebraic surface of degree 3 to interpolate three curves of degree 2 is given.
Essential linear algebra with applications a problem-solving approach
Andreescu, Titu
2014-01-01
This textbook provides a rigorous introduction to linear algebra in addition to material suitable for a more advanced course while emphasizing the subject’s interactions with other topics in mathematics such as calculus and geometry. A problem-based approach is used to develop the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality. Key features include: • a thorough presentation of the main results in linear algebra along with numerous examples to illustrate the theory; • over 500 problems (half with complete solutions) carefully selected for their elegance and theoretical significance; • an interleaved discussion of geometry and linear algebra, giving readers a solid understanding of both topics and the relationship between them. Numerous exercises and well-chosen examples make this text suitable for advanced courses at the junior or senior levels. It can also serve as a source of supplementary problems for a sophomore-level course. ...
Algebra Automorphisms of Quantized Enveloping Algebras Uq(■)
Institute of Scientific and Technical Information of China (English)
查建国
1994-01-01
The algebra automorphisms of the quantized enveloping algebra Uq(g) are discussed, where q is generic. To some extent, all quantum deformations of automorphisms of the simple Lie algebra g have been determined.
Cayley-Dickson and Clifford Algebras as Twisted Group Algebras
Bales, John W
2011-01-01
The effect of some properties of twisted groups on the associated algebras, particularly Cayley-Dickson and Clifford algebras. It is conjectured that the Hilbert space of square-summable sequences is a Cayley-Dickson algebra.
Symmetric Extended Ockham Algebras
Institute of Scientific and Technical Information of China (English)
T.S. Blyth; Jie Fang
2003-01-01
The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30
Krichever, Igor M.; Sheinman, Oleg K.
2007-01-01
In this paper we develop a general concept of Lax operators on algebraic curves introduced in [1]. We observe that the space of Lax operators is closed with respect to their usual multiplication as matrix-valued functions. We construct the orthogonal and symplectic analogs of Lax operators, prove that they constitute almost graded Lie algebras and construct local central extensions of those Lie algebras.
Prediction of Algebraic Instabilities
Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael
2016-11-01
A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.
Directory of Open Access Journals (Sweden)
Frank Roumen
2017-01-01
Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.
Algebraic extensions of fields
McCarthy, Paul J
1991-01-01
""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta
Balan, Adriana
2010-01-01
We extend Barr's well-known characterization of the final coalgebra of a $Set$-endofunctor as the completion of its initial algebra to the Eilenberg-Moore category of algebras for a $Set$-monad $\\mathbf{M}$ for functors arising as liftings. As an application we introduce the notion of commuting pair of endofunctors with respect to the monad $\\mathbf{M}$ and show that under reasonable assumptions, the final coalgebra of one of the endofunctors involved can be obtained as the free algebra generated by the initial algebra of the other endofunctor.
Kurosh, A G; Stark, M; Ulam, S
1965-01-01
Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the
Underwood, Robert G
2015-01-01
This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras. The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras. The book may be used as the main text or as a supplementary text for a graduate algebra course. Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Relations Between BZMVdM-Algebra and Other Algebras
Institute of Scientific and Technical Information of China (English)
高淑萍; 邓方安; 刘三阳
2003-01-01
Some properties of BZMVdM-algebra are proved, and a new operator is introduced. It is shown that the substructure of BZMVdM-algebra can produce a quasi-lattice implication algebra. The relations between BZMVdM-algebra and other algebras are discussed in detail. A pseudo-distance function is defined in linear BZMVdM-algebra, and its properties are derived.
Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra
Hijligenberg, N.W. van den; Martini, R.
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g
Quadratic forms and Clifford algebras on derived stacks
Vezzosi, Gabriele
2013-01-01
In this paper we present an approach to quadratic structures in derived algebraic geometry. We define derived n-shifted quadratic complexes, over derived affine stacks and over general derived stacks, and give several examples of those. We define the associated notion of derived Clifford algebra, in all these contexts, and compare it with its classical version, when they both apply. Finally, we prove three main existence results for derived shifted quadratic forms over derived stacks, define ...
Whittaker vector of deformed Virasoro algebra and Macdonald symmetric functions
Yanagida, Shintarou
2014-01-01
We give a proof of Awata and Yamada's conjecture for the explicit formula of Whittaker vector of the deformed Virasoro algebra realized in the Fock space. The formula is expressed as a summation over Macdonald symmetric functions with factored coefficients. In the proof we fully use currents appearing in the Fock representation of Ding-Iohara-Miki quantum algebra. We also mention an interpretation of Whittaker vector in terms of the geometry of the Hilbert schemes of points on the affine plane.
Commutative and Non-commutative Parallelogram Geometry: an Experimental Approach
Bertram, Wolfgang
2013-01-01
By "parallelogram geometry" we mean the elementary, "commutative", geometry corresponding to vector addition, and by "trapezoid geometry" a certain "non-commutative deformation" of the former. This text presents an elementary approach via exercises using dynamical software (such as geogebra), hopefully accessible to a wide mathematical audience, from undergraduate students and high school teachers to researchers, proceeding in three steps: (1) experimental geometry, (2) algebra (linear algebr...
Tubular algebras and affine Kac-Moody algebras
Institute of Scientific and Technical Information of China (English)
2007-01-01
The purpose of this paper is to construct quotient algebras L(A)1C/I(A) of complex degenerate composition Lie algebras L(A)1C by some ideals, where L(A)1C is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)1C/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)1C generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)1C generated by simple A-modules.
Tubular algebras and affine Kac-Moody algebras
Institute of Scientific and Technical Information of China (English)
Zheng-xin CHEN; Ya-nan LIN
2007-01-01
The purpose of this paper is to construct quotient algebras L(A)C1/I(A) of complex degenerate composition Lie algebras L(A)C1 by some ideals, where L(A)C1 is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)C1/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)C1 generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)C1 generated by simple A-modules.
New Tools for Computational Geometry and Rejuvenation of Screw Theory
Hestenes, David
Conformal Geometric Algebraic (CGA) provides ideal mathematical tools for construction, analysis, and integration of classical Euclidean, Inversive & Projective Geometries, with practical applications to computer science, engineering, and physics. This paper is a comprehensive introduction to a CGA tool kit. Synthetic statements in classical geometry translate directly to coordinate-free algebraic forms. Invariant and covariant methods are coordinated by conformal splits, which are readily related to the literature using methods of matrix algebra, biquaternions, and screw theory. Designs for a complete system of powerful tools for the mechanics of linked rigid bodies are presented.
New symbolic tools for differential geometry, gravitation, and field theory
Anderson, I. M.; Torre, C. G.
2012-01-01
DifferentialGeometry is a Maple software package which symbolically performs fundamental operations of calculus on manifolds, differential geometry, tensor calculus, spinor calculus, Lie algebras, Lie groups, transformation groups, jet spaces, and the variational calculus. These capabilities, combined with dramatic recent improvements in symbolic approaches to solving algebraic and differential equations, have allowed for development of powerful new tools for solving research problems in gravitation and field theory. The purpose of this paper is to describe some of these new tools and present some advanced applications involving: Killing vector fields and isometry groups, Killing tensors, algebraic classification of solutions of the Einstein equations, and symmetry reduction of field equations.
Pottmann, Helmut
2014-11-26
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Perspectives in Analysis, Geometry, and Topology
Itenberg, I V; Passare, Mikael
2012-01-01
The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.
Graustein, William C
2006-01-01
This first course in differential geometry presents the fundamentals of the metric differential geometry of curves and surfaces in a Euclidean space of three dimensions. Written by an outstanding teacher and mathematician, it explains the material in the most effective way, using vector notation and technique. It also provides an introduction to the study of Riemannian geometry.Suitable for advanced undergraduates and graduate students, the text presupposes a knowledge of calculus. The first nine chapters focus on the theory, treating the basic properties of curves and surfaces, the mapping of
Maor, Eli
2014-01-01
If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur
Algebraic boundaries of Hilbert's SOS cones
Blekherman, Grigoriy; Ottem, John Christian; Ranestad, Kristian; Sturmfels, Bernd
2011-01-01
We study the geometry underlying the difference between non-negative polynomials and sums of squares. The hypersurfaces that discriminate these two cones for ternary sextics and quaternary quartics are shown to be Noether-Lefschetz loci of K3 surfaces. The projective duals of these hypersurfaces are defined by rank constraints on Hankel matrices. We compute their degrees using numerical algebraic geometry, thereby verifying results due to Maulik and Pandharipande. The non-SOS extreme rays of the two cones of non-negative forms are parametrized respectively by the Severi variety of plane rational sextics and by the variety of quartic symmetroids.
Covariant Macroscopic Quantum Geometry
Hogan, Craig J
2012-01-01
A covariant noncommutative algebra of position operators is presented, and interpreted as the macroscopic limit of a geometry that describes a collective quantum behavior of the positions of massive bodies in a flat emergent space-time. The commutator defines a quantum-geometrical relationship between world lines that depends on their separation and relative velocity, but on no other property of the bodies, and leads to a transverse uncertainty of the geometrical wave function that increases with separation. The number of geometrical degrees of freedom in a space-time volume scales holographically, as the surface area in Planck units. Ongoing branching of the wave function causes fluctuations in transverse position, shared coherently among bodies with similar trajectories. The theory can be tested using appropriately configured Michelson interferometers.
Automorphism groups of some algebras
Institute of Scientific and Technical Information of China (English)
PARK; Hong; Goo; LEE; Jeongsig; CHOI; Seul; Hee; NAM; Ki-Bong
2009-01-01
The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m,m + n).
Automorphism groups of some algebras
Institute of Scientific and Technical Information of China (English)
PARK Hong Goo; LEE Jeongsig; CHOI Seul Hee; CHEN XueQing; NAM Ki-Bong
2009-01-01
The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m, m+n).
KAWA lecture notes on complex hyperbolic geometry
Rousseau, Erwan
2016-01-01
These lecture notes are based on a mini-course given at the fifth KAWA Winter School on March 24-29, 2014 at CIRM, Marseille. They provide an introduction to hyperbolicity of complex algebraic varieties namely the geometry of entire curves, and a description of some recent developments.
Derived equivalence of algebras
Institute of Scientific and Technical Information of China (English)
杜先能
1997-01-01
The derived equivalence and stable equivalence of algebras RmA and RmB are studied It is proved, using the tilting complex, that RmA and RmB are derived-equivalent whenever algebras A and B are derived-equivalent
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Herriott, Scott R.; Dunbar, Steven R.
