 #### Sample records for algebraic cancer equation

1. A simple algebraic cancer equation: calculating how cancers may arise with normal mutation rates

Directory of Open Access Journals (Sweden)

Shibata Darryl

2010-01-01

Full Text Available Abstract Background The purpose of this article is to present a relatively easy to understand cancer model where transformation occurs when the first cell, among many at risk within a colon, accumulates a set of driver mutations. The analysis of this model yields a simple algebraic equation, which takes as inputs the number of stem cells, mutation and division rates, and the number of driver mutations, and makes predictions about cancer epidemiology. Methods The equation [p = 1 - (1 - (1 - (1 - udkNm ] calculates the probability of cancer (p and contains five parameters: the number of divisions (d, the number of stem cells (N × m, the number of critical rate-limiting pathway driver mutations (k, and the mutation rate (u. In this model progression to cancer "starts" at conception and mutations accumulate with cell division. Transformation occurs when a critical number of rate-limiting pathway mutations first accumulates within a single stem cell. Results When applied to several colorectal cancer data sets, parameter values consistent with crypt stem cell biology and normal mutation rates were able to match the increase in cancer with aging, and the mutation frequencies found in cancer genomes. The equation can help explain how cancer risks may vary with age, height, germline mutations, and aspirin use. APC mutations may shorten pathways to cancer by effectively increasing the numbers of stem cells at risk. Conclusions The equation illustrates that age-related increases in cancer frequencies may result from relatively normal division and mutation rates. Although this equation does not encompass all of the known complexity of cancer, it may be useful, especially in a teaching setting, to help illustrate relationships between small and large cancer features.

2. Differential Equation over Banach Algebra

OpenAIRE

Kleyn, Aleks

2018-01-01

In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

3. Equationally Noetherian property of Ershov algebras

OpenAIRE

Dvorzhetskiy, Yuriy

2014-01-01

This article is about equationally Noetherian and weak equationally Noetherian property of Ershov algebras. Here we show two canonical forms of the system of equations over Ershov algebras and two criteria of equationally Noetherian and weak equationally Noetherian properties.

4. Variational linear algebraic equations method

International Nuclear Information System (INIS)

Moiseiwitsch, B.L.

1982-01-01

A modification of the linear algebraic equations method is described which ensures a variational bound on the phaseshifts for potentials having a definite sign at all points. The method is illustrated by the elastic scattering of s-wave electrons by the static field of atomic hydrogen. (author)

5. Solving Absolute Value Equations Algebraically and Geometrically

Science.gov (United States)

Shiyuan, Wei

2005-01-01

The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

6. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

NARCIS (Netherlands)

Put, Marius van der

1999-01-01

The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

7. Teaching materials of algebraic equation

Science.gov (United States)

Widodo, S. A.; Prahmana, R. C. I.; Purnami, A. S.; Turmudi

2017-12-01

The purpose of this paper is to know the effectiveness of teaching materials algebraic equation. This type of research used experimental method. The population in this study is all students of mathematics education who take numerical method in sarjanawiyata tamansiswa of university; the sample is taken using cluster random sampling. Instrument used in this research is test and questionnaire. The test is used to know the problem solving ability and achievement, while the questionnaire is used to know the student's response on the teaching materials. Data Analysis technique of quantitative used Wilcoxon test, while the qualitative data used grounded theory. Based on the results of the test can be concluded that the development of teaching materials can improve the ability to solve problems and achievement.

8. Algebraic entropy for differential-delay equations

OpenAIRE

Viallet, Claude M.

2014-01-01

We extend the definition of algebraic entropy to a class of differential-delay equations. The vanishing of the entropy, as a structural property of an equation, signals its integrability. We suggest a simple way to produce differential-delay equations with vanishing entropy from known integrable differential-difference equations.

9. An algebraic approach to the scattering equations

Energy Technology Data Exchange (ETDEWEB)

Huang, Rijun; Rao, Junjie [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Feng, Bo [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Center of Mathematical Science, Zhejiang University,Hangzhou, 310027 (China); He, Yang-Hui [School of Physics, NanKai University,Tianjin, 300071 (China); Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); Merton College, University of Oxford,Oxford, OX14JD (United Kingdom)

2015-12-10

We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

10. An algebraic approach to the scattering equations

International Nuclear Information System (INIS)

Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui

2015-01-01

We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

11. Lie algebras and linear differential equations.

Science.gov (United States)

Brockett, R. W.; Rahimi, A.

1972-01-01

Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

12. The kinematic algebras from the scattering equations

International Nuclear Information System (INIS)

Monteiro, Ricardo; O’Connell, Donal

2014-01-01

We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant

13. Algebraic quantity equations before Fisher and Pigou

OpenAIRE

Thomas M. Humphrey

1984-01-01

Readers of this Review are doubtlessly familiar with the famous equation of exchange, MV=PQ, frequently employed to analyze the price level effects of monetary shocks. One might think the algebraic formulation of the equation is an outgrowth of the 20th century tendency toward mathematical modeling and statistical testing. Indeed, textbooks typically associate the transaction velocity version of the equation with Irving Fisher and the alternative Cambridge cash balance version with A. C. Pigo...

14. Differential equations from the algebraic standpoint

CERN Document Server

Ritt, Joseph Fels

1932-01-01

This book can be viewed as a first attempt to systematically develop an algebraic theory of nonlinear differential equations, both ordinary and partial. The main goal of the author was to construct a theory of elimination, which "will reduce the existence problem for a finite or infinite system of algebraic differential equations to the application of the implicit function theorem taken with Cauchy's theorem in the ordinary case and Riquier's in the partial." In his 1934 review of the book, J. M. Thomas called it "concise, readable, original, precise, and stimulating", and his words still rema

15. Surveys in differential-algebraic equations III

CERN Document Server

Reis, Timo

2015-01-01

The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.

16. Schwarz maps of algebraic linear ordinary differential equations

Science.gov (United States)

Sanabria Malagón, Camilo

2017-12-01

A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

17. Algebraic limit cycles in polynomial systems of differential equations

International Nuclear Information System (INIS)

Llibre, Jaume; Zhao Yulin

2007-01-01

Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4

18. Surveys in differential-algebraic equations IV

CERN Document Server

Reis, Timo

2017-01-01

The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs) which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - History of DAEs - DAE aspects of mechanical multibody systems - Model reduction of DAEs - Observability for DAEs - Numerical Analysis for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.

19. Nonlinear elliptic equations and nonassociative algebras

CERN Document Server

2014-01-01

This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of "Hessian equations", depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four. Thus this book gives a complete list of dimensions...

20. Beltrami algebra and symmetry of Beltrami equation on Riemann surfaces

International Nuclear Information System (INIS)

Guo Hanying; Xu Kaiwen; Shen Jianmin; Wang Shikun

1989-12-01

It is shown that the Beltrami equation has an infinite dimensional symmetry, namely the Beltrami algebra, on its solution spaces. The Beltrami algebra with central extension and its supersymmetric version are explicitly found. (author). 12 refs

1. Hecke symmetries and characteristic relations on reflection equation algebras

International Nuclear Information System (INIS)

Gurevich, D.I.; Pyatov, P.N.

1996-01-01

We discuss how properties of Hecke symmetry (i.e., Hecke type R-matrix) influence the algebraic structure of the corresponding Reflection Equation (RE) algebra. Analogues of the Newton relations and Cayley-Hamilton theorem for the matrix of generators of the RE algebra related to a finite rank even Hecke symmetry are derived. 10 refs

2. Reflection equation algebras, coideal subalgebras, and their centres

NARCIS (Netherlands)

Kolb, S.; Stokman, J.V.

2009-01-01

Reflection equation algebras and related U-q(g)-comodule algebras appear in various constructions of quantum homogeneous spaces and can be obtained via transmutation or equivalently via twisting by a cocycle. In this paper we investigate algebraic and representation theoretic properties of such so

3. Inhomogeneous linear equation in Rota-Baxter algebra

OpenAIRE

Pietrzkowski, Gabriel

2014-01-01

We consider a complete filtered Rota-Baxter algebra of weight $\\lambda$ over a commutative ring. Finding the unique solution of a non-homogeneous linear algebraic equation in this algebra, we generalize Spitzer's identity in both commutative and non-commutative cases. As an application, considering the Rota-Baxter algebra of power series in one variable with q-integral as the Rota-Baxter operator, we show certain Eulerian identities.

4. Representations of Lie algebras and partial differential equations

CERN Document Server

Xu, Xiaoping

2017-01-01

This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

5. Differential-algebraic solutions of the heat equation

OpenAIRE

Buchstaber, Victor M.; Netay, Elena Yu.

2014-01-01

In this work we introduce the notion of differential-algebraic ansatz for the heat equation and explicitly construct heat equation and Burgers equation solutions given a solution of a homogeneous non-linear ordinary differential equation of a special form. The ansatz for such solutions is called the $n$-ansatz, where $n+1$ is the order of the differential equation.

6. Zeta functional equation on Jordan algebras of type II

International Nuclear Information System (INIS)

Kayoya, J.B.

2003-10-01

Using the Jordan algebras method, specially the properties of Peirce decomposition and the Frobenius transformation, we compute the coefficients of the zeta functional equation, in the case of Jordan algebras of Type II. As particular cases of our result, we can cite the case of V M (n, R) studied by Gelbart and Godement-Jacquet, and the case of V Herm(3, O s ) studied by Muro. Let us also mention, that recently, Bopp and Rubenthaler have obtained a more general result on the zeta functional equation by using methods based on the algebraic properties of regular graded algebras which are in one to one correspondence with simple Jordan algebras. The method used in this paper is a direct application of specific properties of Jordan algebras of Type H. (author)

7. Computer programs for nonlinear algebraic equations

International Nuclear Information System (INIS)

Asaoka, Takumi

1977-10-01

We have provided principal computer subroutines for obtaining numerical solutions of nonlinear algebraic equations through a review of the various methods. Benchmark tests were performed on these subroutines to grasp the characteristics of them compared to the existing subroutines. As computer programs based on the secant method, subroutines of the Muller's method using the Chambers' algorithm were newly developed, in addition to the equipment of subroutines of the Muller's method itself. The programs based on the Muller-Chambers' method are useful especially for low-order polynomials with complex coefficients except for the case of finding the triple roots, three close roots etc. In addition, we have equipped subroutines based on the Madsen's algorithm, a variant of the Newton's method. The subroutines have revealed themselves very useful as standard programs because all the roots are found accurately for every case though they take longer computing time than other subroutines for low-order polynomials. It is shown also that an existing subroutine of the Bairstow's method gives the fastest algorithm for polynomials with complex coefficients, except for the case of finding the triple roots etc. We have provided also subroutines to estimate error bounds for all the roots produced with the various algorithms. (auth.)

8. Counting equations in algebraic attacks on block ciphers

DEFF Research Database (Denmark)

Knudsen, Lars Ramkilde; Miolane, Charlotte Vikkelsø

2010-01-01

This paper is about counting linearly independent equations for so-called algebraic attacks on block ciphers. The basic idea behind many of these approaches, e.g., XL, is to generate a large set of equations from an initial set of equations by multiplication of existing equations by the variables...... in the system. One of the most difficult tasks is to determine the exact number of linearly independent equations one obtain in the attacks. In this paper, it is shown that by splitting the equations defined over a block cipher (an SP-network) into two sets, one can determine the exact number of linearly...... independent equations which can be generated in algebraic attacks within each of these sets of a certain degree. While this does not give us a direct formula for the success of algebraic attacks on block ciphers, it gives some interesting bounds on the number of equations one can obtain from a given block...

9. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

Institute of Scientific and Technical Information of China (English)

2008-01-01

Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

10. Langevin equation with the deterministic algebraically correlated noise

International Nuclear Information System (INIS)

Ploszajczak, M.; Srokowski, T.

1995-01-01

Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author)

11. Linear algebra a first course with applications to differential equations

CERN Document Server

Apostol, Tom M

2014-01-01

Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.

12. Exact solution of some linear matrix equations using algebraic methods

Science.gov (United States)

Djaferis, T. E.; Mitter, S. K.

1977-01-01

A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

13. Stability criteria for neutral delay differential-algebraic equations

Directory of Open Access Journals (Sweden)

FAN Ni

2013-10-01

Full Text Available The asymptotic stability of neutral delay differential-algebraic equations is studied in this paper.Two stability criteria described by evaluating a corresponding harmonic function on the boundary of a torus region are presented.

14. The algebraic structure of lax equations for infinite matrices

NARCIS (Netherlands)

Helminck, G.F.

2002-01-01

In this paper we discuss the algebraic structure of the tower of differential difference equations that one can associate with any commutative subalgebra of $M_k(\\mathbb{C})$. These equations can be formulated conveniently in so-called Lax equations for infinite upper- resp. lowertriangular matrices

15. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

International Nuclear Information System (INIS)

Gerdt, V.P.; Kostov, N.A.

1989-01-01

In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

16. Nevanlinna theory, normal families, and algebraic differential equations

CERN Document Server

Steinmetz, Norbert

2017-01-01

This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers wor...

17. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear ordinary differential equations

Institute of Scientific and Technical Information of China (English)

WANG; Shunjin; ZHANG; Hua

2006-01-01

The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.

18. Stability of Linear Equations--Algebraic Approach

Science.gov (United States)

Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

2012-01-01

This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

19. Quadratic algebras in the noncommutative integration method of wave equation

International Nuclear Information System (INIS)

Varaksin, O.L.

1995-01-01

The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras

20. Reduced minimax filtering by means of differential-algebraic equations

NARCIS (Netherlands)

V. Mallet; S. Zhuk (Sergiy)

2011-01-01

htmlabstractA reduced minimax state estimation approach is proposed for high-dimensional models. It is based on the reduction of the ordinary differential equation with high state space dimension to the low-dimensional Differential-Algebraic Equation (DAE) and on the subsequent application of the

1. Langevin equation with the deterministic algebraically correlated noise

Energy Technology Data Exchange (ETDEWEB)

Ploszajczak, M. [Grand Accelerateur National dIons Lourds (GANIL), 14 - Caen (France); Srokowski, T. [Grand Accelerateur National dIons Lourds (GANIL), 14 - Caen (France)]|[Institute of Nuclear Physics, Cracow (Poland)

1995-12-31

Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author). 58 refs.

2. ASYS: a computer algebra package for analysis of nonlinear algebraic equations systems

International Nuclear Information System (INIS)

Gerdt, V.P.; Khutornoj, N.V.

1992-01-01

A program package ASYS for analysis of nonlinear algebraic equations based on the Groebner basis technique is described. The package is written in REDUCE computer algebra language. It has special facilities to treat polynomial ideals of positive dimension, corresponding to algebraic systems with infinitely many solutions. Such systems can be transformed to an equivalent set of subsystems with reduced number of variables in completely automatic way. It often allows to construct the explicit form of a solution set in many problems of practical importance. Some examples and results of comparison with the standard Reduce package GROEBNER and special-purpose systems FELIX and A1PI are given. 21 refs.; 2 tabs

3. The equationally-defined commutator a study in equational logic and algebra

CERN Document Server

Czelakowski, Janusz

2015-01-01

This monograph introduces and explores the notions of a commutator equation and the equationally-defined commutator from the perspective of abstract algebraic logic.  An account of the commutator operation associated with equational deductive systems is presented, with an emphasis placed on logical aspects of the commutator for equational systems determined by quasivarieties of algebras.  The author discusses the general properties of the equationally-defined commutator, various centralization relations for relative congruences, the additivity and correspondence properties of the equationally-defined commutator, and its behavior in finitely generated quasivarieties. Presenting new and original research not yet considered in the mathematical literature, The Equationally-Defined Commutator will be of interest to professional algebraists and logicians, as well as graduate students and other researchers interested in problems of modern algebraic logic.

4. Using Computer Symbolic Algebra to Solve Differential Equations.

Science.gov (United States)

Mathews, John H.

1989-01-01

This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)

5. Numerical Solution of Differential Algebraic Equations and Applications

DEFF Research Database (Denmark)

Thomsen, Per Grove

2005-01-01

These lecture notes have been written as part of a special course on the numerical solution of Differential Algebraic Equations and applications . The course was held at IMM in the spring of 2005. The authors of the different chapters have all taken part in the course and the chapters are written...

6. Algebraic solution for the vector potential in the Dirac equation

Energy Technology Data Exchange (ETDEWEB)

Booth, H.S. [School of Mathematics and Physics, University of Tasmania, Hobart Tas (Australia); Centre for Mathematics and its Applications, Australian National University (Australia)]. E-mail: hbooth@wintermute.anu.edu.au; Legg, G.; Jarvis, P.D. [School of Mathematics and Physics, University of Tasmania, Hobart Tas (Australia)

2001-07-20

The Dirac equation for an electron in an external electromagnetic field can be regarded as a singular set of linear equations for the vector potential. Radford's method of algebraically solving for the vector potential is reviewed, with attention to the additional constraints arising from non-maximality of the rank. The extension of the method to general spacetimes is illustrated by examples in diverse dimensions with both c- and a-number wavefunctions. (author)

7. Algebra

CERN Document Server

Flanders, Harley

1975-01-01

Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

8. Algorithm for solving polynomial algebraic Riccati equations and its application

Czech Academy of Sciences Publication Activity Database

Augusta, Petr; Augustová, Petra

2012-01-01

Roč. 1, č. 4 (2012), s. 237-242 ISSN 2223-7038 R&D Projects: GA ČR GPP103/12/P494 Institutional support: RVO:67985556 Keywords : Numerical algorithms * algebraic Riccati equation * spatially distributed systems * optimal control Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=8b4876d6a57d

9. Stability of the Exponential Functional Equation in Riesz Algebras

Directory of Open Access Journals (Sweden)

Bogdan Batko

2014-01-01

Full Text Available We deal with the stability of the exponential Cauchy functional equation F(x+y=F(xF(y in the class of functions F:G→L mapping a group (G, + into a Riesz algebra L. The main aim of this paper is to prove that the exponential Cauchy functional equation is stable in the sense of Hyers-Ulam and is not superstable in the sense of Baker. To prove the stability we use the Yosida Spectral Representation Theorem.

10. Prolongation Loop Algebras for a Solitonic System of Equations

Directory of Open Access Journals (Sweden)

Maria A. Agrotis

2006-11-01

Full Text Available We consider an integrable system of reduced Maxwell-Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the n-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model is embedded in an infinite dimensional loop algebra. The dynamical equations of the model are associated to an infinite family of higher order Hamiltonian systems that are in involution. We present the Hamiltonian functions and the Poisson brackets between the extended potentials.

11. Truncatable bootstrap equations in algebraic form and critical surface exponents

Energy Technology Data Exchange (ETDEWEB)

Gliozzi, Ferdinando [Dipartimento di Fisica, Università di Torino andIstituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1, Torino, I-10125 (Italy)

2016-10-10

We describe examples of drastic truncations of conformal bootstrap equations encoding much more information than that obtained by a direct numerical approach. A three-term truncation of the four point function of a free scalar in any space dimensions provides algebraic identities among conformal block derivatives which generate the exact spectrum of the infinitely many primary operators contributing to it. In boundary conformal field theories, we point out that the appearance of free parameters in the solutions of bootstrap equations is not an artifact of truncations, rather it reflects a physical property of permeable conformal interfaces which are described by the same equations. Surface transitions correspond to isolated points in the parameter space. We are able to locate them in the case of 3d Ising model, thanks to a useful algebraic form of 3d boundary bootstrap equations. It turns out that the low-lying spectra of the surface operators in the ordinary and the special transitions of 3d Ising model form two different solutions of the same polynomial equation. Their interplay yields an estimate of the surface renormalization group exponents, y{sub h}=0.72558(18) for the ordinary universality class and y{sub h}=1.646(2) for the special universality class, which compare well with the most recent Monte Carlo calculations. Estimates of other surface exponents as well as OPE coefficients are also obtained.

12. A Novel Partial Differential Algebraic Equation (PDAE) Solver

DEFF Research Database (Denmark)

Lim, Young-il; Chang, Sin-Chung; Jørgensen, Sten Bay

2004-01-01

For solving partial differential algebraic equations (PDAEs), the space-time conservation element/solution element (CE/SE) method is addressed in this study. The method of lines (MOL) using an implicit time integrator is compared with the CE/SE method in terms of computational efficiency, solution...... or nonlinear adsorption isotherm are solved by the two methods. The CE/SE method enforces both local and global flux conservation in space and time, and uses a simple stencil structure (two points at the previous time level and one point at the present time level). Thus, accurate and computationally...

13. First order linear ordinary differential equations in associative algebras

Directory of Open Access Journals (Sweden)

Gordon Erlebacher

2004-01-01

Full Text Available In this paper, we study the linear differential equation $$frac{dx}{dt}=sum_{i=1}^n a_i(t x b_i(t + f(t$$ in an associative but non-commutative algebra $mathcal{A}$, where the $b_i(t$ form a set of commuting $mathcal{A}$-valued functions expressed in a time-independent spectral basis consisting of mutually annihilating idempotents and nilpotents. Explicit new closed solutions are derived, and examples are presented to illustrate the theory.

14. Analytical solutions for systems of partial differential-algebraic equations.

Science.gov (United States)

Benhammouda, Brahim; Vazquez-Leal, Hector

2014-01-01

This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.

15. Symmetries of the Schrodinger Equation and Algebra/Superalgebra Duality

International Nuclear Information System (INIS)

Toppan, Francesco

2014-12-01

Some key features of the symmetries of the Schroedinger equation that are common to a much broader class of dynamical systems (some under construction) are illustrated. I discuss the algebra/superalgebra duality involving rst and second-order differential operators. It provides different viewpoints for the spectrum-generating subalgebras. The representation dependent notion of on-shell symmetry is introduced. The difference in associating the time derivative symmetry operator with either a root or a Cartan generator of the sl(2) subalgebra is discussed. In application to one-dimensional Lagrangian superconformal sigma-models it implies superconformal actions which are either supersymmetric or non-supersymmetric. (author)

16. Numerical Methods for a Class of Differential Algebraic Equations

Directory of Open Access Journals (Sweden)

Lei Ren

2017-01-01

Full Text Available This paper is devoted to the study of some efficient numerical methods for the differential algebraic equations (DAEs. At first, we propose a finite algorithm to compute the Drazin inverse of the time varying DAEs. Numerical experiments are presented by Drazin inverse and Radau IIA method, which illustrate that the precision of the Drazin inverse method is higher than the Radau IIA method. Then, Drazin inverse, Radau IIA, and Padé approximation are applied to the constant coefficient DAEs, respectively. Numerical results demonstrate that the Padé approximation is powerful for solving constant coefficient DAEs.

