A simple algebraic cancer equation: calculating how cancers may arise with normal mutation rates
Directory of Open Access Journals (Sweden)
Shibata Darryl
2010-01-01
Full Text Available Abstract Background The purpose of this article is to present a relatively easy to understand cancer model where transformation occurs when the first cell, among many at risk within a colon, accumulates a set of driver mutations. The analysis of this model yields a simple algebraic equation, which takes as inputs the number of stem cells, mutation and division rates, and the number of driver mutations, and makes predictions about cancer epidemiology. Methods The equation [p = 1 - (1 - (1 - (1 - udkNm ] calculates the probability of cancer (p and contains five parameters: the number of divisions (d, the number of stem cells (N × m, the number of critical rate-limiting pathway driver mutations (k, and the mutation rate (u. In this model progression to cancer "starts" at conception and mutations accumulate with cell division. Transformation occurs when a critical number of rate-limiting pathway mutations first accumulates within a single stem cell. Results When applied to several colorectal cancer data sets, parameter values consistent with crypt stem cell biology and normal mutation rates were able to match the increase in cancer with aging, and the mutation frequencies found in cancer genomes. The equation can help explain how cancer risks may vary with age, height, germline mutations, and aspirin use. APC mutations may shorten pathways to cancer by effectively increasing the numbers of stem cells at risk. Conclusions The equation illustrates that age-related increases in cancer frequencies may result from relatively normal division and mutation rates. Although this equation does not encompass all of the known complexity of cancer, it may be useful, especially in a teaching setting, to help illustrate relationships between small and large cancer features.
Equational axioms of test algebra
Hollenberg, M.
2008-01-01
We present a complete axiomatization of test algebra ([24,18,29]), the two-sorted algebraic variant of Propositional Dynamic Logic (PDL,[21,7]). The axiomatization consists of adding a finite number of equations to any axiomatization of Kleene algebra ([15,26,17,4]) and algebraic translations of the
Differential Equations with Linear Algebra
Boelkins, Matthew R; Potter, Merle C
2009-01-01
Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, t
Algebraic solution of master equations
R. Rangel; L. Carvalho
2003-01-01
We present a simple analytical method to solve master equations for finite temperatures and any initial conditions, which consists in the expansion of the density operator into normal modes. These modes and the expansion coefficients are obtained algebraically by using ladder superoperators. This algebraic technique is successful in cases in which the Liouville superoperator is quadratic in the creation and annihilation operators.
Stability of functional equations in Banach algebras
Cho, Yeol Je; Rassias, Themistocles M; Saadati, Reza
2015-01-01
Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the l...
Algebraic dynamics solution and algebraic dynamics algorithm of Burgers equations
Institute of Scientific and Technical Information of China (English)
2008-01-01
Algebraic dynamics solution and algebraic dynamics algorithm of nonlinear partial differential evolution equations in the functional space are applied to Burgers equation. The results indicate that the approach is effective for analytical solutions to Burgers equation, and the algorithm for numerical solutions of Burgers equation is more stable, with higher precision than other existing finite difference algo-rithms.
Reflection algebra and functional equations
Energy Technology Data Exchange (ETDEWEB)
Galleas, W., E-mail: w.galleas@uu.nl; Lamers, J., E-mail: j.lamers@uu.nl
2014-09-15
In this work we investigate the possibility of using the reflection algebra as a source of functional equations. More precisely, we obtain functional relations determining the partition function of the six-vertex model with domain-wall boundary conditions and one reflecting end. The model's partition function is expressed as a multiple-contour integral that allows the homogeneous limit to be obtained straightforwardly. Our functional equations are also shown to give rise to a consistent set of partial differential equations satisfied by the partition function.
Solving Absolute Value Equations Algebraically and Geometrically
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
RICCATI EQUATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS
Curtain, Ruth
2011-01-01
Conditions for the existence of a solution of a Riccati equation to be in some prescribed noncommutative involutive Banach algebras are given. The Banach algebras are inverse-closed subalgebras of the space of bounded linear operators on some Hilbert space, and the Riccati equation has an exponentia
Algebraic entropy for differential-delay equations
Viallet, Claude M.
2014-01-01
We extend the definition of algebraic entropy to a class of differential-delay equations. The vanishing of the entropy, as a structural property of an equation, signals its integrability. We suggest a simple way to produce differential-delay equations with vanishing entropy from known integrable differential-difference equations.
Algebraic Approaches to Partial Differential Equations
Xu, Xiaoping
2012-01-01
Partial differential equations are fundamental tools in mathematics,sciences and engineering. This book is mainly an exposition of the various algebraic techniques of solving partial differential equations for exact solutions developed by the author in recent years, with emphasis on physical equations such as: the Calogero-Sutherland model of quantum many-body system in one-dimension, the Maxwell equations, the free Dirac equations, the generalized acoustic system, the Kortweg and de Vries (KdV) equation, the Kadomtsev and Petviashvili (KP) equation, the equation of transonic gas flows, the short-wave equation, the Khokhlov and Zabolotskaya equation in nonlinear acoustics, the equation of geopotential forecast, the nonlinear Schrodinger equation and coupled nonlinear Schrodinger equations in optics, the Davey and Stewartson equations of three-dimensional packets of surface waves, the equation of the dynamic convection in a sea, the Boussinesq equations in geophysics, the incompressible Navier-Stokes equations...
Lie algebras and linear differential equations.
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
The kinematic algebras from the scattering equations
International Nuclear Information System (INIS)
We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant
Surveys in differential-algebraic equations II
Reis, Timo
2015-01-01
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Observers for DAEs - DAEs in chemical processes - Optimal control of DAEs - DAEs from a functional-analytic viewpoint - Algebraic methods for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
Surveys in differential-algebraic equations III
Reis, Timo
2015-01-01
The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.
On solving equations of algebraic sum of equal powers
Institute of Scientific and Technical Information of China (English)
WANG; Xinghua; YANG; Shijun
2006-01-01
It is well known that a system of equations of sum of equal powers can be converted to an algebraic equation of higher degree via Newton's identities. This is the Viete-Newton theorem. This work reports the generalizations of the Viete-Newton theorem to a system of equations of algebraic sum of equal powers. By exploiting some facts from algebra and combinatorics,it is shown that a system of equations of algebraic sum of equal powers can be converted in a closed form to two algebraic equations, whose degree sum equals the number of unknowns of the system of equations of algebraic sum of equal powers.
Optical systolic solutions of linear algebraic equations
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
On Riccati equations in Banach algebras
Curtain, Ruth F
2010-01-01
Let $R$ be a commutative complex Banach algebra with the involution $\\cdot ^\\star$ and suppose that $A\\in R^{n\\times n}$, $B\\in R^{n\\times m}$, $C\\in R^{p\\times n}$. The question of when the Riccati equation
Algebras with Parastrophically Uncancellable Quasigroup Equations
Directory of Open Access Journals (Sweden)
Amir Ehsani
2016-07-01
Full Text Available We consider 48 parastrophically uncancellable quadratic functional equations with four object variables and two quasigroup operations in two classes: balanced non-Belousov (consists of 16 equations and non-balanced non-gemini (consists of 32 equations. A linear representation of a group (Abelian group for a pair of quasigroup operations satisfying one of these parastrophically uncancellable quadratic equations is obtained. As a consequence of these results, a linear representation for every operation of a binary algebra satisfying one of these hyperidentities is obtained.
Upper bounds on the solution of coupled algebraic riccati equation
Directory of Open Access Journals (Sweden)
Czornik Adam
2001-01-01
Full Text Available Upper bounds for eigenvalues of a solution to continuous time coupled algebraic Riccati equation (CCARE and discrete time coupled algebraic Riccati equation (DCARE are developed as special cases of bounds for the unified coupled algebraic Riccati equation (UCARE. They include bounds of the maximal eigenvalues, the sums of the eigenvalues and the trace.
Upper bounds on the solution of coupled algebraic riccati equation
Czornik Adam; Świerniak Andrzej
2001-01-01
Upper bounds for eigenvalues of a solution to continuous time coupled algebraic Riccati equation (CCARE) and discrete time coupled algebraic Riccati equation (DCARE) are developed as special cases of bounds for the unified coupled algebraic Riccati equation (UCARE). They include bounds of the maximal eigenvalues, the sums of the eigenvalues and the trace.
Laurent phenomenon algebras and the discrete BKP equation
Okubo, Naoto
2016-09-01
We construct the Laurent phenomenon algebras the cluster variables of which satisfy the discrete BKP equation, the discrete Sawada–Kotera equation and other difference equations obtained by its reduction. These Laurent phenomenon algebras are constructed from seeds with a generalization of mutation-period property. We show that a reduction of a seed corresponds to a reduction of a difference equation.
A Unified Algebraic Approach to Classical Yang-Baxter Equation
Bai, Chengming
2007-01-01
In this paper, the different operator forms of classical Yang-Baxter equation are given in the tensor expression through a unified algebraic method. It is closely related to left-symmetric algebras which play an important role in many fields in mathematics and mathematical physics. By studying the relations between left-symmetric algebras and classical Yang-Baxter equation, we can construct left-symmetric algebras from certain classical r-matrices and conversely, there is a natural classical ...
Algebraic dynamics solution to and algebraic dynamics algorithm for nonlinear advection equation
Institute of Scientific and Technical Information of China (English)
2008-01-01
Algebraic dynamics approach and algebraic dynamics algorithm for the solution of nonlinear partial differential equations are applied to the nonlinear advection equa-tion. The results show that the approach is effective for the exact analytical solu-tion and the algorithm has higher precision than other existing algorithms in nu-merical computation for the nonlinear advection equation.
Quantum Einstein’s equations and constraints algebra
Indian Academy of Sciences (India)
Fatimah Shojai; Ali Shojai
2002-01-01
In this paper we shall address this problem: Is quantum gravity constraints algebra closed and what are the quantum Einstein’s equations. We shall investigate this problem in the deBroglie–Bohm quantum theory framework. It is shown that the constraint algebra is weakly closed and the quantum Einstein’s equations are derived.
ON THE MINIMAL NONNEGATIVE SOLUTION OF NONSYMMETRIC ALGEBRAIC RICCATI EQUATION
Institute of Scientific and Technical Information of China (English)
Xiao-xia Guo; Zhong-zhi Bai
2005-01-01
We study perturbation bound and structured condition number about the minimal nonnegative solution of nonsymmetric algebraic Riccati equation, obtaining a sharp perturbation bound and an accurate condition number. By using the matrix sign function method we present a new method for finding the minimal nonnegative solution of this algebraic Riccati equation. Based on this new method, we show how to compute the desired M-matrix solution of the quadratic matrix equation X2 - EX - F -= 0 by connecting it with the nonsymmetric algebraic Riccati equation, where E is a diagonal matrix and F is an M-matrix.
Difference equations and cluster algebras I: Poisson bracket for integrable difference equations
Inoue, Rei
2010-01-01
We introduce the cluster algebraic formulation of the integrable difference equations, the discrete Lotka-Volterra equation and the discrete Liouville equation, from the view point of the general T-system and Y-system. We also study the Poisson structure for the cluster algebra, and give the associated Poisson bracket for the two difference equations.
Algebraic methods for the solution of some linear matrix equations
Djaferis, T. E.; Mitter, S. K.
1979-01-01
The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.
Counting equations in algebraic attacks on block ciphers
DEFF Research Database (Denmark)
Knudsen, Lars Ramkilde; Miolane, Charlotte Vikkelsø
2010-01-01
This paper is about counting linearly independent equations for so-called algebraic attacks on block ciphers. The basic idea behind many of these approaches, e.g., XL, is to generate a large set of equations from an initial set of equations by multiplication of existing equations by the variables...... in the system. One of the most difficult tasks is to determine the exact number of linearly independent equations one obtain in the attacks. In this paper, it is shown that by splitting the equations defined over a block cipher (an SP-network) into two sets, one can determine the exact number of linearly...... independent equations which can be generated in algebraic attacks within each of these sets of a certain degree. While this does not give us a direct formula for the success of algebraic attacks on block ciphers, it gives some interesting bounds on the number of equations one can obtain from a given block...
Dual number coefficient octonion algebra, field equations and conservation laws
Chanyal, B. C.; Chanyal, S. K.
2016-08-01
Starting with octonion algebra, we develop the dual number coefficient octonion (DNCO) algebra having sixteen components. DNCO forms of generalized potential, field and current equations are discussed in consistent manner. We have made an attempt to write the DNCO form of generalized Dirac-Maxwell's equations in presence of electric and magnetic charges (dyons). Accordingly, we demonstrate the work-energy theorem of classical mechanics reproducing the continuity equation for dyons in terms of DNCO algebra. Further, we discuss the DNCO form of linear momentum conservation law for dyons.
Institute of Scientific and Technical Information of China (English)
WANG Shundin; ZHANG Hua
2008-01-01
Using functional derivative technique In quantum field theory,the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations.The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by Introducing the time translation operator.The functional partial differential evolution equations were solved by algebraic dynam-ics.The algebraic dynamics solutions are analytical In Taylor series In terms of both initial functions and time.Based on the exact analytical solutions,a new nu-merical algorithm-algebraic dynamics algorithm was proposed for partial differ-ential evolution equations.The difficulty of and the way out for the algorithm were discussed.The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.
Linear algebra a first course with applications to differential equations
Apostol, Tom M
2014-01-01
Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.
Quasi-lisse vertex algebras and modular linear differential equations
Arakawa, Tomoyuki
2016-01-01
We introduce a notion of quasi-lisse vertex algebras, which generalizes admissible affine vertex algebras. We show that the normalized character of an ordinary module over a quasi-lisse vertex operator algebra has a modular invariance property, in the sense that it satisfies a modular linear differential equation. As an application we obtain the explicit character formulas of simple affine vertex algebras associated with the Deligne exceptional series at level $-h^{\\vee}/6-1$, which expresses the homogeneous Schur limit of the superconformal index of 4d SCFTs studied by Beem, Lemos, Liendo, Peelaers, Rastelli and van Rees, as quasi-modular forms.
Hidden sl$_{2}$-algebra of finite-difference equations
Smirnov, Yu F; Smirnov, Yuri; Turbiner, Alexander
1995-01-01
The connection between polynomial solutions of finite-difference equations and finite-dimensional representations of the sl_2-algebra is established. (Talk presented at the Wigner Symposium, Guadalajara, Mexico, August 1995; to be published in Proceedings)
Newton—Like Iteration Method for Solving Algebraic Equations
Institute of Scientific and Technical Information of China (English)
JihuanHE
1998-01-01
In this paper,a Newton-like iteration method is proposed to solve an approximate solution of an algebraic equation.The iteration formula obtained by homotopy perturbation method contains the well-known Newton iteration formulain logic.
Hidden $sl_2$-algebra of finite-difference equations
Smirnov, Yuri; Turbiner, Alexander
1995-01-01
The connection between polynomial solutions of finite-difference equations and finite-dimensional representations of the $sl_2$-algebra is established (the talk given at the Wigner Symposium, Guadalajara, Mexico, August 1995, to be published in the Proceedings)
Positive Stabilization of Linear Differential Algebraic Equation System
Directory of Open Access Journals (Sweden)
Muhafzan
2016-01-01
Full Text Available We study in this paper the existence of a feedback for linear differential algebraic equation system such that the closed-loop system is positive and stable. A necessary and sufficient condition for such existence has been established. This result can be used to detect the existence of a state feedback law that makes the linear differential algebraic equation system in closed loop positive and stable.
Difference algebraic relations among solutions of linear differential equations
Di Vizio, Lucia; Hardouin, Charlotte; Wibmer, Michael
2013-01-01
We extend and apply the Galois theory of linear differential equations equipped with the action of an endomorphism. The Galois groups in this Galois theory are difference algebraic groups and we use structure theorems for these groups to characterize the possible difference algebraic relations among solutions of linear differential equations. This yields tools to show that certain special functions are difference transcendent. One of our main results is a characterization of discrete integrab...
Institute of Scientific and Technical Information of China (English)
WANG; Shunjin; ZHANG; Hua
2006-01-01
The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.
Stability of Linear Equations--Algebraic Approach
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.
2012-01-01
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
Exact solution of some linear matrix equations using algebraic methods
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
Zeta functional equation on Jordan algebras of type II
Kayoya, J. B.
2005-02-01
Using the Jordan algebras methods, specially the properties of Peirce decomposition and the Frobenius transformation, we compute the coefficients of the zeta functional equation, in the case of Jordan algebras of type II. As particular cases of our result, we can cite the case of studied by Gelbart [Mem. Amer. Math. Soc. 108 (1971)] and Godement and Jacquet [Zeta functions of simple algebras, Lecture Notes in Math., vol. 260, Springer-Verlag, Berlin, 1972], and the case of studied by Muro [Adv. Stud. Pure Math. 15 (1989) 429]. Let us also mention, that recently, Bopp and Rubenthaler have obtained a more general result on the zeta functional equation by using methods based on the algebraic properties of regular graded algebras which are in one-to-one correspondence with simple Jordan algebras [Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces, IRMA, Strasbourg, 2003]. The method used in this paper is a direct application of specific properties of Jordan algebras of type II.
Algebraic Integrability of Lotka-Volterra equations in three dimensions
Constandinides, Kyriacos
2009-01-01
We examine the algebraic complete integrability of Lotka-Volterra equations in three dimensions. We restrict our attention to Lotka-Volterra systems defined by a skew symmetric matrix. We obtain a complete classification of such systems. The classification is obtained using Painleve analysis and more specifically by the use of Kowalevski exponents. The imposition of certain integrality conditions on the Kowalevski exponents gives necessary conditions for the algebraic integrability of the corresponding systems. We also show that the conditions are sufficient.
Algebraic Approach to the Computation of the Defining Polynomial of the Algebraic Riccati Equation
Kitamoto, Takuya
The algebraic Riccati equation, which we denote by ’ARE’ in the rest of the paper, is one of the most important equations of the post modern control theory. It plays important role for solving H 2 and H ∞ optimal control problems.
Falcon, Raymond
2009-01-01
Teachers use action research in order to improve their teaching and student learning. This action research will analyze students' algebraic reasoning in finding values of variables in systems of equations pictorially and algebraically. This research will look at students solving linear systems of equations without knowing the algebraic algorithms.…
Introduction to linear algebra and differential equations
Dettman, John W
1986-01-01
Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.
Involutive characteristic sets of algebraic partial differential equation systems
Institute of Scientific and Technical Information of China (English)
CHEN; Yufu(陈玉福); GAO; Xiaoshan(高小山)
2003-01-01
This paper presents an algorithm to reduce a nonlinear algebraic partial differential equation system into the involutive characteristic set with respect to an abstract involutive prolongation direction, which covers the existing algorithms based on Riquier method, Thomas method, and Pommaret method. It also provides new algorithms for computing involutive characteristic sets due to the existence of new involutive directions. Experiments show that these new algorithms may be used to significantly reduce the computational steps in Wu-Ritt's characteristic set method for algebraic partial differential equations.
The Algebraic Riccati Matrix Equation for Eigendecomposition of Canonical Forms
Directory of Open Access Journals (Sweden)
M. Nouri
2013-01-01
Full Text Available The algebraic Riccati matrix equation is used for eigendecomposition of special structured matrices. This is achieved by similarity transformation and then using the algebraic Riccati matrix equation to the triangulation of matrices. The process is the decomposition of matrices into small and specially structured submatrices with low dimensions for easy finding of eigenpairs. Here, we show that previous canonical forms I, II, III, and so on are special cases of the presented method. Numerical and structural examples are included to show the efficiency of the present method.
Reconstruction of symmetric Dirac-Maxwell equations using nonassociative algebra
Kalauni, Pushpa; Barata, J. C. A.
2015-01-01
In the presence of sources, the usual Maxwell equations are neither symmetric nor invariant with respect to the duality transformation between electric and magnetic fields. Dirac proposed the existence of magnetic monopoles for symmetrizing the Maxwell equations. In the present work, we obtain the fully symmetric Dirac-Maxwell's equations (i.e. with electric and magnetic charges and currents) as a single equation by using 4 × 4 matrix presentation of fields and derivative operators. This matrix representation has been derived with the help of the algebraic properties of quaternions and octonions. Such description gives a compact representation of electric and magnetic counterparts of the field in a single equation.
The equationally-defined commutator a study in equational logic and algebra
Czelakowski, Janusz
2015-01-01
This monograph introduces and explores the notions of a commutator equation and the equationally-defined commutator from the perspective of abstract algebraic logic. An account of the commutator operation associated with equational deductive systems is presented, with an emphasis placed on logical aspects of the commutator for equational systems determined by quasivarieties of algebras. The author discusses the general properties of the equationally-defined commutator, various centralization relations for relative congruences, the additivity and correspondence properties of the equationally-defined commutator, and its behavior in finitely generated quasivarieties. Presenting new and original research not yet considered in the mathematical literature, The Equationally-Defined Commutator will be of interest to professional algebraists and logicians, as well as graduate students and other researchers interested in problems of modern algebraic logic.
On systems of algebraic equations with parametric exponents
Yokoyama, Kazuhiro
2004-01-01
We deal with systems of algebraic equations with parametric exponents. As the first step for solving such systems, we introduce a simple formulation and basic notions in ideal theory. Then we give a concrete method for most simple cases, univariate case and 0-dimensional case.
Bounds for the eigenvalues of the continuous algebraic Riccati equation
Liu, Jianzhou; Zhang, Juan
2011-10-01
By using singular value decomposition and majorisation inequalities, we propose new upper and lower bounds for summations of eigenvalues (including the trace) of the solution of the continuous algebraic Riccati equation. These bounds improve and extend some of the previous results. Finally, we give corresponding numerical examples to illustrate the effectiveness of our results.
Numerical Solution of Differential Algebraic Equations and Applications
DEFF Research Database (Denmark)
Thomsen, Per Grove
2005-01-01
These lecture notes have been written as part of a special course on the numerical solution of Differential Algebraic Equations and applications . The course was held at IMM in the spring of 2005. The authors of the different chapters have all taken part in the course and the chapters are written...
Algebraic and transcendental solutions of some exponential equations
Sondow, Jonathan
2011-01-01
We study algebraic and transcendental powers of positive real numbers, including solutions of each of the equations $x^x=y$, $x^y=y^x$, $x^x=y^y$, $x^y=y$, and $x^{x^y}=y$. Applications to values of the iterated exponential functions are given. The main tools used are classical theorems of Hermite-Lindemann and Gelfond-Schneider, together with solutions of exponential Diophantine equations.
All Meromorphic Solutions of Some Algebraic Differential Equations
Institute of Scientific and Technical Information of China (English)
Wenjun Yuan; Zifeng Huang; Jinchun Lai; Jianming Qi
2014-01-01
In this article, we introduce some results with respect to the integrality and exact solutions of some 2nd order algebraic DEs. We obtain the sufficient and neces-sary conditions of integrable and the general meromorphic solutions of these equa-tions by the complex method, which improves the corresponding results obtained by many authors. Our results show that the complex method provides a powerful math-ematical tool for solving a large number of nonlinear partial differential equations in mathematical physics.
Solvability of the $H^\\infty$ algebraic Riccati equation in Banach algebras
Sasane, Amol
2011-01-01
Let $R$ be a commutative complex unital semisimple Banach algebra with the involution $\\cdot ^\\star$. Sufficient conditions are given for the existence of a stabilizing solution to the $H^\\infty$ Riccati equation when the matricial data has entries from $R$. Applications to spatially distributed systems are discussed.
Algebraic matrix equations in two unknowns
Bourgeois, Gerald
2011-01-01
Let r1,r2,s1,s2 be integers such that gcd(r1,r2)=1 and gcd(s1,s2)=1. We solve the matrix equation A^{r1}B^{s1}A^{r2}B^{s2}=+-Identity where A,B are 2,2 complex matrices that have no common eigenvectors. Let p,q be coprime integers such that |p|+|q|>2. We study the matrix equation B^{-1}A^pB=A^q where A,B are n,n complex invertible matrices. We show that such matrices satisfy B^{-1}AB and A commute. We provide a necessary and sufficient condition for similarity of A^p and A^q. We explicitly solve this problem when A has n distinct eigenvalues and in other particular cases.
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
WAVEFORM RELAXATION METHODS OF NONLINEAR INTEGRAL-DIFFERENTIAL-ALGEBRAIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
Yao-lin Jiang
2005-01-01
In this paper we consider continuous-time and discrete-time waveform relaxation methods for general nonlinear integral-differential-algebraic equations. For the continuous-time case we derive the convergence condition of the iterative methods by invoking the spectral theory on the resulting iterative operators. By use of the implicit difference forms,namely the backward-differentiation formulae, we also yield the convergence condition of the discrete waveforms. Numerical experiments are provided to illustrate the theoretical work reported here.
Stability of the Exponential Functional Equation in Riesz Algebras
Directory of Open Access Journals (Sweden)
Bogdan Batko
2014-01-01
Full Text Available We deal with the stability of the exponential Cauchy functional equation F(x+y=F(xF(y in the class of functions F:G→L mapping a group (G, + into a Riesz algebra L. The main aim of this paper is to prove that the exponential Cauchy functional equation is stable in the sense of Hyers-Ulam and is not superstable in the sense of Baker. To prove the stability we use the Yosida Spectral Representation Theorem.
Novotna, Jarmila; Hoch, Maureen
2008-01-01
Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…
Truncatable bootstrap equations in algebraic form and critical surface exponents
Gliozzi, Ferdinando
2016-01-01
We describe examples of drastic truncations of conformal bootstrap equations encoding much more information than that obtained by a direct numerical approach. A three-term truncation of the four point function of a free scalar in any space dimensions provides algebraic identities among conformal block derivatives which generate the exact spectrum of the infinitely many primary operators contributing to it. In boundary conformal field theories, we point out that the appearance of free parameters in the solutions of bootstrap equations is not an artifact of truncations, rather it reflects a physical property of permeable conformal interfaces which are described by the same equations. Surface transitions correspond to isolated points in the parameter space. We are able to locate them in the case of 3d Ising model, thanks to a useful algebraic form of 3d boundary bootstrap equations. It turns out that the low-lying spectra of the surface operators in the ordinary and the special transitions of 3d Ising model form...
Zatorsky, Roman
2011-01-01
A new algebraic object is introduced - recurrent fractions, which is an n-dimensional generalization of continued fractions. It is used to describe an algorithm for rational approximations of algebraic irrational numbers. Some parametrization for generalized Pell's equations is constructed.
The Generalised Discrete Algebraic Riccati Equation in LQ optimal control
Ferrante, Augusto
2012-01-01
This paper investigates the properties of the solutions of the generalised discrete algebraic Riccati equation arising from the solution of the classic infinite-horizon linear quadratic control problem. In particular, a geometric analysis is used to study the relationship existing between the solutions of the generalised Riccati equation and the output-nulling subspaces of the underlying system and the corresponding reachability subspaces. This analysis reveals the presence of a subspace that plays an important role in the solution of the related optimal control problem, which is reflected in the generalised eigenstructure of the corresponding extended symplectic pencil. In establishing themain results of this paper, several ancillay problems on the discrete Lyapunov equation and spectral factorisation are also addressed and solved.
Symmetries of the Schrodinger Equation and Algebra/Superalgebra Duality
Energy Technology Data Exchange (ETDEWEB)
Toppan, Francesco
2014-12-15
Some key features of the symmetries of the Schroedinger equation that are common to a much broader class of dynamical systems (some under construction) are illustrated. I discuss the algebra/superalgebra duality involving rst and second-order differential operators. It provides different viewpoints for the spectrum-generating subalgebras. The representation dependent notion of on-shell symmetry is introduced. The difference in associating the time derivative symmetry operator with either a root or a Cartan generator of the sl(2) subalgebra is discussed. In application to one-dimensional Lagrangian superconformal sigma-models it implies superconformal actions which are either supersymmetric or non-supersymmetric. (author)
SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES
Sari Saraswati; Ratu Ilma Indra Putri; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It ...
Space-time algebra for the generalization of gravitational field equations
Indian Academy of Sciences (India)
Süleyman Demir
2013-05-01
The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of gravitoelectromagnetic Klein–Gordon equation has been obtained. Finally, the analogy in formulation between massive gravitational theory and electromagnetism has been discussed.