2009-01-01
The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…
Geometry and the Quantum: Basics
Chamseddine, Ali H; Mukhanov, Viatcheslav
2014-01-01
Motivated by the construction of spectral manifolds in noncommutative geometry, we introduce a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of scalar fields. This commutation relation appears in two versions, one sided and two sided. It implies the quantization of the volume. In the one-sided case it implies that the manifold decomposes into a disconnected sum of spheres which will represent quanta of geometry. The two sided version in dimension 4 predicts the two algebras M_2(H) and M_4(C) which are the algebraic constituents of the Standard Model of particle physics. This taken together with the non-commutative algebra of functions allows one to reconstruct, using the spectral action, the Lagrangian of gravity coupled with the Standard Model. We show that any connected Riemannian Spin 4-manifold with quantized volume >4 (in suitable units) appears as an irreducible representation of the two-sided commutation relations in dimension 4 and that these represen...
Introduction to noncommutative algebra
Brešar, Matej
2014-01-01
Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Algebraic Systems Biology: A Case Study for the Wnt Pathway.
Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd
2016-01-01
Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics.
The Planar Algebra of a Semisimple and Cosemisimple Hopf Algebra
Indian Academy of Sciences (India)
Vijay Kodiyalam; V S Sunder
2006-11-01
To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection between (the isomorphism classes, on both sides, of) such objects.
Graded Lie Algebra Generating of Parastatistical Algebraic Relations
Institute of Scientific and Technical Information of China (English)
JING Si-Cong; YANG Wei-Min; LI Ping
2001-01-01
A new kind of graded Lie algebra (We call it Z2,2 graded Lie algebra) is introduced as a framework for formulating parasupersymmetric theories. By choosing suitable Bose subspace of the Z2,2 graded Lie algebra and using relevant generalized Jacobi identities, we generate the whole algebraic structure of parastatistics.
Geloun, Joseph Ben; Hounkonnou, M N
2008-01-01
We consider, in a superspace, new operator dependent noncommutative (NC) geometries of the nonlinear quantum Hall limit related to classes of f-deformed Landau operators in the spherical harmonic well. Different NC coordinate algebras are determined using unitary representation spaces of Fock-Heisenberg tensored algebras and of the Schwinger-Fock realisation of the su(1,1) Lie algebra. A reduced model allowing an underlying N=2 superalgebra is also discussed.
Generalizing the Connes Moscovici Hopf algebra to contain all rooted trees
Agarwala, Susama
2013-01-01
This paper defines a generalization of the Connes-Moscovici Hopf algebra, $\\h(1)$ that contains the entire Hopf algebra of rooted trees. A relationship between the former, a much studied object in non-commutative geometry, and the later, a much studied object in perturbative Quantum Field Theory, has been established by Connes and Kreimer. The results of this paper open the door to study the cohomology of the Hopf algebra of rooted trees.
Generalizing the Connes Moscovici Hopf algebra to contain all rooted trees
Energy Technology Data Exchange (ETDEWEB)
Agarwala, Susama [Mathematical Institute, Radcliff Observatory Quarter, Oxford University, Woodstock Road, Oxford (United Kingdom); Delaney, Colleen [University of California Santa Barbara, South Hall, Room 6607, Santa Barbara, California 93106 (United States)
2015-04-15
This paper defines a generalization of the Connes-Moscovici Hopf algebra, H(1), that contains the entire Hopf algebra of rooted trees. A relationship between the former, a much studied object in non-commutative geometry, and the latter, a much studied object in perturbative quantum field theory, has been established by Connes and Kreimer. The results of this paper open the door to study the cohomology of the Hopf algebra of rooted trees.
Generalizing the Connes Moscovici Hopf algebra to contain all rooted trees
Agarwala, Susama; Delaney, Colleen
2015-04-01
This paper defines a generalization of the Connes-Moscovici Hopf algebra, H ( 1 ) , that contains the entire Hopf algebra of rooted trees. A relationship between the former, a much studied object in non-commutative geometry, and the latter, a much studied object in perturbative quantum field theory, has been established by Connes and Kreimer. The results of this paper open the door to study the cohomology of the Hopf algebra of rooted trees.
An introduction to some novel applications of Lie algebra cohomology and physics
de Azcárraga, J A; Bueno, J C P
1998-01-01
After a self-contained introduction to Lie algebra cohomology, we present some recent applications in mathematics and in physics. Contents: 1. Preliminaries: L_X, i_X, d 2. Elementary differential geometry on Lie groups 3. Lie algebra cohomology: a brief introduction 4. Symmetric polynomials and higher order cocycles 5. Higher order simple and SH Lie algebras 6. Higher order generalized Poisson structures 7. Relative cohomology, coset spaces and effective WZW actions
A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets
2014-11-01
linear hybrid systems by linear algebraic methods. In SAS, volume 6337 of LNCS, pages 373–389. Springer, 2010. [19] E. W. Mayr. Membership in polynomial...383–394, 2009. [31] A. Tarski. A decision method for elementary algebra and geometry. Bull. Amer. Math. Soc., 59, 1951. [32] A. Tiwari. Abstractions...A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 November 2014 CMU
Hexagonal tessellations in image algebra
Eberly, David H.; Wenzel, Dennis J.; Longbotham, Harold G.
1990-11-01
In image algebra '' the concept of a coordinate set X is general in that such a set is simply a subset of ndimensional Euclidean space . The standard applications in 2-dimensional image processing use coordinate sets which are rectangular arrays X 72 x ZZm. However some applications may require other geometries for the coordinate set. We look at three such related applications in the context of image algebra. The first application is the modeling of photoreceptors in primate retinas. These receptors are inhomogeneously distributed on the retina. The largest receptor density occurs in the center of the fovea and decreases radially outwards. One can construct a hexagonal tessellation of the retina such that each hexagon contains approximately the same number of receptors. The resulting tessellation called a sunflower heart2 consists of concentric rings of hexagons whose sizes increase as the radius of the ring increases. The second application is the modeling of the primary visual . The neurons are assumed to be uniformly distributed as a regular hexagonal lattice. Cortical neural image coding is modeled by a recursive convolution of the retinal neural image using a special set of filters. The third application involves analysis of a hexagonally-tessellated image where the pixel resolution is variable .
Leibniz algebras associated with representations of filiform Lie algebras
Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A.
2015-12-01
In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra nn,1. We introduce a Fock module for the algebra nn,1 and provide classification of Leibniz algebras L whose corresponding Lie algebra L / I is the algebra nn,1 with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by squares of elements from L. We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the action I ×nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification up to isomorphism of such Leibniz algebras is given for the case of n = 4.
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory
Molina, Mercedes
2016-01-01
Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are relevant in research and development in coding theory, cryptography and quantum mechanics. The topics in this volume were presented at the Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory, held May 23—25, 2014 at Cheikh Anta Diop University in Dakar, Senegal in honor of Professor Amin Kaidi. The workshop was hosted by the university's Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications, in cooperation with the University of Almería and the University of Málaga. Dr. Kaidi's work focuses on non-associative rings and algebras, operator theory and functional analysis, and he...
On dibaric and evolution algebras
Ladra, M; Rozikov, U A
2011-01-01
We find conditions on ideals of an algebra under which the algebra is dibaric. Dibaric algebras have not non-zero homomorphisms to the set of the real numbers. We introduce a concept of bq-homomorphism (which is given by two linear maps $f, g$ of the algebra to the set of the real numbers) and show that an algebra is dibaric if and only if it admits a non-zero bq-homomorphism. Using the pair $(f,g)$ we define conservative algebras and establish criteria for a dibaric algebra to be conservative. Moreover, the notions of a Bernstein algebra and an algebra induced by a linear operator are introduced and relations between these algebras are studied. For dibaric algebras we describe a dibaric algebra homomorphism and study their properties by bq-homomorphisms of the dibaric algebras. We apply the results to the (dibaric) evolution algebra of a bisexual population. For this dibaric algebra we describe all possible bq-homomorphisms and find conditions under which the algebra of a bisexual population is induced by a ...
Classification of Noncommutative Domain Algebras
Arias, Alvaro
2012-01-01
Noncommutative domain algebras are noncommutative analogues of the algebras of holomorphic functions on domains of $\\C^n$ defined by holomorphic polynomials, and they generalize the noncommutative Hardy algebras. We present here a complete classification of these algebras based upon techniques inspired by multivariate complex analysis, and more specifically the classification of domains in hermitian spaces up to biholomorphic equivalence.
Process algebra for Hybrid systems
Bergstra, J.A.; Middelburg, C.A.
2008-01-01
We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, Chap. 4, 2002] and the process algebra with propositional signals from Baeten and Bergstra [Theoretical Computer
Process algebra for hybrid systems
Bergstra, J.A.; Middelburg, C.A.
2005-01-01
We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg (Process Algebra with Timing, Springer,Berlin, 2002, Chapter 4), and the process algebra with propositional signals from Baeten and Bergstra(Theoret. Com
Cohen, A.M.; Liu, S.
2015-01-01
For each n ≥ 1, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular struc
Burdette, A C
1971-01-01
Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st
K3 surfaces, lorentzian Kac-Moody algebras and mirror symmetry
Gritsenko, V A; Gritsenko, Valeri A; Nikulin, Viacheslav V
1995-01-01
We consider the variant of Mirror Symmetry Conjecture for K3 surfaces which relates "geometry" of curves of a general member of a family of K3 with "algebraic functions" on the moduli of the mirror family. Lorentzian Kac--Moody algebras are involved in this construction. We give several examples when this conjecture is valid.
Symplectic algebraic dynamics algorithm
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the algebraic dynamics solution of ordinary differential equations andintegration of ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.
Directory of Open Access Journals (Sweden)
J. W. Kitchen
1994-01-01
Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
On the Homogeneous Model Of Euclidean Geometry
Gunn, Charles
2011-01-01
We attach the degenerate signature (n,0,1) to the projectivized dual Grassmann algebra over R(n+1). We explore the use of the resulting Clifford algebra as a model for euclidean geometry. We avoid problems with the degenerate metric by constructing an algebra isomorphism between this Grassmann algebra and its dual, that yields non-metric meet and join operators. We review the Cayley-Klein construction of the projective (homogeneous) model for euclidean geometry leading to the choice of the signature (n,0,1). We focus on the cases of n=2 and n=3 in detail, enumerating the geometric products between simple k- and m-vectors. We establish that versor (sandwich) operators provide all euclidean isometries, both direct and indirect. We locate the spin group, a double cover of the direct euclidean group, inside the even subalgebra of the Clifford algebra, and provide a simple algorithm for calculating the logarithm of such elements. We conclude with an elementary account of euclidean rigid body motion within this fra...