17. Solving the generalized Langevin equation with the algebraically correlated noise

International Nuclear Information System (INIS)

Srokowski, T.; Ploszajczak, M.

1997-01-01

The Langevin equation with the memory kernel is solved. The stochastic force possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport properties are calculated at the assumption that the system is in the thermal equilibrium. Stochastic trajectories are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble Levy walks with divergent moments of the velocity distribution. The motion of a Brownian particle is considered both without any external potential and in the harmonic oscillator field, in particular the escape from a potential well. The results are compared with memory-free calculations for the Brownian particle. (author)

18. Solution of systems of linear algebraic equations by the method of summation of divergent series

International Nuclear Information System (INIS)

Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

2015-01-01

A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

19. Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation

Directory of Open Access Journals (Sweden)

Mitsuo Kato

2018-01-01

Full Text Available A potential vector field is a solution of an extended WDVV equation which is a generalization of a WDVV equation. It is expected that potential vector fields corresponding to algebraic solutions of Painlevé VI equation can be written by using polynomials or algebraic functions explicitly. The purpose of this paper is to construct potential vector fields corresponding to more than thirty non-equivalent algebraic solutions.

20. Analytic, Algebraic and Geometric Aspects of Differential Equations

CERN Document Server

Haraoka, Yoshishige; Michalik, Sławomir

2017-01-01

This volume consists of invited lecture notes, survey papers and original research papers from the AAGADE school and conference held in Będlewo, Poland in September 2015. The contributions provide an overview of the current level of interaction between algebra, geometry and analysis and demonstrate the manifold aspects of the theory of ordinary and partial differential equations, while also pointing out the highly fruitful interrelations between those aspects. These interactions continue to yield new developments, not only in the theory of differential equations but also in several related areas of mathematics and physics such as differential geometry, representation theory, number theory and mathematical physics. The main goal of the volume is to introduce basic concepts, techniques, detailed and illustrative examples and theorems (in a manner suitable for non-specialists), and to present recent developments in the field, together with open problems for more advanced and experienced readers. It will be of i...

1. Quadratic algebras applied to noncommutative integration of the Klein-Gordon equation: Four-dimensional quadratic algebras containing three-dimensional nilpotent lie algebras

International Nuclear Information System (INIS)

Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.

1995-01-01

The study is continued on noncommutative integration of linear partial differential equations in application to the exact integration of quantum-mechanical equations in a Riemann space. That method gives solutions to the Klein-Gordon equation when the set of noncommutative symmetry operations for that equation forms a quadratic algebra consisting of one second-order operator and of first-order operators forming a Lie algebra. The paper is a continuation of, where a single nontrivial example is used to demonstrate noncommutative integration of the Klein-Gordon equation in a Riemann space not permitting variable separation

2. A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations

International Nuclear Information System (INIS)

Zhang Huiqun

2009-01-01

By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.

3. Numerical algebra, matrix theory, differential-algebraic equations and control theory festschrift in honor of Volker Mehrmann

CERN Document Server

Bollhöfer, Matthias; Kressner, Daniel; Mehl, Christian; Stykel, Tatjana

2015-01-01

This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on ...

4. Searching dependency between algebraic equations: An algorithm applied to automated reasoning

International Nuclear Information System (INIS)

Yang Lu; Zhang Jingzhong

1990-01-01

An efficient computer algorithm is given to decide how many branches of the solution to a system of algebraic also solve another equation. As one of the applications, this can be used in practice to verify a conjecture with hypotheses and conclusion expressed by algebraic equations, despite the variety of reducible or irreducible. (author). 10 refs

5. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

Science.gov (United States)

Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

2016-01-01

This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

6. The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders

International Nuclear Information System (INIS)

Gurau, Razvan

2012-01-01

Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.

7. On nonlinear equations associated with Lie algebras of diffeomorphism groups of two-dimensional manifolds

International Nuclear Information System (INIS)

Kashaev, R.M.; Savel'ev, M.V.; Savel'eva, S.A.

1990-01-01

Nonlinear equations associated through a zero curvature type representation with Lie algebras S 0 Diff T 2 and of infinitesimal diffeomorphisms of (S 1 ) 2 , and also with a new infinite-dimensional Lie algebras. In particular, the general solution (in the sense of the Goursat problem) of the heavently equation which describes self-dual Einstein spaces with one rotational Killing symmetry is discussed, as well as the solutions to a generalized equation. The paper is supplied with Appendix containing the definition of the continuum graded Lie algebras and the general construction of the nonlinear equations associated with them. 11 refs

8. A generalized variational algebra and conserved densities for linear evolution equations

International Nuclear Information System (INIS)

Abellanas, L.; Galindo, A.

1978-01-01

The symbolic algebra of Gel'fand and Dikii is generalized to the case of n variables. Using this algebraic approach a rigorous characterization of the polynomial kernel of the variational derivative is given. This is applied to classify all the conservation laws for linear polynomial evolution equations of arbitrary order. (Auth.)

9. Closure of the gauge algebra, generalized Lie equations and Feynman rules

International Nuclear Information System (INIS)

Batalin, I.A.

1984-01-01

A method is given by which an open gauge algebra can always be closed and even made abelian. As a preliminary the generalized Lie equations for the open group are obtained. The Feynman rules for gauge theories with open algebras are derived by reducing the gauge theory to a non-gauge one. (orig.)

10. An introduction to the history of algebra solving equations from Mesopotamian times to the Renaissance

CERN Document Server

Sesiano, Jacques

2009-01-01

This text should not be viewed as a comprehensive history of algebra before 1600, but as a basic introduction to the types of problems that illustrate the earliest forms of algebra. It would be particularly useful for an instructor who is looking for examples to help enliven a course on elementary algebra with problems drawn from actual historical texts. -Warren Van Egmond about the French edition for MathSciNet This book does not aim to give an exhaustive survey of the history of algebra up to early modern times but merely to present some significant steps in solving equations and, wherever

11. Existence and Uniqueness of Solution of Schrodinger equation in extended Colombeau algebra

Directory of Open Access Journals (Sweden)

Fariba Fattahi

2014-09-01

Full Text Available In this paper, we establish the existence and uniquenessresult of the linear Schr¨odinger equation with Marchaudfractional derivative in Colombeau generalized algebra.The purpose of introducing Marchaud fractional derivativeis regularizing it in Colombeau sense.

12. SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES

Directory of Open Access Journals (Sweden)

Sari Saraswati

2016-01-01

Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.

13. Isomorphic Operators and Functional Equations for the Skew-Circulant Algebra

Directory of Open Access Journals (Sweden)

Zhaolin Jiang

2014-01-01

Full Text Available The skew-circulant matrix has been used in solving ordinary differential equations. We prove that the set of skew-circulants with complex entries has an idempotent basis. On that basis, a skew-cyclic group of automorphisms and functional equations on the skew-circulant algebra is introduced. And different operators on linear vector space that are isomorphic to the algebra of n×n complex skew-circulant matrices are displayed in this paper.

14. Quadratic PBW-Algebras, Yang-Baxter Equation and Artin-Schelter Regularity

International Nuclear Information System (INIS)

Gateva-Ivanova, Tatiana

2010-08-01

We study quadratic algebras over a field k. We show that an n-generated PBW-algebra A has finite global dimension and polynomial growth iff its Hilbert series is H A (z) = 1/(1-z) n . A surprising amount can be said when the algebra A has quantum binomial relations, that is the defining relations are binomials xy - c xy zt, c xy is an element of k x , which are square-free and nondegenerate. We prove that in this case various good algebraic and homological properties are closely related. The main result shows that for an n-generated quantum binomial algebra A the following conditions are equivalent: (i) A is a PBW-algebra with finite global dimension; (ii) A is PBW and has polynomial growth; (iii) A is an Artin-Schelter regular PBW-algebra; (iv) A is a Yang-Baxter algebra; (v) H A (z) = 1/(1-z) n ; (vi) The dual A ! is a quantum Grassman algebra; (vii) A is a binomial skew polynomial ring. This implies that the problem of classification of Artin-Schelter regular PBW-algebras of global dimension n is equivalent to the classification of square-free set-theoretic solutions of the Yang-Baxter equation (X,r), on sets X of order n.| (author)

15. On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations

International Nuclear Information System (INIS)

Zhang Yu-Feng; Tam, Honwah

2016-01-01

In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A_1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A_1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. (paper)

16. On solvability of some quadratic functional-integral equation in Banach algebra

International Nuclear Information System (INIS)

Darwish, M.A.

2007-08-01

Using the technique of a suitable measure of non-compactness in Banach algebra, we prove an existence theorem for some functional-integral equations which contain, as particular cases, a lot of integral and functional-integral equations that arise in many branches of nonlinear analysis and its applications. Also, the famous Chandrasekhar's integral equation is considered as a special case. (author)

17. On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

International Nuclear Information System (INIS)

Man, Yiu-Kwong

2010-01-01

In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided. (fast track communication)

18. Quadratic algebras and noncommutative integration of Klein-Gordon equations in non-steckel Riemann spaces

International Nuclear Information System (INIS)

Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.; Shirokov, I.V.

1995-01-01

The method of noncommutative integration of linear partial differential equations is used to solve the Klein-Gordon equations in Riemann space, in the case when the set of noncommutating symmetry operators of this equation for a quadratic algebra consists of one second-order operator and several first-order operators. Solutions that do not permit variable separation are presented

19. Algebraic equations an introduction to the theories of Lagrange and Galois

CERN Document Server

Dehn, Edgar

2004-01-01

Meticulous and complete, this presentation of Galois' theory of algebraic equations is geared toward upper-level undergraduate and graduate students. The theories of both Lagrange and Galois are developed in logical rather than historical form. And they are given a more thorough exposition than is customary. For this reason, and also because the author concentrates on concrete applications of algebraic theory, Algebraic Equations is an excellent supplementary text, offering students a concrete introduction to the abstract principles of Galois theory. Of further value are the many numerical ex

20. Ultradiscrete sine-Gordon Equation over Symmetrized Max-Plus Algebra, and Noncommutative Discrete and Ultradiscrete sine-Gordon Equations

Directory of Open Access Journals (Sweden)

Kenichi Kondo

2013-11-01

Full Text Available Ultradiscretization with negative values is a long-standing problem and several attempts have been made to solve it. Among others, we focus on the symmetrized max-plus algebra, with which we ultradiscretize the discrete sine-Gordon equation. Another ultradiscretization of the discrete sine-Gordon equation has already been proposed by previous studies, but the equation and the solutions obtained here are considered to directly correspond to the discrete counterpart. We also propose a noncommutative discrete analogue of the sine-Gordon equation, reveal its relations to other integrable systems including the noncommutative discrete KP equation, and construct multisoliton solutions by a repeated application of Darboux transformations. Moreover, we derive a noncommutative ultradiscrete analogue of the sine-Gordon equation and its 1-soliton and 2-soliton solutions, using the symmetrized max-plus algebra. As a result, we have a complete set of commutative and noncommutative versions of continuous, discrete, and ultradiscrete sine-Gordon equations.

1. Extended trigonometric Cherednik algebras and nonstationary Schrödinger equations with delta-potentials

International Nuclear Information System (INIS)

Hartwig, J. T.; Stokman, J. V.

2013-01-01

We realize an extended version of the trigonometric Cherednik algebra as affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir element of the extended trigonometric Cherednik algebra to define an explicit nonstationary Schrödinger equation with delta-potential. We use coordinate Bethe ansatz methods to construct solutions of the nonstationary Schrödinger equation in terms of generalized Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine difference Knizhnik-Zamolodchikov equations as functions of the momenta. The relation to the vector valued root system analogs of the quantum Bose gas on the circle with delta-function interactions is indicated.

2. The Max-Plus Algebra of the Natural Numbers has no Finite Equational Basis

DEFF Research Database (Denmark)

Aceto, Luca; Esik, Zoltan; Ingolfsdottir, Anna

2003-01-01

This paper shows that the collection of identities which hold in the algebra N of the natural numbers with constant zero, and binary operations of sum and maximum is not finitely based. Moreover, it is proven that, for every n, the equations in at most n variables that hold in N do not form...... an equational basis. As a stepping stone in the proof of these facts, several results of independent interest are obtained. In particular, explicit descriptions of the free algebras in the variety generated by N are offered. Such descriptions are based upon a geometric characterization of the equations...

3. Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations

Directory of Open Access Journals (Sweden)

Rutwig Campoamor-Stursberg

2016-03-01

Full Text Available A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebra. In particular, well-known types, such as the Milne-Pinney or Kummer-Schwarz equations, are recovered as special cases of this classification. The analogous problem for systems of second-order differential equations in the real plane is considered for a special case that enlarges the generalized Ermakov systems.

4. EXACT SOLITARY WAVE SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL EQUATIONS USING DIRECT ALGEBRAIC METHOD

Institute of Scientific and Technical Information of China (English)

2008-01-01

Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.

5. Classification of all solutions of the algebraic Riccati equations for infinite-dimensional systems

NARCIS (Netherlands)

Iftime, O; Curtain, R; Zwart, H

2003-01-01

We obtain a complete classification of all self-adjoint solution of the control algebraic Riccati equation for infinite-dimensional systems under the following assumptions: the system is output stabilizable, strongly detectable and the filter Riccati equation has an invertible self-adjoint

6. Solving differential–algebraic equation systems by means of index reduction methodology

DEFF Research Database (Denmark)

Sørensen, Kim; Houbak, Niels; Condra, Thomas

2006-01-01

of a number of differential equations and algebraic equations — a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODEs and index 1 DAEs by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of ordinary differential equations — ODEs....

7. Solving differential-algebraic equation systems by means of index reduction methodology

DEFF Research Database (Denmark)

Sørensen, Kim; Houbak, Niels; Condra, Thomas Joseph

2006-01-01

of a number of differential equations and algebraic equations - a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODE’s and index 1 DAE’s by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of Ordinary- Differential-Equations - ODE’s....

8. Cognitive Load in Algebra: Element Interactivity in Solving Equations

Science.gov (United States)

Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing

2015-01-01

Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…

9. Newton equation for canonical, Lie-algebraic, and quadratic deformation of classical space

International Nuclear Information System (INIS)

Daszkiewicz, Marcin; Walczyk, Cezary J.

2008-01-01

The Newton equation describing particle motion in a constant external field force on canonical, Lie-algebraic, and quadratic space-time is investigated. We show that for canonical deformation of space-time the dynamical effects are absent, while in the case of Lie-algebraic noncommutativity, when spatial coordinates commute to the time variable, the additional acceleration of the particle is generated. We also indicate that in the case of spatial coordinates commuting in a Lie-algebraic way, as well as for quadratic deformation, there appear additional velocity and position-dependent forces

10. Algebra

CERN Document Server

Tabak, John

2004-01-01

Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

11. SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES

Directory of Open Access Journals (Sweden)

Sari Saraswati

2016-01-01

Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.Keywords: linear equation with one variable, algebra tiles, design research, balancing method, HLT DOI: http://dx.doi.org/10.22342/jme.7.1.2814.19-30

12. Solving Langevin equation with the stochastic algebraically correlated noise

International Nuclear Information System (INIS)

Ploszajczak, M.; Srokowski, T.

1996-01-01

Long time tail in the velocity and force autocorrelation function has been found recently in the molecular dynamics simulations of the peripheral collisions of ions. Simulation of those slowly decaying correlations in the stochastic transport theory requires the development of new methods of generating stochastic force of arbitrarily long correlation times. The Markovian process and the multidimensional Kangaroo process which permit describing various algebraic correlated stochastic processes are proposed. (author)

13. Equations of motion of higher-spin gauge fields as a free differential algebra

International Nuclear Information System (INIS)

Vasil'ev, M.A.

1988-01-01

It is shown that the introduction of auxiliary dynamical variables that generalize the gravitational Weyl tensor permits one to reduce the equations of motion of free massless fields of all spins in the anti-de Sitter O(3,2) space to a form characteristic of free differential algebras. The equations of motion of auxiliary gauge fields introduced previously are modified analogously. Arguments are presented to the effect that the equations of motion of interacting massless fields of all spins should be described in terms of a free differential algebra which is a deformation of a known free differential algebra generated by 1- and 0-forms in the adjoint representation of a nonabelian superalgebra of higher spins and auxiliary fields

14. Algebraic models for the hierarchy structure of evolution equations at small x

International Nuclear Information System (INIS)

Rembiesa, P.; Stasto, A.M.

2005-01-01

We explore several models of QCD evolution equations simplified by considering only the rapidity dependence of dipole scattering amplitudes, while provisionally neglecting their dependence on transverse coordinates. Our main focus is on the equations that include the processes of pomeron splittings. We examine the algebraic structures of the governing equation hierarchies, as well as the asymptotic behavior of their solutions in the large-rapidity limit

15. On the structure of the commutative Z2 graded algebra valued integrable equations

International Nuclear Information System (INIS)

Konopelchenko, B.G.

1980-01-01

Partial differential equations integrable by the linear matrix spectral problem of arbitrary order are considered for the case that the 'potentials' take their values in the commutative infinte-dimensional Z 2 graded algebra (superalgebra). The general form of the integrable equations and their Baecklund transformations are found. The infinite sets of the integrals of the motion are constructed. The hamiltonian character of the integrable equations is proved. (orig.)

16. On the economical solution method for a system of linear algebraic equations

Directory of Open Access Journals (Sweden)

Jan Awrejcewicz

2004-01-01

Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.

17. Algebraic resolution of the Burgers equation with a forcing term

2017-04-07

Apr 7, 2017 ... stochastic processes, dispersive water waves, gas dyna- mics, heat conduction ... as the adhesion model , vehicular traffic , the study of directed polymers in ... ing to note that Burgers equation also appears naturally.

18. Algebraic treatment of second Poeschl-Teller, Morse-Rosen and Eckart equations

International Nuclear Information System (INIS)

Barut, A.O.; Inomata, A.; Wilson, R.

1987-01-01

The method of algebraic treatment is applied to the non-compact case to solve a family of second Poeschl-Teller, Morse-Rosen and Eckart equations with quantized coupling constants. Both discrete and continuous spectra, bound state and scattering wave functions (transmission coefficients) are found from the matrix elements of group representations. (author). 24 refs, 1 tab

19. Analysis of backward differentiation formula for nonlinear differential-algebraic equations with 2 delays.

Science.gov (United States)

Sun, Leping

2016-01-01

This paper is concerned with the backward differential formula or BDF methods for a class of nonlinear 2-delay differential algebraic equations. We obtain two sufficient conditions under which the methods are stable and asymptotically stable. At last, examples show that our methods are true.

20. Properties of coupled-cluster equations originating in excitation sub-algebras

Science.gov (United States)

Kowalski, Karol

2018-03-01

In this paper, we discuss properties of single-reference coupled cluster (CC) equations associated with the existence of sub-algebras of excitations that allow one to represent CC equations in a hybrid fashion where the cluster amplitudes associated with these sub-algebras can be obtained by solving the corresponding eigenvalue problem. For closed-shell formulations analyzed in this paper, the hybrid representation of CC equations provides a natural way for extending active-space and seniority number concepts to provide an accurate description of electron correlation effects. Moreover, a new representation can be utilized to re-define iterative algorithms used to solve CC equations, especially for tough cases defined by the presence of strong static and dynamical correlation effects. We will also explore invariance properties associated with excitation sub-algebras to define a new class of CC approximations referred to in this paper as the sub-algebra-flow-based CC methods. We illustrate the performance of these methods on the example of ground- and excited-state calculations for commonly used small benchmark systems.

1. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

Science.gov (United States)

Maat, Siti Mistima; Zakaria, Effandi

2011-01-01

Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

2. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

Science.gov (United States)

Gasyna, Zbigniew L.

2008-01-01

Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

3. Analysis of the F. Calogero Type Projection-Algebraic Scheme for Differential Operator Equations

International Nuclear Information System (INIS)

Lustyk, Miroslaw; Bogolubov, Nikolai N. Jr.; Blackmore, Denis; Prykarpatsky, Anatoliy K.

2010-12-01

The existence, convergence, realizability and stability of solutions of differential operator equations obtained via a novel projection-algebraic scheme are analyzed in detail. This analysis is based upon classical discrete approximation techniques coupled with a recent generalization of the Leray-Schauder fixed point theorem. An example is included to illustrate the efficacy of the projection scheme and analysis strategy. (author)

4. Expert Strategies in Solving Algebraic Structure Sense Problems: The Case of Quadratic Equations

Science.gov (United States)

Jupri, Al; Sispiyati, R.

2017-02-01

Structure sense, an intuitive ability towards symbolic expressions, including skills to interpret, to manipulate, and to perceive symbols in different roles, is considered as a key success in learning algebra. In this article, we report results of three phases of a case study on solving algebraic structure sense problems aiming at testing the appropriateness of algebraic structure sense tasks and at investigating expert strategies dealing with the tasks. First, we developed three tasks on quadratic equations based on the characteristics of structure sense for high school algebra. Next, we validated the tasks to seven experts. In the validation process, we requested these experts to solve each task using two different strategies. Finally, we analyzing expert solution strategies in the light of structure sense characteristics. We found that even if eventual expert strategies are in line with the characteristics of structure sense; some of their initial solution strategies used standard procedures which might pay less attention to algebraic structures. This finding suggests that experts have reconsidered their procedural work and have provided more efficient solution strategies. For further investigation, we consider to test the tasks to high school algebra students and to see whether they produce similar results as experts.

5. Computer programs for the solution of systems of linear algebraic equations

Science.gov (United States)

Sequi, W. T.

1973-01-01

FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.

6. Generation and Identification of Ordinary Differential Equations of Maximal Symmetry Algebra

Directory of Open Access Journals (Sweden)

J. C. Ndogmo

2016-01-01

Full Text Available An effective method for generating linear ordinary differential equations of maximal symmetry in their most general form is found, and an explicit expression for the point transformation reducing the equation to its canonical form is obtained. New expressions for the general solution are also found, as well as several identification and other results and a direct proof of the fact that a linear ordinary differential equation is iterative if and only if it is reducible to the canonical form by a point transformation. New classes of solvable equations parameterized by an arbitrary function are also found, together with simple algebraic expressions for the corresponding general solution.