The Shifting Technique for Solving a Nonsymmetric Algebraic Riccati Equation
Chiang, Chun-Yueh
2011-01-01
This paper analyzes a special instance of nonsymmetric algebraic matrix Riccati equations arising from transport theory. Traditional approaches for finding the minimal nonnegative solution of the matrix Riccati equations are based on the fixed point iteration and the speed of the convergence is linear. Relying on simultaneously matrix computation, a structure-preserving doubling algorithm (SDA) with quadratic convergence is designed for improving the speed of convergence. The difficulty is that the double algorithm with quadratic convergence cannot guarantee to work all the time. Our main trust in this work is to show that applied with a suitable shifted technique, the SDA is guaranteed to converge quadratically with no breakdown. Also, we modify the conventional simple iteration algorithm in the critical case to dramatically improve the speed of convergence. Numerical experiments strongly suggest that the total number of computational steps can be significantly reduced via the shifting procedure.
Confluences of the Painlevé equations, Cherednik algebras and q-Askey scheme
Mazzocco, Marta
2016-09-01
In this paper we produce seven new algebras as confluences of the Cherednik algebra of type \\check {{{{C}1}}} {{C}1} and we characterise their spherical-sub-algebras. The limit of the spherical sub-algebra of the Cherednik algebra of type \\check {{{{C}1}}} {{C}1} is the monodromy manifold of the Painlevé VI equation (Oblomkov 2004 Int. Math. Res. Not. 2004 877–912). Here we prove that by considering the limits of the spherical sub-algebras of our new confluent algebras, one obtains the monodromy manifolds of all other Painlevé differential equations. Moreover, we introduce confluent versions of the Zhedanov algebra and prove that each of them (quotiented by their Casimir) is isomorphic to the corresponding spherical sub-algebra of our new confluent Cherednik algebras. We show that in the basic representation our confluent Zhedanov algebras act as symmetries of certain elements of the q-Askey scheme, thus setting a stepping stone towards the solution of the open problem of finding the corresponding quantum algebra for each element of the q-Askey scheme. These results establish a new link between the theory of the Painlevé equations and the theory of the q-Askey scheme making a step towards the construction of a representation theoretic approach for the Painlevé theory.
Bollhöfer, Matthias; Kressner, Daniel; Mehl, Christian; Stykel, Tatjana
2015-01-01
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on ...
Projective BGG equations, algebraic sets, and compactifications of Einstein geometries
Cap, A; Hammerl, M
2010-01-01
For curved projective manifolds we introduce a notion of a normal tractor frame field, based around any point. This leads to canonical systems of (redundant) coordinates that generalise the usual homogeneous coordinates on projective space. These give preferred local maps to the model projective space that encode geometric contact with the model to a level that is optimal, in a suitable sense. In terms of the trivialisations arising from the special frames, normal solutions of classes of natural linear PDE (so-called first BGG equations) are shown to be necessarily polynomial in the generalised homogeneous coordinates; the polynomial system is the pull back of a polynomial system that solves the corresponding problem on the model. Thus questions concerning the zero locus of solutions, as well as related finer geometric and smooth data, are reduced to a study of the corresponding polynomial systems and algebraic sets. We show that a normal solution determines a canonical manifold stratification that reflects a...
Algebraization of difference eigenvalue equations related to $U_q(sl_2)$
Wiegmann, P. B.; Zabrodin, A. V.
1995-01-01
A class of second order difference (discrete) operators with a partial algebraization of the spectrum is introduced. The eigenfuncions of the algebraized part of the spectrum are polinomials (discrete polinomials). Such difference operators can be constructed by means of $U_q(sl_2)$, the quantum deformation of the $sl_2$ algebra. The roots of polinomials determine the spectrum and obey the Bethe Ansatz equations. A particular case of difference equations for $q$-hypergeometric and Askey-Wilso...
Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles
Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…
A Direct Algebraic Method in Finding Particular Solutions to Some Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
LIUChun-Ping; CHENJian-Kang; CAIFan
2004-01-01
Firstly, a direct algebraic method and a routine way in finding traveling wave solutions to nonlinear evolution equations are explained. And then some new exact solutions for some evolution equations are obtained by using the method.
The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders
Energy Technology Data Exchange (ETDEWEB)
Gurau, Razvan, E-mail: rgurau@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo (Canada)
2012-12-01
Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.
Institute of Scientific and Technical Information of China (English)
BAO Yuan-Peng; RUAN Hang-Yu; XIE Wen-Fang; LI Zhi-Fang
2008-01-01
Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution for (2+1)-dimensional ANNV equation. The behaviors of interactions are discussed in detail both analytically and graphically. It is shown that there are two kinds of singular interactions between line soliton and algebraic soliton: 1) the resonant interaction where the algebraic soliton propagates together with the line soliton and persists infinitely; 2) the extremely repulsive interaction where the algebraic soliton affects the motion of the line soliton infinitely apart.
Directory of Open Access Journals (Sweden)
Alvaro Alvarez-Parrilla
2012-01-01
Full Text Available A new technique for solving a certain class of systems of autonomous ordinary differential equations over n is introduced ( being the real or complex field. The technique is based on two observations: (1, if n has the structure of certain normed, associative, commutative, and with a unit, algebras over , then there is a scheme for reducing the system of differential equations to an autonomous ordinary differential equation on one variable of the algebra; (2 a technique, previously introduced for solving differential equations over ℂ, is shown to work on the class mentioned in the previous paragraph. In particular it is shown that the algebras in question include algebras linearly equivalent to the tensor product of matrix algebras with certain normal forms.
Bracken, Paul
2015-01-01
Prolongation algebras which are determined by applying a version of the Wahlquist-Estabrook method to three different nonlinear partial differential equations can be employed to obtain not only Lax pairs but B\\"acklund transformations as well. By solving Maurer-Cartan equations for the related group specified by the prolongation algebra, a set of differential forms is obtained which can lead directly to these kinds of results. Although specific equations are studied, the approach should be ap...
Index-aware model order reduction methods applications to differential-algebraic equations
Banagaaya, N; Schilders, W H A
2016-01-01
The main aim of this book is to discuss model order reduction (MOR) methods for differential-algebraic equations (DAEs) with linear coefficients that make use of splitting techniques before applying model order reduction. The splitting produces a system of ordinary differential equations (ODE) and a system of algebraic equations, which are then reduced separately. For the reduction of the ODE system, conventional MOR methods can be used, whereas for the reduction of the algebraic systems new methods are discussed. The discussion focuses on the index-aware model order reduction method (IMOR) and its variations, methods for which the so-called index of the original model is automatically preserved after reduction.
A multilayer recurrent neural network for solving continuous-time algebraic Riccati equations.
Wang, Jun; Wu, Guang
1998-07-01
A multilayer recurrent neural network is proposed for solving continuous-time algebraic matrix Riccati equations in real time. The proposed recurrent neural network consists of four bidirectionally connected layers. Each layer consists of an array of neurons. The proposed recurrent neural network is shown to be capable of solving algebraic Riccati equations and synthesizing linear-quadratic control systems in real time. Analytical results on stability of the recurrent neural network and solvability of algebraic Riccati equations by use of the recurrent neural network are discussed. The operating characteristics of the recurrent neural network are also demonstrated through three illustrative examples.
Equations of motion for a time-dependent open system: An algebraic approach
International Nuclear Information System (INIS)
Highlights: ► Based on the concept of quantum densities an algebraic equation is introduced. ► Heisenberg equation and hypervirial theorem are derived based on the algebraic equation. ► Quantum Navier–Stokes equation is derived based on the algebraic equation. ► Differential form of the force law and local virial theorem are extracted. ► Central equations in QTAIM are extracted without referring to quantum stationary action. - Abstract: An algebraic approach based on the concept of local densities is introduced in order to provide an alternative derivation of several equations central to the hydrodynamical formulation of quantum mechanics. The origin of this work lays in an algebraic equation which is built based on the concept of quantum densities. This enables us to derive the regional and local forms of several significant quantum laws and equations, namely Heisenberg equation of motion, hypervirial theory and quantum Navier–Stokes equation. In particular, atomic force law and local virial theorem for a time-dependent open system are extracted without referring to rigorous Schwinger’s principle of stationary action
Equations of motion for a time-dependent open system: An algebraic approach
Energy Technology Data Exchange (ETDEWEB)
Nasertayoob, Payam [Department of Chemistry, Amirkabir University of Technology (Polytechnic), Tehran (Iran, Islamic Republic of); Department of Mathematics, Amirkabir University of Technology (Polytechnic), Tehran (Iran, Islamic Republic of); Sabbaghan, Masoud, E-mail: sabbagh@khayam.ut.ac.ir [Department of Mathematics, I.A.U. Lahijan Branch, Lahijan (Iran, Islamic Republic of)
2013-02-01
Highlights: ► Based on the concept of quantum densities an algebraic equation is introduced. ► Heisenberg equation and hypervirial theorem are derived based on the algebraic equation. ► Quantum Navier–Stokes equation is derived based on the algebraic equation. ► Differential form of the force law and local virial theorem are extracted. ► Central equations in QTAIM are extracted without referring to quantum stationary action. - Abstract: An algebraic approach based on the concept of local densities is introduced in order to provide an alternative derivation of several equations central to the hydrodynamical formulation of quantum mechanics. The origin of this work lays in an algebraic equation which is built based on the concept of quantum densities. This enables us to derive the regional and local forms of several significant quantum laws and equations, namely Heisenberg equation of motion, hypervirial theory and quantum Navier–Stokes equation. In particular, atomic force law and local virial theorem for a time-dependent open system are extracted without referring to rigorous Schwinger’s principle of stationary action.
Institute of Scientific and Technical Information of China (English)
Gao Lingyun
2011-01-01
Using the Nevanlinna theory of the value distribution of meromorphic func- tions and theory of differential algebra, we investigate the problem of the forms of mero- morphic solutions of some specific systems of generalized higher order algebraic differential equations with exponential coefficients and obtain some results.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
An algebraic structure of discrete zero curvature equations is established for integrable coupling systems associated with semi-direct sums of Lie algebras. As an application example of this algebraic structure, a τ-symmetry algebra for the Volterra lattice integrable couplings is engendered from this theory.
Quantum Yang-Baxter equation and constant R-matrix over Grassmann algebra
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Constant solutions to Yang-Baxter equation are investigated over Grassmann algebra for the case of 6-vertex R-matrix.The general classification of all possible solutions over Grassmann algebra and particular cases with 2,3,4 generators are studied.As distinct from the standard case, when R-matrix over number field can have a maximum 5 nonvanishing elements, we obtain over Grassmann algebra a set of new full 6-vertex solutions. The solutions leading to regular R-matrices which appear in weak Hopf algebras are considered.
SUPPORTING STUDENTS’ UNDERSTANDING OF LINEAR EQUATIONS WITH ONE VARIABLE USING ALGEBRA TILES
Directory of Open Access Journals (Sweden)
Sari Saraswati
2016-01-01
Full Text Available This research aimed to describe how algebra tiles can support students’ understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students use the algebra tiles to find a method to solve linear equations with one variable. Design research was used as an approach in this study. It consists of three phases, namely preliminary design, teaching experiment and retrospective analysis. Video registrations, students’ written works, pre-test, post-test, field notes, and interview are technic to collect data. The data were analyzed by comparing the hypothetical learning trajectory (HLT and the actual learning process. The result shows that algebra tiles could supports students’ understanding to find the formal solution of linear equation with one variable.
International Nuclear Information System (INIS)
The reflection equation algebra of Sklyanin is extended to the supersymmetric case. A graded reflection equation algebra is proposed and the corresponding graded (supersymmetric) boundary quantum inverse scattering method (QISM) is formulated. As an application, integrable open-boundary conditions for the doped spin-1 chain of the supersymmetric t-J model are studied in the framework of the boundary QISM. Diagonal boundary K-matrices are found and four classes of integrable boundary terms are determined. (author)
Algebraic equations an introduction to the theories of Lagrange and Galois
Dehn, Edgar
2004-01-01
Meticulous and complete, this presentation of Galois' theory of algebraic equations is geared toward upper-level undergraduate and graduate students. The theories of both Lagrange and Galois are developed in logical rather than historical form. And they are given a more thorough exposition than is customary. For this reason, and also because the author concentrates on concrete applications of algebraic theory, Algebraic Equations is an excellent supplementary text, offering students a concrete introduction to the abstract principles of Galois theory. Of further value are the many numerical ex
Directory of Open Access Journals (Sweden)
Kenichi Kondo
2013-11-01
Full Text Available Ultradiscretization with negative values is a long-standing problem and several attempts have been made to solve it. Among others, we focus on the symmetrized max-plus algebra, with which we ultradiscretize the discrete sine-Gordon equation. Another ultradiscretization of the discrete sine-Gordon equation has already been proposed by previous studies, but the equation and the solutions obtained here are considered to directly correspond to the discrete counterpart. We also propose a noncommutative discrete analogue of the sine-Gordon equation, reveal its relations to other integrable systems including the noncommutative discrete KP equation, and construct multisoliton solutions by a repeated application of Darboux transformations. Moreover, we derive a noncommutative ultradiscrete analogue of the sine-Gordon equation and its 1-soliton and 2-soliton solutions, using the symmetrized max-plus algebra. As a result, we have a complete set of commutative and noncommutative versions of continuous, discrete, and ultradiscrete sine-Gordon equations.
Fermi-Bose duality of the Dirac equation and extended real Clifford-Dirac algebra
Directory of Open Access Journals (Sweden)
I.Yu. Krivsky
2010-01-01
Full Text Available We have proved on the basis of the symmetry analysis of the standard Dirac equation with nonzero mass that this equation may describe not only fermions of spin 1/2 but also bosons of spin 1. The new bosonic symmetries of the Dirac equation in both the Foldy-Wouthuysen and the Pauli-Dirac representations are found. Among these symmetries (together with the 32-dimensional pure matrix algebra of invariance the new, physically meaningful, spin 1 Poincare symmetry of equation under consideration is proved. In order to provide the corresponding proofs, a 64-dimensional extended real Clifford-Dirac algebra is put into consideration.
The Hamiltonian structure of soliton equations and deformed scr(W)-algebras
International Nuclear Information System (INIS)
The Poisson bracket algebra corresponding to the second Hamiltonian structure of a large class of generalized KdV and mKdV integrable hierarchies is carefully analysed. These algebras are known to have conformal properties and their relation to scr(W)-algebras has been previously investigated in some particular cases. The class of equations that is considered includes practically all the generalizations of the Drinfel close-quote d endash Sokolov hierarchies constructed in the literature. In particular, it has been recently shown that it includes matrix generalizations of the Gelfand endash Dickey and the constrained KP hierarchies. Therefore, our results provide a unified description of the relation between the Hamiltonian structure of soliton equations and scr(W)-algebras, and it comprises almost all the results formerly obtained by other authors. The main result of this paper is an explicit general equation showing that the second Poisson bracket algebra is a deformation of the Dirac bracket algebra corresponding to the scr(W)-algebras obtained through Hamiltonian reduction. copyright 1997 Academic Press, Inc
Hydra: Automatic algorithm exploration from linear algebra equations
Duchâteau, Alexandre; Padua, David; Barthou, Denis
2013-01-01
International audience Hydra accepts an equation written in terms of operations on matrices and automatically produces highly efficient code to solve these equations. Processing of the equation starts by tiling the matrices. This transforms the equation into either a single new equation containing terms involving tiles or into multiple equations some of which can be solved in parallel with each other. Hydra continues transforming the equations using tiling and seeking terms that Hydra know...
New method for solving algebraic equations without the use of imaginary numbers
International Nuclear Information System (INIS)
A new method for solving algebraic equations without the use of imaginary numbers has been proposed. Complex-conjugate roots can be expressed in terms of their absolute value and real part. This method simplifies the process of solving quadratic equations and provides simple approximate but sufficiently accurate formulas for the roots of cubic equations. This method can also be useful for solving equations of higher orders
Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations
Directory of Open Access Journals (Sweden)
Rutwig Campoamor-Stursberg
2016-03-01
Full Text Available A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebra. In particular, well-known types, such as the Milne-Pinney or Kummer-Schwarz equations, are recovered as special cases of this classification. The analogous problem for systems of second-order differential equations in the real plane is considered for a special case that enlarges the generalized Ermakov systems.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.
Lie Algebraic Structures and Integrability of Long-Short Wave Equation in (2+1) Dimensions
Institute of Scientific and Technical Information of China (English)
ZHAO Xue-Qing; L(U)Jing-Fa
2004-01-01
The hidden symmetry and integrability of the long-short wave equation in (2+1) dimensions are considered using the prolongation approach. The internal algebraic structures and their linear spectra are derived in detail which show that the equation is integrable.
Stability of a Bi-Additive Functional Equation in Banach Modules Over a C⋆-Algebra
Directory of Open Access Journals (Sweden)
Won-Gil Park
2012-01-01
Full Text Available We solve the bi-additive functional equation f(x+y,z−w+f(x−y,z+w=2f(x,z−2f(y,w and prove that every bi-additive Borel function is bilinear. And we investigate the stability of a bi-additive functional equation in Banach modules over a unital C⋆-algebra.
Some Upper Matrix Bounds for the Solution of the Continuous Algebraic Riccati Matrix Equation
Directory of Open Access Journals (Sweden)
Zübeyde Ulukök
2013-01-01
Full Text Available We propose diverse upper bounds for the solution matrix of the continuous algebraic Riccati matrix equation (CARE by building the equivalent form of the CARE and using some matrix inequalities and linear algebraic techniques. Finally, numerical example is given to demonstrate the effectiveness of the obtained results in this work as compared with some existing results in the literature. These new bounds are less restrictive and provide more efficient results in some cases.
Cognitive Load in Algebra: Element Interactivity in Solving Equations
Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing
2015-01-01
Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
A New General Algebraic Method and Its Application to Shallow Long Wave Approximate Equations
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.
Energy Technology Data Exchange (ETDEWEB)
Man, Yiu-Kwong, E-mail: ykman@ied.edu.h [Department of Mathematics and Information Technology, Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, New Territories (Hong Kong)
2010-10-15
In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided. (fast track communication)
On the economical solution method for a system of linear algebraic equations
Directory of Open Access Journals (Sweden)
Jan Awrejcewicz
2004-01-01
Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.
Gauss对解代数方程的贡献%Gauss' contribution to solving algebraic equation
Institute of Scientific and Technical Information of China (English)
王宵瑜
2011-01-01
目的 分析Gauss(1777-1855)解方程的主要思想和具体步骤,研究其对解代数方程的贡献.方法 从原始文献出发,寻求求解代数方程的内涵.结果 Gauss证明了分圆方程根式可解；通过对Lagrange(1736-1813)与Gauss关于解代数方程方法的比较,得出Gauss解方程的方法是对Lagrange解方程方法的应用；最后Gauss在解方程的过程中得出一个根式扩张塔.结论 Gauss不仅证明了分圆方程是根式可解的,且在解方程的过程中得到根式扩张塔,改变了方程可解的定义.%Aim To investigate Gauss'(1777-1855) main idea and procedures of solving the cyclotomic equations, and then establish Gauss' contribution to solving algebraic equation. Methods Search for the inner meaning of solving algebraic equations from the original literature. Results Gauss proved the algebraic solvability of cyclotomic equation; Lagrange's and Gauss' methods of solving equation being compared, it shows that Gauss' method is the application of Lagrange's method. Gauss obtained a tower of radical field extension in solving algebraic e-quation. Conclusion Gauss proved the algebraic solvability of cyclotomic equations and got a tower of radical field extension, which changed the definition of radical solvability of the equation.
Directory of Open Access Journals (Sweden)
Shulin Wu
2009-01-01
Full Text Available We propose a new idea to construct an effective algorithm to compute the minimal positive solution of the nonsymmetric algebraic Riccati equations arising from transport theory. For a class of these equations, an important feature is that the minimal positive solution can be obtained by computing the minimal positive solution of a couple of fixed-point equations with vector form. Based on the fixed-point vector equations, we introduce a new algorithm, namely, two-step relaxation Newton, derived by combining two different relaxation Newton methods to compute the minimal positive solution. The monotone convergence of the solution sequence generated by this new algorithm is established. Numerical results are given to show the advantages of the new algorithm for the nonsymmetric algebraic Riccati equations in vector form.
Convergence of Galerkin Solutions for Linear Differential Algebraic Equations in Hilbert Spaces
Matthes, Michael; Tischendorf, Caren
2010-09-01
The simulation of complex systems describing different physical effects becomes more and more of interest in various applications. Examples are couplings describing interactions between circuits and semiconductor devices, circuits and electromagnetic fields, fluids and structures. The modeling of such complex processes [1, 2, 3, 4, 7, 8] often leads to coupled systems that are composed of ordinary differential equations (ODEs), differential-algebraic equations (DAEs) and partial differential equations (PDEs). Such coupled systems can be regarded in the general framework of abstract differential-algebraic equations. Here, we discuss a Galerkin approach for handling linear abstract differential-algebraic equations with monotone operators. It is shown to provide solutions that converge to the unique solution of the abstract differential-algebraic system. Furthermore, the solution is proved to depend continuously on the data. The most interesting point of the Galerkin approach is the choice of basis functions. They have to be chosen in proper subspaces in order to guarantee that the solution satisfies the non-dynamic constraints. In contrast to other approaches as e.g. [5, 6], this approach allows time dependent operators but needs monotonicity.
Foley, Greg
2011-01-01
Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…
Sun, Leping
2016-01-01
This paper is concerned with the backward differential formula or BDF methods for a class of nonlinear 2-delay differential algebraic equations. We obtain two sufficient conditions under which the methods are stable and asymptotically stable. At last, examples show that our methods are true. PMID:27441132
Shcheglova, A. A.
2009-09-01
Linear control differential algebraic equations are considered. The issue of minimum dimension of the control vector necessitated for complete controllability of the system on any closed interval from the domain of definition is investigated. The problem is analyzed in connection with the time invariant systems having regular matrix pencils and also systems with real-analytic or smooth coefficients, which possess some structural forms.
Gasyna, Zbigniew L.
2008-01-01
Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)
The Max-Plus Algebra of the Natural Numbers has no Finite Equational Basis
DEFF Research Database (Denmark)
Aceto, Luca; Esik, Zoltan; Ingolfsdottir, Anna
2003-01-01
This paper shows that the collection of identities which hold in the algebra N of the natural numbers with constant zero, and binary operations of sum and maximum is not finitely based. Moreover, it is proven that, for every n, the equations in at most n variables that hold in N do not form...
Matrix Bounds for the Solution of the Continuous Algebraic Riccati Equation
Directory of Open Access Journals (Sweden)
Juan Zhang
2010-01-01
Full Text Available We propose new upper and lower matrix bounds for the solution of the continuous algebraic Riccati equation (CARE. In certain cases, these lower bounds improve and extend the previous results. Finally, we give a corresponding numerical example to illustrate the effectiveness of our results.
STABILITY RADIUS OF NON-SMOOTH PRITCHARD-SALAMON SYSTEMS AND THE ALGEBRAIC RICCATI EQUATION
Institute of Scientific and Technical Information of China (English)
Weisheng JIANG; Falun HUANG; Tingyu ZHU
2009-01-01
The authors discuss the stability radius of the non-smooth Pritchard-Salamon systems under structured perturbations. A formula for the stability radius in terms of the norm of a certain input-output operator is obtained. Furthermore, the relationship between stability radius and the solvability of some type of algebraic Riccati equations is given.
Alternative Representations for Algebraic Problem Solving: When Are Graphs Better than Equations?
Mielicki, Marta K.; Wiley, Jennifer
2016-01-01
Successful algebraic problem solving entails adaptability of solution methods using different representations. Prior research has suggested that students are more likely to prefer symbolic solution methods (equations) over graphical ones, even when graphical methods should be more efficient. However, this research has not tested how representation…
Institute of Scientific and Technical Information of China (English)
Yao-lin Jiang
2003-01-01
In this paper we presented a convergence condition of parallel dynamic iteration methods for a nonlinear system of differential-algebraic equations with a periodic constraint.The convergence criterion is decided by the spectral expression of a linear operator derivedfrom system partitions. Numerical experiments given here confirm the theoretical work ofthe paper.
Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations
Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie
2015-01-01
The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…
Energy Technology Data Exchange (ETDEWEB)
Vengerskii, P.S.; Kardash, A.I.; Sen`o, P.S. [L`vov State Univ. (Russian Federation)
1994-06-05
We consider the problem of finding real solutions of a system of nonlinear algebraic equations using interval analysis. Several versions of Newton and Runge interval iteration methods are presented. The computational aspects of their application are explained. 6 refs., 2 tabs.
New solutions of reflection equation derived from type B BMW algebras
Häring-Oldenburg, Reinhard
1996-09-01
We use B-type knot theory to find new solutions of Sklyanin's reflection equation in a systematic way. This generalizes the well known Baxterization of Birman - Wenzl algebras and should describe integrable systems which are restricted to a half plane.
A new algorithm for differential-algebraic equations based on HIDM
International Nuclear Information System (INIS)
A new algorithm is proposed to solve differential-algebraic equations. The algorithm is an extension of the algorithm of general purpose HIDM (higher order implicit difference method). A computer program named HDMTDV and based on the new algorithm is constructed and its high performance is proved numerically through several numerical computations, including index-2 problem of differential-algebraic equations and connected rigid pendulum equations. The new algorithm is also secular error free when applied to dissipationless dynamical systems. This nature is demonstrated numerically by computation of the Kepler motion. The new code can solve the initial value problem O = L { φ(x), [dφ(x)]/dx, [d2φ(x)]/dx2, x }, where L and φ are vectors of length N. The values of first or second derivatives of φ(x) are not always necessary in the equations. (author)
On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations
Zhang, Yu-Feng; Tam, Honwah
2016-03-01
In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014), and Hong Kong Research Grant Council under Grant No. HKBU202512, as well as the Natural Science Foundation of Shandong Province under Grant No. ZR2013AL016
Fermi-Bose duality of the Dirac equation and extended real Clifford-Dirac algebra
I.Yu. Krivsky; Simulik, V. M.
2010-01-01
We have proved on the basis of the symmetry analysis of the standard Dirac equation with nonzero mass that this equation may describe not only fermions of spin 1/2 but also bosons of spin 1. The new bosonic symmetries of the Dirac equation in both the Foldy-Wouthuysen and the Pauli-Dirac representations are found. Among these symmetries (together with the 32-dimensional pure matrix algebra of invariance) the new, physically meaningful, spin 1 Poincare symmetry of equation under consideration ...
Energy Technology Data Exchange (ETDEWEB)
Bessis, N.; Bessis, G. [Laboratoire de Physique des Lasers, U.R.A. 282 du C.N.R.S., Universite Paris-Nord, avenue J. B. Clement, 93430 Villetaneuse (France)
1997-11-01
An algebraic procedure is proposed for the analytical solution of Schr{umlt o}dinger equations that can be viewed as a factorizable equation with an additional potential V(x). Once V(x) has been expanded in a series of suitable x-basis functions u=u(x), which are specific to each factorization type, the solution of the Riccati equation associated with the given equation is performed by means of an open perturbation technique, i.e., at each order of the perturbation, an additional balance u-dependent term is introduced so that the resulting equation becomes solvable. Since the unperturbed potential involves the whole given potential and since the balance term is expected to be small, improved results are expected at low orders of the perturbation, even at the zeroth order. The procedure, well adapted to the use of computer algebra, is applied to the solution of the gx{sup 4}-anharmonic oscillator equation: by means of very simple algebraic manipulations, the trend of the exact values of the energies is rather well reproduced for a large range of values of the coupling constant (g=0.002 to g=20000). {copyright} {ital 1997 American Institute of Physics.}
Institute of Scientific and Technical Information of China (English)
Abbas NAJATI
2009-01-01
In this paper, we prove the generalized Hyers-Ulam stability of homomorphisms in quasi-Banach algebras associated with the following Pexiderized Jensen functional equation f(x+y/2+z)-g(x-y/2+z)=h(y).This is applied to investigating homomorphisms between quasi-Banach algebras. The concept of the generalized Hyers-Ulam stability originated from Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soe., 72, 297-300 (1978).
