Generalized Quantum Current Algebras
Institute of Scientific and Technical Information of China (English)
ZHAO Liu
2001-01-01
Two general families of new quantum-deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enables one to define "tensor products" of these algebras. The standard quantum affine algebras turn out to be a very special case of the two algebra families, in which case the infinite Hopf family structure degenerates into a standard Hopf algebra. The relationship between the two algebraic families as well as thefr various special examples are discussed, and the free boson representation is also considered.
Fritzsch, Harald
2003-01-01
This talk follows by a few months a talk by the same authors on nearly the same subject at the Coral Gables Conference. The ideas presented here are basically the same, but with some amplification, some change of viewpoint, and a number of new questions for the future. For our own convenience, we have transcribed the Coral Gables paper, but with an added ninth section, entitled "Problems of light cone current algebra", dealing with our present views and emphasizing research topics that require study.
Parafermion Fields Constructed by Current Algebra
Institute of Scientific and Technical Information of China (English)
YANGZhan-Ying; SHIKang-Jie; WANGPei; ZHAOLiu
2004-01-01
In this letter, the parafermion fields constructed by current algebra are considered. It is proved that there must be a parafermion field with respect to each form of current algebra. We also obtain the corresponding representation and unitary relation of the parafermion field from any current algebra.
Current algebra; Algebre des courants
Energy Technology Data Exchange (ETDEWEB)
Jacob, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( {delta}I = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [French] La premiere partie de ce cours (trois premiers chapitres), traite des generalites concernant l'algebre de courants. Apres une definition rapide des courants faibles et un rappel de leurs proprietes (hypothese V-A, conservation du courant vecteur, regles de selection, courant axial partiellement conserve,...), l'on introduit l'algebre de Gell-Mann SU (3) x SU (3), et discute les proprietes generales de l'Hamiltonien faible non leptonique. Les chapitres IV a IX sont consacres a des applications importantes de l'algebre des courants. En premier lieu l'on demontre la formule de Adler et Weisberger, par deux methodes differentes, celle dite du repere de moment infini et celle des singularites proches. Cette derniere est seule utilisee dans la suite. Puis, l'on traite successivement les problemes suivants: desintegrations semi-leptoniques des mesons K et des hyperons, theoreme de Kroll
BGG reciprocity for current algebras
Bennett, Matthew; Manning, Nathan
2011-01-01
We study the category $\\cal I_{\\gr}$ of graded representations with finite--dimensional graded pieces for the current algebra $\\lie g\\otimes\\bc[t]$ where $\\lie g$ is a simple Lie algebra. This category has many similarities with the category $\\cal O$ of modules for $\\lie g$ and in this paper, we formulate and study an analogue of the famous BGG duality. We recall the definition of the projective and simple objects in $\\cal I_{\\gr}$ which are indexed by dominant integral weights. The role of the Verma modules is played by a family of modules called the global Weyl modules. We show that in the case when $\\lie g$ is of type $\\lie{sl}_2$, the projective module admits a flag in which the successive quotients are finite direct sums of global Weyl modules. The multiplicity with which a particular Weyl module occurs in the flag is determined by the multiplicity of a Jordan--Holder series for a closely associated family of modules, called the local Weyl modules. We conjecture that the result remains true for arbitrary...
Quantum Q systems: from cluster algebras to quantum current algebras
Di Francesco, Philippe; Kedem, Rinat
2017-02-01
This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({n}[u,u^{-1}])subset U_{√{q}}(widehat{{sl}}_2), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.
Quantum Q systems: from cluster algebras to quantum current algebras
Di Francesco, Philippe; Kedem, Rinat
2016-11-01
This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({{n}}[u,u^{-1}])subset U_{√{q}}(widehat{{{sl}}}_2) , in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.
Permanent current from noncommutative spin algebra
Tatara, Gen; Kohno, Hiroshi
2003-03-01
We show that a spontaneous electric current is induced in a nanoscale conducting ring just by attaching three ferromagnets. The current is a direct consequence of the noncommutativity of the spin algebra, and is proportional to the noncoplanarity (chirality) of the magnetization vectors. The spontaneous current gives a natural explanation to the chirality-driven anomalous Hall effect.
Bounded Algebra and Current-Mode Digital Circuits
Institute of Scientific and Technical Information of China (English)
WU Xunwei; Massoud Pedram
1999-01-01
This paper proposes two boundedarithmetic operations, which are easily realized with current signals.Based on these two operations, a bounded algebra system suitable fordescribing current-mode digital circuits is developed and itsrelationship with the Boolean algebra, which is suitable for representingvoltage-mode digital circuits, is investigated. Design procedure forcurrent-mode circuits using the proposed algebra system is demonstratedon a number of common circuit elements which are used to realizearithmetic operations, such as adders and multipliers.
Highest weight representations of quantum current algebras
Albeverio, Sergio A; Albeverio, Sergio; Fei, Shao Ming
1994-01-01
We study the highest weight and continuous tensor product representations of q-deformed Lie algebras through the mappings of a manifold into a locally compact group. As an example the highest weight representation of the q-deformed algebra sl_q(2,\\Cb) is calculated in detail.
Operator algebra of free conformal currents via twistors
Energy Technology Data Exchange (ETDEWEB)
Gelfond, O.A. [Institute of System Research of Russian Academy of Sciences, Nakhimovsky prospect 36-1, 117218 Moscow (Russian Federation); Vasiliev, M.A., E-mail: vasiliev@lpi.ru [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute, Leninsky prospect 53, 119991 Moscow (Russian Federation)
2013-11-21
Operator algebra of (not necessarily free) higher-spin conformal conserved currents in generalized matrix spaces, that include 3d Minkowski space–time as a particular case, is shown to be determined by an associative algebra M of functions on the twistor space. For free conserved currents, M is the universal enveloping algebra of the higher-spin algebra. Proposed construction greatly simplifies computation and analysis of correlators of conserved currents. Generating function for n-point functions of 3d (super)currents of all spins, built from N free constituent massless scalars and spinors, is obtained in a concise form of certain determinant. Our results agree with and extend earlier bulk computations in the HS AdS{sub 4}/CFT{sub 3} framework. Generating function for n-point functions of 4d conformal currents is also presented.
Aspects of QCD current algebra on a null plane
Beane, S. R.; Hobbs, T. J.
2016-09-01
Consequences of QCD current algebra formulated on a light-like hyperplane are derived for the forward scattering of vector and axial-vector currents on an arbitrary hadronic target. It is shown that current algebra gives rise to a special class of sum rules that are direct consequences of the independent chiral symmetry that exists at every point on the two-dimensional transverse plane orthogonal to the lightlike direction. These sum rules are obtained by exploiting the closed, infinite-dimensional algebra satisfied by the transverse moments of null-plane axial-vector and vector charge distributions. In the special case of a nucleon target, this procedure leads to the Adler-Weisberger, Gerasimov-Drell-Hearn, Cabibbo-Radicati and Fubini-Furlan-Rossetti sum rules. Matching to the dispersion-theoretic language which is usually invoked in deriving these sum rules, the moment sum rules are shown to be equivalent to algebraic constraints on forward S-matrix elements in the Regge limit.
The PBW Filtration, Demazure Modules and Toroidal Current Algebras
Directory of Open Access Journals (Sweden)
Evgeny Feigin
2008-10-01
Full Text Available Let L be the basic (level one vacuum representation of the affine Kac-Moody Lie algebra ^g. The m-th space F_m of the PBW filtration on L is a linear span of vectors of the form x_1dots x_lv_0, where l ≤ m, x_i in ^g and v_0 is a highest weight vector of L. In this paper we give two descriptions of the associated graded space L^{gr} with respect to the PBW filtration. The ''top-down'' description deals with a structure of L^{gr} as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field e_θ(z2, which corresponds to the longest root θ. The ''bottom-up'' description deals with the structure of L^{gr} as a representation of the current algebra g otimes C[t]. We prove that each quotient F_m/F_{m-1} can be filtered by graded deformations of the tensor products of m copies of g.
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Anomalous effective action, Noether current, Virasoro algebra and Horizon entropy
Energy Technology Data Exchange (ETDEWEB)
Majhi, Bibhas Ranjan [IUCAA, Ganeshkhind, Pune University Campus, Post Bag 4, Pune (India); Hebrew University of Jerusalem, Racah Institute of Physics, Jerusalem (Israel); Chakraborty, Sumanta [IUCAA, Ganeshkhind, Pune University Campus, Post Bag 4, Pune (India)
2014-05-15
Several investigations show that in a very small length scale there exist corrections to the entropy of black hole horizon. Due to fluctuations of the background metric and the external fields the action incorporates corrections. In the low energy regime, the one-loop effective action in four dimensions leads to trace anomaly. We start from the Noether current corresponding to the Einstein-Hilbert plus the one-loop effective action to calculate the charge for the diffeomorphisms which preserve the Killing horizon structure. Then a bracket for the charges is calculated. We show that the Fourier modes of the bracket are exactly similar to the Virasoro algebra. Then using the Cardy formula the entropy is evaluated. Finally, the explicit terms of the entropy expression is calculated for a classical background. It turns out that the usual expression for the entropy; i.e. the Bekenstein-Hawking form, is not modified. (orig.)
Wakimoto realizations of current algebras an explicit construction
De Boer, J; Boer, Jan de; Feher, Laszlo
1997-01-01
A generalized Wakimoto realization of $\\widehat{\\cal G}_K$ can be associated with each parabolic subalgebra ${\\cal P}=({\\cal G}_0 +{\\cal G}_+)$ of a simple Lie algebra ${\\cal G}$ according to an earlier proposal by Feigin and Frenkel. In this paper the proposal is made explicit by developing the construction of Wakimoto realizations from a simple but unconventional viewpoint. An explicit formula is derived for the Wakimoto current first at the Poisson bracket level by Hamiltonian symmetry reduction of the WZNW model. The quantization is then performed by normal ordering the classical formula and determining the required quantum correction for it to generate $\\widehat{\\cal G}_K$ by means of commutators. The affine-Sugawara stress-energy tensor is verified to have the expected quadratic form in the constituents, which are symplectic bosons belonging to ${\\cal G}_+$ and a current belonging to ${\\cal G}_0$. The quantization requires a choice of special polynomial coordinates on the big cell of the flag manifold $...
Quaternifications and Extensions of Current Algebras on S3
Directory of Open Access Journals (Sweden)
Tosiaki Kori
2015-11-01
Full Text Available Let \\(\\mathbf{H}\\ be the quaternion algebra. Let \\(\\mathfrak{g}\\ be a complex Lie algebra and let \\(U(\\mathfrak{g}\\ be the enveloping algebra of \\(\\mathfrak{g}\\. The quaternification \\(\\mathfrak{g}^{\\mathbf{H}}=\\\\(\\,(\\,\\mathbf{H}\\otimes U(\\mathfrak{g},\\,[\\quad,\\quad]_{\\mathfrak{g}^{\\mathbf{H}}}\\,\\ of \\(\\mathfrak{g}\\ is defined by the bracket \\( \\big[\\,\\mathbf{z}\\otimes X\\,,\\,\\mathbf{w}\\otimes Y\\,\\big]_{\\mathfrak{g}^{\\mathbf{H}}}\\,=\\\\(\\,(\\mathbf{z}\\cdot \\mathbf{w}\\otimes\\,(XY\\,- \\\\(\\, (\\mathbf{w}\\cdot\\mathbf{z}\\otimes (YX\\,,\
New phases of D ge 2 current and diffeomorphism algebras in particle physics
Energy Technology Data Exchange (ETDEWEB)
Tze, Chia-Hsiung.
1990-09-01
We survey some global results and open issues of current algebras and their canonical field theoretical realization in D {ge} 2 dimensional spacetime. We assess the status of the representation theory of their generalized Kac-Moody and diffeomorphism algebras. Particular emphasis is put on higher dimensional analogs of fermi-bose correspondence, complex analyticity and the phase entanglements of anyonic solitons with exotic spin and statistics. 101 refs.
Topological Membranes, Current Algebras and H-flux - R-flux Duality based on Courant Algebroids
Bessho, Taiki; Ikeda, Noriaki; Watamura, Satoshi
2015-01-01
We construct a topological sigma model and a current algebra based on a Courant algebroid structure on a Poisson manifold. In order to construct models, we reformulate the Poisson Courant algebroid by supergeometric construction on a QP-manifold. A new duality of Courant algebroids which transforms H-flux and R-flux is proposed, where the transformation is interpreted as a canonical transformation of a graded symplectic manifold.
Simple-current algebra constructions of 2+1-dimensional topological orders
Schoutens, Kareljan; Wen, Xiao-Gang
2016-01-01
Self-consistent (non-)Abelian statistics in 2+1 dimensions (2+1D) are classified by modular tensor categories (MTCs). In recent works, a simplified axiomatic approach to MTCs, based on fusion coefficients Nki j and spins si, was proposed. A numerical search based on these axioms led to a list of possible (non-)Abelian statistics, with rank up to N =7 . However, there is no guarantee that all solutions to the simplified axioms are consistent and can be realized by bosonic physical systems. In this paper, we use simple-current algebra to address this issue. We explicitly construct many-body wave functions, aiming to realize the entries in the list (i.e., realize their fusion coefficients Nki j and spins si). We find that all entries can be constructed by simple-current algebra plus conjugation under time-reversal symmetry. This supports the conjecture that simple-current algebra is a general approach that allows us to construct all (non-)Abelian statistics in 2+1D. It also suggests that the simplified theory based on (Nki j,si) is a classifying theory at least for simple bosonic 2+1D topological orders (up to invertible topological orders).
Multi-Soft gluon limits and extended current algebras at null-infinity
McLoughlin, Tristan
2016-01-01
In this note we consider aspects of the current algebra interpretation of multi-soft limits of tree-level gluon scattering amplitudes in four dimensions. Building on the relation between a positive helicity gluon soft-limit and the Ward identity for a level-zero Kac-Moody current, we use the double-soft limit to define the Sugawara energy-momentum tensor and, by using the triple- and quadruple-soft limits, show that it satisfies the correct OPEs for a CFT. We study the resulting Knizhnik-Zamolodchikov equations and show that they hold for positive helicity gluons in MHV amplitudes. Turning to the sub-leading soft-terms we define a one-parameter family of currents whose Ward identities correspond to the universal tree-level sub-leading soft-behaviour. We compute the algebra of these currents formed with the leading currents and amongst themselves. Finally, by parameterising the ambiguity in the double-soft limit for mixed helicities, we introduce a non-trivial OPE between the holomorphic and anti-holomorphic c...
Nonlinear $\\hat{W}_{\\infty}$ Current Algebra in the SL(2,R)/U(1) Coset Model
Yu, F; Yu, Feng; Wu, Yong-Shi
1992-01-01
Previously we have established that the second Hamiltonian structure of the KP hierarchy is a nonlinear deformation, called $\\hat{W}_{\\infty}$, of the linear, centerless $W_{\\infty}$ algebra. In this letter we present a free-field realization for all generators of $\\hat{W}_{\\infty}$ in terms of two scalars as well as an elegant generating function for the $\\hat{W}_{\\infty}$ currents in the classical conformal $SL(2,R)/U(1)$ coset model. After quantization, a quantum deformation of $\\hat{W}_{\\infty}$ appears as the hidden current algebra in this model. The $\\hat{W}_{\\infty}$ current algebra results in an infinite set of commuting conserved charges, which might give rise to $W$-hair for the 2d black hole arising in the corresponding string theory at level $k=9/4$.
Noether Current of the Surface Term of Einstein-Hilbert Action, Virasoro Algebra, and Entropy
Directory of Open Access Journals (Sweden)
Bibhas Ranjan Majhi
2013-01-01
Full Text Available A derivation of Noether current from the surface term of Einstein-Hilbert action is given. We show that the corresponding charge, calculated on the horizon, is related to the Bekenstein-Hawking entropy. Also using the charge, the same entropy is found based on the Virasoro algebra and Cardy formula approach. In this approach, the relevant diffeomorphisms are found by imposing a very simple physical argument: diffeomorphisms keep the horizon structure invariant. This complements similar earlier results (Majhi and Padmanabhan (2012 (arXiv:1204.1422 obtained from York-Gibbons-Hawking surface term. Finally we discuss the technical simplicities and improvements over the earlier attempts and also various important physical implications.
Algebraic Reconstruction of Current Dipoles and Quadrupoles in Three-Dimensional Space
Directory of Open Access Journals (Sweden)
Takaaki Nara
2013-01-01
Full Text Available This paper presents an algebraic method for an inverse source problem for the Poisson equation where the source consists of dipoles and quadrupoles. This source model is significant in the magnetoencephalography inverse problem. The proposed method identifies the source parameters directly and algebraically using data without requiring an initial parameter estimate or iterative computation of the forward solution. The obtained parameters could be used for the initial solution in an optimization-based algorithm for further refinement.
Born’s rule as signature of a superclassical current algebra
Fussy, S.; Mesa Pascasio, J.; Schwabl, H.; Grössing, G.
2014-04-01
We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a “relational causality” which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with the application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a “superclassical” theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie-Bohm theory. By proving the absence of third order interferences in three-path systems it is shown that Born’s rule is a natural consequence of our theory. Considering the series of one-, double-, or, generally, of N-slit systems, with the first appearance of an interference term in the double slit case, we can explain the violation of Sorkin’s first order sum rule, just as the validity of all higher order sum rules. Moreover, the Talbot patterns and Talbot distance for an arbitrary N-slit device can be reproduced exactly by our model without any quantum physics tool.
Born’s rule as signature of a superclassical current algebra
Energy Technology Data Exchange (ETDEWEB)
Fussy, S. [Austrian Institute for Nonlinear Studies, Akademiehof, Friedrichstr. 10, 1010 Vienna (Austria); Mesa Pascasio, J. [Austrian Institute for Nonlinear Studies, Akademiehof, Friedrichstr. 10, 1010 Vienna (Austria); Institute for Atomic and Subatomic Physics, Vienna University of Technology, Operng. 9, 1040 Vienna (Austria); Schwabl, H. [Austrian Institute for Nonlinear Studies, Akademiehof, Friedrichstr. 10, 1010 Vienna (Austria); Grössing, G., E-mail: ains@chello.at [Austrian Institute for Nonlinear Studies, Akademiehof, Friedrichstr. 10, 1010 Vienna (Austria)
2014-04-15
We present a new tool for calculating the interference patterns and particle trajectories of a double-, three- and N-slit system on the basis of an emergent sub-quantum theory developed by our group throughout the last years. The quantum itself is considered as an emergent system representing an off-equilibrium steady state oscillation maintained by a constant throughput of energy provided by a classical zero-point energy field. We introduce the concept of a “relational causality” which allows for evaluating structural interdependences of different systems levels, i.e. in our case of the relations between partial and total probability density currents, respectively. Combined with the application of 21st century classical physics like, e.g., modern nonequilibrium thermodynamics, we thus arrive at a “superclassical” theory. Within this framework, the proposed current algebra directly leads to a new formulation of the guiding equation which is equivalent to the original one of the de Broglie–Bohm theory. By proving the absence of third order interferences in three-path systems it is shown that Born’s rule is a natural consequence of our theory. Considering the series of one-, double-, or, generally, of N-slit systems, with the first appearance of an interference term in the double slit case, we can explain the violation of Sorkin’s first order sum rule, just as the validity of all higher order sum rules. Moreover, the Talbot patterns and Talbot distance for an arbitrary N-slit device can be reproduced exactly by our model without any quantum physics tool. -- Highlights: •Calculating the interference patterns and particle trajectories of a double-, three- and N-slit system. •Deriving a new formulation of the guiding equation equivalent to the de Broglie–Bohm one. •Proving the absence of third order interferences and thus explaining Born’s rule. •Explaining the violation of Sorkin’s order sum rules. •Classical simulation of Talbot patterns
Shafarevich, I
1994-01-01
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
Left Artinian Algebraic Algebras
Institute of Scientific and Technical Information of China (English)
S. Akbari; M. Arian-Nejad
2001-01-01
Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.
Algebraic partial Boolean algebras
Energy Technology Data Exchange (ETDEWEB)
Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)
2003-04-04
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.
Norén, Patrik
2013-01-01
Algebraic statistics brings together ideas from algebraic geometry, commutative algebra, and combinatorics to address problems in statistics and its applications. Computer algebra provides powerful tools for the study of algorithms and software. However, these tools are rarely prepared to address statistical challenges and therefore new algebraic results need often be developed. This way of interplay between algebra and statistics fertilizes both disciplines. Algebraic statistics is a relativ...
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Pavelle, Richard; And Others
1981-01-01
Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)
2013-01-01
The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.
Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio
2014-01-01
This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.
Central extensions of Lax operator algebras
Schlichenmaier, M.; Sheinman, O. K.
2008-08-01
Lax operator algebras were introduced by Krichever and Sheinman as a further development of Krichever's theory of Lax operators on algebraic curves. These are almost-graded Lie algebras of current type. In this paper local cocycles and associated almost-graded central extensions of Lax operator algebras are classified. It is shown that in the case when the corresponding finite-dimensional Lie algebra is simple the two-cohomology space is one-dimensional. An important role is played by the action of the Lie algebra of meromorphic vector fields on the Lax operator algebra via suitable covariant derivatives.
Issa, A Nourou
2010-01-01
Non-Hom-associative algebras and Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms.
Energy Technology Data Exchange (ETDEWEB)
Odesskii, A V [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)
2002-12-31
This survey is devoted to associative Z{sub {>=}}{sub 0}-graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...
Cavanagh, Sean
2009-01-01
As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…
Algebra-Geometry of Piecewise Algebraic Varieties
Institute of Scientific and Technical Information of China (English)
Chun Gang ZHU; Ren Hong WANG
2012-01-01
Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.
Chisolm, Eric
2012-01-01
This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...
Cardinal invariants on Boolean algebras
Monk, J Donald
2014-01-01
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the...
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
McKeague, Charles P
1981-01-01
Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e
McKeague, Charles P
1986-01-01
Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.
Institute of Scientific and Technical Information of China (English)
WANG Renhong; ZHU Chungang
2004-01-01
The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.
Marchuk, Nikolay
2011-01-01
Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann alg...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
DEFF Research Database (Denmark)
2007-01-01
of algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group......-theorists, and to stimulate contacts between participants. Each of the first four days was dedicated to one area of research that has recently seen decisive progress: \\begin{itemize} \\item structure and classification of wonderful varieties, \\item finite reductive groups and character sheaves, \\item quantum cohomology...... of homogeneous varieties, \\item representation categories and their connections to orbits and flag varieties. \\end{itemize} The first three days started with survey talks that will help to make the subject accessible to the next generation. The talks on the last day introduced to several recent advances...