Pottmann, Helmut; Eigensatz, Michael; Vaxman, A.; Wallner, Johannes
2015-01-01
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural
On isomorphisms of integral table algebras
Institute of Scientific and Technical Information of China (English)
FAN; Yun(樊恽); SUN; Daying(孙大英)
2002-01-01
For integral table algebras with integral table basis T, we can consider integral R-algebra RT over a subring R of the ring of the algebraic integers. It is proved that an R-algebra isomorphism between two integral table algebras must be an integral table algebra isomorphism if it is compatible with the so-called normalizings of the integral table algebras.
Cameron, Peter J
2007-01-01
This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,. new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics. - ;Developed to meet the needs of modern students, this Second Edition of the classic algebra text by Peter Cameron covers all the abstract algebra an undergraduate student is likely to need. Starting with an introductory overview of numbers, sets and functions, matrices, polynomials, and modular arithmetic, the text then introduces the most important algebraic structures: groups, rings and fields, and their properties. This is followed by coverage of vector spaces and modules with. applications to abelian groups and canonical forms before returning to the construction of the number systems, including the existence of transcendental numbers. The final chapters take the reader further into the th...
Indian Academy of Sciences (India)
Vijay Kodiyalam; R Srinivasan; V S Sunder
2000-08-01
In this paper, we study a tower $\\{A^G_n(d):n≥ 1\\}$ of finite-dimensional algebras; here, represents an arbitrary finite group, denotes a complex parameter, and the algebra $A^G_n(d)$ has a basis indexed by `-stable equivalence relations' on a set where acts freely and has 2 orbits. We show that the algebra $A^G_n(d)$ is semi-simple for all but a finite set of values of , and determine the representation theory (or, equivalently, the decomposition into simple summands) of this algebra in the `generic case'. Finally we determine the Bratteli diagram of the tower $\\{A^G_n(d): n≥ 1\\}$ (in the generic case).
Markarian, Nikita
2017-03-01
We introduce Weyl n-algebras and show how their factorization complex may be used to define invariants of manifolds. In the appendix, we heuristically explain why these invariants must be perturbative Chern-Simons invariants.
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Parametrizing Algebraic Curves
Lemmermeyer, Franz
2011-01-01
We present the technique of parametrization of plane algebraic curves from a number theorist's point of view and present Kapferer's simple and beautiful (but little known) proof that nonsingular curves of degree > 2 cannot be parametrized by rational functions.
Beginning algebra a textworkbook
McKeague, Charles P
1985-01-01
Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division
Intermediate algebra a textworkbook
McKeague, Charles P
1985-01-01
Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex
Institute of Scientific and Technical Information of China (English)
Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA
2004-01-01
In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.
Introduction to abstract algebra
Nicholson, W Keith
2012-01-01
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be
Generalized braided Hopf algebras
Institute of Scientific and Technical Information of China (English)
LU Zhong-jian; FANG Xiao-li
2009-01-01
The concept of (f, σ)-pair (B, H)is introduced, where B and H are Hopf algebras. A braided tensor category which is a tensor subcategory of the category HM of left H-comodules through an (f, σ)-pair is constructed. In particularly, a Yang-Baxter equation is got. A Hopf algebra is constructed as well in the Yetter-Drinfel'd category HHYD by twisting the multiplication of B.
Andrilli, Stephen
2010-01-01
Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl
Integral geometry and representation theory
Gel'fand, I M; Vilenkin, N Ya
1966-01-01
Generalized Functions, Volume 5: Integral Geometry and Representation Theory is devoted to the theory of representations, focusing on the group of two-dimensional complex matrices of determinant one.This book emphasizes that the theory of representations is a good example of the use of algebraic and geometric methods in functional analysis, in which transformations are performed not on the points of a space, but on the functions defined on it. The topics discussed include Radon transform on a real affine space, integral transforms in the complex domain, and representations of the group of comp
Quanta of geometry and unification
Chamseddine, Ali H.
2016-11-01
This is a tribute to Abdus Salam’s memory whose insight and creative thinking set for me a role model to follow. In this contribution I show that the simple requirement of volume quantization in spacetime (with Euclidean signature) uniquely determines the geometry to be that of a noncommutative space whose finite part is based on an algebra that leads to Pati-Salam grand unified models. The Standard Model corresponds to a special case where a mathematical constraint (order one condition) is satisfied. This provides evidence that Salam was a visionary who was generations ahead of his time.
Quanta of Geometry and Unification
Chamseddine, Ali H
2016-01-01
This is a tribute to Abdus Salam's memory whose insight and creative thinking set for me a role model to follow. In this contribution I show that the simple requirement of volume quantization in space-time (with Euclidean signature) uniquely determines the geometry to be that of a noncommutative space whose finite part is based on an algebra that leads to Pati-Salam grand unified models. The Standard Model corresponds to a special case where a mathematical constraint (order one condition) is satisfied. This provides evidence that Salam was a visionary who was generations ahead of his time.
Differential Hopf algebra structures on the universal enveloping algebra of a lie algebra
Hijligenberg, van den, N.W.; Martini, R.
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g)$. The construction of such differential structures is interpreted in terms of colour Lie superalgebras.
Topological ∗-algebras with *-enveloping Algebras II
Indian Academy of Sciences (India)
S J Bhatt
2001-02-01
Universal *-algebras *() exist for certain topological ∗-algebras called algebras with a *-enveloping algebra. A Frechet ∗-algebra has a *-enveloping algebra if and only if every operator representation of maps into bounded operators. This is proved by showing that every unbounded operator representation , continuous in the uniform topology, of a topological ∗-algebra , which is an inverse limit of Banach ∗-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-* algebra () of . Given a *-dynamical system (, , ), any topological ∗-algebra containing (, ) as a dense ∗-subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If $G = \\mathbb{R}$, if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ∗-automorphisms: then the smooth Schwartz crossed product $S(\\mathbb{R}, B, )$ satisfies $E(S(\\mathbb{R}, B, )) = C^*(\\mathbb{R}, A, )$. When is a Lie group, the ∞-elements ∞(), the analytic elements () as well as the entire analytic elements () carry natural topologies making them algebras with a *-enveloping algebra. Given a non-unital *-algebra , an inductive system of ideals is constructed satisfying $A = C^*-\\mathrm{ind} \\lim I_$; and the locally convex inductive limit $\\mathrm{ind}\\lim I_$ is an -convex algebra with the *-enveloping algebra and containing the Pedersen ideal of . Given generators with weakly Banach admissible relations , we construct universal topological ∗-algebra (, ) and show that it has a *-enveloping algebra if and only if (, ) is *-admissible.
Institute of Scientific and Technical Information of China (English)
An Hui-hui; Wang Zhi-chun
2016-01-01
L-octo-algebra with 8 operations as the Lie algebraic analogue of octo-algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo-algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri-algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.
Double conformal space-time algebra
Easter, Robert Benjamin; Hitzer, Eckhard
2017-01-01
The Double Conformal Space-Time Algebra (DCSTA) is a high-dimensional 12D Geometric Algebra G 4,8that extends the concepts introduced with the Double Conformal / Darboux Cyclide Geometric Algebra (DCGA) G 8,2 with entities for Darboux cyclides (incl. parabolic and Dupin cyclides, general quadrics, and ring torus) in spacetime with a new boost operator. The base algebra in which spacetime geometry is modeled is the Space-Time Algebra (STA) G 1,3. Two Conformal Space-Time subalgebras (CSTA) G 2,4 provide spacetime entities for points, flats (incl. worldlines), and hyperbolics, and a complete set of versors for their spacetime transformations that includes rotation, translation, isotropic dilation, hyperbolic rotation (boost), planar reflection, and (pseudo)spherical inversion in rounds or hyperbolics. The DCSTA G 4,8 is a doubling product of two G 2,4 CSTA subalgebras that inherits doubled CSTA entities and versors from CSTA and adds new bivector entities for (pseudo)quadrics and Darboux (pseudo)cyclides in spacetime that are also transformed by the doubled versors. The "pseudo" surface entities are spacetime hyperbolics or other surface entities using the time axis as a pseudospatial dimension. The (pseudo)cyclides are the inversions of (pseudo)quadrics in rounds or hyperbolics. An operation for the directed non-uniform scaling (anisotropic dilation) of the bivector general quadric entities is defined using the boost operator and a spatial projection. DCSTA allows general quadric surfaces to be transformed in spacetime by the same complete set of doubled CSTA versor (i.e., DCSTA versor) operations that are also valid on the doubled CSTA point entity (i.e., DCSTA point) and the other doubled CSTA entities. The new DCSTA bivector entities are formed by extracting values from the DCSTA point entity using specifically defined inner product extraction operators. Quadric surface entities can be boosted into moving surfaces with constant velocities that display the length
Petersen, Peter
2016-01-01
Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...
Universal Algebra Applied to Hom-Associative Algebras, and More
Hellström, Lars; Makhlouf, Abdenacer; Silvestrov, Sergei D.
2014-01-01
The purpose of this paper is to discuss the universal algebra theory of hom-algebras. This kind of algebra involves a linear map which twists the usual identities. We focus on hom-associative algebras and hom-Lie algebras for which we review the main results. We discuss the envelopment problem, operads, and the Diamond Lemma; the usual tools have to be adapted to this new situation. Moreover we study Hilbert series for the hom-associative operad and free algebra, and describe them up to total...
Axis Problem of Rough 3-Valued Algebras
Institute of Scientific and Technical Information of China (English)
Jianhua Dai; Weidong Chen; Yunhe Pan
2006-01-01
The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.
Kreyszig, Erwin
1991-01-01
An introductory textbook on the differential geometry of curves and surfaces in three-dimensional Euclidean space, presented in its simplest, most essential form, but with many explanatory details, figures and examples, and in a manner that conveys the theoretical and practical importance of the different concepts, methods and results involved. With problems at the end of each section, and solutions listed at the end of the book. Includes 99 illustrations.