Multiple Representations for Systems of Linear Equations Via the Computer Algebra System Maple
Directory of Open Access Journals (Sweden)
Dann G. Mallet
2007-02-01
Full Text Available A number of different representational methods exist for presenting the theory of linear equations and associated solution spaces. Discussed in this paper are the findings of a case study where first year undergraduate students were exposed to a new (to the department method of teaching linear systems which used visual, algebraic and data-based representations constructed using the computer algebra system Maple. Positive and negative impacts on the students are discussed as they apply to representational translation and perceived learning.
Directory of Open Access Journals (Sweden)
Lakshmi Narayan Mishra
2016-04-01
Full Text Available In the present manuscript, we prove some results concerning the existence of solutions for some nonlinear functional-integral equations which contains various integral and functional equations that considered in nonlinear analysis and its applications. By utilizing the techniques of noncompactness measures, we operate the fixed point theorems such as Darbo's theorem in Banach algebra concerning the estimate on the solutions. The results obtained in this paper extend and improve essentially some known results in the recent literature. We also provide an example of nonlinear functional-integral equation to show the ability of our main result.
Tracking children's mental states while solving algebra equations.
Anderson, John R; Betts, Shawn; Ferris, Jennifer L; Fincham, Jon M
2012-11-01
Behavioral and function magnetic resonance imagery (fMRI) data were combined to infer the mental states of students as they interacted with an intelligent tutoring system. Sixteen children interacted with a computer tutor for solving linear equations over a six-day period (days 0-5), with days 1 and 5 occurring in an fMRI scanner. Hidden Markov model algorithms combined a model of student behavior with multi-voxel imaging pattern data to predict the mental states of students. We separately assessed the algorithms' ability to predict which step in a problem-solving sequence was performed and whether the step was performed correctly. For day 1, the data patterns of other students were used to predict the mental states of a target student. These predictions were improved on day 5 by adding information about the target student's behavioral and imaging data from day 1. Successful tracking of mental states depended on using the combination of a behavioral model and multi-voxel pattern analysis, illustrating the effectiveness of an integrated approach to tracking the cognition of individuals in real time as they perform complex tasks.
International Nuclear Information System (INIS)
It is shown that Heisenberg's commutation rule between the position co-ordinate and the corresponding canonically conjugate momentum may be interpreted by noncommuting geometrical structures. As in the absence of a magnetic field the Euclidean norm of the momentum space directly enters the kinetic energy, the momentum space can be mapped onto the quaternion field U2. Such a mapping preserves the norm of the momentum space. By that, the geometric and algebraic structure of the Pauli equation can be obtained and the relationship between the Pauli and the Dirac equation can be made apparent by noncommuting algebraic structures. In an appendix it will also be shown that the extension of the procedure to vector spaces equipped with Riemannian geometry makes no difficulties and a covariant quantization procedure can be formulated. (author)
On the vibrations of lumped parameter systems governed by differential-algebraic equations
Darbha, S.; Nakshatrala, K. B.; K.R. Rajagopal
2009-01-01
In this paper, we consider the vibratory motions of lumped parameter systems wherein the components of the system cannot be described by constitutive expressions for the force in terms of appropriate kinematical quantities. Such physical systems reduce to a system of differential-algebraic equations, which invariably need to be solved numerically. To illustrate the issues with clarity, we consider a simple system in which the dashpot is assumed to contain a "Bingham" fluid for which one canno...
Directory of Open Access Journals (Sweden)
Yu Liu
2009-01-01
Full Text Available By using diagonalizable matrix decomposition and majorization inequalities, we propose new trace bounds for the product of two real square matrices in which one is diagonalizable. These bounds improve and extend the previous results. Furthermore, we give some trace bounds for the solution of the algebraic Riccati equations, which improve some of the previous results under certain conditions. Finally, numerical examples have illustrated that our results are effective and superior.
Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwell's Equations
Koutschan, Christoph; Schoeberl, Joachim
2011-01-01
We consider the numerical discretization of the time-domain Maxwell's equations with an energy-conserving discontinuous Galerkin finite element formulation. This particular formulation allows for higher order approximations of the electric and magnetic field. Special emphasis is placed on an efficient implementation which is achieved by taking advantage of recurrence properties and the tensor-product structure of the chosen shape functions. These recurrences have been derived symbolically with computer algebra methods reminiscent of the holonomic systems approach.
Projected Runge-Kutta methods for differential algebraic equations of index 3
Schropp, Johannes
2003-01-01
In the present paper we introduce a new class of methods, Projected Runge-Kutta methods, for the solution of index 3 differential algebraic equations (DAEs) in Hessenberg form. The methods admit the integration of index 3 DAEs without any drift effects. This makes them particularly well suited for long term integration. Finally, implemented on the basis of the Radau5 code, the projected Runge-Kutta method admits larger step sizes for a prescribed tolerance than the corresponding classical sc...
Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras
Energy Technology Data Exchange (ETDEWEB)
Grahovski, Georgi G., E-mail: G.Grahovski@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT (United Kingdom); Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko chausee, Sofia 1784 (Bulgaria); Mikhailov, Alexander V., E-mail: A.V.Mikhailov@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT (United Kingdom)
2013-12-17
Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of these Darboux transformations leads to integrable Grassmann generalisations of the difference Toda and NLS equations. The resulting systems will have discrete Lax representations provided by the set of two consistent elementary Darboux transformations. For the two discrete systems obtained, initial value and initial-boundary problems are formulated.
Energy Technology Data Exchange (ETDEWEB)
Davies, Richard [School of Technology, University of Glamorgan, Pontypridd, CF37 1DL (United Kingdom)]. E-mail: rkdavies@glam.ac.uk; Peng Shi [School of Technology, University of Glamorgan, Pontypridd, CF37 1DL (United Kingdom)]. E-mail: pshi@glam.ac.uk; Wiltshire, Ron [School of Technology, University of Glamorgan, Pontypridd, CF37 1DL (United Kingdom)]. E-mail: rjwiltsh@glam.ac.uk
2007-04-15
In dynamical systems studies, the so-called Riccati and Lyapunov equations play an important role in stability analysis, optimal control and filtering design. In this paper, upper matrix bounds for the perturbation of the stabilizing solution of the continuous algebraic Riccati equation (CARE) are derived for the case when one, or all the coefficient matrices are subject to small perturbations. Comparing with existing works on this topic, the proposed bounds are less restrictive. In addition to these bounds, iterative algorithms are also derived to obtain more precise estimates.
Solving differential–algebraic equation systems by means of index reduction methodology
DEFF Research Database (Denmark)
Sørensen, Kim; Houbak, Niels; Condra, Thomas
2006-01-01
With the overall goal of optimizing the design and operation of steam boilers, a model for optimizing the dynamic performance has been developed. The model has been developed as three sub-models that are integrated into an overall model for the complete boiler. Each of the sub-models consist...... stiff ODEs and index 1 DAEs by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper...
Solving differential-algebraic equation systems by means of index reduction methodology
DEFF Research Database (Denmark)
Sørensen, Kim; Houbak, Niels; Condra, Thomas Joseph
2006-01-01
With the overall goal of optimizing the design and operation of steam boilers, a model for optimizing the dynamic performance has been developed. The model has been developed as three sub-models that are integrated into an overall model for the complete boiler. Each of the sub-models consist...... stiff ODE’s and index 1 DAE’s by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper...
Field Equations and Lagrangian for the Kaluza Metric Evaluated with Tensor Algebra Software
Directory of Open Access Journals (Sweden)
L. L. Williams
2015-01-01
Full Text Available This paper calculates the Kaluza field equations with the aid of a computer package for tensor algebra, xAct. The xAct file is provided with this paper. We find that Thiry’s field equations are correct, but only under limited circumstances. The full five-dimensional field equations under the cylinder condition are provided here, and we see that most of the other references miss at least some terms from them. We go on to establish the remarkable Kaluza Lagrangian, and verify that the field equations calculated from it match those calculated with xAct, thereby demonstrating self-consistency of these results. Many of these results can be found scattered throughout the literature, and we provide some pointers for historical purposes. But our intent is to provide a definitive exposition of the field equations of the classical, five-dimensional metric ansatz of Kaluza, along with the computer algebra data file to verify them, and then to recover the unique Lagrangian for the theory. In common terms, the Kaluza theory is an “ω=0” scalar field theory, but with unique electrodynamic couplings.
Liu, Da-Yan
2015-04-30
This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.
On the Algebraic Structure of Higher-Spin Field Equations and New Exact Solutions
Iazeolla, Carlo
2008-01-01
This Thesis reviews Vasiliev's approach to Higher-Spin Gauge Theory and contains some original results concerning new exact solutions of the Vasiliev equations and the representation theory of the higher-spin algebra. The review part covers the various formulations of the free theory as well as Vasiliev's full nonlinear equations, in particular focusing on their algebraic structure and on their properties in various space-time signatures. Then, the original results are presented. First, the 4D Vasiliev equations are formulated in space-times with signatures (4-p,p) and non-vanishing cosmological constant, and some new exact solutions are found, depending on continuous and discrete parameters: (a) an SO(4-p,p)-invariant family of solutions; (b) non-maximally symmetric solutions with vanishing Weyl tensors and higher-spin gauge fields, that differ from the maximally symmetric background solutions in the auxiliary field sector; and (c) solutions of the chiral models with an infinite tower of Weyl tensors proport...
Directory of Open Access Journals (Sweden)
Murat Osmanoglu
2013-01-01
Full Text Available We have considered linear partial differential algebraic equations (LPDAEs of the form , which has at least one singular matrix of . We have first introduced a uniform differential time index and a differential space index. The initial conditions and boundary conditions of the given system cannot be prescribed for all components of the solution vector here. To overcome this, we introduced these indexes. Furthermore, differential transform method has been given to solve LPDAEs. We have applied this method to a test problem, and numerical solution of the problem has been compared with analytical solution.
Upper solution bounds of the continuous coupled algebraic Riccati matrix equation
Liu, Jianzhou; Zhang, Juan
2011-04-01
In this article, by using some matrix identities, we construct the equivalent form of the continuous coupled algebraic Riccati equation (CCARE). Further, with the aid of the eigenvalue inequalities of matrix's product, by solving the linear inequalities utilising the properties of M-matrix and its inverse matrix, new upper matrix bounds for the solutions of the CCARE are established, which improve and extend some of the recent results. Finally, a corresponding numerical example is proposed to illustrate the effectiveness of the derived results.
Graph theory, irreducibility, and structural analysis of differential-algebraic equation systems
Pryce, John D.; Nedialkov, Nedialko S.; Tan, Guangning
2014-01-01
The $\\Sigma$-method for structural analysis of a differential-algebraic equation (DAE) system produces offset vectors from which the sparsity pattern of a system Jacobian is derived. This pattern implies a block-triangular form (BTF) of the DAE that can be exploited to speed up numerical solution. The paper compares this fine BTF with the usually coarser BTF derived from the sparsity pattern of the \\sigmx. It defines a Fine-Block Graph with weighted edges, which gives insight into the relatio...
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Nodarse, R [Departamento de Analisis Matematico, Universidad de Sevilla, Apdo. 1160, E-41080 Sevilla (Spain); Atakishiyev, N M [Instituto de Matematicas, UNAM, Apartado Postal 273-3, CP 62210 Cuernavaca, Morelos, Mexico (Germany); Costas-Santos, R S [Departamento de Matematicas, EPS, Universidad Carlos III de Madrid, Ave. Universidad 30, E-28911, Leganes, Madrid (Spain)
2005-01-07
We argue that one can factorize the difference equation of hypergeometric type on non-uniform lattices in the general case. It is shown that in the most cases of q-linear spectrum of the eigenvalues, this directly leads to the dynamical symmetry algebra su{sub q}(1, 1), whose generators are explicitly constructed in terms of the difference operators, obtained in the process of factorization. Thus all models with the q-linear spectrum (some of them, but not all, previously considered in a number of publications) can be treated in a unified form.
Modeling boyciana-fish-human interaction with partial differential algebraic equations.
Jiang, Yushan; Zhang, Qingling; Wang, Haiyan
2016-07-01
Under the influence of human population distribution, the boyciana-fish ecological system is considered. First, the system can be described as a nonlinear partial differential algebraic equations system (PDAEs) with Neumann boundary conditions and ratio-dependent functional response. Second, we examine the system's persistence properties: the loacl stabilities of positive steady states, the absorbtion region and the global stability. And the proposed approach is illustrated by numerical simulation. Finally, by using the realistic data collected in the past fourteen years, the PDAEs parameter optimization model is built to predict the boyciana population. PMID:27155570
Directory of Open Access Journals (Sweden)
Hongwei Yang
2014-01-01
Full Text Available In the paper, by using multiple-scale method, the Benjamin-Ono-Burgers-MKdV (BO-B-MKdV equation is obtained which governs algebraic Rossby solitary waves in stratified fluids. This equation is first derived for Rossby waves. By analysis and calculation, some conservation laws are derived from the BO-B-MKdV equation without dissipation. The results show that the mass, momentum, energy, and velocity of the center of gravity of algebraic Rossby waves are conserved and the presence of a small dissipation destroys these conservations.
Directory of Open Access Journals (Sweden)
M. Heydari
2013-05-01
Full Text Available A new and effective direct method to determine the numerical solution of linear and nonlinear differential-algebraic equations (DAEs is proposed. The method consists of expanding the required approximate solution as the elements of Chebyshev cardinal functions. The operational matrices for the integration and product of the Chebyshev cardinal functions are presented. A general procedure for forming these matrices is given. These matrices play an important role in modelling of problems. By using these operational matrices together, a differentialalgebraic equation can be transformed to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique
Asymptotic Analysis of a System of Algebraic Equations Arising in Dislocation Theory
Hall, Cameron L.
2010-01-01
The system of algebraic equations given by σn j=0, j≠=i sgn(xi-xj )|xi-xj|a = 1, i = 1, 2, ⋯ , n, x0 = 0, appears in dislocation theory in models of dislocation pile-ups. Specifically, the case a = 1 corresponds to the simple situation where n dislocations are piled up against a locked dislocation, while the case a = 3 corresponds to n dislocation dipoles piled up against a locked dipole. We present a general analysis of systems of this type for a > 0 and n large. In the asymptotic limit n→∞, it becomes possible to replace the system of discrete equations with a continuum equation for the particle density. For 0 < a < 2, this takes the form of a singular integral equation, while for a > 2 it is a first-order differential equation. The critical case a = 2 requires special treatment, but, up to corrections of logarithmic order, it also leads to a differential equation. The continuum approximation is valid only for i neither too small nor too close to n. The boundary layers at either end of the pile-up are also analyzed, which requires matching between discrete and continuum approximations to the main problem. © 2010 Society for Industrial and Applied Mathematics.
Lie Algebraic Structures and Integrability of Long-Short Wave Equation in （2＋1）Dimensions
Institute of Scientific and Technical Information of China (English)
ZHAOXue-Qing; LüJing-Fa
2004-01-01
The hidden symmetry and integrability of the long-short wave equation in (2+1) dimensions are considered using the prolongation approach. The internal algebraic structures and their linear spectra are derived in detail which show that the equation is integrable.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A generalized variable-coefficient algebraic method is applied to construct several new families of exact solutions of physical interestfor (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems. PMID:27330880
Exact algebraization of the signal equation of spoiled gradient echo MRI
Energy Technology Data Exchange (ETDEWEB)
Dathe, Henning [Department of Orthodontics, Biomechanics Group, University Medical Centre, Goettingen (Germany); Helms, Gunther, E-mail: ghelms@gwdg.d [MR-Research in Neurology and Psychiatry, University Medical Centre, Goettingen (Germany)
2010-08-07
The Ernst equation for Fourier transform nuclear magnetic resonance (MR) describes the spoiled steady-state signal created by periodic partial excitation. In MR imaging (MRI), it is commonly applied to spoiled gradient-echo acquisition in the steady state, created by a small flip angle {alpha} at a repetition time TR much shorter than the longitudinal relaxation time T{sub 1}. We describe two parameter transformations of {alpha} and TR/T{sub 1}, which render the Ernst equation as a low-order rational function. Computer algebra can be readily applied for analytically solving protocol optimization, as shown for the dual flip angle experiment. These transformations are based on the half-angle tangent substitution and its hyperbolic analogue. They are monotonic and approach identity for small {alpha} and small TR/T{sub 1} with a third-order error. Thus, the exact algebraization can be readily applied to fast gradient echo MRI to yield a rational approximation in {alpha} and TR/T{sub 1}. This reveals a fundamental relationship between the square of the flip angle and TR/T{sub 1} which characterizes the Ernst angle, constant degree of T{sub 1}-weighting and the influence of the local radio-frequency field.
International Nuclear Information System (INIS)
This note deals with the resolution of large algebraic differential systems involved in the physical sciences, with special reference to electronics and nuclear physics. The theoretical aspect of the algorithms established and developed for this purpose is discussed in detail. A decomposition algorithm based on the graph theory is developed in detail and the regressive analysis of the error involved in the decomposition is carried out. The specific application of these algorithms on the analyses of non-linear electronic circuits and to the integration of algebraic differential equations simulating the general operation of nuclear reactors coupled to heat exchangers is discussed in detail. To conclude, it is shown that the development of efficient digital resolution techniques dealing with the elements in order is sub-optimal for large systems and calls for the revision of conventional formulation methods. Thus for a high-order physical system, the larger, the number of auxiliary unknowns introduced, the easier the formulation and resolution, owing to the elimination of any form of complex matricial calculation such as those given by the state variables method
Ito, Kazufumi
1987-01-01
The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
It was proved numerically that the Domain Decomposition Method (DDM) with one layer overlapping grids is identical to the block iterative method of linear algebra equations. The results obtained using DDM could be in reasonable aggeement with the results of full-domain simulation. With the three dimensional solver developed by the authors, the flow field in a pipe was simulated using the full-domain DDM with one layer overlapping grids and with patched grids respectively. Both of the two cases led to the convergent solution. Further research shows the superiority of the DDM with one layer overlapping grids to the DDM with patched grids. A comparison between the numerical results obtained by the authors and the experimental results given by Enayet[3] shows that the numerical results are reasonable.
FAST SOLUTION FOR LARGE SCALE LINEAR ALGEBRAIC EQUATIONS IN FINITE ELEMENT ANALYSIS
Institute of Scientific and Technical Information of China (English)
Qi Zhaohui; Liu Yuqi; Hu Ping
2001-01-01
The computational efficiency of numerical solution of linear algebraic equations in finite elements can be improved in tow wqys. One is to decrease the fill-in numbers, which are new non-ze-ro numbers in the matrix of global stiffness generated during the process of elimination.The other is to reduce the computational operation of multiplying a real number by zero.Based on the fact that the order of elimination can determine how many fill-in numbers should be generated, we present a new method for optimization of numbering nodes. This method is quite different from bandwidth optimization. Fill-in numbers can be decreased in a large scale by the use of this method. The bi-factorization method is adoted to avoid multiplying real numbers by zero.For large scale finite element analysis, the method presented in this paper is more efficient than the traditional LDLT method.
A subspace shift technique for solving close-to-critical nonsymmetric algebraic Riccati equations
Iannazzo, Bruno
2010-01-01
The worst situation in computing the minimal nonnegative solution $X_*$ of a nonsymmetric algebraic Riccati equation $\\mathcal R(X)=0$ associated with an M-matrix occurs when the derivative of $\\mathcal R$ at $X_*$ is near to a singular matrix. When the derivative of $\\mathcal R$ at $X_*$ is singular, the problem is ill-conditioned and the convergence of the algorithms based on matrix iterations is slow; however, there exist some techniques to remove the singularity and restore well-conditioning and fast convergence. This phenomenon is partially shown also in the close-to-critical case, but the techniques used for the null recurrent case cannot be applied to this setting. We present a new method to accelerate the convergence and amend the conditioning in close-to-critical cases. The numerical experiments confirm the efficiency of the new method.
Novel insights on the stabilising solution to the continuous-time algebraic Riccati equation
Rojas, A. J.
2014-11-01
In the present paper we present a closed-form solution, as a function of the closed-loop poles, for the continuous-time algebraic Riccati equations (CAREs) related to single-input single-output systems with non-repeated poles. The proposed solution trades the standard numerical algorithm approach for one based on a spectral factorisation argument, offering potential insight into any control technique based on a CARE and its solution. As an example, we present the equivalence of two fairly recent control over network results. Furthermore we apply the proposed result to the formula for the optimal regulator gain matrix k (or equivalently the Luenberger's observer gain l) and present an example. Finally, we conclude by discussing the possible extension of the proposed closed-form solution to the repeated eigenvalues case and to the case when the CARE is related to multiple-input multiple-output systems.
New solutions from algebraic equations for the Skyrme model coupled to a scalar meson
Energy Technology Data Exchange (ETDEWEB)
Braghin, Fabio L. [Universidade Federal do Rio Grande do Norte (IIF/UFRN), Natal, RN (Brazil). Inst. Internacional de Fisica
2010-07-01
Full text: In this work a modified Skyrme model is considered such as to incorporate the interaction of the hedgehog with a scalar field, based on a previous work. The Skyrme model is a model of the nucleon in which the baryon emerges as a topological soliton and its coupling to a scalar field can either correspond to the coupling to the lightest scalar isoscalar meson sigma and also to implement the spontaneous breakdown of chiral symmetry in a consistent way. Therefore it can be related to modifications of a dense interacting medium and it becomes suitable for investigating the role of the symmetry breaking and its restoration. A transcendental algebraic equation is found to be enough to extract a new class of profile solutions of the skyrmion in a constant background. The mass of the corresponding topological soliton was found to decrease considerably in the case small masses are associated to the scalar field. (author)
Directory of Open Access Journals (Sweden)
Tsugio Fukuchi
2014-06-01
Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.
Haiyan Yuan; Jihong Shen
2014-01-01
This paper studies the asymptotic stability of the two-step Runge-Kutta methods for neutral delay integro differential-algebraic equations with many delays. It proves that A-stable two-step Runge-Kutta methods are asymptotically stable for neutral delay integro differential-algebraic equations with many delays.
Directory of Open Access Journals (Sweden)
Liu Jianzhou
2009-01-01
Full Text Available By using singular value decomposition and majorization inequalities, we propose new inequalities for the trace of the product of two arbitrary real square matrices. These bounds improve and extend the recent results. Further, we give their application in the algebraic Riccati equation. Finally, numerical examples have illustrated that our results are effective and superior.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.
Stabilizing Solution for a Discrete-Time Modified Algebraic Riccati Equation in Infinite Dimensions
Directory of Open Access Journals (Sweden)
Viorica Mariela Ungureanu
2015-01-01
Full Text Available We provide necessary and sufficient conditions for the existence of stabilizing solutions for a class of modified algebraic discrete-time Riccati equations (MAREs defined on ordered Banach spaces of sequences of linear and bounded operators. These MAREs arise in the study of linear quadratic (LQ optimal control problems for infinite-dimensional discrete-time linear systems (DTLSs affected simultaneously by multiplicative white noise (MN and Markovian jumps (MJs. Unlike most of the previous works, where the detectability and observability notions are key tools for studying the global solvability of MAREs, in this paper the conditions of existence of mean-square stabilizing solutions are given directly in terms of system parameters. The methods we have used are based on the spectral theory of positive operators and the properties of trace class and compact operators. Our results generalise similar ones obtained for finite-dimensional MAREs associated with stochastic DTLSs without MJs. Also they complete and extend (in the autonomous case former investigations concerning the existence of certain global solutions (as minimal, maximal, and stabilizing solutions for generalized discrete-time Riccati type equations defined on infinite-dimensional ordered Banach spaces.
Institute of Scientific and Technical Information of China (English)
张春蕊; 郑宝东
2003-01-01
Runge-Kutta方法对微分代数方程是正则的,是指数值解的有限渐进值与方程本身的渐进值是相等的.给出了保证Runge-Kutta方法对微分代数方程是正则的条件,证明了Runge-Kutta方法是正则的充要条件是折叠方法是正则的.%The numerical method for differential-algebraic equation is regular if it has the same set offinite asymptotic values as the underlying differential-algebraic system. The conditions that guaranteeregular properties of Runge-Kutta method for differential-algebraic equation are considered. It isproved that the Runge-Kutta method for differential-algebraic equation is regular if and only if thefold method is regular for differential-algebraic equation.
Balancing the Equation: Do Course Variations in Algebra 1 Provide Equal Student Outcomes?
Kenfield, Danielle M.
2013-01-01
Historically, algebra has served as a gatekeeper that divides students into academic programs with varying opportunities to learn and controls access to higher education and career opportunities. Successful completion of Algebra 1 demonstrates mathematical proficiency and allows access to a sequential and progressive path of advanced study that…
Hewitt, Dave
2012-01-01
This study looks at a mixed ability group of 21 Year 5 primary students (aged 9-10 years old) who had previously never had formal instruction using letters to stand for unknowns or variables in a mathematics context; nor had they been introduced to formal algebraic notation. Three lessons were taught using the computer software "Grid Algebra"…
Energy Technology Data Exchange (ETDEWEB)
Ulmer, W.; Hartmann, H. (Frankfurt Univ. (Germany, F.R.). Inst. fuer Physikalische und Theoretische Chemie)
1978-09-01
It is shown that Heisenberg's commutation rule between the position co-ordinate and the corresponding canonically conjugate momentum may be interpreted by noncommuting geometrical structures. As in the absence of a magnetic field the Euclidean norm of the momentum space directly enters the kinetic energy, the momentum space can be mapped onto the quaternion field U/sub 2/. Such a mapping preserves the norm of the momentum space. By that, the geometric and algebraic structure of the Pauli equation can be obtained and the relationship between the Pauli and the Dirac equation can be made apparent by noncommuting algebraic structures. In an appendix it will also be shown that the extension of the procedure to vector spaces equipped with Riemannian geometry makes no difficulties and a covariant quantization procedure can be formulated.
Akbari, M. R.; Ganji, D. D.; Ahmadi, A. R.; Kachapi, Sayyid H. Hashemi
2014-03-01
In the current paper, a simplified model of Tower Cranes has been presented in order to investigate and analyze the nonlinear differential equation governing on the presented system in three different cases by Algebraic Method (AGM). Comparisons have been made between AGM and Numerical Solution, and these results have been indicated that this approach is very efficient and easy so it can be applied for other nonlinear equations. It is citable that there are some valuable advantages in this way of solving differential equations and also the answer of various sets of complicated differential equations can be achieved in this manner which in the other methods, so far, they have not had acceptable solutions. The simplification of the solution procedure in Algebraic Method and its application for solving a wide variety of differential equations not only in Vibrations but also in different fields of study such as fluid mechanics, chemical engineering, etc. make AGM be a powerful and useful role model for researchers in order to solve complicated nonlinear differential equations.
Ivanov, I. G.; Netov, N. C.; Bogdanova, B. C.
2015-10-01
This paper addresses the problem of solving a generalized algebraic Riccati equation with an indefinite sign of its quadratic term. We extend the approach introduced by Lanzon, Feng, Anderson and Rotkowitz (2008) for solving similar Riccati equations. We numerically investigate two types of iterative methods for computing the stabilizing solution. The first type of iterative methods constructs two matrix sequences, where the sum of them converges to the stabilizing solution. The second type of methods defines one matrix sequence which converges to the stabilizing solution. Computer realizations of the presented methods are numerically tested and compared on the test of family examples. Based on the experiments some conclusions are derived.
代数Riccati方程可稳解的条件数%CONDITION NUMBERS OF THE STABILIZING SOLUTIONS OF THE ALGEBRAIC RICCATI EQUATIONS
Institute of Scientific and Technical Information of China (English)
刘新国
2001-01-01
The Condition numbers are defined for the stabilizing Solutionsof Continuoustime, discrete-time and the reverse discrete-time algebraic Riccati equations. The first-order perturbation expansions for the stabilizing Solutions are also obtained.
Bethe subalgebras in affine Birman-Murakami-Wenzl algebras and flat connections for q-KZ equations
Isaev, A. P.; Kirillov, A. N.; Tarasov, V. O.
2016-05-01
Commutative sets of Jucys-Murphy elements for affine braid groups of {A}(1),{B}(1),{C}(1),{D}(1) types were defined. Construction of R-matrix representations of the affine braid group of type {C}(1) and its distinguished commutative subgroup generated by the {C}(1)-type Jucys-Murphy elements are given. We describe a general method to produce flat connections for the two-boundary quantum Knizhnik-Zamolodchikov equations as necessary conditions for Sklyanin's type transfer matrix associated with the two-boundary multicomponent Zamolodchikov algebra to be invariant under the action of the {C}(1)-type Jucys-Murphy elements. We specify our general construction to the case of the Birman-Murakami-Wenzl algebras (BMW algebras for short). As an application we suggest a baxterization of the Dunkl-Cherednik elements {Y}\\prime {{s}} in the double affine Hecke algebra of type A. Dedicated to Professor Rodney Baxter on the occasion of his 75th Birthday.