7. Algebra

CERN Document Server

Sepanski, Mark R

2010-01-01

Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems

8. On Robust Stability of Systems of Differential-Algebraic Equations

Directory of Open Access Journals (Sweden)

A. Shcheglova

2016-06-01

The sufficient conditions of robust stability for index-one and index-two systems are obtained. We use the values of real and complex stability radii obtained for system of ordinary differential equations solved with respect to the derivatives. We consider the example illustrating the obtained results.

9. Equations of motion of interacting massless fields of all spins as a free differential algebra

Energy Technology Data Exchange (ETDEWEB)

Vasiliev, M A

1988-08-11

It is argued that the equations of motion of interacting massless fields of all spins s=0, 1, ..., infinity can naturally be formulated in terms of a free differential algebra (FDA) constructed from one-forms and zero-forms that belong both to the adjoint representation of the infinite-dimensional superalgebra of higher spins and auxiliary fields proposed previously. This FDA is found explicitly in the first non-trivial order in the zero-forms. Various properties of the proposed FDA are discussed including the ways for incorporating internal (Yang-Mills) gauge symmetries via associative algebras.

10. A trick loop algebra and a corresponding Liouville integrable hierarchy of evolution equations

International Nuclear Information System (INIS)

Zhang Yufeng; Xu Xixiang

2004-01-01

A subalgebra of loop algebra A-bar 2 is first constructed, which has its own special feature. It follows that a new Liouville integrable hierarchy of evolution equations is obtained, possessing a tri-Hamiltonian structure, which is proved by us in this paper. Especially, three symplectic operators are constructed directly from recurrence relations. The conjugate operator of a recurrence operator is a hereditary symmetry. As reduction cases of the hierarchy presented in this paper, the celebrated MKdV equation and heat-conduction equation are engendered, respectively. Therefore, we call the hierarchy a generalized MKdV-H system. At last, a high-dimension loop algebra G-bar is constructed by making use of a proper scalar transformation. As a result, a type expanding integrable model of the MKdV-H system is given

11. Multi-matrix loop equations: algebraic and differential structures and an approximation based on deformation quantization

International Nuclear Information System (INIS)

Krishnaswami, Govind S.

2006-01-01

Large-N multi-matrix loop equations are formulated as quadratic difference equations in concatenation of gluon correlations. Though non-linear, they involve highest rank correlations linearly. They are underdetermined in many cases. Additional linear equations for gluon correlations, associated to symmetries of action and measure are found. Loop equations aren't differential equations as they involve left annihilation, which doesn't satisfy the Leibnitz rule with concatenation. But left annihilation is a derivation of the commutative shuffle product. Moreover shuffle and concatenation combine to define a bialgebra. Motivated by deformation quantization, we expand concatenation around shuffle in powers of q, whose physical value is 1. At zeroth order the loop equations become quadratic PDEs in the shuffle algebra. If the variation of the action is linear in iterated commutators of left annihilations, these quadratic PDEs linearize by passage to shuffle reciprocal of correlations. Remarkably, this is true for regularized versions of the Yang-Mills, Chern-Simons and Gaussian actions. But the linear equations are underdetermined just as the loop equations were. For any particular solution, the shuffle reciprocal is explicitly inverted to get the zeroth order gluon correlations. To go beyond zeroth order, we find a Poisson bracket on the shuffle algebra and associative q-products interpolating between shuffle and concatenation. This method, and a complementary one of deforming annihilation rather than product are shown to give over and underestimates for correlations of a gaussian matrix model

12. Existence Results for Some Nonlinear Functional-Integral Equations in Banach Algebra with Applications

Directory of Open Access Journals (Sweden)

Lakshmi Narayan Mishra

2016-04-01

Full Text Available In the present manuscript, we prove some results concerning the existence of solutions for some nonlinear functional-integral equations which contains various integral and functional equations that considered in nonlinear analysis and its applications. By utilizing the techniques of noncompactness measures, we operate the fixed point theorems such as Darbo's theorem in Banach algebra concerning the estimate on the solutions. The results obtained in this paper extend and improve essentially some known results in the recent literature. We also provide an example of nonlinear functional-integral equation to show the ability of our main result.

13. A novel algebraic procedure for solving non-linear evolution equations of higher order

International Nuclear Information System (INIS)

Huber, Alfred

2007-01-01

We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest

14. A q-Schroedinger algebra, its lowest weight representations and generalized q-deformed heat equations

International Nuclear Information System (INIS)

Dobrev, V.K.; Doebner, H.D.; Mrugalla, C.

1995-12-01

We give a q-deformation S-perpendicular q of the centrally extended Schroedinger algebra. We construct the lowest weight representations of S-perpendicular q , starting from the Verma modules over S-perpendicular q , finding their singular vectors and factoring the Verma submodules built on the singular vectors. We also give a vector-field realization of S-perpendicular q which provides polynomial realization of the lowest weight representations and an infinite hierarchy of q-difference equations which may be called generalized q-deformed heat equations. We also apply our methods to the on-shell q-Schroedinger algebra proposed by Floreanini and Vinet. (author). 12 refs

15. Singular vectors and invariant equations for the Schroedinger algebra in n ≥ 3 space dimensions. The general case

International Nuclear Information System (INIS)

Dobrev, V. K.; Stoimenov, S.

2010-01-01

The singular vectors in Verma modules over the Schroedinger algebra s(n) in (n + 1)-dimensional space-time are found for the case of general representations. Using the singular vectors, hierarchies of equations invariant under Schroedinger algebras are constructed.

16. Analytical Solutions for Systems of Singular Partial Differential-Algebraic Equations

Directory of Open Access Journals (Sweden)

U. Filobello-Nino

2015-01-01

Full Text Available This paper proposes power series method (PSM in order to find solutions for singular partial differential-algebraic equations (SPDAEs. We will solve three examples to show that PSM method can be used to search for analytical solutions of SPDAEs. What is more, we will see that, in some cases, Padé posttreatment, besides enlarging the domain of convergence, may be employed in order to get the exact solution from the truncated series solutions of PSM.

17. Sensitivity theory for general non-linear algebraic equations with constraints

International Nuclear Information System (INIS)

Oblow, E.M.

1977-04-01

Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems

18. Linear representation of algebras with non-associative operations which are satisfy in the balanced functional equations

International Nuclear Information System (INIS)

Ehsani, Amir

2015-01-01

Algebras with a pair of non-associative binary operations (f, g) which are satisfy in the balanced quadratic functional equations with four object variables considered. First, we obtain a linear representation for the operations, of this kind of binary algebras (A,f,g), over an abelian group (A, +) and then we generalize the linear representation of operations, to an algebra (A,F) with non-associative binary operations which are satisfy in the balanced quadratic functional equations with four object variables. (paper)

19. An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation

KAUST Repository

Liu, Da-Yan; Tian, Yang; Boutat, Driss; Laleg-Kirati, Taous-Meriem

2015-01-01

This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.

20. An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation

KAUST Repository

Liu, Da-Yan

2015-04-30

This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.

1. The Weyl approach to the representation theory of reflection equation algebra

International Nuclear Information System (INIS)

Saponov, P A

2004-01-01

The present paper deals with the representation theory of reflection equation algebra, connected to a Hecke type R-matrix. Up to some reasonable additional conditions, the R-matrix is arbitrary (not necessary originating from quantum groups). We suggest a universal method for constructing finite dimensional irreducible representations in the framework of the Weyl approach well known in the representation theory of classical Lie groups and algebras. With this method a series of irreducible modules is constructed. The modules are parametrized by Young diagrams. The spectrum of central elements s k Tr q L k is calculated in the single-row and single-column representations. A rule for the decomposition of the tensor product of modules into a direct sum of irreducible components is also suggested

2. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method

International Nuclear Information System (INIS)

Fan Engui

2002-01-01

A new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system. Compared with most of the existing tanh methods, the Jacobi elliptic function method or other sophisticated methods, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the travelling wave solutions according to the values of some parameters. The solutions obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions, (b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. The efficiency of the method can be demonstrated on a large variety of nonlinear evolution equations such as those considered in this paper, KdV-MKdV, Ito's fifth MKdV, Hirota, Nizhnik-Novikov-Veselov, Broer-Kaup, generalized coupled Hirota-Satsuma, coupled Schroedinger-KdV, (2+1)-dimensional dispersive long wave, (2+1)-dimensional Davey-Stewartson equations. In addition, as an illustrative sample, the properties of the soliton solutions and Jacobi doubly periodic solutions for the Hirota equation are shown by some figures. The links among our proposed method, the tanh method, extended tanh method and the Jacobi elliptic function method are clarified generally. (author)

3. Algebraic inversion of the Dirac equation for the vector potential in the non-Abelian case

International Nuclear Information System (INIS)

Inglis, S M; Jarvis, P D

2012-01-01

We study the Dirac equation for spinor wavefunctions minimally coupled to an external field, from the perspective of an algebraic system of linear equations for the vector potential. By analogy with the method in electromagnetism, which has been well-studied, and leads to classical solutions of the Maxwell–Dirac equations, we set up the formalism for non-Abelian gauge symmetry, with the SU(2) group and the case of four-spinor doublets. An extended isospin-charge conjugation operator is defined, enabling the hermiticity constraint on the gauge potential to be imposed in a covariant fashion, and rendering the algebraic system tractable. The outcome is an invertible linear equation for the non-Abelian vector potential in terms of bispinor current densities. We show that, via application of suitable extended Fierz identities, the solution of this system for the non-Abelian vector potential is a rational expression involving only Pauli scalar and Pauli triplet, Lorentz scalar, vector and axial vector current densities, albeit in the non-closed form of a Neumann series. (paper)

4. Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models

Science.gov (United States)

2017-08-01

The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.

5. Equations of motion for a spectrum-generating algebra: Lipkin-Meshkov-Glick model

International Nuclear Information System (INIS)

Rosensteel, G; Rowe, D J; Ho, S Y

2008-01-01

For a spectrum-generating Lie algebra, a generalized equations-of-motion scheme determines numerical values of excitation energies and algebra matrix elements. In the approach to the infinite particle number limit or, more generally, whenever the dimension of the quantum state space is very large, the equations-of-motion method may achieve results that are impractical to obtain by diagonalization of the Hamiltonian matrix. To test the method's effectiveness, we apply it to the well-known Lipkin-Meshkov-Glick (LMG) model to find its low-energy spectrum and associated generator matrix elements in the eigenenergy basis. When the dimension of the LMG representation space is 10 6 , computation time on a notebook computer is a few minutes. For a large particle number in the LMG model, the low-energy spectrum makes a quantum phase transition from a nondegenerate harmonic vibrator to a twofold degenerate harmonic oscillator. The equations-of-motion method computes critical exponents at the transition point

6. Algebraic equations for the exceptional eigenspectrum of the generalized Rabi model

International Nuclear Information System (INIS)

Li, Zi-Min; Batchelor, Murray T

2015-01-01

We obtain the exceptional part of the eigenspectrum of the generalized Rabi model, also known as the driven Rabi model, in terms of the roots of a set of algebraic equations. This approach provides a product form for the wavefunction components and allows an explicit connection with recent results obtained for the wavefunction in terms of truncated confluent Heun functions. Other approaches are also compared. For particular parameter values the exceptional part of the eigenspectrum consists of doubly degenerate crossing points. We give a proof for the number of roots of the constraint polynomials and discuss the number of crossing points. (paper)

7. A Numerical Method for Partial Differential Algebraic Equations Based on Differential Transform Method

Directory of Open Access Journals (Sweden)

Murat Osmanoglu

2013-01-01

Full Text Available We have considered linear partial differential algebraic equations (LPDAEs of the form , which has at least one singular matrix of . We have first introduced a uniform differential time index and a differential space index. The initial conditions and boundary conditions of the given system cannot be prescribed for all components of the solution vector here. To overcome this, we introduced these indexes. Furthermore, differential transform method has been given to solve LPDAEs. We have applied this method to a test problem, and numerical solution of the problem has been compared with analytical solution.

8. Factorization of the hypergeometric-type difference equation on non-uniform lattices: dynamical algebra

Energy Technology Data Exchange (ETDEWEB)

Alvarez-Nodarse, R [Departamento de Analisis Matematico, Universidad de Sevilla, Apdo. 1160, E-41080 Sevilla (Spain); Atakishiyev, N M [Instituto de Matematicas, UNAM, Apartado Postal 273-3, CP 62210 Cuernavaca, Morelos, Mexico (Germany); Costas-Santos, R S [Departamento de Matematicas, EPS, Universidad Carlos III de Madrid, Ave. Universidad 30, E-28911, Leganes, Madrid (Spain)

2005-01-07

We argue that one can factorize the difference equation of hypergeometric type on non-uniform lattices in the general case. It is shown that in the most cases of q-linear spectrum of the eigenvalues, this directly leads to the dynamical symmetry algebra su{sub q}(1, 1), whose generators are explicitly constructed in terms of the difference operators, obtained in the process of factorization. Thus all models with the q-linear spectrum (some of them, but not all, previously considered in a number of publications) can be treated in a unified form.

9. Study of some properties of partial differential equations by Lie algebra method

International Nuclear Information System (INIS)

Chongdar, A.K.; Ludu, A.

1990-05-01

In this note we present a system of optimal subalgebras of the Lie algebra obtained in course of investigating hypergeometric polynomial. In addition to this we have obtained some reduced equation and invariants of the P.D.E. obtained under certain transformation while studying hypergeometric polynomial by Weisner's method. Some topological properties of the solutions of P.D.E. are pointed out by using the extended jet bundle formalism. Some applications of our work on plasma physics and hydrodynamics are also cited. (author). 8 refs

10. Distribution of the Discretization and Algebraic Error in Numerical Solution of Partial Differential Equations

Czech Academy of Sciences Publication Activity Database

Papež, Jan; Liesen, J.; Strakoš, Z.

2014-01-01

Roč. 449, 15 May (2014), s. 89-114 ISSN 0024-3795 R&D Projects: GA AV ČR IAA100300802; GA ČR GA201/09/0917 Grant - others:GA MŠk(CZ) LL1202; GA UK(CZ) 695612 Institutional support: RVO:67985807 Keywords : numerical solution of partial differential equations * finite element method * adaptivity * a posteriori error analysis * discretization error * algebra ic error * spatial distribution of the error Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

11. "Real-Time Optical Laboratory Linear Algebra Solution Of Partial Differential Equations"

Science.gov (United States)

Casasent, David; Jackson, James

1986-03-01

A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) employing space and frequency-multiplexing, new partitioning and data flow, and achieving high accuracy performance with a non base-2 number system is described. Laboratory data on the performance of this system and the solution of parabolic Partial Differential Equations (PDEs) is provided. A multi-processor OLAP system is also described for the first time. It use in the solution of multiple banded matrices that frequently arise is then discussed. The utility and flexibility of this processor compared to digital systolic architectures should be apparent.

12. On Robust Stability of Differential-Algebraic Equations with Structured Uncertainty

Directory of Open Access Journals (Sweden)

A. Kononov

2018-03-01

Full Text Available We consider a linear time-invariant system of differential-algebraic equations (DAE, which can be written as a system of ordinary differential equations with non-invertible coefficients matrices. An important characteristic of DAE is the unsolvability index, which reflects the complexity of the internal structure of the system. The question of the asymptotic stability of DAE containing the uncertainty given by the matrix norm is investigated. We consider a perturbation in the structured uncertainty case. It is assumed that the initial nominal system is asymptotically stable. For the analysis, the original equation is reduced to the structural form, in which the differential and algebraic subsystems are separated. This structural form is equivalent to the input system in the sense of coincidence of sets of solutions, and the operator transforming the DAE into the structural form possesses the inverse operator. The conversion to structural form does not use a change of variables. Regularity of matrix pencil of the source equation is the necessary and sufficient condition of structural form existence. Sufficient conditions have been obtained that perturbations do not break the internal structure of the nominal system. Under these conditions robust stability of the DAE with structured uncertainty is investigated. Estimates for the stability radius of the perturbed DAE system are obtained. The text of the article is from the simpler case, in which the perturbation is present only for an unknown function, to a more complex one, under which the perturbation is also present in the derivative of the unknown function. We used values of the real and the complex stability radii of explicit ordinary differential equations for obtaining the results. We consider the example illustrating the obtained results.

13. Asymptotic Analysis of a System of Algebraic Equations Arising in Dislocation Theory

KAUST Repository

Hall, Cameron L.; Chapman, S. Jonathan; Ockendon, John R.

2010-01-01

The system of algebraic equations given by σn j=0, j≠=i sgn(xi-xj )|xi-xj|a = 1, i = 1, 2, ⋯ , n, x0 = 0, appears in dislocation theory in models of dislocation pile-ups. Specifically, the case a = 1 corresponds to the simple situation where n dislocations are piled up against a locked dislocation, while the case a = 3 corresponds to n dislocation dipoles piled up against a locked dipole. We present a general analysis of systems of this type for a > 0 and n large. In the asymptotic limit n→∞, it becomes possible to replace the system of discrete equations with a continuum equation for the particle density. For 0 < a < 2, this takes the form of a singular integral equation, while for a > 2 it is a first-order differential equation. The critical case a = 2 requires special treatment, but, up to corrections of logarithmic order, it also leads to a differential equation. The continuum approximation is valid only for i neither too small nor too close to n. The boundary layers at either end of the pile-up are also analyzed, which requires matching between discrete and continuum approximations to the main problem. © 2010 Society for Industrial and Applied Mathematics.

14. Generalized Knizhnik-Zamolodchikov equation for Ding-Iohara-Miki algebra

Science.gov (United States)

Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor

2017-07-01

We derive the generalization of the Knizhnik-Zamolodchikov equation (KZE) associated with the Ding-Iohara-Miki algebra Uq ,t(gl^ ^ 1) . We demonstrate that certain refined topological string amplitudes satisfy these equations and find that the braiding transformations are performed by the R matrix of Uq ,t(gl^ ^ 1) . The resulting system is the uplifting of the u^1 Wess-Zumino-Witten model. The solutions to the (q ,t ) KZE are identified with the (spectral dual of) building blocks of the Nekrasov partition function for five-dimensional linear quiver gauge theories. We also construct an elliptic version of the KZE and discuss its modular and monodromy properties, the latter being related to a dual version of the KZE.

15. Exact algebraization of the signal equation of spoiled gradient echo MRI

Energy Technology Data Exchange (ETDEWEB)

Dathe, Henning [Department of Orthodontics, Biomechanics Group, University Medical Centre, Goettingen (Germany); Helms, Gunther, E-mail: ghelms@gwdg.d [MR-Research in Neurology and Psychiatry, University Medical Centre, Goettingen (Germany)

2010-08-07

The Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle {alpha} at a repetition time TR much shorter than the longitudinal relaxation time T{sub 1}. We describe two parameter transformations of {alpha} and TR/T{sub 1}, which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small {alpha} and small TR/T{sub 1} with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in {alpha} and TR/T{sub 1}. This reveals a fundamental relationship between the square of the flip angle and TR/T{sub 1} which characterizes the Ernst angle, constant degree of T{sub 1}-weighting and the influence of the local radio-frequency field.

16. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

Science.gov (United States)

Benhammouda, Brahim

2016-01-01

Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

17. A new generalized algebra method and its application in the (2 + 1) dimensional Boiti-Leon-Pempinelli equation

International Nuclear Information System (INIS)

Ren Yujie; Liu Shutian; Zhang Hongqing

2007-01-01

In the present paper, some types of general solutions of a first-order nonlinear ordinary differential equation with six degree are given and a new generalized algebra method is presented to find more exact solutions of nonlinear differential equations. As an application of the method and the solutions of this equation, we choose the (2 + 1) dimensional Boiti Leon Pempinelli equation to illustrate the validity and advantages of the method. As a consequence, more new types and general solutions are found which include rational solutions and irrational solutions and so on. The new method can also be applied to other nonlinear differential equations in mathematical physics

18. Contribution to the resolution of algebraic differential equations. Application to electronic circuits and nuclear reactors

International Nuclear Information System (INIS)

Monsef, Youssef.

1977-05-01

This note deals with the resolution of large algebraic differential systems involved in the physical sciences, with special reference to electronics and nuclear physics. The theoretical aspect of the algorithms established and developed for this purpose is discussed in detail. A decomposition algorithm based on the graph theory is developed in detail and the regressive analysis of the error involved in the decomposition is carried out. The specific application of these algorithms on the analyses of non-linear electronic circuits and to the integration of algebraic differential equations simulating the general operation of nuclear reactors coupled to heat exchangers is discussed in detail. To conclude, it is shown that the development of efficient digital resolution techniques dealing with the elements in order is sub-optimal for large systems and calls for the revision of conventional formulation methods. Thus for a high-order physical system, the larger, the number of auxiliary unknowns introduced, the easier the formulation and resolution, owing to the elimination of any form of complex matricial calculation such as those given by the state variables method [fr

19. Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces

Science.gov (United States)

Ito, Kazufumi

1987-01-01

The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.

20. Contribution to the minimization of time for the solution of algebraic differential equations system

International Nuclear Information System (INIS)

Michael, Samir.

1982-11-01

This note deals with the solution of large algebraic-differential systems involved in physical sciences specially in electronics and nuclear physics. The theoretical aspects for the stability of multistep methods is presented in detail. The stability condition is developed and we present our own conditions of stability. These conditions give rise to many new formulae that have very small truncation error. However for a real time simulation, it is necessary to obtain a very high computation speed. For this purpose, we have considered a multiprocessor machine and we have investigated the parallelization of the algorithm of generalized GEAR method. For a linear system, the method of GAUSS-JORDAN is used with some modifications. A new algorithm is presented for parallel matrix multiplication. This research work has been applied to the resolution of a system of equations corresponding to an experiment of gamma thermometry in a nuclear reactor (four thermometers in this case) [fr

1. New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation

Science.gov (United States)

Liu, Jianzhou; Wang, Li; Zhang, Juan

2017-11-01

The discrete coupled algebraic Riccati equation (DCARE) has wide applications in control theory and linear system. In general, for the DCARE, one discusses every term of the coupled term, respectively. In this paper, we consider the coupled term as a whole, which is different from the recent results. When applying eigenvalue inequalities to discuss the coupled term, our method has less error. In terms of the properties of special matrices and eigenvalue inequalities, we propose several upper and lower matrix bounds for the solution of DCARE. Further, we discuss the iterative algorithms for the solution of the DCARE. In the fixed point iterative algorithms, the scope of Lipschitz factor is wider than the recent results. Finally, we offer corresponding numerical examples to illustrate the effectiveness of the derived results.

2. Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

Directory of Open Access Journals (Sweden)

Tsugio Fukuchi

2014-06-01

Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.

3. Differential-algebraic integrability analysis of the generalized Riemann type and Korteweg-de Vries hydrodynamical equations

Energy Technology Data Exchange (ETDEWEB)

Prykarpatsky, Anatoliy K [Department of Mining Geodesy, AGH University of Science and Technology, Cracow 30059 (Poland); Artemovych, Orest D [Department of Algebra and Topology, Faculty of Mathematics and Informatics of the Vasyl Stefanyk Pre-Carpathian National University, Ivano-Frankivsk (Ukraine); Popowicz, Ziemowit [Institute of Theoretical Physics, University of Wroclaw (Poland); Pavlov, Maxim V, E-mail: pryk.anat@ua.f, E-mail: artemo@usk.pk.edu.p, E-mail: ziemek@ift.uni.wroc.p, E-mail: M.V.Pavlov@lboro.ac.u [Department of Mathematical Physics, P.N. Lebedev Physical Institute, 53 Leninskij Prospekt, Moscow 119991 (Russian Federation)

2010-07-23

A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic equations at N = 3, 4 is devised. The approach is also applied to studying the Lax-type integrability of the well-known Korteweg-de Vries dynamical system.

4. Differential-algebraic integrability analysis of the generalized Riemann type and Korteweg-de Vries hydrodynamical equations

International Nuclear Information System (INIS)

Prykarpatsky, Anatoliy K; Artemovych, Orest D; Popowicz, Ziemowit; Pavlov, Maxim V

2010-01-01

A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic equations at N = 3, 4 is devised. The approach is also applied to studying the Lax-type integrability of the well-known Korteweg-de Vries dynamical system.

5. Ward identities and differential equations for supercharacters of N = 1 super-Kac-Moody algebras on supertorus

International Nuclear Information System (INIS)

Huang Chaoshang; Xu Kaiwen; Zhao Zhiyong.

1989-09-01

By using Bernard's method, the Ward identities for N = 1 super-Kac-Moody algebras on supertorus are completely given in the sense that any correlation function with currents inserted in it can be reduced from the correlation functions without insertion. The differential equations for the super-characters on supertorus are derived from the Ward identities. (author). 7 refs

6. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

Science.gov (United States)

Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

2018-01-01

This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

7. New Trace Bounds for the Product of Two Matrices and Their Applications in the Algebraic Riccati Equation

Directory of Open Access Journals (Sweden)

Liu Jianzhou

2009-01-01

Full Text Available By using singular value decomposition and majorization inequalities, we propose new inequalities for the trace of the product of two arbitrary real square matrices. These bounds improve and extend the recent results. Further, we give their application in the algebraic Riccati equation. Finally, numerical examples have illustrated that our results are effective and superior.

8. Equivalent construction of the infinitesimal time translation operator in algebraic dynamics algorithm for partial differential evolution equation

Institute of Scientific and Technical Information of China (English)

2010-01-01

We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.

9. "E pluribus unum" or How to Derive Single-equation Descriptions for Output-quantities in Nonlinear Circuits using Differential Algebra

OpenAIRE

Gerbracht, Eberhard H. -A.

2008-01-01

In this paper we describe by a number of examples how to deduce one single characterizing higher order differential equation for output quantities of an analog circuit. In the linear case, we apply basic "symbolic" methods from linear algebra to the system of differential equations which is used to model the analog circuit. For nonlinear circuits and their corresponding nonlinear differential equations, we show how to employ computer algebra tools implemented in Maple, which are based on diff...

10. Construction of Algebraic and Difference Equations with a Prescribed Solution Space

Directory of Open Access Journals (Sweden)

Moysis Lazaros

2017-03-01

Full Text Available This paper studies the solution space of systems of algebraic and difference equations, given as auto-regressive (AR representations A(σβ(k = 0, where σ denotes the shift forward operator and A(σ is a regular polynomial matrix. The solution space of such systems consists of forward and backward propagating solutions, over a finite time horizon. This solution space can be constructed from knowledge of the finite and infinite elementary divisor structure of A(σ. This work deals with the inverse problem of constructing a family of polynomial matrices A(σ such that the system A(σβ(k = 0 satisfies some given forward and backward behavior. Initially, the connection between the backward behavior of an AR representation and the forward behavior of its dual system is showcased. This result is used to construct a system satisfying a certain backward behavior. By combining this result with the method provided by Gohberg et al. (2009 for constructing a system with a forward behavior, an algorithm is proposed for computing a system satisfying the prescribed forward and backward behavior.

11. Balancing the Equation: Do Course Variations in Algebra 1 Provide Equal Student Outcomes?

Science.gov (United States)

Kenfield, Danielle M.

2013-01-01

Historically, algebra has served as a gatekeeper that divides students into academic programs with varying opportunities to learn and controls access to higher education and career opportunities. Successful completion of Algebra 1 demonstrates mathematical proficiency and allows access to a sequential and progressive path of advanced study that…

12. Mastering algebra retrains the visual system to perceive hierarchical structure in equations.

Science.gov (United States)

Marghetis, Tyler; Landy, David; Goldstone, Robert L

2016-01-01

Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.

13. Semi-classical propagation of wavepackets for the phase space Schroedinger equation: interpretation in terms of the Feichtinger algebra

International Nuclear Information System (INIS)

Gosson, Maurice A de

2008-01-01

The nearby orbit method is a powerful tool for constructing semi-classical solutions of Schroedinger's equation when the initial datum is a coherent state. In this paper, we first extend this method to arbitrary squeezed states and thereafter apply our results to the Schroedinger equation in phase space. This adaptation requires the phase-space Weyl calculus developed in previous work of ours. We also study the regularity of the semi-classical solutions from the point of view of the Feichtinger algebra familiar from the theory of modulation spaces

14. Deformations of infinite-dimensional Lie algebras, exotic cohomology, and integrable nonlinear partial differential equations

Science.gov (United States)

Morozov, Oleg I.

2018-06-01

The important unsolved problem in theory of integrable systems is to find conditions guaranteeing existence of a Lax representation for a given PDE. The exotic cohomology of the symmetry algebras opens a way to formulate such conditions in internal terms of the PDE s under the study. In this paper we consider certain examples of infinite-dimensional Lie algebras with nontrivial second exotic cohomology groups and show that the Maurer-Cartan forms of the associated extensions of these Lie algebras generate Lax representations for integrable systems, both known and new ones.

15. Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients

Energy Technology Data Exchange (ETDEWEB)

Kalchev, D

2012-04-02

This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the

16. An Algebraic Method for Constructing Exact Solutions to Difference-Differential Equations

International Nuclear Information System (INIS)

Wang Zhen; Zhang Hongqing

2006-01-01

In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).

17. Differential equations with applications in cancer diseases.

Science.gov (United States)

Ilea, M; Turnea, M; Rotariu, M

2013-01-01

Mathematical modeling is a process by which a real world problem is described by a mathematical formulation. The cancer modeling is a highly challenging problem at the frontier of applied mathematics. A variety of modeling strategies have been developed, each focusing on one or more aspects of cancer. The vast majority of mathematical models in cancer diseases biology are formulated in terms of differential equations. We propose an original mathematical model with small parameter for the interactions between these two cancer cell sub-populations and the mathematical model of a vascular tumor. We work on the assumption that, the quiescent cells' nutrient consumption is long. One the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. MATLAB simulations obtained for transition rate from the quiescent cells' nutrient consumption is long, we show a similar asymptotic behavior for two solutions of the perturbed problem. In this system, the small parameter is an asymptotic variable, different from the independent variable. The graphical output for a mathematical model of a vascular tumor shows the differences in the evolution of the tumor populations of proliferating, quiescent and necrotic cells. The nutrient concentration decreases sharply through the viable rim and tends to a constant level in the core due to the nearly complete necrosis in this region. Many mathematical models can be quantitatively characterized by ordinary differential equations or partial differential equations. The use of MATLAB in this article illustrates the important role of informatics in research in mathematical modeling. The study of avascular tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.

18. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

Czech Academy of Sciences Publication Activity Database

Bulíček, M.; Haslinger, J.; Málek, J.; Stebel, Jan

2009-01-01

Roč. 60, č. 2 (2009), s. 185-212 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model * outflow boundary condition Subject RIV: BA - General Mathematics Impact factor: 0.757, year: 2009

19. Three semi-direct sum Lie algebras and three discrete integrable couplings associated with the modified K dV lattice equation

International Nuclear Information System (INIS)

Yu Zhang; Zhang Yufeng

2009-01-01

Three semi-direct sum Lie algebras are constructed, which is an efficient and new way to obtain discrete integrable couplings. As its applications, three discrete integrable couplings associated with the modified K dV lattice equation are worked out. The approach can be used to produce other discrete integrable couplings of the discrete hierarchies of soliton equations.

20. GPU TECHNOLOGIES EMBODIED IN PARALLEL SOLVERS OF LINEAR ALGEBRAIC EQUATION SYSTEMS

Directory of Open Access Journals (Sweden)

2012-10-01

Full Text Available The author reviews existing shareware solvers that are operated by graphical computer devices. The purpose of this review is to explore the opportunities and limitations of the above parallel solvers applicable for resolution of linear algebraic problems that arise at Research and Educational Centre of Computer Modeling at MSUCE, and Research and Engineering Centre STADYO. The author has explored new applications of the GPU in the PETSc suite and compared them with the results generated absent of the GPU. The research is performed within the CUSP library developed to resolve the problems of linear algebra through the application of GPU. The author has also reviewed the new MAGMA project which is analogous to LAPACK for the GPU.

1. Shape optimization for Navier-Stokes equations with algebraic turbulence model : numerical analysis and computation

Czech Academy of Sciences Publication Activity Database

Haslinger, J.; Stebel, Jan

2011-01-01

Roč. 63, č. 2 (2011), s. 277-308 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model Subject RIV: BA - General Mathematics Impact factor: 0.952, year: 2011 http://link.springer.com/article/10.1007%2Fs00245-010-9121-x

2. College algebra

CERN Document Server

Kolman, Bernard

1985-01-01

College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

3. Non-linear partial differential equations an algebraic view of generalized solutions

CERN Document Server

Rosinger, Elemer E

1990-01-01

A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen

4. Generating Generalized Bessel Equations by Virtue of Bose Operator Algebra and Entangled State Representations

International Nuclear Information System (INIS)

Fan Hongyi; Wang Yong

2006-01-01

With the help of Bose operator identities and entangled state representation and based on our previous work [Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.

5. An algebraic method to develop well-posed PML models Absorbing layers, perfectly matched layers, linearized Euler equations

International Nuclear Information System (INIS)

2004-01-01

In 1994, Berenger [Journal of Computational Physics 114 (1994) 185] proposed a new layer method: perfectly matched layer, PML, for electromagnetism. This new method is based on the truncation of the computational domain by a layer which absorbs waves regardless of their frequency and angle of incidence. Unfortunately, the technique proposed by Berenger (loc. cit.) leads to a system which has lost the most important properties of the original one: strong hyperbolicity and symmetry. We present in this paper an algebraic technique leading to well-known PML model [IEEE Transactions on Antennas and Propagation 44 (1996) 1630] for the linearized Euler equations, strongly well-posed, preserving the advantages of the initial method, and retaining symmetry. The technique proposed in this paper can be extended to various hyperbolic problems

6. Integration of Lax and Zakharov-Schabat equations by means of algebraic geometry's methods

International Nuclear Information System (INIS)

Gozman, N.Ja.; Latyshev, A.V.; Savostjanov, M.V.; Lebedev, D.R.

1982-01-01

The solutions of nonlinear partial differential equations of Lax and Zakharov-Schabat types are obtained with the help of algebro-geometric method. The Krichever-Drinfeld bimodule for rational curve with cusp point is constructed. It is noted that rational solutions of Zakharov-Schabat equations can be found by means of constructed bimodule in the case of rank 1 only. The evolution of the poles of these solutions is investigated

7. TECHNOLOGY OF CONSTRUCTING OF GUADRATIC EQUATIONS AND SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS WITH PARAMETERS IN A MAPLE-MEDIUM

Directory of Open Access Journals (Sweden)

Kushnir V.

2017-12-01

Full Text Available The problem of constructing quadratic equations and systems of equations with parameters using Maple-technology is studied. Today, the "learning tasks of reverse thinking" (V.A. Krutetsky or simply "inverse problems" (P.M.Erdniev are increasingly being introduced into the educational process. The tasks of constructing mathematical tasks in advance of a certain type and certain properties are inverse problems that unfold another aspect of the learning situation and thereby create a "surplus of its vision" (M.M. Bakhtin. The solution of inverse problems develops students’ thinking, imagination and other higher mental functions. However, their introduction into the educational process is still insufficient. One of the reasons for this situation is the insufficient number of benefits with a sufficient number of variants of the same type of tasks. Especially it concerns the construction of problems with parameters. Designing in "manual mode" requires significant temporary cognitive, physical and other efforts, carries the risks of allowing technical and computational errors. In the days of the information society and the digital economy, there are all the possibilities to perform the chain of design actions in a certain ICT environment (we have a Maple-environment. It solves the resulted difficulties of construction, creates a new educational and information environment, allows to produce automatically a sufficient number of different versions of the same type of tasks. Tasks with parameters require creativity from the students, non-standard approaches to the solution. Each task with parameters requires the creation of its own method and algorithm for solving and productive learning. The article is devoted to solving of the above problems.

8. Efficient simulation of gas-liquid pipe flows using a generalized population balance equation coupled with the algebraic slip model

KAUST Repository

Icardi, Matteo; Ronco, Gianni; Marchisio, Daniele Luca; Labois, Mathieu

2014-01-01

The inhomogeneous generalized population balance equation, which is discretized with the direct quadrature method of moment (DQMOM), is solved to predict the bubble size distribution (BSD) in a vertical pipe flow. The proposed model is compared with a more classical approach where bubbles are characterized with a constant mean size. The turbulent two-phase flow field, which is modeled using a Reynolds-Averaged Navier-Stokes equation approach, is assumed to be in local equilibrium, thus the relative gas and liquid (slip) velocities can be calculated with the algebraic slip model, thereby accounting for the drag, lift, and lubrication forces. The complex relationship between the bubble size distribution and the resulting forces is described accurately by the DQMOM. Each quadrature node and weight represents a class of bubbles with characteristic size and number density, which change dynamically in time and space to preserve the first moments of the BSD. The predictions obtained are validated against previously published experimental data, thereby demonstrating the advantages of this approach for large-scale systems as well as suggesting future extensions to long piping systems and more complex geometries. © 2014 Elsevier Inc.

9. Efficient simulation of gas-liquid pipe flows using a generalized population balance equation coupled with the algebraic slip model

KAUST Repository

Icardi, Matteo

2014-09-01

The inhomogeneous generalized population balance equation, which is discretized with the direct quadrature method of moment (DQMOM), is solved to predict the bubble size distribution (BSD) in a vertical pipe flow. The proposed model is compared with a more classical approach where bubbles are characterized with a constant mean size. The turbulent two-phase flow field, which is modeled using a Reynolds-Averaged Navier-Stokes equation approach, is assumed to be in local equilibrium, thus the relative gas and liquid (slip) velocities can be calculated with the algebraic slip model, thereby accounting for the drag, lift, and lubrication forces. The complex relationship between the bubble size distribution and the resulting forces is described accurately by the DQMOM. Each quadrature node and weight represents a class of bubbles with characteristic size and number density, which change dynamically in time and space to preserve the first moments of the BSD. The predictions obtained are validated against previously published experimental data, thereby demonstrating the advantages of this approach for large-scale systems as well as suggesting future extensions to long piping systems and more complex geometries. © 2014 Elsevier Inc.

10. Solving Algebraic Riccati Equation Real Time for Integrated Vehicle Dynamics Control

NARCIS (Netherlands)

Kunnappillil Madhusudhanan, A; Corno, M.; Bonsen, B.; Holweg, E.

2012-01-01

In this paper we present a comparison study of different computational methods to implement State Dependent Riccati Equation (SDRE) based control in real time for a vehicle dynamics control application. Vehicles are mechatronic systems with nonlinear dynamics. One of the promising nonlinear control

11. Linear algebra

CERN Document Server

Stoll, R R

1968-01-01

Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

12. Exact Solution of Klein-Gordon and Dirac Equations with Snyder-de Sitter Algebra

Science.gov (United States)

2018-01-01

In this paper, we present the exact solution of the (1+1)-dimensional relativistic Klein-Gordon and Dirac equations with linear vector and scalar potentials in the framework of deformed Snyder-de Sitter model. We introduce some changes of variables, we show that a one-dimensional linear potential for the relativistic system in a space deformed can be equivalent to the trigonometric Rosen-Morse potential in a regular space. In both cases, we determine explicitly the energy eigenvalues and their corresponding eigenfunctions expressed in terms of Romonovski polynomials. The limiting cases are analyzed for α 1 and α 2 → 0 and are compared with those of literature.

13. Infinite-Dimensional Symmetry Algebras as a Help Toward Solutions of the Self-Dual Field Equations with One Killing Vector

Science.gov (United States)

Finley, Daniel; McIver, John K.

2002-12-01

The sDiff(2) Toda equation determines all self-dual, vacuum solutions of the Einstein field equations with one rotational Killing vector. Some history of the searches for non-trivial solutions is given, including those that begin with the limit as n → ∞ of the An Toda lattice equations. That approach is applied here to the known prolongation structure for the Toda lattice, hoping to use Bäcklund transformations to generate new solutions. Although this attempt has not yet succeeded, new faithful (tangent-vector) realizations of A∞ are described, and a direct approach via the continuum Lie algebras of Saveliev and Leznov is given.

14. A constrained regularization method for inverting data represented by linear algebraic or integral equations

Science.gov (United States)

Provencher, Stephen W.

1982-09-01

CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.

15. Linear algebra

CERN Document Server

Liesen, Jörg

2015-01-01

This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

16. Solutions of the Yang-Baxter equation: Descendants of the six-vertex model from the Drinfeld doubles of dihedral group algebras

International Nuclear Information System (INIS)

Finch, P.E.; Dancer, K.A.; Isaac, P.S.; Links, J.

2011-01-01

The representation theory of the Drinfeld doubles of dihedral groups is used to solve the Yang-Baxter equation. Use of the two-dimensional representations recovers the six-vertex model solution. Solutions in arbitrary dimensions, which are viewed as descendants of the six-vertex model case, are then obtained using tensor product graph methods which were originally formulated for quantum algebras. Connections with the Fateev-Zamolodchikov model are discussed.

17. Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations

OpenAIRE

Kolev, Boris

2006-01-01

23 pages; International audience; This paper is a survey article on bi-Hamiltonian systems on the dual of the Lie algebra of vector fields on the circle. We investigate the special case where one of the structures is the canonical Lie-Poisson structure and the second one is constant. These structures called affine or modified Lie-Poisson structures are involved in the integrability of certain Euler equations that arise as models of shallow water waves.

Science.gov (United States)

Borenson, Henry

1987-01-01

Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

19. Strongly \\'etale difference algebras and Babbitt's decomposition

OpenAIRE

Tomašić, Ivan; Wibmer, Michael

2015-01-01

We introduce a class of strongly \\'{e}tale difference algebras, whose role in the study of difference equations is analogous to the role of \\'{e}tale algebras in the study of algebraic equations. We deduce an improved version of Babbitt's decomposition theorem and we present applications to difference algebraic groups and the compatibility problem.

20. Intermediate algebra & analytic geometry

CERN Document Server

Gondin, William R

1967-01-01

Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

1. Algebraic partial Boolean algebras

International Nuclear Information System (INIS)

Smith, Derek

2003-01-01

Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

2. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

Science.gov (United States)

Li, Jing; Hong, Wenxue

2014-12-01

The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

3. The algebraic geometry of multimonopoles

International Nuclear Information System (INIS)

Nahm, W.

1982-11-01

Multimonopole solutions of the Bogomolny equation are treated by a transform to an ordinary differential equation. The solution of this equation yields algebraic curves and holomorphic line bundles over them. (orig.)

4. Colored Quantum Algebra and Its Bethe State

International Nuclear Information System (INIS)

Wang Jin-Zheng; Jia Xiao-Yu; Wang Shi-Kun

2014-01-01

We investigate the colored Yang—Baxter equation. Based on a trigonometric solution of colored Yang—Baxter equation, we construct a colored quantum algebra. Moreover we discuss its algebraic Bethe ansatz state and highest wight representation. (general)

5. Learning Activity Package, Algebra.

Science.gov (United States)

Evans, Diane

A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

6. Algebra & trigonometry super review

CERN Document Server

2012-01-01

Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

7. Linear algebra

CERN Document Server

Said-Houari, Belkacem

2017-01-01

This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...

8. Lie Algebras and Integrable Systems

International Nuclear Information System (INIS)

Zhang Yufeng; Mei Jianqin

2012-01-01

A 3 × 3 matrix Lie algebra is first introduced, its subalgebras and the generated Lie algebras are obtained, respectively. Applications of a few Lie subalgebras give rise to two integrable nonlinear hierarchies of evolution equations from their reductions we obtain the nonlinear Schrödinger equations, the mKdV equations, the Broer-Kaup (BK) equation and its generalized equation, etc. The linear and nonlinear integrable couplings of one integrable hierarchy presented in the paper are worked out by casting a 3 × 3 Lie subalgebra into a 2 × 2 matrix Lie algebra. Finally, we discuss the elliptic variable solutions of a generalized BK equation. (general)

9. Quantitative Algebraic Reasoning

DEFF Research Database (Denmark)

2016-01-01

We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We deﬁne an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have ﬁnitary and continuous versions. The four cases are: Hausdorﬀ metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...

10. Algebraic geometry

CERN Document Server

Lefschetz, Solomon

2005-01-01

An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

11. Grassmann algebras

International Nuclear Information System (INIS)

Garcia, R.L.

1983-11-01

The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt

12. Convergence of the standard RLS method and UDUT factorisation of covariance matrix for solving the algebraic Riccati equation of the DLQR via heuristic approximate dynamic programming

Science.gov (United States)

Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.