Developments and retrospectives in Lie theory algebraic methods
Penkov, Ivan; Wolf, Joseph
2014-01-01
This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics. Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Algebraic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research. Mos...
Fast decoding of codes from algebraic plane curves
DEFF Research Database (Denmark)
Justesen, Jørn; Larsen, Knud J.; Jensen, Helge Elbrønd;
1992-01-01
Improvement to an earlier decoding algorithm for codes from algebraic geometry is presented. For codes from an arbitrary regular plane curve the authors correct up to d*/2-m2 /8+m/4-9/8 errors, where d* is the designed distance of the code and m is the degree of the curve. The complexity of finding...
A concrete approach to abstract algebra from the integers to the insolvability of the quintic
Bergen, Jeffrey
2010-01-01
A Concrete Approach to Abstract Algebra begins with a concrete and thorough examination of familiar objects like integers, rational numbers, real numbers, complex numbers, complex conjugation and polynomials, in this unique approach, the author builds upon these familar objects and then uses them to introduce and motivate advanced concepts in algebra in a manner that is easier to understand for most students. The text will be of particular interest to teachers and future teachers as it links abstract algebra to many topics wich arise in courses in algebra, geometry, trigonometry, preca
Superconformal Algebras and Supersymmetric Integrable Flows
Sachse, Christoph; Devchand, Chandrasekhar
2009-01-01
After a comprehensive review of superconformal algebras, super-diffeomorphisms and supervector fields on supercircles S^{1|n} we study various supersymmetric extensions of the KdV and Camassa-Holm equations. We describe their (super) Hamiltonian structures and their connection to bihamiltonian geometry. These are interpreted as geodesic flows on various superconformal groups. We also give an example of superintegrable systems of Ramond type. The one-parameter family of equations shown by Degasperis, Holm and Hone (DHH) to possess multi-peakon solutions is identified as a geodesic flow equation on a one-parameter deformation of the group of diffeomorphisms of the circle, with respect to a right-invariant Sobolev H^1--metric. A supersymmetrisation of the algebra of deformed vector fields on S^1 yields supersymmetric DHH equations (also known as b-field equations), which include the supersymmetric Camassa--Holm equation as a special case.
Algebraically contractible topological tensor network states
Denny, S J; Jaksch, D; Clark, S R
2011-01-01
We adapt the bialgebra and Hopf relations to expose internal structure in the ground state of a Hamiltonian with $Z_2$ topological order. Its tensor network description allows for exact contraction through simple diagrammatic rewrite rules. The contraction property does not depend on specifics such as geometry, but rather originates from the non-trivial algebraic properties of the constituent tensors. We then generalise the resulting tensor network from a spin-half lattice to a class of exactly contractible states on spin-S degrees of freedom, yielding the most efficient tensor network description of finite Abelian lattice gauge theories. We gain a new perspective on these states as examples of two-dimensional quantum states with algebraically contractible tensor network representations. The introduction of local perturbations to the network is shown to reduce the von Neumann entropy of string-like regions, creating an unentangled sub-system within the bulk in a certain limit. We also show how perturbations l...
FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS
Energy Technology Data Exchange (ETDEWEB)
Singer, Isadore M.
2008-03-04
The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.
General Geometry and Geometry of Electromagnetism
Shahverdiyev, Shervgi S.
2002-01-01
It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...
Rigid geometry of curves and their Jacobians
Lütkebohmert, Werner
2016-01-01
This book presents some of the most important aspects of rigid geometry, namely its applications to the study of smooth algebraic curves, of their Jacobians, and of abelian varieties - all of them defined over a complete non-archimedean valued field. The text starts with a survey of the foundation of rigid geometry, and then focuses on a detailed treatment of the applications. In the case of curves with split rational reduction there is a complete analogue to the fascinating theory of Riemann surfaces. In the case of proper smooth group varieties the uniformization and the construction of abelian varieties are treated in detail. Rigid geometry was established by John Tate and was enriched by a formal algebraic approach launched by Michel Raynaud. It has proved as a means to illustrate the geometric ideas behind the abstract methods of formal algebraic geometry as used by Mumford and Faltings. This book should be of great use to students wishing to enter this field, as well as those already working in it.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Over a field F of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector space A［D]=A［D] from any pair of a commutative associative algebra A with an identity element and the polynomial algebra ［D] of a commutative derivation subalgebra D of A. We prove that A[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only if A is D－simple and A［D] acts faithfully on A. Thus we obtain a lot of simple algebras.
Algebra II workbook for dummies
Sterling, Mary Jane
2014-01-01
To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr
Simple Algebras of Invariant Operators
Institute of Scientific and Technical Information of China (English)
Xiaorong Shen; J.D.H. Smith
2001-01-01
Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.
Differential geometry and mathematical physics
Rudolph, Gerd
2013-01-01
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...
Groups and Geometries : Siena Conference
Kantor, William; Lunardon, Guglielmo; Pasini, Antonio; Tamburini, Maria
1998-01-01
On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of f...
Geometry of Membrane Sigma Models
Vysoky, Jan
2015-01-01
String theory still remains one of the promising candidates for a unification of the theory of gravity and quantum field theory. One of its essential parts is relativistic description of moving multi-dimensional objects called membranes (or p-branes) in a curved spacetime. On the classical field theory level, they are described by an action functional extremalising the volume of a manifold swept by a propagating membrane. This and related field theories are collectively called membrane sigma models. Differential geometry is an important mathematical tool in the study of string theory. It turns out that string and membrane backgrounds can be conveniently described using objects defined on a direct sum of tangent and cotangent bundles of the spacetime manifold. Mathematical field studying such object is called generalized geometry. Its integral part is the theory of Leibniz algebroids, vector bundles with a Leibniz algebra bracket on its module of smooth sections. Special cases of Leibniz algebroids are better ...
INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra"
Delucchi, Emanuele; Moci, Luca
2015-01-01
Combinatorics plays a prominent role in contemporary mathematics, due to the vibrant development it has experienced in the last two decades and its many interactions with other subjects. This book arises from the INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra,'' which was held in Cortona in September 2013. The event brought together emerging and leading researchers at the crossroads of Combinatorics, Topology and Algebra, with a particular focus on new trends in subjects such as: hyperplane arrangements; discrete geometry and combinatorial topology; polytope theory and triangulations of manifolds; combinatorial algebraic geometry and commutative algebra; algebraic combinatorics; and combinatorial representation theory. The book is divided into two parts. The first expands on the topics discussed at the conference by providing additional background and explanations, while the second presents original contributions on new trends in the topics addressed by the conference.
Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra
Pitsch, Wolfgang; Zarzuela, Santiago
2016-01-01
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...
Ciarlet, Philippe G
2007-01-01
This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and
Structure of Solvable Quadratic Lie Algebras
Institute of Scientific and Technical Information of China (English)
ZHU Lin-sheng
2005-01-01
@@ Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras.
Algebraic orders on $K_{0}$ and approximately finite operator algebras
Power, S C
1993-01-01
This is a revised and corrected version of a preprint circulated in 1990 in which various non-self-adjoint limit algebras are classified. The principal invariant is the scaled $K_0$ group together with the algebraic order on the scale induced by partial isometries in the algebra.
Approximate Preservers on Banach Algebras and C*-Algebras
Directory of Open Access Journals (Sweden)
M. Burgos
2013-01-01
Full Text Available The aim of the present paper is to give approximate versions of Hua’s theorem and other related results for Banach algebras and C*-algebras. We also study linear maps approximately preserving the conorm between unital C*-algebras.
The Planar Algebra Associated to a Kac Algebra
Indian Academy of Sciences (India)
Vijay Kodiyalam; Zeph Landau; V S Sunder
2003-02-01
We obtain (two equivalent) presentations – in terms of generators and relations-of the planar algebra associated with the subfactor corresponding to (an outer action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that the antipode of the Kac algebra agrees with the `rotation on 2-boxes'.
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Durka, R
2016-01-01
We explore the $S$-expansion framework to analyze freedom in closing the multiplication tables for the abelian semigroups. Including possibility of the zero element in the resonant decomposition and relating the Lorentz generator with the semigroup identity element leads to the wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results we find not only all the Maxwell algebras of type $\\mathfrak{B}_m$, $\\mathfrak{C}_m$, and recently introduced $\\mathfrak{D}_m$, but we also produce new examples. We discuss some prospects concerning further enlarging the algebras and provide all necessary constituents for constructing the gravity actions based on the obtained results.
Durka, R.
2017-04-01
The S-expansion framework is analyzed in the context of a freedom in closing the multiplication tables for the abelian semigroups. Including the possibility of the zero element in the resonant decomposition, and associating the Lorentz generator with the semigroup identity element, leads to a wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results, we find all the Maxwell algebras of type {{B}m} , {{C}m} , and the recently introduced {{D}m} . The additional new examples complete the resulting generalization of the bosonic enlargements for an arbitrary number of the Lorentz-like and translational-like generators. Some further prospects concerning enlarging the algebras are discussed, along with providing all the necessary constituents for constructing the gravity actions based on the obtained results.
Algebraic totality, towards completeness
Tasson, Christine
2009-01-01
Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans ${\\mathcal{B}}$ and a conditional operator, which can be interpreted in this model. We prove completeness at type ${\\mathcal{B}}^n\\to{\\mathcal{B}}$ for every n by an algebraic metho...
Nearly projective Boolean algebras
Heindorf, Lutz; Shapiro, Leonid B
1994-01-01
The book is a fairly complete and up-to-date survey of projectivity and its generalizations in the class of Boolean algebras. Although algebra adds its own methods and questions, many of the results presented were first proved by topologists in the more general setting of (not necessarily zero-dimensional) compact spaces. An appendix demonstrates the application of advanced set-theoretic methods to the field. The intended readers are Boolean and universal algebraists. The book will also be useful for general topologists wanting to learn about kappa-metrizable spaces and related classes. The text is practically self-contained but assumes experience with the basic concepts and techniques of Boolean algebras.
Jarvis, Frazer
2014-01-01
The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...
Indian Academy of Sciences (India)
Anil K Karn
2003-02-01
Order unit property of a positive element in a *-algebra is defined. It is proved that precisely projections satisfy this order theoretic property. This way, unital hereditary *-subalgebras of a *-algebra are characterized.