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Directory of Open Access Journals (Sweden)
G.C. Rao
2012-11-01
Full Text Available A C- algebra is the algebraic form of the 3-valued conditional logic, which was introduced by F. Guzman and C. C. Squier in 1990. In this paper, some equivalent conditions for a C- algebra to become a boolean algebra in terms of congruences are given. It is proved that the set of all central elements B(A is isomorphic to the Boolean algebra of all C-algebras Sa, where a B(A. It is also proved that B(A is isomorphic to the Boolean algebra of all C-algebras Aa, where a B(A.
Allenby, Reg
1995-01-01
As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Indian Academy of Sciences (India)
Tomás L Gómez
2001-02-01
This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.
Oliver, Bob; Pawałowski, Krzystof
1991-01-01
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
Almost-graded central extensions of Lax operator algebra
Schlichenmaier, Martin
2011-01-01
Lax operator algebras constitute a new class of infinite dimensional Lie algebras of geometric origin. More precisely, they are algebras of matrices whose entries are meromorphic functions on a compact Riemann surface. They generalize classical current algebras and current algebras of Krichever-Novikov type. Lax operators for $\\gl(n)$, with the spectral parameter on a Riemann surface, were introduced by Krichever. In joint works of Krichever and Sheinman their algebraic structure was revealed and extended to more general groups. These algebras are almost-graded. In this article their definition is recalled and classification and uniqueness results for almost-graded central extensions for this new class of algebras are presented. The explicit forms of the defining cocycles are given. If the finite-dimensional Lie algebra on which the Lax operator algebra is based is simple then, up to equivalence and rescaling of the central element, there is a unique non-trivial almost-graded central extension. These results ...
Central simple Poisson algebras
Institute of Scientific and Technical Information of China (English)
SU Yucai; XU Xiaoping
2004-01-01
Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.
Nonmonotonic logics and algebras
Institute of Scientific and Technical Information of China (English)
CHAKRABORTY Mihir Kr; GHOSH Sujata
2008-01-01
Several nonmonotonie logic systems together with their algebraic semantics are discussed. NM-algebra is defined.An elegant construction of an NM-algebra starting from a Boolean algebra is described which gives rise to a few interesting algebraic issues.
Iachello, F
1995-01-01
1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters
Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
Solvable quadratic Lie algebras
Institute of Scientific and Technical Information of China (English)
ZHU; Linsheng
2006-01-01
A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.
DÍaz, R.; Rivas, M.
2010-01-01
In order to study Boolean algebras in the category of vector spaces we introduce a prop whose algebras in set are Boolean algebras. A probabilistic logical interpretation for linear Boolean algebras is provided. An advantage of defining Boolean algebras in the linear category is that we are able to study its symmetric powers. We give explicit formulae for products in symmetric and cyclic Boolean algebras of various dimensions and formulate symmetric forms of the inclusion-exclusion principle.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
It is a small step toward the Koszul-type algebras. The piecewise-Koszul algebras are,in general, a new class of quadratic algebras but not the classical Koszul ones, simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases. We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A), and show an A∞-structure on E(A). Relations between Koszul algebras and piecewise-Koszul algebras are discussed. In particular, our results are related to the third question of Green-Marcos.
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Zheng Lijing
2015-11-01
Let be an algebraically closed field, a finite dimensional connected (, )-Koszul self-injective algebra with , ≥ 2. In this paper, we prove that the Yoneda algebra of is isomorphic to a twisted polynomial algebra $A^!$ [ ; ] in one indeterminate of degree +1 in which $A^!$ is the quadratic dual of , is an automorphism of $A^!$, and = () for each $t \\in A^!$. As a corollary, we recover Theorem 5.3 of [2].
Marchuk, Nikolay
2011-01-01
Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann algebra and Clifford algebra. Specialists consider models of gravity that based on a mathematical formalism with two metric tensors. We hope that the considered in this paper 2-metric exterior algebra can be useful for development of this model in gravitation theory. Especially in description of fermions in presence of a gravity field.
WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY
Institute of Scientific and Technical Information of China (English)
TaoChangli; LuShijie; ChenPeixin
2002-01-01
Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.
Rigidification of algebras over essentially algebraic theories
Rosicky, J
2012-01-01
Badzioch and Bergner proved a rigidification theorem saying that each homotopy simplicial algebra is weakly equivalent to a simplicial algebra. The question is whether this result can be extended from algebraic theories to finite limit theories and from simplicial sets to more general monoidal model categories. We will present some answers to this question.
The Yoneda algebra of a K_2 algebra need not be another K_2 algebra
Cassidy, T.; Phan, Van C.; Shelton, B.
2008-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
Algebraic cobordism theory attached to algebraic equivalence
Krishna, Amalendu
2012-01-01
After the algebraic cobordism theory of Levine-Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence. We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the zero-th semi-topological K-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory. We compute our cobordism theory for some low dimensional or special types of varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.
Workshop on Commutative Algebra
Simis, Aron
1990-01-01
The central theme of this volume is commutative algebra, with emphasis on special graded algebras, which are increasingly of interest in problems of algebraic geometry, combinatorics and computer algebra. Most of the papers have partly survey character, but are research-oriented, aiming at classification and structural results.
Probabilistic Concurrent Kleene Algebra
Directory of Open Access Journals (Sweden)
Annabelle McIver
2013-06-01
Full Text Available We provide an extension of concurrent Kleene algebras to account for probabilistic properties. The algebra yields a unified framework containing nondeterminism, concurrency and probability and is sound with respect to the set of probabilistic automata modulo probabilistic simulation. We use the resulting algebra to generalise the algebraic formulation of a variant of Jones' rely/guarantee calculus.
Central extensions of Lax operator algebras
Schlichenmaier, Martin; Sheinman, Oleg K.
2007-01-01
Lax operator algebras were introduced by Krichever and Sheinman as a further development of I.Krichever's theory of Lax operators on algebraic curves. These are almost-graded Lie algebras of current type. In this article local cocycles and associated almost-graded central extensions are classified. It is shown that in the case that the corresponding finite-dimensional Lie algebra is simple the two-cohomology space is one-dimensional. An important role is played by the action of the Lie algebr...
El-Chaar, Caroline
2012-01-01
In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. Using this fourth realization, we explicitly describe all its ideals.
Classification of central extensions of Lax operator algebras
Schlichenmaier, Martin
2008-11-01
Lax operator algebras were introduced by Krichever and Sheinman as further developments of Krichever's theory of Lax operators on algebraic curves. They are infinite dimensional Lie algebras of current type with meromorphic objects on compact Riemann surfaces (resp. algebraic curves) as elements. Here we report on joint work with Oleg Sheinman on the classification of their almost-graded central extensions. It turns out that in case that the finite-dimensional Lie algebra on which the Lax operator algebra is based on is simple there is a unique almost-graded central extension up to equivalence and rescaling of the central element.
Perturbations of planar algebras
Das, Paramita; Gupta, Ved Prakash
2010-01-01
We introduce the concept of {\\em weight} of a planar algebra $P$ and construct a new planar algebra referred as the {\\em perturbation of $P$} by the weight. We establish a one-to-one correspondence between pivotal structures on 2-categories and perturbations of planar algebras by weights. To each bifinite bimodule over $II_1$-factors, we associate a {\\em bimodule planar algebra} bimodule corresponds naturally with sphericality of the bimodule planar algebra. As a consequence of this, we reproduce an extension of Jones' theorem (of associating 'subfactor planar algebras' to extremal subfactors). Conversely, given a bimodule planar algebra, we construct a bifinite bimodule whose associated bimodule planar algebra is the one which we start with using perturbations and Jones-Walker-Shlyakhtenko-Kodiyalam-Sunder method of reconstructing an extremal subfactor from a subfactor planar algebra. We show that the perturbation class of a bimodule planar algebra contains a unique spherical unimodular bimodule planar algeb...
Alternative description of three dimensional complex diassociative algebras with some constraints
Rikhsiboev, Ikrom M.; Venkatesan, Yuvendra Rao
2014-07-01
Considering significant of classification problems in modern algebra, especially in the algebras which related to Lie algebras, current research pursue investigation on structure theory of low dimensional diassociative algebras. Note that the classification of complex diassociative algebras in low dimensions have been presented in our recent studies, however this paper deals to provide description of such algebras with some constrains in dimension three, applying notion of annihilator.
Yangians and transvector algebras
Molev, A. I.
1998-01-01
Olshanski's centralizer construction provides a realization of the Yangian for the Lie algebra gl(n) as a subalgebra in the projective limit of a chain of centralizers in the universal enveloping algebras. We give a modified version of this construction based on a quantum analog of Sylvester's theorem. We then use it to get an algebra homomorphism from the Yangian to the transvector algebra associated with the general linear Lie algebras. The results are applied to identify the elementary rep...
Tensor computations in computer algebra systems
Korolkova, A V; Sevastyanov, L A
2014-01-01
This paper considers three types of tensor computations. On their basis, we attempt to formulate criteria that must be satisfied by a computer algebra system dealing with tensors. We briefly overview the current state of tensor computations in different computer algebra systems. The tensor computations are illustrated with appropriate examples implemented in specific systems: Cadabra and Maxima.
Institute of Scientific and Technical Information of China (English)
Jia-feng; Lü
2007-01-01
[1]Priddy S.Koszul resolutions.Trans Amer Math Soc,152:39-60 (1970)[2]Beilinson A,Ginszburg V,Soergel W.Koszul duality patterns in representation theory.J Amer Math Soc,9:473-525 (1996)[3]Aquino R M,Green E L.On modules with linear presentations over Koszul algebras.Comm Algebra,33:19-36 (2005)[4]Green E L,Martinez-Villa R.Koszul and Yoneda algebras.Representation theory of algebras (Cocoyoc,1994).In:CMS Conference Proceedings,Vol 18.Providence,RI:American Mathematical Society,1996,247-297[5]Berger R.Koszulity for nonquadratic algebras.J Algebra,239:705-734 (2001)[6]Green E L,Marcos E N,Martinez-Villa R,et al.D-Koszul algebras.J Pure Appl Algebra,193:141-162(2004)[7]He J W,Lu D M.Higher Koszul Algebras and A-infinity Algebras.J Algebra,293:335-362 (2005)[8]Green E L,Marcos E N.δ-Koszul algebras.Comm Algebra,33(6):1753-1764 (2005)[9]Keller B.Introduction to A-infinity algebras and modules.Homology Homotopy Appl,3:1-35 (2001)[10]Green E L,Martinez-Villa R,Reiten I,et al.On modules with linear presentations.J Algebra,205(2):578-604 (1998)[11]Keller B.A-infinity algebras in representation theory.Contribution to the Proceedings of ICRA Ⅸ.Beijing:Peking University Press,2000[12]Lu D M,Palmieri J H,Wu Q S,et al.A∞-algebras for ring theorists.Algebra Colloq,11:91-128 (2004)[13]Weibel C A.An Introduction to homological algebra.Cambridge Studies in Avanced Mathematics,Vol 38.Cambridge:Cambridge University Press,1995
Effectiveness of Cognitive Tutor Algebra I at Scale
Pane, John F.; Griffin, Beth Ann; McCaffrey, Daniel F.; Karam, Rita
2014-01-01
This article examines the effectiveness of a technology-based algebra curriculum in a wide variety of middle schools and high schools in seven states. Participating schools were matched into similar pairs and randomly assigned to either continue with the current algebra curriculum for 2 years or to adopt Cognitive Tutor Algebra I (CTAI), which…
Topics in algebraic and topological K-theory
Baum, Paul Frank; Meyer, Ralf; Sánchez-García, Rubén; Schlichting, Marco; Toën, Bertrand
2011-01-01
This volume is an introductory textbook to K-theory, both algebraic and topological, and to various current research topics within the field, including Kasparov's bivariant K-theory, the Baum-Connes conjecture, the comparison between algebraic and topological K-theory of topological algebras, the K-theory of schemes, and the theory of dg-categories.
Goldmann, H
1990-01-01
The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Abian, Alexander
1973-01-01
Linear Associative Algebras focuses on finite dimensional linear associative algebras and the Wedderburn structure theorems.The publication first elaborates on semigroups and groups, rings and fields, direct sum and tensor product of rings, and polynomial and matrix rings. The text then ponders on vector spaces, including finite dimensional vector spaces and matrix representation of vectors. The book takes a look at linear associative algebras, as well as the idempotent and nilpotent elements of an algebra, ideals of an algebra, total matrix algebras and the canonical forms of matrices, matrix
Clifford Algebra with Mathematica
Aragon-Camarasa, G; Aragon, J L; Rodriguez-Andrade, M A
2008-01-01
The Clifford algebra of a n-dimensional Euclidean vector space provides a general language comprising vectors, complex numbers, quaternions, Grassman algebra, Pauli and Dirac matrices. In this work, a package for Clifford algebra calculations for the computer algebra program Mathematica is introduced through a presentation of the main ideas of Clifford algebras and illustrative examples. This package can be a useful computational tool since allows the manipulation of all these mathematical objects. It also includes the possibility of visualize elements of a Clifford algebra in the 3-dimensional space.
Institute of Scientific and Technical Information of China (English)
PENG Jia-yin
2011-01-01
The notions of norm and distance in BCI-algebras are introduced,and some basic properties in normed BCI-algebras are given.It is obtained that the isomorphic(homomorphic)image and inverse image of a normed BCI-algebra are still normed BCI-algebras.The relations of normaled properties between BCI-algebra and Cartesian product of BCIalgebras are investigated.The limit notion of sequence of points in normed BCI-algebras is introduced,and its related properties are investigated.
Boicescu, V; Georgescu, G; Rudeanu, S
1991-01-01
The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.
Inequalities, Assessment and Computer Algebra
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in…
Inequalities, Assessment and Computer Algebra
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…
Hom-alternative algebras and Hom-Jordan algebras
Makhlouf, Abdenacer
2009-01-01
The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra.
Cellularity of diagram algebras as twisted semigroup algebras
Wilcox, Stewart
2010-01-01
The Temperley-Lieb and Brauer algebras and their cyclotomic analogues, as well as the partition algebra, are all examples of twisted semigroup algebras. We prove a general theorem about the cellularity of twisted semigroup algebras of regular semigroups. This theorem, which generalises a recent result of East about semigroup algebras of inverse semigroups, allows us to easily reproduce the cellularity of these algebras.
Cox, David A; O'Shea, Donal
2015-01-01
This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem, and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and, with some supplementation perhaps, for beginning graduate level courses in algebraic geom...
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Lie Algebra of Noncommutative Inhomogeneous Hopf Algebra
Lagraa, M
1997-01-01
We construct the vector space dual to the space of right-invariant differential forms construct from a first order differential calculus on inhomogeneous quantum group. We show that this vector space is equipped with a structure of a Hopf algebra which closes on a noncommutative Lie algebra satisfying a Jacobi identity.
Categories and Commutative Algebra
Salmon, P
2011-01-01
L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.
Algebraic statistics computational commutative algebra in statistics
Pistone, Giovanni; Wynn, Henry P
2000-01-01
Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.
Connecting Arithmetic to Algebra
Darley, Joy W.; Leapard, Barbara B.
2010-01-01
Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…
Bergstra, J.A.; Fokkink, W.J.; Middelburg, C.A.
2008-01-01
Timed frames are introduced as objects that can form a basis of a model theory for discrete time process algebra. An algebraic setting for timed frames is proposed and results concerning its connection with discrete time process algebra are given. The presented theory of timed frames captures the ba
Deficiently Extremal Gorenstein Algebras
Indian Academy of Sciences (India)
Pavinder Singh
2011-08-01
The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.
REAL PIECEWISE ALGEBRAIC VARIETY
Institute of Scientific and Technical Information of China (English)
Ren-hong Wang; Yi-sheng Lai
2003-01-01
We give definitions of real piecewise algebraic variety and its dimension. By using the techniques of real radical ideal, P-radical ideal, affine Hilbert polynomial, Bernstein-net form of polynomials on simplex, and decomposition of semi-algebraic set, etc., we deal with the dimension of the real piecewise algebraic variety and real Nullstellensatz in Cμ spline ring.
Bases of Schur algebras associated to cellularly stratified diagram algebras
Bowman, C
2011-01-01
We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.
Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Indian Academy of Sciences (India)
Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado
2012-05-01
We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Light-Cone Algebra, \\pi^0 Decay and e^+ e^- Annihilation
Bardeen, William A; Gell-Mann, Murray
2002-01-01
The indication from deep inelastic electron scattering experiments at SLAC that Bjorken scaling may really hold has motivated an extension of the hypotheses of current algebra to what may be called light-cone current algebra.
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
The Hall Algebra of Cyclic Serial Algebra
Institute of Scientific and Technical Information of China (English)
郭晋云
1994-01-01
In this paper, orders <1 and <2 on ((Z)+)nm are introduced and also regarded as orders on the isomorphism classes of finite modules of finite .cyclic algebra R with n simple modules and all the indecomposable projective modules have length m through a one-to-one correspondence between ((Z)+)nm and the isomorphism classes of finite R modules. Using this we prove that the Hall algebra of a cyclic serial algebra is identified with its Loewy subalgebra, and its rational extension has a basis of BPW type, and is a (((Z)+)nm, <2) filtered ring with the associated graded ring as an iterated skew polynomial ring. These results are also generalized to the Hall algebra of a tube over a finite field.
Hestenes, David
2015-01-01
This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...
Evolution algebras and their applications
Tian, Jianjun Paul
2008-01-01
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.
Finite-dimensional (*)-serial algebras
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Let A be a finite-dimensional associative algebra with identity over a field k. In this paper we introduce the concept of (*)-serial algebras which is a generalization of serial algebras. We investigate the properties of (*)-serial algebras, and we obtain suficient and necessary conditions for an associative algebra to be (*)-serial.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
On the Toroidal Leibniz Algebras
Institute of Scientific and Technical Information of China (English)
Dong LIU; Lei LIN
2008-01-01
Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras gOC[t±11 ,...,t±v1] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Developable algebraic surfaces
Institute of Scientific and Technical Information of China (English)
CHEN Dongren; WANG Guojin
2004-01-01
An algebraic surface can be defined by an implicit polynomial equation F(x,y,z)=0. In this paper, general characterizations of developable algebraic surfaces of arbitrary degree are presented. Using the shift operators of the subscripts of Bézier ordinates, the uniform apparent discriminants of developable algebraic surfaces to their Bézier ordinates are given directly. To degree 2 algebraic surfaces, which are widely used in computer aided geometric design and graphics, all possible developable surface types are obtained. For more conveniently applying algebraic surfaces of high degree to computer aided geometric design, the notion of ε-quasi-developable surfaces is introduced, and an example of using a quasi-developable algebraic surface of degree 3 to interpolate three curves of degree 2 is given.
Algebra Automorphisms of Quantized Enveloping Algebras Uq(■)
Institute of Scientific and Technical Information of China (English)
查建国
1994-01-01
The algebra automorphisms of the quantized enveloping algebra Uq(g) are discussed, where q is generic. To some extent, all quantum deformations of automorphisms of the simple Lie algebra g have been determined.
Cayley-Dickson and Clifford Algebras as Twisted Group Algebras
Bales, John W
2011-01-01
The effect of some properties of twisted groups on the associated algebras, particularly Cayley-Dickson and Clifford algebras. It is conjectured that the Hilbert space of square-summable sequences is a Cayley-Dickson algebra.
Symmetric Extended Ockham Algebras
Institute of Scientific and Technical Information of China (English)
T.S. Blyth; Jie Fang
2003-01-01
The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30
Krichever, Igor M.; Sheinman, Oleg K.
2007-01-01
In this paper we develop a general concept of Lax operators on algebraic curves introduced in [1]. We observe that the space of Lax operators is closed with respect to their usual multiplication as matrix-valued functions. We construct the orthogonal and symplectic analogs of Lax operators, prove that they constitute almost graded Lie algebras and construct local central extensions of those Lie algebras.
Prediction of Algebraic Instabilities
Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael
2016-11-01
A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.
Working memory, worry, and algebraic ability.
Trezise, Kelly; Reeve, Robert A
2014-05-01
Math anxiety (MA)-working memory (WM) relationships have typically been examined in the context of arithmetic problem solving, and little research has examined the relationship in other math domains (e.g., algebra). Moreover, researchers have tended to examine MA/worry separate from math problem solving activities and have used general WM tasks rather than domain-relevant WM measures. Furthermore, it seems to have been assumed that MA affects all areas of math. It is possible, however, that MA is restricted to particular math domains. To examine these issues, the current research assessed claims about the impact on algebraic problem solving of differences in WM and algebraic worry. A sample of 80 14-year-old female students completed algebraic worry, algebraic WM, algebraic problem solving, nonverbal IQ, and general math ability tasks. Latent profile analysis of worry and WM measures identified four performance profiles (subgroups) that differed in worry level and WM capacity. Consistent with expectations, subgroup membership was associated with algebraic problem solving performance: high WM/low worry>moderate WM/low worry=moderate WM/high worry>low WM/high worry. Findings are discussed in terms of the conceptual relationship between emotion and cognition in mathematics and implications for the MA-WM-performance relationship.
Sati, Hisham
2015-01-01
We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane...
Automorphisms of the Cuntz algebras
Conti, Roberto
2011-01-01
We survey recent results on endomorphisms and especially on automorphisms of the Cuntz algebras O_n, with a special emphasis on the structure of the Weyl group. We discuss endomorphisms globally preserving the diagonal MASA and their corresponding actions. In particular, we investigate those endomorphisms of O_n which restrict to automorphisms of the diagonal. We review a combinatorial approach to the study of permutative endomorphisms. All the presented material is put in context with current research topics.
Directory of Open Access Journals (Sweden)
Frank Roumen
2017-01-01
Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.
Algebraic extensions of fields
McCarthy, Paul J
1991-01-01
""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta
Balan, Adriana
2010-01-01
We extend Barr's well-known characterization of the final coalgebra of a $Set$-endofunctor as the completion of its initial algebra to the Eilenberg-Moore category of algebras for a $Set$-monad $\\mathbf{M}$ for functors arising as liftings. As an application we introduce the notion of commuting pair of endofunctors with respect to the monad $\\mathbf{M}$ and show that under reasonable assumptions, the final coalgebra of one of the endofunctors involved can be obtained as the free algebra generated by the initial algebra of the other endofunctor.