2015-08-01

The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.

13. One class of meromorphic solutions of general two-dimensional nonlinear equations, connected with the algebraic inverse scattering method.

Science.gov (United States)

Chudnovsky, D V

1978-09-01

For systems of nonlinear equations having the form [L(n) - ( partial differential/ partial differentialt), L(m) - ( partial differential/ partial differentialy)] = 0 the class of meromorphic solutions obtained from the linear equations [Formula: see text] is presented.

14. Vertex algebras and algebraic curves

CERN Document Server

Frenkel, Edward

2004-01-01

Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...

15. Implicative Algebras

African Journals Online (AJOL)

In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...

16. NEWLIN: A digital computer program for the linearisation of sets of algebraic and first order differential equations

International Nuclear Information System (INIS)

Hopkinson, A.

1969-05-01

The techniques normally used for linearisation of equations are not amenable to general treatment by digital computation. This report describes a computer program for linearising sets of equations by numerical evaluations of partial derivatives. The program is written so that the specification of the non-linear equations is the same as for the digital simulation program, FIFI, and the linearised equations can be punched out in form suitable for input to the frequency response program FRP2 and the poles and zeros program ZIP. Full instructions for the use of the program are given and a sample problem input and output are shown. (author)

17. Monomial algebras

CERN Document Server

Villarreal, Rafael

2015-01-01

The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

18. Matrices and linear algebra

CERN Document Server

Schneider, Hans

1989-01-01

Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

19. Computer Algebra Systems in Undergraduate Instruction.

Science.gov (United States)

Small, Don; And Others

1986-01-01

Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)

20. Resolution of First- and Second-Order Linear Differential Equations with Periodic Inputs by a Computer Algebra System

Directory of Open Access Journals (Sweden)

M. Legua

2008-01-01

Full Text Available In signal processing, a pulse means a rapid change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. A square wave function may be viewed as a pulse that repeats its occurrence periodically but the return to the baseline value takes some time to happen. When these periodic functions act as inputs in dynamic systems, the standard tool commonly used to solve the associated initial value problem (IVP is Laplace transform and its inverse. We show how a computer algebra system may also provide the solution of these IVP straight forwardly by adequately introducing the periodic input.

CERN Document Server

Polishchuk, Alexander

2005-01-01

Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

2. Pre-Algebra Essentials For Dummies

CERN Document Server

Zegarelli, Mark

2010-01-01

Many students worry about starting algebra. Pre-Algebra Essentials For Dummies provides an overview of critical pre-algebra concepts to help new algebra students (and their parents) take the next step without fear. Free of ramp-up material, Pre-Algebra Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in a typical pre-algebra course, from fractions, decimals, and percents to scientific notation and simple variable equations. This guide is also a perfect reference for parents who need to review critical pre-algebra

3. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

Science.gov (United States)

Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

2018-03-01

The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

4. Graded algebras of the second rank and integration of nonlinear equations Ysub(z)sub(z) = exp(2Y) - exp(-2Y), Ysub(z)sub(z) = 2 exp(Y) - exp(-2Y)

International Nuclear Information System (INIS)

Leznov, A.N.; Smirnov, V.G.

1981-01-01

In the terms of the notions of the theory of infinite-dimensional algebras of finite growth of the second rank, we have derived solutions to the equations Ysub(z)sub(z) = exp(2Y) - exp(-2Y); Ysub(z)sub(z) = 2 exp(Y) - exp(-2Y) dependent on two arbitrary functions. (orig.)

5. Basic linear algebra

CERN Document Server

Blyth, T S

2002-01-01

Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

6. Boolean algebra

CERN Document Server

Goodstein, R L

2007-01-01

This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

7. Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras.

Science.gov (United States)

Gainetdinova, A A; Gazizov, R K

2017-01-01

We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.

8. Helmholtz algebraic solitons

Energy Technology Data Exchange (ETDEWEB)

Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

2010-02-26

We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

9. Helmholtz algebraic solitons

International Nuclear Information System (INIS)

Christian, J M; McDonald, G S; Chamorro-Posada, P

2010-01-01

We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

10. Jordan algebras versus C*- algebras

International Nuclear Information System (INIS)

Stormer, E.

1976-01-01

The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)

11. Templates for Linear Algebra Problems

NARCIS (Netherlands)

Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

1995-01-01

The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and

12. A class of algebraically general solutions of the Einstein-Maxwell equations for non-null electromagnetic fields

International Nuclear Information System (INIS)

Tupper, B.O.J.

1976-01-01

In a previous article (Gen. Rel. Grav.; 6 : 345 (1975)) the Einstein-Maxwell field equations for non-null electromagnetic fields were studied under the conditions that the null tetrad is parallel-propagated along both principal null congruences. A solution with twist and shear, but no expansion, was found and was conjectured to be the only expansion-free solution. Here it is shown that this conjecture is false; the general expansion-free solution is found to be a family of space-times depending on a single constant parameter which is the ratio of the (constant) twists of the two principal null congruences. (author)

13. Linear algebraic methods applied to intensity modulated radiation therapy.

Science.gov (United States)

Crooks, S M; Xing, L

2001-10-01

Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

14. Implementing the Standards: Teaching Informal Algebra.

Science.gov (United States)

Schultz, James E.

1991-01-01

Presents suggestions for developing algebraic concepts beginning in the early grades to develop a gradual building from informal to formal algebraic concepts that progresses over the K-12 curriculum. Includes suggestions for representing relationships, solving equations, employing meaningful applications of algebra, and using of technology. (MDH)

15. UCSMP Algebra. What Works Clearinghouse Intervention Report

Science.gov (United States)

What Works Clearinghouse, 2007

2007-01-01

"University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…

16. Application of Computer Algebra Systems to the Construction of the Collocations and Least Residuals Method for Solving the 3D Navier–Stokes Equations

Directory of Open Access Journals (Sweden)

V. P. Shapeev

2014-01-01

Full Text Available The method of collocations and least residuals (CLR, which was proposed previously for the numerical solution of two-dimensional Navier–Stokes equations governing the stationary flows of a viscous incompressible fluid, is extended here for the three-dimensional case. The solution is sought in the implemented version of the method in the form of an expansion in the basis solenoidal functions. At all stages of the CLR method construction, a computer algebra system (CAS is applied for the derivation and verification of the formulas of the method and for their translation into arithmetic operators of the Fortran language. For accelerating the convergence of iterations a sufficiently universal algorithm is proposed, which is simple in its implementation and is based on the use of the Krylov’s subspaces. The obtained computational formulas of the CLR method were verified on the exact analytic solution of a test problem. Comparisons with the published numerical results of solving the benchmark problem of the 3D driven cubic cavity flow show that the accuracy of the results obtained by the CLR method corresponds to the known high-accuracy solutions.

17. Einstein algebras and general relativity

International Nuclear Information System (INIS)

Heller, M.

1992-01-01

A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs

18. Separable algebras

CERN Document Server

Ford, Timothy J

2017-01-01

This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

19. Head First Algebra A Learner's Guide to Algebra I

CERN Document Server

Pilone, Tracey

2008-01-01

Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

20. College Algebra I.

Science.gov (United States)

Benjamin, Carl; And Others

Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…

1. Elementary matrix algebra

CERN Document Server

Hohn, Franz E

2012-01-01

This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

2. Handbook of linear algebra

CERN Document Server

Hogben, Leslie

2013-01-01

With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

3. Linear Algebra and Smarandache Linear Algebra

OpenAIRE

Vasantha, Kandasamy

2003-01-01

The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

4. Algebraic design theory

CERN Document Server

Launey, Warwick De

2011-01-01

Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...

5. Robust Algebraic Multilevel Methods and Algorithms

CERN Document Server

Kraus, Johannes

2009-01-01

This book deals with algorithms for the solution of linear systems of algebraic equations with large-scale sparse matrices, with a focus on problems that are obtained after discretization of partial differential equations using finite element methods. Provides a systematic presentation of the recent advances in robust algebraic multilevel methods. Can be used for advanced courses on the topic.

6. Classical algebra its nature, origins, and uses

CERN Document Server

Cooke, Roger L

2008-01-01

This insightful book combines the history, pedagogy, and popularization of algebra to present a unified discussion of the subject. Classical Algebra provides a complete and contemporary perspective on classical polynomial algebra through the exploration of how it was developed and how it exists today. With a focus on prominent areas such as the numerical solutions of equations, the systematic study of equations, and Galois theory, this book facilitates a thorough understanding of algebra and illustrates how the concepts of modern algebra originally developed from classical algebraic precursors. This book successfully ties together the disconnect between classical and modern algebraand provides readers with answers to many fascinating questions that typically go unexamined, including: What is algebra about? How did it arise? What uses does it have? How did it develop? What problems and issues have occurred in its history? How were these problems and issues resolved? The author answers these questions and more,...

7. Generalized Galilean algebras and Newtonian gravity

Science.gov (United States)

2016-04-01

The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref.  allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

8. Generalized NLS hierarchies from rational W algebras

International Nuclear Information System (INIS)

Toppan, F.

1993-11-01

Finite rational W algebras are very natural structures appearing in coset constructions when a Kac-Moody subalgebra is factored out. The problem of relating these algebras to integrable hierarchies of equations is studied by showing how to associate to a rational W algebra its corresponding hierarchy. Two examples are worked out, the sl(2)/U(1) coset, leading to the Non-Linear Schroedinger hierarchy, and the U(1) coset of the Polyakov-Bershadsky W algebra, leading to a 3-field representation of the KP hierarchy already encountered in the literature. In such examples a rational algebra appears as algebra of constraints when reducing a KP hierarchy to a finite field representation. This fact arises the natural question whether rational algebras are always associated to such reductions and whether a classification of rational algebras can lead to a classification of the integrable hierarchies. (author). 19 refs

9. Abstract algebra

CERN Document Server

Garrett, Paul B

2007-01-01

Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

10. Waterloo Workshop on Computer Algebra

CERN Document Server

Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday

2018-01-01

This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016.   This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

11. A linear algebraic approach to electron-molecule collisions

International Nuclear Information System (INIS)

Collins, L.A.; Schnieder, B.I.

1982-01-01

The linear algebraic approach to electron-molecule collisions is examined by firstly deriving the general set of coupled integrodifferential equations that describe electron collisional processes and then describing the linear algebraic approach for obtaining a solution to the coupled equations. Application of the linear algebraic method to static-exchange, separable exchange and effective optical potential, is examined. (U.K.)

12. Space-time algebra for the generalization of gravitational field

The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...

13. Lie groups and algebraic groups

We give an exposition of certain topics in Lie groups and algebraic groups. This is not a complete ... of a polynomial equation is equivalent to the solva- bility of the equation ..... to a subgroup of the group of roots of unity in k (in particular, it is a ...

14. Elementary Algebra Connections to Precalculus

Science.gov (United States)

2013-01-01

This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

15. Handbook of algebra Vol. 1

CERN Document Server

1996-01-01

Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear d

16. Introduction to algebra and trigonometry

CERN Document Server

Kolman, Bernard

1981-01-01

Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are

17. Simulation, optimal control and parametric sensitivity analysis of a molten carbonate fuel cell using a partial differential algebraic dynamic equation system; Simulation, Optimale Steuerung und Sensitivitaetsanalyse einer Schmelzkarbonat-Brennstoffzelle mithilfe eines partiellen differential-algebraischen dynamischen Gleichungssystems

Energy Technology Data Exchange (ETDEWEB)

Sternberg, K

2007-02-08

Molten carbonate fuel cells (MCFCs) allow an efficient and environmentally friendly energy production by converting the chemical energy contained in the fuel gas in virtue of electro-chemical reactions. In order to predict the effect of the electro-chemical reactions and to control the dynamical behavior of the fuel cell a mathematical model has to be found. The molten carbonate fuel cell (MCFC) can indeed be described by a highly complex,large scale, semi-linear system of partial differential algebraic equations. This system includes a reaction-diffusion-equation of parabolic type, several reaction-transport-equations of hyperbolic type, several ordinary differential equations and finally a system of integro-differential algebraic equations which describes the nonlinear non-standard boundary conditions for the entire partial differential algebraic equation system (PDAE-system). The existence of an analytical or the computability of a numerical solution for this high-dimensional PDAE-system depends on the kind of the differential equations and their special characteristics. Apart from theoretical investigations, the real process has to be controlled, more precisely optimally controlled. Hence, on the basis of the PDAE-system an optimal control problem is set up, whose analytical and numerical solvability is closely linked to the solvability of the PDAE-system. Moreover the solution of that optimal control problem is made more difficult by inaccuracies in the underlying database, which does not supply sufficiently accurate values for the model parameters. Therefore the optimal control problem must also be investigated with respect to small disturbances of model parameters. The aim of this work is to analyze the relevant dynamic behavior of MCFCs and to develop concepts for their optimal process control. Therefore this work is concerned with the simulation, the optimal control and the sensitivity analysis of a mathematical model for MCDCs, which can be characterized

18. Algebraic entropy for algebraic maps

International Nuclear Information System (INIS)

Hone, A N W; Ragnisco, Orlando; Zullo, Federico

2016-01-01

We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

19. Algebra & trigonometry II essentials

CERN Document Server

REA, Editors of

2012-01-01

REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

20. Algebraic computing

International Nuclear Information System (INIS)

MacCallum, M.A.H.

1990-01-01

The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)

1. Linear algebra

CERN Document Server

Edwards, Harold M

1995-01-01

In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

2. Advanced linear algebra for engineers with Matlab

CERN Document Server

Dianat, Sohail A

2009-01-01

Matrices, Matrix Algebra, and Elementary Matrix OperationsBasic Concepts and NotationMatrix AlgebraElementary Row OperationsSolution of System of Linear EquationsMatrix PartitionsBlock MultiplicationInner, Outer, and Kronecker ProductsDeterminants, Matrix Inversion and Solutions to Systems of Linear EquationsDeterminant of a MatrixMatrix InversionSolution of Simultaneous Linear EquationsApplications: Circuit AnalysisHomogeneous Coordinates SystemRank, Nu

3. Sugawara operators for classical Lie algebras

CERN Document Server

Molev, Alexander

2018-01-01

The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical \\mathcal{W}-algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connec...

4. Classical algebraic chromodynamics

International Nuclear Information System (INIS)

1978-01-01

I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance

5. The bubble algebra: structure of a two-colour Temperley-Lieb Algebra

International Nuclear Information System (INIS)

Grimm, Uwe; Martin, Paul P

2003-01-01

We define new diagram algebras providing a sequence of multiparameter generalizations of the Temperley-Lieb algebra, suitable for the modelling of dilute lattice systems of two-dimensional statistical mechanics. These algebras give a rigorous foundation to the various 'multi-colour algebras' of Grimm, Pearce and others. We determine the generic representation theory of the simplest of these algebras, and locate the nongeneric cases (at roots of unity of the corresponding parameters). We show by this example how the method used (Martin's general procedure for diagram algebras) may be applied to a wide variety of such algebras occurring in statistical mechanics. We demonstrate how these algebras may be used to solve the Yang-Baxter equations

6. Lie algebras

CERN Document Server

Jacobson, Nathan

1979-01-01

Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

7. Basic algebra

CERN Document Server

Jacobson, Nathan

2009-01-01

A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

8. Rota-Baxter algebras and the Hopf algebra of renormalization

Energy Technology Data Exchange (ETDEWEB)

Ebrahimi-Fard, K.

2006-06-15

Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

9. Rota-Baxter algebras and the Hopf algebra of renormalization

International Nuclear Information System (INIS)

Ebrahimi-Fard, K.

2006-06-01

Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

10. ALGEBRAIC TOPOLOGY

tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).

11. Algebraic stacks

Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.

12. Analysis and solution of algebraic-differential equations of the steam generation processes; Analisis y resolucion de ecuaciones algebraico-diferenciales de los procesos de generacion de vapor

Energy Technology Data Exchange (ETDEWEB)

Gonzalez Herrera, Juan Anibal

1996-10-01

This work presents the construction, analysis and solution of an equipments network in steady and dynamic state from: a) The mathematical models of individual equipment and of their geometry. b) The topology let interconnections between equipment. c) The selection of a numerical method to solve simultaneously the mathematical models. The selected mathematical models represent the cycle boiler-superheater. These models were taken from the MICROTERM-300 modular simulator, which contains the simplified models of the process (feedwater, boiler, turbines, etc.) of the thermoelectric plant Francisco Perez Rios from Tula Hidalgo, Mexico. This work was developed in the following stages: 1.- The selection of an appropiate numerical integration method to solve simultaneously the algebraic and differential equations of the equipment conforming the cycle boiler-superheater. 2.- The adaptation of individual mathematical models to allow changes in their geometry, operating conditions and different forms of connection. Also, this models were modified to have a representation of the equations to allow their analysis and an efficient organization to get their solution. 3.- The application of two computer-aided tools to trace possible coding errors in the mathematical models: a) A syntax analyzer which detect assignation and reference errors of variables. b) A structural analyzer to obtain the structural matrix, which relate the variables and the equations in a model. During this stage some improvements to these computer-aided tools were suggested. 4.- The individual testing of each mathematical model in steady and dynamic state in order to: a) Validate the mathematical models. b) Analyze the behavior of the variables of the mathematical models with different parameters, different operating conditions and different initial conditions. 5.- Lastly, the coupling between equipment analyzed to form an equipments network what represent the cycle boiler-superheater and the testing in

13. Classical theory of algebraic numbers

CERN Document Server

Ribenboim, Paulo

2001-01-01

Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

14. Benney's long wave equations

International Nuclear Information System (INIS)

Lebedev, D.R.

1979-01-01

Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

15. Development and validation of risk prediction equations to estimate survival in patients with colorectal cancer: cohort study

OpenAIRE

Hippisley-Cox, Julia; Coupland, Carol

2017-01-01

Objective: To develop and externally validate risk prediction equations to estimate absolute and conditional survival in patients with colorectal cancer. \\ud \\ud Design: Cohort study.\\ud \\ud Setting: General practices in England providing data for the QResearch database linked to the national cancer registry.\\ud \\ud Participants: 44 145 patients aged 15-99 with colorectal cancer from 947 practices to derive the equations. The equations were validated in 15 214 patients with colorectal cancer ...

16. A type of loop algebra and the associated loop algebras

International Nuclear Information System (INIS)

Tam Honwah; Zhang Yufeng

2008-01-01

A higher-dimensional twisted loop algebra is constructed. As its application, a new Lax pair is presented, whose compatibility gives rise to a Liouville integrable hierarchy of evolution equations by making use of Tu scheme. One of the reduction cases of the hierarchy is an analogous of the well-known AKNS system. Next, the twisted loop algebra, furthermore, is extended to another higher dimensional loop algebra, from which a hierarchy of evolution equations with 11-potential component functions is obtained, whose reduction is just standard AKNS system. Especially, we prove that an arbitrary linear combination of the four Hamiltonian operators directly obtained from the recurrence relations is still a Hamiltonian operator. Therefore, the hierarchy with 11-potential functions possesses 4-Hamiltonian structures. Finally, an integrable coupling of the hierarchy is worked out

17. Algebraic characterizations of measure algebras

Czech Academy of Sciences Publication Activity Database

Jech, Thomas

2008-01-01

Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008

18. Quantum W-algebras and elliptic algebras

International Nuclear Information System (INIS)

Feigin, B.; Kyoto Univ.; Frenkel, E.

1996-01-01

We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)

19. On 2-Banach algebras

International Nuclear Information System (INIS)

1987-11-01

The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs

20. Introductory modern algebra a historical approach

CERN Document Server

Stahl, Saul

2013-01-01

Praise for the First Edition ""Stahl offers the solvability of equations from the historical point of view...one of the best books available to support a one-semester introduction to abstract algebra.""-CHOICE Introductory Modern Algebra: A Historical Approach, Second Edition presents the evolution of algebra and provides readers with the opportunity to view modern algebra as a consistent movement from concrete problems to abstract principles. With a few pertinent excerpts from the writings of some of the greatest mathematicians, the Second Edition uniquely facilitates the understanding of pi

1. Color Algebras

Science.gov (United States)

Mulligan, Jeffrey B.

2017-01-01

A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

2. Topics in quaternion linear algebra

CERN Document Server

Rodman, Leiba

2014-01-01

Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...

3. {kappa}-deformed realization of D=4 conformal algebra

Energy Technology Data Exchange (ETDEWEB)

Klimek, M. [Technical Univ. of Czestochowa, Inst. of Mathematics and Computer Science, Czestochowa (Poland); Lukierski, J. [Universite de Geneve, Department de Physique Theorique, Geneve (Switzerland)

1995-07-01

We describe the generators of {kappa}-conformal transformations, leaving invariant the {kappa}-deformed d`Alembert equation. In such a way one obtains the conformal extension of-shell spin spin zero realization of {kappa}-deformed Poincare algebra. Finally the algebraic structure of {kappa}-deformed conformal algebra is discussed. (author). 23 refs.

4. INPUT-OUTPUT STRUCTURE OF LINEAR-DIFFERENTIAL ALGEBRAIC SYSTEMS

NARCIS (Netherlands)

KUIJPER, M; SCHUMACHER, JM

Systems of linear differential and algebraic equations occur in various ways, for instance, as a result of automated modeling procedures and in problems involving algebraic constraints, such as zero dynamics and exact model matching. Differential/algebraic systems may represent an input-output

5. Current algebra

International Nuclear Information System (INIS)

Jacob, M.

1967-01-01

The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr

6. Parsing with Regular Expressions & Extensions to Kleene Algebra

DEFF Research Database (Denmark)

Grathwohl, Niels Bjørn Bugge

. In the second part of this thesis, we study two extensions to Kleene algebra. Chomsky algebra is an algebra with a structure similar to Kleene algebra, but with a generalized mu-operator for recursion instead of the Kleene star. We show that the axioms of idempotent semirings along with continuity of the mu......-operator completely axiomatize the equational theory of the context-free languages. KAT+B! is an extension to Kleene algebra with tests (KAT) that adds mutable state. We describe a test algebra B! for mutable tests and give a commutative coproduct between KATs. Combining the axioms of B! with those of KAT and some...

7. Quasi exactly solvable operators and abstract associative algebras

International Nuclear Information System (INIS)

Brihaye, Y.; Kosinski, P.