Linear Mappings of Quaternion Algebra
Kleyn, Aleks
2011-01-01
In the paper I considered linear and antilinear automorphisms of quaternion algebra. I proved the theorem that there is unique expansion of R-linear mapping of quaternion algebra relative to the given set of linear and antilinear automorphisms.
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders
Energy Technology Data Exchange (ETDEWEB)
Gurau, Razvan, E-mail: rgurau@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo (Canada)
2012-12-01
Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.
On quaternions and octonions their geometry, arithmetic, and symmetry
AUTHOR|(CDS)2067326
2003-01-01
This book investigates the geometry of quaternion and octonion algebras. Following a comprehensive historical introduction, the book illuminates the special properties of 3- and 4-dimensional Euclidean spaces using quaternions, leading to enumerations of the corresponding finite groups of symmetries. The second half of the book discusses the less familiar octonion algebra, concentrating on its remarkable "triality symmetry" after an appropriate study of Moufang loops. The authors also describe the arithmetics of the quaternions and octonions. The book concludes with a new theory of octonion factorization. Topics covered include the geometry of complex numbers, quaternions and 3-dimensional groups, quaternions and 4-dimensional groups, Hurwitz integral quaternions, composition algebras, Moufang loops, octonions and 8-dimensional geometry, integral octonions, and the octonion projective plane.
Noncommutative spectral geometry: A guided tour for theoretical physicists
Sakellariadou, Mairi
2012-01-01
We review a gravitational model based on noncommutative geometry and the spectral action principle. The space-time geometry is described by the tensor product of a four-dimensional Riemanian manifold by a discrete noncommutative space consisting of only two points. With a specific choice of the finite dimensional involutive algebra, the noncommutative spectral action leads to the standard model of electroweak and strong interactions minimally coupled to Einstein and Weyl gravity. We present the main mathematical ingredients of this model and discuss their physical implications. We argue that the doubling of the algebra is intimately related to dissipation and the gauge field structure. We then show how this noncommutative spectral geometry model, a purely classical construction, carries implicit in the doubling of the algebra the seeds of quantization. After a short review on the phenomenological consequences of this geometric model as an approach to unification, we discuss some of its cosmological consequenc...
Automorphism groups of pointed Hopf algebras
Institute of Scientific and Technical Information of China (English)
YANG Shilin
2007-01-01
The group of Hopf algebra automorphisms for a finite-dimensional semisimple cosemisimple Hopf algebra over a field k was considered by Radford and Waterhouse. In this paper, the groups of Hopf algebra automorphisms for two classes of pointed Hopf algebras are determined. Note that the Hopf algebras we consider are not semisimple Hopf algebras.
Reed, Nat
2011-01-01
For grades 3-5, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets
Reed, Nat
2011-01-01
For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets
Recollements of extension algebras
Institute of Scientific and Technical Information of China (English)
CHEN; Qinghua(陈清华); LIN; Yanan(林亚南)
2003-01-01
Let A be a finite-dimensional algebra over arbitrary base field k. We prove: if the unbounded derived module category D-(Mod-A) admits symmetric recollement relative to unbounded derived module categories of two finite-dimensional k-algebras B and C:D-(Mod- B) ( ) D-(Mod- A) ( ) D-(Mod- C),then the unbounded derived module category D-(Mod - T(A)) admits symmetric recollement relative to the unbounded derived module categories of T(B) and T(C):D-(Mod - T(B)) ( ) D-(Mod - T(A)) ( ) D-(Mod - T(C)).
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Cooperstein, Bruce
2010-01-01
Vector SpacesFieldsThe Space FnVector Spaces over an Arbitrary Field Subspaces of Vector SpacesSpan and IndependenceBases and Finite Dimensional Vector SpacesBases and Infinite Dimensional Vector SpacesCoordinate VectorsLinear TransformationsIntroduction to Linear TransformationsThe Range and Kernel of a Linear TransformationThe Correspondence and Isomorphism TheoremsMatrix of a Linear TransformationThe Algebra of L(V, W) and Mmn(F)Invertible Transformations and MatricesPolynomialsThe Algebra of PolynomialsRoots of PolynomialsTheory of a Single Linear OperatorInvariant Subspaces of an Operator
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
Division algebras and supersymmetry
Baez, John C
2009-01-01
Supersymmetry is deeply related to division algebras. Nonabelian Yang--Mills fields minimally coupled to massless spinors are supersymmetric if and only if the dimension of spacetime is 3, 4, 6 or 10. The same is true for the Green--Schwarz superstring. In both cases, supersymmetry relies on the vanishing of a certain trilinear expression involving a spinor field. The reason for this, in turn, is the existence of normed division algebras in dimensions 1, 2, 4 and 8: the real numbers, complex numbers, quaternions and octonions. Here we provide a self-contained account of how this works.
Algebra & trigonometry super review
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y
Algebraic Topology, Rational Homotopy
1988-01-01
This proceedings volume centers on new developments in rational homotopy and on their influence on algebra and algebraic topology. Most of the papers are original research papers dealing with rational homotopy and tame homotopy, cyclic homology, Moore conjectures on the exponents of the homotopy groups of a finite CW-c-complex and homology of loop spaces. Of particular interest for specialists are papers on construction of the minimal model in tame theory and computation of the Lusternik-Schnirelmann category by means articles on Moore conjectures, on tame homotopy and on the properties of Poincaré series of loop spaces.
Partially ordered algebraic systems
Fuchs, Laszlo
2011-01-01
Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...
Algebra & trigonometry I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq
Derivations of generalized Weyl algebras
Institute of Scientific and Technical Information of China (English)
SU; Yucai(苏育才)
2003-01-01
A class of the associative and Lie algebras A[D] = A × F[D] of Weyl type are studied, where Ais a commutative associative algebra with an identity element over a field F of characteristic zero, and F[D] isthe polynomial algebra of a finite dimensional commutative subalgebra of locally finite derivations of A suchthat A is D-simple. The derivations of these associative and Lie algebras are precisely determined.
The theory of algebraic numbers
Pollard, Harry
1998-01-01
An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.
Optimal Algorithm for Algebraic Factoring
Institute of Scientific and Technical Information of China (English)
支丽红
1997-01-01
This paper presents on optimized method for factoring multivariate polynomials over algebraic extension fields defined by an irreducible ascending set. The basic idea is to convert multivariate polynomials to univariate polynomials and algebraic extension fields to algebraic number fields by suitable integer substituteions.Then factorize the univariate polynomials over the algebraic number fields.Finally,construct mulativariate factors of the original polynomial by Hensel lemma and TRUEFACTOR test.Some examples with timing are included.
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Laan, P. van der
2001-01-01
In the literature several Hopf algebras that can be described in terms of trees have been studied. This paper tries to answer the question whether one can understand some of these Hopf algebras in terms of a single mathematical construction. The starting point is the Hopf algebra of rooted trees as
An algebra of reversible computation
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules, basic reversible processes algebra (BRPA), algebra of reversible communicating processes (ARCP), recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Deformed Algebras and Generalizations of Independence on Deformed Exponential Families
Directory of Open Access Journals (Sweden)
Hiroshi Matsuzoe
2015-08-01
Full Text Available A deformed exponential family is a generalization of exponential families. Since the useful classes of power law tailed distributions are described by the deformed exponential families, they are important objects in the theory of complex systems. Though the deformed exponential families are defined by deformed exponential functions, these functions do not satisfy the law of exponents in general. The deformed algebras have been introduced based on the deformed exponential functions. In this paper, after summarizing such deformed algebraic structures, it is clarified how deformed algebras work on deformed exponential families. In fact, deformed algebras cause generalization of expectations. The three kinds of expectations for random variables are introduced in this paper, and it is discussed why these generalized expectations are natural from the viewpoint of information geometry. In addition, deformed algebras cause generalization of independences. Whereas it is difficult to check the well-definedness of deformed independence in general, the κ-independence is always well-defined on κ-exponential families. This is one of advantages of κ-exponential families in complex systems. Consequently, we can well generalize the maximum likelihood method for the κ-exponential family from the viewpoint of information geometry.
The Maximal Graded Left Quotient Algebra of a Graded Algebra
Institute of Scientific and Technical Information of China (English)
Gonzalo ARANDA PINO; Mercedes SILES MOLINA
2006-01-01
We construct the maximal graded left quotient algebra of every graded algebra A without homogeneous total right zero divisors as the direct limit of graded homomorphisms (of left A-modules)from graded dense left ideals of A into a graded left quotient algebra of A. In the case of a superalgebra,and with some extra hypothesis, we prove that the component in the neutral element of the group of the maximal graded left quotient algebra coincides with the maximal left quotient algebra of the component in the neutral element of the group of the superalgebra.
Teaching Algebra and Geometry Concepts by Modeling Telescope Optics
Siegel, Lauren M.; Dickinson, Gail; Hooper, Eric J.; Daniels, Mark
2008-01-01
This article describes preparation and delivery of high school mathematics lessons that integrate mathematics and astronomy through The Geometer's Sketchpad models, traditional proof, and inquiry-based activities. The lessons were created by a University of Texas UTeach preservice teacher as part of a project-based field experience in which high…
Handy elementary algebraic properties of the geometry of entanglement
Blair, Howard A.; Alsing, Paul M.
2013-05-01
The space of separable states of a quantum system is a hyperbolic surface in a high dimensional linear space, which we call the separation surface, within the exponentially high dimensional linear space containing the quantum states of an n component multipartite quantum system. A vector in the linear space is representable as an n-dimensional hypermatrix with respect to bases of the component linear spaces. A vector will be on the separation surface iff every determinant of every 2-dimensional, 2-by-2 submatrix of the hypermatrix vanishes. This highly rigid constraint can be tested merely in time asymptotically proportional to d, where d is the dimension of the state space of the system due to the extreme interdependence of the 2-by-2 submatrices. The constraint on 2-by-2 determinants entails an elementary closed formformula for a parametric characterization of the entire separation surface with d-1 parameters in the char- acterization. The state of a factor of a partially separable state can be calculated in time asymptotically proportional to the dimension of the state space of the component. If all components of the system have approximately the same dimension, the time complexity of calculating a component state as a function of the parameters is asymptotically pro- portional to the time required to sort the basis. Metric-based entanglement measures of pure states are characterized in terms of the separation hypersurface.