Kurosh, A G; Stark, M; Ulam, S
1965-01-01
Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the
Underwood, Robert G
2015-01-01
This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras. The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras. The book may be used as the main text or as a supplementary text for a graduate algebra course. Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Relations Between BZMVdM-Algebra and Other Algebras
Institute of Scientific and Technical Information of China (English)
高淑萍; 邓方安; 刘三阳
2003-01-01
Some properties of BZMVdM-algebra are proved, and a new operator is introduced. It is shown that the substructure of BZMVdM-algebra can produce a quasi-lattice implication algebra. The relations between BZMVdM-algebra and other algebras are discussed in detail. A pseudo-distance function is defined in linear BZMVdM-algebra, and its properties are derived.
Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra
Hijligenberg, N.W. van den; Martini, R.
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g
Tubular algebras and affine Kac-Moody algebras
Institute of Scientific and Technical Information of China (English)
2007-01-01
The purpose of this paper is to construct quotient algebras L(A)1C/I(A) of complex degenerate composition Lie algebras L(A)1C by some ideals, where L(A)1C is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)1C/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)1C generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)1C generated by simple A-modules.
Tubular algebras and affine Kac-Moody algebras
Institute of Scientific and Technical Information of China (English)
Zheng-xin CHEN; Ya-nan LIN
2007-01-01
The purpose of this paper is to construct quotient algebras L(A)C1/I(A) of complex degenerate composition Lie algebras L(A)C1 by some ideals, where L(A)C1 is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)C1/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)C1 generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)C1 generated by simple A-modules.
Indian Academy of Sciences (India)
Cătălin Ciupală
2005-02-01
In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.
The geometry of supersymmetric coset models and superconformal algebras
Papadopoulos, G
1993-01-01
An on-shell formulation of (p,q), 2\\leq p \\leq 4, 0\\leq q\\leq 4, supersymmetric coset models with target space the group G and gauge group a subgroup H of G is given. It is shown that there is a correspondence between the number of supersymmetries of a coset model and the geometry of the coset space G/H. The algebras of currents of supersymmetric coset models are superconformal algebras. In particular, the algebras of currents of (2,2) and (4,0) supersymmetric coset models are related to the N=2 Kazama-Suzuki and N=4 Van Proeyen superconformal algebras correspondingly.
From the Virasoro Algebra to Krichever--Novikov Type Algebras and Beyond
Schlichenmaier, Martin
2013-01-01
Starting from the Virasoro algebra and its relatives the generalization to higher genus compact Riemann surfaces was initiated by Krichever and Novikov. The elements of these algebras are meromorphic objects which are holomorphic outside a finite set of points. A crucial and non-trivial point is to establish an almost-grading replacing the honest grading in the Virasoro case. Such an almost-grading is given by splitting the set of points of possible poles into two non-empty disjoint subsets. Krichever and Novikov considered the two-point case. Schlichenmaier studied the most general multi-point situation with arbitrary splittings. Here we will review the path of developments from the Virasoro algebra to its higher genus and multi-point analogs. The starting point will be a Poisson algebra structure on the space of meromorphic forms of all weights. As sub-structures the vector field algebras, function algebras, Lie superalgebras and the related current algebras show up. All these algebras will be almost-graded...
International conference on Algebraic and Complex Geometry
Kloosterman, Remke; Schütt, Matthias; Springer Proceedings in Mathematics & Statistics : Volume 71
2014-01-01
Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...
Higher algebraic K-theory an overview
Lluis-Puebla, Emilio; Gillet, Henri; Soulé, Christophe; Snaith, Victor
1992-01-01
This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.
Commutative algebra constructive methods finite projective modules
Lombardi, Henri
2015-01-01
Translated from the popular French edition, this book offers a detailed introduction to various basic concepts, methods, principles, and results of commutative algebra. It takes a constructive viewpoint in commutative algebra and studies algorithmic approaches alongside several abstract classical theories. Indeed, it revisits these traditional topics with a new and simplifying manner, making the subject both accessible and innovative. The algorithmic aspects of such naturally abstract topics as Galois theory, Dedekind rings, Prüfer rings, finitely generated projective modules, dimension theory of commutative rings, and others in the current treatise, are all analysed in the spirit of the great developers of constructive algebra in the nineteenth century. This updated and revised edition contains over 350 well-arranged exercises, together with their helpful hints for solution. A basic knowledge of linear algebra, group theory, elementary number theory as well as the fundamentals of ring and module theory is r...
Automorphism groups of some algebras
Institute of Scientific and Technical Information of China (English)
PARK; Hong; Goo; LEE; Jeongsig; CHOI; Seul; Hee; NAM; Ki-Bong
2009-01-01
The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m,m + n).
Automorphism groups of some algebras
Institute of Scientific and Technical Information of China (English)
PARK Hong Goo; LEE Jeongsig; CHOI Seul Hee; CHEN XueQing; NAM Ki-Bong
2009-01-01
The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m, m+n).
Design of Multivalued Circuits Based on an Algebra for Current—Mode CMOS Multivalued Circuits
Institute of Scientific and Technical Information of China (English)
陈偕雄; ClaudioMoraga
1995-01-01
An algebra proposed for current-mode CMOS multivalued circuits is briefly reviewed.this paper discusses its application in the design of multivalued circuits.Several current-mode CMOS quaternary and quinary circuits are designed by algebraic means.The design method based on this algebra may offer a design simpler than the previously known ones.
Derived equivalence of algebras
Institute of Scientific and Technical Information of China (English)
杜先能
1997-01-01
The derived equivalence and stable equivalence of algebras RmA and RmB are studied It is proved, using the tilting complex, that RmA and RmB are derived-equivalent whenever algebras A and B are derived-equivalent
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Herriott, Scott R.; Dunbar, Steven R.
2009-01-01
The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…
Introduction to noncommutative algebra
Brešar, Matej
2014-01-01
Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
The Planar Algebra of a Semisimple and Cosemisimple Hopf Algebra
Indian Academy of Sciences (India)
Vijay Kodiyalam; V S Sunder
2006-11-01
To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection between (the isomorphism classes, on both sides, of) such objects.
Graded Lie Algebra Generating of Parastatistical Algebraic Relations
Institute of Scientific and Technical Information of China (English)
JING Si-Cong; YANG Wei-Min; LI Ping
2001-01-01
A new kind of graded Lie algebra (We call it Z2,2 graded Lie algebra) is introduced as a framework for formulating parasupersymmetric theories. By choosing suitable Bose subspace of the Z2,2 graded Lie algebra and using relevant generalized Jacobi identities, we generate the whole algebraic structure of parastatistics.
Leibniz algebras associated with representations of filiform Lie algebras
Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A.
2015-12-01
In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra nn,1. We introduce a Fock module for the algebra nn,1 and provide classification of Leibniz algebras L whose corresponding Lie algebra L / I is the algebra nn,1 with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by squares of elements from L. We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the action I ×nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification up to isomorphism of such Leibniz algebras is given for the case of n = 4.
Directory of Open Access Journals (Sweden)
Sinan AYDIN
2009-04-01
Full Text Available Linear algebra is a basic course followed in mathematics, science, and engineering university departments.Generally, this course is taken in either the first or second year but there have been difficulties in teachingand learning. This type of active algebra has resulted in an increase in research by mathematics educationresearchers. But there is insufficient information on this subject in Turkish and therefore it has not beengiven any educational status. This paper aims to give a general overview of this subject in teaching andlearning. These education studies can be considered quadruple: a the history of linear algebra, b formalismobstacles of linear algebra and cognitive flexibility to improve teaching and learning, c the relation betweenlinear algebra and geometry, d using technology in the teaching and learning linear algebra.Mathematicseducation researchers cannot provide an absolute solution to overcome the teaching and learning difficultiesof linear algebra. Epistemological analyses and experimental teaching have shown the learning difficulties.Given these results, further advice and assistance can be offered locally.
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
On dibaric and evolution algebras
Ladra, M; Rozikov, U A
2011-01-01
We find conditions on ideals of an algebra under which the algebra is dibaric. Dibaric algebras have not non-zero homomorphisms to the set of the real numbers. We introduce a concept of bq-homomorphism (which is given by two linear maps $f, g$ of the algebra to the set of the real numbers) and show that an algebra is dibaric if and only if it admits a non-zero bq-homomorphism. Using the pair $(f,g)$ we define conservative algebras and establish criteria for a dibaric algebra to be conservative. Moreover, the notions of a Bernstein algebra and an algebra induced by a linear operator are introduced and relations between these algebras are studied. For dibaric algebras we describe a dibaric algebra homomorphism and study their properties by bq-homomorphisms of the dibaric algebras. We apply the results to the (dibaric) evolution algebra of a bisexual population. For this dibaric algebra we describe all possible bq-homomorphisms and find conditions under which the algebra of a bisexual population is induced by a ...
Classification of Noncommutative Domain Algebras
Arias, Alvaro
2012-01-01
Noncommutative domain algebras are noncommutative analogues of the algebras of holomorphic functions on domains of $\\C^n$ defined by holomorphic polynomials, and they generalize the noncommutative Hardy algebras. We present here a complete classification of these algebras based upon techniques inspired by multivariate complex analysis, and more specifically the classification of domains in hermitian spaces up to biholomorphic equivalence.
Process algebra for Hybrid systems
Bergstra, J.A.; Middelburg, C.A.
2008-01-01
We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, Chap. 4, 2002] and the process algebra with propositional signals from Baeten and Bergstra [Theoretical Computer
Process algebra for hybrid systems
Bergstra, J.A.; Middelburg, C.A.
2005-01-01
We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg (Process Algebra with Timing, Springer,Berlin, 2002, Chapter 4), and the process algebra with propositional signals from Baeten and Bergstra(Theoret. Com
Cohen, A.M.; Liu, S.
2015-01-01
For each n ≥ 1, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular struc
Computational commutative and non-commutative algebraic geometry
Cojocaru, S; Ufnarovski, V
2005-01-01
This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.
Vedas and the Development of Arithmetic and Algebra
Directory of Open Access Journals (Sweden)
Gurudeo A. Tularam
2010-01-01
Full Text Available Problem statement: Algebra developed in three stages: rhetorical or prose algebra, syncopated or abbreviated algebra and symbolic algebra-known as school algebra. School algebra developed rather early in India and the literature now suggests that the first civilization to develop symbolic algebra was the Vedic Indians. Approach: Philosophical ideas of the time influenced the development of the decimal system and arithmetic and that in turn led to algebra. Indeed, symbolic algebraic ideas are deep rooted in Vedic philosophy. The Vedic arithmetic and mathematics were of a high level at an early period and the Hindus used algebraic ideas to generate formulas simplifying calculations. Results: In the main, they developed formulas to understand the physical world satisfying the needs of religion (apara and para vidya. While geometrical focus, logic and proof type are features of Greek mathematics, boldness of conception, abstraction, symbolism are essentially in Indian mathematics. From such a history study, a number of implications can be drawn regarding the learning of algebra. Real life, imaginative and creative problems that encourage risk should be the focus in student learning; allowing students freely move between numbers, magnitudes and symbols rather than taking separate static or unchanging view. A move from concrete to pictorial to symbolic modes was present in ancient learning. Real life practical needs motivated the progress to symbolic algebra. The use of rich context based problems that stimulate and motivate students to raise levels higher to transfer knowledge should be the focus of learning. Conclusion/Recommendations: The progress from arithmetic to algebra in India was achieved through different modes of learning, risk taking, problem solving and higher order thinking all in line with current emphasis in mathematics education but at rather early stage in human history.
Symplectic algebraic dynamics algorithm
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the algebraic dynamics solution of ordinary differential equations andintegration of ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.
Directory of Open Access Journals (Sweden)
J. W. Kitchen
1994-01-01
Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
On W algebras commuting with a set of screenings
Litvinov, Alexey
2016-01-01
We consider the problem of classification of all W algebras which commute with a set of exponential screening operators. Assuming that the W algebra has a nontrivial current of spin 3, we find equations satisfied by the screening operators and classify their solutions.
On W algebras commuting with a set of screenings
Litvinov, Alexey; Spodyneiko, Lev
2016-11-01
We consider the problem of classification of all W algebras which commute with a set of exponential screening operators. Assuming that the W algebra has a nontrivial current of spin 3, we find equations satisfied by the screening operators and classify their solutions.
Whittaker Vector of Deformed Virasoro Algebra and Macdonald Symmetric Functions
Yanagida, Shintarou
2016-03-01
We give a proof of Awata and Yamada's conjecture for the explicit formula of Whittaker vector of the deformed Virasoro algebra realized in the Fock space. The formula is expressed as a summation over Macdonald symmetric functions with factored coefficients. In the proof, we fully use currents appearing in the Fock representation of Ding-Iohara-Miki quantum algebra.
On isomorphisms of integral table algebras
Institute of Scientific and Technical Information of China (English)
FAN; Yun(樊恽); SUN; Daying(孙大英)
2002-01-01
For integral table algebras with integral table basis T, we can consider integral R-algebra RT over a subring R of the ring of the algebraic integers. It is proved that an R-algebra isomorphism between two integral table algebras must be an integral table algebra isomorphism if it is compatible with the so-called normalizings of the integral table algebras.
Cameron, Peter J
2007-01-01
This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,. new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics. - ;Developed to meet the needs of modern students, this Second Edition of the classic algebra text by Peter Cameron covers all the abstract algebra an undergraduate student is likely to need. Starting with an introductory overview of numbers, sets and functions, matrices, polynomials, and modular arithmetic, the text then introduces the most important algebraic structures: groups, rings and fields, and their properties. This is followed by coverage of vector spaces and modules with. applications to abelian groups and canonical forms before returning to the construction of the number systems, including the existence of transcendental numbers. The final chapters take the reader further into the th...
Indian Academy of Sciences (India)
Vijay Kodiyalam; R Srinivasan; V S Sunder
2000-08-01
In this paper, we study a tower $\\{A^G_n(d):n≥ 1\\}$ of finite-dimensional algebras; here, represents an arbitrary finite group, denotes a complex parameter, and the algebra $A^G_n(d)$ has a basis indexed by `-stable equivalence relations' on a set where acts freely and has 2 orbits. We show that the algebra $A^G_n(d)$ is semi-simple for all but a finite set of values of , and determine the representation theory (or, equivalently, the decomposition into simple summands) of this algebra in the `generic case'. Finally we determine the Bratteli diagram of the tower $\\{A^G_n(d): n≥ 1\\}$ (in the generic case).
Markarian, Nikita
2017-03-01
We introduce Weyl n-algebras and show how their factorization complex may be used to define invariants of manifolds. In the appendix, we heuristically explain why these invariants must be perturbative Chern-Simons invariants.
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Parametrizing Algebraic Curves
Lemmermeyer, Franz
2011-01-01
We present the technique of parametrization of plane algebraic curves from a number theorist's point of view and present Kapferer's simple and beautiful (but little known) proof that nonsingular curves of degree > 2 cannot be parametrized by rational functions.
Beginning algebra a textworkbook
McKeague, Charles P
1985-01-01
Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division
Intermediate algebra a textworkbook
McKeague, Charles P
1985-01-01
Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex
Institute of Scientific and Technical Information of China (English)
Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA
2004-01-01
In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.
Introduction to abstract algebra
Nicholson, W Keith
2012-01-01
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be
Noncommutative algebra and geometry
De Concini, Corrado; Vavilov, Nikolai 0
2005-01-01
Finite Galois Stable Subgroups of Gln. Derived Categories for Nodal Rings and Projective Configurations. Crowns in Profinite Groups and Applications. The Galois Structure of Ambiguous Ideals in Cyclic Extensions of Degree 8. An Introduction to Noncommutative Deformations of Modules. Symmetric Functions, Noncommutative Symmetric Functions and Quasisymmetric Functions II. Quotient Grothendieck Representations. On the Strong Rigidity of Solvable Lie Algebras. The Role of Bergman in Invesigating Identities in Matrix Algebras with Symplectic Involution. The Triangular Structure of Ladder Functors.
Generalized braided Hopf algebras
Institute of Scientific and Technical Information of China (English)
LU Zhong-jian; FANG Xiao-li
2009-01-01
The concept of (f, σ)-pair (B, H)is introduced, where B and H are Hopf algebras. A braided tensor category which is a tensor subcategory of the category HM of left H-comodules through an (f, σ)-pair is constructed. In particularly, a Yang-Baxter equation is got. A Hopf algebra is constructed as well in the Yetter-Drinfel'd category HHYD by twisting the multiplication of B.
Andrilli, Stephen
2010-01-01
Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Differential Hopf algebra structures on the universal enveloping algebra of a lie algebra
Hijligenberg, van den, N.W.; Martini, R.
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g)$. The construction of such differential structures is interpreted in terms of colour Lie superalgebras.
Topological ∗-algebras with *-enveloping Algebras II
Indian Academy of Sciences (India)
S J Bhatt
2001-02-01
Universal *-algebras *() exist for certain topological ∗-algebras called algebras with a *-enveloping algebra. A Frechet ∗-algebra has a *-enveloping algebra if and only if every operator representation of maps into bounded operators. This is proved by showing that every unbounded operator representation , continuous in the uniform topology, of a topological ∗-algebra , which is an inverse limit of Banach ∗-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-* algebra () of . Given a *-dynamical system (, , ), any topological ∗-algebra containing (, ) as a dense ∗-subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If $G = \\mathbb{R}$, if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ∗-automorphisms: then the smooth Schwartz crossed product $S(\\mathbb{R}, B, )$ satisfies $E(S(\\mathbb{R}, B, )) = C^*(\\mathbb{R}, A, )$. When is a Lie group, the ∞-elements ∞(), the analytic elements () as well as the entire analytic elements () carry natural topologies making them algebras with a *-enveloping algebra. Given a non-unital *-algebra , an inductive system of ideals is constructed satisfying $A = C^*-\\mathrm{ind} \\lim I_$; and the locally convex inductive limit $\\mathrm{ind}\\lim I_$ is an -convex algebra with the *-enveloping algebra and containing the Pedersen ideal of . Given generators with weakly Banach admissible relations , we construct universal topological ∗-algebra (, ) and show that it has a *-enveloping algebra if and only if (, ) is *-admissible.
Institute of Scientific and Technical Information of China (English)
An Hui-hui; Wang Zhi-chun
2016-01-01
L-octo-algebra with 8 operations as the Lie algebraic analogue of octo-algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo-algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri-algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.
Redesigning College Algebra for Student Retention: Results of a Quasi-Experimental Research Study
Thompson, Carla J.; McCann, Patricia
2010-01-01
One prohibitory component to graduation rates in college is the lack of student success in college algebra. The current national passing rate of college students enrolled in college algebra is approximately 40 percent. Lack of success in college algebra creating higher enrollments in remediation courses for students has also been linked to…
Universal Algebra Applied to Hom-Associative Algebras, and More
Hellström, Lars; Makhlouf, Abdenacer; Silvestrov, Sergei D.
2014-01-01
The purpose of this paper is to discuss the universal algebra theory of hom-algebras. This kind of algebra involves a linear map which twists the usual identities. We focus on hom-associative algebras and hom-Lie algebras for which we review the main results. We discuss the envelopment problem, operads, and the Diamond Lemma; the usual tools have to be adapted to this new situation. Moreover we study Hilbert series for the hom-associative operad and free algebra, and describe them up to total...
Axis Problem of Rough 3-Valued Algebras
Institute of Scientific and Technical Information of China (English)
Jianhua Dai; Weidong Chen; Yunhe Pan
2006-01-01
The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.
Conformal manifolds in four dimensions and chiral algebras
Buican, Matthew; Nishinaka, Takahiro
2016-11-01
Any { N }=2 superconformal field theory (SCFT) in four dimensions has a sector of operators related to a two-dimensional chiral algebra containing a Virasoro sub-algebra. Moreover, there are well-known examples of isolated SCFTs whose chiral algebra is a Virasoro algebra. In this note, we consider the chiral algebras associated with interacting { N }=2 SCFTs possessing an exactly marginal deformation that can be interpreted as a gauge coupling (i.e., at special points on the resulting conformal manifolds, free gauge fields appear that decouple from isolated SCFT building blocks). At any point on these conformal manifolds, we argue that the associated chiral algebras possess at least three generators. In addition, we show that there are examples of SCFTs realizing such a minimal chiral algebra: they are certain points on the conformal manifold obtained by considering the low-energy limit of type IIB string theory on the three complex-dimensional hypersurface singularity {x}13+{x}23+{x}33+α {x}1{x}2{x}3+{w}2=0. The associated chiral algebra is the { A }(6) theory of Feigin, Feigin, and Tipunin. As byproducts of our work, we argue that (i) a collection of isolated theories can be conformally gauged only if there is a SUSY moduli space associated with the corresponding symmetry current moment maps in each sector, and (ii) { N }=2 SCFTs with a≥slant c have hidden fermionic symmetries (in the sense of fermionic chiral algebra generators).
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Over a field F of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector space A［D]=A［D] from any pair of a commutative associative algebra A with an identity element and the polynomial algebra ［D] of a commutative derivation subalgebra D of A. We prove that A[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only if A is D－simple and A［D] acts faithfully on A. Thus we obtain a lot of simple algebras.
Algebra II workbook for dummies
Sterling, Mary Jane
2014-01-01
To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr
Simple Algebras of Invariant Operators
Institute of Scientific and Technical Information of China (English)
Xiaorong Shen; J.D.H. Smith
2001-01-01
Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.
Multipoint Lax operator algebras. Almost-graded structure and central extensions
Schlichenmaier, Martin
2013-01-01
Recently, Lax operator algebras appeared as a new class of higher genus current type algebras. Based on I.Krichever's theory of Lax operators on algebraic curves they were introduced by I. Krichever and O. Sheinman. These algebras are almost-graded Lie algebras of currents on Riemann surfaces with marked points (in-points, out-points, and Tyurin points). In a previous joint article of the author with Sheinman the local cocycles and associated almost-graded central extensions are classified in...
Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra
Pitsch, Wolfgang; Zarzuela, Santiago
2016-01-01
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...
SLAPP: A systolic linear algebra parallel processor
Energy Technology Data Exchange (ETDEWEB)
Drake, B.L.; Luk, F.T.; Speiser, J.M.; Symanski, J.J. (Naval Ocean Systems Center and Cornell Univ.)
1987-07-01
Systolic array computer architectures provide a means for fast computation of the linear algebra algorithms that form the building blocks of many signal-processing algorithms, facilitating their real-time computation. For applications to signal processing, the systolic array operates on matrices, an inherently parallel view of the data, using numerical linear algebra algorithms that have been suitably parallelized to efficiently utilize the available hardware. This article describes work currently underway at the Naval Ocean Systems Center, San Diego, California, to build a two-dimensional systolic array, SLAPP, demonstrating efficient and modular parallelization of key matric computations for real-time signal- and image-processing problems.
Surveys in differential-algebraic equations III
Reis, Timo
2015-01-01
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
Surveys in differential-algebraic equations II
Reis, Timo
2015-01-01
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Observers for DAEs - DAEs in chemical processes - Optimal control of DAEs - DAEs from a functional-analytic viewpoint - Algebraic methods for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
Structure of Solvable Quadratic Lie Algebras
Institute of Scientific and Technical Information of China (English)
ZHU Lin-sheng
2005-01-01
@@ Killing form plays a key role in the theory of semisimple Lie algebras. It is natural to extend the study to Lie algebras with a nondegenerate symmetric invariant bilinear form. Such a Lie algebra is generally called a quadratic Lie algebra which occur naturally in physics[10,12,13]. Besides semisimple Lie algebras, interesting quadratic Lie algebras include the Kac-Moody algebras and the Extended Affine Lie algebras.
Algebraic orders on $K_{0}$ and approximately finite operator algebras
Power, S C
1993-01-01
This is a revised and corrected version of a preprint circulated in 1990 in which various non-self-adjoint limit algebras are classified. The principal invariant is the scaled $K_0$ group together with the algebraic order on the scale induced by partial isometries in the algebra.
Approximate Preservers on Banach Algebras and C*-Algebras
Directory of Open Access Journals (Sweden)
M. Burgos
2013-01-01
Full Text Available The aim of the present paper is to give approximate versions of Hua’s theorem and other related results for Banach algebras and C*-algebras. We also study linear maps approximately preserving the conorm between unital C*-algebras.
The Planar Algebra Associated to a Kac Algebra
Indian Academy of Sciences (India)
Vijay Kodiyalam; Zeph Landau; V S Sunder
2003-02-01
We obtain (two equivalent) presentations – in terms of generators and relations-of the planar algebra associated with the subfactor corresponding to (an outer action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that the antipode of the Kac algebra agrees with the `rotation on 2-boxes'.
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Derived Algebraic Geometry II: Noncommutative Algebra
Lurie, Jacob
2007-01-01
In this paper, we present an infinity-categorical version of the theory of monoidal categories. We show that the infinity category of spectra admits an essentially unique monoidal structure (such that the tensor product preserves colimits in each variable), and thereby recover the classical smash-product operation on spectra. We develop a general theory of algebras in a monoidal infinity category, which we use to (re)prove some basic results in the theory of associative ring spectra. We also develop an infinity-categorical theory of monads, and prove a version of the Barr-Beck theorem.
Durka, R
2016-01-01
We explore the $S$-expansion framework to analyze freedom in closing the multiplication tables for the abelian semigroups. Including possibility of the zero element in the resonant decomposition and relating the Lorentz generator with the semigroup identity element leads to the wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results we find not only all the Maxwell algebras of type $\\mathfrak{B}_m$, $\\mathfrak{C}_m$, and recently introduced $\\mathfrak{D}_m$, but we also produce new examples. We discuss some prospects concerning further enlarging the algebras and provide all necessary constituents for constructing the gravity actions based on the obtained results.
Durka, R.
2017-04-01
The S-expansion framework is analyzed in the context of a freedom in closing the multiplication tables for the abelian semigroups. Including the possibility of the zero element in the resonant decomposition, and associating the Lorentz generator with the semigroup identity element, leads to a wide class of the expanded Lie algebras introducing interesting modifications to the gauge gravity theories. Among the results, we find all the Maxwell algebras of type {{B}m} , {{C}m} , and the recently introduced {{D}m} . The additional new examples complete the resulting generalization of the bosonic enlargements for an arbitrary number of the Lorentz-like and translational-like generators. Some further prospects concerning enlarging the algebras are discussed, along with providing all the necessary constituents for constructing the gravity actions based on the obtained results.
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Adaptive Algebraic Multigrid Methods
Energy Technology Data Exchange (ETDEWEB)
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Algebraic totality, towards completeness
Tasson, Christine
2009-01-01
Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we recall definitions of finiteness spaces and describe their basic properties deduced from the general theory of linearly topologised spaces. Then we give an interpretation of LL based on linear algebra. Second, thanks to separation properties, we can introduce an algebraic notion of totality candidate in the framework of linearly topologised spaces: a totality candidate is a closed affine subspace which does not contain 0. We show that finiteness spaces with totality candidates constitute a model of classical LL. Finally, we give a barycentric simply typed lambda-calculus, with booleans ${\\mathcal{B}}$ and a conditional operator, which can be interpreted in this model. We prove completeness at type ${\\mathcal{B}}^n\\to{\\mathcal{B}}$ for every n by an algebraic metho...
Nearly projective Boolean algebras
Heindorf, Lutz; Shapiro, Leonid B
1994-01-01
The book is a fairly complete and up-to-date survey of projectivity and its generalizations in the class of Boolean algebras. Although algebra adds its own methods and questions, many of the results presented were first proved by topologists in the more general setting of (not necessarily zero-dimensional) compact spaces. An appendix demonstrates the application of advanced set-theoretic methods to the field. The intended readers are Boolean and universal algebraists. The book will also be useful for general topologists wanting to learn about kappa-metrizable spaces and related classes. The text is practically self-contained but assumes experience with the basic concepts and techniques of Boolean algebras.
Jarvis, Frazer
2014-01-01
The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...
Indian Academy of Sciences (India)
Anil K Karn
2003-02-01
Order unit property of a positive element in a *-algebra is defined. It is proved that precisely projections satisfy this order theoretic property. This way, unital hereditary *-subalgebras of a *-algebra are characterized.
Linear Mappings of Quaternion Algebra
Kleyn, Aleks
2011-01-01
In the paper I considered linear and antilinear automorphisms of quaternion algebra. I proved the theorem that there is unique expansion of R-linear mapping of quaternion algebra relative to the given set of linear and antilinear automorphisms.
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Automorphism groups of pointed Hopf algebras
Institute of Scientific and Technical Information of China (English)
YANG Shilin
2007-01-01
The group of Hopf algebra automorphisms for a finite-dimensional semisimple cosemisimple Hopf algebra over a field k was considered by Radford and Waterhouse. In this paper, the groups of Hopf algebra automorphisms for two classes of pointed Hopf algebras are determined. Note that the Hopf algebras we consider are not semisimple Hopf algebras.
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Reed, Nat
2011-01-01
For grades 3-5, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets
Reed, Nat
2011-01-01
For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets
Recollements of extension algebras
Institute of Scientific and Technical Information of China (English)
CHEN; Qinghua(陈清华); LIN; Yanan(林亚南)
2003-01-01
Let A be a finite-dimensional algebra over arbitrary base field k. We prove: if the unbounded derived module category D-(Mod-A) admits symmetric recollement relative to unbounded derived module categories of two finite-dimensional k-algebras B and C:D-(Mod- B) ( ) D-(Mod- A) ( ) D-(Mod- C),then the unbounded derived module category D-(Mod - T(A)) admits symmetric recollement relative to the unbounded derived module categories of T(B) and T(C):D-(Mod - T(B)) ( ) D-(Mod - T(A)) ( ) D-(Mod - T(C)).
Cooperstein, Bruce
2010-01-01
Vector SpacesFieldsThe Space FnVector Spaces over an Arbitrary Field Subspaces of Vector SpacesSpan and IndependenceBases and Finite Dimensional Vector SpacesBases and Infinite Dimensional Vector SpacesCoordinate VectorsLinear TransformationsIntroduction to Linear TransformationsThe Range and Kernel of a Linear TransformationThe Correspondence and Isomorphism TheoremsMatrix of a Linear TransformationThe Algebra of L(V, W) and Mmn(F)Invertible Transformations and MatricesPolynomialsThe Algebra of PolynomialsRoots of PolynomialsTheory of a Single Linear OperatorInvariant Subspaces of an Operator
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
Division algebras and supersymmetry
Baez, John C
2009-01-01
Supersymmetry is deeply related to division algebras. Nonabelian Yang--Mills fields minimally coupled to massless spinors are supersymmetric if and only if the dimension of spacetime is 3, 4, 6 or 10. The same is true for the Green--Schwarz superstring. In both cases, supersymmetry relies on the vanishing of a certain trilinear expression involving a spinor field. The reason for this, in turn, is the existence of normed division algebras in dimensions 1, 2, 4 and 8: the real numbers, complex numbers, quaternions and octonions. Here we provide a self-contained account of how this works.
Algebra & trigonometry super review
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y
Algebraic Topology, Rational Homotopy
1988-01-01
This proceedings volume centers on new developments in rational homotopy and on their influence on algebra and algebraic topology. Most of the papers are original research papers dealing with rational homotopy and tame homotopy, cyclic homology, Moore conjectures on the exponents of the homotopy groups of a finite CW-c-complex and homology of loop spaces. Of particular interest for specialists are papers on construction of the minimal model in tame theory and computation of the Lusternik-Schnirelmann category by means articles on Moore conjectures, on tame homotopy and on the properties of Poincaré series of loop spaces.
Partially ordered algebraic systems
Fuchs, Laszlo
2011-01-01
Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...
Algebra & trigonometry I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq
Derivations of generalized Weyl algebras
Institute of Scientific and Technical Information of China (English)
SU; Yucai(苏育才)
2003-01-01
A class of the associative and Lie algebras A[D] = A × F[D] of Weyl type are studied, where Ais a commutative associative algebra with an identity element over a field F of characteristic zero, and F[D] isthe polynomial algebra of a finite dimensional commutative subalgebra of locally finite derivations of A suchthat A is D-simple. The derivations of these associative and Lie algebras are precisely determined.
The theory of algebraic numbers
Pollard, Harry
1998-01-01
An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.
Optimal Algorithm for Algebraic Factoring
Institute of Scientific and Technical Information of China (English)
支丽红
1997-01-01
This paper presents on optimized method for factoring multivariate polynomials over algebraic extension fields defined by an irreducible ascending set. The basic idea is to convert multivariate polynomials to univariate polynomials and algebraic extension fields to algebraic number fields by suitable integer substituteions.Then factorize the univariate polynomials over the algebraic number fields.Finally,construct mulativariate factors of the original polynomial by Hensel lemma and TRUEFACTOR test.Some examples with timing are included.
Hitt, Fernando; Saboya, Mireille; Zavala, Carlos Cortés
2017-01-01
Part of the research community that has followed the Early Algebra paradigm is currently delimiting the differences between arithmetic thinking and algebraic thinking. This trend could prevent new research approaches to the problem of learning algebra, hiding the importance of considering an arithmetico-algebraic thinking, a new approach which…
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Perturbation semigroup of matrix algebras
Neumann, N.; Suijlekom, W.D. van
2016-01-01
In this article we analyze the structure of the semigroup of inner perturbations in noncommutative geometry. This perturbation semigroup is associated to a unital associative *-algebra and extends the group of unitary elements of this *-algebra. We compute the perturbation semigroup for all matrix algebras.
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Laan, P. van der
2001-01-01
In the literature several Hopf algebras that can be described in terms of trees have been studied. This paper tries to answer the question whether one can understand some of these Hopf algebras in terms of a single mathematical construction. The starting point is the Hopf algebra of rooted trees as
An algebra of reversible computation
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules, basic reversible processes algebra (BRPA), algebra of reversible communicating processes (ARCP), recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
International Conference on Semigroups, Algebras and Operator Theory
Meakin, John; Rajan, A
2015-01-01
This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f...
Vibrational spectra of nickel metalloporphyrins: An algebraic approach
Indian Academy of Sciences (India)
Srinivasa Rao Karumuri; Joydeep Choudhury; Nirmal Kumar Sarkar; Ramendu Bhattacharjee
2009-03-01
One of the most interesting areas of current research in molecular physics is the study of the vibrationally excitated states of medium and large molecules. In view of the considerable amount of experimental activity in this area, one needs theoretical models within which to interpret experimental data. Using Lie algebraic method, the vibrational energy levels of nickel metalloporphyrins like Ni(OEP), Ni porphyrin and Ni(TPP) are calculated for 16 vibrational modes. The algebraic Hamiltonian $$H = E_{0} + \\sum_{i=1}^{n} A_{i}C_{i} + \\sum_{i < j} A_{ij}C_{ij} + \\sum_{i < j}^{n} _{ij}M_{ij}$,$$ where , and are the algebraic parameters which vary from molecule to molecule and , and are algebraic operators. The vibrational energy levels are calculated using algebraic model Hamiltonian and the results are compared with the experimental values. The results obtained by this model are very accurate.
The Maximal Graded Left Quotient Algebra of a Graded Algebra
Institute of Scientific and Technical Information of China (English)
Gonzalo ARANDA PINO; Mercedes SILES MOLINA
2006-01-01
We construct the maximal graded left quotient algebra of every graded algebra A without homogeneous total right zero divisors as the direct limit of graded homomorphisms (of left A-modules)from graded dense left ideals of A into a graded left quotient algebra of A. In the case of a superalgebra,and with some extra hypothesis, we prove that the component in the neutral element of the group of the maximal graded left quotient algebra coincides with the maximal left quotient algebra of the component in the neutral element of the group of the superalgebra.
Observable Algebra in Field Algebra of G-spin Models
Institute of Scientific and Technical Information of China (English)
蒋立宁
2003-01-01
Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra AH, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that AH is a C*-algebra. The correspondence between H and AH is strictly monotonic. Finally, a duality between D(H) and AH is given via an irreducible vacuum C*-representation of F.
On the simplicity of Lie algebras associated to Leavitt algebras
Abrams, Gene
2009-01-01
For any field $K$ and integer $n\\geq 2$ we consider the Leavitt algebra $L = L_K(n)$. $L$ is an associative algebra, but we view $L$ as a Lie algebra using the bracket $[a,b]=ab-ba$ for $a,b \\in L$. We denote this Lie algebra as $L^-$, and consider its Lie subalgebra $[L^-,L^-]$. In our main result, we show that $[L^-,L^-]$ is a simple Lie algebra if and only if char$(K)$ divides $n-1$. For any positive integer $d$ we let $S = M_d(L_K(n))$ be the $d\\times d$ matrix algebra over $L_K(n)$. We give sufficient conditions for the simplicity and non-simplicity of the Lie algebra $[S^-,S^-]$.
Commutative algebra with a view toward algebraic geometry
Eisenbud, David
1995-01-01
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...
Institute of Scientific and Technical Information of China (English)
SU; Yucai(
2001-01-01
［1］ Kawamoto, N., Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J., 1986, 16: 417.［2］ Osborn, J. M., New simple infinite－dimensional Lie algebras of characteristic 0, J. Alg., 1996, 185: 820.［3］ Dokovic, D. Z., Zhao, K., Derivations, isomorphisms, and second cohomology of generalized Witt algebras, Trans. of Amer. Math. Soc., 1998, 350(2): 643.［4］ Dokovic, D. Z., Zhao, K., Generalized Cartan type W Lie algebras in characteristic zero, J. Alg., 1997, 195: 170.［5］ Osborn, J. M., Zhao, K., Generalized Poisson bracket and Lie algebras of type H in characteristic 0, Math. Z., 1999, 230: 107.［6］ Osborn, J. M., Zhao, K., Generalized Cartan type K Lie algebras in characteristic 0, Comm. Alg., 1997, 25: 3325.［7］ Zhao, K., Isomorphisms between generalized Cartan type W Lie algebras in characteristic zero, Canadian J. Math., 1998, 50: 210.［8］ Passman, D. P., Simple Lie algebras of Witt type, J. Algebra, 1998, 206: 682.［9］ Jordan, D. A., On the simplicity of Lie algebras of derivations of commutative algebras, J. Alg., 2000, 206: 682.［10］ Xu, X., New generalized simple Lie algebras of Cartan type over a field with characteristic 0, J. Alg., 2000, 244: 23.［11］ Su, Y., Xu, X., Zhang, H., Derivation－simple algebras and the structures of Lie algebras of generalized Witt type, J. Alg., 2000, 233: 642.［12］ Dixmer, J., Enveloping Algebras, Amsterdam: North Holland, 1977.
Quantitative Algebraic Reasoning
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon
2016-01-01
We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We deﬁne an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...
Algebraic topology and concurrency
DEFF Research Database (Denmark)
Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric
2006-01-01
We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...
Operation of Algebraic Fractions
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>The first step in factorizing algebraic expressions is to take out the common factors of all the terms of the expression.For example,2x~2+14x+24=2(x~2+7x+12)=2(x+3)(x+4) The three identities are also useful in factorizing some quadratic expressions:
Mayes, Robert
2004-01-01
There is a call for change in College Algebra. The traditional focus on skill development is failing, resulting in withdrawal and failure rates that are excessive. In addition, too many students who are successful do not continue on to take a successive mathematics course. The Institute for Mathematics Learning at West Virginia University has been…
Algebraic Thinking through Origami.
Higginson, William; Colgan, Lynda
2001-01-01
Describes the use of paper folding to create a rich environment for discussing algebraic concepts. Explores the effect that changing the dimensions of two-dimensional objects has on the volume of related three-dimensional objects. (Contains 13 references.) (YDS)
Pipekaru, T.
1975-01-01
Deze handleiding, geschreven in opdracht van het bestuur van de Afdeling der Algemene Wetenschappen van de T.H. te Delft, is bedoeld als collegedictaat Lineaire Algebra voor het eerste studiejaar van vrijwel alle technische afdelingen. Hopelijk wordt hiermee voorzien in een behoefte die is ontstaan
The Green formula and heredity of algebras
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
[1]Green, J. A., Hall algebras, hereditary algebras and quantum groups, Invent. Math. 1995, 120: 361-377.[2]Ringel, C. M., Green's theorem on Hall algebras, in Representations of Algebras and Related Topics, CMS Conference Proceedings 19, Providence, 1996, 185-245.[3]Xiao J., Drinfeld double and Ringel-Green theory of Hall Algebras, J. Algebra, 1997, 190: 100-144.[4]Sevenhant, B., Van den Bergh, M., A relation between a conjecture of Kac and the structure of the Hall algebra,J. Pure Appl. Algebra, 2001, 160: 319-332.[5]Deng B., Xiao, J., On double Ringel-Hall algebras, J. Algebra, 2002, 251: 110-149.
Notes on Piecewise-Koszul Algebras
Institute of Scientific and Technical Information of China (English)
Jia Feng L(U); Xiao Lan YU
2011-01-01
The relationships between piecewise-Koszul algebras and other "Koszul-type" algebras are discussed.. The Yoneda-Ext algebra and the dual algebra of a piecewise-Koszul algebra are studied, and a sufficient condition for the dual algebra A to be piecewise-Koszul is given. Finally, by studying the trivial extension algebras of the path algebras of Dynkin quivers in bipartite orientation, we give explicit constructions for piecewise-Koszul algebras with arbitrary "period" and piecewise-Koszul algebras with arbitrary "jump-degree".
On ultraproducts of operator algebras
Institute of Scientific and Technical Information of China (English)
LI; Weihua
2005-01-01
Some basic questions on ultraproducts of C*-algebras and yon Neumann algebras, including the relation to K-theory of C*-algebras are considered. More specifically,we prove that under certain conditions, the K-groups of ultraproduct of C*-algebras are isomorphic to the ultraproduct of respective K-groups of C*-algebras. We also show that the ultraproducts of factors of type Ⅱ1 are prime, i.e. not isomorphic to any non-trivial tensor product.
Ockham Algebras Arising from Monoids
Institute of Scientific and Technical Information of China (English)
T.S. Blyth; H.J. Silva; J.C. Varlet
2001-01-01
An Ockham algebra (L; f) is of boolean shape if its lattice reduct L is boolean and f is not the complementation. We investigate a natural construction of Ockham algebras of boolean shape from any given monoid. Of particular interest is the question of when such algebras are subdirectly irreducible. In settling this, we obtain what is probably the first example of a subdirectly irreducible Ockham algebra that does not belong to the generalized variety Kω. We also prove that every semigroup can be embedded in the monoid of endomorphisms of an Ockham algebra of boolean shape.
Twisted derivations of Hopf algebras
Davydov, Alexei
2012-01-01
In the paper we introduce the notion of twisted derivation of a bialgebra. Twisted derivations appear as infinitesimal symmetries of the category of representations. More precisely they are infinitesimal versions of twisted automorphisms of bialgebras. Twisted derivations naturally form a Lie algebra (the tangent algebra of the group of twisted automorphisms). Moreover this Lie algebra fits into a crossed module (tangent to the crossed module of twisted automorphisms). Here we calculate this crossed module for universal enveloping algebras and for the Sweedler's Hopf algebra.
MODEL IDENTIFICATION AND COMPUTER ALGEBRA.
Bollen, Kenneth A; Bauldry, Shawn
2010-10-07
Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods.
$A\\mathcal{T}$-Algebras and Extensions of $AT$-Algebras
Indian Academy of Sciences (India)
Hongliang Yao
2010-04-01
Lin and Su classified $A\\mathcal{T}$-algebras of real rank zero. This class includes all $A\\mathbb{T}$-algebras of real rank zero as well as many *-algebras which are not stably finite. An $A\\mathcal{T}$-algebra often becomes an extension of an $A\\mathbb{T}$-algebra by an -algebra. In this paper, we show that there is an essential extension of an $A\\mathbb{T}$-algebra by an -algebra which is not an $A\\mathcal{T}$-algebra. We describe a characterization of an extension of an $A\\mathbb{T}$-algebra by an -algebra if is an $A\\mathcal{T}$-algebra.
Algebraic connectivity and graph robustness.
Energy Technology Data Exchange (ETDEWEB)
Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T. (University of New Mexico)
2009-07-01
Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.
Abstract algebra structure and application
Finston, David R
2014-01-01
This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic (linear) error-correcting codes, including cyclic codes ruler and compass constructions cryptography symmetry of patterns in the real plane Abstract Algebra: Structure and Application is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject, or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.
Twin TQFTs and Frobenius Algebras
Directory of Open Access Journals (Sweden)
Carmen Caprau
2013-01-01
Full Text Available We introduce the category of singular 2-dimensional cobordisms and show that it admits a completely algebraic description as the free symmetric monoidal category on a twin Frobenius algebra, by providing a description of this category in terms of generators and relations. A twin Frobenius algebra (C,W,z,z∗ consists of a commutative Frobenius algebra C, a symmetric Frobenius algebra W, and an algebra homomorphism z:C→W with dual z∗:W→C, satisfying some extra conditions. We also introduce a generalized 2-dimensional Topological Quantum Field Theory defined on singular 2-dimensional cobordisms and show that it is equivalent to a twin Frobenius algebra in a symmetric monoidal category.
Hopf algebras in noncommutative geometry
Varilly, J C
2001-01-01
We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of noncommutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups.
Constructive version of Boolean algebra
Ciraulo, Francesco; Toto, Paola
2012-01-01
The notion of overlap algebra introduced by G. Sambin provides a constructive version of complete Boolean algebra. Here we first show some properties concerning overlap algebras: we prove that the notion of overlap morphism corresponds classically to that of map preserving arbitrary joins; we provide a description of atomic set-based overlap algebras in the language of formal topology, thus giving a predicative characterization of discrete locales; we show that the power-collection of a set is the free overlap algebra join-generated from the set. Then, we generalize the concept of overlap algebra and overlap morphism in various ways to provide constructive versions of the category of Boolean algebras with maps preserving arbitrary existing joins.
Current Algebra Quarks and What Else?
Fritzsch, Harald; Fritzsch, Harald; Gell-Mann, Murray
1972-01-01
After receiving many requests for reprints of this article, describing the original ideas on the quark gluon gauge theory, which we later named QCD, we decided to place the article in the e-Print archive.
The q-AGT-W relations via shuffle algebras
Neguţ, Andrei
2016-01-01
We construct the action of the q-deformed W-algebra on its level r representation geometrically, using the moduli space of U(r) instantons on the plane and the double shuffle algebra. We give explicit formulas for the action of W-currents in the fixed point basis of the level r representation, and prove a relation between the Carlsson-Okounkov Ext operator and vertex operators for the deformed W-algebra. We interpret this result as a q-deformed version of the AGT-W relations.
Dual number coefficient octonion algebra, field equations and conservation laws
Chanyal, B. C.; Chanyal, S. K.
2016-08-01
Starting with octonion algebra, we develop the dual number coefficient octonion (DNCO) algebra having sixteen components. DNCO forms of generalized potential, field and current equations are discussed in consistent manner. We have made an attempt to write the DNCO form of generalized Dirac-Maxwell's equations in presence of electric and magnetic charges (dyons). Accordingly, we demonstrate the work-energy theorem of classical mechanics reproducing the continuity equation for dyons in terms of DNCO algebra. Further, we discuss the DNCO form of linear momentum conservation law for dyons.
Reinvention of early algebra : developmental research on the transition from arithmetic to algebra
Amerom, B.A. van
2002-01-01
In chapter 1 we give our reasons for carrying out this developmental research project on the transition from arithmetic to algebra, which includes the design of an experimental learning strand on solving equations. Chapter 2 describes the theoretical background of the book: current views on the teac
Stable Recursive Subhomogeneous Algebras
Liang, Hutian
2011-01-01
In this paper, we introduce stable recursive subhomogeneous algebras (SRSHAs), which is analogous to recursive subhomogeneous algebras (RSHAs) introduced by N. C. Phillips in the studies of free minimal integer actions on compact metric spaces. The difference between the stable version and the none stable version is that the irreducible representations of SRSHAs are infinite dimensional, but the irreducible representations of the RSHAs are finite dimensional. While RSHAs play an important role in the study of free minimal integer actions on compact metric spaces, SRSHAs play an analogous role in the study of free minimal actions by the group of the real numbers on compact metric spaces. In this paper, we show that simple inductive limits of SRSHAs with no dimension growth in which the connecting maps are injective and non-vanishing have topological stable rank one.
Testing algebraic geometric codes
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Topological convolution algebras
Alpay, Daniel
2012-01-01
In this paper we introduce a new family of topological convolution algebras of the form $\\bigcup_{p\\in\\mathbb N} L_2(S,\\mu_p)$, where $S$ is a Borel semi-group in a locally compact group $G$, which carries an inequality of the type $\\|f*g\\|_p\\le A_{p,q}\\|f\\|_q\\|g\\|_p$ for $p > q+d$ where $d$ pre-assigned, and $A_{p,q}$ is a constant. We give a sufficient condition on the measures $\\mu_p$ for such an inequality to hold. We study the functional calculus and the spectrum of the elements of these algebras, and present two examples, one in the setting of non commutative stochastic distributions, and the other related to Dirichlet series.
Jaszunska, Joanna
2010-01-01
The structure of the algebra K[M] of the Chinese monoid M over a field K is studied. The minimal prime ideals are described. They are determined by certain homogeneous congruences on M and they are in a one to one correspondence with diagrams of certain special type. There are finitely many such ideals. It is also shown that the prime radical B(K[M]) of K[M] coincides with the Jacobson radical and the monoid M embeds into the algebra K[M]/B(K[M]). A new representation of M as a submonoid of the direct product of finitely many copies of the bicyclic monoid and finitely many copies of the infinite cyclic monoid is derived. Consequently, M satisfies a nontrivial identity.
Testing algebraic geometric codes
Institute of Scientific and Technical Information of China (English)
CHEN Hao
2009-01-01
Property testing was initially studied from various motivations in 1990's.A code C (∩)GF(r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector's coordinates.The problem of testing codes was firstly studied by Blum,Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs).How to characterize locally testable codes is a complex and challenge problem.The local tests have been studied for Reed-Solomon (RS),Reed-Muller (RM),cyclic,dual of BCH and the trace subcode of algebraicgeometric codes.In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions).We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.
Practical Algebraic Renormalization
Grassi, P A; Steinhauser, M
1999-01-01
A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the Standard Model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustra...
Operator product expansion algebra
Energy Technology Data Exchange (ETDEWEB)
Holland, Jan [CPHT, Ecole Polytechnique, Paris-Palaiseau (France)
2014-07-01
The Operator Product Expansion (OPE) is a theoretical tool for studying the short distance behaviour of products of local quantum fields. Over the past 40 years, the OPE has not only found widespread computational application in high-energy physics, but, on a more conceptual level, it also encodes fundamental information on algebraic structures underlying quantum field theories. I review new insights into the status and properties of the OPE within Euclidean perturbation theory, addressing in particular the topics of convergence and ''factorisation'' of the expansion. Further, I present a formula for the ''deformation'' of the OPE algebra caused by a quartic interaction. This formula can be used to set up a novel iterative scheme for the perturbative computation of OPE coefficients, based solely on the zeroth order coefficients (and renormalisation conditions) as initial input.
Combinatorics and commutative algebra
Stanley, Richard P
1996-01-01
Some remarkable connections between commutative algebra and combinatorics have been discovered in recent years. This book provides an overview of two of the main topics in this area. The first concerns the solutions of linear equations in nonnegative integers. Applications are given to the enumeration of integer stochastic matrices (or magic squares), the volume of polytopes, combinatorial reciprocity theorems, and related results. The second topic deals with the face ring of a simplicial complex, and includes a proof of the Upper Bound Conjecture for Spheres. An introductory chapter giving background information in algebra, combinatorics and topology broadens access to this material for non-specialists. New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors. Included in this chapter is an outline of the proof of McMullen's g-conjecture for simplicial polytopes based on toric varieties, as well as a discussion of the face rings of such special ...
Algebra, Arithmetic, and Geometry
Tschinkel, Yuri
2009-01-01
The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont
Redesigning linear algebra algorithms
Energy Technology Data Exchange (ETDEWEB)
Dongarra, J.J.
1983-01-01
Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. The author examines the problem and constructs alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the FORTRAN portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers. 13 references.
Redesigning linear algebra algorithms
Energy Technology Data Exchange (ETDEWEB)
Dongarra, J.J.
1983-01-01
Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. In this paper we examine the problem and construct alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the Fortran portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers.
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
Lie algebraic noncommutative gravity
Banerjee, Rabin; Mukherjee, Pradip; Samanta, Saurav
2007-06-01
We exploit the Seiberg-Witten map technique to formulate the theory of gravity defined on a Lie algebraic noncommutative space-time. Detailed expressions of the Seiberg-Witten maps for the gauge parameters, gauge potentials, and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.
Lutfiyya, Lutfi A
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.
Beigie, Darin
2014-01-01
Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Semisimple Metacyclic Group Algebras
Indian Academy of Sciences (India)
Gurmeet K Bakshi; Shalini Gupta; Inder Bir S Passi
2011-11-01
Given a group of order $p_1p_2$, where $p_1,p_2$ are primes, and $\\mathbb{F}_q$, a finite field of order coprime to $p_1p_2$, the object of this paper is to compute a complete set of primitive central idempotents of the semisimple group algebra $\\mathbb{F}_q[G]$. As a consequence, we obtain the structure of $\\mathbb{F}_q[G]$ and its group of automorphisms.
Algebra & trigonometry II essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica
Ext algebra of Nichols algebras of type $A_2$
Yu, Xiaolan
2011-01-01
We give the full structure of the Ext algebra of a Nichols algebra of type $A_2$ by using the Hochschild-Serre spectral sequence. As an application, we show that the pointed Hopf algebras $u(\\mathcal{D}, \\lmd, \\mu)$ with Dynkin diagrams of type $A$, $D$, or $E$, except for $A_1$ and $A_1\\times A_1$ with the order $N_{J}>2$ for at least one component $J$, are wild.
LOCAL AUTOMORPHISMS OF SEMISIMPLE ALGEBRAS AND GROUP ALGEBRAS
Institute of Scientific and Technical Information of China (English)
Wang Dengyin; Guan Qi; Zhan9 Dongju
2011-01-01
Let F be a field of characteristic not 2,and let A be a finite-dimensional semisimple F-algebra.All local automorphisms of A are characterized when all the degrees of A are larger than 1.If F is further assumed to be an algebraically closed field of characteristic zero,K a finite group,FK the group algebra of K over F,then all local automorphisms of FK are also characterized.
Stability of functional equations in Banach algebras
Cho, Yeol Je; Rassias, Themistocles M; Saadati, Reza
2015-01-01
Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the l...
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Energy Technology Data Exchange (ETDEWEB)
Palmkvist, Jakob, E-mail: palmkvist@ihes.fr [Institut des Hautes Etudes Scientifiques, 35 Route de Chartres, FR-91440 Bures-sur-Yvette (France)
2014-01-15
We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.
Clifford Algebras and Their Decomposition into Conjugate Fermionic Heisenberg Algebras
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent; Kato La, V.
2016-10-01
We discuss a construction scheme for Clifford numbers of arbitrary dimension. The scheme is based upon performing direct products of the Pauli spin and identity matrices. Conjugate fermionic algebras can then be formed by considering linear combinations of the Clifford numbers and the Hermitian conjugates of such combinations. Fermionic algebras are important in investigating systems that follow Fermi-Dirac statistics. We will further comment on the applications of Clifford algebras to Fueter analyticity, twistors, color algebras, M-theory and Leech lattice as well as unification of ancient and modern geometries through them.
DERIVATIONS ON DIFFERENTIAL OPERATOR ALGEBRA AND WEYL ALGEBRA
Institute of Scientific and Technical Information of China (English)
CHENCAOYU
1996-01-01
Let L be an n-dimensional nilpotent Lie algebra with a basis{x1…,xn),and every xi acts as a locally nilpotent derivation on algebra A. This paper shows that there exists a set of derivations{y1,…,yn}on U(L) such that (A#U(L))#k{y,1,…,yn] is ismorphic to the Weyl algebra An(A).The author also uses the de4rivations to obtain a necessary and sufficient condition for a finite dimesional Lie algebra to be nilpotent.
On the cohomology of Leibniz conformal algebras
Zhang, Jiao
2015-04-01
We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.
Assessing Algebraic Solving Ability: A Theoretical Framework
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Whittaker vector of deformed Virasoro algebra and Macdonald symmetric functions
Yanagida, Shintarou
2014-01-01
We give a proof of Awata and Yamada's conjecture for the explicit formula of Whittaker vector of the deformed Virasoro algebra realized in the Fock space. The formula is expressed as a summation over Macdonald symmetric functions with factored coefficients. In the proof we fully use currents appearing in the Fock representation of Ding-Iohara-Miki quantum algebra. We also mention an interpretation of Whittaker vector in terms of the geometry of the Hilbert schemes of points on the affine plane.
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
Algebraic Quantum Mechanics and Pregeometry
Hiley, D J B P G D B J
2006-01-01
We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of "pregeometry" introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as "generalized points" we suggest an approach that may make it possible to dispense with an a priori given space manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford Algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra in a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of "neighbourhood operators", which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.
NON-COMMUTATIVE POISSON ALGEBRA STRUCTURES ON LIE ALGEBRA sln(fCq) WITH NULLITY M
Institute of Scientific and Technical Information of China (English)
Jie TONG; Quanqin JIN
2013-01-01
Non-commutative Poisson algebras are the algebras having both an associa-tive algebra structure and a Lie algebra structure together with the Leibniz law. In this paper, the non-commutative poisson algebra structures on the Lie algebras sln(fCq) are determined.
Novotna, Jarmila; Hoch, Maureen
2008-01-01
Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…
ALGEBRAIC EXTENSION OF *-A OPERATOR
Institute of Scientific and Technical Information of China (English)
左红亮; 左飞
2014-01-01
In this paper, we study various properties of algebraic extension of∗-A operator. Specifically, we show that every algebraic extension of∗-A operator has SVEP and is isoloid. And if T is an algebraic extension of∗-A operator, then Weyl’s theorem holds for f (T ), where f is an analytic functions on some neighborhood of σ(T ) and not constant on each of the components of its domain.
Algebraic geometric codes with applications
Institute of Scientific and Technical Information of China (English)
CHEN Hao
2007-01-01
The theory of linear error-correcting codes from algebraic geomet-ric curves (algebraic geometric (AG) codes or geometric Goppa codes) has been well-developed since the work of Goppa and Tsfasman, Vladut, and Zink in 1981-1982. In this paper we introduce to readers some recent progress in algebraic geometric codes and their applications in quantum error-correcting codes, secure multi-party computation and the construction of good binary codes.
Notes on noncommutative algebraic topology
Nikolaev, Igor
2010-01-01
An operator (AF-) algebra A_f is assigned to each Anosov diffeomorphism f of a manifold M. The assignment is a functor on the category of (mapping tori of) all such diffeomorphisms, which sends continuous maps between the manifolds to the stable homomorphisms of the corresponding AF-algebras. We use the functor to prove non-existence of continuous maps between the hyperbolic torus bundles, an obstruction being the so-called Galois group of algebra A_f.
Applications of algebraic grid generation
Eiseman, Peter R.; Smith, Robert E.
1990-01-01
Techniques and applications of algebraic grid generation are described. The techniques are univariate interpolations and transfinite assemblies of univariate interpolations. Because algebraic grid generation is computationally efficient, the use of interactive graphics in conjunction with the techniques is advocated. A flexible approach, which works extremely well in an interactive environment, called the control point form of algebraic grid generation is described. The applications discussed are three-dimensional grids constructed about airplane and submarine configurations.
COCLEFT EXTENSIONS OF HOPF ALGEBRAS
Institute of Scientific and Technical Information of China (English)
祝家贵
2006-01-01
Let B and H be finitely generated projective Hopf algebras over a commutative ring R,with B cocommutative and H commutative. In this paper we investigate cocleft extensions of Hopf algebras, and prove that the isomorphism classes of cocleft Hopf algebras extensions of B by H are determined uniquely by the group C(B, H) = ZC(B, H)/d(B, H) .
Differential Equations with Linear Algebra
Boelkins, Matthew R; Potter, Merle C
2009-01-01
Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, t
Categorical Algebra and its Applications
1988-01-01
Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.
Linear algebra and projective geometry
Baer, Reinhold
2005-01-01
Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. These focus on the representation of projective geometries by linear manifolds, of projectivities by semilinear transformations, of collineations by linear transformations, and of dualities by semilinear forms. These theorems lead to a reconstruction of the geometry that constituted the discussion's starting point, within algebra
Fundamental structures of algebra and discrete mathematics
Foldes, Stephan
2011-01-01
Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.
Planar Para Algebras, Reflection Positivity
Jaffe, Arthur
2016-01-01
We define the notion of a planar para algebra, which arises naturally from combining planar algebras with the idea of $\\Z_{N}$ para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects, that are invariant under isotopy. For each $\\Z_{N}$, we construct a family of subfactor planar para algebras which play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra. Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras which one can use in the study of quantum information. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivi...
Algebraic Theories over Nominal Sets
Kurz, Alexander; Velebil, Jiří
2010-01-01
We investigate the foundations of a theory of algebraic data types with variable binding inside classical universal algebra. In the first part, a category-theoretic study of monads over the nominal sets of Gabbay and Pitts leads us to introduce new notions of finitary based monads and uniform monads. In a second part we spell out these notions in the language of universal algebra, show how to recover the logics of Gabbay-Mathijssen and Clouston-Pitts, and apply classical results from universal algebra.
The Algebra of Conformal Blocks
Manon, Christopher A
2009-01-01
We study and generalize the connection between the phylogenetic Hilbert functions of Buczynska and Wisniewski \\cite{BW} and the Verlinde formula, as discovered by Sturmfels and Xu in \\cite{StXu}. In order to accomplish this we introduce deformations of algebras of non-abelian theta functions for a general simple complex Lie algebra $\\mathfrak{g}$ structured on the moduli stack of stable punctured curves. We also study the relationship between these algebras and branching algebras, coming from the representation theory of the associated reductive group $G.$
REPETITIVE CLUSTER-TILTED ALGEBRAS
Institute of Scientific and Technical Information of China (English)
Zhang Shunhua; Zhang Yuehui
2012-01-01
Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1.We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras.Moreover,we generalize Theorem 4.2 in [12](Buan A,Marsh R,Reiten I.Cluster-tilted algebra,Trans.Amer.Math.Soc.,359(1)(2007),323-332.) to the situation of CFm,and prove that the tilting graph KCFm of CFm is connected.
Algebra I Essentials For Dummies
Sterling, Mary Jane
2010-01-01
With its use of multiple variables, functions, and formulas algebra can be confusing and overwhelming to learn and easy to forget. Perfect for students who need to review or reference critical concepts, Algebra I Essentials For Dummies provides content focused on key topics only, with discrete explanations of critical concepts taught in a typical Algebra I course, from functions and FOILs to quadratic and linear equations. This guide is also a perfect reference for parents who need to review critical algebra concepts as they help students with homework assignments, as well as for adult learner
Introduction to algebraic independence theory
Philippon, Patrice
2001-01-01
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.
Congruence Kernels of Orthoimplication Algebras
Directory of Open Access Journals (Sweden)
I. Chajda
2007-10-01
Full Text Available Abstracting from certain properties of the implication operation in Boolean algebras leads to so-called orthoimplication algebras. These are in a natural one-to-one correspondence with families of compatible orthomodular lattices. It is proved that congruence kernels of orthoimplication algebras are in a natural one-to-one correspondence with families of compatible p-filters on the corresponding orthomodular lattices. Finally, it is proved that the lattice of all congruence kernels of an orthoimplication algebra is relatively pseudocomplemented and a simple description of the relative pseudocomplement is given.
On triangular algebras with noncommutative diagonals
Institute of Scientific and Technical Information of China (English)
2008-01-01
We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections. Moreover we prove that our triangular algebra is maximal.
Construction of complete generalized algebraic groups
Institute of Scientific and Technical Information of China (English)
WANG; Dengyin
2005-01-01
With one exception, the holomorph of a finite dimensional abelian connectedalgebraic group is shown to be a complete generalized algebraic group. This result on algebraic group is an analogy to that on Lie algebra.
On triangular algebras with noncommutative diagonals
Institute of Scientific and Technical Information of China (English)
DONG AiJu
2008-01-01
We construct a triangular algebra whose diagonals form a noncommutative algebra and its lattice of invariant projections contains only two nontrivial projections.Moreover we prove that our triangular algebra is maximal.
Algebras related to posets of hyperplanes
Jeurnink, G.A.M.
2000-01-01
We compare two noncommutative algebras which are related to arrangements of hyperplanes. For three special arrangements the induced approximately finite dimensional $C^*$-algebra and the graded Orlik-Solomon-algebra are investigated.
Tilting mutation of Brauer tree algebras
Aihara, T
2010-01-01
We define tilting mutations of symmetric algebras as the endomorphism algebras of Okuyama-Rickard complexes. For Brauer tree algebras, we give an explicit description of the change of Brauer trees under mutation.
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...
The Integrals of Motion for the Deformed W-Algebra Wqt(sl_N^)
Feigin, B; Shiraishi, J; Watanabe, H
2006-01-01
We review the deformed W-algebra Wqt(sl_N^) and its screening currents. We explicitly construct the local integrals of motion I_n for this deformed W-algebra. We explicitly construct the nonlocal integrals of motion G_n by means of the screening currents. Our integrals of motion commute with each other, and give the elliptic version of those for the Virasoro algebra and the W-algebra W(sl_3^), obtained by V.Bazhanov, A.Hibberd, S.Khoroshkin, S.Lukyanov and Al.Zamolodchikov.
Algebraic dynamics solution and algebraic dynamics algorithm of Burgers equations
Institute of Scientific and Technical Information of China (English)
2008-01-01
Algebraic dynamics solution and algebraic dynamics algorithm of nonlinear partial differential evolution equations in the functional space are applied to Burgers equation. The results indicate that the approach is effective for analytical solutions to Burgers equation, and the algorithm for numerical solutions of Burgers equation is more stable, with higher precision than other existing finite difference algo-rithms.
Algebra and Algebraic Thinking in School Math: 70th YB
National Council of Teachers of Mathematics, 2008
2008-01-01
Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…
Abstract Algebra to Secondary School Algebra: Building Bridges
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
Dimer models and Calabi-Yau algebras
Broomhead, Nathan
2008-01-01
In this thesis we study dimer models, as introduced in string theory, which give a way of writing down a class of non-commutative `superpotential' algebras. Some examples are 3-dimensional Calabi-Yau algebras, as defined by Ginzburg, and some are not. We consider two types of `consistency' condition on dimer models, and show that a `geometrically consistent' model is `algebraically consistent'. Finally we prove that the algebras obtained from algebraically consistent dimer models are 3-dimensional Calabi-Yau algebras.
On Quantizing Nilpotent and Solvable Basic Algebras
1999-01-01
We prove an algebraic ``no-go theorem'' to the effect that a nontrivial Poisson algebra cannot be realized as an associative algebra with the commutator bracket. Using this, we show that there is an obstruction to quantizing the Poisson algebra of polynomials generated by a nilpotent basic algebra on a symplectic manifold. Finally, we explicitly construct a polynomial quantization of a symplectic manifold with a solvable basic algebra, thereby showing that the obstruction in the nilpotent cas...
Semi-Hopf Algebra and Supersymmetry
Gunara, Bobby Eka
1999-01-01
We define a semi-Hopf algebra which is more general than a Hopf algebra. Then we construct the supersymmetry algebra via the adjoint action on this semi-Hopf algebra. As a result we have a supersymmetry theory with quantum gauge group, i.e., quantised enveloping algebra of a simple Lie algebra. For the example, we construct the Lagrangian N=1 and N=2 supersymmetry.
Cooperstein, Bruce
2015-01-01
Advanced Linear Algebra, Second Edition takes a gentle approach that starts with familiar concepts and then gradually builds to deeper results. Each section begins with an outline of previously introduced concepts and results necessary for mastering the new material. By reviewing what students need to know before moving forward, the text builds a solid foundation upon which to progress. The new edition of this successful text focuses on vector spaces and the maps between them that preserve their structure (linear transformations). Designed for advanced undergraduate and beginning graduate stud
Energy Technology Data Exchange (ETDEWEB)
Casasent, D.; Ghosh, A.
1983-01-01
Many of the linear algebra operations and algorithms possible on optical matrix-vector processors are reviewed. Emphasis is given to the use of direct solutions and their realization on systolic optical processors. As an example, implicit and explicit solutions to partial differential equations are considered. The matrix-decomposition required is found to be the major operation recommended for optical realization. The pipelining and flow of data and operations are noted to be key issues in the realization of any algorithm on an optical systolic array processor. A realization of the direct solution by householder qr decomposition is provided as a specific case study. 19 references.
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Hazewinkel, M
2008-01-01
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i
Lie algebraic Noncommutative Gravity
Banerjee, R; Samanta, S; Banerjee, Rabin; Mukherjee, Pradip; Samanta, Saurav
2007-01-01
The minimal (unimodular) formulation of noncommutative general relativity, based on gauging the Poincare group, is extended to a general Lie algebra valued noncommutative structure. We exploit the Seiberg -- Witten map technique to formulate the theory as a perturbative Lagrangian theory. Detailed expressions of the Seiberg -- Witten maps for the gauge parameters, gauge potentials and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.
Clark, Allan
1984-01-01
This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)
Senechal, Marjorie
1988-01-01
Les pavages monoédriques et coloriés du plan réalisé par M.C. Escher constituent un outil utile dans I'exploration de plusieurs concepts d'algèbre abstraite : les groupes, les sous-groupes, les classes, les conjugués, les orbites, et les extensions de groupe. M.C. Escher's colored monohedral tessellations of the plane are a useful tool for exploring many concepts of abstract algebra, including groups, subgroups, cosets, conjugates, orbits, and group extensions. Peer Reviewed
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to
A spatial operator algebra for manipulator modeling and control
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Institute of Scientific and Technical Information of China (English)
SI JunRu
2009-01-01
The paper focuses on the 1-generated positively graded algebras with non-pure resolutions and mainly discusses a new kind of algebras called (s, t, d)-bi-Koszul algebras as the generalization of bi-Koszul algebras. An (s, t, d)-bi-Koszul algebra can be obtained from two periodic algebras with pure resolutions. The generation of the Koszul dual of an (s, t, d)-bi-Koszul algebra is discussed. Based on it, the notion of strongly (s, t, d)-bi-Koszul algebras is raised and their homological properties are further discussed.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The paper focuses on the 1-generated positively graded algebras with non-pure resolutions and mainly discusses a new kind of algebras called(s,t,d)-bi-Koszul algebras as the generalization of bi-Koszul algebras. An(s,t,d)-bi-Koszul algebra can be obtained from two periodic algebras with pure resolutions. The generation of the Koszul dual of an(s,t,d)-bi-Koszul algebra is discussed. Based on it,the notion of strongly(s,t,d)-bi-Koszul algebras is raised and their homological properties are further discussed.
Predicting Grades in Basic Algebra.
Newman, Elise
1994-01-01
Data from (n=470) students at Owens Technical College in Fall 1991 showed that high school GPA was the best predictor of grades in Basic Algebra, followed by high school rank, college GPA, ACT natural sciences, ASSET numerical skills, and ASSET elementary algebra scores. (11 references) (SW)
Structure of the Enveloping Algebras
Directory of Open Access Journals (Sweden)
Č. Burdík
2007-01-01
Full Text Available The adjoint representations of several small dimensional Lie algebras on their universal enveloping algebras are explicitly decomposed. It is shown that commutants of raising operators are generated as polynomials in several basic elements. The explicit form of these elements is given and the general method for obtaining these elements is described.
A. Ahadpanah; Borumand Saeid, A.
2011-01-01
In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.
Quantum Heisenberg--Weyl Algebras
Ballesteros, Angel; Herranz, Francisco J.; Parashar, Preeti
1996-01-01
All Lie bialgebra structures on the Heisenberg--Weyl algebra $[A_+,A_-]=M$ are classified and explicitly quantized. The complete list of quantum Heisenberg--Weyl algebras so obtained includes new multiparameter deformations, most of them being of the non-coboundary type.
Online Algebraic Tools for Teaching
Kurz, Terri L.
2011-01-01
Many free online tools exist to complement algebraic instruction at the middle school level. This article presents findings that analyzed the features of algebraic tools to support learning. The findings can help teachers select appropriate tools to facilitate specific topics. (Contains 1 table and 4 figures.)
Toeplitz Algebras on Dirichlet Spaces
Institute of Scientific and Technical Information of China (English)
TAN Yan-hua; WANG Xiao-feng
2001-01-01
In the present paper, some properties of Toeplitz algebras on Dirichlet spaces for several complex variables are discussed; in particular, the automorphism group of the Toeplitz C* -algebra, (C1), generated by Toeplitz operators with C1-symbols is discussed. In addition, the first cohomology group of (C1) is computed.
The Algebra of Complex Numbers.
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Algebraic solution of master equations
R. Rangel; L. Carvalho
2003-01-01
We present a simple analytical method to solve master equations for finite temperatures and any initial conditions, which consists in the expansion of the density operator into normal modes. These modes and the expansion coefficients are obtained algebraically by using ladder superoperators. This algebraic technique is successful in cases in which the Liouville superoperator is quadratic in the creation and annihilation operators.
Six Lectures on Commutative Algebra
Elias, J; Miro-Roig, Rosa Maria; Zarzuela, Santiago
2009-01-01
Interest in commutative algebra has surged over the years. In order to survey and highlight the developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. This title offers a synthesis of the lectures presented at the Summer School
On Homomorphism of Valuation Algebras
Institute of Scientific and Technical Information of China (English)
GUAN XUE-CHONG; LI YONG-MING
2011-01-01
In this paper, firstly, a necessary condition and a sufficient condition for an isomorphism between two semiring-inducod valuation algebras to exist are presented respectively. Then a general valuation homomorphism based on different domains is defined, and the corresponding homomorphism theorem of valuation algebra is proved.
What's Wrong with College Algebra?
Gordon, Sheldon P.
2008-01-01
Most college algebra courses are offered in the spirit of preparing the students to move on toward calculus. In reality, only a vanishingly small fraction of the million students a year who take these courses ever get to calculus. This article builds a strong case for the need to change the focus in college algebra to one that better meets the…
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
2001-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and eig
Linear Algebra and Image Processing
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
In Defence of Geometrical Algebra
Blasjo, V.N.E.
2016-01-01
The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that the geometrical algebra interpretation should be reinstated as a viable historical hypothesis.
Deciding isomorphism of Lie algebras
Graaf, W.A. de
2001-01-01
When doing calculations with Lie algebras one of the main problems is to decide whether two given Lie algebras are isomorphic. A partial solution to this problem is obtained by calculating structural invariants. There is also a direct method available which involves the computation of Grobner bases.
Graded contractions of Virasoro algebras
Kostyakov, I V; Kuratov, V V
2001-01-01
We describe graded contractions of Virasoro algebra. The highest weight representations of Virasoro algebra are constructed. The reducibility of representations is analysed. In contrast to standart representations the contracted ones are reducible except some special cases. Moreover we find an exotic module with null-plane on fifth level.
Pink, Richard; Ziegler, Paul
2010-01-01
An algebraic zip datum is a tuple $\\CZ := (G,P,Q,\\phi)$ consisting of a reductive group $G$ together with parabolic subgroups $P$ and $Q$ and an isogeny $\\phi\\colon P/R_uP\\to Q/R_uQ$. We study the action of the group $E := \\{(p,q)\\in P{\\times}Q | \\phi(\\pi_{P}(p)) =\\pi_Q(q)\\}$ on $G$ given by $((p,q),g)\\mapsto pgq^{-1}$. We define certain smooth $E$-invariant subvarieties of $G$, show that they define a stratification of $G$. We determine their dimensions and their closures and give a description of the stabilizers of the $E$-action on $G$. We also generalize all results to non-connected groups. We show that for special choices of $\\CZ$ the algebraic quotient stack $[E \\backslash G]$ is isomorphic to $[G \\backslash Z]$ or to $[G \\backslash Z']$, where $Z$ is a $G$-variety studied by Lusztig and He in the theory of character sheaves on spherical compactifications of $G$ and where $Z'$ has been defined by Moonen and the second author in their classification of $F$-zips. In these cases the $E$-invariant subvariet...
Elements of algebraic coding systems
Cardoso da Rocha, Jr, Valdemar
2014-01-01
Elements of Algebraic Coding Systems is an introductory textto algebraic coding theory. In the first chapter, you'll gain insideknowledge of coding fundamentals, which is essential for a deeperunderstanding of state-of-the-art coding systems.This book is a quick reference for those who are unfamiliar withthis topic, as well as for use with specific applications such as cryptographyand communication. Linear error-correcting block codesthrough elementary principles span eleven chapters of the text.Cyclic codes, some finite field algebra, Goppa codes, algebraic decodingalgorithms, and applications in public-key cryptography andsecret-key cryptography are discussed, including problems and solutionsat the end of each chapter. Three appendices cover the Gilbertbound and some related derivations, a derivation of the Mac-Williams' identities based on the probability of undetected error,and two important tools for algebraic decoding-namely, the finitefield Fourier transform and the Euclidean algorithm for polynomials.
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
The vector algebra war: A historical perspective
Chappell, James M; Hartnett, John G; Abbott, Derek
2015-01-01
There are a wide variety of different vector formalisms currently utilized in science. For example, Gibbs three-vectors, spacetime four-vectors, complex spinors for quantum mechanics, quaternions used for rigid body rotations and Clifford multivectors. With such a range of vector formalisms in use, it thus appears that there is as yet no general agreement on a vector formalism suitable for the whole of science. This surprising situation exists today, despite the fact that one of the main goals of nineteenth century science was to correctly describe vectors and the algebra of three-dimensional space. This situation has also had the unfortunate consequence of fragmenting knowledge across many disciplines and requiring a very significant amount of time and effort in learning the different formalisms. We thus review historically the development of our various vector systems and conclude that the Clifford algebra multivector fulfills the goal of correctly describing vectorial quantities in three dimensions.
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Head First Algebra A Learner's Guide to Algebra I
Pilone, Tracey
2008-01-01
Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i
Quaternionen and Geometric Algebra (Quaternionen und Geometrische Algebra)
Horn, Martin Erik
2007-01-01
In the last one and a half centuries, the analysis of quaternions has not only led to further developments in mathematics but has also been and remains an important catalyst for the further development of theories in physics. At the same time, Hestenes geometric algebra provides a didactically promising instrument to model phenomena in physics mathematically and in a tangible manner. Quaternions particularly have a catchy interpretation in the context of geometric algebra which can be used didactically. The relation between quaternions and geometric algebra is presented with a view to analysing its didactical possibilities.
Operator algebras for analytic varieties
Davidson, Kenneth R; Shalit, Orr Moshe
2012-01-01
We study the isomorphism problem for the multiplier algebras of irreducible complete Pick kernels. These are precisely the restrictions $\\cM_V$ of the multiplier algebra $\\cM$ of Drury-Arveson space to a holomorphic subvariety $V$ of the unit ball. The related algebras of continuous multipliers are also considered. We find that $\\cM_V$ is completely isometrically isomorphic to $\\cM_W$ if and only if $W$ is the image of $V$ under a biholomorphic automorphism of the ball. A similar condition characterizes when there exists a unital completely contractive homomorphism from $\\cM_V$ to $\\cM_W$. If one of the varieties is a homogeneous algebraic variety, then isometric isomorphism is shown to imply completely isometric isomorphism of the algebras. The problem of characterizing when two such algebras are (algebraically) isomorphic is also studied. It is shown that if there is an isomorphism between $\\cM_V$ and $\\cM_W$, then there is a biholomorphism (with multiplier coordinates) between the varieties. We present a n...
Bicrossproducts of algebraic quantum groups
Delvaux, Lydia; Wang, Shuanhong
2012-01-01
Let $A$ and $B$ be two algebraic quantum groups (i.e. multiplier Hopf algebras with integrals). Assume that $B$ is a right $A$-module algebra and that $A$ is a left $B$-comodule coalgebra. If the action and coaction are matched, it is possible to define a coproduct $\\Delta_#$ on the smash product $A # B$ making the pair $(A # B,\\Delta_#)$ into an algebraic quantum group. In this paper, we continue the study of these objects. First, we study the various data of the bicrossproduct $A # B$, such as the modular automorphisms, the modular elements, ... and obtain formulas in terms of the data of the components $A$ and $B$. Secondly, we look at the dual of $A # B$ (in the sense of algebraic quantum groups) and we show it is itself a bicrossproduct (of the second type) of the duals $\\hatA$ and $\\hatB$. The result is immediate for finite-dimensional Hopf algebras and therefore it is expected also for algebraic quantum groups. However, it turns out that some aspects involve a careful argument, mainly due to the fact t...
Decomposition of semigroup algebras
Boehm, Janko; Nitsche, Max Joachim
2011-01-01
Let A \\subseteq B be cancellative abelian semigroups, and let R be an integral domain. We show that the semigroup ring R[B] can be decomposed, as an R[A]-module, into a direct sum of R[A]-submodules of the quotient ring of R[A]. In the case of a finite extension of positive affine semigroup rings we obtain an algorithm computing the decomposition. When R[A] is a polynomial ring over a field we explain how to compute many ring-theoretic properties of R[B] in terms of this decomposition. In particular we obtain a fast algorithm to compute the Castelnuovo-Mumford regularity of homogeneous semigroup rings. As an application we confirm the Eisenbud-Goto conjecture in a range of new cases. Our algorithms are implemented in the Macaulay2 package MonomialAlgebras.
Applications of computer algebra
1985-01-01
Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa tion and obtains a closed for...
Meijer, Alko R
2016-01-01
This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...
Constraint algebra in bigravity
Energy Technology Data Exchange (ETDEWEB)
Soloviev, V. O., E-mail: Vladimir.Soloviev@ihep.ru [National Research Center Kurchatov Institute, Institute for High Energy Physics (Russian Federation)
2015-07-15
The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.
On some generalizations of BCC-algebras
Dudek, Wieslaw A
2012-01-01
We describe weak BCC-algebras (also called BZ-algebras) in which the condition $(xy)z=(xz)y$ is satisfied only in the case when elements $x,y$ belong to the same branch. We also characterize branchwise commutative and branchwise implicative weak BCC-algebras satisfying this condition. We also describe connections between various types of implicative weak BCC-algebras.
Network algebra for synchronous and asynchronous dataflow
Bergstra, J.A.; Stefanescu, G.
2008-01-01
Network algebra (NA) is proposed as a uniform algebraic framework for the description (and analysis) of dataflow networks. The core of this algebraic setting is provided by an equational theory called Basic Network Algebra (BNA). It constitutes a selection of primitives and identities from the algeb
Directory of Open Access Journals (Sweden)
Grzegorz Dymek
2015-01-01
set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained.
On Nambu-Lie 3-algebra representations
Sochichiu, Corneliu
2008-01-01
We propose a recipe to construct matrix representations of Nambu--Lie 3-algebras in terms of irreducible representations of underlying Lie algebra. The case of Euclidean four-dimensional 3-algebra is considered in details. We find that representations of this 3-algebra are not possible in terms of only Hermitian matrices in spite of its Euclidean nature.
Located Actions in Process Algebra with Timing
Bergstra, J.A.; Middelburg, C.A.
2004-01-01
We propose a process algebra obtained by adapting the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, 2002, Chap. 4] to spatially located actions. This process algebra makes it possible to deal with the behaviour of systems with a kn
Properly twisted groups and their algebras
Bales, John W
2011-01-01
A twist property is developed which imparts certain properties on the twisted group algebra. These include an involution * satisfying (xy)*=y*x* and an inner product satisfying = and =. Examples of twisted group algebras having this property are the Cayley-Dickson algebras and Clifford algebras.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
A Specialization of Prinjective Ringel-Hall Algebra and the associated Lie algebra
Institute of Scientific and Technical Information of China (English)
Justyna KOSAKOWSKA
2008-01-01
In the present paper we describe a specialization of prinjective Ringel-Hall algebra to 1, for prinjective modules over incidence algebras of posets of finite prinjective type,by generators and relations.This gives us a generalisation of Serre relations for semisimple Lie algebras.Connections of prinjective Ringel-Hall algebras with classical Lie algebras are also discussed.
A remark on BMW algebra, q-Schur algebras and categorification
Vaz, Pedro
2012-01-01
We prove that the 2-variable BMW algebra embeds into an algebra constructed from the HOMFLY-PT polynomial. We also prove that the so(2N)-BMW algebra embeds in the q-Schur algebra of type A. We use these results to construct categorifications of the so(2N)-BMW algebra.
Extension of a quantized enveloping algebra by a Hopf algebra
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Suppose that H is a Hopf algebra,and g is a generalized Kac-Moody algebra with Cartan matrix A =(aij)I×I,where I is an index set and is equal to either {1,2,...,n} or the natural number set N.Let f,g be two mappings from I to G(H),the set of group-like elements of H,such that the multiplication of elements in the set {f(i),g(i)|i ∈I} is commutative.Then we define a Hopf algebra Hgf Uq(g),where Uq(g) is the quantized enveloping algebra of g.
Splitting full matrix algebras over algebraic number fields
Ivanyos, Gábor; Schicho, Joseph
2011-01-01
Let K be an algebraic number field of degree d and discriminant D over Q. Let A be an associative algebra over K given by structure constants such that A is siomorphic to the algebra M_n(K) of n by n matrices over K for some positive integer n. Suppose that d, n and D are bounded. Then an isomorphism of A with M_n(K) can be constructed by a polynomial time ff-algorithm. (An ff-algorithm is a deterministic procedure which is allowed to call oracles for factoring integers and factoring univariate polynomials over finite fields.) As a consequence, we obtain a polynomial time ff-algorithm to compute isomorphisms of central simple algebras of bounded degree over K.
Practical approach to linear algebra
Choudhary, Prabhat
2009-01-01
""Linear Algebra is the heart of applied science but there are divergent views concerning its meaning. The field of Linear Algebra is more beautiful and more fundamental than its rather dull name may suggest. More beautiful because it is full of powerful ideas that are quite unlike those normally emphasized in a linear algebra course in a mathematics department. Throughout the book the author follows the practice of first presenting required background material, which is then used to develop the results. The book is divided in ten chapters. Relevant material is included in each chapter from ot
Quantum Algebras in Nuclear Structure
Bonatsos, Dennis; Daskaloyannis, C.; Kolokotronis, P.; Lenis, D.
1995-01-01
Quantum algebras are a mathematical tool which provides us with a class of symmetries wider than that of Lie algebras, which are contained in the former as a special case. After a self-contained introduction to the necessary mathematical tools ($q$-numbers, $q$-analysis, $q$-oscillators, $q$-algebras), the su$_q$(2) rotator model and its extensions, the construction of deformed exactly soluble models (Interacting Boson Model, Moszkowski model), the use of deformed bosons in the description of...
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
Introduction to algebra and trigonometry
Kolman, Bernard
1981-01-01
Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are
Study guide for college algebra
Snow, James W; Shapiro, Arnold
1981-01-01
Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what
Lectures on Algebraic Geometry I
Harder, Gunter
2012-01-01
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho
Homology theory on algebraic varieties
Wallace, Andrew H
1958-01-01
Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n
Weierstrass preparation and algebraic invariants
Harbater, David; Krashen, Daniel
2011-01-01
We prove a form of the Weierstrass Preparation Theorem for normal algebraic curves over complete discrete valuation rings. While the more traditional algebraic form of Weierstrass Preparation applies just to the projective line over a base, our version allows more general curves. This result is then used to obtain applications concerning the values of u-invariants, and on the period-index problem for division algebras, over fraction fields of complete two-dimensional rings. Our approach uses patching methods and matrix factorization results that can be viewed as analogs of Cartan's Lemma.
Kolman, Bernard; Levitan, Michael L
1985-01-01
Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.
Pinter, Charles C
2009-01-01
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. Intended for undergraduate courses in abstract algebra, it is suitable for junior- and senior-level math majors and future math teachers. This second edition features additional exercises to improve student familiarity with applications. An introductory chapter traces concepts of abstract algebra from their historical roots. Suc
Loop Virasoro Lie conformal algebra
Energy Technology Data Exchange (ETDEWEB)
Wu, Henan, E-mail: wuhenanby@163.com; Chen, Qiufan; Yue, Xiaoqing [Department of Mathematics, Tongji University, Shanghai 200092 (China)
2014-01-15
The Lie conformal algebra of loop Virasoro algebra, denoted by CW, is introduced in this paper. Explicitly, CW is a Lie conformal algebra with C[∂]-basis (L{sub i} | i∈Z) and λ-brackets [L{sub i} {sub λ} L{sub j}] = (−∂−2λ)L{sub i+j}. Then conformal derivations of CW are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CW are classified.
Introduction to applied algebraic systems
Reilly, Norman R
2009-01-01
This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as
Congruence Permutable Symmetric Extended de Morgan Algebras
Institute of Scientific and Technical Information of China (English)
Jie FANG
2006-01-01
An algebra A is said to be congruence permutable if any two congruences on it are per-mutable. This property has been investigated in several varieties of algebras, for example, de Morgan algebras, p-algebras, Kn,o-algebras. In this paper, we study the class of symmetric extended de Morgan algebras that are congruence permutable. In particular we consider the case where A is finite, and show that A is congruence permutable if and only if it is isomorphic to a direct product of finitely many simple algebras.
A direct product decomposition of QMV algebras
Institute of Scientific and Technical Information of China (English)
LU Xian; SHANG Yun; LU RuQian
2012-01-01
We study the direct product decomposition of quantum many-valued algebras (QMV algebras)which generalizes the decomposition theorem of ortholattices (orthomodular lattices).In detail,for an idempotent element of a given QMV algebra,if it commutes with every element of the QMV algebra,it can induce a direct product decomposition of the QMV algebra.At the same time,we introduce the commutant C(S) of a set S in a QMV algebra,and prove that when S consists of idempotent elements,C(S) is a subalgebra of the QMV algebra.This also generalizes the cases of orthomodular lattices.
Modules Over Color Hom-Poisson Algebras
2014-01-01
In this paper we introduce color Hom-Poisson algebras and show that every color Hom-associative algebra has a non-commutative Hom-Poisson algebra structure in which the Hom-Poisson bracket is the commutator bracket. Then we show that color Poisson algebras (respectively morphism of color Poisson algebras) turn to color Hom-Poisson algebras (respectively morphism of Color Hom-Poisson algebras) by twisting the color Poisson structure. Next we prove that modules over color Hom–associative algebr...
Some characterizations of Hom-Leibniz algebras
Issa, A Nourou
2010-01-01
Some basic properties of Hom-Leibniz algebras are found. These properties are the Hom-analogue of corresponding well-known properties of Leibniz algebras. Considering the Hom-Akivis algebra associated to a given Hom-Leibniz algebra, it is observed that the Hom-Akivis identity leads to an additional property of Hom-Leibniz algebras, which in turn gives a necessary and sufficient condition for Hom-Lie admissibility of Hom-Leibniz algebras. A necessary and sufficient condition for Hom-power associativity of Hom-Leibniz algebras is also found.
Lectures on algebraic quantum field theory and operator algebras
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Berlin Univ. (Germany). Institut fuer Theoretische Physik. E-mail: schroer@cbpf.br
2001-04-01
In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)
Simple Lie algebras arising from Leavitt path algebras
Abrams, Gene
2011-01-01
For a field K and directed graph E, we analyze those elements of the Leavitt path algebra L_K(E) which lie in the commutator subspace [L_K(E), L_K(E)]. This analysis allows us to give easily computable necessary and sufficient conditions to determine which Lie algebras of the form [L_K(E), L_K(E)] are simple, when E is row-finite and L_K(E) is simple.
Semiprojectivity of universal -algebras generated by algebraic elements
DEFF Research Database (Denmark)
Shulman, Tatiana
2012-01-01
Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given.......Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....
Continuous C*-algebras over topological spaces
Takeori, Mitsuharu
2010-01-01
We define continuous C*-algebras over a topological space X and establish some basic results. If X is a locally compact Hausdorff space, continuous C*-algebras over X are equivalent to ordinary continuous C_0(X)-algebras. The main purpose of our study is to prove that every continuous, full, separable, nuclear C*-algebra over X is KK(X)-equivalent to a stable Kirchberg algebra over X. (Here a Kirchberg algebra over X is a separable, nuclear, and strongly purely infinite C*-algebra over X with primitive ideal space homeomorphic to X.) In the case that X is a one-point space, this result is known as that every separable nuclear C*-algebra is KK-equivalent to a stable Kirchberg algebra. Moreover, as an intermediate result, we obtain the X-equivariant exact embedding result for continuous C*-algebras over X.
Tensor products of commutative Banach algebras
Directory of Open Access Journals (Sweden)
U. B. Tewari
1982-01-01
Full Text Available Let A1, A2 be commutative semisimple Banach algebras and A1⊗∂A2 be their projective tensor product. We prove that, if A1⊗∂A2 is a group algebra (measure algebra of a locally compact abelian group, then so are A1 and A2. As a consequence, we prove that, if G is a locally compact abelian group and A is a comutative semi-simple Banach algebra, then the Banach algebra L1(G,A of A-valued Bochner integrable functions on G is a group algebra if and only if A is a group algebra. Furthermore, if A has the Radon-Nikodym property, then the Banach algebra M(G,A of A-valued regular Borel measures of bounded variation on G is a measure algebra only if A is a measure algebra.
Constructions of Lie algebras and their modules
Seligman, George B
1988-01-01
This book deals with central simple Lie algebras over arbitrary fields of characteristic zero. It aims to give constructions of the algebras and their finite-dimensional modules in terms that are rational with respect to the given ground field. All isotropic algebras with non-reduced relative root systems are treated, along with classical anisotropic algebras. The latter are treated by what seems to be a novel device, namely by studying certain modules for isotropic classical algebras in which they are embedded. In this development, symmetric powers of central simple associative algebras, along with generalized even Clifford algebras of involutorial algebras, play central roles. Considerable attention is given to exceptional algebras. The pace is that of a rather expansive research monograph. The reader who has at hand a standard introductory text on Lie algebras, such as Jacobson or Humphreys, should be in a position to understand the results. More technical matters arise in some of the detailed arguments. T...
Finite dimensional quotients of commutative operator algebras
Meyer, Ralf
1997-01-01
The matrix normed structure of the unitization of a (non-selfadjoint) operator algebra is determined by that of the original operator algebra. This yields a classification up to completely isometric isomorphism of two-dimensional unital operator algebras. This allows to define invariant distances on the spectrum of commutative operator algebras analogous to the Caratheodory distance for complex manifolds. Moreover, unitizations of two-dimensional operator algebras with zero multiplication pro...
Representations of fundamental groups of algebraic varieties
Zuo, Kang
1999-01-01
Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.
Asymptotic aspect of derivations in Banach algebras.
Roh, Jaiok; Chang, Ick-Soon
2017-01-01
We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.
Changes in Pre-Service Teachers' Algebraic Misconceptions by Using Computer-Assisted Instruction
Lin, ByCheng-Yao; Ko, Yi-Yin; Kuo, Yu-Chun
2014-01-01
In order to carry out current reforms regarding algebra and technology in elementary school mathematics successfully, pre-service elementary mathematics teachers must be equipped with adequate understandings of algebraic concepts and self-confidence in using computers for their future teaching. This paper examines the differences in preservice…
Electronic Algebra and Calculus Tutor
Directory of Open Access Journals (Sweden)
Larissa Fradkin
2012-06-01
Full Text Available Modern undergraduates join science and engineering courses with poorer mathematical background than most contemporaries of the current faculty had when they were freshers. The problem is very acute in the United Kingdom but more and more countries adopt less resource intensive models of teaching and the problem spreads. University tutors and lecturers spend more and more time covering the basics. However, most of them still rely on traditional methods of delivery which presuppose that learners have a good memory and considerable time to practice, so that they can memorize disjointed facts and discover for themselves various connections between the underlying concepts. These suppositions are particularly unrealistic when dealing with a large number of undergraduates who are ordinary learners with limited mathematics background. The first author has developed a teaching system that allows such adult learners achieve relatively deep learning of mathematics – and remarkably quickly – through a teacher-guided (often called Socratic dialog, which aims at the frequent reinforcement of basic mathematical abstractions through Eulerian sequencing. These ideas have been applied to create a prototype of a Cognitive Mathematics Tutoring System aimed at teaching basic mathematics to University freshers., an electronic Personal Algebra and Calculus Tutor (e- PACT.
Predicting Success in Elementary Algebra
Mogull, R. G.; Rosengarten, W., Jr.
1974-01-01
The purpose of this study was to develop a device for predicting student success in a high school Elementary Algebra course. It was intended to assist guidance counselors in advising students in selecting the most appropriate mathematics course. (Editor)
Quadratic Tangles in Planar Algebras
Jones, Vaughan F R
2010-01-01
In planar algebras, we show how to project certain simple "quadratic" tangles onto the linear space spanned by "linear" and "constant" tangles. We obtain some corollaries about the principal graphs and annular structure of subfactors.
Cartooning in Algebra and Calculus
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
GCD, LCM, and Boolean Algebra?
Cohen, Martin P.; Juraschek, William A.
1976-01-01
This article investigates the algebraic structure formed when the process of finding the greatest common divisor and the least common multiple are considered as binary operations on selected subsets of positive integers. (DT)
Algebraic Aspects of Orbifold Models
Bántay, P
1994-01-01
: Algebraic properties of orbifold models on arbitrary Riemann surfaces are investigated. The action of mapping class group transformations and of standard geometric operations is given explicitly. An infinite dimensional extension of the quantum group is presented.
BRST charge for nonlinear algebras
Buchbinder, I L
2007-01-01
We study the construction of the classical nilpotent canonical BRST charge for the nonlinear gauge algebras where a commutator (in terms of Poisson brackets) of the constraints is a finite order polynomial of the constraints.
Semiclassical states on Lie algebras
Energy Technology Data Exchange (ETDEWEB)
Tsobanjan, Artur, E-mail: artur.tsobanjan@gmail.com [King’s College, 133 North River Street, Kingston, Pennsylvania 18702 (United States)
2015-03-15
The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following the methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.
Computational linear and commutative algebra
Kreuzer, Martin
2016-01-01
This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...
On Nilpotent Extensions of Algebras
Institute of Scientific and Technical Information of China (English)
Adam W. Marczak; Jerzy Plonka
2007-01-01
In this paper, we investigate essentially n-ary term operations of nilpotent extensions of algebras. We detect the connection between term operations of an original algebra and its nilpotent extensions. This structural point of view easily leads to the conclusion that the number of distinct essentially n-ary term operations of a proper algebraic nilpotent extension (ひ) of an algebra (ワ) is given by the formula pn(ひ)={pn(ワ)+1 for n=1,{pn(ワ) otherwise. We show that in general the converse theorem is not true. However, we suppose that if a variety V is uniquely determined by its pn-sequences, the converse theorem is also satisfied. In the second part of the paper, we characterize generics of nilpotent shifts of varieties and describe cardinalities of minimal generics. We give a number of examples and pose some problems.
Distribution theory of algebraic numbers
Yang, Chung-Chun
2008-01-01
The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.
Noncommutative Algebra and Noncommutative Geometry
2014-01-01
Divided into three parts, the first marks out enormous geometric issues with the notion of quasi-freenss of an algebra and seeks to replace this notion of formal smoothness with an approximation by means of a minimal unital commutative algebra's smoothness. The second part of this text is then, devoted to the approximating of properties of nc. schemes through the properties of two uniquely determined (classical) schemes estimating the nc. scheme in question in a maximal way from the inside an...
Teaching Linear Algebra at University
Dorier, Jean-Luc
1997-01-01
Linear algebra represents, with calculus, the two main mathematical subjects taught in science universities. However this teaching has always been difficult. In the last two decades, it became an active area for research works in mathematics education in several countries. Our goal is to give a synthetic overview of the main results of these works focusing on the most recent developments. The main issues we will address concern: • the epistemological specificity of linear algebra and the inte...
Drinfeld center of planar algebra
Das, Paramita; Gupta, Ved Prakash
2012-01-01
We introduce fusion and contragadient of affine representations of a planar algebra $P$ (not necessarily having finite depth). We prove that if $N \\subset M$ is a subfactor realization of $P$, then the Drinfeld center of the $N$-$N$-bimodule category generated by $_N L^2 (M)_M$, is equivalent to the category Hilbert affine representations of $P$ satisfying certain finiteness criterion. As a consequence, we prove Kevin Walker's conjecture for planar algebras.
Algebraic Statistics for Network Models
2014-02-19
AFRL-OSR-VA-TR-2014-0070 (DARPA) Algebraic Statistics for Network Models SONJA PETROVIC PENNSYLVANIA STATE UNIVERSITY 02/19/2014 Final Report...DARPA GRAPHS Phase I Algebraic Statistics for Network Models FA9550-12-1-0392 Sonja Petrović petrovic@psu.edu1 Department of Statistics Pennsylvania...Department of Statistics, Heinz College , Machine Learning Department, Cylab Carnegie Mellon University 1. Abstract This project focused on the family of
Algebraic Methods to Design Signals
2015-08-27
algebraic number theory, finite geometry, and combinatorics in designing signals as a by- product of new combinatorial designs and the corresponding... constructions of cyclic 2-class partially balanced incomplete block designs using cyclotomy in finite fields. Our results give theoretical explanations of the...very small. We call the constructed sequences perfect sequences and they serve as perfect algebraic/combinatorial objects in designing signals for
FOUNDATION OF NUCLEAR ALGEBRAIC MODELS
Institute of Scientific and Technical Information of China (English)
周孝谦
1990-01-01
Based upon Tomonoga-Rowe's many body theory, we find that the algebraic models, including IBM and FDSM are simplest extension of Rowe-Rosensteel's sp(3R).Dynkin-Gruber's subalgebra embedding method is applied to find an appropriate algebra and it's reduction chains conforming to physical requirement. The separated cases sp(6) and so(8) now appear as two branches stemming from the same root D6-O(12). Transitional ease between sp(6) and so(8) is inherently include.
Kleene Algebra and Bytecode Verification
2016-04-27
published in Electronic Notes in Theoretical Computer Science URL : www.elsevier.nl/locate/entcs Kot and Kozen The worklist algorithm for dataflow analysis...Technical Report 2004-1971, Computer Science Department, Cornell University (2004). URL http://www.cs.cornell.edu/kozen/papers/KADataflow.pdf [7] Kozen, D...A completeness theorem for Kleene algebras and the algebra of regular events, Infor. and Comput. 110 (1994), pp. 366–390. URL http
Localized endomorphisms of graph algebras
Conti, Roberto; Szymanski, Wojciech
2011-01-01
Endomorphisms of graph C*-algebras are investigated. A combinatorial approach to analysis of permutative endomorphisms is developed. Then invertibility criteria for localized endomorphisms are given. Furthermore, proper endomorphisms which restrict to automorphisms of the canonical diagonal MASA are analyzed. The Weyl group and the restricted Weyl group of a graph C*-algebra are introduced and investigated. Criteria of outerness for automorphisms in the restricted Weyl group are found.
Ternary generalizations of Grassmann algebra
Abramov, V V
1996-01-01
We propose the ternary generalization of the classical anti-commutativity and study the algebras whose generators are ternary anti-commutative. The integral over an algebra with an arbitrary number of generators N is defined and the formula of a change of variables is proved. In analogy with the fermion integral we define an analogue of the Pfaffian for a cubic matrix by means of Gaussian type integral and calculate its explicit form in the case of N=3.
Stability of -Jordan Homomorphisms from a Normed Algebra to a Banach Algebra
Directory of Open Access Journals (Sweden)
Yang-Hi Lee
2013-01-01
Full Text Available We establish the hyperstability of -Jordan homomorphisms from a normed algebra to a Banach algebra, and also we show that an -Jordan homomorphism between two commutative Banach algebras is an -ring homomorphism.
A note on the "logarithmic-W_3" octuplet algebra and its Nichols algebra
Semikhatov, A M
2013-01-01
We describe a Nichols-algebra-motivated construction of an octuplet chiral algebra that is a "W_3-counterpart" of the triplet algebra of (p,1) logarithmic models of two-dimensional conformal field theory.
A Workshop on Algebraic Design Theory and Hadamard Matrices
2015-01-01
This volume develops the depth and breadth of the mathematics underlying the construction and analysis of Hadamard matrices and their use in the construction of combinatorial designs. At the same time, it pursues current research in their numerous applications in security and cryptography, quantum information, and communications. Bridges among diverse mathematical threads and extensive applications make this an invaluable source for understanding both the current state of the art and future directions. The existence of Hadamard matrices remains one of the most challenging open questions in combinatorics. Substantial progress on their existence has resulted from advances in algebraic design theory using deep connections with linear algebra, abstract algebra, finite geometry, number theory, and combinatorics. Hadamard matrices arise in a very diverse set of applications. Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important ap...
Algebraic Systems and Pushdown Automata
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
Algebras with actions and automata
Directory of Open Access Journals (Sweden)
W. Kühnel
1982-01-01
Full Text Available In the present paper we want to give a common structure theory of left action, group operations, R-modules and automata of different types defined over various kinds of carrier objects: sets, graphs, presheaves, sheaves, topological spaces (in particular: compactly generated Hausdorff spaces. The first section gives an axiomatic approach to algebraic structures relative to a base category B, slightly more powerful than that of monadic (tripleable functors. In section 2 we generalize Lawveres functorial semantics to many-sorted algebras over cartesian closed categories. In section 3 we treat the structures mentioned in the beginning as many-sorted algebras with fixed scalar or input object and show that they still have an algebraic (or monadic forgetful functor (theorem 3.3 and hence the general theory of algebraic structures applies. These structures were usually treated as one-sorted in the Lawvere-setting, the action being expressed by a family of unary operations indexed over the scalars. But this approach cannot, as the one developed here, describe continuity of the action (more general: the action to be a B-morphism, which is essential for the structures mentioned above, e.g. modules for a sheaf of rings or topological automata. Finally we discuss consequences of theorem 3.3 for the structure theory of various types of automata. The particular case of algebras with fixed natural numbers object has been studied by the authors in [23].
格蕴涵代数与MV-代数%Lattice Implication Algebras and MV-algebras
Institute of Scientific and Technical Information of China (English)
郭天榜
1999-01-01
Lattice implication algebras is an algebraic structure which is established by combining lattice and implication algebras. In this paper,the relationship between lattice implication algebras and MV-algebra was discussed,and then proved that both of the categorys of the two algebras are categorical equivalence. Finally,the infinitely distributivity in lattice implication algebras were proved.
Quantum Deformed $su(m|n)$ Algebra and Superconformal Algebra on Quantum Superspace
Kobayashi, Tatsuo
1993-01-01
We study a deformed $su(m|n)$ algebra on a quantum superspace. Some interesting aspects of the deformed algebra are shown. As an application of the deformed algebra we construct a deformed superconformal algebra. {}From the deformed $su(1|4)$ algebra, we derive deformed Lorentz, translation of Minkowski space, $iso(2,2)$ and its supersymmetric algebras as closed subalgebras with consistent automorphisms.
Directory of Open Access Journals (Sweden)
M. Sivasubramanian
2009-01-01
Full Text Available Problem statement: After formulating the special theory of relativity in 1905, Albert Einstein politely remarked: for velocities that are greater than light our deliberations become meaningless. In 1962, Sudarshan and his co-researchers proposed a hypothesis that particles/objects whose rest mass is imaginary can travel by birth faster than light. After the publication of Sudarshans research, many scholars began to probe into faster than light phenomena. In extended relativity, many properties of tachyons have been found. But still this micro second, the velocity of a free tachyon with respect to us is unknown. In this research the researchers found tachyon velocity. Approach: In this research, Einsteins variation of mass with velocity equation was transformed into quadratic equation. We introduced a new hypothesis to find the roots of the quadratic equation. Results: By introducing a new hypothesis in tachyon algebra, the researchers found that the velocity of superluminal objects with respect to us is v = c√3 where c is the velocity of the light. Conclusion/Recommendations: But the road to tachyon is too long. Hereafter it is up to experimental physicists to establish the existence/generation of tachyons.
Wörz-Busekros, Angelika
1980-01-01
The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and tran...
Optical linear algebra processors - Architectures and algorithms
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
Surveys in differential-algebraic equations IV
Reis, Timo
2017-01-01
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs) which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - History of DAEs - DAE aspects of mechanical multibody systems - Model reduction of DAEs - Observability for DAEs - Numerical Analysis for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
The Weil Algebra of a Hopf Algebra I: A Noncommutative Framework
Dubois-Violette, Michel; Landi, Giovanni
2014-03-01
We generalize the notion, introduced by Henri Cartan, of an operation of a Lie algebra in a graded differential algebra Ω. We define the notion of an operation of a Hopf algebra in a graded differential algebra Ω which is referred to as a -operation. We then generalize for such an operation the notion of algebraic connection. Finally we discuss the corresponding noncommutative version of the Weil algebra: The Weil algebra of the Hopf algebra is the universal initial object of the category of -operations with connections.
Finite dimensional quotients of commutative operator algebras
Meyer, R
1997-01-01
The matrix normed structure of the unitization of a (non-selfadjoint) operator algebra is determined by that of the original operator algebra. This yields a classification up to completely isometric isomorphism of two-dimensional unital operator algebras. This allows to define invariant distances on the spectrum of commutative operator algebras analogous to the Caratheodory distance for complex manifolds. Moreover, unitizations of two-dimensional operator algebras with zero multiplication provide a rich class of counterexamples. Especially, several badly behaved quotients of function algebras are exhibited. Recently, Arveson has developed a model theory for d-contractions. Quotients of the operator algebra of the d-shift are much more well-behaved than quotients of function algebras. Completely isometric representations of these quotients are obtained explicitly. This provides a generalization of Nevanlinna-Pick theory. An important property of quotients of the d-shift algebra is that their quotients of finit...
Independence-friendly cylindric set algebras
Mann, Allen L
2007-01-01
Independence-friendly logic is a conservative extension of first-order logic that has the same expressive power as existential second-order logic. In her Ph.D. thesis, Dechesne introduces a variant of independence-friendly logic called IFG logic. We attempt to algebraize IFG logic in the same way that Boolean algebra is the algebra of propositional logic and cylindric algebra is the algebra of first-order logic. We define independence-friendly cylindric set algebras and prove two main results. First, every independence-friendly cylindric set algebra over a structure has an underlying Kleene algebra. Moreover, the class of such underlying Kleene algebras generates the variety of all Kleene algebras. Hence the equational theory of the class of Kleene algebras that underly an independence-friendly cylindric set algebra is finitely axiomatizable. Second, every one-dimensional independence-friendly cylindric set algebra over a structure has an underlying monadic Kleene algebra. However, the class of such underlyin...
A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.
DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J
2016-12-01
Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions.
Congruences on Balanced Pseudocomplemented Ockham Algebras
Institute of Scientific and Technical Information of China (English)
Jie FANG
2009-01-01
The variety bpO consists of those algebras (L;∧,∨, f,* ) of type where (L; ∧, ∨, f, 0, 1) is an Ockham algebra, (L; ∧, ∨, *, 0, 1) is a p-algebra, and the operations x→f(x) and x →x* satisfy the identities f(x*) = x** and [f(x)]* = f2(x). In this note, we show that the compact congruences on a bpO-algebra form a dual Stone lattice. Using this, we characterize the algebras in which every principal congruence is complemented. We also give a description of congruence coherent bpO-algebras.
Double-partition Quantum Cluster Algebras
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Zhang, Hechun
2012-01-01
A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....
Principles of linear algebra with Mathematica
Shiskowski, Kenneth M
2013-01-01
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings,
Harmonic functions on groups and Fourier algebras
Chu, Cho-Ho
2002-01-01
This research monograph introduces some new aspects to the theory of harmonic functions and related topics. The authors study the analytic algebraic structures of the space of bounded harmonic functions on locally compact groups and its non-commutative analogue, the space of harmonic functionals on Fourier algebras. Both spaces are shown to be the range of a contractive projection on a von Neumann algebra and therefore admit Jordan algebraic structures. This provides a natural setting to apply recent results from non-associative analysis, semigroups and Fourier algebras. Topics discussed include Poisson representations, Poisson spaces, quotients of Fourier algebras and the Murray-von Neumann classification of harmonic functionals.
Finite-dimensional division algebras over fields
Jacobson, Nathan
2009-01-01
Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of parti
Do Phantom Cuntz-Krieger Algebras Exist?
DEFF Research Database (Denmark)
Arklint, Sara E.
2013-01-01
If phantom Cuntz-Krieger algebras do not exist, then purely infinite Cuntz-Krieger algebras can be characterized by outer properties. In this survey paper, a summary of the known results on non-existence of phantom Cuntz-Krieger algebras is given......If phantom Cuntz-Krieger algebras do not exist, then purely infinite Cuntz-Krieger algebras can be characterized by outer properties. In this survey paper, a summary of the known results on non-existence of phantom Cuntz-Krieger algebras is given...
Institute of Scientific and Technical Information of China (English)
Dan LI
2012-01-01
Extending the notion of property T of finite von Neumann algebras to general von Neumann algebras,we define and study in this paper property T** for (possibly non-unital) C*-algebras.We obtain several results of property T** parallel to those of property T for unital C*-algebras.Moreover,we show that a discrete group Γ has property T if and only if the group C*-algebra C*(Γ) (or equivalently,the reduced group C*-algebra CΓ*(Γ)) has property T**.We also show that the compact operators K((C)2) has property T** but co does not have property T**.
Noncommutative Cartan sub-algebras of C*-algebras
Exel, Ruy
2008-01-01
J. Renault has recently found a generalization of the caracterization of C*-diagonals obtained by A. Kumjian in the eighties, which in turn is a C*-algebraic version of J. Feldman and C. Moore's well known Theorem on Cartan subalgebras of von Neumann algebras. Here we propose to give a version of Renault's result in which the Cartan subalgebra is not necessarily commutative [sic]. Instead of describing a Cartan pair as a twisted groupoid C*-algebra we use N. Sieben's notion of Fell bundles over inverse semigroups which we believe should be thought of as "twisted etale groupoids with noncommutative unit space". En passant we prove a theorem on uniqueness of conditional expectations.
Homological Dimensions of the Extension Algebras of Monomial Algebras
Institute of Scientific and Technical Information of China (English)
Hong Bo SHI
2015-01-01
The main objective of this paper is to study the dimension trees and further the homo-logical dimensions of the extension algebras — dual and trivially twisted extensions — with a unified combinatorial approach using the two combinatorial algorithms — Topdown and Bottomup. We first present a more complete and clearer picture of a dimension tree, with which we are then able, on the one hand, to sharpen some results obtained before and furthermore reveal a few more hidden sub-tle homological phenomenons of or connections between the involved algebras; on the other hand, to provide two more eﬃ cient combinatorial algorithms for computing dimension trees, and consequently the homological dimensions as an application. We believe that the more refined complete structural information on dimension trees will be useful to study other homological properties of this class of extension algebras.
Operator product expansion algebra
Energy Technology Data Exchange (ETDEWEB)
Holland, Jan [School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff CF24 4AG (United Kingdom); Hollands, Stefan [School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff CF24 4AG (United Kingdom); Institut für Theoretische Physik, Universität Leipzig, Brüderstr. 16, Leipzig, D-04103 (Germany)
2013-07-15
We establish conceptually important properties of the operator product expansion (OPE) in the context of perturbative, Euclidean φ{sup 4}-quantum field theory. First, we demonstrate, generalizing earlier results and techniques of hep-th/1105.3375, that the 3-point OPE,
Geometry, algebra and applications from mechanics to cryptography
Encinas, Luis; Gadea, Pedro; María, Mª
2016-01-01
This volume collects contributions written by different experts in honor of Prof. Jaime Muñoz Masqué. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.
Algebraic Systems Biology: A Case Study for the Wnt Pathway.
Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd
2016-01-01
Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics.
Topics in Cohomological Studies of Algebraic Varieties Impanga Lecture Notes
Pragacz, Piotr
2005-01-01
The articles in this volume study various cohomological aspects of algebraic varieties:- characteristic classes of singular varieties;- geometry of flag varieties;- cohomological computations for homogeneous spaces;- K-theory of algebraic varieties;- quantum cohomology and Gromov-Witten theory.The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Num
Extending Characters on Fix Algebras
Wagner, Stefan
2011-01-01
A dynamical system is a triple $(A,G,\\alpha)$, consisting of a unital locally convex algebra $A$, a topological group $G$ and a group homomorphism $\\alpha:G\\rightarrow\\Aut(A)$, which induces a continuous action of $G$ on $A$. Further, a unital locally convex algebra $A$ is called continuous inverse algebra, or CIA for short, if its group of units $A^{\\times}$ is open in $A$ and the inversion $\\iota:A^{\\times}\\rightarrow A^{\\times},\\,\\,\\,a\\mapsto a^{-1}$ is continuous at $1_A$. For a compact manifold $M$, the Fr\\'echet algebra of smooth functions $C^{\\infty}(M)$ is the prototype of such a continuous inverse algebra. We show that if $A$ is a complete commutative CIA, $G$ a compact group and $(A,G,\\alpha)$ a dynamical system, then each character of $B:=A^G$ can be extended to a character of $A$. In particular, the natural map on the level of the corresponding spectra $\\Gamma_A\\rightarrow\\Gamma_B$, $\\chi\\mapsto\\chi_{\\mid B}$ is surjective.
Birman-Murakami-Wenzl algebras for general Coxeter groups
Chen, Zhi
2012-01-01
We introduce a BMW type algebra for every Coxeter group. These new algebras are introduced as deformations of the Brauer type algebras introduced by the author, they have the corresponding Hecke algebras as quotients.
Discrete event systems in dioid algebra and conventional algebra
Declerck, Philippe
2013-01-01
This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i
Rational and algebraic approximations of algebraic numbers and their application
Institute of Scientific and Technical Information of China (English)
袁平之
1997-01-01
Effective rational and algebraic approximations of a large class of algebraic numbers are obtained by Thue-Siegel’s method.As an application of this result,it is proved that; if D>0 is not a square,and ε=x0 +y0 D denotes the fundamental solution of x2-Dy2=-1,then x2+1=Dy4 is solvable if and only if y0=A2 where A is an integer.Moreover,if ≥64,then x2+1=Dy4 has at most one positive integral solution (x,y).
Noncommutative Poisson brackets on Loday algebras and related deformation quantization
UCHINO, Kyousuke
2010-01-01
We introduce a new type of algebra which is called a Loday-Poisson algebra. The class of the Loday-Poisson algebras forms a special subclass of Aguiar's dual-prePoisson algebas (\\cite{A}). We will prove that there exists a unique Loday-Poisson algebra over a Loday algebra, like the Lie-Poisson algebra over a Lie algebra. Thus, Loday-Poisson algebras are regarded as noncommutative analogues of Lie-Poisson algebras. We will show that the polinomial Loday-Poisson algebra is deformation quantizable and that the associated quantum algebra is Loday's associative dialgebra.
Scaling Linear Algebra Kernels using Remote Memory Access
Energy Technology Data Exchange (ETDEWEB)
Krishnan, Manoj Kumar; Lewis, Robert R.; Vishnu, Abhinav
2010-09-13
This paper describes the scalability of linear algebra kernels based on remote memory access approach. The current approach differs from the other linear algebra algorithms by the explicit use of shared memory and remote memory access (RMA) communication rather than message passing. It is suitable for clusters and scalable shared memory systems. The experimental results on large scale systems (Linux-Infiniband cluster, Cray XT) demonstrate consistent performance advantages over ScaLAPACK suite, the leading implementation of parallel linear algebra algorithms used today. For example, on a Cray XT4 for a matrix size of 102400, our RMA-based matrix multiplication achieved over 55 teraflops while ScaLAPACK’s pdgemm measured close to 42 teraflops on 10000 processes.
Solving Tensor Structured Problems with Computational Tensor Algebra
Morozov, Oleksii
2010-01-01
Since its introduction by Gauss, Matrix Algebra has facilitated understanding of scientific problems, hiding distracting details and finding more elegant and efficient ways of computational solving. Today's largest problems, which often originate from multidimensional data, might profit from even higher levels of abstraction. We developed a framework for solving tensor structured problems with tensor algebra that unifies concepts from tensor analysis, multilinear algebra and multidimensional signal processing. In contrast to the conventional matrix approach, it allows the formulation of multidimensional problems, in a multidimensional way, preserving structure and data coherence; and the implementation of automated optimizations of solving algorithms, based on the commutativity of all tensor operations. Its ability to handle large scientific tasks is showcased by a real-world, 4D medical imaging problem, with more than 30 million unknown parameters solved on a current, inexpensive hardware. This significantly...
Developments and retrospectives in Lie theory algebraic methods
Penkov, Ivan; Wolf, Joseph
2014-01-01
This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics. Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Algebraic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research. Mos...
Twisted Hamiltonian Lie Algebras and Their Multiplicity-Free Representations
Institute of Scientific and Technical Information of China (English)
Ling CHEN
2011-01-01
We construct a class of new Lie algebras by generalizing the one-variable Lie algebras generated by the quadratic conformal algebras (or corresponding Hamiltonian operators) associated with Poisson algebras and a quasi-derivation found by Xu. These algebras can be viewed as certain twists of Xu's generalized Hamiltonian Lie algebras. The simplicity of these algebras is completely determined. Moreover, we construct a family of multiplicity-free representations of these Lie algebras and prove their irreducibility.
Clifford Algebras in Symplectic Geometry and Quantum Mechanics
Binz, Ernst; de Gosson, Maurice A.; Hiley, Basil J.
2011-01-01
The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C(0,2). This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional s...
Algebraic Proofs over Noncommutative Formulas
Tzameret, Iddo
2010-01-01
We study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege---yielding a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic analogue of Frege proofs, different from that given in [BIKPRS96,GH03]. We then turn to an apparently weaker system, namely, polynomial calculus (PC) where polynomials are written as ordered formulas ("PC over ordered formulas", for short). This is an algebraic propositional proof system that operates with noncommutative polynomials in which the order of products in all monomials respects a fixed linear order on the variables, and where proof-lines are written as noncommutative formulas. We show that the latter proof system is strictly stronger than resolution, polynomial calculus and polynomial calculus with resolution (PCR) and admits polynomial-size refutations for the pigeonhole principle and the Tseitin's formulas. We...
Renormalization automated by Hopf algebra
Broadhurst, D J
1999-01-01
It was recently shown that the renormalization of quantum field theory is organized by the Hopf algebra of decorated rooted trees, whose coproduct identifies the divergences requiring subtraction and whose antipode achieves this. We automate this process in a few lines of recursive symbolic code, which deliver a finite renormalized expression for any Feynman diagram. We thus verify a representation of the operator product expansion, which generalizes Chen's lemma for iterated integrals. The subset of diagrams whose forest structure entails a unique primitive subdivergence provides a representation of the Hopf algebra ${\\cal H}_R$ of undecorated rooted trees. Our undecorated Hopf algebra program is designed to process the 24,213,878 BPHZ contributions to the renormalization of 7,813 diagrams, with up to 12 loops. We consider 10 models, each in 9 renormalization schemes. The two simplest models reveal a notable feature of the subalgebra of Connes and Moscovici, corresponding to the commutative part of the Hopf ...
Dynamical systems of algebraic origin
Schmidt, Klaus
1995-01-01
Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...
A characterisation of algebraic exactness
Garner, Richard
2011-01-01
An algebraically exact category in one that admits all of the limits and colimits which every variety of algebras possesses and every forgetful functor between varieties preserves, and which verifies the same interactions between these limits and colimits as hold in any variety. Such categories were studied by Ad\\'amek, Lawvere and Rosick\\'y: they characterised them as the categories with small limits and sifted colimits for which the functor taking sifted colimits is continuous. They conjectured that a complete and sifted-cocomplete category should be algebraically exact just when it is Barr-exact, finite limits commute with filtered colimits, regular epimorphisms are stable by small products, and filtered colimits distribute over small products. We prove this conjecture.
A Metric Conceptual Space Algebra
Adams, Benjamin; Raubal, Martin
The modeling of concepts from a cognitive perspective is important for designing spatial information systems that interoperate with human users. Concept representations that are built using geometric and topological conceptual space structures are well suited for semantic similarity and concept combination operations. In addition, concepts that are more closely grounded in the physical world, such as many spatial concepts, have a natural fit with the geometric structure of conceptual spaces. Despite these apparent advantages, conceptual spaces are underutilized because existing formalizations of conceptual space theory have focused on individual aspects of the theory rather than the creation of a comprehensive algebra. In this paper we present a metric conceptual space algebra that is designed to facilitate the creation of conceptual space knowledge bases and inferencing systems. Conceptual regions are represented as convex polytopes and context is built in as a fundamental element. We demonstrate the applicability of the algebra to spatial information systems with a proof-of-concept application.
Algebraic Lattices in QFT Renormalization
Borinsky, Michael
2016-07-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Topics in quaternion linear algebra
Rodman, Leiba
2014-01-01
Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...
Probability on real Lie algebras
Franz, Uwe
2016-01-01
This monograph is a progressive introduction to non-commutativity in probability theory, summarizing and synthesizing recent results about classical and quantum stochastic processes on Lie algebras. In the early chapters, focus is placed on concrete examples of the links between algebraic relations and the moments of probability distributions. The subsequent chapters are more advanced and deal with Wigner densities for non-commutative couples of random variables, non-commutative stochastic processes with independent increments (quantum Lévy processes), and the quantum Malliavin calculus. This book will appeal to advanced undergraduate and graduate students interested in the relations between algebra, probability, and quantum theory. It also addresses a more advanced audience by covering other topics related to non-commutativity in stochastic calculus, Lévy processes, and the Malliavin calculus.
A Matrix Construction of Cellular Algebras
Institute of Scientific and Technical Information of China (English)
Dajing Xiang
2005-01-01
In this paper, we give a concrete method to construct cellular algebras from matrix algebras by specifying certain fixed matrices for the data of inflations. In particular,orthogonal matrices can be chosen for such data.
Quantum Groupoids Acting on Semiprime Algebras
Directory of Open Access Journals (Sweden)
Inês Borges
2011-01-01
Full Text Available Following Linchenko and Montgomery's arguments we show that the smash product of an involutive weak Hopf algebra and a semiprime module algebra, satisfying a polynomial identity, is semiprime.
Uniform Algebras Over Complete Valued Fields
Mason, Jonathan W
2012-01-01
UNIFORM algebras have been extensively investigated because of their importance in the theory of uniform approximation and as examples of complex Banach algebras. An interesting question is whether analogous algebras exist when a complete valued field other than the complex numbers is used as the underlying field of the algebra. In the Archimedean setting, this generalisation is given by the theory of real function algebras introduced by S. H. Kulkarni and B. V. Limaye in the 1980s. This thesis establishes a broader theory accommodating any complete valued field as the underlying field by involving Galois automorphisms and using non-Archimedean analysis. The approach taken keeps close to the original definitions from the Archimedean setting. Basic function algebras are defined and generalise real function algebras to all complete valued fields. Several examples are provided. Each basic function algebra is shown to have a lattice of basic extensions related to the field structure. In the non-Archimedean settin...
States on sharply dominating effect algebras
Institute of Scientific and Technical Information of China (English)
Zdenka RIE(C)ANOV(A); WU JunDe
2008-01-01
We prove that sharply dominating Archimedean atomic lattice effect algebras can be characterized by the property called basic decomposition of elements. As an application we prove the state smearing theorem for these effect algebras.
States on sharply dominating effect algebras
Institute of Scientific and Technical Information of China (English)
Zdenka; RIE■ANOV
2008-01-01
We prove that sharply dominating Archimedean atomic lattice effect algebras can be characterized by the property called basic decomposition of elements.As an application we prove the state smearing theorem for these effect algebras.
Quadratic and 2-Crossed Modules of Algebras
Institute of Scientific and Technical Information of China (English)
Z. Arvasi; E. Ulualan
2007-01-01
In this work, we define the quadratic modules for commutative algebras and give relations among 2-crossed modules, crossed squares, quadratic modules and simplicial commutative algebras with Moore complex of length 2.
The Calkin algebra is not countably homogeneous
Farah, Ilijas; Hirshberg, Ilan
2015-01-01
We show that the Calkin algebra is not countably homogeneous, in the sense of continuous model theory. We furthermore show that the connected component of the unitary group of the Calkin algebra is not countably homogeneous.
Irreducible representations of Birman-Wenzl algebras
Institute of Scientific and Technical Information of China (English)
潘峰
1995-01-01
Irreducible representations of Birman-Wenzl algebras are constructed by using the induced representation and the linear equation method. Self-adjoint representations of Birman-Wenzl algebras Cf (r, q) with f≤4 are presented.
Generalized NLS Hierarchies from Rational $W$ Algebras
Toppan, F
1994-01-01
Finite rational $\\cw$ algebras are very natural structures appearing in coset constructions when a Kac-Moody subalgebra is factored out. In this letter we address the problem of relating these algebras to integrable hierarchies of equations, by showing how to associate to a rational $\\cw$ algebra its corresponding hierarchy. We work out two examples: the $sl(2)/U(1)$ coset, leading to the Non-Linear Schr\\"{o}dinger hierarchy, and the $U(1)$ coset of the Polyakov-Bershadsky $\\cw$ algebra, leading to a $3$-field representation of the KP hierarchy already encountered in the literature. In such examples a rational algebra appears as algebra of constraints when reducing a KP hierarchy to a finite field representation. This fact arises the natural question whether rational algebras are always associated to such reductions and whether a classification of rational algebras can lead to a classification of the integrable hierarchies.
Harvey, J A; Harvey, Jeffrey A.; Moore, Gregory
1998-01-01
We define an algebra on the space of BPS states in theories with extended supersymmetry. We show that the algebra of perturbative BPS states in toroidal compactification of the heterotic string is closely related to a generalized Kac-Moody algebra. We use D-brane theory to compare the formulation of RR-charged BPS algebras in type II compactification with the requirements of string/string duality and find that the RR charged BPS states should be regarded as cohomology classes on moduli spaces of coherent sheaves. The equivalence of the algebra of BPS states in heterotic/IIA dual pairs elucidates certain results and conjectures of Nakajima and Gritsenko \\& Nikulin, on geometrically defined algebras and furthermore suggests nontrivial generalizations of these algebras. In particular, to any CY 3-fold there are two canonically associated algebras exchanged by mirror symmetry.
Harvey, Jeffrey A.; Moore, Gregory
We define an algebra on the space of BPS states in theories with extended supersymmetry. We show that the algebra of perturbative BPS states in toroidal compactification of the heterotic string is closely related to a generalized Kac-Moody algebra. We use D-brane theory to compare the formulation of RR-charged BPS algebras in type II compactification with the requirements of string/string duality and find that the RR charged BPS states should be regarded as cohomology classes on moduli spaces of coherent sheaves. The equivalence of the algebra of BPS states in heterotic/IIA dual pairs elucidates certain results and conjectures of Nakajima and Gritsenko & Nikulin, on geometrically defined algebras and furthermore suggests nontrivial generalizations of these algebras. In particular, to any Calabi-Yau 3-fold there are two canonically associated algebras exchanged by mirror symmetry.
RANK ONE OPERATORS AND TRIANGULAR ALGEBRAS
Institute of Scientific and Technical Information of China (English)
LuFangyan; IuShijie
1999-01-01
Abstract, In this paper, a necessary condition for a maximal triangular algebra to be closed is given, A necessary and sufficient condition for a maxima] triangular algebra to he strongly reducible is obtained,
Non-commutative Poisson Algebra Structures on the Lie Algebra son(CQ)
Institute of Scientific and Technical Information of China (English)
Jie Tong; Quanqin Jin
2007-01-01
Non-commutative Poisson algebras are the algebras having both an associativealgebra structure and a Lie algebra structure together with the Leibniz law.In this paper,the non-commutative poisson algebra structures on son(CQ) are determined.
Universal C*-algebraic quantum groups arising from algebraic quantum groups
Kustermans, J
1997-01-01
In this paper, we construct a universal C*-algebraic quantum group out of an algebraic one. We show that this universal C*-algebraic quantum group has the same rich structure as its reduced companion. This universal C*-algebraic quantum group also satifies an upcoming definition of Masuda, Nakagami & Woronowicz except for the possible non-faithfulness of the left Haar weight.
Block diagonalization for algebra's associated with block codes
Gijswijt, D.
2009-01-01
For a matrix *-algebra B, consider the matrix *-algebra A consisting of the symmetric tensors in the n-fold tensor product of B. Examples of such algebras in coding theory include the Bose-Mesner algebra and Terwilliger algebra of the (non)binary Hamming cube, and algebras arising in SDP-hierarchies
On Ideals and Quotients of $A\\mathcal{T}$-Algebras
Indian Academy of Sciences (India)
Changguo Wei
2008-11-01
Some results on $A\\mathcal{T}$-algebras are given. We study the problem when ideals, quotients and hereditary subalgebras of $A\\mathcal{T}$-algebras are $A\\mathcal{T}$-algebras or $A\\mathcal{T}$-algebras, and give a necessary and sufficient condition of a hereditary subalgebra of an $A\\mathcal{T}$-algebra being an $A\\mathcal{T}$-algebra.