1998-01-01

We consider the vector spaces consisting of direct sums of polynomials of given degrees and we show how to classify the linear differential operators preserving these spaces. The families of operators so obtained are identified as the envelopping algebras of particular abstract associative algebras. Some of these operators can be transformed into quasi exactly solvable Schroedinger operators which, having a hidden algebra, can be partially solved algebraically; we exhibit however a series of Schoedinger equations which, while completely solvable algebraically, do not possess a hidden algebra

8. Fibered F-Algebra

OpenAIRE

Kleyn, Aleks

2007-01-01

The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

9. Expansion of the Lie algebra and its applications

International Nuclear Information System (INIS)

Guo Fukui; Zhang Yufeng

2006-01-01

We take the Lie algebra A1 as an example to illustrate a detail approach for expanding a finite dimensional Lie algebra into a higher-dimensional one. By making use of the late and its resulting loop algebra, a few linear isospectral problems with multi-component potential functions are established. It follows from them that some new integrable hierarchies of soliton equations are worked out. In addition, various Lie algebras may be constructed for which the integrable couplings of soliton equations are obtained by employing the expanding technique of the the Lie algebras

10. Exact WKB analysis and cluster algebras

International Nuclear Information System (INIS)

Iwaki, Kohei; Nakanishi, Tomoki

2014-01-01

We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

11. Algebraic Systems and Pushdown Automata

Science.gov (United States)

Petre, Ion; Salomaa, Arto

We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.

12. Higher spin fields and the Gelfand-Dickey algebra

International Nuclear Information System (INIS)

Bakas, I.

1989-01-01

We show that in 2-dimensional field theory, higher spin algebras are contained in the algebra of formal pseudodifferential operators introduced by Gelfand and Dickey to describe integrable nonlinear differential equations in Lax form. The spin 2 and 3 algebras are discussed in detail and the generalization to all higher spins is outlined. This provides a conformal field theory approach to the representation theory of Gelfand-Dickey algebras. (orig.)

13. Generalized symmetry algebras

International Nuclear Information System (INIS)

Dragon, N.

1979-01-01

The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)

14. Hom-Novikov algebras

International Nuclear Information System (INIS)

Yau, Donald

2011-01-01

We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.

15. Algebraic functions

CERN Document Server

Bliss, Gilbert Ames

1933-01-01

This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t

16. Iterated Leavitt Path Algebras

International Nuclear Information System (INIS)

Hazrat, R.

2009-11-01

Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)

17. Cluster algebras in mathematical physics

International Nuclear Information System (INIS)

Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito

2014-01-01

This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm

18. Universal algebra

CERN Document Server

Grätzer, George

1979-01-01

Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

19. Deformation of the exterior algebra and the GLq (r, included in) algebra

International Nuclear Information System (INIS)

El Hassouni, A.; Hassouni, Y.; Zakkari, M.

1993-06-01

The deformation of the associative algebra of exterior forms is performed. This operation leads to a Y.B. equation. Its relation with the braid group B n-1 is analyzed. The correspondence of this deformation with the GL q (r, included in) algebra is developed. (author). 9 refs

20. Yoneda algebras of almost Koszul algebras

Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...

1. Chemical Equation Balancing.

Science.gov (United States)

Blakley, G. R.

1982-01-01

Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

2. Evolution operator equation: Integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory

Energy Technology Data Exchange (ETDEWEB)

Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado

1997-10-01

The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.

3. The Universal C*-Algebra of the Electromagnetic Field

Science.gov (United States)

Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

2016-02-01

A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincaré covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.

4. Open algebraic surfaces

CERN Document Server

Miyanishi, Masayoshi

2000-01-01

Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

5. Differential Equations Compatible with KZ Equations

International Nuclear Information System (INIS)

Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

2000-01-01

We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

6. Zorn algebra in general relativity

International Nuclear Information System (INIS)

Oliveira, C.G.; Maia, M.D.

The covariant differential properties of the split Cayley subalgebra of local real quaternion tetrads is considered. Referred to this local quaternion tetrad several geometrical objects are given in terms of Zorn-Weyl matrices. Associated to a pair of real null vectors we define two-component spinor fields over the curved space and the associated Zorn-Weyl matrices which satisfy the Dirac equation written in terms of the Zorn algebra. The formalism is generalized by considering a field of complex tetrads defining a Hermitian second rank tensor. The real part of this tensor describes the gravitational potentials and the imaginary part the electromagnetic potentials in the Lorentz gauge. The motion of a charged spin zero test body is considered. The Zorn-Weyl algebra associated to this generalized formalism has elements belonging to the full octonion algebra [pt

7. Algebraic geometry and effective lagrangians

International Nuclear Information System (INIS)

Martinec, E.J.; Chicago Univ., IL

1989-01-01

N=2 supersymmetric Landau-Ginsburg fixed points describe nonlinear models whose target spaces are algebraic varieties in certain generalized projective spaces; the defining equation is precisely the zero set of the superpotential, considered as a condition in the projective space. The ADE classification of modular invariants arises as the classification of projective descriptions of P 1 ; in general, the hierarchy of fixed points is conjectured to be isomorphic to the classification of quasihomogeneous singularities. The condition of vanishing first Chern class is an integrality condition on the Virasoro central charge; the central charge is determined by the superpotential. The operator algebra is given by the algebra of Wick contractions of perturbations of the superpotential. (orig.)

8. Discrete integrable systems and deformations of associative algebras

International Nuclear Information System (INIS)

Konopelchenko, B G

2009-01-01

Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. Theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the deformation driving algebra and governed by the central system of equations. It is demonstrated that many discrete equations such as discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful. An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.

9. Commutator identities on associative algebras and integrability of nonlinear pde's

OpenAIRE

Pogrebkov, A. K.

2007-01-01

It is shown that commutator identities on associative algebras generate solutions of linearized integrable equations. Next, a special kind of the dressing procedure is suggested that in a special class of integral operators enables to associate to such commutator identity both nonlinear equation and its Lax pair. Thus problem of construction of new integrable pde's reduces to construction of commutator identities on associative algebras.

10. Quantum ergodicity and a quantum measure algebra

International Nuclear Information System (INIS)

Stechel, E.B.

1985-01-01

A quantum ergodic theory for finite systems (such as isolated molecules) is developed by introducing the concept of a quantum measure algebra. The basic concept in classical ergodic theory is that of a measure space. A measure space is a set M, together with a specified sigma algebra of subsets in M and a measure defined on that algebra. A sigma algebra is closed under the formation of intersections and symmetric differences. A measure is a nonnegative and countably additive set function. For this to be further classified as a dynamical system, a measurable transformation is introduced. A measurable transformation is a mapping from a measure space into a measure space, such that the inverse image of every measurable set is measurable. In conservative dynamical systems, a measurable transformation is measure preserving, which is to say that the inverse image of every measurable set has the same measure as the original set. Once the measure space and the measurable transformation are defined, ergodic theory can be investigated on three levels: describable as analytic, geometric and algebraic. The analytic level studies linear operators induced by a transformation. The geometric level is concerned directly with transformations on a measure space and the algebraic treatments substitute a measure algebra for the measure space and basically equate sets that differ only by sets of measure zero. It is this latter approach that is most directly paralleled here. A measure algebra for a quantum dynamical system is defined within which stochastic concepts in quantum mechanics can be investigated. The quantum measure algebra differs from a normal measure algebra only in that multiplication is noncommutative and addition is nonassociative. Nonetheless, the quantum measure algebra preserves the essence of a normal measure algebra

11. The Yoneda algebra of a K2 algebra need not be another K2 algebra

OpenAIRE

Cassidy, T.; Phan, C.; Shelton, B.

2010-01-01

The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

12. Novikov-Jordan algebras

OpenAIRE

2002-01-01

Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

13. Introduction to relation algebras relation algebras

CERN Document Server

Givant, Steven

2017-01-01

The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

14. Wavelets and quantum algebras

International Nuclear Information System (INIS)

Ludu, A.; Greiner, M.

1995-09-01

A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

15. Banach Synaptic Algebras

Science.gov (United States)

Foulis, David J.; Pulmannov, Sylvia

2018-04-01

Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

16. Residues and duality for projective algebraic varieties

CERN Document Server

Kunz, Ernst; Dickenstein, Alicia

2008-01-01

This book, which grew out of lectures by E. Kunz for students with a background in algebra and algebraic geometry, develops local and global duality theory in the special case of (possibly singular) algebraic varieties over algebraically closed base fields. It describes duality and residue theorems in terms of K�hler differential forms and their residues. The properties of residues are introduced via local cohomology. Special emphasis is given to the relation between residues to classical results of algebraic geometry and their generalizations. The contribution by A. Dickenstein gives applications of residues and duality to polynomial solutions of constant coefficient partial differential equations and to problems in interpolation and ideal membership. D. A. Cox explains toric residues and relates them to the earlier text. The book is intended as an introduction to more advanced treatments and further applications of the subject, to which numerous bibliographical hints are given.

17. Q-systems as cluster algebras

International Nuclear Information System (INIS)

Kedem, Rinat

2008-01-01

Q-systems first appeared in the analysis of the Bethe equations for the XXX model and generalized Heisenberg spin chains (Kirillov and Reshetikhin 1987 Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov. 160 211-21, 301). Such systems are known to exist for any simple Lie algebra and many other Kac-Moody algebras. We formulate the Q-system associated with any simple, simply-laced Lie algebras g in the language of cluster algebras (Fomin and Zelevinsky 2002 J. Am. Math. Soc. 15 497-529), and discuss the relation of the polynomiality property of the solutions of the Q-system in the initial variables, which follows from the representation-theoretical interpretation, to the Laurent phenomenon in cluster algebras (Fomin and Zelevinsky 2002 Adv. Appl. Math. 28 119-44)

18. The Dirac Equation in the algebraic approximation. VII. A comparison of molecular finite difference and finite basis set calculations using distributed Gaussian basis sets

NARCIS (Netherlands)

Quiney, H. M.; Glushkov, V. N.; Wilson, S.; Sabin,; Brandas, E

2001-01-01

A comparison is made of the accuracy achieved in finite difference and finite basis set approximations to the Dirac equation for the ground state of the hydrogen molecular ion. The finite basis set calculations are carried out using a distributed basis set of Gaussian functions the exponents and

19. Clifford algebras, spinors, spin groups and covering groups

International Nuclear Information System (INIS)

Magneville, C.; Pansart, J.P.

1991-03-01

The Dirac equation uses matrices named Υ matrices which are representations of general algebraic structures associated with a metric space. These algebras are the Clifford algebras. In the first past, these algebras are studied. Then the notion of spinor is developed. It is shown that Majorana and Weyl spinors only exist for some particular metric space. In the second part, Clifford and spinor groups are studied. They may be interpreted as the extension of the notion of orthogonal group for Clifford algebras and their spaces for representation. The rotation of a spinor is computed. In the last part, the connexion between the spinor groups and the Universal Covering Groups is presented [fr

20. Hecke algebraic properties of dynamical R-matrices. Application to related quantum matrix algebras

International Nuclear Information System (INIS)

Khadzhiivanov, L.K.; Todorov, I.T.; Isaev, A.P.; Pyatov, P.N.; Ogievetskij, O.V.

1998-01-01

The quantum dynamical Yang-Baxter (or Gervais-Neveu-Felder) equation defines an R-matrix R cap (p), where p stands for a set of mutually commuting variables. A family of SL (n)-type solutions of this equation provides a new realization of the Hecke algebra. We define quantum antisymmetrizers, introduce the notion of quantum determinant and compute the inverse quantum matrix for matrix algebras of the type R cap (p) a 1 a 2 = a 1 a 2 R cap. It is pointed out that such a quantum matrix algebra arises in the operator realization of the chiral zero modes of the WZNW model

1. Quantum cluster algebras and quantum nilpotent algebras

Science.gov (United States)

Goodearl, Kenneth R.; Yakimov, Milen T.

2014-01-01

A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

2. Titration Calculations with Computer Algebra Software

Science.gov (United States)

Lachance, Russ; Biaglow, Andrew

2012-01-01

This article examines the symbolic algebraic solution of the titration equations for a diprotic acid, as obtained using "Mathematica," "Maple," and "Mathcad." The equilibrium and conservation equations are solved symbolically by the programs to eliminate the approximations that normally would be performed by the student. Of the three programs,…

3. Quadratic-linear pattern in cancer fractional radiotherapy. Equations for a computering program

International Nuclear Information System (INIS)

Burgos, D.; Bullejos, J.; Garcia Puche, J.L.; Pedraza, V.

1990-01-01

Knowledge of equivalence between different tratment schemes with the same iso-effect is the essential thing in clinical cancer radiotherapy. For this purpose it is very useful the group of ideas derived from quadratic-linear pattern (Q-L) proposed in order to analyze cell survival curve to radiation. Iso-effect definition caused by several irradiation rules is done by extrapolated tolerance dose (ETD). Because equations for ETD are complex, a computering program have been carried out. In this paper, iso-effect equations for well defined therapeutic situations and flow diagram proposed for resolution, have been studied. (Author)

4. Linear algebra

CERN Document Server

Shilov, Georgi E

1977-01-01

Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

5. Leavitt path algebras

CERN Document Server

Abrams, Gene; Siles Molina, Mercedes

2017-01-01

This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

6. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

Science.gov (United States)

Ndogmo, J. C.

2017-06-01

Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

7. On W1+∞ 3-algebra and integrable system

Directory of Open Access Journals (Sweden)

Min-Ru Chen

2015-02-01

Full Text Available We construct the W1+∞ 3-algebra and investigate its connection with the integrable systems. Since the W1+∞ 3-algebra with a fixed generator W00 in the operator Nambu 3-bracket recovers the W1+∞ algebra, it is intrinsically related to the KP hierarchy. For the general case of the W1+∞ 3-algebra, we directly derive the KP and KdV equations from the Nambu–Poisson evolution equation with the different Hamiltonian pairs of the KP hierarchy. Due to the Nambu–Poisson evolution equation involves two Hamiltonians, the deep relationship between the Hamiltonian pairs of KP hierarchy is revealed. Furthermore we give a realization of the W1+∞ 3-algebra in terms of a complex bosonic field. Based on the Nambu 3-brackets of the complex bosonic field, we derive the (generalized nonlinear Schrödinger equation and give an application in optical soliton.

8. Algebraic theory of numbers

CERN Document Server

Samuel, Pierre

2008-01-01

Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

9. Lukasiewicz-Moisil algebras

CERN Document Server

Boicescu, V; Georgescu, G; Rudeanu, S

1991-01-01

The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

10. Introduction to quantum algebras

International Nuclear Information System (INIS)

Kibler, M.R.

1992-09-01

The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs

11. Groups of integral transforms generated by Lie algebras of second-and higher-order differential operators

International Nuclear Information System (INIS)

Steinberg, S.; Wolf, K.B.

1979-01-01

The authors study the construction and action of certain Lie algebras of second- and higher-order differential operators on spaces of solutions of well-known parabolic, hyperbolic and elliptic linear differential equations. The latter include the N-dimensional quadratic quantum Hamiltonian Schroedinger equations, the one-dimensional heat and wave equations and the two-dimensional Helmholtz equation. In one approach, the usual similarity first-order differential operator algebra of the equation is embedded in the larger one, which appears as a quantum-mechanical dynamic algebra. In a second approach, the new algebra is built as the time evolution of a finite-transformation algebra on the initial conditions. In a third approach, the algebra to inhomogeneous similarity algebra is deformed to a noncompact classical one. In every case, we can integrate the algebra to a Lie group of integral transforms acting effectively on the solution space of the differential equation. (author)

12. On symmetry reduction and exact solutions of the linear one-dimensional Schroedinger equation

International Nuclear Information System (INIS)

Barannik, L.L.

1996-01-01

Symmetry reduction of the Schroedinger equation with potential is carried out on subalgebras of the Lie algebra which is the direct sum of the special Galilei algebra and one-dimensional algebra. Some new exact solutions are obtained

13. Automatic Construction of Finite Algebras

Institute of Scientific and Technical Information of China (English)

张健

1995-01-01

This paper deals with model generation for equational theories,i.e.,automatically generating (finite)models of a given set of (logical) equations.Our method of finite model generation and a tool for automatic construction of finite algebras is described.Some examples are given to show the applications of our program.We argue that,the combination of model generators and theorem provers enables us to get a better understanding of logical theories.A brief comparison betwween our tool and other similar tools is also presented.

14. Generalized EMV-Effect Algebras

Science.gov (United States)

Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.

2018-04-01

Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

15. Traditional vectors as an introduction to geometric algebra

International Nuclear Information System (INIS)

Carroll, J E

2003-01-01

The 2002 Oersted Medal Lecture by David Hestenes concerns the many advantages for education in physics if geometric algebra were to replace standard vector algebra. However, such a change has difficulties for those who have been taught traditionally. A new way of introducing geometric algebra is presented here using a four-element array composed of traditional vector and scalar products. This leads to an explicit 4 x 4 matrix representation which contains key requirements for three-dimensional geometric algebra. The work can be extended to include Maxwell's equations where it is found that curl and divergence appear naturally together. However, to obtain an explicit representation of space-time algebra with the correct behaviour under Lorentz transformations, an 8 x 8 matrix representation has to be formed. This leads to a Dirac representation of Maxwell's equations showing that space-time algebra has hidden within its formalism the symmetry of 'parity, charge conjugation and time reversal'

16. Families talen en algebra

NARCIS (Netherlands)

Asveld, P.R.J.

1976-01-01

Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.

17. Rudiments of algebraic geometry

CERN Document Server

Jenner, WE

2017-01-01

Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

18. The algebraic locus of Feynman integrals

OpenAIRE

Kol, Barak

2016-01-01

In the Symmetries of Feynman Integrals (SFI) approach, a diagram's parameter space is foliated by orbits of a Lie group associated with the diagram. SFI is related to the important methods of Integrations By Parts and of Differential Equations. It is shown that sometimes there exist a locus in parameter space where the set of SFI differential equations degenerates into an algebraic equation, thereby enabling a solution in terms of integrals associated with degenerations of the diagram. This i...

19. Cylindric-like algebras and algebraic logic

CERN Document Server

Ferenczi, Miklós; Németi, István

2013-01-01

Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

20. Categories and Commutative Algebra

CERN Document Server

Salmon, P

2011-01-01

L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

1. Towers of algebras in rational conformal field theories

International Nuclear Information System (INIS)

Gomez, C.; Sierra, G.

1991-01-01

This paper reports on Jones fundamental construction applied to rational conformal field theories. The Jones algebra which emerges in this application is realized in terms of duality operations. The generators of the algebra are an open version of Verlinde's operators. The polynomial equations appear in this context as sufficient conditions for the existence of Jones algebra. The ADE classification of modular invariant partition functions is put in correspondence with Jones classification of subfactors

2. Mathematical methods linear algebra normed spaces distributions integration

CERN Document Server

Korevaar, Jacob

1968-01-01

Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

3. Abstract algebra for physicists

International Nuclear Information System (INIS)

Zeman, J.

1975-06-01

Certain recent models of composite hadrons involve concepts and theorems from abstract algebra which are unfamiliar to most theoretical physicists. The algebraic apparatus needed for an understanding of these models is summarized here. Particular emphasis is given to algebraic structures which are not assumed to be associative. (2 figures) (auth)

4. Combinatorial commutative algebra

CERN Document Server

Miller, Ezra

2005-01-01

Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.

5. Algebraic relaxation of a time correlation function

International Nuclear Information System (INIS)

Srivastava, S.; Kumar, C.N.; Tankeshwar, K.

2004-06-01

A second order non-linear differential equation obtained from Mori's integro- differential equation is shown to transform to another form which provides algebraic decay to a time correlation function. Involved parameters in algebraic formula are related to exact properties of the corresponding correlation function. The model has been used to study a sol-gel system which is known, experimentally, to exhibit a power law decay to stress auto-correlation function. The expression obtained for the viscosity shows a logarithmic divergence at some critical value of the parameter. Some features of the model have also been tested using available information about Lennard-Jones fluids. (author)

6. Isomorphism of Intransitive Linear Lie Equations

Directory of Open Access Journals (Sweden)

Jose Miguel Martins Veloso

2009-11-01

Full Text Available We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.

7. Numerical linear algebra theory and applications

CERN Document Server

Beilina, Larisa; Karchevskii, Mikhail

2017-01-01

This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.

8. Linearizing W-algebras

International Nuclear Information System (INIS)

Krivonos, S.O.; Sorin, A.S.

1994-06-01

We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs

9. Algebraic topological entropy

International Nuclear Information System (INIS)

Hudetz, T.

1989-01-01

As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)

10. Algorithms in Algebraic Geometry

CERN Document Server

Dickenstein, Alicia; Sommese, Andrew J

2008-01-01

In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

11. Computer algebra and operators

Science.gov (United States)

Fateman, Richard; Grossman, Robert

1989-01-01

The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

12. Lectures on algebraic statistics

CERN Document Server

Drton, Mathias; Sullivant, Seth

2009-01-01

How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

13. Extended conformal algebras

International Nuclear Information System (INIS)

Goddard, Peter

1990-01-01

The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)

14. Algebraic conformal field theory

International Nuclear Information System (INIS)

Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

1991-11-01

Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

15. Wn(2) algebras

International Nuclear Information System (INIS)

Feigin, B.L.; Semikhatov, A.M.

2004-01-01

We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras

16. Division algebras and extended super KdVs

International Nuclear Information System (INIS)

Toppan, F.

2001-05-01

The division algebras R, C, H, O are used to construct and analyze the N = 1, 2, 4, 8 supersymmetric extensions of the KdV hamiltonian equation. In particular a global N = 8 super-KdV system is introduced and shown to admit a Poisson bracket structure given by the 'Non-Associate N = 8 Superconformal Algebra'. (author)

17. Transitive Lie algebras of vector fields: an overview

NARCIS (Netherlands)

Draisma, J.

2011-01-01

This overview paper is intended as a quick introduction to Lie algebras of vector fields. Originally introduced in the late 19th century by Sophus Lie to capture symmetries of ordinary differential equations, these algebras, or infinitesimal groups, are a recurring theme in 20th-century research on

18. Applications of Lie algebras in the solution of dynamic problems

International Nuclear Information System (INIS)

Fellay, G.

1983-01-01

The purpose of this paper is to give some insight into the Lie-algebras and their applications. The first part introduces the elementary properties of such algebras, e.g. nilpotency, solvability, etc. The second part shows how to use the demonstrated theory for solving differential equations with time-dependent coefficients. (Auth.)