Bethe subalgebras in affine Birman–Murakami–Wenzl algebras and flat connections for q-KZ equations
Isaev, A. P.; Kirillov, A. N.; Tarasov, V. O.
2016-05-01
Commutative sets of Jucys–Murphy elements for affine braid groups of {A}(1),{B}(1),{C}(1),{D}(1) types were defined. Construction of R-matrix representations of the affine braid group of type {C}(1) and its distinguished commutative subgroup generated by the {C}(1)-type Jucys–Murphy elements are given. We describe a general method to produce flat connections for the two-boundary quantum Knizhnik–Zamolodchikov equations as necessary conditions for Sklyanin's type transfer matrix associated with the two-boundary multicomponent Zamolodchikov algebra to be invariant under the action of the {C}(1)-type Jucys–Murphy elements. We specify our general construction to the case of the Birman–Murakami–Wenzl algebras (BMW algebras for short). As an application we suggest a baxterization of the Dunkl–Cherednik elements {Y}\\prime {{s}} in the double affine Hecke algebra of type A. Dedicated to Professor Rodney Baxter on the occasion of his 75th Birthday.
McKeague, Charles P
1986-01-01
Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra
McKeague, Charles P
1981-01-01
Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e
Adaptive Algebraic Multigrid for Finite Element Elliptic Equations with Random Coefficients
Energy Technology Data Exchange (ETDEWEB)
Kalchev, D
2012-04-02
This thesis presents a two-grid algorithm based on Smoothed Aggregation Spectral Element Agglomeration Algebraic Multigrid (SA-{rho}AMGe) combined with adaptation. The aim is to build an efficient solver for the linear systems arising from discretization of second-order elliptic partial differential equations (PDEs) with stochastic coefficients. Examples include PDEs that model subsurface flow with random permeability field. During a Markov Chain Monte Carlo (MCMC) simulation process, that draws PDE coefficient samples from a certain distribution, the PDE coefficients change, hence the resulting linear systems to be solved change. At every such step the system (discretized PDE) needs to be solved and the computed solution used to evaluate some functional(s) of interest that then determine if the coefficient sample is acceptable or not. The MCMC process is hence computationally intensive and requires the solvers used to be efficient and fast. This fact that at every step of MCMC the resulting linear system changes, makes an already existing solver built for the old problem perhaps not as efficient for the problem corresponding to the new sampled coefficient. This motivates the main goal of our study, namely, to adapt an already existing solver to handle the problem (with changed coefficient) with the objective to achieve this goal to be faster and more efficient than building a completely new solver from scratch. Our approach utilizes the local element matrices (for the problem with changed coefficients) to build local problems associated with constructed by the method agglomerated elements (a set of subdomains that cover the given computational domain). We solve a generalized eigenproblem for each set in a subspace spanned by the previous local coarse space (used for the old solver) and a vector, component of the error, that the old solver cannot handle. A portion of the spectrum of these local eigen-problems (corresponding to eigenvalues close to zero) form the
Liu, Jianzhou; Zhang, Juan
2011-08-01
In this article, applying the properties of M-matrix and non-negative matrix, utilising eigenvalue inequalities of matrix's sum and product, we firstly develop new upper and lower matrix bounds of the solution for discrete coupled algebraic Riccati equation (DCARE). Secondly, we discuss the solution existence uniqueness condition of the DCARE using the developed upper and lower matrix bounds and a fixed point theorem. Thirdly, a new fixed iterative algorithm of the solution for the DCARE is shown. Finally, the corresponding numerical examples are given to illustrate the effectiveness of the developed results.
Existence Condition on Solutions to the Algebraic Riccati Equation%代数Riccati方程解的存在性条件
Institute of Scientific and Technical Information of China (English)
倪茂林
2008-01-01
First, the existence conditions on the solutions to the algebraic Riccati equation are reviewed. Then, a strict proof is presented for a necessary and sufficient condition on the existence of a unique optimal positive definite solution to this equation. By using this condition, some untrue results on the design of robust decentralized controllers are corrected.
The exploration of Galois' algebraic equation theory%伽罗瓦的代数方程思想
Institute of Scientific and Technical Information of China (English)
赵晔; 王昌; 周畅
2011-01-01
目的 探讨在代数方程根式可解性理论的发展中,伽罗瓦(Evariste Galois,1811-1832)的代数方程理论思想发展过程.方法 采用历史考察与数理分析法.结果 伽罗瓦是通过引进"伽罗瓦群"、"正规子群"、"置换群"等概念开始建立他的理论,并且找出了根式扩张塔和可解群之间的对应关系,利用这种对应关系最终解决了代数方程根式可解性理论这一难题.结论 伽罗瓦继承了拉格朗日(J.L.Lagrange,1736-1813)问题转化的思想,并且把这一思想进行发展,使得人们对方程根式解问题的研究进入到对"结构"观念的研究,导致了抽象代数学科的诞生;伽罗瓦的研究思路是通过继承和发展前人的思想成果得出来的.%Aim To explore the theory of Galois' algebraic equation through the depth study on the radical solution theory. Methods Historical investigation and mathematical analysis. Results Galois established his theory by introducing some concepts such as "Galois group", "normal subgroup", "permutation group" etc, and identifying the corresponding relation between radical expansion tower and solvable group. He finally solved the problem of algebraic equation radical solution theory. Conclusion Galois inherited the thoughts of Lagrange's problem transforming, and he developed this thoughts so that people turned the research of algebraic equation radical solution theory into the study of structure concept. It caused the establishment of abstract algebra discipline. His research idea originated from inheriting and developing predecessors' achievements.
Desingularizing of Differential-Algebraic Equations%微分代数方程去奇异化分析
Institute of Scientific and Technical Information of China (English)
邹杰涛; 王瑞瑞; 杨志辉
2011-01-01
利用去奇异化方法讨论了拟线性微分代数方程在奇点邻域内光滑解的性质.通过尺度参数的微分同胚变换,将拟线性微分代数方程转化为相应的常微分方程,从而构造出在孤立奇点邻域内的初始微分代数方程的光滑解,给出解存在的充分条件,并进一步讨论了解的性质.%In this paper we use the desingularizing method to discuss smooth solutions of quasi-linear differential-algebraic equations (DAEs) in the neighborhood of singularities. Through a diffeomorphic transformation of the scale parameter, the original quasi-linear DAEs can be changed into a corresponding ODE from which we can construct smooth solutions of DAEs near the isolate singularities. Furthermore, a sufficient condition for the existence of smooth solutions of quasi-linear differential-algebraic equations is presented.
Nordtvedt, Kenneth
2015-01-01
A method for constructing metric gravity's N-body Lagrangian is developed which uses iterative, liner algebraic euqations which enforce invariance properties of gravity --- exterior effacement, interior effacement, and the time dilation and Lorentz contraction of matter under boosts. The method is demonstrated by obtaining the full 1/c^4 order Lagrangian, and a combination of exterior and interior effacement enforcement permits construction of the full Schwarzschild temporal and spatial metric potentials.
On Lagrange＇s Algebraic Equation Theory and Its Influence%拉格朗日的代数方程求解理论及其影响
Institute of Scientific and Technical Information of China (English)
赵增逊
2012-01-01
Lagrange＇s theory of algebraic equations is an integral part of the resolution history of algebraic equations,and the theory has an important impact on later algebraist.To reveal the content of Lagrange＇s algebraic equations theory,express its far-reaching implications,the article,based on original literature, concisely describes the content of Lagrange＇s algebraic equations theory and its influence.Therefore, understanding Lagrange＇s theory of algebraic equations is not only conducive to the understanding of the auxiliary equation theory,the connotation of permutation theory,but also is more helpful to find out the entire resolution history of algebraic equation.%拉格朗日的代数方程求解理论是整个代数方程求解史中不可或缺的一部分,并且该理论对以后的代数学家产生了重要的影响。为展示拉格朗日代数方程求解理论的内容,说明该理论产生的深远影响,从原始文献出发,叙述了拉格朗日的代数方程求解理论的内容,重点阐述了该理论产生的重要影响。因此,清楚拉格朗日的代数方程求解理论不仅有利于了解辅助方程理论、置换思想的内涵,更有利于清楚整个代数方程的求解历史。
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Ferrante, Augusto; Ntogramatzidis, Lorenzo
2013-01-01
The purpose of this paper is to investigate the role that the continuous-time generalised Riccati equation plays within the context of singular linear-quadratic optimal control. This equation has been defined following the analogy with the discrete-time generalised Riccati equation, but, differently from the discrete case, to date the importance of this equation in the context of optimal control is yet to be understood. This note addresses this point. We show in particular that when the conti...
Generalized Flip-Flop Input Equations Based on a Four-Valued Boolean Algebra
Tucker, Jerry H.; Tapia, Moiez A.
1996-01-01
A procedure is developed for obtaining generalized flip-flop input equations, and a concise method is presented for representing these equations. The procedure is based on solving a four-valued characteristic equation of the flip-flop, and can encompass flip-flops that are too complex to approach intuitively. The technique is presented using Karnaugh maps, but could easily be implemented in software.
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; WANG Yong
2006-01-01
With the help of Bose operator identities and entangled state representation and based on our previous work [Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.
Algebraic Equations and Inequalities: Issues for Research and Teaching. Research Forum
Bazzini, Luciana; Tsamir, Pessia
2004-01-01
The presentations address a variety of difficulties occurring in students' solutions of equations and inequalities, and suggest different reasons for these difficulties. When analyzing students' performances, [BB] and [TTT] mention students' tendencies to make irrelevant connections between equations and inequalities as a problematic phenomenon.…
RICCATI EQUATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS (vol 49, pg 2542, 2011)
Curtain, Ruth
2013-01-01
This paper contains corrections to [R. Curtain, SIAM J. Control Optim., 49 (2011), pp. 2542-2557]. While all claims remain valid, and the proof for the linear quadratic Riccati equations is correct, this proof does not cover the positive-real and bounded-real Riccati equations. Here a correct proof
Institute of Scientific and Technical Information of China (English)
An Hui-hui; Wang Zhi-chun
2016-01-01
L-octo-algebra with 8 operations as the Lie algebraic analogue of octo-algebra such that the sum of 8 operations is a Lie algebra is discussed. Any octo-algebra is an L-octo-algebra. The relationships among L-octo-algebras, L-quadri-algebras, L-dendriform algebras, pre-Lie algebras and Lie algebras are given. The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators, classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.
Electromagnetic energy-momentum equation without tensors: a geometric algebra approach
Sugon Jr., Quirino M.; McNamara, Daniel J.
2008-01-01
In this paper, we define energy-momentum density as a product of the complex vector electromagnetic field and its complex conjugate. We derive an equation for the spacetime derivative of the energy-momentum density. We show that the scalar and vector parts of this equation are the differential conservation laws for energy and momentum, and the imaginary vector part is a relation for the curl of the Poynting vector. We can show that the spacetime derivative of this energy-momentum equation is ...
Error Analysis of One—Leg Methods for Differential—Algebraic Equations of Index 2
Institute of Scientific and Technical Information of China (English)
AiguoXIAO; ShoufuLI
1999-01-01
This paper deals with error of one-leg methods applied to differentialalgebraic equations(DAEs) of index 2 in Hessenberg form.Some numerical examples in line with the theoretical results are included.
Samuel, Koji; Mulenga, H. M.; Angel, Mukuka
2016-01-01
This paper investigates the challenges faced by secondary school teachers and pupils in the teaching and learning of algebraic linear equations. The study involved 80 grade 11 pupils and 15 teachers of mathematics, drawn from 4 selected secondary schools in Mufulira district, Zambia in Central Africa. A descriptive survey method was employed to…
Norman, Joseph W
2011-01-01
A new computational method that uses polynomial equations and dynamical systems to evaluate logical propositions is introduced and applied to G\\"odel's incompleteness theorems. The truth value of a logical formula subject to a set of axioms is computed from the solution to the corresponding system of polynomial equations. A reference by a formula to its own provability is shown to be a recurrence relation, which can be either interpreted as such to generate a discrete dynamical system, or interpreted in a static way to create an additional simultaneous equation. In this framework the truth values of logical formulas and other polynomial objectives have complex data structures: sets of elementary values, or dynamical systems that generate sets of infinite sequences of such solution-value sets. Besides the routine result that a formula has a definite elementary value, these data structures encode several exceptions: formulas that are ambiguous, unsatisfiable, unsteady, or contingent. These exceptions represent ...
Icardi, Matteo
2014-09-01
The inhomogeneous generalized population balance equation, which is discretized with the direct quadrature method of moment (DQMOM), is solved to predict the bubble size distribution (BSD) in a vertical pipe flow. The proposed model is compared with a more classical approach where bubbles are characterized with a constant mean size. The turbulent two-phase flow field, which is modeled using a Reynolds-Averaged Navier-Stokes equation approach, is assumed to be in local equilibrium, thus the relative gas and liquid (slip) velocities can be calculated with the algebraic slip model, thereby accounting for the drag, lift, and lubrication forces. The complex relationship between the bubble size distribution and the resulting forces is described accurately by the DQMOM. Each quadrature node and weight represents a class of bubbles with characteristic size and number density, which change dynamically in time and space to preserve the first moments of the BSD. The predictions obtained are validated against previously published experimental data, thereby demonstrating the advantages of this approach for large-scale systems as well as suggesting future extensions to long piping systems and more complex geometries. © 2014 Elsevier Inc.
Computer subroutine ISUDS accurately solves large system of simultaneous linear algebraic equations
Collier, G.
1967-01-01
Computer program, an Iterative Scheme Using a Direct Solution, obtains double precision accuracy using a single-precision coefficient matrix. ISUDS solves a system of equations written in matrix form as AX equals B, where A is a square non-singular coefficient matrix, X is a vector, and B is a vector.
Kazeykina, Anna
2012-01-01
We show that the Novikov--Veselov equation (an analog of KdV in dimension 2 + 1) at positive and negative energies does not have solitons with the space localization stronger than O(|x|^{-3}) as |x| \\to \\infty.
Stability of the Cauchy-Jensen Functional Equation in CÃ¢ÂˆÂ—-Algebras: A Fixed Point Approach
Directory of Open Access Journals (Sweden)
Jong Su An
2008-06-01
Full Text Available we prove the Hyers-Ulam-Rassias stability of CÃ¢ÂˆÂ—-algebra homomorphisms and of generalized derivations on CÃ¢ÂˆÂ—-algebras for the following Cauchy-Jensen functional equation 2f((x+y/2+z=f(x+f(y+2f(z, which was introduced and investigated by Baak (2006. The concept of Hyers-Ulam-Rassias stability originated from the stability theorem of Th. M. Rassias that appeared in (1978.
On the algebraic classification of perfect fluid solutions of Einstein's equations
International Nuclear Information System (INIS)
This thesis concerns the Einstein-Petrov problem for perfect fluid space-times. This is the problem of finding exact solutions of Einstein's perfect fluid field equations for which the Weyl tensor is of a specific Petrov type. No examples of exact perfect fluid space-times having a Weyl tensor of Petrov type III have ever appeared in the literature. This is the only Petrov Class for which this is so. Consequently an example of such a solution is sought. Using the Newman-Penrose formalism a particular solution is obtained and its properties are discussed. (author)
Picard-Fuchs equations, Integrable Systems, and higher Algebraic K-theory
del Angel, Pedro L.; Müller-Stach, Stefan
2002-01-01
This paper continues our previous work done in math.AG/0008207 and is an attempt to establish a conceptual framework which generalizes the work of Manin on the relation between non-linear second order ODEs of type Painleve VI and integrable systems. The principle behind everything is a strong interaction between K-theory and Picard-Fuchs type differential equations via Abel-Jacobi maps. Our main result is an extension of a theorem of Donagi and Markman to our setup.
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Allenby, Reg
1995-01-01
As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin
Set-membership state estimation framework for uncertain linear differential-algebraic equations
Zhuk, Serhiy
2008-01-01
We investigate a problem of state estimation for the dynamical system described by the linear operator equation with unknown parameters in Hilbert space. We present explicit expressions for linear minimax estimation and error provided that any pair of uncertain parameters belongs to the quadratic bounding set. As an application of the introduced approach we introduce a notion of minimax directional observability and index of non-causality for linear noncausal DAEs. Application of these notions to the problem of state estimation for the linear uncertain noncausal DAEs allows to construct the state estimation in the form of the recursive minimax filter. A numerical example of the state estimation for 3D non-causal descriptor system is presented.
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
The perturbed solutions to a class of algebraic equation%一类代数方程的摄动解
Institute of Scientific and Technical Information of China (English)
欧阳成
2001-01-01
Let f(x) and g(x) be two polynomials in complex number field with their orders being m and n respectively. By using direct expanding method, the approximate solutions of the perturbed algebraic equation such as f(x)＋ ε g(x)=0 for m≥ n and m
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Shafarevich, I
1994-01-01
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Left Artinian Algebraic Algebras
Institute of Scientific and Technical Information of China (English)
S. Akbari; M. Arian-Nejad
2001-01-01
Let R be a left artinian central F-algebra, T(R) = J(R) + [R, R],and U(R) the group of units of R. As one of our results, we show that, if R is algebraic and char F = 0, then the number of simple components of -R = R/J(R)is greater than or equal to dimF R/T(R). We show that, when char F = 0 or F is uncountable, R is algebraic over F if and only if [R, R] is algebraic over F. As another approach, we prove that R is algebraic over F if and only if the derived subgroup of U(R) is algebraic over F. Also, we present an elementary proof for a special case of an old question due to Jacobson.
Murthy, S; Arunkumar, M; V. Govindan
2015-01-01
In this paper, the authors introduce and investigate the general solution and generalized Ulam-Hyers stability of a generalized n-type additive-quadratic functional equation. g(x + 2y; u + 2v) + g(x 2y; u 2v) = 4[g(x + y; u + v) + g(x y; u v)] 6g(x; u) + g(2y; 2v) + g(2y;2v) 4g(y; v) 4g(y;v) Where is a positive integer with , in Banach Space and Banach Algebras using direct and fixed point methods.
Algebra & trigonometry super review
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y
Developable algebraic surfaces
Institute of Scientific and Technical Information of China (English)
CHEN Dongren; WANG Guojin
2004-01-01
An algebraic surface can be defined by an implicit polynomial equation F(x,y,z)=0. In this paper, general characterizations of developable algebraic surfaces of arbitrary degree are presented. Using the shift operators of the subscripts of Bézier ordinates, the uniform apparent discriminants of developable algebraic surfaces to their Bézier ordinates are given directly. To degree 2 algebraic surfaces, which are widely used in computer aided geometric design and graphics, all possible developable surface types are obtained. For more conveniently applying algebraic surfaces of high degree to computer aided geometric design, the notion of ε-quasi-developable surfaces is introduced, and an example of using a quasi-developable algebraic surface of degree 3 to interpolate three curves of degree 2 is given.
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
Das, Tapas
2015-01-01
The second order $N$-dimensional Schr\\"odinger equation with pseudoharmonic potential is reduced to a first order differential equation by using the Laplace transform approach and exact bound state solutions are obtained using convolution theorem. Our results generalize all other previous works that done for various potential combinations in the case of lower dimensions.The Ladder operators are also constructed for the pseudoharmonic potential in $N$-dimensions.Lie algebra associated with these operators are studied and found that they satisfy the commutation relations for the SU(1,1) group. Matrix elements of different operators such as $z$, $z\\frac{d}{dz}$ are derived and finally the Casimir operator is discussed briefly.
Lefschetz, Solomon
2012-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Villarreal, Rafael
2015-01-01
The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.
A Deductive Approach towards Reasoning about Algebraic Transition Systems
Jun Fu; Jinzhao Wu; Hongyan Tan
2015-01-01
Algebraic transition systems are extended from labeled transition systems by allowing transitions labeled by algebraic equations for modeling more complex systems in detail. We present a deductive approach for specifying and verifying algebraic transition systems. We modify the standard dynamic logic by introducing algebraic equations into modalities. Algebraic transition systems are embedded in modalities of logic formulas which specify properties of algebraic transition systems. The semanti...
Directory of Open Access Journals (Sweden)
L. M. Sánchez Ruiz
2008-10-01
Full Text Available In signal processing, a pulse means a rapid change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. A square wave function may be viewed as a pulse that repeats its occurrence periodically but the return to the baseline value takes some time to happen. When these periodic functions act as inputs in dynamic systems, the standard tool commonly used to solve the associated initial value problem (IVP is Laplace transform and its inverse. We show how a computer algebra system may also provide the solution of these IVP straight forwardly by adequately introducing the periodic input.
Irreducible representations of Birman-Wenzl algebras
Institute of Scientific and Technical Information of China (English)
潘峰
1995-01-01
Irreducible representations of Birman-Wenzl algebras are constructed by using the induced representation and the linear equation method. Self-adjoint representations of Birman-Wenzl algebras Cf (r, q) with f≤4 are presented.
Symplectic algebraic dynamics algorithm
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the algebraic dynamics solution of ordinary differential equations andintegration of ,the symplectic algebraic dynamics algorithm sn is designed,which preserves the local symplectic geometric structure of a Hamiltonian systemand possesses the same precision of the na ve algebraic dynamics algorithm n.Computer experiments for the 4th order algorithms are made for five test modelsand the numerical results are compared with the conventional symplectic geometric algorithm,indicating that sn has higher precision,the algorithm-inducedphase shift of the conventional symplectic geometric algorithm can be reduced,and the dynamical fidelity can be improved by one order of magnitude.
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Intermediate algebra a textworkbook
McKeague, Charles P
1985-01-01
Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex
Beginning algebra a textworkbook
McKeague, Charles P
1985-01-01
Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division
Energy Technology Data Exchange (ETDEWEB)
Magnin, H.; Coulomb, J.L. (Laboratoire d' electrotechnique de Grenoble (UA CNRS 355) E.N.S.I.E.G. BP 46 38402 St. Martin d' Heres (FR))
1989-07-01
Electromagnetic field analysis by finite elements methods needs solving of large sparse systems of linear equations. Though no discernible structure for the distribution of non-zero elements can be found (e.g. multidiagonal structures,...), subsets of independent equations can be determined. Equations that are in a same subset are then solved in parallel. A good choice for the storage scheme of sparse matrices is also very important to speedup the resolution by vectorization. The modifications the authors made to data structures are presented, and the possibility to use some other schemes is discussed.
Characteristic Numbers of Matrix Lie Algebras
Zhang, Yu-Feng; Fan, En-Gui
2008-04-01
A notion of characteristic number of matrix Lie algebras is defined, which is devoted to distinguishing various Lie algebras that are used to generate integrable couplings of soliton equations. That is, the exact classification of the matrix Lie algebras by using computational formulas is given. Here the characteristic numbers also describe the relations between soliton solutions of the stationary zero curvature equations expressed by various Lie algebras.
Exceptional Vertex Operator Algebras and the Virasoro Algebra
Tuite, Michael P.
2008-01-01
We consider exceptional vertex operator algebras for which particular Casimir vectors constructed from the primary vectors of lowest conformal weight are Virasoro descendants of the vacuum. We discuss constraints on these theories that follow from an analysis of appropriate genus zero and genus one two point correlation functions. We find explicit differential equations for the partition function in the cases where the lowest weight primary vectors form a Lie algebra or a Griess algebra. Exam...
Proposition Algebra with Projective Limits
Bergstra, J A
2008-01-01
Sequential logic deviates from propositional logic by taking into account that atomic propositions yield different Boolean values at different times during the sequential evaluation of a single proposition. Reactive valuations capture this dynamics of a proposition's environment. This logic is phrased as an equationally specified algebra rather than in the form of proof rules. It is strictly more general than Boolean algebra to the extent that the classical connectives fail to be expressively complete in the sequential case. The proposition algebra PRA is developed in a fashion similar to the process algebra ACP and the program algebra PGA via an algebraic specification which has a meaningful initial algebra for which a range of courser congruences are considered important as well. In addition infinite objects (that is propositions, processes and programs respectively) are preferably dealt with by means of an inverse limit construction which allows the transfer of knowledge concerning finite objects to facts ...
Quantum computation using geometric algebra
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Pavelle, Richard; And Others
1981-01-01
Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)
Izhakian, Zur; Rowen, Louis
2008-01-01
We develop the algebraic polynomial theory for "supertropical algebra," as initiated earlier over the real numbers by the first author. The main innovation there was the introduction of "ghost elements," which also play the key role in our structure theory. Here, we work somewhat more generally over an ordered monoid, and develop a theory which contains the analogs of several basic theorems of classical commutative algebra. This structure enables one to develop a Zariski-type algebraic geomet...
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
2001-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and eig
Homogeneous conformal averaging operators on semisimple Lie algebras
Kolesnikov, Pavel
2014-01-01
In this note we show a close relation between the following objects: Classical Yang---Baxter equation (CYBE), conformal algebras (also known as vertex Lie algebras), and averaging operators on Lie algebras. It turns out that the singular part of a solution of CYBE (in the operator form) on a Lie algebra $\\mathfrak g$ determines an averaging operator on the corresponding current conformal algebra $\\mathrm{Cur} \\mathfrak g$. For a finite-dimensional semisimple Lie algebra $\\mathfrak g$, we desc...
Semigroups and computer algebra in algebraic structures
Bijev, G.
2012-11-01
Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.
ISOMORPHISMS AND DERIVATIONS IN C*-ALGEBRAS
Institute of Scientific and Technical Information of China (English)
Lee Jung-Rye; Shin Dong-Yun
2011-01-01
In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:||f(x) + f(y) + 2f(z) + 2f(w)|| ≤ ||2f (x +y /2+ z +w)|| (0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation2f(x+y/2+z+w)=f(x)+f(y)+2f(z)+2f(w).(0.2)
Picard–Vessiot extensions of artinian simple module algebras
Amano, Katsutoshi; Masuoka, Akira
2004-01-01
This paper pursues Takeuchi's Hopf algebraic approach [M. Takeuchi, A Hopf algebraic approach to the Picard–Vessiot theory, J. Algebra 122 (1989) 481–509] to the Picard–Vessiot (PV) theory for differential equations, to involve the PV extensions of difference equations. Differential fields and total difference rings in the standard PV theory are unified here by artinian simple (AS) module algebras over a cocommutative, pointed smooth Hopf algebra.
Directory of Open Access Journals (Sweden)
Kumare Vinodh
2016-03-01
Full Text Available This paper presents an analytical approach for solving the weighting matrices selection problem of a linear quadratic regulator (LQR for the trajectory tracking application of a magnetic levitation system. One of the challenging problems in the design of LQR for tracking applications is the choice of Q and R matrices. Conventionally, the weights of a LQR controller are chosen based on a trial and error approach to determine the optimum state feedback controller gains. However, it is often time consuming and tedious to tune the controller gains via a trial and error method. To address this problem, by utilizing the relation between the algebraic Riccati equation (ARE and the Lagrangian optimization principle, an analytical methodology for selecting the elements of Q and R matrices has been formulated. The novelty of the methodology is the emphasis on the synthesis of time domain design specifications for the formulation of the cost function of LQR, which directly translates the system requirement into a cost function so that the optimal performance can be obtained via a systematic approach. The efficacy of the proposed methodology is tested on the benchmark Quanser magnetic levitation system and a detailed simulation and experimental results are presented. Experimental results prove that the proposed methodology not only provides a systematic way of selecting the weighting matrices but also significantly improves the tracking performance of the system.
Carlen, E. A.; Carvalho, M. C.; Orlandi, E.
1999-06-01
This is the first of two papers devoted to the study of a nonlocal evolution equation that describes the evolution of the local magnetization in a continuum limit of an Ising spin system with Kawasaki dynamics and Kac potentials. We consider subcritical temperatures, for which there are two local equilibria, and begin the proof of a local nonlinear stability result for the minimum free energy profiles for the magnetization at the interface between regions of these two different local equilibria; i.e., the fronts. We shall show in the second paper that an initial perturbation v 0 of a front that is sufficiently small in L 2 norm, and sufficiently localized that ∫ x 2 v 0( x)2 dx<∞, yields a solution that relaxes to another front, selected by a conservation law, in the L 1 norm at an algebraic rate that we explicitly estimate. There we also obtain rates for the relaxation in the L 2 norm and the rate of decrease of the excess free energy. Here we prove a number of estimates essential for this result. Moreover, the estimates proved here suffice to establish the main result in an important special case.