Observable Algebra in Field Algebra of G-spin Models
Institute of Scientific and Technical Information of China (English)
蒋立宁
2003-01-01
Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra AH, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that AH is a C*-algebra. The correspondence between H and AH is strictly monotonic. Finally, a duality between D(H) and AH is given via an irreducible vacuum C*-representation of F.
On the simplicity of Lie algebras associated to Leavitt algebras
Abrams, Gene
2009-01-01
For any field $K$ and integer $n\\geq 2$ we consider the Leavitt algebra $L = L_K(n)$. $L$ is an associative algebra, but we view $L$ as a Lie algebra using the bracket $[a,b]=ab-ba$ for $a,b \\in L$. We denote this Lie algebra as $L^-$, and consider its Lie subalgebra $[L^-,L^-]$. In our main result, we show that $[L^-,L^-]$ is a simple Lie algebra if and only if char$(K)$ divides $n-1$. For any positive integer $d$ we let $S = M_d(L_K(n))$ be the $d\\times d$ matrix algebra over $L_K(n)$. We give sufficient conditions for the simplicity and non-simplicity of the Lie algebra $[S^-,S^-]$.
Distances in Finite Spaces from Noncommutative Geometry
Iochum, B; Martinetti, P
2001-01-01
Following the general principles of noncommutative geometry, it is possible to define a metric on the space of pure states of the noncommutative algebra generated by the coordinates. This metric generalizes the usual Riemannian one. We investigate some general properties of this metric in the finite commutative case which corresponds to a metric on a finite set, and also give some examples of computations in both commutative and noncommutative cases.
Configuration spaces geometry, topology and representation theory
Cohen, Frederick; Concini, Corrado; Feichtner, Eva; Gaiffi, Giovanni; Salvetti, Mario
2016-01-01
This book collects the scientific contributions of a group of leading experts who took part in the INdAM Meeting held in Cortona in September 2014. With combinatorial techniques as the central theme, it focuses on recent developments in configuration spaces from various perspectives. It also discusses their applications in areas ranging from representation theory, toric geometry and geometric group theory to applied algebraic topology.
On the classical geometry of embedded manifolds in terms of Nambu brackets
Arnlind, Joakim; Huisken, Gerhard
2010-01-01
We prove that many aspects of the differential geometry of embedded Riemannian manifolds can be formulated in terms of a multi-linear algebraic structure on the space of smooth functions. In particular, we find algebraic expressions for Weingarten's formula, the Ricci curvature and the Codazzi-Mainardi equations.
Institute of Scientific and Technical Information of China (English)
SU; Yucai(
2001-01-01
［1］ Kawamoto, N., Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J., 1986, 16: 417.［2］ Osborn, J. M., New simple infinite－dimensional Lie algebras of characteristic 0, J. Alg., 1996, 185: 820.［3］ Dokovic, D. Z., Zhao, K., Derivations, isomorphisms, and second cohomology of generalized Witt algebras, Trans. of Amer. Math. Soc., 1998, 350(2): 643.［4］ Dokovic, D. Z., Zhao, K., Generalized Cartan type W Lie algebras in characteristic zero, J. Alg., 1997, 195: 170.［5］ Osborn, J. M., Zhao, K., Generalized Poisson bracket and Lie algebras of type H in characteristic 0, Math. Z., 1999, 230: 107.［6］ Osborn, J. M., Zhao, K., Generalized Cartan type K Lie algebras in characteristic 0, Comm. Alg., 1997, 25: 3325.［7］ Zhao, K., Isomorphisms between generalized Cartan type W Lie algebras in characteristic zero, Canadian J. Math., 1998, 50: 210.［8］ Passman, D. P., Simple Lie algebras of Witt type, J. Algebra, 1998, 206: 682.［9］ Jordan, D. A., On the simplicity of Lie algebras of derivations of commutative algebras, J. Alg., 2000, 206: 682.［10］ Xu, X., New generalized simple Lie algebras of Cartan type over a field with characteristic 0, J. Alg., 2000, 244: 23.［11］ Su, Y., Xu, X., Zhang, H., Derivation－simple algebras and the structures of Lie algebras of generalized Witt type, J. Alg., 2000, 233: 642.［12］ Dixmer, J., Enveloping Algebras, Amsterdam: North Holland, 1977.
Quantitative Algebraic Reasoning
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon
2016-01-01
We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We deﬁne an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...
Algebraic topology and concurrency
DEFF Research Database (Denmark)
Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric
2006-01-01
We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...
Operation of Algebraic Fractions
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>The first step in factorizing algebraic expressions is to take out the common factors of all the terms of the expression.For example,2x~2+14x+24=2(x~2+7x+12)=2(x+3)(x+4) The three identities are also useful in factorizing some quadratic expressions:
Mayes, Robert
2004-01-01
There is a call for change in College Algebra. The traditional focus on skill development is failing, resulting in withdrawal and failure rates that are excessive. In addition, too many students who are successful do not continue on to take a successive mathematics course. The Institute for Mathematics Learning at West Virginia University has been…
Algebraic Thinking through Origami.
Higginson, William; Colgan, Lynda
2001-01-01
Describes the use of paper folding to create a rich environment for discussing algebraic concepts. Explores the effect that changing the dimensions of two-dimensional objects has on the volume of related three-dimensional objects. (Contains 13 references.) (YDS)
Pipekaru, T.
1975-01-01
Deze handleiding, geschreven in opdracht van het bestuur van de Afdeling der Algemene Wetenschappen van de T.H. te Delft, is bedoeld als collegedictaat Lineaire Algebra voor het eerste studiejaar van vrijwel alle technische afdelingen. Hopelijk wordt hiermee voorzien in een behoefte die is ontstaan
Valued Graphs and the Representation Theory of Lie Algebras
Directory of Open Access Journals (Sweden)
Joel Lemay
2012-07-01
Full Text Available Quivers (directed graphs, species (a generalization of quivers and their representations play a key role in many areas of mathematics including combinatorics, geometry, and algebra. Their importance is especially apparent in their applications to the representation theory of associative algebras, Lie algebras, and quantum groups. In this paper, we discuss the most important results in the representation theory of species, such as Dlab and Ringel’s extension of Gabriel’s theorem, which classifies all species of finite and tame representation type. We also explain the link between species and K-species (where K is a field. Namely, we show that the category of K -species can be viewed as a subcategory of the category of species. Furthermore, we prove two results about the structure of the tensor ring of a species containing no oriented cycles. Specifically, we prove that two such species have isomorphic tensor rings if and only if they are isomorphic as “crushed” species, and we show that if K is a perfect field, then the tensor algebra of a K -species tensored with the algebraic closure of K is isomorphic to, or Morita equivalent to, the path algebra of a quiver.
Differential forms and the geometry of general relativity
Dray, Tevian
2015-01-01
Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity.The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes
Differential Geometry of Microlinear Frolicher Spaces I
Nishimura, Hirokazu
2010-01-01
The central object of synthetic differential geometry is microlinear spaces. In our previous paper [Microlinearity in Frolicher spaces -beyond the regnant philosophy of manifolds-, to appear in International Journal of Pure and Applied Mathematics] we have emancipated microlinearity from within well-adapted models to Frolicher spaces. Therein we have shown that Frolicher spaces which are microlinear as well as Weil exponentiable form a cartesian closed category. To make sure that such Frolicher spaces are the central object of infinite-dimensional differential geometry, we develop the theory of vector fields on them in this paper. The central result is that all vector fields on such a Frolicher space form a Lie algebra.
The Green formula and heredity of algebras
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
[1]Green, J. A., Hall algebras, hereditary algebras and quantum groups, Invent. Math. 1995, 120: 361-377.[2]Ringel, C. M., Green's theorem on Hall algebras, in Representations of Algebras and Related Topics, CMS Conference Proceedings 19, Providence, 1996, 185-245.[3]Xiao J., Drinfeld double and Ringel-Green theory of Hall Algebras, J. Algebra, 1997, 190: 100-144.[4]Sevenhant, B., Van den Bergh, M., A relation between a conjecture of Kac and the structure of the Hall algebra,J. Pure Appl. Algebra, 2001, 160: 319-332.[5]Deng B., Xiao, J., On double Ringel-Hall algebras, J. Algebra, 2002, 251: 110-149.
Notes on Piecewise-Koszul Algebras
Institute of Scientific and Technical Information of China (English)
Jia Feng L(U); Xiao Lan YU
2011-01-01
The relationships between piecewise-Koszul algebras and other "Koszul-type" algebras are discussed.. The Yoneda-Ext algebra and the dual algebra of a piecewise-Koszul algebra are studied, and a sufficient condition for the dual algebra A to be piecewise-Koszul is given. Finally, by studying the trivial extension algebras of the path algebras of Dynkin quivers in bipartite orientation, we give explicit constructions for piecewise-Koszul algebras with arbitrary "period" and piecewise-Koszul algebras with arbitrary "jump-degree".
On ultraproducts of operator algebras
Institute of Scientific and Technical Information of China (English)
LI; Weihua
2005-01-01
Some basic questions on ultraproducts of C*-algebras and yon Neumann algebras, including the relation to K-theory of C*-algebras are considered. More specifically,we prove that under certain conditions, the K-groups of ultraproduct of C*-algebras are isomorphic to the ultraproduct of respective K-groups of C*-algebras. We also show that the ultraproducts of factors of type Ⅱ1 are prime, i.e. not isomorphic to any non-trivial tensor product.
Ockham Algebras Arising from Monoids
Institute of Scientific and Technical Information of China (English)
T.S. Blyth; H.J. Silva; J.C. Varlet
2001-01-01
An Ockham algebra (L; f) is of boolean shape if its lattice reduct L is boolean and f is not the complementation. We investigate a natural construction of Ockham algebras of boolean shape from any given monoid. Of particular interest is the question of when such algebras are subdirectly irreducible. In settling this, we obtain what is probably the first example of a subdirectly irreducible Ockham algebra that does not belong to the generalized variety Kω. We also prove that every semigroup can be embedded in the monoid of endomorphisms of an Ockham algebra of boolean shape.
Twisted derivations of Hopf algebras
Davydov, Alexei
2012-01-01
In the paper we introduce the notion of twisted derivation of a bialgebra. Twisted derivations appear as infinitesimal symmetries of the category of representations. More precisely they are infinitesimal versions of twisted automorphisms of bialgebras. Twisted derivations naturally form a Lie algebra (the tangent algebra of the group of twisted automorphisms). Moreover this Lie algebra fits into a crossed module (tangent to the crossed module of twisted automorphisms). Here we calculate this crossed module for universal enveloping algebras and for the Sweedler's Hopf algebra.
Representations of Clifford algebras of ternary quartic forms
Coskun, Emer; Mustopa, Yusuf
2011-01-01
Given a nondegenerate ternary form $f=f(x_1,x_2,x_3)$ of degree 4 over an algebraically closed field of characteristic zero, we use the geometry of K3 surfaces to construct a certain positive-dimensional family of irreducible representations of the generalized Clifford algebra associated to $f.$ From this we obtain the existence of linear Pfaffian representations of the quartic surface $X_f=\\{w^4=f(x_1,x_2,x_3)\\},$ as well as information on the Brill-Noether theory of a general smooth curve in the linear system $|\\mathcal{O}_{X_f}(3)|.$
Large N duality, lagrangian cycles, and algebraic knots
Diaconescu, D -E; Vafa, C
2011-01-01
We consider knot invariants in the context of large $N$ transitions of topological strings. In particular we consider aspects of Lagrangian cycles associated to knots in the conifold geometry. We show how these can be explicity constructed in the case of algebraic knots. We use this explicit construction to explain a recent conjecture relating study of stable pairs on algebraic curves with HOMFLY polynomials. Furthermore, for torus knots, using the explicit construction of the Lagrangian cycle, we also give a direct A-model computation and recover the HOMFLY polynomial for this case.
Large N Duality, Lagrangian Cycles, and Algebraic Knots
Diaconescu, D.-E.; Shende, V.; Vafa, C.
2013-05-01
We consider knot invariants in the context of large N transitions of topological strings. In particular we consider aspects of Lagrangian cycles associated to knots in the conifold geometry. We show how these can be explicitly constructed in the case of algebraic knots. We use this explicit construction to explain a recent conjecture relating study of stable pairs on algebraic curves with HOMFLY polynomials. Furthermore, for torus knots, using the explicit construction of the Lagrangian cycle, we also give a direct A-model computation and recover the HOMFLY polynomial for this case.
Topics in Cohomological Studies of Algebraic Varieties Impanga Lecture Notes
Pragacz, Piotr
2005-01-01
The articles in this volume study various cohomological aspects of algebraic varieties:- characteristic classes of singular varieties;- geometry of flag varieties;- cohomological computations for homogeneous spaces;- K-theory of algebraic varieties;- quantum cohomology and Gromov-Witten theory.The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Num
Homological mirror symmetry and tropical geometry
Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia
2014-01-01
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...
Noncommutative geometry, Lorentzian structures and causality
Franco, Nicolas
2014-01-01
The theory of noncommutative geometry provides an interesting mathematical background for developing new physical models. In particular, it allows one to describe the classical Standard Model coupled to Euclidean gravity. However, noncommutative geometry has mainly been developed using the Euclidean signature, and the typical Lorentzian aspects of space-time, the causal structure in particular, are not taken into account. We present an extension of noncommutative geometry \\`a la Connes suitable the for accommodation of Lorentzian structures. In this context, we show that it is possible to recover the notion of causality from purely algebraic data. We explore the causal structure of a simple toy model based on an almost commutative geometry and we show that the coupling between the space-time and an internal noncommutative space establishes a new `speed of light constraint'.
$A\\mathcal{T}$-Algebras and Extensions of $AT$-Algebras
Indian Academy of Sciences (India)
Hongliang Yao
2010-04-01
Lin and Su classified $A\\mathcal{T}$-algebras of real rank zero. This class includes all $A\\mathbb{T}$-algebras of real rank zero as well as many *-algebras which are not stably finite. An $A\\mathcal{T}$-algebra often becomes an extension of an $A\\mathbb{T}$-algebra by an -algebra. In this paper, we show that there is an essential extension of an $A\\mathbb{T}$-algebra by an -algebra which is not an $A\\mathcal{T}$-algebra. We describe a characterization of an extension of an $A\\mathbb{T}$-algebra by an -algebra if is an $A\\mathcal{T}$-algebra.
Algebraic connectivity and graph robustness.
Energy Technology Data Exchange (ETDEWEB)
Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T. (University of New Mexico)
2009-07-01
Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.
Abstract algebra structure and application
Finston, David R
2014-01-01
This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.
Twin TQFTs and Frobenius Algebras
Directory of Open Access Journals (Sweden)
Carmen Caprau
2013-01-01
Full Text Available We introduce the category of singular 2-dimensional cobordisms and show that it admits a completely algebraic description as the free symmetric monoidal category on a twin Frobenius algebra, by providing a description of this category in terms of generators and relations. A twin Frobenius algebra (C,W,z,z∗ consists of a commutative Frobenius algebra C, a symmetric Frobenius algebra W, and an algebra homomorphism z:C→W with dual z∗:W→C, satisfying some extra conditions. We also introduce a generalized 2-dimensional Topological Quantum Field Theory defined on singular 2-dimensional cobordisms and show that it is equivalent to a twin Frobenius algebra in a symmetric monoidal category.
Constructive version of Boolean algebra
Ciraulo, Francesco; Toto, Paola
2012-01-01
The notion of overlap algebra introduced by G. Sambin provides a constructive version of complete Boolean algebra. Here we first show some properties concerning overlap algebras: we prove that the notion of overlap morphism corresponds classically to that of map preserving arbitrary joins; we provide a description of atomic set-based overlap algebras in the language of formal topology, thus giving a predicative characterization of discrete locales; we show that the power-collection of a set is the free overlap algebra join-generated from the set. Then, we generalize the concept of overlap algebra and overlap morphism in various ways to provide constructive versions of the category of Boolean algebras with maps preserving arbitrary existing joins.
Barcelona Conference on Algebraic Topology
Castellet, Manuel; Cohen, Frederick
1992-01-01
The papers in this collection, all fully refereed, original papers, reflect many aspects of recent significant advances in homotopy theory and group cohomology. From the Contents: A. Adem: On the geometry and cohomology of finite simple groups.- D.J. Benson: Resolutions and Poincar duality for finite groups.- C. Broto and S. Zarati: On sub-A*-algebras of H*V.- M.J. Hopkins, N.J. Kuhn, D.C. Ravenel: Morava K-theories of classifying spaces and generalized characters for finite groups.- K. Ishiguro: Classifying spaces of compact simple lie groups and p-tori.- A.T. Lundell: Concise tables of James numbers and some homotopyof classical Lie groups and associated homogeneous spaces.- J.R. Martino: Anexample of a stable splitting: the classifying space of the 4-dim unipotent group.- J.E. McClure, L. Smith: On the homotopy uniqueness of BU(2) at the prime 2.- G. Mislin: Cohomologically central elements and fusion in groups.
Veronese geometry and the electroweak vacuum moduli space
Energy Technology Data Exchange (ETDEWEB)
He, Yang-Hui, E-mail: hey@maths.ox.ac.uk [Department of Mathematics, City University, London, Northampton Square, London EC1V 0HB (United Kingdom); School of Physics, NanKai University, Tianjin 300071 (China); Merton College, University of Oxford, Oxford OX1 4JD (United Kingdom); Jejjala, Vishnu, E-mail: vishnu@neo.phys.wits.ac.za [Centre for Theoretical Physics, NITheP, and School of Physics, University of the Witwatersrand, Johannesburg, WITS 2050 (South Africa); Matti, Cyril, E-mail: Cyril.Matti.1@city.ac.uk [Department of Mathematics, City University, London, Northampton Square, London EC1V 0HB (United Kingdom); Nelson, Brent D., E-mail: b.nelson@neu.edu [Department of Physics, Northeastern University, Boston, MA 02115 (United States); ICTP, Strada Costiera 11, Trieste 34014 (Italy)
2014-09-07
We explain the origin of the Veronese surface in the vacuum moduli space geometry of the MSSM electroweak sector. While this result appeared many years ago using techniques of computational algebraic geometry, it has never been demonstrated analytically. Here, we present an analytical derivation of the vacuum geometry of the electroweak theory by understanding how the F- and D-term relations lead to the Veronese surface. We moreover give a detailed description of this geometry, realising an extra branch as a zero-dimensional point when quadratic Higgs lifting deformations are incorporated into the superpotential.
Stable Recursive Subhomogeneous Algebras
Liang, Hutian
2011-01-01
In this paper, we introduce stable recursive subhomogeneous algebras (SRSHAs), which is analogous to recursive subhomogeneous algebras (RSHAs) introduced by N. C. Phillips in the studies of free minimal integer actions on compact metric spaces. The difference between the stable version and the none stable version is that the irreducible representations of SRSHAs are infinite dimensional, but the irreducible representations of the RSHAs are finite dimensional. While RSHAs play an important role in the study of free minimal integer actions on compact metric spaces, SRSHAs play an analogous role in the study of free minimal actions by the group of the real numbers on compact metric spaces. In this paper, we show that simple inductive limits of SRSHAs with no dimension growth in which the connecting maps are injective and non-vanishing have topological stable rank one.
Testing algebraic geometric codes
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.
Topological convolution algebras
Alpay, Daniel
2012-01-01
In this paper we introduce a new family of topological convolution algebras of the form $\\bigcup_{p\\in\\mathbb N} L_2(S,\\mu_p)$, where $S$ is a Borel semi-group in a locally compact group $G$, which carries an inequality of the type $\\|f*g\\|_p\\le A_{p,q}\\|f\\|_q\\|g\\|_p$ for $p > q+d$ where $d$ pre-assigned, and $A_{p,q}$ is a constant. We give a sufficient condition on the measures $\\mu_p$ for such an inequality to hold. We study the functional calculus and the spectrum of the elements of these algebras, and present two examples, one in the setting of non commutative stochastic distributions, and the other related to Dirichlet series.
Jaszunska, Joanna
2010-01-01
The structure of the algebra K[M] of the Chinese monoid M over a field K is studied. The minimal prime ideals are described. They are determined by certain homogeneous congruences on M and they are in a one to one correspondence with diagrams of certain special type. There are finitely many such ideals. It is also shown that the prime radical B(K[M]) of K[M] coincides with the Jacobson radical and the monoid M embeds into the algebra K[M]/B(K[M]). A new representation of M as a submonoid of the direct product of finitely many copies of the bicyclic monoid and finitely many copies of the infinite cyclic monoid is derived. Consequently, M satisfies a nontrivial identity.
Testing algebraic geometric codes
Institute of Scientific and Technical Information of China (English)
CHEN Hao
2009-01-01
Property testing was initially studied from various motivations in 1990's.A code C (∩)GF(r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector's coordinates.The problem of testing codes was firstly studied by Blum,Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs).How to characterize locally testable codes is a complex and challenge problem.The local tests have been studied for Reed-Solomon (RS),Reed-Muller (RM),cyclic,dual of BCH and the trace subcode of algebraicgeometric codes.In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions).We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.
Practical Algebraic Renormalization
Grassi, P A; Steinhauser, M
1999-01-01
A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the Standard Model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustra...
Operator product expansion algebra
Energy Technology Data Exchange (ETDEWEB)
Holland, Jan [CPHT, Ecole Polytechnique, Paris-Palaiseau (France)
2014-07-01
The Operator Product Expansion (OPE) is a theoretical tool for studying the short distance behaviour of products of local quantum fields. Over the past 40 years, the OPE has not only found widespread computational application in high-energy physics, but, on a more conceptual level, it also encodes fundamental information on algebraic structures underlying quantum field theories. I review new insights into the status and properties of the OPE within Euclidean perturbation theory, addressing in particular the topics of convergence and ''factorisation'' of the expansion. Further, I present a formula for the ''deformation'' of the OPE algebra caused by a quartic interaction. This formula can be used to set up a novel iterative scheme for the perturbative computation of OPE coefficients, based solely on the zeroth order coefficients (and renormalisation conditions) as initial input.
Combinatorics and commutative algebra
Stanley, Richard P
1996-01-01
Some remarkable connections between commutative algebra and combinatorics have been discovered in recent years. This book provides an overview of two of the main topics in this area. The first concerns the solutions of linear equations in nonnegative integers. Applications are given to the enumeration of integer stochastic matrices (or magic squares), the volume of polytopes, combinatorial reciprocity theorems, and related results. The second topic deals with the face ring of a simplicial complex, and includes a proof of the Upper Bound Conjecture for Spheres. An introductory chapter giving background information in algebra, combinatorics and topology broadens access to this material for non-specialists. New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors. Included in this chapter is an outline of the proof of McMullen's g-conjecture for simplicial polytopes based on toric varieties, as well as a discussion of the face rings of such special ...
Redesigning linear algebra algorithms
Energy Technology Data Exchange (ETDEWEB)
Dongarra, J.J.
1983-01-01
Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. The author examines the problem and constructs alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the FORTRAN portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers. 13 references.
Redesigning linear algebra algorithms
Energy Technology Data Exchange (ETDEWEB)
Dongarra, J.J.
1983-01-01
Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. In this paper we examine the problem and construct alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the Fortran portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers.
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
Lie algebraic noncommutative gravity
Banerjee, Rabin; Mukherjee, Pradip; Samanta, Saurav
2007-06-01
We exploit the Seiberg-Witten map technique to formulate the theory of gravity defined on a Lie algebraic noncommutative space-time. Detailed expressions of the Seiberg-Witten maps for the gauge parameters, gauge potentials, and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.
Lutfiyya, Lutfi A
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.
Beigie, Darin
2014-01-01
Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Semisimple Metacyclic Group Algebras
Indian Academy of Sciences (India)
Gurmeet K Bakshi; Shalini Gupta; Inder Bir S Passi
2011-11-01
Given a group of order $p_1p_2$, where $p_1,p_2$ are primes, and $\\mathbb{F}_q$, a finite field of order coprime to $p_1p_2$, the object of this paper is to compute a complete set of primitive central idempotents of the semisimple group algebra $\\mathbb{F}_q[G]$. As a consequence, we obtain the structure of $\\mathbb{F}_q[G]$ and its group of automorphisms.
Algebra & trigonometry II essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica
Ext algebra of Nichols algebras of type $A_2$
Yu, Xiaolan
2011-01-01
We give the full structure of the Ext algebra of a Nichols algebra of type $A_2$ by using the Hochschild-Serre spectral sequence. As an application, we show that the pointed Hopf algebras $u(\\mathcal{D}, \\lmd, \\mu)$ with Dynkin diagrams of type $A$, $D$, or $E$, except for $A_1$ and $A_1\\times A_1$ with the order $N_{J}>2$ for at least one component $J$, are wild.
LOCAL AUTOMORPHISMS OF SEMISIMPLE ALGEBRAS AND GROUP ALGEBRAS
Institute of Scientific and Technical Information of China (English)
Wang Dengyin; Guan Qi; Zhan9 Dongju
2011-01-01
Let F be a field of characteristic not 2,and let A be a finite-dimensional semisimple F-algebra.All local automorphisms of A are characterized when all the degrees of A are larger than 1.If F is further assumed to be an algebraically closed field of characteristic zero,K a finite group,FK the group algebra of K over F,then all local automorphisms of FK are also characterized.
Stability of functional equations in Banach algebras
Cho, Yeol Je; Rassias, Themistocles M; Saadati, Reza
2015-01-01
Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the l...
Number theory III Diophantine geometry
1991-01-01
From the reviews of the first printing of this book, published as Volume 60 of the Encyclopaedia of Mathematical Sciences: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the broad scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication ... Although in the series of number theory, this volume is on diophantine geometry, and the reader will notice that algebraic geometry is present in every chapter. ... The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities. Reading and rereading this book I noticed that the topics ...
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Energy Technology Data Exchange (ETDEWEB)
Palmkvist, Jakob, E-mail: palmkvist@ihes.fr [Institut des Hautes Etudes Scientifiques, 35 Route de Chartres, FR-91440 Bures-sur-Yvette (France)
2014-01-15
We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.
Algebraic topology of finite topological spaces and applications
Barmak, Jonathan A
2011-01-01
This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen’s conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.
The Z_2 -Orbifold of the W_3-Algebra
Al-Ali, Masoumah; Linshaw, Andrew R.
2016-12-01
The Zamolodchikov W_3-algebra W^c_3 with central charge c has full automorphism group Z_2. It was conjectured in the physics literature over 20 years ago that the orbifold (W^c_3)^{Z_2} is of type W(2,6,8,10,12) for generic values of c. We prove this conjecture for all c ≠ 559 ± 7 √{76657}/95, and we show that for these two values, the orbifold is of type W(2,6,8,10,12,14). This paper is part of a larger program of studying orbifolds and cosets of vertex algebras that depend continuously on a parameter. Minimal strong generating sets for orbifolds and cosets are often easy to find for generic values of the parameter, but determining which values are generic is a difficult problem. In the example of (W^c_3)^{Z_2} , we solve this problem using tools from algebraic geometry.
Maximal-acceleration phase space relativity from Clifford algebras
Castro, C
2002-01-01
We present a new physical model that links the maximum speed of light with the minimal Planck scale into a maximal-acceleration Relativity principle in the spacetime tangent bundle and in phase spaces (cotangent bundle). Crucial in order to establish this link is the use of Clifford algebras in phase spaces. The maximal proper-acceleration bound is a = c^2/ \\Lambda in full agreement with the old predictions of Caianiello, the Finslerian geometry point of view of Brandt and more recent results in the literature. We present the reasons why an Extended Scale Relativity based on Clifford spaces is physically more appealing than those based on kappa-deformed Poincare algebras and the inhomogeneous quantum groups operating in quantum Minkowski spacetimes. The main reason being that the Planck scale should not be taken as a deformation parameter to construct quantum algebras but should exist already as the minimum scale in Clifford spaces.
A Workshop on Algebraic Design Theory and Hadamard Matrices
2015-01-01
This volume develops the depth and breadth of the mathematics underlying the construction and analysis of Hadamard matrices and their use in the construction of combinatorial designs. At the same time, it pursues current research in their numerous applications in security and cryptography, quantum information, and communications. Bridges among diverse mathematical threads and extensive applications make this an invaluable source for understanding both the current state of the art and future directions. The existence of Hadamard matrices remains one of the most challenging open questions in combinatorics. Substantial progress on their existence has resulted from advances in algebraic design theory using deep connections with linear algebra, abstract algebra, finite geometry, number theory, and combinatorics. Hadamard matrices arise in a very diverse set of applications. Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important ap...
DERIVATIONS ON DIFFERENTIAL OPERATOR ALGEBRA AND WEYL ALGEBRA
Institute of Scientific and Technical Information of China (English)
CHENCAOYU
1996-01-01
Let L be an n-dimensional nilpotent Lie algebra with a basis{x1…,xn),and every xi acts as a locally nilpotent derivation on algebra A. This paper shows that there exists a set of derivations{y1,…,yn}on U(L) such that (A#U(L))#k{y,1,…,yn] is ismorphic to the Weyl algebra An(A).The author also uses the de4rivations to obtain a necessary and sufficient condition for a finite dimesional Lie algebra to be nilpotent.
On the cohomology of Leibniz conformal algebras
Zhang, Jiao
2015-04-01
We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.
Assessing Algebraic Solving Ability: A Theoretical Framework
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Lectures on Differential Geometry of Modules and Rings
Sardanashvily, G
2009-01-01
Generalizing differential geometry of smooth vector bundles formulated in algebraic terms of the ring of smooth functions, its derivations and the Koszul connection, one can define differential operators, differential calculus and connections on modules over arbitrary commutative, graded commutative and noncommutative rings. For instance, this is the case of quantum theory, SUSY theory and noncommutative geometry, respectively. The relevant material on this subject is summarized.
Algebraic Quantum Mechanics and Pregeometry
Hiley, D J B P G D B J
2006-01-01
We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of "pregeometry" introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as "generalized points" we suggest an approach that may make it possible to dispense with an a priori given space manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford Algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra in a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of "neighbourhood operators", which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.
Cardinal invariants on Boolean algebras
Monk, J Donald
2014-01-01
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the...
NON-COMMUTATIVE POISSON ALGEBRA STRUCTURES ON LIE ALGEBRA sln(fCq) WITH NULLITY M
Institute of Scientific and Technical Information of China (English)
Jie TONG; Quanqin JIN
2013-01-01
Non-commutative Poisson algebras are the algebras having both an associa-tive algebra structure and a Lie algebra structure together with the Leibniz law. In this paper, the non-commutative poisson algebra structures on the Lie algebras sln(fCq) are determined.
Novotna, Jarmila; Hoch, Maureen
2008-01-01
Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…