19. Super Virasoro algebra and solvable supersymmetric quantum field theories

International Nuclear Information System (INIS)

Yamanaka, Itaru; Sasaki, Ryu.

1987-09-01

Interesting and deep relationships between super Virasoro algebras and super soliton systems (super KdV, super mKdV and super sine-Gordon equations) are investigated at both classical and quantum levels. An infinite set of conserved quantities responsible for solvability is characterized by super Virasoro algebras only. Several members of the infinite set of conserved quantities are derived explicitly. (author)

20. On W algebras commuting with a set of screenings

Energy Technology Data Exchange (ETDEWEB)

Litvinov, Alexey [Landau Institute for Theoretical Physics,Akademika Semenova av., 1-A , Chernogolovka (Russian Federation); Kharkevich Institute for Information Transmission Problems,Bolshoy Karetny per. 19-1, Moscow, 127051 (Russian Federation); Spodyneiko, Lev [Landau Institute for Theoretical Physics,Akademika Semenova av., 1-A , Chernogolovka (Russian Federation); California Institute of Technology, Department of Physics,1200 East California Boulevard, Pasadena, 91125 (United States)

2016-11-22

We consider the problem of classification of all W algebras which commute with a set of exponential screening operators. Assuming that the W algebra has a nontrivial current of spin 3, we find equations satisfied by the screening operators and classify their solutions.

1. Bicovariant quantum algebras and quantum Lie algebras

International Nuclear Information System (INIS)

Schupp, P.; Watts, P.; Zumino, B.

1993-01-01

A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)

2. The Boolean algebra and central Galois algebras

Directory of Open Access Journals (Sweden)

George Szeto

2001-01-01

Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

3. Pre-Service Teachers' Perceptions and Beliefs of Technological Pedagogical Content Knowledge on Algebra

Science.gov (United States)

Lin, Cheng-Yao; Kuo, Yu-Chun; Ko, Yi-Yin

2015-01-01

The purpose of this study was to investigate elementary pre-service teachers' content knowledge in algebra (Linear Equation, Quadratic Equation, Functions, System Equations and Polynomials) as well as their technological pedagogical content knowledge (TPACK) in teaching algebra. Participants were 79 undergraduate pre-service teachers who were…

International Nuclear Information System (INIS)

Myung, H.C.

1978-01-01

We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type

5. Recoupling Lie algebra and universal ω-algebra

International Nuclear Information System (INIS)

Joyce, William P.

2004-01-01

We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure

6. Hurwitz Algebras and the Octonion Algebra

Science.gov (United States)

Burdik, Čestmir; Catto, Sultan

2018-02-01

We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.

7. A modified linear algebraic approach to electron scattering using cubic splines

International Nuclear Information System (INIS)

Kinney, R.A.

1986-01-01

A modified linear algebraic approach to the solution of the Schrodiner equation for low-energy electron scattering is presented. The method uses a piecewise cubic-spline approximation of the wavefunction. Results in the static-potential and the static-exchange approximations for e - +H s-wave scattering are compared with unmodified linear algebraic and variational linear algebraic methods. (author)

8. Two Types of Expanding Lie Algebra and New Expanding Integrable Systems

International Nuclear Information System (INIS)

Dong Huanhe; Yang Jiming; Wang Hui

2010-01-01

From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebras are obtained. Two expanding integrable systems are produced with the help of the generalized zero curvature equation. One of them has complex Hamiltion structure with the help of generalized Tu formula (GTM). (general)

9. Extended Virasoro algebra and algebra of area preserving diffeomorphisms

International Nuclear Information System (INIS)

Arakelyan, T.A.

1990-01-01

The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs

10. Linear algebra meets Lie algebra: the Kostant-Wallach theory

OpenAIRE

Shomron, Noam; Parlett, Beresford N.

2008-01-01

In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

11. Commuting quantum traces: the case of reflection algebras

Energy Technology Data Exchange (ETDEWEB)

Avan, Jean [Laboratory of Theoretical Physics and Modelization, University of Cergy, 5 mail Gay-Lussac, Neuville-sur-Oise, F-95031, Cergy-Pontoise Cedex (France); Doikou, Anastasia [Theoretical Physics Laboratory of Annecy-Le-Vieux, LAPTH, BP 110, Annecy-Le-Vieux, F-74941 (France)

2004-02-06

We formulate a systematic construction of commuting quantum traces for reflection algebras. This is achieved by introducing two dual sets of generalized reflection equations with associated consistent fusion procedures. Products of their respective solutions yield commuting quantum traces.

12. Introduction to W-algebras

International Nuclear Information System (INIS)

Takao, Masaru

1989-01-01

We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)

13. Representations of quantum bicrossproduct algebras

International Nuclear Information System (INIS)

Arratia, Oscar; Olmo, Mariano A del

2002-01-01

We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra

14. On hyper BCC-algebras

OpenAIRE

Borzooei, R. A.; Dudek, W. A.; Koohestani, N.

2006-01-01

We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

15. On hyper BCC-algebras

Directory of Open Access Journals (Sweden)

R. A. Borzooei

2006-01-01

Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

16. Simple relation algebras

CERN Document Server

Givant, Steven

2017-01-01

This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

17. Lie algebras and applications

CERN Document Server

Iachello, Francesco

2015-01-01

This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

18. Twisted classical Poincare algebras

International Nuclear Information System (INIS)

Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.

1993-11-01

We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

19. A Dirac algebraic approach to supersymmetry

International Nuclear Information System (INIS)

Guersey, F.

1984-01-01

The power of the Dirac algebra is illustrated through the Kaehler correspondence between a pair of Dirac spinors and a 16-component bosonic field. The SO(5,1) group acts on both the fermion and boson fields, leading to a supersymmetric equation of the Dirac type involving all these fields. (author)

20. How to be Brilliant at Algebra

CERN Document Server

Webber, Beryl

2010-01-01

How to be Brilliant at Algebra is contains 40 photocopiable worksheets designed to improve students' understanding of number relationships and patterns. They will learn about: odds and evens; patterns; inverse operations; variables; calendars; equations; pyramid numbers; digital root patterns; prime numbers; Fibonacci numbers; Pascal's triangle.

1. Lie Algebras for Constructing Nonlinear Integrable Couplings

International Nuclear Information System (INIS)

Zhang Yufeng

2011-01-01

Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti-Johnson (GJ) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their Hamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations. (general)

2. Hamiltonian structure of linearly extended Virasoro algebra

International Nuclear Information System (INIS)

Arakelyan, T.A.; Savvidi, G.K.

1991-01-01

The Hamiltonian structure of linearly extended Virasoro algebra which admits free bosonic field representation is described. An example of a non-trivial extension is found. The hierarchy of integrable non-linear equations corresponding to this Hamiltonian structure is constructed. This hierarchy admits the Lax representation by matrix Lax operator of second order

3. Algebraic aspects of the higher-spin problem

Energy Technology Data Exchange (ETDEWEB)

Vasiliev, M A [European Organization for Nuclear Research, Geneva (Switzerland)

1991-03-21

A general algebraic construction is established, which underlies the previously proposed consistent equations of interacting gauge fields of all spins in 3+1 dimensions. This construction makes a verification of the consistency (gauge invariance) of the higher-spin equations trivial and indicates how these equations can be generalized to higher dimensions and/or conformal-type higher-spin theories. (orig.).

4. Cohomology of Effect Algebras

Directory of Open Access Journals (Sweden)

Frank Roumen

2017-01-01

Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

5. Basic notions of algebra

CERN Document Server

Shafarevich, Igor Rostislavovich

2005-01-01

This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches

6. Boolean algebra essentials

CERN Document Server

Solomon, Alan D

2012-01-01

REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

7. Quiver W-algebras

Science.gov (United States)

Kimura, Taro; Pestun, Vasily

2018-06-01

For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

8. From Rota-Baxter algebras to pre-Lie algebras

International Nuclear Information System (INIS)

An Huihui; Ba, Chengming

2008-01-01

Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras

9. Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

NARCIS (Netherlands)

van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud

1995-01-01

We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of

10. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

NARCIS (Netherlands)

N.W. van den Hijligenberg; R. Martini

1995-01-01

textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra

11. Galilean Duffin-Kemmer-Petiau algebra and symplectic structure

CERN Document Server

Fernandes, M C B; Vianna, J D M

2003-01-01

We develop the Duffin-Kemmer-Petiau (DKP) approach in the phase-space picture of quantum mechanics by considering DKP algebras in a Galilean covariant context. Specifically, we develop an algebraic calculus based on a tensor algebra defined on a five-dimensional space which plays the role of spacetime background of the non-relativistic DKP equation. The Liouville operator is determined and the Liouville-von Neumann equation is written in two situations: the free particle and a particle in an external electromagnetic field. A comparison between the non-relativistic and the relativistic cases is commented.

12. Numerical Solution of Differential Algebraic Equations

DEFF Research Database (Denmark)

Wagner, Falko Jens; Hostrup, Astrid Kuijers; Antonov, Anton Antonov

1999-01-01

These lecture notes have been written as part of a Ph. D. course was held at IMM in the fall of 1998. The authors of the different chapters have all taken part in the course and the chapters are written as part of their contribution to the course....

13. Deriving the Quadratic Regression Equation Using Algebra

Science.gov (United States)

Gordon, Sheldon P.; Gordon, Florence S.

2004-01-01

In discussions with leading educators from many different fields, MAA's CRAFTY (Curriculum Renewal Across the First Two Years) committee found that one of the most common mathematical themes in those other disciplines is the idea of fitting a function to a set of data in the least squares sense. The representatives of those partner disciplines…

14. Algebraic monoids, group embeddings, and algebraic combinatorics

CERN Document Server

Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang

2014-01-01

This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

15. (Quasi-)Poisson enveloping algebras

OpenAIRE

Yang, Yan-Hong; Yao, Yuan; Ye, Yu

2010-01-01

We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

16. The universal R-matrix and its associated quantum algebra as functionals of the classical r-matrix: the sl2 case

International Nuclear Information System (INIS)

Freidel, L.; Maillet, J.M.

1992-09-01

Using a geometrical approach to the quantum Yang-Baxter equation, the quantum algebra U h (sl 2 ) and its universal quantum R-matrix are explicitly constructed as functionals of the associated classical r-matrix. In this framework, the quantum algebra U h (sl 2 ) is naturally imbedded in the universal enveloping algebra of the sl 2 current algebra. (author) 13 refs

17. Chiral algebras in Landau-Ginzburg models

Science.gov (United States)

Dedushenko, Mykola

2018-03-01

Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.

Science.gov (United States)

Levy, Alissa Beth

2012-01-01

The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

19. Who Takes College Algebra?

Science.gov (United States)

Herriott, Scott R.; Dunbar, Steven R.

2009-01-01

The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…

20. Analytic real algebras.

Science.gov (United States)

Seo, Young Joo; Kim, Young Hee

2016-01-01

In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.

1. Pre-Algebra Lexicon.

Science.gov (United States)

Hayden, Dunstan; Cuevas, Gilberto

The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…

2. Computer algebra applications

International Nuclear Information System (INIS)

Calmet, J.

1982-01-01

A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)

3. Algebraic Description of Motion

Science.gov (United States)

Davidon, William C.

1974-01-01

An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)

4. Linear-Algebra Programs

Science.gov (United States)

Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

1982-01-01

The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

5. From affine Hecke algebras to boundary symmetries

International Nuclear Information System (INIS)

Doikou, Anastasia

2005-01-01

Motivated by earlier works we employ appropriate realizations of the affine Hecke algebra and we recover previously known non-diagonal solutions of the reflection equation for the U q (gl n -bar ) case. The corresponding N site spin chain with open boundary conditions is then constructed and boundary non-local charges associated to the non-diagonal solutions of the reflection equation are derived, as coproduct realizations of the reflection algebra. With the help of linear intertwining relations involving the aforementioned solutions of the reflection equation, the symmetry of the open spin chain with the corresponding boundary conditions is exhibited, being essentially a remnant of the U q (gl n -bar ) algebra. More specifically, we show that representations of certain boundary non-local charges commute with the generators of the affine Hecke algebra and with the local Hamiltonian of the open spin chain for a particular choice of boundary conditions. Furthermore, we are able to show that the transfer matrix of the open spin chain commutes with a certain number of boundary non-local charges, depending on the choice of boundary conditions

6. Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems

International Nuclear Information System (INIS)

Marquette, Ian

2011-01-01

There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.

7. Elements of mathematics algebra

CERN Document Server

Bourbaki, Nicolas

2003-01-01

This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

8. Auxiliary equation method for solving nonlinear partial differential equations

International Nuclear Information System (INIS)

Sirendaoreji,; Jiong, Sun

2003-01-01

By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

9. Certain algebraic structures and their applications to physics

International Nuclear Information System (INIS)

Salingaros, N.A.

1978-01-01

The aim of this thesis is to understand internal and external symmetries in Physics as arising from the same algebra by different processes, while the algebra itself arises out of the geometry of space-time. The result obtained is the Associative Generalized Algebra of Tensor Types. This algebra is constructed from the differential forms of spacetime, and is an algebra in the mathematical sense, describing all tensor types together. It is associative, and therefore very easy to use. A calculational formalism is developed that simplifies algebraic manipulations. The construction allows a classification of algebras that appear useful in Physics. The geometry excludes self-dual Minkowski bivector fields, but allows self-dual Euclidean bivector fields, a result, with important consequences in the theory of solutions of Yang-Mills gauge fields are demonstrated. There is only one bivector field, and every other bivector field, such as the electromagnetic field, is isomorphic to it. An exhaustive classification of the transformations of all fields in space-time yields the result that the only transformations of the electromagnetic field are the Lorentz transformations and the duality rotation. A fundamental asymmetry between the electric and magnetic fields are demonstrated. The derivative in the algebra is associative, and combines the Cartan exterior derivative with the coderivative of Hodge. The simplest derivative equations satisfied by a field in flat space-time are precisely the Maxwell equations

10. New solutions of the confluent Heun equation

Directory of Open Access Journals (Sweden)

Harold Exton

1998-05-01

Full Text Available New compact triple series solutions of the confluent Heun equation (CHE are obtained by the appropriate applications of the Laplace transform and its inverse to a suitably constructed system of soluble differential equations. The computer-algebra package MAPLE V is used to tackle an auxiliary system of non-linear algebraic equations. This study is partly motivated by the relationship between the CHE and certain Schrödininger equations.

11. Algebraic theory of locally nilpotent derivations

CERN Document Server

Freudenburg, Gene

2017-01-01

This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a unified treatment of the subject, beginning with 16 First Principles on which the theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane and the Cancellation Theorem for Curves. More recent results, such as Makar-Limanov's theorem for locally nilpotent derivations of polynomial rings, are also discussed. Topics of special interest include progress in classifying additive actions on three-dimensional affine space, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem. A lot of new material is included in this expanded second edition, such as canonical factoriza...

12. Computational algebraic geometry of epidemic models

Science.gov (United States)

Rodríguez Vega, Martín.

2014-06-01

Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

13. Cluster algebras bases on vertex operator algebras

Czech Academy of Sciences Publication Activity Database

Zuevsky, Alexander

2016-01-01

Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300

14. Algebraic K-theory and algebraic topology

Energy Technology Data Exchange (ETDEWEB)

Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)

2003-09-15

This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.

15. An introduction to algebraic geometry and algebraic groups

CERN Document Server

Geck, Meinolf

2003-01-01

An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups

16. Linear algebraic groups

CERN Document Server

Springer, T A

1998-01-01

"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

17. Topology general & algebraic

CERN Document Server

Chatterjee, D

2007-01-01

About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the

International Nuclear Information System (INIS)

Lu Wenkai; Yin Fangfang

2004-01-01

Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency

19. Methods of algebraic geometry in control theory

CERN Document Server

Falb, Peter

1999-01-01

"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...

20. Brauer algebras of type B

NARCIS (Netherlands)

Cohen, A.M.; Liu, S.

2011-01-01

For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular

1. Riemann type algebraic structures and their differential-algebraic integrability analysis

Directory of Open Access Journals (Sweden)

Prykarpatsky A.K.

2010-06-01

Full Text Available The differential-algebraic approach to studying the Lax type integrability of generalized Riemann type equations is devised. The differentiations and the associated invariant differential ideals are analyzed in detail. The approach is also applied to studying the Lax type integrability of the well known Korteweg-de Vries dynamical system.

2. Riemann surfaces, Clifford algebras and infinite dimensional groups

International Nuclear Information System (INIS)

Carey, A.L.; Eastwood, M.G.; Hannabuss, K.C.

1990-01-01

We introduce of class of Riemann surfaces which possess a fixed point free involution and line bundles over these surfaces with which we can associate an infinite dimensional Clifford algebra. Acting by automorphisms of this algebra is a 'gauge' group of meromorphic functions on the Riemann surface. There is a natural Fock representation of the Clifford algebra and an associated projective representation of this group of meromorphic functions in close analogy with the construction of the basic representation of Kac-Moody algebras via a Fock representation of the Fermion algebra. In the genus one case we find a form of vertex operator construction which allows us to prove a version of the Boson-Fermion correspondence. These results are motivated by the analysis of soliton solutions of the Landau-Lifshitz equation and are rather distinct from recent developments in quantum field theory on Riemann surfaces. (orig.)

3. Some quantum Lie algebras of type Dn positive

International Nuclear Information System (INIS)

Bautista, Cesar; Juarez-Ramirez, Maria Araceli

2003-01-01

A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D n . Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D n positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true

4. Profinite algebras and affine boundedness

OpenAIRE

Schneider, Friedrich Martin; Zumbrägel, Jens

2015-01-01

We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...

5. Pseudo-Riemannian Novikov algebras

Energy Technology Data Exchange (ETDEWEB)

Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn

2008-08-08

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.

6. On the PR-algebras

International Nuclear Information System (INIS)

Lebedenko, V.M.

1978-01-01

The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language

7. Algebraic geometry in India

algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

8. Linear algebra done right

CERN Document Server

Axler, Sheldon

2015-01-01

This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

9. Algebraic Semantics for Narrative

Science.gov (United States)

Kahn, E.

1974-01-01

This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

10. Groebner Finite Path Algebras

OpenAIRE

Leamer, Micah J.

2004-01-01

Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS

11. Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra

NARCIS (Netherlands)

van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud

1995-01-01

We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).

12. Gauging the octonion algebra

International Nuclear Information System (INIS)

Waldron, A.K.; Joshi, G.C.

1992-01-01

By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs

13. Summing Boolean Algebras

Institute of Scientific and Technical Information of China (English)

Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA

2004-01-01

In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.

14. Polynomials in algebraic analysis

OpenAIRE

Multarzyński, Piotr

2012-01-01

The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...

15. Currents on Grassmann algebras

International Nuclear Information System (INIS)

Coquereaux, R.; Ragoucy, E.

1993-09-01

Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs

16. Introduction to abstract algebra

CERN Document Server

Nicholson, W Keith

2012-01-01

Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

17. The Boolean algebra of Galois algebras

Directory of Open Access Journals (Sweden)

Lianyong Xue

2003-02-01

Full Text Available Let B be a Galois algebra with Galois group G, Jg={bÃ¢ÂˆÂˆB|bx=g(xbÃ¢Â€Â‰for allÃ¢Â€Â‰xÃ¢ÂˆÂˆB} for each gÃ¢ÂˆÂˆG, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|gÃ¢ÂˆÂˆG}, e a nonzero element in Ba, and He={gÃ¢ÂˆÂˆG|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

18. Maxwell Equations and the Redundant Gauge Degree of Freedom

Science.gov (United States)

Wong, Chun Wa

2009-01-01

On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…

19. Real division algebras and other algebras motivated by physics

International Nuclear Information System (INIS)

Benkart, G.; Osborn, J.M.

1981-01-01

In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations

20. Continual Lie algebras and noncommutative counterparts of exactly solvable models

Science.gov (United States)

Zuevsky, A.

2004-01-01

Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.

1. W-algebra for solving problems with fuzzy parameters

Science.gov (United States)

Shevlyakov, A. O.; Matveev, M. G.

2018-03-01

A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.

2. Reduction by invariants and projection of linear representations of Lie algebras applied to the construction of nonlinear realizations

Science.gov (United States)

Campoamor-Stursberg, R.

2018-03-01

A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.

3. Can multiparametric MRI replace Roach equations in staging prostate cancer before external beam radiation therapy?

International Nuclear Information System (INIS)

Girometti, Rossano; Signor, Marco Andrea; Pancot, Martina; Cereser, Lorenzo; Zuiani, Chiara

2016-01-01

Purpose: To investigate the agreement between Roach equations (RE) and multiparametric magnetic resonance imaging (mpMRI) in assessing the T-stage of prostate cancer (PCa). Materials and methods: Seventy-three patients with biopsy-proven PCa and previous RE assessment prospectively underwent mpMRI on a 3.0T magnet before external beam radiation therapy (EBRT). Using Cohen’s kappa statistic, we assessed the agreement between RE and mpMRI in defining the T-stage (≥T3 vs.T ≤ 2) and risk category according to the National comprehensive cancer network criteria (≤intermediate vs. ≥high). We also calculated sensitivity and specificity for ≥T3 stage in an additional group of thirty-seven patients with post-prostatectomy histological examination (mpMRI validation group). Results: The agreement between RE and mpMRI in assessing the T stage and risk category was moderate (k = 0.53 and 0.56, respectively). mpMRI changed the T stage and risk category in 21.9% (95%C.I. 13.4–33-4) and 20.5% (95%C.I. 12.3–31.9), respectively, prevalently downstaging PCa compared to RE. Sensitivity and specificity for ≥T3 stage in the mpMRI validation group were 81.8% (95%C.I. 65.1–91.9) and 88.5% (72.8–96.1). Conclusion: RE and mpMRI show moderate agreement only in assessing the T-stage of PCa, translating into an mpMRI-induced change in risk assessment in about one fifth of patients. As supported by high sensitivity/specificity for ≥T3 stage in the validation group, the discrepancy we found is in favour of mpMRI as a tool to stage PCa before ERBT.