Head First Algebra A Learner's Guide to Algebra I
Pilone, Tracey
2008-01-01
Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i
Questions on Algebraic Varieties
Marchionna, E
2011-01-01
P. Dolbeault: Residus et courants.- D. Mumford: Varieties defined by quadratic equations.- A. Neron: Hauteurs et theorie des intersections.- A. Seidenberg: Report on analytic product.- C.S. Seshadri: Moduli of p-vector bundles over an algebraic curve.- O. Zariski: Contributions to the problem of equi-singularity.
Liouville Extensions of Artinian Simple Module Algebras
Amano, Katsutoshi
2006-01-01
In a previous article (Amano and Masuoka, 2005), the author and Masuoka developed a Picard-Vessiot theory for module algebras over a cocommutative pointed smooth Hopf algebra D. By using the notion of Artinian simple (AS)D-module algebras, it generalizes and unifies the standard Picard-Vessiot theories for linear differential and difference equations. The purpose of this article is to define the notion of Liouville extensions of AS D-module algebras and to characterize the corresponding Picar...
Energy Technology Data Exchange (ETDEWEB)
Odesskii, A V [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow (Russian Federation)
2002-12-31
This survey is devoted to associative Z{sub {>=}}{sub 0}-graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations.
A Deductive Approach towards Reasoning about Algebraic Transition Systems
Directory of Open Access Journals (Sweden)
Jun Fu
2015-01-01
Full Text Available Algebraic transition systems are extended from labeled transition systems by allowing transitions labeled by algebraic equations for modeling more complex systems in detail. We present a deductive approach for specifying and verifying algebraic transition systems. We modify the standard dynamic logic by introducing algebraic equations into modalities. Algebraic transition systems are embedded in modalities of logic formulas which specify properties of algebraic transition systems. The semantics of modalities and formulas is defined with solutions of algebraic equations. A proof system for this logic is constructed to verify properties of algebraic transition systems. The proof system combines with inference rules decision procedures on the theory of polynomial ideals to reduce a proof-search problem to an algebraic computation problem. The proof system proves to be sound but inherently incomplete. Finally, a typical example illustrates that reasoning about algebraic transition systems with our approach is feasible.
Reed, Nat
2011-01-01
For grades 3-5, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets
Reed, Nat
2011-01-01
For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...
Algebra-Geometry of Piecewise Algebraic Varieties
Institute of Scientific and Technical Information of China (English)
Chun Gang ZHU; Ren Hong WANG
2012-01-01
Algebraic variety is the most important subject in classical algebraic geometry.As the zero set of multivariate splines,the piecewise algebraic variety is a kind generalization of the classical algebraic variety.This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.
The algebraic structure of the Onsager algebra
DATE, ETSURO; Roan, Shi-shyr
2000-01-01
We study the Lie algebra structure of the Onsager algebra from the ideal theoretic point of view. A structure theorem of ideals in the Onsager algebra is obtained with the connection to the finite-dimensional representations. We also discuss the solvable algebra aspect of the Onsager algebra through the formal Lie algebra theory.
Characteristic Numbers of Matrix Lie Algebras
Institute of Scientific and Technical Information of China (English)
QU Chang-Zheng; ZHANG Yu-Feng; LI Yan-Yan; FAN En-Gui
2008-01-01
A notion of characteristic number of matrix Lie algebras is defined, which is devoted to distinguishing various Lie Mgebras that ～re used to generate integrable couplings of soliton equations. That is, the exact classification of the matrix Lie algebras by using computational formulas is given. Here the characteristic numbers also describe the relations between soliton solutions of the stationary zero curvature equations expressed by various Lie algebras.
Explicit Traveling Waves and Invariant Algebraic Curves
Gasull, Armengol; Giacomini, Hector
2013-01-01
In this paper we introduce a precise definition of algebraic traveling wave solution for general n-th order partial differential equations. All examples of explicit traveling waves known by the authors fall in this category. Our main result proves that algebraic traveling waves exist if and only if an associated n- dimensional first order ordinary differential system has some invariant algebraic curve. As a paradigmatic application we prove that, for the celebrated Fisher- Kolmogorov equation...
Classical algebra its nature, origins, and uses
Cooke, Roger L
2008-01-01
This insightful book combines the history, pedagogy, and popularization of algebra to present a unified discussion of the subject. Classical Algebra provides a complete and contemporary perspective on classical polynomial algebra through the exploration of how it was developed and how it exists today. With a focus on prominent areas such as the numerical solutions of equations, the systematic study of equations, and Galois theory, this book facilitates a thorough understanding of algebra and illustrates how the concepts of modern algebra originally developed from classical algebraic precursors. This book successfully ties together the disconnect between classical and modern algebraand provides readers with answers to many fascinating questions that typically go unexamined, including: What is algebra about? How did it arise? What uses does it have? How did it develop? What problems and issues have occurred in its history? How were these problems and issues resolved? The author answers these questions and more,...
On Axiomatic Approaches to Intertwining Operator Algebras
Chen, Ling
2015-01-01
We study intertwining operator algebras introduced and constructed by Huang. In the case that the intertwining operator algebras involve intertwining operators among irreducible modules for their vertex operator subalgebras, a number of results on intertwining operator algebras were given in [H9] but some of the proofs were postponed to an unpublished monograph. In this paper, we give the proofs of these results in [H9] and we formulate and prove results for general intertwining operator algebras without assuming that the modules involved are irreducible. In particular, we construct fusing and braiding isomorphisms for general intertwining operator algebras and prove that they satisfy the genus-zero Moore-Seiberg equations. We show that the Jacobi identity for intertwining operator algebras is equivalent to generalized rationality, commutativity and associativity properties of intertwining operator algebras. We introduce the locality for intertwining operator algebras and show that the Jacobi identity is equi...
Chisolm, Eric
2012-01-01
This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that's strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It's actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard "vector algebra." My goal in these notes is to describe geometric al...
Issa, A. Nourou
2010-01-01
Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that non-Hom-associative algebras can be obtained from nonassociative algebras by twisting along algebra automorphisms while Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-M...
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Holtz, Olga; Ron, Amos
2007-01-01
A wealth of geometric and combinatorial properties of a given linear endomorphism $X$ of $\\R^N$ is captured in the study of its associated zonotope $Z(X)$, and, by duality, its associated hyperplane arrangement ${\\cal H}(X)$. This well-known line of study is particularly interesting in case $n\\eqbd\\rank X \\ll N$. We enhance this study to an algebraic level, and associate $X$ with three algebraic structures, referred herein as {\\it external, central, and internal.} Each algebraic structure is ...
Spacetime algebra and electron physics
Doran, C J L; Gull, S F; Somaroo, S; Challinor, A D
1996-01-01
This paper surveys the application of geometric algebra to the physics of electrons. It first appeared in 1996 and is reproduced here with only minor modifications. Subjects covered include non-relativistic and relativistic spinors, the Dirac equation, operators and monogenics, the Hydrogen atom, propagators and scattering theory, spin precession, tunnelling times, spin measurement, multiparticle quantum mechanics, relativistic multiparticle wave equations, and semiclassical mechanics.
Energy Technology Data Exchange (ETDEWEB)
Sternberg, K.
2007-02-08
Molten carbonate fuel cells (MCFCs) allow an efficient and environmentally friendly energy production by converting the chemical energy contained in the fuel gas in virtue of electro-chemical reactions. In order to predict the effect of the electro-chemical reactions and to control the dynamical behavior of the fuel cell a mathematical model has to be found. The molten carbonate fuel cell (MCFC) can indeed be described by a highly complex,large scale, semi-linear system of partial differential algebraic equations. This system includes a reaction-diffusion-equation of parabolic type, several reaction-transport-equations of hyperbolic type, several ordinary differential equations and finally a system of integro-differential algebraic equations which describes the nonlinear non-standard boundary conditions for the entire partial differential algebraic equation system (PDAE-system). The existence of an analytical or the computability of a numerical solution for this high-dimensional PDAE-system depends on the kind of the differential equations and their special characteristics. Apart from theoretical investigations, the real process has to be controlled, more precisely optimally controlled. Hence, on the basis of the PDAE-system an optimal control problem is set up, whose analytical and numerical solvability is closely linked to the solvability of the PDAE-system. Moreover the solution of that optimal control problem is made more difficult by inaccuracies in the underlying database, which does not supply sufficiently accurate values for the model parameters. Therefore the optimal control problem must also be investigated with respect to small disturbances of model parameters. The aim of this work is to analyze the relevant dynamic behavior of MCFCs and to develop concepts for their optimal process control. Therefore this work is concerned with the simulation, the optimal control and the sensitivity analysis of a mathematical model for MCDCs, which can be characterized
Rota-Baxter operators on Witt and Virasoro algebras
Gao, Xu; Liu, Ming; Bai, Chengming; Jing, Naihuan
2016-10-01
The homogeneous Rota-Baxter operators on the Witt and Virasoro algebras are classified. As applications, the induced solutions of the classical Yang-Baxter equation and the induced pre-Lie and PostLie algebra structures are obtained.
1996-01-01
Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear d
Introduction to algebra and trigonometry
Kolman, Bernard
1981-01-01
Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are
Process algebra for synchronous communication
Bergstra, J. A.; Klop, Jan Willem
1984-01-01
Within the context of an algebraic theory of processes, an equational specification of process cooperation is provided. Four cases are considered: free merge or interleaving, merging with communication, merging with mutual exclusion of tight regions, and synchronous process cooperation. The rewrite system behind the communication algebra is shown to be confluent and terminating (modulo its permutative reductions). Further, some relationships are shown to hold between the four concepts of merg...
Which multiplier algebras are $W^*$-algebras?
Akemann, Charles A.; Amini, Massoud; Asadi, Mohammad B.
2013-01-01
We consider the question of when the multiplier algebra $M(\\mathcal{A})$ of a $C^*$-algebra $\\mathcal{A}$ is a $ W^*$-algebra, and show that it holds for a stable $C^*$-algebra exactly when it is a $C^*$-algebra of compact operators. This implies that if for every Hilbert $C^*$-module $E$ over a $C^*$-algebra $\\mathcal{A}$, the algebra $B(E)$ of adjointable operators on $E$ is a $ W^*$-algebra, then $\\mathcal{A}$ is a $C^*$-algebra of compact operators. Also we show that a unital $C^*$-algebr...
Algebra & trigonometry II essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica
Institute of Scientific and Technical Information of China (English)
WANG Renhong; ZHU Chungang
2004-01-01
The piecewise algebraic variety is a generalization of the classical algebraic variety. This paper discusses some properties of piecewise algebraic varieties and their coordinate rings based on the knowledge of algebraic geometry.
Advanced linear algebra for engineers with Matlab
Dianat, Sohail A
2009-01-01
Matrices, Matrix Algebra, and Elementary Matrix OperationsBasic Concepts and NotationMatrix AlgebraElementary Row OperationsSolution of System of Linear EquationsMatrix PartitionsBlock MultiplicationInner, Outer, and Kronecker ProductsDeterminants, Matrix Inversion and Solutions to Systems of Linear EquationsDeterminant of a MatrixMatrix InversionSolution of Simultaneous Linear EquationsApplications: Circuit AnalysisHomogeneous Coordinates SystemRank, Nu
Hazewinkel, Michiel
2004-01-01
Two important generalizations of the Hopf algebra of symmetric functions are the Hopf algebra of noncommutative symmetric functions and its graded dual the Hopf algebra of quasisymmetric functions. A common generalization of the latter is the selfdual Hopf algebra of permutations (MPR Hopf algebra). This latter Hopf algebra can be seen as a Hopf algebra of endomorphisms of a Hopf algebra. That turns out to be a fruitful way of looking at things and gives rise to wide ranging further generaliz...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Rota-Baxter algebras and the Hopf algebra of renormalization
International Nuclear Information System (INIS)
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
GOLDMAN ALGEBRA, OPERS AND THE SWAPPING ALGEBRA
Labourie, François
2012-01-01
We define a Poisson Algebra called the {\\em swapping algebra} using the intersection of curves in the disk. We interpret a subalgebra of the fraction algebra of the swapping algebra -- called the {\\em algebra of multifractions} -- as an algebra of functions on the space of cross ratios and thus as an algebra of functions on the Hitchin component as well as on the space of $\\mathsf{SL}_n(\\mathbb R)$-opers with trivial holonomy. We relate this Poisson algebra to the Atiyah--Bott--Goldman symple...
Directory of Open Access Journals (Sweden)
G.C. Rao
2012-11-01
Full Text Available A C- algebra is the algebraic form of the 3-valued conditional logic, which was introduced by F. Guzman and C. C. Squier in 1990. In this paper, some equivalent conditions for a C- algebra to become a boolean algebra in terms of congruences are given. It is proved that the set of all central elements B(A is isomorphic to the Boolean algebra of all C-algebras Sa, where a B(A. It is also proved that B(A is isomorphic to the Boolean algebra of all C-algebras Aa, where a B(A.
Deskins, W E
1996-01-01
This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Assessing non-uniqueness: An algebraic approach
Energy Technology Data Exchange (ETDEWEB)
Vasco, Don W.
2002-09-16
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
Algebraic structure and Poisson integrals of a rotational relativistic Birkhoff system
Institute of Scientific and Technical Information of China (English)
罗绍凯; 陈向炜; 郭永新
2002-01-01
We have studied the algebraic structure of the dynamical equations of a rotational relativistic Birkhoff system. It is proven that autonomous and semi-autonomous rotational relativistic Birkhoff equations possess consistent algebraic structure and Lie algebraic structure. In general, non-autonomous rotational relativistic Birkhoff equations possess no algebraic structure, but a type of special non-autonomous rotational relativistic Birkhoff equation possesses consistent algebraic structure and consistent Lie algebraic structure. Then, we obtain the Poisson integrals of the dynamical equations of the rotational relativistic Birkhoff system. Finally, we give an example to illustrate the application of the results.
Algebraicity and Asymptotics: An explosion of BPS indices from algebraic generating series
Mainiero, Tom
2016-01-01
It is an observation of Kontsevich and Soibelman that generating series that produce certain (generalized) Donaldson Thomas invariants are secretly algebraic functions over the rationals. From a physical perspective this observation arises naturally for DT invariants that appear as BPS indices in theories of class S[A]: explicit algebraic equations (that completely determine these series) can be derived using (degenerate) spectral networks. In this paper, we conjecture an algebraic equation associated to DT invariants for the Kronecker 3-quiver with dimension vectors (3n,2n), n>0 in the non-trivial region of its stability parameter space. Using a functional equation due to Reineke, we show algebraicity of generating series for Euler characteristics of stable moduli for the Kronecker m-quiver assuming algebraicity of generating series for DT invariants. In the latter part of the paper we deduce very explicit results on the asymptotics of DT invariants/Euler characteristics under the assumption of algebraicity ...
Algebra a complete introduction : teach yourself
Neill, Hugh
2013-01-01
Algebra: A Complete Introduction is the most comprehensive yet easy-to-use introduction to using Algebra. Written by a leading expert, this book will help you if you are studying for an important exam or essay, or if you simply want to improve your knowledge. The book covers all the key areas of algebra including elementary operations, linear equations, formulae, simultaneous equations, quadratic equations, logarithms, variation, laws and sequences. Everything you will need is here in this one book. Each chapter includes not only an explanation of the knowledge and skills you need, but also worked examples and test questions.
Algebra I Workbook For Dummies
Sterling, Mary Jane
2011-01-01
From signed numbers to story problems - calculate equations with ease Practice is the key to improving your algebra skills, and that's what this workbook is all about. This hands-on guide focuses on helping you solve the many types of algebra problems you'll encounter in a focused, step-by-step manner. With just enough refresher explanations before each set of problems, this workbook shows you how to work with fractions, exponents, factoring, linear and quadratic equations, inequalities, graphs, and more! 100s of problems! Hundreds of practice exercises and helpful explanations Explanations mi
Energy Technology Data Exchange (ETDEWEB)
Gonzalez Herrera, Juan Anibal
1996-10-01
This work presents the construction, analysis and solution of an equipment`s network in steady and dynamic state from: a) The mathematical models of individual equipment and of their geometry. b) The topology let interconnections between equipment. c) The selection of a numerical method to solve simultaneously the mathematical models. The selected mathematical models represent the cycle boiler-superheater. These models were taken from the MICROTERM-300 modular simulator, which contains the simplified models of the process (feedwater, boiler, turbines, etc.) of the thermoelectric plant Francisco Perez Rios from Tula Hidalgo, Mexico. This work was developed in the following stages: 1.- The selection of an appropiate numerical integration method to solve simultaneously the algebraic and differential equations of the equipment conforming the cycle boiler-superheater. 2.- The adaptation of individual mathematical models to allow changes in their geometry, operating conditions and different forms of connection. Also, this models were modified to have a representation of the equations to allow their analysis and an efficient organization to get their solution. 3.- The application of two computer-aided tools to trace possible coding errors in the mathematical models: a) A syntax analyzer which detect assignation and reference errors of variables. b) A structural analyzer to obtain the structural matrix, which relate the variables and the equations in a model. During this stage some improvements to these computer-aided tools were suggested. 4.- The individual testing of each mathematical model in steady and dynamic state in order to: a) Validate the mathematical models. b) Analyze the behavior of the variables of the mathematical models with different parameters, different operating conditions and different initial conditions. 5.- Lastly, the coupling between equipment analyzed to form an equipment`s network what represent the cycle boiler-superheater and the testing in
Difference Galois theory of linear differential equations
Di Vizio, Lucia; Hardouin, Charlotte; Wibmer, Michael
2013-01-01
We develop a Galois theory for linear differential equations equipped with the action of an endomorphism. This theory is aimed at studying the difference algebraic relations among the solutions of a linear differential equation. The Galois groups here are linear difference algebraic groups, i.e., matrix groups defined by algebraic difference equations.
Indian Academy of Sciences (India)
Tomás L Gómez
2001-02-01
This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.
Oliver, Bob; Pawałowski, Krzystof
1991-01-01
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
The Algebra of Directed Acyclic Graphs
Fiore, Marcelo; Campos, Marco Devesas
2013-01-01
We give an algebraic presentation of directed acyclic graph structure, introducing a symmetric monoidal equational theory whose free PROP we characterise as that of finite abstract dags with input/output interfaces. Our development provides an initial-algebra semantics for dag structure.
Combinatorics and commutative algebra
Stanley, Richard P
1996-01-01
Some remarkable connections between commutative algebra and combinatorics have been discovered in recent years. This book provides an overview of two of the main topics in this area. The first concerns the solutions of linear equations in nonnegative integers. Applications are given to the enumeration of integer stochastic matrices (or magic squares), the volume of polytopes, combinatorial reciprocity theorems, and related results. The second topic deals with the face ring of a simplicial complex, and includes a proof of the Upper Bound Conjecture for Spheres. An introductory chapter giving background information in algebra, combinatorics and topology broadens access to this material for non-specialists. New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors. Included in this chapter is an outline of the proof of McMullen's g-conjecture for simplicial polytopes based on toric varieties, as well as a discussion of the face rings of such special ...
Clifford algebra, geometric algebra, and applications
Lundholm, Douglas
2009-01-01
These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction (then called geometric algebra) with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra. The various applications presented include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
Central simple Poisson algebras
Institute of Scientific and Technical Information of China (English)
SU; Yucai; XU; Xiaoping
2004-01-01
Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.
El-Chaar, Caroline
2012-01-01
In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. U...
Introductory modern algebra a historical approach
Stahl, Saul
2013-01-01
Praise for the First Edition ""Stahl offers the solvability of equations from the historical point of view...one of the best books available to support a one-semester introduction to abstract algebra.""-CHOICE Introductory Modern Algebra: A Historical Approach, Second Edition presents the evolution of algebra and provides readers with the opportunity to view modern algebra as a consistent movement from concrete problems to abstract principles. With a few pertinent excerpts from the writings of some of the greatest mathematicians, the Second Edition uniquely facilitates the understanding of pi
Function theory for a beltrami algebra
Directory of Open Access Journals (Sweden)
B. A. Case
1985-01-01
Full Text Available Complex functions are investigated which are solutions of an elliptic system of partial differential equations associated with a real parameter function. The functions f associated with a particualr parameter function g on a domain D form a Beltrami algebra denoted by the pair (D,g and a function theory is developed in this algebra. A strong conformality property holds for all functions in a (D,g algebra. For g≡|z|=r the algebra (D,r is that of the analytic functions.
Topics in quaternion linear algebra
Rodman, Leiba
2014-01-01
Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...
Parsing with Regular Expressions & Extensions to Kleene Algebra
DEFF Research Database (Denmark)
Grathwohl, Niels Bjørn Bugge
. In the second part of this thesis, we study two extensions to Kleene algebra. Chomsky algebra is an algebra with a structure similar to Kleene algebra, but with a generalized mu-operator for recursion instead of the Kleene star. We show that the axioms of idempotent semirings along with continuity of the mu......-operator completely axiomatize the equational theory of the context-free languages. KAT+B! is an extension to Kleene algebra with tests (KAT) that adds mutable state. We describe a test algebra B! for mutable tests and give a commutative coproduct between KATs. Combining the axioms of B! with those of KAT and some...
Herranz, Francisco J.
1999-01-01
By starting from the non-standard quantum deformation of the sl(2,R) algebra, a new quantum deformation for the real Lie algebra so(2,2) is constructed by imposing the former to be a Hopf subalgebra of the latter. The quantum so(2,2) algebra so obtained is realized as a quantum conformal algebra of the (1+1) Minkowskian spacetime. This Hopf algebra is shown to be the symmetry algebra of a time discretization of the (1+1) wave equation and its contraction gives rise to a new $(2+1)$ quantum Po...
Kleene Algebra with Products and Iteration Theories
Kozen, Dexter; Mamouras, Konstantinos
2013-01-01
We develop a typed equational system that subsumes both iteration theories and typed Kleene algebra in a common framework. Our approach is based on cartesian categories endowed with commutative strong monads to handle nondeterminism.
Chirvasitu, Alex; Smith, S. Paul
2015-01-01
This paper examines a general method for producing twists of a comodule algebra by tensoring it with a torsor then taking co-invariants. We examine the properties that pass from the original algebra to the twisted algebra and vice versa. We then examine the special case where the algebra is a 4-dimensional Sklyanin algebra viewed as a comodule algebra over the Hopf algebra of functions on the non-cyclic group of order 4 with the torsor being the 2x2 matrix algebra. The twisted algebra is an "...
Nonmonotonic logics and algebras
Institute of Scientific and Technical Information of China (English)
CHAKRABORTY Mihir Kr; GHOSH Sujata
2008-01-01
Several nonmonotonie logic systems together with their algebraic semantics are discussed. NM-algebra is defined.An elegant construction of an NM-algebra starting from a Boolean algebra is described which gives rise to a few interesting algebraic issues.
Kleyn, Aleks
2007-01-01
The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.
Kinds of Knowledge in Algebra.
Lewis, Clayton
Solving equations in elementary algebra requires knowledge of the permitted operations, and knowledge of what operation to use at a given point in the solution process. While just these kinds of knowledge would be adequate for an ideal solver, human solvers appear to need and use other kinds of knowledge. First, many errors seem to indicate that…
Another Definition of Order—Sorted Algebra
Institute of Scientific and Technical Information of China (English)
何自强
1998-01-01
In this paper the definition of order-sorted algebra is generalized by introducing transformation functions between subtypes and supertypes.According to our definition,a type needn't be a subset of its supertype and a record model may form an order-sorted algebra.A new definition of equation is given.It has also been proved that equational theories and describing single inheritance have the initial model.
Algebraic structure and Poisson method for a weakly nonholonomic system
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The algebraic structure and the Poisson method for a weakly nonholonomic system are studied.The differential equations of motion of the system can be written in a contravariant algebra form and its algebraic structure is discussed.The Poisson theory for the systems which possess Lie algebra structure is generalized to the weakly nonholonomic system.An example is given to illustrate the application of the result.
Algebraic Systems and Pushdown Automata
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
Energy Technology Data Exchange (ETDEWEB)
Casasent, D.; Ghosh, A.
1983-01-01
Many of the linear algebra operations and algorithms possible on optical matrix-vector processors are reviewed. Emphasis is given to the use of direct solutions and their realization on systolic optical processors. As an example, implicit and explicit solutions to partial differential equations are considered. The matrix-decomposition required is found to be the major operation recommended for optical realization. The pipelining and flow of data and operations are noted to be key issues in the realization of any algorithm on an optical systolic array processor. A realization of the direct solution by householder qr decomposition is provided as a specific case study. 19 references.
Figueredo, Grazziela P.; Peer-Olaf Siebers; Owen, Markus R.; Jenna Reps; Uwe Aickelin
2014-01-01
There is great potential to be explored regarding the use of agent-based modelling and simulation as an alternative paradigm to investigate early-stage cancer interactions with the immune system. It does not suffer from some limitations of ordinary differential equation models, such as the lack of stochasticity, representation of individual behaviours rather than aggregates and individual memory. In this paper we investigate the potential contribution of agent-based modelling and simulation w...
Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
Solvable quadratic Lie algebras
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.
Grabowski, Jan
2015-01-01
In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite type cluster algebras without coefficients, giving a full classification. Translating ...
Instrumentation of ICT-tools : the case of algebra in a computer algebra environment
Drijvers, P.; Herwaarden, van O.A.
2001-01-01
This paper describes a classroom experiment using hand held computer algebra for the learning of algebra. During a five week period students of the ninth grade (14-15 years old) used a symbolic calculator for solving systems of equations that contained parameters. In doing so, the aim was to develop
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
It is a small step toward the Koszul-type algebras. The piecewise-Koszul algebras are,in general, a new class of quadratic algebras but not the classical Koszul ones, simultaneously they agree with both the classical Koszul and higher Koszul algebras in special cases. We give a criteria theorem for a graded algebra A to be piecewise-Koszul in terms of its Yoneda-Ext algebra E(A), and show an A∞-structure on E(A). Relations between Koszul algebras and piecewise-Koszul algebras are discussed. In particular, our results are related to the third question of Green-Marcos.
Li, Haisheng; Tan, Shaobin; Wang, Qing
2012-01-01
In this paper, we study a notion of what we call vertex Leibniz algebra. This notion naturally extends that of vertex algebra without vacuum, which was previously introduced by Huang and Lepowsky. We show that every vertex algebra without vacuum can be naturally extended to a vertex algebra. On the other hand, we show that a vertex Leibniz algebra can be embedded into a vertex algebra if and only if it admits a faithful module. To each vertex Leibniz algebra we associate a vertex algebra with...
The algebraic combinatorics of snakes
Josuat-Vergès, Matthieu; Thibon, Jean-Yves
2011-01-01
Snakes are analogues of alternating permutations defined for any Coxeter group. We study these objects from the point of view of combinatorial Hopf algebras, such as noncommutative symmetric functions and their generalizations. The main purpose is to show that several properties of the generating functions of snakes, such as differential equations or closed form as trigonometric functions, can be lifted at the level of noncommutative symmetric functions or free quasi-symmetric functions. The results take the form of algebraic identities for type B noncommutative symmetric functions, noncommutative supersymmetric functions and colored free quasi-symmetric functions.
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Zheng Lijing
2015-11-01
Let be an algebraically closed field, a finite dimensional connected (, )-Koszul self-injective algebra with , ≥ 2. In this paper, we prove that the Yoneda algebra of is isomorphic to a twisted polynomial algebra $A^!$ [ ; ] in one indeterminate of degree +1 in which $A^!$ is the quadratic dual of , is an automorphism of $A^!$, and = () for each $t \\in A^!$. As a corollary, we recover Theorem 5.3 of [2].
Institute of Scientific and Technical Information of China (English)
李邦河
2003-01-01
里特-吴特征集提供了用计算机解代数方程的有效方法,但迄今为止,还不能由这一方法给出孤立解的重数. 文章给出了孤立解的重数的两个定义,它们是等价的,并且在范德瓦尔登的定义有意义时与后者一致. 一个定义是在非标准分析的框架中,另一个则是标准分析的. 在证明与范德瓦尔登的定义一致时,非标准分析的定义是本质的. 通过再一次在计算机上应用里特-吴方法于由原方程得到的含无穷小参数的代数方程,可以得到原方程的孤立解的重数. 文中给出一个例子的计算机计算结果:首先得出有八个解,然后给出它们的重数:其中有两个的重数为六重,另六个为单根.%Ritt-Wu′s method of characteristic sets is an effective method to solve algebraic equations by computer, while one cannot get the multiplicity of an isolated solution by this method so far. We introduce two definitions for the multiplicity of an isolated solution, they are equivalent and coincide with that of Van der Waerden in the case the later works. One of our definitions is in the framework of nonstandard analysis, and another is in standard analysis. To prove the equivalence with that of Van der Waeden, the nonstandard one is essential. By using Ritt-Wu′s method on computer again to the algebraic equations with some infinitesimals as parameters obtained by modifying the original equations, we can then determine the multiplicity of an isolated solution of the original equations.An example by computer is given: first get 8 solutions, then compute their multiplicities-6 of them are simple roots, while each of the other two has multiplicity 6.
Nishiyama, Seiya
2014-01-01
In this paper we present the induced representation of SO(2N) canonical transformation group and introduce SO(2N)/U(N) coset variables. We give a derivation of the time dependent Hartree-Bogoliubov (TDHB) equation on the Kaehler coset space G/H=SO(2N)/U(N) from the Euler-Lagrange equation of motion for the coset variables. The TDHB wave function represents the TD behavior of Bose condensate of fermion pairs. It is a good approximation for the ground state of the fermion system with a pairing interaction, producing the spontaneous Bose condensation. To describe the classical motion on the coset manifold, we start from the local equation of motion. This equation becomes a Riccati-type equation. After giving a simple two-level model and a solution for a coset variable, we can get successfully a general solution of TDRHB equation for the coset variables. We obtain the Harish-Chandra decomposition for the SO(2N) matrix based on the nonlinear Moebius transformation together with the geodesic flow on the manifold.
Nishiyama, Seiya; da Providência, João
2015-02-01
In this paper we present the induced representation of SO(2N) canonical transformation group and introduce (SO(2N))/(U(N)) coset variables. We give a derivation of the time-dependent Hartree-Bogoliubov (TDHB) equation on the Kähler coset space (G)/(H) = (SO(2N))/(U(N)) from the Euler-Lagrange equation of motion for the coset variables. The TDHB wave function represents the TD behavior of Bose condensate of fermion pairs. It is a good approximation for the ground state of the fermion system with a pairing interaction, producing the spontaneous Bose condensation. To describe the classical motion on the coset manifold, we start from the local equation of motion. This equation becomes a Riccati-type equation. After giving a simple two-level model and a solution for a coset variable, we can get successfully a general solution of time-dependent Riccati-Hartree-Bogoliubov equation for the coset variables. We obtain the Harish-Chandra decomposition for the SO(2N) matrix based on the nonlinear Möbius transformation together with the geodesic flow on the manifold.
WEAKLY ALGEBRAIC REFLEXIVITY AND STRONGLY ALGEBRAIC REFLEXIVITY
Institute of Scientific and Technical Information of China (English)
TaoChangli; LuShijie; ChenPeixin
2002-01-01
Algebraic reflexivity introduced by Hadwin is related to linear interpolation. In this paper, the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced. Some properties of them are obtained and some relations between them revealed.
Rigidification of algebras over essentially algebraic theories
Rosicky, J
2012-01-01
Badzioch and Bergner proved a rigidification theorem saying that each homotopy simplicial algebra is weakly equivalent to a simplicial algebra. The question is whether this result can be extended from algebraic theories to finite limit theories and from simplicial sets to more general monoidal model categories. We will present some answers to this question.
Induced Lie Algebras of a Six-Dimensional Matrix Lie Algebra
Institute of Scientific and Technical Information of China (English)
ZHANG Yu-Feng; LIU Jing
2008-01-01
By using a six-dimensional matrix Lie algebra [Y.F. Zhang and Y. Wang, Phys. Lett. A 360 (2006) 92], three induced Lie algebras are constructed. One of them is obtained by extending Lie bracket, the others are higher-dimensional complex Lie algebras constructed by using linear transformations. The equivalent Lie algebras of the later two with multi-component forms are obtained as well. As their applications, we derive an integrable coupling and quasi-Hamiltonian structure of the modified TC hierarchy of soliton equations.
Closed nominal rewriting and efficiently computable nominal algebra equality
Directory of Open Access Journals (Sweden)
Maribel Fernández
2010-09-01
Full Text Available We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of the lambda-calculus and first-order logic.
The Yoneda algebra of a K2 algebra need not be another K2 algebra
Cassidy, T.; Phan, C.; Shelton, B.
2010-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
Enveloping algebras of some quantum Lie algebras
Pourkia, Arash
2014-01-01
We define a family of Hopf algebra objects, $H$, in the braided category of $\\mathbb{Z}_n$-modules (known as anyonic vector spaces), for which the property $\\psi^2_{H\\otimes H}=id_{H\\otimes H}$ holds. We will show that these anyonic Hopf algebras are, in fact, the enveloping (Hopf) algebras of particular quantum Lie algebras, also with the property $\\psi^2=id$. Then we compute the braided periodic Hopf cyclic cohomology of these Hopf algebras. For that, we will show the following fact: analog...
Dzhumadil'daev, A. S.
2002-01-01
Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.
National Council of Teachers of Mathematics, Inc., Reston, VA.
This is a reprint of the historical capsules dealing with algebra from the 31st Yearbook of NCTM,"Historical Topics for the Mathematics Classroom." Included are such themes as the change from a geometric to an algebraic solution of problems, the development of algebraic symbolism, the algebraic contributions of different countries, the origin and…
Workshop on Commutative Algebra
Simis, Aron
1990-01-01
The central theme of this volume is commutative algebra, with emphasis on special graded algebras, which are increasingly of interest in problems of algebraic geometry, combinatorics and computer algebra. Most of the papers have partly survey character, but are research-oriented, aiming at classification and structural results.
Probabilistic Concurrent Kleene Algebra
Directory of Open Access Journals (Sweden)
Annabelle McIver
2013-06-01
Full Text Available We provide an extension of concurrent Kleene algebras to account for probabilistic properties. The algebra yields a unified framework containing nondeterminism, concurrency and probability and is sound with respect to the set of probabilistic automata modulo probabilistic simulation. We use the resulting algebra to generalise the algebraic formulation of a variant of Jones' rely/guarantee calculus.
Institute of Scientific and Technical Information of China (English)
朱玲妹; 杨德贵; 王小灵
2003-01-01
In this paper, we investigate the growth of transcendental entire solutions of the following algebraic differential equation a(z)f ′2+(b 2(z)f2+b1(z)f+b0(z))f ′=d3(z)f3+d2(z)f2+d 1(z)f+d0(z), where a(z), bi(z) (0≤I≤2) and dj(z) (0≤j≤3) are all polynomials, and this equation relates closely to the following well -known algebraic differential equation C(z,w)w′2+B(z,w)w′+A(z,w)=0, where C(z,w)0, B(z,w) and A(z,w) are three polynomials in z and w. We give relationships between the growth of entire solutions and the degrees of the above three polynomials in detail.%研究了如下代数微分方程a(z)f ′2+(b2(z)f2+b1(z)f+b 0(z))f ′=d3(z)f3+d2(z)f2+d1(z)f+d0(z)(这里a(z),bi(z)(0≤i≤2)和dj(z) (0≤j≤3)是多项式)超越整函数解的增长性,这类方程与有名的代数微分方程C(z,w)w′2+B(z,w)w′+A(z,w)=0(C(z,w)0, B(z,w)和A(z ,w)是z和w的3个多项式)有紧密的关系.详细地给出了第1个方程的整函数解的增长性与它的3个多项式的次数之间的关系.
Generalized Quantum Current Algebras
Institute of Scientific and Technical Information of China (English)
ZHAO Liu
2001-01-01
Two general families of new quantum-deformed current algebras are proposed and identified both as infinite Hopf family of algebras, a structure which enables one to define "tensor products" of these algebras. The standard quantum affine algebras turn out to be a very special case of the two algebra families, in which case the infinite Hopf family structure degenerates into a standard Hopf algebra. The relationship between the two algebraic families as well as thefr various special examples are discussed, and the free boson representation is also considered.
El-Chaar, Caroline
2012-01-01
In this thesis, four realizations of the Onsager algebra are explored. We begin with its original definition as introduced by Lars Onsager. We then examine how the Onsager algebra can be presented as a Lie algebra with two generators and two relations. The third realization of the Onsager algebra consists of viewing it as an equivariant map algebra which then gives us the tools to classify its closed ideals. Finally, we examine the Onsager algebra as a subalgebra of the tetrahedron algebra. Using this fourth realization, we explicitly describe all its ideals.
A Note on Indefinite Stochastic Riccati Equations
Qian, Zhongmin
2012-01-01
An indefinite stochastic Riccati Equation is a matrix-valued, highly nonlinear backward stochastic differential equation together with an algebraic, matrix positive definiteness constraint. We introduce a new approach to solve a class of such equations (including the existence of solutions) driven by one-dimensional Brownian motion. The idea is to replace the original equation by a system of BSDEs (without involving any algebraic constraint) whose existence of solutions automatically enforces the original algebraic constraint to be satisfied.
Energy Technology Data Exchange (ETDEWEB)
Kedem, Rinat [Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61821 (United States)], E-mail: rinat@uiuc.edu
2008-05-16
Q-systems first appeared in the analysis of the Bethe equations for the XXX model and generalized Heisenberg spin chains (Kirillov and Reshetikhin 1987 Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov. 160 211-21, 301). Such systems are known to exist for any simple Lie algebra and many other Kac-Moody algebras. We formulate the Q-system associated with any simple, simply-laced Lie algebras g in the language of cluster algebras (Fomin and Zelevinsky 2002 J. Am. Math. Soc. 15 497-529), and discuss the relation of the polynomiality property of the solutions of the Q-system in the initial variables, which follows from the representation-theoretical interpretation, to the Laurent phenomenon in cluster algebras (Fomin and Zelevinsky 2002 Adv. Appl. Math. 28 119-44)
Finite and Infinite W Algebras and their Applications
Tjin, T
1993-01-01
In this paper we present a systematic study of $W$ algebras from the Hamiltonian reduction point of view. The Drinfeld-Sokolov (DS) reduction scheme is generalized to arbitrary $sl_2$ embeddings thus showing that a large class of W algebras can be viewed as reductions of affine Lie algebras. The hierarchies of integrable evolution equations associated to these classical W algebras are constructed as well as the generalized Toda field theories which have them as Noether symmetry algebras. The problem of quantising the DS reductions is solved for arbitrary $sl_2$ embeddings and it is shown that any W algebra can be embedded into an affine Lie algebra. This also provides us with an algorithmic method to write down free field realizations for arbitrary W algebras. Just like affine Lie algebras W algebras have finite underlying structures called `finite W algebras'. We study the classical and quantum theory of these algebras, which play an important role in the theory of ordinary W algebras, in detail as well as s...
Perturbations of planar algebras
Das, Paramita; Gupta, Ved Prakash
2010-01-01
We introduce the concept of {\\em weight} of a planar algebra $P$ and construct a new planar algebra referred as the {\\em perturbation of $P$} by the weight. We establish a one-to-one correspondence between pivotal structures on 2-categories and perturbations of planar algebras by weights. To each bifinite bimodule over $II_1$-factors, we associate a {\\em bimodule planar algebra} bimodule corresponds naturally with sphericality of the bimodule planar algebra. As a consequence of this, we reproduce an extension of Jones' theorem (of associating 'subfactor planar algebras' to extremal subfactors). Conversely, given a bimodule planar algebra, we construct a bifinite bimodule whose associated bimodule planar algebra is the one which we start with using perturbations and Jones-Walker-Shlyakhtenko-Kodiyalam-Sunder method of reconstructing an extremal subfactor from a subfactor planar algebra. We show that the perturbation class of a bimodule planar algebra contains a unique spherical unimodular bimodule planar algeb...
Multiparameter Twisted Weyl Algebras
Futorny, Vyacheslav; Hartwig, Jonas T.
2011-01-01
We introduce a new family of twisted generalized Weyl algebras, called multiparameter twisted Weyl algebras, for which we parametrize all simple quotients of a certain kind. Both Jordan's simple localization of the multiparameter quantized Weyl algebra and Hayashi's q-analog of the Weyl algebra are special cases of this construction. We classify all simple weight modules over any multiparameter twisted Weyl algebra. Extending results by Benkart and Ondrus, we also describe all Whittaker pairs...
Classical Hamiltonian Dynamics and Lie Group Algebras
Aycock, B; Silverberg, J L; Widom, A
2008-01-01
The classical Hamilton equations of motion yield a structure sufficiently general to handle an almost arbitrary set of ordinary differential equations. Employing elementary algebraic methods, it is possible within the Hamiltonian structure to describe many physical systems exhibiting Lie group symmetries. Elementary examples include magnetic moment precession and the mechanical orbits of color charged particles in classical non-abelian chromodynamics.
Sigma-models and Homotopy Algebras
Zeitlin, Anton M
2015-01-01
We review the relation between homotopy algebras of conformal field theory and geometric structures arising in sigma models. In particular we formulate conformal invariance conditions, which in the quasi-classical limit are Einstein equations with extra fields, as generalized Maurer-Cartan equations.
Institute of Scientific and Technical Information of China (English)
Jia-feng; Lü
2007-01-01
[1]Priddy S.Koszul resolutions.Trans Amer Math Soc,152:39-60 (1970)[2]Beilinson A,Ginszburg V,Soergel W.Koszul duality patterns in representation theory.J Amer Math Soc,9:473-525 (1996)[3]Aquino R M,Green E L.On modules with linear presentations over Koszul algebras.Comm Algebra,33:19-36 (2005)[4]Green E L,Martinez-Villa R.Koszul and Yoneda algebras.Representation theory of algebras (Cocoyoc,1994).In:CMS Conference Proceedings,Vol 18.Providence,RI:American Mathematical Society,1996,247-297[5]Berger R.Koszulity for nonquadratic algebras.J Algebra,239:705-734 (2001)[6]Green E L,Marcos E N,Martinez-Villa R,et al.D-Koszul algebras.J Pure Appl Algebra,193:141-162(2004)[7]He J W,Lu D M.Higher Koszul Algebras and A-infinity Algebras.J Algebra,293:335-362 (2005)[8]Green E L,Marcos E N.δ-Koszul algebras.Comm Algebra,33(6):1753-1764 (2005)[9]Keller B.Introduction to A-infinity algebras and modules.Homology Homotopy Appl,3:1-35 (2001)[10]Green E L,Martinez-Villa R,Reiten I,et al.On modules with linear presentations.J Algebra,205(2):578-604 (1998)[11]Keller B.A-infinity algebras in representation theory.Contribution to the Proceedings of ICRA Ⅸ.Beijing:Peking University Press,2000[12]Lu D M,Palmieri J H,Wu Q S,et al.A∞-algebras for ring theorists.Algebra Colloq,11:91-128 (2004)[13]Weibel C A.An Introduction to homological algebra.Cambridge Studies in Avanced Mathematics,Vol 38.Cambridge:Cambridge University Press,1995
Institute of Scientific and Technical Information of China (English)
CAI RuiXian; LIU QiBin
2008-01-01
Analytical solutions of governing equations of various phenomena have their irre-placeable theoretical meanings. In addition, they can also be the benchmark solu-tions to verify the outcomes and codes of numerical solutions, and even to develop various numerical methods such as their differencing schemes and grid generation skills as well. A hybrid method of separating variables for simultaneous partial differential equation sets is presented. It is proposed that different methods of separating variables for different independent variables in the simultaneous equa-tion set may be used to improve the solution derivation procedure, for example, using the ordinary separating method for some variables and using extraordinary methods of separating variables, such as the separating variables with addition promoted by the first author, for some other variables. In order to prove the ability of the above-mentioned hybrid method, a lot of analytical exact solutions of two-buoyancy convection in porous media are successfully derived with such a method. The physical features of these solutions are given.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Analytical solutions of governing equations of various phenomena have their irre-placeable theoretical meanings. In addition, they can also be the benchmark solu-tions to verify the outcomes and codes of numerical solutions, and even to develop various numerical methods such as their differencing schemes and grid generation skills as well. A hybrid method of separating variables for simultaneous partial differential equation sets is presented. It is proposed that different methods of separating variables for different independent variables in the simultaneous equa-tion set may be used to improve the solution derivation procedure, for example, using the ordinary separating method for some variables and using extraordinary methods of separating variables, such as the separating variables with addition promoted by the first author, for some other variables. In order to prove the ability of the above-mentioned hybrid method, a lot of analytical exact solutions of two-buoyancy convection in porous media are successfully derived with such a method. The physical features of these solutions are given.
Induced Modules of Semisimple Hopf Algebras
Institute of Scientific and Technical Information of China (English)
Jun Hu; Yinhuo Zhang
2007-01-01
Let K be a field. Let H be a finite-dimensional K-Hopf algebra and D(H) be the Drinfel'd double of H. In this paper, we study Radford's induced module Hβ, whereβ is a group-like element in H*. Using the commuting pair established in [7], we obtain an analogue of the class equation for H*β when H is semisimple and cosemisimple. In case H is a finite group algebra or a factorizable semisimple cosemisimple Hopf algebra, we give an explicit decomposition of each Hβ into a direct sum of simple D(H)-modules.
Maps from the enveloping algebra of the positive Witt algebra to regular algebras
Sierra, Susan J.; Walton, Chelsea
2015-01-01
We construct homomorphisms from the universal enveloping algebra of the positive (part of the) Witt algebra to several different Artin-Schelter regular algebras, and determine their kernels and images. As a result, we produce elementary proofs that the universal enveloping algebras of the Virasoro algebra, the Witt algebra, and the positive Witt algebra are neither left nor right noetherian.
Generalized Galilean Algebras and Newtonian Gravity
Albornoz, N L González; Salgado, P; Salgado, S
2016-01-01
The non-relativistic versions of the generalized Poincar\\'{e} algebras and generalized $AdS$-Lorentz algebras are obtained. This non-relativistic algebras are called, generalized Galilean algebras type I and type II and denoted by $\\mathcal{G}\\mathfrak{B}_{n}$ and $\\mathcal{G}\\mathfrak{L}_{_{n}}$ respectively. Using a generalized In\\"{o}n\\"{u}--Wigner contraction procedure we find that the generalized Galilean algebras type I can be obtained from the generalized Galilean algebras type II. The $S$-expansion procedure allows us to find the $\\mathcal{G}\\mathfrak{B}_{_{5}}$ algebra from the Newton--Hooke algebra with central extension. The procedure developed in Ref. \\cite{newton} allow us to show that the non-relativistic limit of the five dimensional Einstein--Chern--Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
Algebraic structure and Poisson's theory of mechanico-electrical systems
Institute of Scientific and Technical Information of China (English)
Liu Hong-Ji; Tang Yi-Fa; Fu Jing-Li
2006-01-01
The algebraic structure and Poisson's integral theory of mechanico-electrical systems are studied.The Hamilton canonical equations and generalized Hamilton canonical equations and their the contravariant algebraic forms for mechanico-electrical systems are obtained.The Lie algebraic structure and the Poisson's integral theory of Lagrange mechanico-electrical systems are derived.The Lie algebraic structure admitted and Poisson's integral theory of the Lagrange-Maxwell mechanico-electrical systems are presented.Two examples are presented to illustrate these results.
On W1+∞ 3-algebra and integrable system
Directory of Open Access Journals (Sweden)
Min-Ru Chen
2015-02-01
Full Text Available We construct the W1+∞ 3-algebra and investigate its connection with the integrable systems. Since the W1+∞ 3-algebra with a fixed generator W00 in the operator Nambu 3-bracket recovers the W1+∞ algebra, it is intrinsically related to the KP hierarchy. For the general case of the W1+∞ 3-algebra, we directly derive the KP and KdV equations from the Nambu–Poisson evolution equation with the different Hamiltonian pairs of the KP hierarchy. Due to the Nambu–Poisson evolution equation involves two Hamiltonians, the deep relationship between the Hamiltonian pairs of KP hierarchy is revealed. Furthermore we give a realization of the W1+∞ 3-algebra in terms of a complex bosonic field. Based on the Nambu 3-brackets of the complex bosonic field, we derive the (generalized nonlinear Schrödinger equation and give an application in optical soliton.
The Uniformization of Certain Algebraic Hypergeometric Functions
Maier, Robert S
2009-01-01
The hypergeometric functions ${}_nF_{n-1}$ are higher transcendental functions, but for certain parameter values they become algebraic. This occurs, e.g., if the defining hypergeometric differential equation has irreducible but imprimitive monodromy. It is shown that many algebraic ${}_nF_{n-1}$'s of this type can be represented as combinations of certain explicitly algebraic functions of a single variable, i.e., the roots of trinomial equations. This generalizes a result of Birkeland. Any tuple of roots of a trinomial equation traces out a projective algebraic curve, and it is determined when this curve is of genus zero, i.e., admits a rational parametrization. Any such parametrization yields a hypergeometric identity that explicitly uniformizes a family of algebraic ${}_nF_{n-1}$'s. Even if the governing curve is of positive genus, it is shown how it may be possible to construct single-valued or multivalued parametrizations of individual algebraic ${}_nF_{n-1}$'s, by computation in rings of symmetric polyno...
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Boicescu, V; Georgescu, G; Rudeanu, S
1991-01-01
The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.
Homomorphisms between JC*-algebras and Lie C*-algebras
Institute of Scientific and Technical Information of China (English)
Chun Gil PARK; Jin Chuan HOU; Sei Qwon OH
2005-01-01
It is shown that every almost *-homomorphism h: A → B of a unital JC*-algebra A to a unital JC*-algebra B is a *-homomorphism when h(rx) = rh(x) (r ＞ 1) for all x ∈ A, and that every almost linear mapping h: A → B is a *-homomorphism when h(2nu o y) = h(2nu) o h(y),h(3nu o y) = h(3nu) o h(y) or h(qnu o y) = h(qnu) o h(y) for all unitaries u ∈ A, all y ∈ A, and n = 0, 1, Here the numbers 2, 3, q depend on the functional equations given in the almost linear mappings.We prove that every almost *-homomorphism h: A → B of a unital Lie C*-algebra A to a unital Lie C*-algebra B is a *-homomorphism when h(rx) = rh(x) (r ＞ 1) for all x ∈ A.
Institute of Scientific and Technical Information of China (English)
韩众; 张玉峰; 赵忠龙
2013-01-01
Based upon an improved unified algebra method and implement in the symbolic computation system Mathematica,the (2 + 1)-dimensional Zakharov-Kuznetsov modified equal width equation was considered.This method converted the work of constructing exact travelling wave solutions for an equation into solving a system of nonlinear algebra equations (NLAEs).After solving the system of nonlinear algebra equations,abundant general form solutions are obtained,including rational function solutions,trigonometric function solutions,hyperbolic function solutions,Jacobi elliptic function solutions,Weierstrass elliptic function solutions.The profiles of some obtained solutions are also given out.%利用一种改进的统一代数方法将构造(2+1)维ZK-MEW((2+1)-dimensional Zakharov-Kuznetsov modified equal width)方程精确行波解的问题转化为求解一组非线性的代数方程组.再借助于符号计算系统Mathematica求解所得到的非线性代数方程组,最终获得了方程的多种形式的精确行波解.其中包括有理解,三角函数解,双曲函数解,双周期Jacobi椭圆函数解,双周期Weierstrass椭圆形式解等.并给出了部分解的图形.
Representations of twisted current algebras
Lau, Michael
2013-01-01
We use evaluation representations to give a complete classification of the finite-dimensional simple modules of twisted current algebras. This generalizes and unifies recent work on multiloop algebras, current algebras, equivariant map algebras, and twisted forms.
Hom-alternative algebras and Hom-Jordan algebras
Makhlouf, Abdenacer
2009-01-01
The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra.
Directory of Open Access Journals (Sweden)
M. Sivasubramanian
2009-01-01
Full Text Available Problem statement: After formulating the special theory of relativity in 1905, Albert Einstein politely remarked: for velocities that are greater than light our deliberations become meaningless. In 1962, Sudarshan and his co-researchers proposed a hypothesis that particles/objects whose rest mass is imaginary can travel by birth faster than light. After the publication of Sudarshans research, many scholars began to probe into faster than light phenomena. In extended relativity, many properties of tachyons have been found. But still this micro second, the velocity of a free tachyon with respect to us is unknown. In this research the researchers found tachyon velocity. Approach: In this research, Einsteins variation of mass with velocity equation was transformed into quadratic equation. We introduced a new hypothesis to find the roots of the quadratic equation. Results: By introducing a new hypothesis in tachyon algebra, the researchers found that the velocity of superluminal objects with respect to us is v = c√3 where c is the velocity of the light. Conclusion/Recommendations: But the road to tachyon is too long. Hereafter it is up to experimental physicists to establish the existence/generation of tachyons.
Superconformal Algebras and Supersymmetric Integrable Flows
Sachse, Christoph; Devchand, Chandrasekhar
2009-01-01
After a comprehensive review of superconformal algebras, super-diffeomorphisms and supervector fields on supercircles S^{1|n} we study various supersymmetric extensions of the KdV and Camassa-Holm equations. We describe their (super) Hamiltonian structures and their connection to bihamiltonian geometry. These are interpreted as geodesic flows on various superconformal groups. We also give an example of superintegrable systems of Ramond type. The one-parameter family of equations shown by Degasperis, Holm and Hone (DHH) to possess multi-peakon solutions is identified as a geodesic flow equation on a one-parameter deformation of the group of diffeomorphisms of the circle, with respect to a right-invariant Sobolev H^1--metric. A supersymmetrisation of the algebra of deformed vector fields on S^1 yields supersymmetric DHH equations (also known as b-field equations), which include the supersymmetric Camassa--Holm equation as a special case.
Automatic Construction of Finite Algebras
Institute of Scientific and Technical Information of China (English)
张健
1995-01-01
This paper deals with model generation for equational theories,i.e.,automatically generating (finite)models of a given set of (logical) equations.Our method of finite model generation and a tool for automatic construction of finite algebras is described.Some examples are given to show the applications of our program.We argue that,the combination of model generators and theorem provers enables us to get a better understanding of logical theories.A brief comparison betwween our tool and other similar tools is also presented.
Non RG logarithms via RG equations
Malyshev, Dmitry
2004-01-01
We compute complete leading logarithms in $\\Phi^4$ theory with the help of Connes and Kreimer RG equations. These equations are defined in the Lie algebra dual to the Hopf algebra of graphs. The results are compared with calculations in parquet approximation. An interpretation of the new RG equations is discussed.
Shifted genus expanded W ∞ algebra and shifted Hurwitz numbers
Zheng, Quan
2016-05-01
We construct the shifted genus expanded W ∞ algebra, which is isomorphic to the central subalgebra A ∞ of infinite symmetric group algebra and to the shifted Schur symmetrical function algebra Λ* defined by Okounkov and Olshanskii. As an application, we get some differential equations for the generating functions of the shifted Hurwitz numbers; thus, we can express the generating functions in terms of the shifted genus expanded cut-and-join operators.
Mathematical methods linear algebra normed spaces distributions integration
Korevaar, Jacob
1968-01-01
Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Lie Algebra of Noncommutative Inhomogeneous Hopf Algebra
Lagraa, M.; Touhami, N.
1997-01-01
We construct the vector space dual to the space of right-invariant differential forms construct from a first order differential calculus on inhomogeneous quantum group. We show that this vector space is equipped with a structure of a Hopf algebra which closes on a noncommutative Lie algebra satisfying a Jacobi identity.
Categories and Commutative Algebra
Salmon, P
2011-01-01
L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.
Algebraic statistics computational commutative algebra in statistics
Pistone, Giovanni; Wynn, Henry P
2000-01-01
Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.
REAL PIECEWISE ALGEBRAIC VARIETY
Institute of Scientific and Technical Information of China (English)
Ren-hong Wang; Yi-sheng Lai
2003-01-01
We give definitions of real piecewise algebraic variety and its dimension. By using the techniques of real radical ideal, P-radical ideal, affine Hilbert polynomial, Bernstein-net form of polynomials on simplex, and decomposition of semi-algebraic set, etc., we deal with the dimension of the real piecewise algebraic variety and real Nullstellensatz in Cμ spline ring.
Deficiently Extremal Gorenstein Algebras
Indian Academy of Sciences (India)
Pavinder Singh
2011-08-01
The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.
Lannes, A.; Teunissen, P. J. G.
2011-05-01
The first objective of this paper is to show that some basic concepts used in global navigation satellite systems (GNSS) are similar to those introduced in Fourier synthesis for handling some phase calibration problems. In experimental astronomy, the latter are at the heart of what is called `phase closure imaging.' In both cases, the analysis of the related structures appeals to the algebraic graph theory and the algebraic number theory. For example, the estimable functions of carrier-phase ambiguities, which were introduced in GNSS to correct some rank defects of the undifferenced equations, prove to be `closure-phase ambiguities:' the so-called `closure-delay' (CD) ambiguities. The notion of closure delay thus generalizes that of double difference (DD). The other estimable functional variables involved in the phase and code undifferenced equations are the receiver and satellite pseudo-clock biases. A related application, which corresponds to the second objective of this paper, concerns the definition of the clock information to be broadcasted to the network users for their precise point positioning (PPP). It is shown that this positioning can be achieved by simply having access to the satellite pseudo-clock biases. For simplicity, the study is restricted to relatively small networks. Concerning the phase for example, these biases then include five components: a frequency-dependent satellite-clock error, a tropospheric satellite delay, an ionospheric satellite delay, an initial satellite phase, and an integer satellite ambiguity. The form of the PPP equations to be solved by the network user is then similar to that of the traditional PPP equations. As soon as the CD ambiguities are fixed and validated, an operation which can be performed in real time via appropriate decorrelation techniques, estimates of these float biases can be immediately obtained. No other ambiguity is to be fixed. The satellite pseudo-clock biases can thus be obtained in real time. This is
Bases of Schur algebras associated to cellularly stratified diagram algebras
Bowman, C
2011-01-01
We examine homomorphisms between induced modules for a certain class of cellularly stratified diagram algebras, including the BMW algebra, Temperley-Lieb algebra, Brauer algebra, and (quantum) walled Brauer algebra. We define the `permutation' modules for these algebras, these are one-sided ideals which allow us to study the diagrammatic Schur algebras of Hartmann, Henke, Koenig and Paget. We construct bases of these Schur algebras in terms of modified tableaux. On the way we prove that the (quantum) walled Brauer algebra and the Temperley-Lieb algebra are both cellularly stratified and therefore have well-defined Specht filtrations.
Jespers, Eric; Riley, David; Siciliano, Salvatore
2007-01-01
An algebra is called a GI-algebra if its group of units satisfies a group identity. We provide positive support for the following two open problems. 1. Does every algebraic GI-algebra satisfy a polynomial identity? 2. Is every algebraically generated GI-algebra locally finite?
Indian Academy of Sciences (India)
Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado
2012-05-01
We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.
Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Taghavi, Ali
2013-01-01
We study some properies of $Z^{*}$ algebras, thos C^* algebra which all positive elements are zero divisors. We show by means of an example that an extension of a Z* algebra by a Z* algebra is not necessarily Z* algebra. However we prove that an extension of a non Z* algebra by a non Z* algebra is again a Z^* algebra. As an application of our methods, we prove that evey compact subset of the positive cones of a C* algebra has an upper bound in the algebra.
On W algebras commuting with a set of screenings
Litvinov, Alexey
2016-01-01
We consider the problem of classification of all W algebras which commute with a set of exponential screening operators. Assuming that the W algebra has a nontrivial current of spin 3, we find equations satisfied by the screening operators and classify their solutions.
Super Virasoro algebra and solvable supersymmetric quantum field theories
International Nuclear Information System (INIS)
Interesting and deep relationships between super Virasoro algebras and super soliton systems (super KdV, super mKdV and super sine-Gordon equations) are investigated at both classical and quantum levels. An infinite set of conserved quantities responsible for solvability is characterized by super Virasoro algebras only. Several members of the infinite set of conserved quantities are derived explicitly. (author)
The graded Lie algebra of general relativity
Reiterer, Michael
2014-01-01
We construct a graded Lie algebra in which a solution to the vacuum Einstein equations is any element of degree 1 whose bracket with itself is zero. Each solution generates a cochain complex, whose first cohomology is linearized gravity about that solution. We gauge-fix to get a smaller cochain complex with the same cohomologies (deformation retraction). The new complex is much smaller, it consists of the solution spaces of linear homogeneous wave equations (symmetric hyperbolic equations). The algorithm that produces these gauges and wave equations is both for linearized gravity and the full Einstein equations. The gauge groupoid is the groupoid of rank 2 complex vector bundles.
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Lin, Cheng-Yao; Kuo, Yu-Chun; Ko, Yi-Yin
2015-01-01
The purpose of this study was to investigate elementary pre-service teachers' content knowledge in algebra (Linear Equation, Quadratic Equation, Functions, System Equations and Polynomials) as well as their technological pedagogical content knowledge (TPACK) in teaching algebra. Participants were 79 undergraduate pre-service teachers who were…
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
On Derivations Of Genetic Algebras
International Nuclear Information System (INIS)
A genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. In application of genetics this algebra often has a basis corresponding to genetically different gametes, and the structure constant of the algebra encode the probabilities of producing offspring of various types. In this paper, we find the connection between the genetic algebras and evolution algebras. Moreover, we prove the existence of nontrivial derivations of genetic algebras in dimension two
Institute of Scientific and Technical Information of China (English)
丁洁玉; 潘振宽
2013-01-01
An efficient and stable numerical method of differential-algebraic equations (DAEs) is one of the key problems in multi-body dynamics. For index 3 DAEs with a general mass matrix, a generalized-a-S method is presented after the deep study of implicit time-stepping methods introduced into multi-body dynamics. Based on the projection method of constraints, the generalized-a-S projection method is developed, which can keep the total energy of the system, the displacement constraints, as well as the velocity and acceleration constraints in higher degree of accuracy. With a longer time step, the method shows good stability to obtain higher computation efficiency.%高效、稳定的微分-代数方程数值求解方法是多体系统动力学领域的关键问题之一.该文针对多体系统动力学指标3微分-代数方程,对目前多体系统动力学中引入的隐式时域逐步积分方法进行了深入研究,提出了适用于一般质量矩阵的广义-α-S法,并结合约束投影方法,构造了广义-α-S投影法.该方法既能较好地保持系统总能量,又能较高程度地同时满足位移约束、速度级约束和加速度级约束,并且在步长较大时可稳定求解,计算效率较高.
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Stable endomorphism algebras of modules over special biserial algebras
Schröer, Jan; Zimmermann, Alexander
2002-01-01
We prove that the stable endomorphism algebra of a module without self-extensions over a special biserial algebra is a gentle algebra. In particular, it is again special biserial. As a consequence, any algebra which is derived equivalent to a gentle algebra is gentle.
$L_{\\infty}$ algebra structures of Lie algebra deformations
Gao, Jining
2004-01-01
In this paper,we will show how to kill the obstructions to Lie algebra deformations via a method which essentially embeds a Lie algebra into Strong homotopy Lie algebra or $L_{\\infty}$ algebra. All such obstructions have been transfered to the revelvant $L_{\\infty}$ algebras which contain only three terms
Omni-Lie Color Algebras and Lie Color 2-Algebras
Zhang, Tao
2013-01-01
Omni-Lie color algebras over an abelian group with a bicharacter are studied. The notions of 2-term color $L_{\\infty}$-algebras and Lie color 2-algebras are introduced. It is proved that there is a one-to-one correspondence between Lie color 2-algebras and 2-term color $L_{\\infty}$-algebras.
Process Algebra Approach to Reasoning About Concurrent Actions
Institute of Scientific and Technical Information of China (English)
Yuan Feng; Ming-Sheng Ying
2004-01-01
A reasonable transition rule is proposed for synchronized actions and some equational properties of bisimilarity and weak bisimilarity in the process algebra for reasoning about concurrent actions are presented.
Poincare-Lie algebra and noncommutative differential calculus
International Nuclear Information System (INIS)
A realization of Poincare-Lie algebra in terms of noncommutative differential calculus is constructed. Corresponding relativistic quantum mechanics is considered. The important conclusion is that field equations appear in the integral form
Four Lie algebras associated with R6 and their applications
Zhang, Yufeng; Tam, Honwah
2010-09-01
The first part in the paper reads that a three-dimensional Lie algebra is first introduced, whose corresponding loop algebra is constructed, for which isospectral problems are established. By employing zero curvature equations, a modified Kaup-Newell (mKN) soliton hierarchy of evolution equations is obtained. The corresponding hereditary operator and Hamiltonian structure are worked out, respectively. Then two types of enlarging semisimple Lie algebras isomorphic to the linear space R6 are followed to construct, one of them is a complex Lie algebra. Their corresponding loop algebras are also given so that two types of new isospectral problems are introduced to generate two kinds of integrable couplings of the above mKN hierarchy. The hereditary operators, Hamiltonian structures of the hierarchies are produced again, respectively. The exact computing formulas of the constant γ appearing in the trace identity and the variational identity are derived under the semisimple algebras. The second part of this paper is devoted to constructing two kinds of Lie algebras by using product of complex vectors, which are also isomorphic to the linear space R6. Then we make use of the corresponding loop algebras to produce two integrable hierarchies along with bi-Hamiltonian structures. From various aspects, we give some ways for constructing Lie algebras which have extensive applications in generating integrable Hamiltonian systems.
Evolution algebras and their applications
Tian, Jianjun Paul
2008-01-01
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.
Finite-dimensional (*)-serial algebras
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Let A be a finite-dimensional associative algebra with identity over a field k. In this paper we introduce the concept of (*)-serial algebras which is a generalization of serial algebras. We investigate the properties of (*)-serial algebras, and we obtain suficient and necessary conditions for an associative algebra to be (*)-serial.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
On the Toroidal Leibniz Algebras
Institute of Scientific and Technical Information of China (English)
Dong LIU; Lei LIN
2008-01-01
Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras gOC[t±11 ,...,t±v1] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.
Infinite Charge Algebra of Gravitational Instantons
Hoppe, Jens; Park, Q-Han
1993-01-01
Using a formalism of minitwistors, we derive infinitely many conserved charges for the $sl(\\infty )$-Toda equation which accounts for gravitational instantons with a rotational Killing symmetry. These charges are shown to form an infinite dimensional algebra through the Poisson bracket which is isomorphic to two dimensional area preserving diffeomorphism with central extentions.
Infinite Charge Algebra of Gravitational Instantons
Hoppe, J; Hoppe, Jens
1994-01-01
Using a formalism of minitwistors, we derive infinitely many conserved charges for the $sl(\\infty )$-Toda equation which accounts for gravitational instantons with a rotational Killing symmetry. These charges are shown to form an infinite dimensional algebra through the Poisson bracket which is isomorphic to two dimensional area preserving diffeomorphism with central extentions.
Invariant algebraic surfaces for a virus dynamics
Valls, Claudia
2015-08-01
In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.
Algebra 1Q, Mathematics: 5215.12.
Hirigoyen, Hector
This is the second of the six guidebooks on minimum course content for first-year algebra; it includes the ordered field properties of the real number system, solution of linear equations and inequalities, verbal problems, exponents and operations with polynomials. Overall goals for the course are stated; performance objectives for each unit, a…
Algebra 1p, Mathematics: 5215.11.
Strachan, Florence; Hirigoyen, Hector
This is the first of six guidebooks on minimum course content for first-year algebra; it introduces the language of sets, the fundamental operations and properties of the real number system, the use of variables, and the solution of simple linear equations and inequalities. Overall goals for the course are stated; then performance objectives, a…
The Rees Algebra for Certain Monomial Curves
Mukhopadhyay, Debasish
2010-01-01
In this article, we find the equations defining the Rees algebra for certain Monomial Curves explicitly and use them to prove that the blowup scheme is not smooth. This proves a conjecture of Francia in affirmative, which says that a dimension one prime in a regular local ring is a complete intersection if it has a smooth blowup.
How to be Brilliant at Algebra
Webber, Beryl
2010-01-01
How to be Brilliant at Algebra is contains 40 photocopiable worksheets designed to improve students' understanding of number relationships and patterns. They will learn about: odds and evens; patterns; inverse operations; variables; calendars; equations; pyramid numbers; digital root patterns; prime numbers; Fibonacci numbers; Pascal's triangle.
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Symmetric Extended Ockham Algebras
Institute of Scientific and Technical Information of China (English)
T.S. Blyth; Jie Fang
2003-01-01
The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30
Brouder, Christian
2002-01-01
The Laplace Hopf algebra created by Rota and coll. is generalized to provide an algebraic tool for combinatorial problems of quantum field theory. This framework encompasses commutation relations, normal products, time-ordered products and renormalisation. It considers the operator product and the time-ordered product as deformations of the normal product. In particular, it gives an algebraic meaning to Wick's theorem and it extends the concept of Laplace pairing to prove that the renormalise...
Algebraic nonlinear collective motion
Troupe, J.; Rosensteel, G.
1999-01-01
Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real number $\\Lambda$. The $\\Lambda=0$ solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear g...
Geometric Algebras and Extensors
Fernandez, V. V.; Moya, A. M.; Rodrigues Jr., W. A.
2007-01-01
This is the first paper in a series (of four) designed to show how to use geometric algebras of multivectors and extensors to a novel presentation of some topics of differential geometry which are important for a deeper understanding of geometrical theories of the gravitational field. In this first paper we introduce the key algebraic tools for the development of our program, namely the euclidean geometrical algebra of multivectors Cl(V,G_{E}) and the theory of its deformations leading to met...
Numerical Solution of Differential Algebraic Equations
DEFF Research Database (Denmark)
Wagner, Falko Jens; Hostrup, Astrid Kuijers; Antonov, Anton Antonov;
1999-01-01
These lecture notes have been written as part of a Ph. D. course was held at IMM in the fall of 1998. The authors of the different chapters have all taken part in the course and the chapters are written as part of their contribution to the course....
Transformation of time dependence to linear algebra
Menšík, Miroslav
2005-10-01
Reduced density matrix and memory function in the Nakajima-Zwanzig equation are expanded in properly chosen basis of special functions. This trick completely transforms time dependence to linear algebra. Then, the master equation for memory function is constructed and expanded in the same basis functions. For the model of a simple harmonic oscillator it is shown that this trick introduces infinite partial summation of the memory function in the system-bath interaction.
Algebraic extensions of fields
McCarthy, Paul J
1991-01-01
""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta
Kurosh, A G; Stark, M; Ulam, S
1965-01-01
Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Underwood, Robert G
2015-01-01
This text aims to provide graduate students with a self-contained introduction to topics that are at the forefront of modern algebra, namely, coalgebras, bialgebras, and Hopf algebras. The last chapter (Chapter 4) discusses several applications of Hopf algebras, some of which are further developed in the author’s 2011 publication, An Introduction to Hopf Algebras. The book may be used as the main text or as a supplementary text for a graduate algebra course. Prerequisites for this text include standard material on groups, rings, modules, algebraic extension fields, finite fields, and linearly recursive sequences. The book consists of four chapters. Chapter 1 introduces algebras and coalgebras over a field K; Chapter 2 treats bialgebras; Chapter 3 discusses Hopf algebras and Chapter 4 consists of three applications of Hopf algebras. Each chapter begins with a short overview and ends with a collection of exercises which are designed to review and reinforce the material. Exercises range from straightforw...
Relations Between BZMVdM-Algebra and Other Algebras
Institute of Scientific and Technical Information of China (English)
高淑萍; 邓方安; 刘三阳
2003-01-01
Some properties of BZMVdM-algebra are proved, and a new operator is introduced. It is shown that the substructure of BZMVdM-algebra can produce a quasi-lattice implication algebra. The relations between BZMVdM-algebra and other algebras are discussed in detail. A pseudo-distance function is defined in linear BZMVdM-algebra, and its properties are derived.
Noncommutative Pfaffians associated with the orthogonal algebra
Energy Technology Data Exchange (ETDEWEB)
Artamonov, Dmitrii V; Golubeva, Valentina A
2012-12-31
Commutators of Pfaffians associated with the orthogonal algebra are found in skew-symmetric and root realizations of o{sub N}. A generating function of Pfaffians is proved to satisfy the reflection equation. A relation between Pfaffians in skew-symmetric and root realizations of o{sub N} is established. Using these results we construct an integrable equation of Knizhnik-Zamolodchikov type using the Capelli central elements in U(o{sub N}), which are sums of squares of the considered Pfaffians. A classical limit of the obtained Knizhnik-Zamolodchikov type equation turns out to be a very specific system of equations of isomonodromic deformations. Bibliography: 18 titles.
Generalized supersymmetry and L\\'evy-Leblond equation
Aizawa, N; Tanaka, H; Toppan, F
2016-01-01
The symmetries of the L\\'evy-Leblond equation are investigated beyond the standard Lie framework. It is shown that the equation has two remarkable symmetries. One is given by the super Schr\\"odinger algebra and the other one by a $\\ZZ$ graded Lie algebra. The $\\ZZ$ graded Lie algebra is achieved by transforming bosonic into fermionic operators in the super Schr\\"odinger algebra and introducing second order differential operators as generators of symmetry.
Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra
Hijligenberg, N.W. van den; Martini, R.
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g
Tubular algebras and affine Kac-Moody algebras
Institute of Scientific and Technical Information of China (English)
Zheng-xin CHEN; Ya-nan LIN
2007-01-01
The purpose of this paper is to construct quotient algebras L(A)C1/I(A) of complex degenerate composition Lie algebras L(A)C1 by some ideals, where L(A)C1 is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)C1/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)C1 generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)C1 generated by simple A-modules.
Tubular algebras and affine Kac-Moody algebras
Institute of Scientific and Technical Information of China (English)
2007-01-01
The purpose of this paper is to construct quotient algebras L(A)1C/I(A) of complex degenerate composition Lie algebras L(A)1C by some ideals, where L(A)1C is defined via Hall algebras of tubular algebras A, and to prove that the quotient algebras L(A)1C/I(A) are isomorphic to the corresponding affine Kac-Moody algebras. Moreover, it is shown that the Lie algebra Lre(A)1C generated by A-modules with a real root coincides with the degenerate composition Lie algebra L(A)1C generated by simple A-modules.
Universal Algebras of Hurwitz Numbers
A. Mironov; Morozov, A; Natanzon, S.
2009-01-01
Infinite-dimensional universal Cardy-Frobenius algebra is constructed, which unifies all particular algebras of closed and open Hurwitz numbers and is closely related to the algebra of differential operators, familiar from the theory of Generalized Kontsevich Model.
Indian Academy of Sciences (India)
Cătălin Ciupală
2005-02-01
In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.
(Quasi-)Poisson enveloping algebras
Yang, Yan-Hong; Yuan YAO; Ye, Yu
2010-01-01
We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.
On algebraic volume density property
Kaliman, Shulim; Kutzschebauch, Frank
2012-01-01
A smooth affine algebraic variety $X$ equipped with an algebraic volume form $\\omega$ has the algebraic volume density property (AVDP) if the Lie algebra generated by completely integrable algebraic vector fields of $\\omega$-divergence zero coincides with the space of all algebraic vector fields of $\\omega$-divergence zero. We develop an effective criterion of verifying whether a given $X$ has AVDP. As an application of this method we establish AVDP for any homogeneous space $X=G/R$ that admi...
Automorphism groups of some algebras
Institute of Scientific and Technical Information of China (English)
PARK; Hong; Goo; LEE; Jeongsig; CHOI; Seul; Hee; NAM; Ki-Bong
2009-01-01
The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m,m + n).
Automorphism groups of some algebras
Institute of Scientific and Technical Information of China (English)
PARK Hong Goo; LEE Jeongsig; CHOI Seul Hee; CHEN XueQing; NAM Ki-Bong
2009-01-01
The automorphism groups of algebras are found in many papers. Using auto-invariance, we find the automorphism groups of the Laurent extension of the polynomial ring and the quantum n-plane (respectively, twisting polynomial ring) in this work. As an application of the results of this work, we can find the automorphism group of a twisting algebra. We define a generalized Weyl algebra and show that the generalized Weyl algebra is simple. We also find the automorphism group of a generalized Weyl algebra. We show that the generalized Weyl algebra Am,m+n is the universal enveloping algebra of the generalized Witt algebra W(m, m+n).
Institute of Scientific and Technical Information of China (English)
臧强; 张凯锋; 戴先中; 周颖
2012-01-01
For a class of nonlinear differential - algebraic equations ( DAE) subsystems: whose index is one and interconnection is local measurable, the inverse system control method is studied in this paper. The result is applied to the components control of power systems. At first the background and the particularities of such systems are expatiated. Then the definition of - order right inverse system is put forward. A recursive algorithm is given, with which to identify whether the nonlinear DAE subsystems are invertible. An - order right inverse system is realized by both state - feedback and dynamic compensation, with which the nonlinear DAE subsystems are decoupled and linearized. Finally, an excitation controller is designed for one of the synchronous generators in the multi - machine power systems based on the proposed method in this paper. The simulation is conducted and the results demonstrate the effectiveness of the proposed control scheme.%对于指数1且关联可测的非线性微分-代数子系统,研究其逆系统控制方法,并将结果应用于电力系统元件分散控制.首先描述了此类非线性微分-代数子系统的物理背景和系统特性,并给出了非线性微分-代数子系统的α阶积分右逆系统和可逆的定义;然后给出了一种递归算法,以此来判别被控系统的可逆性,并构造出由状态反馈和动态补偿实现的α阶积分右逆系统,实现了复合系统的线性化解耦；最后针对多机电力系统中的一台同步发电机,应用所提出的方法研究其励磁控制电压问题.仿真结果验证了所提出方法的有效性.
Successfully Transitioning to Linear Equations
Colton, Connie; Smith, Wendy M.
2014-01-01
The Common Core State Standards for Mathematics (CCSSI 2010) asks students in as early as fourth grade to solve word problems using equations with variables. Equations studied at this level generate a single solution, such as the equation x + 10 = 25. For students in fifth grade, the Common Core standard for algebraic thinking expects them to…
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Directory of Open Access Journals (Sweden)
Carlos C. Peña
2000-05-01
Full Text Available Topological algebras of sequences of complex numbers are introduced, endowed with a Hadamard product type. The complex homomorphisms on these algebras are characterized, and units, prime cyclic ideals, prime closed ideals, and prime minimal ideals, discussed. Existence of closed and maximal ideals are investigated, and it is shown that the Jacobson and nilradicals are both trivial.
Heinicke, C; Heinicke, Christian; Hehl, Friedrich W.
2001-01-01
We survey the application of computer algebra in the context of gravitational theories. After some general remarks, we show of how to check the second Bianchi-identity by means of the Reduce package Excalc. Subsequently we list some computer algebra systems and packages relevant to applications in gravitational physics. We conclude by presenting a couple of typical examples.
Introduction to noncommutative algebra
Brešar, Matej
2014-01-01
Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Unified derivation of exact solutions to the relativistic Coulomb problem: Lie algebraic approach
Panahi, H.; Baradaran, M.; Savadi, A.
2015-10-01
Exact algebraic solutions of the D-dimensional Dirac and Klein-Gordon equations for the Coulomb potential are obtained in a unified treatment. It is shown that two cases are reducible to the same basic equation, which can be solved exactly. Using the Lie algebraic approach, the general exact solutions of the problem are obtained within the framework of representation theory of the sl(2) Lie algebra.
Lattice Landau Gauge and Algebraic Geometry
Mehta, Dhagash; von Smekal, Lorenz; Williams, Anthony G
2009-01-01
Finding the global minimum of a multivariate function efficiently is a fundamental yet difficult problem in many branches of theoretical physics and chemistry. However, we observe that there are many physical systems for which the extremizing equations have polynomial-like non-linearity. This allows the use of Algebraic Geometry techniques to solve these equations completely. The global minimum can then straightforwardly be found by the second derivative test. As a warm-up example, here we study lattice Landau gauge for compact U(1) and propose two methods to solve the corresponding gauge-fixing equations. In a first step, we obtain all Gribov copies on one and two dimensional lattices. For simple 3x3 systems their number can already be of the order of thousands. We anticipate that the computational and numerical algebraic geometry methods employed have far-reaching implications beyond the simple but illustrating examples discussed here.
Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras
Ashihara, Takahiro; Miyamoto, Masahiko
2008-01-01
If a vertex operator algebra $V=\\oplus_{n=0}^{\\infty}V_n$ satisfies $\\dim V_0=1, V_1=0$, then $V_2$ has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set $Sym_d(\\C)$ of symmetric matrices of degree $d$ becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, central charges influence the properties of vertex operator algebras. In t...
Directory of Open Access Journals (Sweden)
Ali Ghaffari
2014-01-01
Full Text Available The main objective of this paper is to propose an optimal finite duration treatment method for cancer. A mathematical model is proposed to show the interactions between healthy and cancerous cells in the human body. To extend the existing models, the effect of vaccine therapy and chemotherapy are also added to the model. The equilibrium points and the related local stability are derived and discussed. It is shown that the dynamics of the cancer model must be changed and modified for finite treatment duration. Therefore, the vaccine therapy is used to change the parameters of the system and the chemotherapy is applied for pushing the system to the domain of attraction of the healthy state. For optimal chemotherapy, an optimal control is used based on state dependent Riccati equation (SDRE. It is shown that, in spite of eliminating the treatment, the system approaches the healthy state conditions. The results show that the development of optimal vaccine-chemotherapy protocols for removing tumor cells would be an appropriate strategy in cancer treatment. Also, the present study states that a proper treatment method not only reduces the population of the cancer cells but also changes the dynamics of the cancer.
The Planar Algebra of a Semisimple and Cosemisimple Hopf Algebra
Indian Academy of Sciences (India)
Vijay Kodiyalam; V S Sunder
2006-11-01
To a semisimple and cosemisimple Hopf algebra over an algebraically closed field, we associate a planar algebra defined by generators and relations and show that it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus and of depth two. This association is shown to yield a bijection between (the isomorphism classes, on both sides, of) such objects.
Graded Lie Algebra Generating of Parastatistical Algebraic Relations
Institute of Scientific and Technical Information of China (English)
JING Si-Cong; YANG Wei-Min; LI Ping
2001-01-01
A new kind of graded Lie algebra (We call it Z2,2 graded Lie algebra) is introduced as a framework for formulating parasupersymmetric theories. By choosing suitable Bose subspace of the Z2,2 graded Lie algebra and using relevant generalized Jacobi identities, we generate the whole algebraic structure of parastatistics.
Computational algebraic geometry of epidemic models
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
Algebraic classification of Robinson-Trautman spacetimes
Podolsky, Jiri
2016-01-01
We consider a general class of four-dimensional geometries admitting a null vector field that has no twist and no shear but has an arbitrary expansion. We explicitly present the Petrov classification of such Robinson-Trautman (and Kundt) gravitational fields, based on the algebraic properties of the Weyl tensor. In particular, we determine all algebraically special subcases when the optically privileged null vector field is a multiple principal null direction (PND), as well as all the cases when it remains a single PND. No field equations are a priori applied, so that our classification scheme can be used in any metric theory of gravity in four dimensions. In the classic Einstein theory this reproduces previous results for vacuum spacetimes, possibly with a cosmological constant, pure radiation and electromagnetic field, but can be applied to an arbitrary matter content. As non-trivial explicit examples we investigate specific algebraic properties of the Robinson-Trautman spacetimes with a free scalar field, ...
The abc-conjecture for Algebraic Numbers
Institute of Scientific and Technical Information of China (English)
Jerzy BROWKIN
2006-01-01
The abc-conjecture for the ring of integers states that, for every ε＞ 0 and every triple of relatively prime nonzero integers (a, b, c) satisfying a + b = c, we have max(|a|, |b|, |c|) ≤ rad(abc)1+ε with a finite number of exceptions. Here the radical rad(m) is the product of all distinct prime factors of m.In the present paper we propose an abc-conjecture for the field of all algebraic numbers. It is based on the definition of the radical (in Section 1) and of the height (in Section 2) of an algebraic number.From this abc-conjecture we deduce some versions of Fermat's last theorem for the field of all algebraic numbers, and we discuss from this point of view known results on solutions of Fermat's equation in fields of small degrees over Q.
Directory of Open Access Journals (Sweden)
Sinan AYDIN
2009-04-01
Full Text Available Linear algebra is a basic course followed in mathematics, science, and engineering university departments.Generally, this course is taken in either the first or second year but there have been difficulties in teachingand learning. This type of active algebra has resulted in an increase in research by mathematics educationresearchers. But there is insufficient information on this subject in Turkish and therefore it has not beengiven any educational status. This paper aims to give a general overview of this subject in teaching andlearning. These education studies can be considered quadruple: a the history of linear algebra, b formalismobstacles of linear algebra and cognitive flexibility to improve teaching and learning, c the relation betweenlinear algebra and geometry, d using technology in the teaching and learning linear algebra.Mathematicseducation researchers cannot provide an absolute solution to overcome the teaching and learning difficultiesof linear algebra. Epistemological analyses and experimental teaching have shown the learning difficulties.Given these results, further advice and assistance can be offered locally.
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
Kandasamy, W B Vasantha
2008-01-01
In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). This book expects the readers to be well-versed in linear algebra. Many theorems on super linear algebra and its properties are proved. Some theorems are left as exercises for the reader. These new class of super linear algebras which can be thought of as a set of linear algebras, following a stipulated condition, will find applications in several fields using computers. The authors feel that such a paradigm shift is essential in this computerized world. Some other structures ought to replace linear algebras which are over a century old. Super linear algebras that use super matrices can store data not only in a block but in multiple blocks so it is certainly more powerful than the usual matrices. This book has 3 chapters. Chapter one introduces the notion of super vector spaces and enumerates a number of properties. Chapter two defines the notion of sup...
Gravitational fields with a non Abelian bidimensional Lie algebra of symmetries
Sparano, G; Vinogradov, A M
2001-01-01
Vacuum gravitational fields invariant for a bidimensional non Abelian Lie algebra of Killing fields, are explicitly described. They are parameterized either by solutions of a transcendental equation (the tortoise equation) or by solutions of a linear second order differential equation on the plane. Gravitational fields determined via the tortoise equation, are invariant for a 3-dimensional Lie algebra of Killing fields with bidimensional leaves. Global gravitational fields out of local ones are also constructed.
Methods of algebraic geometry in control theory
Falb, Peter
1999-01-01
"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...
Process algebra for Hybrid systems
Bergstra, J.A.; Middelburg, C.A.
2008-01-01
We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, Chap. 4, 2002] and the process algebra with propositional signals from Baeten and Bergstra [Theoretical Computer
Process algebra for hybrid systems
Bergstra, J.A.; Middelburg, C.A.
2005-01-01
We propose a process algebra obtained by extending a combination of the process algebra with continuous relative timing from Baeten and Middelburg (Process Algebra with Timing, Springer,Berlin, 2002, Chapter 4), and the process algebra with propositional signals from Baeten and Bergstra(Theoret. Com
Directory of Open Access Journals (Sweden)
J. W. Kitchen
1994-01-01
Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.
Michael Roitman
2003-01-01
In this paper we prove that for any commutative (but in general non-associative) algebra $A$ with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra $V = V_0 \\oplus V_2 \\oplus V_3\\oplus ...$, such that $\\dim V_0 = 1$ and $V_2$ contains $A$. We can choose $V$ so that if $A$ has a unit $e$, then $2e$ is the Virasoro element of $V$, and if $G$ is a finite group of automorphisms of $A$, then $G$ acts on $V$ as well. In addition, the algebra $V$ can be chosen with...
Riemann type algebraic structures and their differential-algebraic integrability analysis
Directory of Open Access Journals (Sweden)
Prykarpatsky A.K.
2010-06-01
Full Text Available The differential-algebraic approach to studying the Lax type integrability of generalized Riemann type equations is devised. The differentiations and the associated invariant differential ideals are analyzed in detail. The approach is also applied to studying the Lax type integrability of the well known Korteweg-de Vries dynamical system.
Reinvention of early algebra : developmental research on the transition from arithmetic to algebra
Amerom, B.A. van
2002-01-01
In chapter 1 we give our reasons for carrying out this developmental research project on the transition from arithmetic to algebra, which includes the design of an experimental learning strand on solving equations. Chapter 2 describes the theoretical background of the book: current views on the teac
The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier-Jacobi Algebra
Directory of Open Access Journals (Sweden)
Karl Hallowell
2007-09-01
Full Text Available Lichnerowicz's algebra of differential geometric operators acting on symmetric tensors can be obtained from generalized geodesic motion of an observer carrying a complex tangent vector. This relation is based upon quantizing the classical evolution equations, and identifying wavefunctions with sections of the symmetric tensor bundle and Noether charges with geometric operators. In general curved spaces these operators obey a deformation of the Fourier-Jacobi Lie algebra of sp(2,R. These results have already been generalized by the authors to arbitrary tensor and spinor bundles using supersymmetric quantum mechanical models and have also been applied to the theory of higher spin particles. These Proceedings review these results in their simplest, symmetric tensor setting. New results on a novel and extremely useful reformulation of the rank 2 deformation of the Fourier-Jacobi Lie algebra in terms of an associative algebra are also presented. This new algebra was originally motivated by studies of operator orderings in enveloping algebras. It provides a new method that is superior in many respects to common techniques such as Weyl or normal ordering.
Maxwell Equations and the Redundant Gauge Degree of Freedom
Wong, Chun Wa
2009-01-01
On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…
Operator product expansion algebra
Energy Technology Data Exchange (ETDEWEB)
Holland, Jan [School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff CF24 4AG (United Kingdom); Hollands, Stefan [School of Mathematics, Cardiff University, Senghennydd Rd, Cardiff CF24 4AG (United Kingdom); Institut für Theoretische Physik, Universität Leipzig, Brüderstr. 16, Leipzig, D-04103 (Germany)
2013-07-15
We establish conceptually important properties of the operator product expansion (OPE) in the context of perturbative, Euclidean φ{sup 4}-quantum field theory. First, we demonstrate, generalizing earlier results and techniques of hep-th/1105.3375, that the 3-point OPE,
Meadow enriched ACP process algebras
J.A. Bergstra; Middelburg, C.A.
2009-01-01
We introduce the notion of an ACP process algebra. The models of the axiom system ACP are the origin of this notion. ACP process algebras have to do with processes in which no data are involved. We also introduce the notion of a meadow enriched ACP process algebra, which is a simple generalization of the notion of an ACP process algebra to processes in which data are involved. In meadow enriched ACP process algebras, the mathematical structure for data is a meadow.
Algebraic Properties of Propositional Calculus
Schuh, Bernd R.
2009-01-01
In this short note we relate some known properties of propositional calculus to purely algebraic considerations of a Boolean algebra. Classes of formulas of propositional calculus are considered as elements of a Boolean algebra. As such they can be represented by uniquely defined elements of this algebra which we call "logical primes". The algebraic notations appear useful because they make it possible to derive well known properties of propositional calculus by simple calculations or to subs...
Hom-power associative algebras
Yau, Donald
2010-01-01
A generalization of power associative algebra, called Hom-power associative algebra, is studied. The main result says that a multiplicative Hom-algebra is Hom-power associative if and only if it satisfies two identities of degrees three and four. It generalizes Albert's result that power associativity is equivalent to third and fourth power associativity. In particular, multiplicative right Hom-alternative algebras and non-commutative Hom-Jordan algebras are Hom-power associative.
On isomorphisms of integral table algebras
Institute of Scientific and Technical Information of China (English)
FAN; Yun(樊恽); SUN; Daying(孙大英)
2002-01-01
For integral table algebras with integral table basis T, we can consider integral R-algebra RT over a subring R of the ring of the algebraic integers. It is proved that an R-algebra isomorphism between two integral table algebras must be an integral table algebra isomorphism if it is compatible with the so-called normalizings of the integral table algebras.
Cameron, Peter J
2007-01-01
This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,. new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics. - ;Developed to meet the needs of modern students, this Second Edition of the classic algebra text by Peter Cameron covers all the abstract algebra an undergraduate student is likely to need. Starting with an introductory overview of numbers, sets and functions, matrices, polynomials, and modular arithmetic, the text then introduces the most important algebraic structures: groups, rings and fields, and their properties. This is followed by coverage of vector spaces and modules with. applications to abelian groups and canonical forms before returning to the construction of the number systems, including the existence of transcendental numbers. The final chapters take the reader further into the th...
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Indian Academy of Sciences (India)
Vijay Kodiyalam; R Srinivasan; V S Sunder
2000-08-01
In this paper, we study a tower $\\{A^G_n(d):n≥ 1\\}$ of finite-dimensional algebras; here, represents an arbitrary finite group, denotes a complex parameter, and the algebra $A^G_n(d)$ has a basis indexed by `-stable equivalence relations' on a set where acts freely and has 2 orbits. We show that the algebra $A^G_n(d)$ is semi-simple for all but a finite set of values of , and determine the representation theory (or, equivalently, the decomposition into simple summands) of this algebra in the `generic case'. Finally we determine the Bratteli diagram of the tower $\\{A^G_n(d): n≥ 1\\}$ (in the generic case).
Ten-Year-Old Students Solving Linear Equations
Brizuela, Barbara; Schliemann, Analucia
2004-01-01
In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…
Preliminary group classification of quasilinear third-order evolution equations
Institute of Scientific and Technical Information of China (English)
Ding-jiang HUANG; Hong-qing ZHANG
2009-01-01
Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transfor-mations, and the theory of classification of abstract low-dimensional Lie algebras. We show that there are three equations admitting simple Lie algebras of dimension three. All non-equivalent equations admitting simple Lie algebras are nothing but these three. Furthermore, we also show that there exist two, five, twenty-nine and twenty-six non-equivalent third-order nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively.
Introduction to abstract algebra
Nicholson, W Keith
2012-01-01
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be
Institute of Scientific and Technical Information of China (English)
Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA
2004-01-01
In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.
Geometric Algebra for Physicists
Doran, Chris; Lasenby, Anthony
2007-11-01
Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.
Andrilli, Stephen
2010-01-01
Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl
Law, Shirley
2014-01-01
International audience A general lattice theoretic construction of Reading constructs Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations. The products and coproducts of these Hopf subalgebras are defined extrinsically in terms of the embedding in MR. The goal of this paper is to find an intrinsic combinatorial description of a particular one of these Hopf subalgebras. This Hopf algebra has a natural basis given by permutations that we call Pell permutations. The...
Holomorphically Equivalent Algebraic Embeddings
Feller, Peter; Stampfli, Immanuel
2014-01-01
We prove that two algebraic embeddings of a smooth variety $X$ in $\\mathbb{C}^m$ are the same up to a holomorphic coordinate change, provided that $2 \\dim X + 1$ is smaller than or equal to $m$. This improves an algebraic result of Nori and Srinivas. For the proof we extend a technique of Kaliman using generic linear projections of $\\mathbb{C}^m$.
Overview of parallel algorithms in numerical linear algebra
Energy Technology Data Exchange (ETDEWEB)
Sameh, A.
1983-01-01
The author gives a brief survey of the development of multiprocessor algorithms for: (i) the direct solution of linear systems, (ii) the algebraic eigenvalue problem, and (iii) the direct and iterative methods for solving the finite-difference or finite-element linear systems of equations arising from the discretization of linear partial differential equations. 66 references.
Super-Poincare' algebras, space-times and supergravities (II)
Santi, Andrea
2011-01-01
The presentation of supergravity theories of our previous paper "Super-Poincare' algebras, space-times and supergravities (I)" is re-formulated in the language of Berezin-Leites-Kostant theory of supermanifolds. It is also shown that the equations of Cremmer, Julia and Scherk's theory of 11D-supergravity are equivalent to manifestly covariant equations on a supermanifold.
Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra
Hijligenberg, van den, N.W.; Martini, R.
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of $U(g)$. The construction of such differential structures is interpreted in terms of colour Lie superalgebras.
Topological ∗-algebras with *-enveloping Algebras II
Indian Academy of Sciences (India)
S J Bhatt
2001-02-01
Universal *-algebras *() exist for certain topological ∗-algebras called algebras with a *-enveloping algebra. A Frechet ∗-algebra has a *-enveloping algebra if and only if every operator representation of maps into bounded operators. This is proved by showing that every unbounded operator representation , continuous in the uniform topology, of a topological ∗-algebra , which is an inverse limit of Banach ∗-algebras, is a direct sum of bounded operator representations, thereby factoring through the enveloping pro-* algebra () of . Given a *-dynamical system (, , ), any topological ∗-algebra containing (, ) as a dense ∗-subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If $G = \\mathbb{R}$, if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ∗-automorphisms: then the smooth Schwartz crossed product $S(\\mathbb{R}, B, )$ satisfies $E(S(\\mathbb{R}, B, )) = C^*(\\mathbb{R}, A, )$. When is a Lie group, the ∞-elements ∞(), the analytic elements () as well as the entire analytic elements () carry natural topologies making them algebras with a *-enveloping algebra. Given a non-unital *-algebra , an inductive system of ideals is constructed satisfying $A = C^*-\\mathrm{ind} \\lim I_$; and the locally convex inductive limit $\\mathrm{ind}\\lim I_$ is an -convex algebra with the *-enveloping algebra and containing the Pedersen ideal of . Given generators with weakly Banach admissible relations , we construct universal topological ∗-algebra (, ) and show that it has a *-enveloping algebra if and only if (, ) is *-admissible.
Basic math and pre-algebra for dummies
Zegarelli, Mark
2014-01-01
Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methodsRelevant cultural vernacular and referencesStandard For Dummies materials that
A generalization of the Virasoro algebra to arbitrary dimensions
Energy Technology Data Exchange (ETDEWEB)
Gurau, Razvan, E-mail: rgurau@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo (Canada)
2011-11-21
Colored tensor models generalize matrix models in higher dimensions. They admit a 1/N expansion dominated by spherical topologies and exhibit a critical behavior strongly reminiscent of matrix models. In this paper we generalize the colored tensor models to colored models with generic interaction, derive the Schwinger Dyson equations in the large N limit and analyze the associated algebra of constraints satisfied at leading order by the partition function. We show that the constraints form a Lie algebra (indexed by trees) yielding a generalization of the Virasoro algebra in arbitrary dimensions.
Lie Algebras Associated with Group U(n)
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra A1 are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few expanding Lie algebras are obtained by enlarging matrices. Some of them can be devoted to producing double integrable couplings of the soliton hierarchies of nonlinear evolution equations. Others can be used to generate integrable couplings involving more potential functions. The above Lie algebras are classified into two types. Only one type can generate the integrable couplings, whose Hamiltonian structure could be obtained by use of the quadratic-form identity. In addition, one condition on searching for integrable couplings is improved such that more useful Lie algebras are enlightened to engender. Then two explicit examples are shown to illustrate the applications of the Lie algebras. Finally, with the help of closed cycling operation relations, another way of producing higher-dimensional Lie algebras is given.
Schaum's outline of theory and problems of linear algebra
Lipschutz, Seymour
2001-01-01
This third edition of the successful outline in linear algebra--which sold more than 400,000 copies in its past two editions--has been thoroughly updated to increase its applicability to the fields in which linear algebra is now essential: computer science, engineering, mathematics, physics, and quantitative analysis. Revised coverage includes new problems relevant to computer science and a revised chapter on linear equations.
Di Vizio, Lucia
2010-01-01
Let k be a perfect field and K be a finite extension of k(q), with q transcendent over k. In Part I, we prove that a q-difference module over $K(x)$ is trivial if and only if its specialization at q =\\xi is trivial for almost all primitive roots of unity \\xi. In Part II, we shiw that the generic algebraic (resp. differential) Galois group is the smallest algebraic (resp. algebraic differential) group containing the curvatures of the q-difference module for almost all primitive roots of unity \\xi. Although no general Galois correspondence holds in this setting, if the characteristic of k is positive and the generic Galois group is nonreduced, we can prove some devissage. In Part III we give some comparison results between the two generic Galois groups above and the other Galois groups in the literature and, inspired by [And01], between the group obtained by specialization of the parameter q in the generic (differential) Galois group of a module over K(x) and the generic (differential) Galois group of the speci...
Axis Problem of Rough 3-Valued Algebras
Institute of Scientific and Technical Information of China (English)
Jianhua Dai; Weidong Chen; Yunhe Pan
2006-01-01
The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.
MODEL IDENTIFICATION AND COMPUTER ALGEBRA.
Bollen, Kenneth A; Bauldry, Shawn
2010-10-01
Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods.
MODEL IDENTIFICATION AND COMPUTER ALGEBRA.
Bollen, Kenneth A; Bauldry, Shawn
2010-10-01
Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods. PMID:21769158
Algebraic points on meromorphic curves
Herblot, Mathilde
2012-01-01
The classic Schneider-Lang theorem in transcendence theory asserts that there are only finitely many points at which algebraically independent complex meromorphic functions of finite order of growth can simultaneously take values in a number field, when satisfying a polynomial differential equation with coefficients in this given number field. In this article, we are interested in generalizing this theorem in two directions. First, instead of considering meromorphic functions on C we consider holomorphic maps on an affine curve over the field C or C_p. This extends a statement of D. Bertrand, which applies to meromorphic functions on P^1(C) or P^1(C_p) minus a finite subset of points. Secondly, we deal with algebraic values taken by the functions, instead of rational values as in the classic setting, inspired by a work of D. Bertrand. We prove a geometric statement extending those two results, using the slopes method, written in the language of Arakelov geometry. In the complex case, we recover a special case...
Identifying Causal Effects with Computer Algebra
García-Puente, Luis David; Sullivant, Seth
2010-01-01
The long-standing identification problem for causal effects in graphical models has many partial results but lacks a systematic study. We show how computer algebra can be used to either prove that a causal effect can be identified, generically identified, or show that the effect is not generically identifiable. We report on the results of our computations for linear structural equation models, where we determine precisely which causal effects are generically identifiable for all graphs on three and four vertices.
Numerical linear algebra for reconstruction inverse problems
Nachaoui, Abdeljalil
2004-01-01
Our goal in this paper is to discuss various issues we have encountered in trying to find and implement efficient solvers for a boundary integral equation (BIE) formulation of an iterative method for solving a reconstruction problem. We survey some methods from numerical linear algebra, which are relevant for the solution of this class of inverse problems. We motivate the use of our constructing algorithm, discuss its implementation and mention the use of preconditioned Krylov methods.
Chiral Symmetry in algebraic and analytic approaches
Vereshagin, V.; Dillig, M.; Vereshagin, A.
1996-01-01
We compare among themselves two different methods for the derivation of results following from the requirement of polynomial boundedness of tree-level chiral amplitudes. It is shown that the results of the algebraic approach are valid also in the framework of the analytical one. This means that the system of Sum Rules and Bootstrap equations previously obtained with the help of the latter approach can be analyzed in terms of reducible representations of the unbroken Chiral group with the know...
An algebraic framework of weighted directed graphs
Philippe Leroux
2003-01-01
We show that an algebraic formulation of weighted directed graphs leads to introducing a k-vector space equipped with two coproducts Δ and Δ˜ verifying the so-called coassociativity breaking equation (Δ˜⊗id)Δ=(id⊗Δ)Δ˜. Such a space is called an L-coalgebra. Explicit examples of such spaces are constructed and links between graph theory and coassociative coalgebras are given.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Over a field F of arbitrary characteristic, we define the associative and the Lie algebras of Weyl type on the same vector space A［D]=A［D] from any pair of a commutative associative algebra A with an identity element and the polynomial algebra ［D] of a commutative derivation subalgebra D of A. We prove that A[D], as a Lie algebra (modulo its center) or as an associative algebra, is simple if and only if A is D－simple and A［D] acts faithfully on A. Thus we obtain a lot of simple algebras.
Simple Algebras of Invariant Operators
Institute of Scientific and Technical Information of China (English)
Xiaorong Shen; J.D.H. Smith
2001-01-01
Comtrans algebras were introduced in as algebras with two trilinear operators, a commutator [x, y, z] and a translator , which satisfy certain identities. Previously known simple comtrans algebras arise from rectangular matrices, simple Lie algebras, spaces equipped with a bilinear form having trivial radical, spaces of hermitian operators over a field with a minimum polynomial x2+1. This paper is about generalizing the hermitian case to the so-called invariant case. The main result of this paper shows that the vector space of n-dimensional invariant operators furnishes some comtrans algebra structures, which are simple provided that certain Jordan and Lie algebras are simple.
Galois theory of difference equations
Put, Marius
1997-01-01
This book lays the algebraic foundations of a Galois theory of linear difference equations and shows its relationship to the analytic problem of finding meromorphic functions asymptotic to formal solutions of difference equations. Classically, this latter question was attacked by Birkhoff and Tritzinsky and the present work corrects and greatly generalizes their contributions. In addition results are presented concerning the inverse problem in Galois theory, effective computation of Galois groups, algebraic properties of sequences, phenomena in positive characteristics, and q-difference equations. The book is aimed at advanced graduate researchers and researchers.
Solving stochastic epidemiological models using computer algebra
Hincapie, Doracelly; Ospina, Juan
2011-06-01
Mathematical modeling in Epidemiology is an important tool to understand the ways under which the diseases are transmitted and controlled. The mathematical modeling can be implemented via deterministic or stochastic models. Deterministic models are based on short systems of non-linear ordinary differential equations and the stochastic models are based on very large systems of linear differential equations. Deterministic models admit complete, rigorous and automatic analysis of stability both local and global from which is possible to derive the algebraic expressions for the basic reproductive number and the corresponding epidemic thresholds using computer algebra software. Stochastic models are more difficult to treat and the analysis of their properties requires complicated considerations in statistical mathematics. In this work we propose to use computer algebra software with the aim to solve epidemic stochastic models such as the SIR model and the carrier-borne model. Specifically we use Maple to solve these stochastic models in the case of small groups and we obtain results that do not appear in standard textbooks or in the books updated on stochastic models in epidemiology. From our results we derive expressions which coincide with those obtained in the classical texts using advanced procedures in mathematical statistics. Our algorithms can be extended for other stochastic models in epidemiology and this shows the power of computer algebra software not only for analysis of deterministic models but also for the analysis of stochastic models. We also perform numerical simulations with our algebraic results and we made estimations for the basic parameters as the basic reproductive rate and the stochastic threshold theorem. We claim that our algorithms and results are important tools to control the diseases in a globalized world.
Assessing Algebraic Solving Ability Of Form Four Students
Directory of Open Access Journals (Sweden)
Lim Hooi Lian
2006-10-01
Full Text Available Mathematics researchers generally agree that algebra is a tool for problem solving, a method of expressing relationship, analyzing and representing patterns, and exploring mathematical properties in a variety of problem situations. Thus, several mathematics researchers and educators have focused on investigating the introduction and the development of algebraic solving abilities. However research works on assessing students' algebraic solving ability is sparse in literature. The purpose of this study was to use the SOLO model as a theoretical framework for assessing Form Four students' algebraic solving abilities in using linear equation. The content domains incorporated in this framework were linear pattern (pictorial, direct variations, concepts of function and arithmetic sequence. This study was divided into two phases. In the first phase, students were given a pencil-and-paper test. The test comprised of eight superitems of four items each. Results were analyzed using a Partial Credit model. In the second phase, clinical interviews were conducted to seek the clarification of the students' algebraic solving processes. Results of the study indicated that 62% of the students have less than 50% probability of success at relational level. The majority of the students in this study could be classified into unistructural and multistructural. Generally, most of the students encountered difficulties in generalizing their arithmetic thinking through the use of algebraic symbols. The qualitative data analysis found that the high ability students seemed to be more able to seek the recurring linear pattern and identify the linear relationship between variables. They were able to co-ordinate all the information given in the question to form the algebraic expression and linear equations. Whereas, the low ability students showed an ability more on drawing and counting method. They lacked understanding of algebraic concepts to express the relationship
On reduction and exact solutions of nonlinear many-dimensional Schroedinger equations
International Nuclear Information System (INIS)
With the help of the canonical decomposition of an arbitrary subalgebra of the orthogonal algebra AO(n) the rank n and n-1 maximal subalgebras of the extended isochronous Galileo algebra, the rank n maximal subalgebras of the generalized extended classical Galileo algebra AG(a,n) the extended special Galileo algebra AG(2,n) and the extended whole Galileo algebra AG(3,n) are described. By using the rank n subalgebras, ansatze reducing the many dimensional Schroedinger equations to ordinary differential equations is found. With the help of the reduced equation solutions exact solutions of the Schroedinger equation are considered
Chen, Xueli; Sun, Fangfang; Yang, Defu; Liang, Jimin
2015-09-01
For fluorescence tomographic imaging of small animals, the liver is usually regarded as a low-scattering tissue and is surrounded by adipose, kidneys, and heart, all of which have a high scattering property. This leads to a breakdown of the diffusion equation (DE)-based reconstruction method as well as a heavy computational burden for the simplified spherical harmonics equation (SPN). Coupling the SPN and DE provides a perfect balance between the imaging accuracy and computational burden. The coupled third-order SPN and DE (CSDE)-based reconstruction method is developed for fluorescence tomographic imaging. This is achieved by doubly using the CSDE for the excitation and emission processes of the fluorescence propagation. At the same time, the finite-element method and hybrid multilevel regularization strategy are incorporated in inverse reconstruction. The CSDE-based reconstruction method is first demonstrated with a digital mouse-based liver cancer simulation, which reveals superior performance compared with the SPN and DE-based methods. It is more accurate than the DE-based method and has lesser computational burden than the SPN-based method. The feasibility of the proposed approach in applications of in vivo studies is also illustrated with a liver cancer mouse-based in situ experiment, revealing its potential application in whole-body imaging of small animals.
Upper Triangular Matrix of Lie Algebra and a New Discrete Integrable Coupling System
Institute of Scientific and Technical Information of China (English)
YU Fa-Jun; ZHANG Hong-Qing
2007-01-01
The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations.Correspondingly,a feasible way to construct integrable couplings is presented.A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy.It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.
Spatial Operator Algebra for multibody system dynamics
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1992-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
On the algebraic structure of Killing superalgebras
Figueroa-O'Farrill, José
2016-01-01
We study the algebraic structure of the Killing superalgebra of a supersymmetric $11$-dimensional supergravity background and show that it is isomorphic to a filtered deformation of a $\\mathbb Z$-graded subalgebra of the Poincar\\'e superalgebra. We then re-interpret the classification problem for backgrounds which preserve more than half of the supersymmetry as the classification problem of certain admissible filtered subdeformations of the Poincar\\'e superalgebra. In particular we relate the bosonic field equations of $11$-dimensional supergravity to the Jacobi identity of the Killing superalgebra and show in this way that preserving more than half the supersymmetry implies the bosonic field equations.
Supersymmetry of a Nonstationary Pauli Equation
Tkachuk, V. M.
1997-01-01
The supersymmetry of the electron in both the nonstationary magnetic and electric fields in a two-dimensional case is studied. The supercharges which are the integrals of motion and their algebra are established. Using the obtained algebra the solutions of nonstationary Pauli equation are generated.
Supersymmetry of a nonstationary Pauli equation
Energy Technology Data Exchange (ETDEWEB)
Tkachuk, V.M. [Ivan Franko Lviv State University, Chair of Theoretical Physics, Lviv (Ukraine)
1998-02-20
The supersymmetry of the electron in both the nonstationary magnetic and electric fields in a two-dimensional case is studied. The supercharges which are the integrals of motion and their algebra are established. Using the obtained algebra the solutions of nonstationary Pauli equation are generated. (author)
Supersymmetry of a nonstationary Pauli equation
International Nuclear Information System (INIS)
The supersymmetry of the electron in both the nonstationary magnetic and electric fields in a two-dimensional case is studied. The supercharges which are the integrals of motion and their algebra are established. Using the obtained algebra the solutions of nonstationary Pauli equation are generated. (author)
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Rings of quotients of incidence algebras and path algebras
DEFF Research Database (Denmark)
Esparza, Eduardo Ortega
2006-01-01
We compute the maximal right/left/symmetric rings of quotients of finite dimensional incidence and graph algebras. We show that these rings of quotients are Morita equivalent to incidence algebras and path algebras respectively, with respect to simpler, well determined partially ordered sets...