4. Can multiparametric MRI replace Roach equations in staging prostate cancer before external beam radiation therapy?

Energy Technology Data Exchange (ETDEWEB)

Girometti, Rossano, E-mail: rgirometti@sirm.org [Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, University of Udine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia − via Colugna, 50–33100, Udine (Italy); Signor, Marco Andrea, E-mail: marco.signor@asuiud.sanita.fvg.it [Department of Oncological Radiation Therapy, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Piazzale S. M. della Misericordia, 15–33100, Udine (Italy); Pancot, Martina, E-mail: martypancot@libero.it [Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, University of Udine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia − via Colugna, 50–33100, Udine (Italy); Cereser, Lorenzo, E-mail: lcereser@sirm.org [Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, University of Udine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia − via Colugna, 50–33100, Udine (Italy); Zuiani, Chiara, E-mail: chiara.zuiani@uniud.it [Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, University of Udine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia − via Colugna, 50–33100, Udine (Italy)

2016-12-15

Purpose: To investigate the agreement between Roach equations (RE) and multiparametric magnetic resonance imaging (mpMRI) in assessing the T-stage of prostate cancer (PCa). Materials and methods: Seventy-three patients with biopsy-proven PCa and previous RE assessment prospectively underwent mpMRI on a 3.0T magnet before external beam radiation therapy (EBRT). Using Cohen’s kappa statistic, we assessed the agreement between RE and mpMRI in defining the T-stage (≥T3 vs.T ≤ 2) and risk category according to the National comprehensive cancer network criteria (≤intermediate vs. ≥high). We also calculated sensitivity and specificity for ≥T3 stage in an additional group of thirty-seven patients with post-prostatectomy histological examination (mpMRI validation group). Results: The agreement between RE and mpMRI in assessing the T stage and risk category was moderate (k = 0.53 and 0.56, respectively). mpMRI changed the T stage and risk category in 21.9% (95%C.I. 13.4–33-4) and 20.5% (95%C.I. 12.3–31.9), respectively, prevalently downstaging PCa compared to RE. Sensitivity and specificity for ≥T3 stage in the mpMRI validation group were 81.8% (95%C.I. 65.1–91.9) and 88.5% (72.8–96.1). Conclusion: RE and mpMRI show moderate agreement only in assessing the T-stage of PCa, translating into an mpMRI-induced change in risk assessment in about one fifth of patients. As supported by high sensitivity/specificity for ≥T3 stage in the validation group, the discrepancy we found is in favour of mpMRI as a tool to stage PCa before ERBT.

5. Algebraic Bethe ansatz for the Izergin-Korepin R matrix

International Nuclear Information System (INIS)

Tarasov, V.O.

1989-01-01

The authors propose a generalization of the algebraic Bethe ansatz for the Izergin-Korepin R matrix - the simplest unstudied odd-dimensional solution of the Yang-Baxter equation - and they discuss some related questions. The first section of the paper is an introduction. In the second they indicate a way of generalizing the algebraic Bethe ansatz to the case of the Izergin-Korepin R matrix. The simplest monodromy matrices (L operators) for this R matrix are described in the third section. The fourth section is devoted to the proof of the proposed generalization of the algebraic Bethe ansatz

6. The investigation of platonic solids symmetry operations with clifford algebra

International Nuclear Information System (INIS)

Kilic, A.

2005-01-01

The geometric algebra produces the new fields of view in the modern mathematical physics, definition of bodies and rearranging for equations of mathematics and physics. The new mathematical approaches play an important role in the progress of physics. After presenting Clifford algebra and quarantine's, the symmetry operations with Clifford algebra and quarantine's are defined. This symmetry operations are applied to a Platonic solids, which are called as tetrahedron, cube, octahedron, icosahedron and dodecahedron. Also, the vertices of Platonic solids presented in the Cartesian coordinates are calculated

7. Remarks on second-order quadratic systems in algebras

Directory of Open Access Journals (Sweden)

Art Sagle

2017-10-01

Full Text Available This paper is an addendum to our earlier paper , where a systematic study of quadratic systems of second order ordinary differential equations defined in commutative algebras was presented. Here we concentrate on special solutions and energy considerations of some quadratic systems defined in algebras which need not be commutative, however, we shall throughout assume the algebra to be associative. We here also give a positive answer to an open question, concerning periodic motions of such systems, posed in our earlier paper.

8. Symmetric linear systems - An application of algebraic systems theory

Science.gov (United States)

Hazewinkel, M.; Martin, C.

1983-01-01

Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

9. Basic math and pre-algebra for dummies

CERN Document Server

Zegarelli, Mark

2014-01-01

Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methodsRelevant cultural vernacular and referencesStandard For Dummies materials that

10. Lie Algebras Associated with Group U(n)

International Nuclear Information System (INIS)

Zhang Yufeng; Dong Huanghe; Honwah Tam

2007-01-01

Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra A 1 are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few expanding Lie algebras are obtained by enlarging matrices. Some of them can be devoted to producing double integrable couplings of the soliton hierarchies of nonlinear evolution equations. Others can be used to generate integrable couplings involving more potential functions. The above Lie algebras are classified into two types. Only one type can generate the integrable couplings, whose Hamiltonian structure could be obtained by use of the quadratic-form identity. In addition, one condition on searching for integrable couplings is improved such that more useful Lie algebras are enlightened to engender. Then two explicit examples are shown to illustrate the applications of the Lie algebras. Finally, with the help of closed cycling operation relations, another way of producing higher-dimensional Lie algebras is given.

11. Five-dimensional Monopole Equation with Hedge-Hog Ansatz and Abel's Differential Equation

OpenAIRE

Kihara, Hironobu

2008-01-01

We review the generalized monopole in the five-dimensional Euclidean space. A numerical solution with the Hedge-Hog ansatz is studied. The Bogomol'nyi equation becomes a second order autonomous non-linear differential equation. The equation can be translated into the Abel's differential equation of the second kind and is an algebraic differential equation.

12. Special set linear algebra and special set fuzzy linear algebra

OpenAIRE

Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.

2009-01-01

The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...

13. The algebraic criteria for the stability of control systems

Science.gov (United States)

Cremer, H.; Effertz, F. H.

1986-01-01

This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.

14. Algebraic aspects of exact models

International Nuclear Information System (INIS)

Gaudin, M.

1983-01-01

Spin chains, 2-D spin lattices, chemical crystals, and particles in delta function interaction share the same underlying structures: the applicability of Bethe's superposition ansatz for wave functions, the commutativity of transfer matrices, and the existence of a ternary operator algebra. The appearance of these structures and interrelations from the eight vortex model, for delta function interreacting particles of general spin, and for spin 1/2, are outlined as follows: I. Eight Vortex Model. Equivalences to Ising model and the dimer system. Transfer matrix and symmetry of the Self Conjugate model. Relation between the XYZ Hamiltonian and the transfer matrix. One parameter family of commuting transfer matrices. A representation of the symmetric group spin. Diagonalization of the transfer matrix. The Coupled Spectrum equations. II. Identical particles with Delta Function interaction. The Bethe ansatz. Yang's representation. The Ternary Algebra and intergrability. III. Identical particles with delta function interaction: general solution for two internal states. The problem of spin 1/2 fermions. The Operator method

15. Canonical formulation of the self-dual Yang-Mills system: Algebras and hierarchies

International Nuclear Information System (INIS)

Chau, L.; Yamanaka, I.

1992-01-01

We construct a canonical formulation of the self-dual Yang-Mills system formulated in the gauge-invariant group-valued J fields and derive their Hamiltonian and the quadratic algebras of the fundamental Dirac brackets. We also show that the quadratic algebras satisfy Jacobi identities and their structure matrices satisfy modified Yang-Baxter equations. From these quadratic algebras, we construct Kac-Moody-like and Virasoro-like algebras. We also discuss their related symmetries, involutive conserved quantities, and hierarchies of nonlinear and linear equations

16. Classical Affine W-Algebras and the Associated Integrable Hamiltonian Hierarchies for Classical Lie Algebras

Science.gov (United States)

De Sole, Alberto; Kac, Victor G.; Valeri, Daniele

2018-06-01

We prove that any classical affine W-algebra W (g, f), where g is a classical Lie algebra and f is an arbitrary nilpotent element of g, carries an integrable Hamiltonian hierarchy of Lax type equations. This is based on the theories of generalized Adler type operators and of generalized quasideterminants, which we develop in the paper. Moreover, we show that under certain conditions, the product of two generalized Adler type operators is a Lax type operator. We use this fact to construct a large number of integrable Hamiltonian systems, recovering, as a special case, all KdV type hierarchies constructed by Drinfeld and Sokolov.

17. Ten-Year-Old Students Solving Linear Equations

Science.gov (United States)

Brizuela, Barbara; Schliemann, Analucia

2004-01-01

In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

18. Hecke algebras with unequal parameters

CERN Document Server

Lusztig, G

2003-01-01

Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...

19. Axis Problem of Rough 3-Valued Algebras

Institute of Scientific and Technical Information of China (English)

Jianhua Dai; Weidong Chen; Yunhe Pan

2006-01-01

The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

20. Algebraic renormalization. Perturbative renormalization, symmetries and anomalies

International Nuclear Information System (INIS)

Piguet, O.

1995-01-01

This book is an introduction to the algebraic method in the perturbative renormalization of relativistic quantum field theory. After a general introduction to renormalized perturbation theory the quantum action principle and Ward identities are described. Then Yang-Mills gauge theories are considered. Thereafter the BRS cohomology and descent equations are described. Then nonrenormalization theorems and topological field theories are considered. Finally an application to the bosonic string is described. (HSI)

1. General algebraic theory of identical particle scattering

International Nuclear Information System (INIS)

Bencze, G.; Redish, E.F.

1978-01-01

We consider the nonrelativistic N-body scattering problem for a system of particles in which some subsets of the particles are identical. We demonstrate how the particle identity can be included in a general class of linear integral equations for scattering operators or components of scattering operators. The Yakubovskii, Yakubovskii--Narodestkii, Rosenberg, and Bencze--Redish--Sloan equations are included in this class. Algebraic methods are used which rely on the properties of the symmetry group of the system. Operators depending only on physically distinguishable labels are introduced and linear integral equations for them are derived. This procedure maximally reduces the number of coupled equations while retaining the connectivity properties of the original equations

2. C*-algebras by example

CERN Document Server

Davidson, Kenneth R

1996-01-01

The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea

3. Algebra II workbook for dummies

CERN Document Server

Sterling, Mary Jane

2014-01-01

To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

4. Solving the Unknown with Algebra: Poster/Teaching Guide for Pre-Algebra Students. Expect the Unexpected with Math[R

Science.gov (United States)

Actuarial Foundation, 2013

2013-01-01

"Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…

5. Algebraic K-theory

CERN Document Server

Srinivas, V

1996-01-01

Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...

6. Structure of Lie point and variational symmetry algebras for a class of odes

Science.gov (United States)

Ndogmo, J. C.

2018-04-01

It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.

7. Regularity of C*-algebras and central sequence algebras

DEFF Research Database (Denmark)

Christensen, Martin S.

The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

8. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

CERN Document Server

Pitsch, Wolfgang; Zarzuela, Santiago

2016-01-01

This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

9. Quantum cluster algebra structures on quantum nilpotent algebras

CERN Document Server

Goodearl, K R

2017-01-01

All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

10. Selfdual strings and loop space Nahm equations

International Nuclear Information System (INIS)

Gustavsson, Andreas

2008-01-01

We give two independent arguments why the classical membrane fields should be take values in a loop algebra. The first argument comes from how we may construct selfdual strings in the M5 brane from a loop space version of the Nahm equations. The second argument is that there appears to be no infinite set of finite-dimensional Lie algebras (such as su(N) for any N) that satisfies the algebraic structure of the membrane theory

Energy Technology Data Exchange (ETDEWEB)

Shaynkman, O.V. [I.E.Tamm Theory Department, Lebedev Physical Institute,Leninski prospect 53, 119991, Moscow (Russian Federation)

2016-12-22

We test infinite-dimensional extension of algebra su(k,k) proposed by Fradkin and Linetsky as the candidate for conformal higher spin algebra. Adjoint and twisted-adjoint representations of su(k,k) on the space of this algebra are carefully explored. For k=2 corresponding unfolded system is analyzed and it is shown to encode Fradkin-Tseytlin equations for the set of all integer spins 1,2,… with infinite multiplicity.

12. Identities and derivations for Jacobian algebras

International Nuclear Information System (INIS)

2001-09-01

Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)

13. Algebraic structure of open string interactions

International Nuclear Information System (INIS)

Ramond, P.; Rodgers, V.G.J.

1986-05-01

Starting from the gauge invariant equations of motion for the free open string we show how to generate interactions by analogy with Yang-Mills. We postulate Non-Abelian transformation laws acting on the fields of the gauge invariant free open string theory. By demanding algebraic closure we then derive a set of consistency requirements and show that they lead to the construction of the minimal interacting equations which contain no cubic terms away from the physical gauge. We present explicit solutions to lowest interacting order for both vertices and structure functions. 14 refs

14. Algebraic structure of open-string interactions

International Nuclear Information System (INIS)

Ramond, P.; Rodgers, V.G.J.

1986-01-01

Starting from the gauge-invariant equations of motion for the free open string we show how to generate interactions by analogy with the Yang-Mills system. We postulate non-Abelian transformation laws acting on the fields of the gauge-invariant free open-string theory. By demanding algebraic closure we then derive a set of consistency requirements and show that they lead to the construction of the minimal interacting equations which contain no cubic terms away from the physical gauge. We present explicit solutions to lowest interacting order for both vertices and structure functions

15. Algebraic quantum field theory

International Nuclear Information System (INIS)

Foroutan, A.

1996-12-01

The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

16. Complex algebraic geometry

CERN Document Server

Kollár, János

1997-01-01

This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

17. Complex Algebraic Varieties

CERN Document Server

Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf

1992-01-01

The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

18. Problems in abstract algebra

CERN Document Server

2017-01-01

This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.

19. Higher regulators, algebraic

CERN Document Server

Bloch, Spencer J

2000-01-01

This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.

20. Applied linear algebra

CERN Document Server

Olver, Peter J

2018-01-01

This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...

1. Algebraic topology a primer

CERN Document Server

Deo, Satya

2018-01-01

This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...

2. The relation between quantum W algebras and Lie algebras

International Nuclear Information System (INIS)

Boer, J. de; Tjin, T.

1994-01-01

By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)

3. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

Science.gov (United States)

Wasserman, Nicholas H.

2016-01-01

This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

4. Converting nested algebra expressions into flat algebra expressions

NARCIS (Netherlands)

Paredaens, J.; Van Gucht, D.

1992-01-01

Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its

5. Algebraic features of some generalizations of the Lotka-Volterra system

Science.gov (United States)

Bibik, Yu. V.; Sarancha, D. A.

2010-10-01

For generalizations of the Lotka-Volterra system, an integration method is proposed based on the nontrivial algebraic structure of these generalizations. The method makes use of an auxiliary first-order differential equation derived from the phase curve equation with the help of this algebraic structure. Based on this equation, a Hamiltonian approach can be developed and canonical variables (moreover, action-angle variables) can be constructed.

6. Galois theory of difference equations

CERN Document Server

Put, Marius

1997-01-01

This book lays the algebraic foundations of a Galois theory of linear difference equations and shows its relationship to the analytic problem of finding meromorphic functions asymptotic to formal solutions of difference equations. Classically, this latter question was attacked by Birkhoff and Tritzinsky and the present work corrects and greatly generalizes their contributions. In addition results are presented concerning the inverse problem in Galois theory, effective computation of Galois groups, algebraic properties of sequences, phenomena in positive characteristics, and q-difference equations. The book is aimed at advanced graduate researchers and researchers.

7. On Associative Conformal Algebras of Linear Growth

OpenAIRE

Retakh, Alexander

2000-01-01

Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

8. Computer Program For Linear Algebra

Science.gov (United States)

Krogh, F. T.; Hanson, R. J.

1987-01-01

Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

9. Gradings on simple Lie algebras

CERN Document Server

Elduque, Alberto

2013-01-01

Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.

10. Tensor spaces and exterior algebra

CERN Document Server

Yokonuma, Takeo

1992-01-01

This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.

11. Dynamical systems and linear algebra

OpenAIRE

Colonius, Fritz (Prof.)

2007-01-01

Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

12. Projector bases and algebraic spinors

International Nuclear Information System (INIS)

Bergdolt, G.

1988-01-01

In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors

13. Contractions of quantum algebraic structures

International Nuclear Information System (INIS)

Doikou, A.; Sfetsos, K.

2010-01-01

A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright , Wiley Periodicals, Inc.)

14. Polynomial Heisenberg algebras

International Nuclear Information System (INIS)

Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M

2004-01-01

Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively

15. Algebraic number theory

CERN Document Server

Weiss, Edwin

1998-01-01

Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

16. Partially ordered algebraic systems

CERN Document Server

Fuchs, Laszlo

2011-01-01

Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

17. Principles of algebraic geometry

CERN Document Server

Griffiths, Phillip A

1994-01-01

A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

18. Endomorphisms of graph algebras

DEFF Research Database (Denmark)

Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

2012-01-01

We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

19. Algebraic curves and cryptography

CERN Document Server

Murty, V Kumar

2010-01-01

It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

20. Elementary algebraic geometry

CERN Document Server

Kendig, Keith

2015-01-01

Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

1. Algebra & trigonometry I essentials

CERN Document Server

REA, Editors of

2012-01-01

REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

2. Linear Algebra Thoroughly Explained

CERN Document Server

Vujičić, Milan

2008-01-01

Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

3. Development of abstract mathematical reasoning: the case of algebra.

Science.gov (United States)

Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja

2014-01-01

Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.

4. Solutions to Arithmetic Convolution Equations

Czech Academy of Sciences Publication Activity Database

Glöckner, H.; Lucht, L.G.; Porubský, Štefan

2007-01-01

Roč. 135, č. 6 (2007), s. 1619-1629 ISSN 0002-9939 R&D Projects: GA ČR GA201/04/0381 Institutional research plan: CEZ:AV0Z10300504 Keywords : arithmetic functions * Dirichlet convolution * polynomial equations * analytic equations * topological algebras * holomorphic functional calculus Subject RIV: BA - General Mathematics Impact factor: 0.520, year: 2007

5. Perturbative quantum field theory via vertex algebras

International Nuclear Information System (INIS)

Hollands, Stefan; Olbermann, Heiner

2009-01-01

In this paper, we explain how perturbative quantum field theory can be formulated in terms of (a version of) vertex algebras. Our starting point is the Wilson-Zimmermann operator product expansion (OPE). Following ideas of a previous paper (S. Hollands, e-print arXiv:0802.2198), we consider a consistency (essentially associativity) condition satisfied by the coefficients in this expansion. We observe that the information in the OPE coefficients can be repackaged straightforwardly into 'vertex operators' and that the consistency condition then has essentially the same form as the key condition in the theory of vertex algebras. We develop a general theory of perturbations of the algebras that we encounter, similar in nature to the Hochschild cohomology describing the deformation theory of ordinary algebras. The main part of the paper is devoted to the question how one can calculate the perturbations corresponding to a given interaction Lagrangian (such as λφ 4 ) in practice, using the consistency condition and the corresponding nonlinear field equation. We derive graphical rules, which display the vertex operators (i.e., OPE coefficients) in terms of certain multiple series of hypergeometric type.

6. Killing vectors in algebraically special space-times

International Nuclear Information System (INIS)

Torres del Castillo, G.F.

1984-01-01

The form of the isometric, homothetic, and conformal Killing vectors for algebraically special metrics which admit a shear-free congruence of null geodesics is obtained by considering their complexification, using the existence of a congruence of null strings. The Killing equations are partially integrated and the reasons which permit this reduction are exhibited. In the case where the congruence of null strings has a vanishing expansion, the Killing equations are reduced to a single master equation

7. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

Science.gov (United States)

Knight, D. G.

2006-01-01

This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

8. Renormalization group flows and continual Lie algebras

International Nuclear Information System (INIS)

Bakas, Ioannis

2003-01-01

We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)

9. On reduction and exact solutions of nonlinear many-dimensional Schroedinger equations

International Nuclear Information System (INIS)

Barannik, A.F.; Marchenko, V.A.; Fushchich, V.I.

1991-01-01

With the help of the canonical decomposition of an arbitrary subalgebra of the orthogonal algebra AO(n) the rank n and n-1 maximal subalgebras of the extended isochronous Galileo algebra, the rank n maximal subalgebras of the generalized extended classical Galileo algebra AG(a,n) the extended special Galileo algebra AG(2,n) and the extended whole Galileo algebra AG(3,n) are described. By using the rank n subalgebras, ansatze reducing the many dimensional Schroedinger equations to ordinary differential equations is found. With the help of the reduced equation solutions exact solutions of the Schroedinger equation are considered

10. Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras

International Nuclear Information System (INIS)

Gebert, R.W.

1993-09-01

The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)

11. The theory of algebraic numbers

CERN Document Server

Pollard, Harry

1998-01-01

An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

12. D=2 and D=4 realization of κ-conformal algebra

International Nuclear Information System (INIS)

Klimek, M.

1996-01-01

The generators of κ-conformal transformations leaving the κ-deformed d'Alembert equation invariant are described. The algebraic structure of the conformal extension of the off-shell spin zero realization of κ-Poincare algebra is discussed for D=4. The D=2 off-shell realization of κ-conformal algebra for an arbitrary spin and its commutation relations were studied. 14 refs

13. Properties of an associative algebra of tensor fields. Duality and Dirac identities

International Nuclear Information System (INIS)

Salingaros, N.; Dresden, M.

1979-01-01

An algebra of forms in Minkowski space has been constructed. A multiplication between forms is defined as an extension of the quaternionic multiplications. The algebra obtained is associative with respect to this multiplication of order 16. Duality is expressed as (new) multiplication by a basis element. Vector identities in the algebra lead to a number of new trace identities. A new derivative operator expresses the four Maxwell equations in an especially transparent form

14. Spin-4 extended conformal algebras

International Nuclear Information System (INIS)

Kakas, A.C.

1988-01-01

We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)

15. An algebra of reversible computation.

Science.gov (United States)

Wang, Yong

2016-01-01

We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

16. On Weak-BCC-Algebras

Science.gov (United States)

Thomys, Janus; Zhang, Xiaohong

2013-01-01

We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

17. Assessing Elementary Algebra with STACK

Science.gov (United States)

Sangwin, Christopher J.

2007-01-01

This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

18. Process Algebra and Markov Chains

NARCIS (Netherlands)

Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

19. Process algebra and Markov chains

NARCIS (Netherlands)

Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.

2001-01-01

This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

20. Algebraic Methods to Design Signals

Science.gov (United States)

2015-08-27

to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory