Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models
Directory of Open Access Journals (Sweden)
Sh. Khachatryan
2015-10-01
Full Text Available We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.
Correlation functions of the spin chains. Algebraic Bethe Ansatz approach
International Nuclear Information System (INIS)
Kitanine, N.
2007-09-01
Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
Wang, Chunguang
Integrable quantum spin chains have close connections to integrable quantum field. theories, modern condensed matter physics, string and Yang-Mills theories. Bethe. ansatz is one of the most important approaches for solving quantum integrable spin. chains. At the heart of the algebraic structure of integrable quantum spin chains is. the quantum Yang-Baxter equation and the boundary Yang-Baxter equation. This. thesis focuses on four topics in Bethe ansatz. The Bethe equations for the isotropic periodic spin-1/2 Heisenberg chain with N. sites have solutions containing ±i/2 that are singular: both the corresponding energy and the algebraic Bethe ansatz vector are divergent. Such solutions must be carefully regularized. We consider a regularization involving a parameter that can be. determined using a generalization of the Bethe equations. These generalized Bethe. equations provide a practical way of determining which singular solutions correspond. to eigenvectors of the model. The Bethe equations for the periodic XXX and XXZ spin chains admit singular. solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to bephysical, in which case they correspond to genuine eigenvalues and eigenvectors of. the Hamiltonian. We analyze the ground state of the open spin-1/2 isotropic quantum spin chain. with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots. split evenly into two sets: those that remain finite, and those that become infinite. We. argue that the former satisfy conventional Bethe equations, while the latter satisfy a. generalization of the Richardson-Gaudin equations. We derive an expression for the. leading correction to the boundary energy in terms of the boundary parameters. We argue that the Hamiltonians for A(2) 2n open quantum spin chains
The q-deformed analogue of the Onsager algebra: Beyond the Bethe ansatz approach
International Nuclear Information System (INIS)
Baseilhac, Pascal
2006-01-01
The spectral properties of operators formed from generators of the q-Onsager non-Abelian infinite-dimensional algebra are investigated. Using a suitable functional representation, all eigenfunctions are shown to obey a second-order q-difference equation (or its degenerate discrete version). In the algebraic sector associated with polynomial eigenfunctions (or their discrete analogues), Bethe equations naturally appear. Beyond this sector, where the Bethe ansatz approach is not applicable in related massive quantum integrable models, the eigenfunctions are also described. The spin-half XXZ open spin chain with general integrable boundary conditions is reconsidered in light of this approach: all the eigenstates are constructed. In the algebraic sector which corresponds to special relations among the parameters, known results are recovered
Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity
Directory of Open Access Journals (Sweden)
Azat M. Gainutdinov
2016-08-01
Full Text Available For generic values of q, all the eigenvectors of the transfer matrix of the Uqsl(2-invariant open spin-1/2 XXZ chain with finite length N can be constructed using the algebraic Bethe ansatz (ABA formalism of Sklyanin. However, when q is a root of unity (q=eiπ/p with integer p≥2, the Bethe equations acquire continuous solutions, and the transfer matrix develops Jordan cells. Hence, there appear eigenvectors of two new types: eigenvectors corresponding to continuous solutions (exact complete p-strings, and generalized eigenvectors. We propose general ABA constructions for these two new types of eigenvectors. We present many explicit examples, and we construct complete sets of (generalized eigenvectors for various values of p and N.
Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications
International Nuclear Information System (INIS)
Martins, M.J.; Melo, C.S.
2009-01-01
We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U q [SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.
Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications
Martins, M. J.; Melo, C. S.
2009-10-01
We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.
Energy Technology Data Exchange (ETDEWEB)
Kitanine, N
2007-09-15
Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
International Nuclear Information System (INIS)
Skrypnyk, T.
2009-01-01
We construct quantum integrable systems associated with non-skew-symmetric gl(2)-valued classical r-matrices. We find a new explicit multiparametric family of such the non-skew-symmetric classical r-matrices. We consider two classes of examples of the corresponding integrable systems, namely generalized Gaudin systems with and without an external magnetic field. In the case of arbitrary r-matrices diagonal in a standard gl(2)-basis, we calculate the spectrum of the corresponding quantum integrable systems using the algebraic Bethe ansatz. We apply these results to a construction of integrable fermionic models and obtain a wide class of integrable Bardeen-Cooper-Schrieffer (BCS)-type fermionic Hamiltonians containing the pairing and electrostatic interaction terms. We also consider special cases when the corresponding integrable Hamiltonians contain only pairing interaction term and are exact analogs of the 'reduced BCS Hamiltonian' of Richardson
Off-diagonal Bethe ansatz for exactly solvable models
Wang, Yupeng; Cao, Junpeng; Shi, Kangjie
2015-01-01
This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.
Quantum corrections to the string Bethe ansatz
Hernández, R; Hernandez, Rafael; Lopez, Esperanza
2006-01-01
One-loop corrections to the energy of semiclassical rotating strings contain both analytic and non-analytic terms in the 't Hooft coupling. Analytic contributions agree with the prediction from the string Bethe ansatz based on the classical S-matrix, but in order to include non-analytic contributions quantum corrections are required. We find a general expression for the first quantum correction to the string Bethe ansatz.
Bethe Ansatz Solutions of the Bose-Hubbard Dimer
Directory of Open Access Journals (Sweden)
Jon Links
2006-12-01
Full Text Available The Bose-Hubbard dimer Hamiltonian is a simple yet effective model for describing tunneling phenomena of Bose-Einstein condensates. One of the significant mathematical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering Method, while the third solution uses a differential operator realisation of the su(2 Lie algebra.
Bethe Ansatz for the Ruijsenaars Model of BC_1-Type
Directory of Open Access Journals (Sweden)
Oleg Chalykh
2007-02-01
Full Text Available We consider one-dimensional elliptic Ruijsenaars model of type $BC_1$. It is given by a three-term difference Schrödinger operator $L$ containing 8 coupling constants. We show that when all coupling constants are integers, $L$ has meromorphic eigenfunctions expressed by a variant of Bethe ansatz. This result generalizes the Bethe ansatz formulas known in the $A_1$-case.
Coordinate Bethe ansatz for the string S-matrix
Energy Technology Data Exchange (ETDEWEB)
Leeuw, M de [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)
2007-11-30
We use the coordinate Bethe ansatz approach to derive the nested Bethe equations corresponding to the recently found S-matrix for strings in AdS{sub 5} x S{sup 5}, compatible with centrally extended su(2 vertical bar 2) symmetry.
ODE/IM correspondence and Bethe ansatz for affine Toda field equations
Directory of Open Access Journals (Sweden)
Katsushi Ito
2015-07-01
Full Text Available We study the linear problem associated with modified affine Toda field equation for the Langlands dual gˆ∨, where gˆ is an untwisted affine Lie algebra. The connection coefficients for the asymptotic solutions of the linear problem are found to correspond to the Q-functions for g-type quantum integrable models. The ψ-system for the solutions associated with the fundamental representations of g leads to Bethe ansatz equations associated with the affine Lie algebra gˆ. We also study the A2r(2 affine Toda field equation in massless limit in detail and find its Bethe ansatz equations as well as T–Q relations.
O(N)-matrix difference equations and a nested Bethe ansatz
International Nuclear Information System (INIS)
Babujian, Hrachya M; Foerster, Angela; Karowski, Michael
2012-01-01
A system of O(N)-matrix difference equations is solved by means of the off-shell version of the nested algebraic Bethe ansatz. In the nesting process, a new object, the Π-matrix, is introduced to overcome the complexities of the O(N)-group structure. The highest weight property of the solutions is proved and some explicit examples are discussed. (paper)
Massless AdS 2 scattering and Bethe ansatz
Fontanella, A.; Torrielli, A.
2017-09-01
We first analyse the integrable scattering theory describing the massless excitations of AdS 2 × S 2 × T 6 superstrings in the relativistic limit. The matrix part of the S-matrix is obtained in the BMN limit from the conjectured exact expression, and compared to known S-matrices with N=1 supersymmetry in 1 + 1 dimensions. A dressing factor, yet unknown for the complete theory, is here constructed based on relativistic crossing symmetry. We derive a Bethe-ansatz condition by employing a transfer-matrix technique based on the so-called free-fermion condition. This is known to overcome the problem of lack of a reference state. We then generalise the method to the massless non-relativistic case, and compare the resulting Bethe-ansatz condition with a simple massless limit of the one conjectured by Sorokin, Tseytlin, Wulff and Zarembo.
Bethe ansatz equations for open spin chains from giant gravitons
International Nuclear Information System (INIS)
Nepomechie, Rafael I.
2009-01-01
We investigate the open spin chain describing the scalar sector of the Y = 0 giant graviton brane at weak coupling. We provide a direct proof of integrability in the SU(2) and SU(3) sectors by constructing the transfer matrices. We determine the eigenvalues of these transfer matrices in terms of roots of the corresponding Bethe ansatz equations (BAEs). Based on these results, we propose BAEs for the full SO(6) sector. We find that, in the weak-coupling limit, the recently-proposed all-loop BAEs essentially agree with those proposed in the present work.
Norm formulae for the Bethe Ansatz on root systems of small rank
International Nuclear Information System (INIS)
Bustamante, M D; Diejen, J F van; Maza, A C de la
2008-01-01
The norms of the Bethe Ansatz eigenfunctions for the Lieb-Liniger quantum system of n Bosonic particles on a ring with pairwise repulsive delta potential interactions are given by a beautiful determinantal formula, first conjectured by Gaudin in the early seventies and then proven by Korepin about a decade later. Recently, E Emsiz formulated a similar conjecture generalizing the Gaudin-Korepin norm formula in terms of the root systems of complex simple Lie algebras. Here we confirm the validity of the conjecture in question for small root systems up to rank 3 (thus including the important test case of the exceptional root system G 2 )
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
International Nuclear Information System (INIS)
Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2013-01-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived
A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons
Energy Technology Data Exchange (ETDEWEB)
Hibberd, K.E. [Centre for Mathematical Physics, University of Queensland, 4072 (Australia); Dunning, C. [Institute of Mathematics, Statistics and Actuarial Science, University of Kent (United Kingdom); Links, J. [Centre for Mathematical Physics, University of Queensland, 4072 (Australia)]. E-mail: jrl@maths.uq.edu.au
2006-08-07
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane.
A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons
Hibberd, K. E.; Dunning, C.; Links, J.
2006-08-01
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrödinger operators. For the solution we derive here the potential of the Schrödinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane.
A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons
International Nuclear Information System (INIS)
Hibberd, K.E.; Dunning, C.; Links, J.
2006-01-01
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane
Bethe ansatz solution of an integrable, non-Abelian anyon chain with D(D{sub 3}) symmetry
Energy Technology Data Exchange (ETDEWEB)
Campbell, C.W.; Dancer, K.A.; Isaac, P.S. [Centre for Mathematical Physics, School of Mathematics and Physics, The University of Queensland, 4072 (Australia); Links, J., E-mail: jrl@maths.uq.edu.a [Centre for Mathematical Physics, School of Mathematics and Physics, The University of Queensland, 4072 (Australia)
2010-09-11
The exact solution for the energy spectrum of a one-dimensional Hamiltonian with local two-site interactions and periodic boundary conditions is determined. The two-site Hamiltonians commute with the symmetry algebra given by the Drinfeld double D(D{sub 3}) of the dihedral group D{sub 3}. As such the model describes local interactions between non-Abelian anyons, with fusion rules given by the tensor product decompositions of the irreducible representations of D(D{sub 3}). The Bethe ansatz equations which characterise the exact solution are found through the use of functional relations satisfied by a set of mutually commuting transfer matrices.
Bethe ansatz approach to quantum sine Gordon thermodynamics and finite temperature excitations
International Nuclear Information System (INIS)
Zotos, X.
1982-01-01
Takahashi and Suzuki (TS) using the Bethe ansatz method developed a formalism for the thermodynamics of the XYZ spin chain. Translating their formalism to the quantum sine-Gordon system, the thermodynamics and finite temperature elementary excitations are analyzed. Criteria imposed by TS on the allowed states simply correspond to the condition of normalizability of the wave functions. A set of coupled nonlinear integral equations for the thermodynamic equilibrium densities for particular values of the coupling constant in the attractive regime is derived. Solving numerically these Bethe ansatz equations, curves of the specific heat as a function of temperature are obtained. The soliton contribution peaks at a temperature of about 0.4 soliton masses shifting downward as the classical limit is approached. The weak coupling regime is analyzed by deriving the Bethe ansatz equations including the charged vacuum excitations. It is shown that they are necessary for a consistent presentation of the thermodynamics
Bethe Ansatz and exact form factors of the O(N) Gross Neveu-model
International Nuclear Information System (INIS)
Babujian, Hrachya M.; Foerster, Angela; Karowski, Michael
2016-01-01
We apply previous results on the O(N) Bethe Ansatz http://dx.doi.org/10.1088/1751-8113/45/5/055207, http://arxiv.org/abs/1204.3479, http://dx.doi.org/10.1007/JHEP11(2013)089 to construct a general form factor formula for the O(N) Gross-Neveu model. We examine this formula for several operators, such as the energy momentum, the spin-field and the current. We also compare these results with the 1/N expansion of this model and obtain full agreement. We discuss bound state form factors, in particular for the three particle form factor of the field. In addition for the two particle case we prove a recursion relation for the K-functions of the higher level Bethe Ansatz.
On \\boldsymbol {AdS_2/CFT_1} transfer matrices, Bethe ansatz and scale invariance
Torrielli, Alessandro
2018-01-01
We explicitly calculate the \\renewcommand{\\r}ρ \\renewcommand{\\t}τ AdS2 × S2 × T6 transfer-matrix eigenvalues in the massless sector using the exact integrable S-matrix, for up to 5 particles. This enables us to conjecture the general pattern. We use the conjectured form of the eigenvalues to write down a set of massless Bethe ansatz equations. The same procedure applies to the relativistic as well as to the non-relativistic situation. In the relativistic case, the right and left modes decouple. We speculate that the relativistic massless Bethe ansatz we obtain in that case might capture the integrable structure of an underlying 2D critical theory. We finally take advantage of some remarkable simplifications to make progress in the massive case as well.
Bethe Ansatz for two-magnon scattering states in 2D and 3D Heisenberg-Ising ferromagnets
Bibikov, P. N.
2017-01-01
Various versions of the Bethe ansatz are suggested for evaluation of scattering two-magnon states in 2D and 3D Heisenberg-Ising ferromagnets. It is shown that for 2D square (3D qubic) finite-periodic or infinite lattices about a half (3/4) of states have a correctly 2D- (3D-) generalized Bethe form. The remaining scattering states are treated (on the infinite lattices only) within the degenerative discrete-diffractive modification of the Bethe ansatz previously suggested by the author.
Nested Bethe Ansatz for Spin Ladder Model with Open Boundary Conditions
International Nuclear Information System (INIS)
Wu Junfang; Zhang Chunmin; Yue Ruihong; Li Runling
2005-01-01
The nested Bethe ansatz (BA) method is applied to find the eigenvalues and the eigenvectors of the transfer matrix for spin-ladder model with open boundary conditions. Based on the reflection equation, we find the general diagonal solution, which determines the general boundary interaction in the Hamiltonian. We introduce the spin-ladder model with open boundary conditions. By finding the solution K ± of the reflection equation which determines the nontrivial boundary terms in the Hamiltonian, we diagonalize the transfer matrix of the spin-ladder model with open boundary conditions in the framework of nested BA.
Log-gamma directed polymer with fixed endpoints via the replica Bethe Ansatz
Thiery, Thimothée; Le Doussal, Pierre
2014-10-01
We study the model of a discrete directed polymer (DP) on a square lattice with homogeneous inverse gamma distribution of site random Boltzmann weights, introduced by Seppalainen (2012 Ann. Probab. 40 19-73). The integer moments of the partition sum, \\overline{Z^n} , are studied using a transfer matrix formulation, which appears as a generalization of the Lieb-Liniger quantum mechanics of bosons to discrete time and space. In the present case of the inverse gamma distribution the model is integrable in terms of a coordinate Bethe Ansatz, as discovered by Brunet. Using the Brunet-Bethe eigenstates we obtain an exact expression for the integer moments of \\overline{Z^n} for polymers of arbitrary lengths and fixed endpoint positions. Although these moments do not exist for all integer n, we are nevertheless able to construct a generating function which reproduces all existing integer moments and which takes the form of a Fredholm determinant (FD). This suggests an analytic continuation via a Mellin-Barnes transform and we thereby propose a FD ansatz representation for the probability distribution function (PDF) of Z and its Laplace transform. In the limit of a very long DP, this ansatz yields that the distribution of the free energy converges to the Gaussian unitary ensemble (GUE) Tracy-Widom distribution up to a non-trivial average and variance that we calculate. Our asymptotic predictions coincide with a result by Borodin et al (2013 Commun. Math. Phys. 324 215-32) based on a formula obtained by Corwin et al (2011 arXiv:1110.3489) using the geometric Robinson-Schensted-Knuth (gRSK) correspondence. In addition we obtain the dependence on the endpoint position and the exact elastic coefficient at a large time. We argue the equivalence between our formula and that of Borodin et al. As we will discuss, this provides a connection between quantum integrability and tropical combinatorics.
Energy Technology Data Exchange (ETDEWEB)
Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in
2016-12-15
Integrable quantum field models are known to exist mostly in one space-dimension. Exploiting the concept of multi-time in integrable systems and a Lax matrix of higher scaling order, we construct a novel quantum field model in quasi-two dimensions involving interacting fields. The Yang–Baxter integrability is proved for the model by finding a new kind of commutation rule for its basic fields, representing nonstandard scalar fields along the transverse direction. In spite of a close link with the quantum Landau–Lifshitz equation, the present model differs widely from it, in its content and the result obtained. Using further the algebraic Bethe ansatz we solve exactly the eigenvalue problem of this quantum field model for all its higher conserved operators. The idea presented here should instigate the construction of a novel class of integrable field and lattice models and exploration of a new type of underlying algebras.
Bethe vectors for XXX-spin chain
International Nuclear Information System (INIS)
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-01-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included
Bethe vectors for XXX-spin chain
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-11-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.
Yangian symmetry, S-matrices and Bethe Ansatz for the AdS{sub 5} x S{sup 5} superstring
Energy Technology Data Exchange (ETDEWEB)
Leeuw, M. de [Institute for Theoretical Physics and Spinoza Institute, Utrecht University (Netherlands)
2009-05-15
We discuss the relation between the recently derived bound state S-matrices for the AdS{sub 5} x S{sup 5} superstring and Yangian symmetry. We will study the relation between this Yangian symmetry and the Bethe ansatz. In particular we can use it to derive the Bethe equations for bound states. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Log-gamma directed polymer with one free end via coordinate Bethe Ansatz
Grange, Pascal
2017-07-01
The discrete polymer model with random Boltzmann weights with homogeneous inverse gamma distribution, introduced by Seppäläinen, is studied in the case of a polymer with one fixed and one free end. The model with two fixed ends has been integrated by Thiery and Le Doussal, using coordinate Bethe Ansatz techniques and an analytic-continuation prescription. The probability distribution of the free energy has been obtained through the replica method, even though the moments of the partition sum do not exist at all orders due to the fat tail in the distribution of Boltzmann weights. To extend this approach to the polymer with one free end, we argue that the contribution to the partition sums in the thermodynamic limit is localised on parity-invariant string states. This situation is analogous to the case of the continuum polymer with one free end, related to the Kardar-Parisi-Zhang equation with flat boundary conditions and solved by Le Doussal and Calabrese. The expansion of the generating function of the partition sum in terms of numbers of strings can also be transposed to the log-gamma polymer model, with the induced Fredholm determinant structure. We derive the large-time limit of the rescaled cumulative distribution function, and relate it to the GOE Tracy-Widom distribution. The derivation is conjectural in the sense that it assumes completeness of a family of string states, and expressions of their norms, already useful in the fixed-end problem, and extends heuristically the order of moments of the partition sum to the complex plane.
Algebraic structure of the Green's ansatz and its q-deformed analogue
International Nuclear Information System (INIS)
Palev, T.D.
1994-08-01
The algebraic structure of the Green's ansatz is analyzed in such a way that its generalization to the case of q-deformed para-Bose and para-Fermi operators is becoming evident. To this end the underlying Lie (super) algebraic properties of the parastatistics are essentially used. (author). 41 refs
Directory of Open Access Journals (Sweden)
Alexander Varchenko
2017-10-01
Full Text Available We consider the Gauss–Manin differential equations for hypergeometric integrals associated with a family of weighted arrangements of hyperplanes moving parallel to themselves. We reduce these equations modulo a prime integer p and construct polynomial solutions of the new differential equations as p-analogs of the initial hypergeometric integrals. In some cases, we interpret the p-analogs of the hypergeometric integrals as sums over points of hypersurfaces defined over the finite field Fp. This interpretation is similar to the classical interpretation by Yu. I. Manin of the number of points on an elliptic curve depending on a parameter as a solution of a Gauss hypergeometric differential equation. We discuss the associated Bethe ansatz.
Expanding the Bethe/Gauge dictionary
Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz
2017-11-01
We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.
Comultiplication in ABCD algebra and scalar products of Bethe wave functions
International Nuclear Information System (INIS)
Mikhailov, A.
1995-01-01
The representation of scalar products of Bethe wave functions in terms of dual fields, plays an important role in the theory of completely integrable models. The proof is based on the explicit expression for the open-quotes seniorclose quotes coefficient, which was guessed in the Izergin paper and then proved to satisfy some recurrent relations, which determine it unambiguously. In this paper we present an alternative proof based on direct computation. It uses the operation of comultiplication in the ABCD-algebra
Nataf, Pierre; Mila, Frédéric
2018-04-01
We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.
International Nuclear Information System (INIS)
Kobayashi, K.; Ohe, C.; Iguchi, K.
1996-01-01
The one-dimensional t-J model is investigated by the variational Monte Carlo method. A variational wave function based on the Bethe-ansatz solution is proposed, where the spin-charge separation is realized and a long-range correlation factor of Jastrow-type is included. In most regions of the phase diagram, this wave function provides an excellent description of the ground-state properties characterized as a Tomonaga-Luttinger liquid; both the amplitude and exponent of correlation functions are correctly reproduced. For the spin-gap phase, another trial state of correlated singlet pairs with a Jastrow factor is introduced. This wave function shows generalized Luther-Emery-liquid behavior, exhibiting enhanced superconducting correlations and exponential decay of the spin correlation function. Using these two variational wave functions, the whole phase diagram is determined. In addition, relations between the correlation exponent and variational parameters in the trial functions are derived. copyright 1996 The American Physical Society
Pakuliak, S.; Sergeev, S.
2002-01-01
We investigate an N-state spin model called quantum relativistic Toda chain and based on the unitary finite-dimensional representations of the Weyl algebra with q being Nth primitive root of unity. Parameters of the finite-dimensional representation of the local Weyl algebra form the classical discrete integrable system. Nontrivial dynamics of the classical counterpart corresponds to isospectral transformations of the spin system. Similarity operators are constructe...
Quantum affine algebras and deformations of the virasoro and W-algebras
International Nuclear Information System (INIS)
Frenkel, E.; Reshetikhin, N.
1996-01-01
Using the Wakimoto realization of quantum affine algebras we define new Poisson algebras, which are q-deformations of the classical W-algebras. We also define their free field realizations, i.e. homomorphisms into some Heisenberg-Poisson algebras. The formulas for these homomorphisms coincide with formulas for spectra of transfer-matrices in the corresponding quantum integrable models derived by the Bethe-Ansatz method. (orig.)
Yang-Baxter algebra - Integrable systems - Conformal quantum field theories
International Nuclear Information System (INIS)
Karowski, M.
1989-01-01
This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)
Gaudin, Michel
2014-01-01
Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers in physics. It presents a mixture of mathematics interspersed with powerful physical intuition, retaining the author's unmistakably honest tone. The book begins with the Heisenberg spin chain, starting from the coordinate Bethe Ansatz and culminating in a discussion of its thermodynamic properties. Delta-interacting bosons (the Lieb-Liniger model) are then explored, and extended to exactly solvable models associated to a reflection group. After discussing the continuum limit of spin chains, the book covers six- and eight-vertex models in extensive detail, from their lattice definition to their thermodynamics. Later chapters examine advanced topics such as multi-component delta-interacting systems, Gaudin magnets and...
Bethe's quantum numbers and rigged configurations
Directory of Open Access Journals (Sweden)
Anatol N. Kirillov
2016-04-01
Full Text Available We propose a method to determine the quantum numbers, which we call the rigged configurations, for the solutions to the Bethe ansatz equations for the spin-1/2 isotropic Heisenberg model under the periodic boundary condition. Our method is based on the observation that the sums of Bethe's quantum numbers within each string behave particularly nicely. We confirm our procedure for all solutions for length 12 chain (totally 923 solutions.
Bethe subalgebras in affine Birman-Murakami-Wenzl algebras and flat connections for q-KZ equations
Isaev, A. P.; Kirillov, A. N.; Tarasov, V. O.
2016-05-01
Commutative sets of Jucys-Murphy elements for affine braid groups of {A}(1),{B}(1),{C}(1),{D}(1) types were defined. Construction of R-matrix representations of the affine braid group of type {C}(1) and its distinguished commutative subgroup generated by the {C}(1)-type Jucys-Murphy elements are given. We describe a general method to produce flat connections for the two-boundary quantum Knizhnik-Zamolodchikov equations as necessary conditions for Sklyanin's type transfer matrix associated with the two-boundary multicomponent Zamolodchikov algebra to be invariant under the action of the {C}(1)-type Jucys-Murphy elements. We specify our general construction to the case of the Birman-Murakami-Wenzl algebras (BMW algebras for short). As an application we suggest a baxterization of the Dunkl-Cherednik elements {Y}\\prime {{s}} in the double affine Hecke algebra of type A. Dedicated to Professor Rodney Baxter on the occasion of his 75th Birthday.
Representations of the Virasoro algebra from lattice models
International Nuclear Information System (INIS)
Koo, W.M.; Saleur, H.
1994-01-01
We investigate in detail how the Virasoro algebra appears in the scaling limit of the simplest lattice models of XXZ or RSOS type. Our approach is straightforward but to our knowledge had never been tried so far. We simply formulate a conjecture for the lattice stress-energy tensor motivated by the exact derivation of lattice global Ward identities. We then check that the proper algebraic relations are obeyed in the scaling limit. The latter is under reasonable control thanks to the Bethe-ansatz solution. The results, which are mostly numerical for technical reasons, are remarkably precise. They are also corroborated by exact pieces of information from various sources, in particular Temperley-Lieb algebra representation theory. Most features of the Virasoro algebra (like central term, null vectors, metric properties, etc.) can thus be observed using the lattice models. This seems of general interest for lattice field theory, and also more specifically for finding relations between conformal invariance and lattice integrability, since a basis for the irreducible representations of the Virasoro algebra should now follow (at least in principle) from Bethe-ansatz computations. ((orig.))
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
Experimental observation of Bethe strings
Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois
2018-02-01
Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.
Gottfried, Kurt
2005-01-01
"There are a handful of people who soar, whose accompalishments are so off-scale as to nearly defy belief. Hans Bethe (2 July 1906 - 6 March 2005) was of that caliber. As just one measure of his stature, imagine the task of copying his published opus by hand, for that is how he wrote most of it" (2 pages)
Gaudin, M.; Caux, J.-S.
2014-01-01
Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
DEFF Research Database (Denmark)
Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.
2016-01-01
interacting solution with the well-known solution in the limit of vanishing interactions provides a simple and accurate description of the system for all values of the interaction strength. This indicates that one can indeed capture the physics of confined one-dimensional systems by knowledge of the limits....... This is an important feature because these systems are known to be non-integrable and thus not solvable by the Bethe ansatz technique....
Obituary: Hans Albrecht Bethe, 1906-2005
Wijers, Ralph
2007-12-01
now call the "Bethe Ansatz." Soon after his acceptance of an assistant professorship at Tübingen in 1932, he had to flee Hitler's Germany because his mother was Jewish. Bethe went to the Bragg Institute in Manchester, England, where he worked again with Peierls. In 1934, Cornell University unexpectedly offered him a position as part of R. Clifton Gibbs's expansion of the physics department; he accepted and stayed there for the rest of his life. Right from the start, Bethe enjoyed America and its atmosphere very much. His first activity there was to write the "Bethe Bible": three articles in Reviews of Modern Physics to educate his colleagues in theoretical nuclear physics. Then he did the work that astrophysicists will still appreciate him most for, and which brought him the 1967 Nobel Prize. Having worked with George Gamow's student Charles Critchfield (at Gamow's suggestion) on the proton-proton chain for nuclear fusion in the Sun (published in 1938), Bethe was initially a bit discouraged with Arthur Eddington's estimates of the Solar core temperature; their calculations did not agree well with the observed solar luminosity. However, at the Washington conference in 1937, he heard of Strömgren's new estimates of the solar interior, which brought his and Critchfield's theory into much better agreement with the data. Fairly soon after the meeting, Bethe also worked out the process whereby more massive stars must accomplish hydrogen fusion, in what we now call the CNO cycle. Curiously, Bethe held up its publication briefly in order to compete for a prize for the best unpublished paper on energy production in stars. He did win, and used the money in part to bring his mother to the United States; eventually, the paper appeared in Physics Review in 1939, and founded a whole branch of astrophysics. The war brought Bethe to the Manhattan project, of which he became one of the intellectual leaders. He ploughed through problems theoretical and practical by attacking them
Bernstein, Jeremy
2012-10-01
In 1937, two years after he moved to the US to escape Nazi persecution, the physicist Hans Bethe sent a letter to his mother in Germany. In it, he wrote, "I think I am about the leading theoretician in America. [Eugene] Wigner is certainly better and [Robert] Oppenheimer and [Edward] Teller probably just as good. But I do more and talk more and that counts too."
Bethe ansatz and ordinary differential equation correspondence for degenerate Gaudin models
El Araby, Omar; Gritsev, Vladimir; Faribault, Alexandre
2012-03-01
In this work, we generalize the numerical approach to Gaudin models developed earlier by us [Faribault, El Araby, Sträter, and Gritsev, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.235124 83, 235124 (2011)] to degenerate systems, showing that their treatment is surprisingly convenient from a numerical point of view. In fact, high degeneracies not only reduce the number of relevant states in the Hilbert space by a non-negligible fraction, they also allow us to write the relevant equations in the form of sparse matrix equations. Moreover, we introduce an inversion method based on a basis of barycentric polynomials that leads to a more stable and efficient root extraction, which most importantly avoids the necessity of working with arbitrary precision. As an example, we show the results of our procedure applied to the Richardson model on a square lattice.
Hans Bethe and the Global Energy Problems
Ioffe, B. L.
2005-01-01
Bethe's view-point on the global energy problems is presented. Bethe claimed that the nuclear power is a necessity in future. Nuclear energetic must be based on breeder reactors. Bethe considered the non-proliferation of nuclear weapons as the main problem of long-range future of nuclear energetics. The solution of this problem he saw in heavy water moderated thermal breeders, using uranium-233, uranium-238 and thorium as a fuel.
Degeneration of Bethe subalgebras in the Yangian of gl_n
Ilin, Aleksei; Rybnikov, Leonid
2018-04-01
We study degenerations of Bethe subalgebras B( C) in the Yangian Y(gl_n), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne-Mumford moduli space of stable rational curves \\overline{M_{0,n+2}}. All subalgebras corresponding to the points of \\overline{M_{0,n+2}} are free and maximal commutative. We describe explicitly the "simplest" degenerations and show that every degeneration is the composition of the simplest ones. The Deligne-Mumford space \\overline{M_{0,n+2}} generalizes to other root systems as some De Concini-Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini-Procesi resolution.
Practitioner Profile: An Interview with Beth Crittenden
Directory of Open Access Journals (Sweden)
Martie Gillen
2016-12-01
Full Text Available Beth Crittenden offers financial wellness coaching to people who want growth both professionally and personally. Beth has been working with finances as a focus since 2009, after training in somatic psychology, healthy communication in relationship, and mindful meditation practices and theory.
Algebraic partial Boolean algebras
Smith, D
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial...
Quarkonia in the Bethe--Salpeter formalism with background fields
International Nuclear Information System (INIS)
Mathur, Y.K.; Mitra, A.N.
1989-01-01
A QCD-oriented Bethe--Salpeter (BS) equation for a q bar q system is formulated in which the quark 4-momenta p μ are modified as p μ →p μ -gA μ (x) in the inverse propagators therein, and a Fock--Schwinger (FS) gauge expansion is employed for the gluon fields A μ (x). The first term (∼x μ ) of the FS representation yields a harmonic kernel when the BS equation is reduced to a 3-dimensional level via the null-plane ansatz (NPA). It also generates a spin-dependent interaction proportional to (j 1 +s 1 )·(j 2 +s 2 ), in close parallel to a J·S term generated by a vector-like (γ (1) gamma(2)) harmonic model for the q bar q interaction proposed earlier by the Delhi Group. A possible mechanism for confinement in an asymptotically linear scene is proposed within the BS framework, taking cue partly from the suggestions of multiple correlation effects (Shifman), and partly from the postulation of stochastic fields (Simonov)
Algebraic partial Boolean algebras
Smith, Derek
2003-04-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space Script H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E8.
Algebraic partial Boolean algebras
Energy Technology Data Exchange (ETDEWEB)
Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)
2003-04-04
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.
Scaling ansatz for the jamming transition.
Goodrich, Carl P; Liu, Andrea J; Sethna, James P
2016-08-30
We propose a Widom-like scaling ansatz for the critical jamming transition. Our ansatz for the elastic energy shows that the scaling of the energy, compressive strain, shear strain, system size, pressure, shear stress, bulk modulus, and shear modulus are all related to each other via scaling relations, with only three independent scaling exponents. We extract the values of these exponents from already known numerical or theoretical results, and we numerically verify the resulting predictions of the scaling theory for the energy and residual shear stress. We also derive a scaling relation between pressure and residual shear stress that yields insight into why the shear and bulk moduli scale differently. Our theory shows that the jamming transition exhibits an emergent scale invariance, setting the stage for the potential development of a renormalization group theory for jamming.
Exact solutions of sl-boson system in U(2l + 1) reversible O(2l + 2) transitional region
Zhang Xin
2002-01-01
Exact eigen-energies and the corresponding wavefunctions of the interacting sl-boson system in U(2l + 1) reversible O(2l +2) transitional region are obtained by using an algebraic Bethe Ansatz with the infinite dimensional Lie algebraic technique. Numerical algorithm for solving the Bethe Ansatz equations by using mathematical package is also outlined
Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz
Vanicat, Matthieu
2018-04-01
We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.
International Nuclear Information System (INIS)
Garcia, R.L.
1983-11-01
The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain
Bulchandani, Vir B.; Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.
2018-01-01
Quantum integrable systems, such as the interacting Bose gas in one dimension and the XXZ quantum spin chain, have an extensive number of local conserved quantities that endow them with exotic thermalization and transport properties. We discuss recently introduced hydrodynamic approaches for such integrable systems from the viewpoint of kinetic theory and extend the previous works by proposing a numerical scheme to solve the hydrodynamic equations for finite times and arbitrary locally equilibrated initial conditions. We then discuss how such methods can be applied to describe nonequilibrium steady states involving ballistic heat and spin currents. In particular, we show that the spin Drude weight in the XXZ chain, previously accessible only by rigorous techniques of limited scope or controversial thermodynamic Bethe ansatz arguments, may be evaluated from hydrodynamics in very good agreement with density-matrix renormalization group calculations.
Entanglement entropy in quantum many-particle systems and their simulation via ansatz states
Energy Technology Data Exchange (ETDEWEB)
Barthel, Thomas
2009-12-10
A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data
Entanglement entropy in quantum many-particle systems and their simulation via ansatz states
International Nuclear Information System (INIS)
Barthel, Thomas
2009-01-01
A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data
Beilinson, Alexander
2004-01-01
Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch
International Nuclear Information System (INIS)
Kedem, Rinat
2008-01-01
Q-systems first appeared in the analysis of the Bethe equations for the XXX model and generalized Heisenberg spin chains (Kirillov and Reshetikhin 1987 Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov. 160 211-21, 301). Such systems are known to exist for any simple Lie algebra and many other Kac-Moody algebras. We formulate the Q-system associated with any simple, simply-laced Lie algebras g in the language of cluster algebras (Fomin and Zelevinsky 2002 J. Am. Math. Soc. 15 497-529), and discuss the relation of the polynomiality property of the solutions of the Q-system in the initial variables, which follows from the representation-theoretical interpretation, to the Laurent phenomenon in cluster algebras (Fomin and Zelevinsky 2002 Adv. Appl. Math. 28 119-44)
Counting independent sets using the Bethe approximation
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Laboratory; Chandrasekaran, V [MIT; Gamarmik, D [MIT; Shah, D [MIT; Sin, J [MIT
2009-01-01
The authors consider the problem of counting the number of independent sets or the partition function of a hard-core model in a graph. The problem in general is computationally hard (P hard). They study the quality of the approximation provided by the Bethe free energy. Belief propagation (BP) is a message-passing algorithm can be used to compute fixed points of the Bethe approximation; however, BP is not always guarantee to converge. As the first result, they propose a simple message-passing algorithm that converges to a BP fixed pont for any grapy. They find that their algorithm converges within a multiplicative error 1 + {var_epsilon} of a fixed point in {Omicron}(n{sup 2}E{sup -4} log{sup 3}(nE{sup -1})) iterations for any bounded degree graph of n nodes. In a nutshell, the algorithm can be thought of as a modification of BP with 'time-varying' message-passing. Next, they analyze the resulting error to the number of independent sets provided by such a fixed point of the Bethe approximation. Using the recently developed loop calculus approach by Vhertkov and Chernyak, they establish that for any bounded graph with large enough girth, the error is {Omicron}(n{sup -{gamma}}) for some {gamma} > 0. As an application, they find that for random 3-regular graph, Bethe approximation of log-partition function (log of the number of independent sets) is within o(1) of corret log-partition - this is quite surprising as previous physics-based predictions were expecting an error of o(n). In sum, their results provide a systematic way to find Bethe fixed points for any graph quickly and allow for estimating error in Bethe approximation using novel combinatorial techniques.
Professor Hans A Bethe - A Brief Homage
Indian Academy of Sciences (India)
physics. In fact his earliest major work, based on his doctoral studies with Sommerfeld, was actually in solid state physics, resulting in a seminal survey of the electronic theory of metals published in 1933 in the Handbuch der Physik. Bethe also had a major role to play in the creation of nuclear weapons as the Head of.
Hans Bethe, the Sun and the Neutrinos
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 10. Hans Bethe, the Sun and the Neutrinos. G Rajasekaran. General Article Volume 10 Issue 10 October 2005 pp 49-66. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/010/10/0049-0066 ...
Obituary: Hans Albrecht Bethe, 1906-2005
Wijers, R.
2007-01-01
One of the unquestioned giants of physics and astrophysics, Hans Bethe, died on 6 March 2005, at the venerable age of 98, in his home town of Ithaca, New York. Seven decades of contributing to research and a Nobel Prize for his work on stellar hydrogen burning make a listing of his honors
The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Sazdjian, H.
1986-02-01
We show the formal equivalence between the wave equations of two-particle relativistic quantum mechanics, based on the manifestly covariant hamiltonian formalism with constraints, and the Bethe-Salpeter equation. This is achieved by algebraically transforming the latter so as to separate it into two independent equations which match the equations of hamiltonian relativistic quantum mechanics. The first equation determines the relative time evolution of the system, while the second one yields a three-dimensional eigenvalue equation. A connection is thus established between the Bethe-Salpeter wave function and its kernel on the one hand and the quantum mechanical wave function and interaction potential on the other. For the sector of solutions of the Bethe-Salpeter equation having non-relativistic limits, this relationship can be evaluated in perturbation theory. We also device a generalized form of the instantaneous approximation which simplifies the various expressions involved in the above relations. It also permits the evaluation of the normalization condition of the quantum mechanical wave function as a three-dimensional integral
Special issue on cluster algebras in mathematical physics
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-02-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March
Warner, Seth
1990-01-01
Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.
Goodstein, R L
2007-01-01
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Exactly solvable models for tri-atomic molecular Bose-Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Santos, G; Roditi, I; Santos, Z V T [CBPF-Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro RJ (Brazil); Foerster, A [Instituto de Fisica da UFRGS, Porto Alegre, RS (Brazil); Tonel, A P [CCET da Universidade Federal do Pampa/Unipampa, Bage, RS (Brazil)], E-mail: gfilho@cbpf.br
2008-07-25
We construct a family of tri-atomic models for heteronuclear and homonuclear molecular Bose-Einstein condensates. We show that these new generalized models are exactly solvable through the algebraic Bethe ansatz method and derive their corresponding Bethe ansatz equations and energies.
Exactly solvable models for triatomic-molecular Bose-Einstein Condensates
Energy Technology Data Exchange (ETDEWEB)
Santos, G.; Roditi, I.; Santos, Z.V.T. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Foerster, A. [Instituto de Fisica da UFRGS, Porto Alegre, RS (Brazil); Tonel, A.P. [CCET da Universidade Federal do Pampa/Unipampa, Bage, RS (Brazil)
2014-11-15
We construct a family of triatomic models for heteronuclear and homonuclear molecular Bose-Einstein condensates. We show that these new generalized models are exactly solvable through the algebraic Bethe Ansatz method and derive their corresponding Bethe Ansatz equations and energies. (author)
Leibniz Algebras and Lie Algebras
Directory of Open Access Journals (Sweden)
Geoffrey Mason
2013-10-01
Full Text Available This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.
Hans Bethe : Des etoiles a la bombe
Bonnet-Bidaud, J. M.
1996-06-01
Il comprit le premier comment brillent les etoiles. Il fut aussi de cette poignee de scientifiques qui, dans le secret de Los Alamos, mirent au point la tristement celebre bombe atomique. Hans Bethe est l'un des derniers geants qui auront marque la physique de ce siecle d'une empreinte indelebile. C'est dans le bureau 01 du prestigieux laboratoire Kellog de l'institut Caltech qu'il a bien voulu retracer pour nous son impressionnante carriere, et revenir sur les motivations qui ont guide ses pas.
Ford, Timothy J
2017-01-01
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
International Nuclear Information System (INIS)
Odesskii, A V
2002-01-01
This survey is devoted to associative Z ≥0 -graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations
National Research Council Canada - National Science Library
Hartshorne, Robin
1977-01-01
.... 141 BECKERIWEISPFENNINGIKREDEL. Grabner Bases. A Computational Approach to Commutative Algebra. 142 LANG. Real and Functional Analysis. 3rd ed. 143 DOOB. Measure Theory. 144 DENNIS/FARB. Noncommutat...
Centenary Birth Anniversary of E. W. Beth (1908-1964)
Bagni, Giorgio T.
2008-01-01
Evert Willem Beth (1908-1964) was a Dutch logician, mathematician and philosopher, whose work mainly concerned the foundations of mathematics. Beth was among the founders of the Commission Internationale pour l'Etude et l'Amelioration de l'Enseignement des Mathematiques and was a member of the Central Committee of the International Commission on…
Hans Bethe, Quantum Mechanics, and the Lamb Shift
Indian Academy of Sciences (India)
In the world of physics, it is difficult to describe Bethe's ... His Nobel Prize. (in 1967), three decades after this great discovery, was a rather belated recognition of his genius. Some of Bethe's early works have become household words in physics textbooks. ... latter was a by-product of World War II in connection with the radar ...
Obituary: Beth Brown (1969-2008)
Bregman, Joel
2011-12-01
The astronomical community lost one of its most buoyant and caring individuals when Beth Brown died, unexpectedly, at the age of 39 from a pulmonary embolism. Beth Brown was born in Roanoke, Virginia where she developed a deep interest in astronomy, science, and science fiction (Star Trek). After graduating as the valedictorian of William Fleming High School's Class of 1987, she attended Howard University, where she graduated summa cum laude in 1991 with a bachelor's degree in astrophysics. Following a year in the graduate physics program at Howard, she entered the graduate program in the Department of Astronomy at the University of Michigan, the first African-American woman in the program. She received her PhD in 1998, working with X-ray observations of elliptical galaxies from the Röntgen Satellite (ROSAT; Joel Bregman was her advisor). She compiled and analyzed the first large complete sample of such galaxies with ROSAT and her papers in this area made an impact in the field. Following her PhD, Beth Brown held a National Academy of Science & National Research Council Postdoctoral Research Fellowship at NASA's Goddard Space Flight Center. Subsequently, she became a civil servant at the National Space Science Data Center at GSFC, where she was involved in data archival activities as well as education and outreach, a continuing passion in her life. In 2006, Brown became an Astrophysics Fellow at GSFC, during which time she worked as a visiting Assistant Professor at Howard University, where she taught and worked with students and faculty to improve the teaching observatory. At the time of her death, she was eagerly looking forward to a new position at GSFC as the Assistant Director for Science Communications and Higher Education. Beth Brown was a joyous individual who loved to work with people, especially in educating them about our remarkable field. Her warmth and openness was a great aid in making accessible explanations of otherwise daunting astrophysical
African Journals Online (AJOL)
Tadesse
Department of Mathematics, Faculty of Computer and Mathematical Sciences, Addis Ababa. University, Addis Ababa, Ethiopia(*drkvenkateswarlu@gmail.com, **berhanufk@yahoo.co.uk). ABSTRACT. In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra ...
African Journals Online (AJOL)
Tadesse
metric space. Also we prove that every implicative algebra can be made into a regular. Autometrized Algebra of Swamy (1964) (see theorem 2.9). We recall the definition of Xu (1993). Defintion [2]: Let (L,∨,∧,0,1) be a bounded lattice with order reversing involution. “ ' ”and a binary operation → satisfying the following ...
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Glueballs from the Bethe-Salpeter equation
Sanchis-Alepuz, Helios; Fischer, Christian S.; Kellermann, Christian; von Smekal, Lorenz
2015-08-01
We formulate a framework to determine the mass of glueball states of the Landau gauge Yang-Mills theory in the continuum. To this end we derive a Bethe-Salpeter equation for two gluon bound states including the effects of Faddeev-Popov ghosts. We construct a suitable approximation scheme such that the interactions in the bound state equation match a corresponding successful approximation of the Dyson-Schwinger equations for the Landau gauge ghost and gluon propagators. Based upon a recently obtained solution for the propagators in the complex momentum plane we obtain results for the mass of the 0++ and 0-+ glueballs. In the scalar channel we find a mass value in agreement with lattice gauge theory.
Exact tensor network ansatz for strongly interacting systems
Zaletel, Michael P.
It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.
On some problems of the maximum entropy ansatz
Indian Academy of Sciences (India)
aforesaid problems are put forward. Pilot calculations involving the ground quantum eigenenergy states of the quartic oscillator, the particle-in-a-box model, and the classical Maxwellian speed and energy distributions lend credence to our approach. Keywords. Maximum entropy ansatz; Padй-type approximants; boundary ...
Fine, Henry Burchard
2005-01-01
At the beginning of the twentieth century, college algebra was taught differently than it is nowadays. There are many topics that are now part of calculus or analysis classes. Other topics are covered only in abstract form in a modern algebra class on field theory. Fine's College Algebra offers the reader a chance to learn the origins of a variety of topics taught in today's curriculum, while also learning valuable techniques that, in some cases, are almost forgotten. In the early 1900s, methods were often emphasized, rather than abstract principles. In this book, Fine includes detailed discus
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Exactly solvable models for multiatomic molecular Bose-Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Santos, G, E-mail: gfilho@if.ufrgs.br, E-mail: gfilho@cbpf.br [Instituto de Fisica da UFRGS, Av. Bento Goncalves, 9500, Agronomia, Porto Alegre, RS (Brazil)
2011-08-26
I introduce two families of exactly solvable models for multiatomic hetero-nuclear and homo-nuclear molecular Bose-Einstein condensates through the algebraic Bethe ansatz method. The conserved quantities of the respective models are also shown. (paper)
Holme, Audun
1988-01-01
This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
McKeague, Charles P
1986-01-01
Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra
McKeague, Charles P
1981-01-01
Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e
Overlaps of partial Néel states and Bethe states
International Nuclear Information System (INIS)
Foda, O; Zarembo, K
2016-01-01
Partial Néel states are generalizations of the ordinary Néel (classical anti-ferromagnet) state that can have arbitrary integer spin. We study overlaps of these states with Bethe states. We first identify this overlap with a partial version of reflecting-boundary domain-wall partition function, and then derive various determinant representations for off-shell and on-shell Bethe states. (paper: quantum statistical physics, condensed matter, integrable systems)
Model of pair aggregation on the Bethe lattice
DEFF Research Database (Denmark)
Baillet, M.V.-P.; Pacheco, A.F.; Gómez, J.B.
1997-01-01
We extend a recent model of aggregation of pairs of particles, analyzing the case in which the supporting framework is a Bethe lattice. The model exhibits a critical behavior of the percolation theory type.......We extend a recent model of aggregation of pairs of particles, analyzing the case in which the supporting framework is a Bethe lattice. The model exhibits a critical behavior of the percolation theory type....
Nuclear forces the making of the physicist Hans Bethe
Schweber, Silvan S
2012-01-01
On the fiftieth anniversary of Hiroshima, Nobel-winning physicist Hans Bethe called on his fellow scientists to stop working on weapons of mass destruction. What drove Bethe, the head of Theoretical Physics at Los Alamos during the Manhattan Project, to renounce the weaponry he had once worked so tirelessly to create? That is one of the questions answered by "Nuclear Forces", a riveting biography of Bethe's early life and development as both a scientist and a man of principle. As Silvan Schweber follows Bethe from his childhood in Germany, to laboratories in Italy and England, and on to Cornell University, he shows how these differing environments were reflected in the kind of physics Bethe produced. Many of the young quantum physicists in the 1930s, including Bethe, had Jewish roots, and Schweber considers how Liberal Judaism in Germany helps explain their remarkable contributions. A portrait emerges of a man whose strategy for staying on top of a deeply hierarchical field was to tackle only those problems h...
Ein Integraler Gestalt-Ansatz fuer Therapie und Beratung
Directory of Open Access Journals (Sweden)
Reinhard Fuhr
2005-06-01
Full Text Available In diesem Text stellen wir unseren Ansatz für Psychotherapie und Beratung auf dem Hintergrund des integralen Paradigmas dar. Wir erläutern zunächst kurz vier Anforderungen an ein integrales Konzept in diesem professionellen Bereich: Umgang mit Komplexität und Vielperspektivität, Berücksichtigung gerichteter, vieldimensionaler Entwicklung, Orientierungs- und Sinngebungsfunktion, Realisierung relationaler Qualitäten in der Arbeit. Nach einer Begriffsbestimmung von „Therapie“, „Beratung“ und „Bildung“ charakterisieren wir das seit vielen Jahren von uns entwickelte Konzept für den Integralen Gestalt-Ansatz unter den Fragen nach (1 den Intentionen und Aufgaben von Therapie und Beratung, (2 der Gestaltung der Kommunikation und Beziehung, (3 der Art der Problemdefinition und dem Umgang mit Diagnostik sowie (4 den Strategien und Methoden - alle unter Rückkopplung an die zuvor erläuterten Anforderungen an ein integrales Konzept.
Probing texture zeros with scaling ansatz in inverse seesaw
Energy Technology Data Exchange (ETDEWEB)
Ghosal, Ambar; Samanta, Rome [Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata 700064 (India)
2015-05-15
We investigate neutrino mass matrix phenomenology involving scaling ansatz and texture zeros adhering inverse seesaw mechanism. It is seen that four is the maximum number of zeros in m{sub D} and μ to obtain viable phenomenology. Depending upon the generic nature of the effective neutrino mass matrices we classify all the emerged matrices in four categories. One of them is ruled out phenomenologically due to inappropriate value of reactor mixing angle after breaking of the scaling ansatz. The mass ordering is inverted in all cases. One of the distinguishable feature of all these categories is the vanishingly small value of CP violation measure J{sub CP} due to small value of δ{sub CP}. Thus those categories will be ruled out if CP violation is observed in the leptonic sector in future experiments.
Ein Integraler Gestalt-Ansatz fuer Therapie und Beratung
Martina Gremmler-Fuhr; Reinhard Fuhr
2005-01-01
Zusammenfassung: In diesem Text stellen wir unseren Ansatz für Psychotherapie und Beratung auf dem Hintergrund des integralen Paradigmas dar. Wir erläutern zunächst kurz vier Anforderungen an ein integrales Konzept in diesem professionellen Bereich: Umgang mit Komplexität und Vielperspektivität, Berücksichtigung gerichteter, vieldimensionaler Entwicklung, Orientierungs- und Sinngebungsfunktion, Realisierung relationaler Qualitäten in der Arbeit. Nach einer Begriffsbestimmung von „Therapie“, „...
Consistency of the Kaluza-Klein ansatz for cosmological solutions
International Nuclear Information System (INIS)
Fujii, Yasunori; Yamagishi, Kengo
1985-01-01
A consistency problem for the Kaluza-Klein ansatz is shown to arise when the kinetic term of extra gauge fields depends on the internal coordinates. Consequences on cosmological solutions are discussed. A position-dependent kinetic term implies either a very special condition to be satisfied by it, or the time-independent size of internal space and the maximally symmetric universe in the vacuum. (orig.)
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Bell, Eric T
1927-01-01
The central topic of this book is the presentation of the author's principle of arithmetical paraphrases, which won him the BÃ´cher Prize in 1924. This general principle served to unify and extend many isolated results in the theory of numbers. The author successfully provides a systematic attempt to find a unified theory for each of various classes of related important problems in the theory of numbers, including its interrelations with algebra and analysis. This book will be of interest to advanced students in various branches of mathematics, including number theory, abstract algebra, ellipti
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Oliver, Bob; Pawałowski, Krzystof
1991-01-01
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
Indian Academy of Sciences (India)
tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).
Algebraic characterizations of measure algebras
Czech Academy of Sciences Publication Activity Database
Jech, Thomas
2008-01-01
Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008
International Nuclear Information System (INIS)
Mohammad, N.; Siddiqui, A.H.
1987-11-01
The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
Quantum Waveguide Properties of Bethe Lattices with a Ring
International Nuclear Information System (INIS)
Zhi-Ping, Lin; Zhi-Lin, Hou; You-Yan, Liu
2008-01-01
Based on waveguide theory we investigate electronic transport properties of Bethe lattices with a mesoscopic ring threaded by a magnetic flux. The generalized eigen-function method (GEM) is used to calculate the transmission and reflection coefficients up to the fifth generation of Bethe lattices. The relationships among the transmission coefficient T, magnetic flux φ and wave vector kl are investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux φ are observed and discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Iachello, F
1995-01-01
1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters
Hans Bethe, Quantum Mechanics, and the Lamb Shift
Indian Academy of Sciences (India)
his book Birth and Death of the Sun). His Nobel Prize. (in 1967), three decades after this great discovery, was ... in crystals; ii) the order-disorder transition in alloys. (the Bethe--Peierls Approximation); iii) the ionization ... a region of the order of 1 cm, termed the microwave region, lying between the far infrared and short radio.
Nucleosynthesis and Energy Production in Stars: Bethe's Crowning ...
Indian Academy of Sciences (India)
. Indranil Mazumdar. On the 6th of March this year, the seemingly immortal Prof. Hans Bethe passed away, at the ripe age of ninety eight. His mighty mathemat- ical prowess, coupled with his amazing virtuos- ity in applying the tools of ...
Bethe's Contributions to Solid State Theory· A Tribute
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Bethe's Contributions to Solid State Theory: A Tribute. H R Krishnamurthy. General Article Volume 10 Issue 11 November 2005 pp 55-69. Fulltext. Click here to view fulltext PDF. Permanent link:
Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
International Nuclear Information System (INIS)
Yau, Donald
2011-01-01
We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.
Bliss, Gilbert Ames
1933-01-01
This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...
Miyanishi, Masayoshi
2000-01-01
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...
Generalized Hermitian Algebras
Foulis, David J.; Pulmannová, Sylvia
2009-05-01
We refer to the real Jordan Banach algebra of bounded Hermitian operators on a Hilbert space as a Hermitian algebra. In this paper we define and launch a study of a class of generalized Hermitian (GH) algebras. Among the examples of GH-algebras are ordered special Jordan algebras, JW-algebras, and AJW-algebras, but unlike these more restricted cases, a GH-algebra is not necessarily a Banach space and its lattice of projections is not necessarily complete. In this paper we develop the basic theory of GH-algebras, identify their unit intervals as effect algebras, and observe that their projection lattices are sigma-complete orthomodular lattices. We show that GH-algebras are spectral order-unit spaces and that they admit a substantial spectral theory.
Universal enveloping algebras for Malcev color algebras
de-la-Concepción, Daniel
2015-01-01
In this paper we give a construction of the universal enveloping algebra of a Malcev algebra in categories of group algebra comodules with a symmetry given by a bicharacter of the group. A particular example of such categories is the category of super vector spaces.
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
Ein Integraler Gestalt-Ansatz fuer Therapie und Beratung
Directory of Open Access Journals (Sweden)
Martina Gremmler-Fuhr
2005-06-01
Full Text Available Zusammenfassung: In diesem Text stellen wir unseren Ansatz für Psychotherapie und Beratung auf dem Hintergrund des integralen Paradigmas dar. Wir erläutern zunächst kurz vier Anforderungen an ein integrales Konzept in diesem professionellen Bereich: Umgang mit Komplexität und Vielperspektivität, Berücksichtigung gerichteter, vieldimensionaler Entwicklung, Orientierungs- und Sinngebungsfunktion, Realisierung relationaler Qualitäten in der Arbeit. Nach einer Begriffsbestimmung von „Therapie“, „Beratung“ und „Bildung“ charakterisieren wir das seit vielen Jahren von uns entwickelte Konzept für den Integralen Gestalt-Ansatz unter den Fragen nach (1 den Intentionen und Aufgaben von Therapie und Beratung, (2 der Gestaltung der Kommunikation und Beziehung, (3 der Art der Problemdefinition und dem Umgang mit Diagnostik sowie (4 den Strategien und Methoden – alle unter Rückkopplung an die zuvor erläuterten Anforderungen an ein integrales Konzept. Abstract: In this text we present our approach to psychotherapy and counseling on the background of the integral paradigm. We shortly explain four major requirements for such an integral concept: handling complexity and multi-perspectivity, considering directed and multi-dimensional development, offering orientation and meaning, relational qualities. After defining the terms „psychotherapy“, „counselling“, and „education“ we present our concept for the Integral Gestalt Approach which we have developed and evaluated for many years by dealing with four questions: (1 the intentions and tasks of therapy and counselling, (2 the formation of communication and relationship, (3 the specific way of defining problems and using diagnostics, and (4 the strategies and methods – all related back to the major requirements of an integral concept.
The supersymmetric t-J model with quantum group invariance
International Nuclear Information System (INIS)
Foerster, A.; Karowski, M.
1993-04-01
An integrable quantum group deformation of the supersymmetric t-J model is introduced. Open boundary conditions lead to an spl q (2, 1) invariant hamiltonian. A general procedure to obtain such invariant models is proposed. To solve the model a generalized nested algebraic Bethe ansatz is constructed and the Bethe ansatz equations are obtained. The quantum supergroup structure of the model is investigated. (orig.)
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Indian Academy of Sciences (India)
Introduction and preliminaries. The class of Malcev algebras contains one of the Lie algebras and so a question arises whether some known results on Lie algebras can be extended to the framework of Malcev algebras (see [4, 7, 9, 10]). In the present paper, we are interested in studying the structure of arbitrary Malcev ...
Embeddings of Heyting Algebras
Jongh, D.H.J. de; Visser, A.
In this paper we study embeddings of Heyting Algebras. It is pointed out that such embeddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra on countably
Dzhumadil'daev, A. S.
2002-01-01
Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
Energy Technology Data Exchange (ETDEWEB)
Carbonell, J. [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Frederico, T. [Instituto Tecnologico de Aeronautica, DCTA, Sao Jose dos Campos (Brazil); Karmanov, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)
2017-01-15
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
International Nuclear Information System (INIS)
Carbonell, J.; Frederico, T.; Karmanov, V.A.
2017-01-01
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
Bethe-Salpeter equation for a four fermion system I
Energy Technology Data Exchange (ETDEWEB)
Kim, S.K.; Muller, B.; Greiner, W.
1988-08-01
The authors derive the Bethe-Salpeter equation for bound states of a four-body system. They treat only two-body interaction kernels in the ladder approximation. The equations should be applicable for the description of exotic meson states (q qq-barq-bar states) and the ''poly-positronium'' states discussed in connection with the interpretation of the narrow coincidence peaks in the spectra of electrons and positrons observed in heavy ion collisions.
Excited charmonium states from Bethe-Salpeter Equation
Czech Academy of Sciences Publication Activity Database
Šauli, Vladimír; Bicudo, P.
2012-01-01
Roč. 7, 043 (2012), s. 1-10 ISSN 1824-8039. [International Workshop on QCD Green’s Functions. Tranto, 05.09.2011-09.09.2011] R&D Projects: GA MŠk(CZ) LG11005 Institutional research plan: CEZ:AV0Z10480505 Keywords : charmonium * Bethe-Salpeter Equation Subject RIV: BE - Theoretical Physics http:// pos .sissa.it/archive/conferences/136/043/QCD-TNT-II_043.pdf
Quantum graphs with the Bethe-Sommerfeld property
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Turek, Ondřej
2017-01-01
Roč. 8, č. 3 (2017), s. 305-309 ISSN 2220-8054 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : periodic quantum graphs * gap number * delta-coupling * rectangular lattice graph * scale-invariant coupling * Bethe-Sommerfeld conjecture * golden mean Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Periodic quantum graphs from the Bethe-Sommerfeld perspective
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Turek, Ondřej
2017-01-01
Roč. 50, č. 45 (2017), č. článku 455201. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : quantum graphs * Bethe-Sommerfeld conjecture * vertex coupling * Diophantine approximation * periodic structure Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016
Goldmann, H
1990-01-01
The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.
Abrams, Gene; Siles Molina, Mercedes
2017-01-01
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...
An algebraic scheme associated with the non-commutative KP hierarchy and some of its extensions
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2005-01-01
A well-known ansatz ('trace method') for soliton solutions turns the equations of the (non-commutative) KP hierarchy, and those of certain extensions, into families of algebraic sum identities. We develop an algebraic formalism, in particular involving a (mixable) shuffle product, to explore their structure. More precisely, we show that the equations of the non-commutative KP hierarchy and its extension (xncKP) in the case of a Moyal-deformed product, as derived in previous work, correspond to identities in this algebra. Furthermore, the Moyal product is replaced by a more general associative product. This leads to a new even more general extension of the non-commutative KP hierarchy. Relations with Rota-Baxter algebras are established
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Osborn, J
1989-01-01
During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.
Relation between dual S-algebras and BE-algebras
Directory of Open Access Journals (Sweden)
Arsham Borumand Saeid
2015-05-01
Full Text Available In this paper, we investigate the relationship between dual (Weak Subtraction algebras, Heyting algebras and BE-algebras. In fact, the purpose of this paper is to show that BE-algebra is a generalization of Heyting algebra and dual (Weak Subtraction algebras. Also, we show that a bounded commutative self distributive BE-algebra is equivalent to the Heyting algebra.
Algebraic isotopy in genetics.
Campos, T M; Holgate, P
1987-01-01
It is shown that many of the algebras arising in nonselective genetics are isotopes of the algebras for particularly simple systems of inheritance. Moreover, interesting aspects of the structure are preserved under the relevant isotopies.
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Physics over easy Breakfasts with Beth and physics
Azaroff, L V
2010-01-01
During a sequence of meals, the author relates the principal features of physics in easy-to-understand conversations with his wife Beth. Beginning with the studies of motion by Galileo and Newton through to the revolutionary theories of relativity and quantum mechanics in the 20th century, all important aspects of electricity, energy, magnetism, gravity and the structure of matter and atoms are explained and illustrated. The second edition similarly recounts the more recent application of these theories to nanoparticles, Bose-Einstein condensates, quantum entanglement and quantum computers. By
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology
Pinczon, Georges; Ushirobira, Rosane
2005-01-01
We give new applications of graded Lie algebras to: identities of standard polynomials, deformation theory of quadratic Lie algebras, cyclic cohomology of quadratic Lie algebras, $2k$-Lie algebras, generalized Poisson brackets and so on.
Algebraic statistics computational commutative algebra in statistics
Pistone, Giovanni; Wynn, Henry P
2000-01-01
Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.
Indian Academy of Sciences (India)
We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form M = U + ∑ j I j with U a subspace of the abelian Malcev subalgebra and any I j a well described ideal of satisfying [ I j , I k ] = 0 if ≠ .
Foundations of algebraic geometry
Weil, A
1946-01-01
This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
The Bethe Sum Rule and Basis Set Selection in the Calculation of Generalized Oscillator Strengths
DEFF Research Database (Denmark)
Cabrera-Trujillo, Remigio; Sabin, John R.; Oddershede, Jens
1999-01-01
Fulfillment of the Bethe sum rule may be construed as a measure of basis set quality for atomic and molecular properties involving the generalized oscillator strength distribution. It is first shown that, in the case of a complete basis, the Bethe sum rule is fulfilled exactly in the random phase...
International Nuclear Information System (INIS)
Feigin, B.L.; Semikhatov, A.M.
2004-01-01
We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Discrete Minimal Surface Algebras
Directory of Open Access Journals (Sweden)
Joakim Arnlind
2010-05-01
Full Text Available We consider discrete minimal surface algebras (DMSA as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sl_n (any semi-simple Lie algebra providing a trivial example by itself. A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.
Bicovariant quantum algebras and quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
Hurwitz Algebras and the Octonion Algebra
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
AT -algebras and extensions of AT-algebras
Indian Academy of Sciences (India)
algebra by an AT-algebra and E has real rank zero, then E is an AT-algebra if and only if the index maps are both zero. Accordingly, in this paper, we attempt to describe a characterization of an extension E of an AT-algebra by an AF-algebra if E ...
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
a left (2, hQ − 2)-Koszul algebra (see Definition 2.1 below), and the Yoneda algebra of. A is isomorphic to a twisted ... is quadratic if R is a subspace of V ⊗ V . The quadratic dual A! of A is defined to be. T (V ∗)/(R⊥) .... (Q, ρ) is a stable bound quiver of Loewy length p + 1, and the Nakayama translation on. Q0 is induced by a ...
Evolution algebras and their applications
Tian, Jianjun Paul
2008-01-01
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.
Dynamical chiral symmetry breaking and Bethe-Salpeter equation
Energy Technology Data Exchange (ETDEWEB)
Naito, Kenichi [Tokyo Inst. of Tech. (Japan)
1998-08-01
{pi} meson, (pseudo) Nambu-Goldstone particle caused by a spontaneous breaking of chiral symmetry, was studied by use of Bethe-Salpeter (BS) equation in the limits of effective model as a bound state of quark and antiquark. The effective model has nonlocal interaction and proved to satisfy the Gell-Mann-Oaks-Renner (GMOR) mass formula by treating correct Noether current in spite of loss of local chiral invariance of interaction term. GMOR mass formula: M{sub {pi}}{sup 2}f{sub {pi}}{sup 2}{approx_equal}-2m{sub 0}
Low-temperature excitations within the Bethe approximation
International Nuclear Information System (INIS)
Biazzo, I; Ramezanpour, A
2013-01-01
We propose the variational quantum cavity method to construct a minimal energy subspace of wavevectors that are used to obtain some upper bounds for the energy cost of the low-temperature excitations. Given a trial wavefunction we use the cavity method of statistical physics to estimate the Hamiltonian expectation and to find the optimal variational parameters in the subspace of wavevectors orthogonal to the lower-energy wavefunctions. To this end, we write the overlap between two wavefunctions within the Bethe approximation, which allows us to replace the global orthogonality constraint with some local constraints on the variational parameters. The method is applied to the transverse Ising model and different levels of approximations are compared with the exact numerical solutions for small systems. (paper)
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Multiplicity distributions in hadron-hadron collisions based on the universality ansatz
International Nuclear Information System (INIS)
Chiu, C.B.; Xie, Q.
1982-02-01
Recent experiments on small-p/sub T/ hadron production in pp collisions have shed new light on the apparent violation of the universality ansatz that the multiplicity dispersion in hadron-hadron collisions is much larger than that in e + e - collisions. We present a model based on the universality ansatz, among other things. This model reproduces qualitatively the hadron multiplicity distributions in pp collisions over a wide range of energies. Within our framework, this essentially resolves the discrepancy stated above. In our approach the universality ansatz is also found to be applicable to the diffractive component events. This is supported by the inclusive x-distribution data having various specified number of prongs in the final states
Givant, Steven
2017-01-01
This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...
Twisted classical Poincare algebras
International Nuclear Information System (INIS)
Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.
1993-11-01
We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Introduction to abstract algebra
Smith, Jonathan D H
2008-01-01
Taking a slightly different approach from similar texts, Introduction to Abstract Algebra presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It helps students fully understand groups, rings, semigroups, and monoids by rigorously building concepts from first principles. A Quick Introduction to Algebra The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. The author also uses equivalence relations to introduc
Kurosh, A G; Stark, M; Ulam, S
1965-01-01
Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Directory of Open Access Journals (Sweden)
Frank Roumen
2017-01-01
Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.
Albert, A A
1939-01-01
The first three chapters of this work contain an exposition of the Wedderburn structure theorems. Chapter IV contains the theory of the commutator subalgebra of a simple subalgebra of a normal simple algebra, the study of automorphisms of a simple algebra, splitting fields, and the index reduction factor theory. The fifth chapter contains the foundation of the theory of crossed products and of their special case, cyclic algebras. The theory of exponents is derived there as well as the consequent factorization of normal division algebras into direct factors of prime-power degree. Chapter VI con
Parameter-free ansatz for inferring ground state wave functions of even convex potentials
International Nuclear Information System (INIS)
Flego, S P; Plastino, A; Plastino, A R
2012-01-01
Schrödinger's equation (SE) and the information-optimizing principle based on Fisher's information measure are intimately linked (Frieden et al 1999 Phys. Rev. E 60 48), which entails the existence of a Legendre transform structure underlying the SE (Flego et al 2011 J. Math. Phys. 52 082103). In this paper, we show that the existence of such a structure allows, via the virial theorem, for the formulation of a parameter-free ground state's SE ansatz for a rather large family of potentials. The parameter-free nature of the ansatz derives from the structural information it incorporates through its Legendre properties. (paper)
From Rota-Baxter algebras to pre-Lie algebras
International Nuclear Information System (INIS)
An Huihui; Ba, Chengming
2008-01-01
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras
Algebraic monoids, group embeddings, and algebraic combinatorics
Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang
2014-01-01
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular. Graduate students as well a...
Bär, Christian; Becker, Christian
In this chapter we will collect those basic concepts and facts related to C*-algebras that will be needed later on. We give complete proofs. In Sects. 1, 2, 3, and 6 we follow closely the presentation in [1]. For more information on C*-algebras, see, e.g. [2-6].
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Seo, Young Joo; Kim, Young Hee
2016-01-01
In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.
Hayden, Dunstan; Cuevas, Gilberto
The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…
International Nuclear Information System (INIS)
Calmet, J.
1982-01-01
A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)
Indian Academy of Sciences (India)
Discourses on Algebra. Rajaram Nityananda. Discourses on Algebra. Igor R Shafarevich. Narosa Publishing. Pages: 273, Price in India: | 1750. To the Indian reader, the word discourse, evokes a respected figure interpreting divine wisdom to common folk in an accessible fash- ion. I dug a bit deeper with Google trans-.
Algebraic Description of Motion
Davidon, William C.
1974-01-01
An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)
International Nuclear Information System (INIS)
Talon, M.
1987-01-01
The algebraic set up for anomalies, a la Stora, is reviewed. Then a brief account is provided of the work of M. Dubois Violette, M. Talon, C. Viallet, in which the general algebraic solution to the consistency conditions is described. 34 references
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.
1988-01-01
A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak
On the central quadric ansatz: integrable models and Painlevé reductions
International Nuclear Information System (INIS)
Ferapontov, E V; Huard, B; Zhang, A
2012-01-01
It was observed by Tod (1995 Class. Quantum Grav.12 1535–47) and later by Dunajski and Tod (2002 Phys. Lett. A 303 253–64) that the Boyer–Finley (BF) and the dispersionless Kadomtsev–Petviashvili (dKP) equations possess solutions whose level surfaces are central quadrics in the space of independent variables (the so-called central quadric ansatz). It was demonstrated that generic solutions of this type are described by Painlevé equations P III and P II , respectively. The aim of our paper is threefold: (1) Based on the method of hydrodynamic reductions, we classify integrable models possessing the central quadric ansatz. This leads to the five canonical forms (including BF and dKP). (2) Applying the central quadric ansatz to each of the five canonical forms, we obtain all Painlevé equations P I –P VI , with P VI corresponding to the generic case of our classification. (3) We argue that solutions coming from the central quadric ansatz constitute a subclass of two-phase solutions provided by the method of hydrodynamic reductions. (paper)
Cluster-Bethe-Lattice study of a planar antiferromagnet: Rb2NiF4
International Nuclear Information System (INIS)
Cruz, G.A.C. de la; Silva, C.E.T.G. da
1979-01-01
A discussion of the Cluster-Bethe-Lattice method is presented for a planar antiferromagnet for which the hamiltonian parameters are known and the one-magnon density of states may be computed exactly. All the square clusters of 1 to 121 atoms are studied both connected to and isolated from the Bethe lattices. It is shown that, even for the largest cluster treated, the approximation is still far from the exact result. It is discussed the limitations of the method [pt
A cluster-bethe-lattice approach to spin-waves in dilute ferromagnets
International Nuclear Information System (INIS)
Salzberg, J.B.; Silva, C.E.T.G. da; Falicov, L.M.
1975-01-01
The spin-wave spectra of a dilute ferromagnet within the cluster-bethe-lattice approximation is studied. Short range order effects for the alloy are included. A study of finite size clusters connected at their edges to Bethe lattices of the same coordination number allows one to determine:(i) the stability condition for the magnetic system; (ii) the continuum spin-wave local density of states and (iii) the existence of localized states below and above the continuum states
Cluster algebras bases on vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2016-01-01
Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300
Bethe, Oppenheimer, Teller and the Fermi Award: Norris Bradbury Speaks
Energy Technology Data Exchange (ETDEWEB)
Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-28
In 1956 the Enrico Fermi Presidential Award was established to recognize scientists, engineers, and science policymakers who gave unstintingly over their careers to advance energy science and technology. The first recipient was John von Neumann. .1 Among those scientists who were thought eligible for the award were Hans Bethe, J. Robert Oppenheimer, and Edward Teller. In 1959 Norris Bradbury was asked to comment on the relative merits of each these three men, whom he knew well from their affiliation with Los Alamos. Below is a reproduction of the letter Bradbury sent to Dr. Warren C. Johnson of the AEC’s General Advisory Committee(GAC) containing his evaluation of each man. The letter might surprise those not accustomed to Bradbury’s modus operandi of providing very detailed and forthright answers to the AEC. The letter, itself, was found in cache of old microfilm. Whether because of the age of the microfilm or the quality of the filming process, portions of the letter are not legible. Where empty brackets appear, the word or words could not be read or deduced. Words appearing in brackets are guesses that appear, from the image, to be what was written. These guesses, of course, are just that – guesses.
A systematic approach to sketch Bethe-Salpeter equation
Directory of Open Access Journals (Sweden)
Qin Si-xue
2016-01-01
Full Text Available To study meson properties, one needs to solve the gap equation for the quark propagator and the Bethe-Salpeter (BS equation for the meson wavefunction, self-consistently. The gluon propagator, the quark-gluon vertex, and the quark–anti-quark scattering kernel are key pieces to solve those equations. Predicted by lattice-QCD and Dyson-Schwinger analyses of QCD’s gauge sector, gluons are non-perturbatively massive. In the matter sector, the modeled gluon propagator which can produce a veracious description of meson properties needs to possess a mass scale, accordingly. Solving the well-known longitudinal Ward-Green-Takahashi identities (WGTIs and the less-known transverse counterparts together, one obtains a nontrivial solution which can shed light on the structure of the quark-gluon vertex. It is highlighted that the phenomenologically proposed anomalous chromomagnetic moment (ACM vertex originates from the QCD Lagrangian symmetries and its strength is proportional to the magnitude of dynamical chiral symmetry breaking (DCSB. The color-singlet vector and axial-vector WGTIs can relate the BS kernel and the dressed quark-gluon vertex to each other. Using the relation, one can truncate the gap equation and the BS equation, systematically, without violating crucial symmetries, e.g., gauge symmetry and chiral symmetry.
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D......_E of C*(E). Our results pertain both automorphisms and proper endomorphisms. Firstly, the Weyl group and the restricted Weyl group of a graph C*-algebra are introduced and investigated. In particular, criteria of outerness for automorphisms in the restricted Weyl group are found. We also show...
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Chatterjee, D
2007-01-01
About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the
Orthogonal symmetries and Clifford algebras
Indian Academy of Sciences (India)
algebra over a field K, can be regarded as the Clifford algebra of a suitable nondegenerate quadratic form q over the base field K. In [13], such a form q is also explicitly constructed. The Grassmann algebra (or the exterior algebra) may also be regarded as the Clifford alge- bra of the null (totally isotropic) quadratic form.
Coreflections in Algebraic Quantum Logic
Jacobs, Bart; Mandemaker, Jorik
2012-07-01
Various generalizations of Boolean algebras are being studied in algebraic quantum logic, including orthomodular lattices, orthomodular po-sets, orthoalgebras and effect algebras. This paper contains a systematic study of the structure in and between categories of such algebras. It does so via a combination of totalization (of partially defined operations) and transfer of structure via coreflections.
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Özen, Kahraman Esen; Tosun, Murat
2018-01-01
In this study, we define the elliptic biquaternions and construct the algebra of elliptic biquaternions over the elliptic number field. Also we give basic properties of elliptic biquaternions. An elliptic biquaternion is in the form A0 + A1i + A2j + A3k which is a linear combination of {1, i, j, k} where the four components A0, A1, A2 and A3 are elliptic numbers. Here, 1, i, j, k are the quaternion basis of the elliptic biquaternion algebra and satisfy the same multiplication rules which are satisfied in both real quaternion algebra and complex quaternion algebra. In addition, we discuss the terms; conjugate, inner product, semi-norm, modulus and inverse for elliptic biquaternions.
Algebraic Semantics for Narrative
Kahn, E.
1974-01-01
This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)
Deficiently extremal Gorenstein algebras
Indian Academy of Sciences (India)
Thus, R/I is a Cohen–. Macaulay algebra of Type 1, and hence R/I is Gorenstein. In view of Theorem 2.1, R/I is a nearly (or 1-deficient) extremal Gorenstein algebra. We now shall describe a result of Bruns and Hibi [1] which characterizes the Stanley–. Reisner rings having 2-pure but not 2-linear resolutions. Theorem 2.3.
Intermediate algebra a textworkbook
McKeague, Charles P
1985-01-01
Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex
Beginning algebra a textworkbook
McKeague, Charles P
1985-01-01
Beginning Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in algebra. The publication first elaborates on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on solving linear systems by graphing, elimination method, graphing ordered pairs and straight lines, linear and compound inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then examines exponents and polynomials, factoring, and rational expressions. Topics include multiplication and division
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
Currents on Grassmann algebras
International Nuclear Information System (INIS)
Coquereaux, R.; Ragoucy, E.
1993-09-01
Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
The 'golden' algebraic equations
International Nuclear Information System (INIS)
Stakhov, A.; Rozin, B.
2006-01-01
The special case of the (p + 1)th degree algebraic equations of the kind x p+1 = x p + 1 (p = 1, 2, 3, ?) is researched in the present article. For the case p = 1, the given equation is reduced to the well-known Golden Proportion equation x 2 = x + 1. These equations are called the golden algebraic equations because the golden p-proportions τ p , special irrational numbers that follow from Pascal's triangle, are their roots. A research on the general properties of the roots of the golden algebraic equations is carried out in this article. In particular, formulas are derived for the golden algebraic equations that have degree greater than p + 1. There is reason to suppose that algebraic equations derived by the authors in the present article will interest theoretical physicists. For example, these algebraic equations could be found in the research of the energy relationships within the structures of many compounds and physical particles. For the case of butadiene (C 4 H 6 ), this fact is proved by the famous physicist Richard Feynman
The Boolean algebra of Galois algebras
Directory of Open Access Journals (Sweden)
Lianyong Xue
2003-02-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={bÃ¢ÂˆÂˆB|bx=g(xbÃ¢Â€Â‰for allÃ¢Â€Â‰xÃ¢ÂˆÂˆB} for each gÃ¢ÂˆÂˆG, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|gÃ¢ÂˆÂˆG}, e a nonzero element in Ba, and He={gÃ¢ÂˆÂˆG|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.
Real division algebras and other algebras motivated by physics
Energy Technology Data Exchange (ETDEWEB)
Benkart, G.; Osborn, J.M.
1981-02-01
In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations.
About the differential calculus on the quantum groups
International Nuclear Information System (INIS)
Bernard, D.
1992-01-01
Given a solution R of the Yang-Baxter equation admitting a quasi-triangular decomposition we define a quasi-triangular quantum Lie algebra. We describe how to any quasi-triangular quantum Lie algebra U(G R ) is associated a Hopf algebra F(G R ) with a differential calculus on it such that the algebra of the quantum Lie derivatives is the algebra U(G R ). This allows us to make the connection between the differential calculus on quantum groups and the exchange algebras of the algebraic Bethe ansatz. (orig.)
Ansatz from nonlinear optics applied to trapped Bose-Einstein condensates
International Nuclear Information System (INIS)
Keceli, Murat; Ilday, F. Oe.; Oktel, M. Oe.
2007-01-01
A simple analytical ansatz, which has been used to describe the intensity profile of the similariton laser (a laser with self-similar propagation of ultrashort pulses), is used as a variational wave function to solve the Gross-Pitaevskii equation for a wide range of interaction parameters. The variational form interpolates between the noninteracting density profile and the strongly interacting Thomas-Fermi profile smoothly. The simple form of the ansatz is modified for both cylindrically symmetric and completely anisotropic harmonic traps. The resulting ground-state density profile and energy are in very good agreement with both the analytical solutions in the limiting cases of interaction and the numerical solutions in the intermediate regime
Hecke algebras with unequal parameters
Lusztig, G
2003-01-01
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...
Random-fractal Ansatz for the configurations of two-dimensional critical systems.
Lee, Ching Hua; Ozaki, Dai; Matsueda, Hiroaki
2016-12-01
Critical systems have always intrigued physicists and precipitated the development of new techniques. Recently, there has been renewed interest in the information contained in the configurations of classical critical systems, whose computation do not require full knowledge of the wave function. Inspired by holographic duality, we investigated the entanglement properties of the classical configurations (snapshots) of the Potts model by introducing an Ansatz ensemble of random fractal images. By virtue of the central limit theorem, our Ansatz accurately reproduces the entanglement spectra of actual Potts snapshots without any fine tuning of parameters or artificial restrictions on ensemble choice. It provides a microscopic interpretation of the results of previous studies, which established a relation between the scaling behavior of snapshot entropy and the critical exponent. More importantly, it elucidates the role of ensemble disorder in restoring conformal invariance, an aspect previously ignored. Away from criticality, the breakdown of scale invariance leads to a renormalization of the parameter Σ in the random fractal Ansatz, whose variation can be used as an alternative determination of the critical exponent. We conclude by providing a recipe for the explicit construction of fractal unit cells consistent with a given scaling exponent.
Algebra II workbook for dummies
Sterling, Mary Jane
2014-01-01
To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr
Davidson, Kenneth R
1996-01-01
The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea
Slavnov and Gaudin-Korepin formulas for models without U (1) symmetry: the XXX chain on the segment
Belliard, S.; Pimenta, R. A.
2016-04-01
We consider the isotropic spin -\\frac{1}{2} Heisenberg chain with the most general integrable boundaries. The scalar product between the on-shell Bethe vector and its off-shell dual, obtained by means of the modified algebraic Bethe ansatz, is given by a modified Slavnov formula. The corresponding Gaudin-Korepin formula, i.e., the square of the norm, is also obtained.
Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra
Pitsch, Wolfgang; Zarzuela, Santiago
2016-01-01
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...
Quantum cluster algebra structures on quantum nilpotent algebras
Goodearl, K R
2017-01-01
All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.
Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2016-03-01
The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.
Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study
International Nuclear Information System (INIS)
Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.
2016-01-01
The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.
Identities and derivations for Jacobian algebras
International Nuclear Information System (INIS)
Dzhumadil'daev, A.S.
2001-09-01
Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)
Deo, Satya
2018-01-01
This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
Jarvis, Frazer
2014-01-01
The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Bloch, Spencer J
2000-01-01
This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.
Wadsworth, A R
2017-01-01
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.
Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf
1992-01-01
The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
The Bethe Sum Rule and Basis Set Selection in the Calculation of Generalized Oscillator Strengths
DEFF Research Database (Denmark)
Cabrera-Trujillo, Remigio; Sabin, John R.; Oddershede, Jens
1999-01-01
Fulfillment of the Bethe sum rule may be construed as a measure of basis set quality for atomic and molecular properties involving the generalized oscillator strength distribution. It is first shown that, in the case of a complete basis, the Bethe sum rule is fulfilled exactly in the random phase...... approximation. For an incomplete (computational) basis, some guidelines are developed for constructing higher angular momentum contributions to bases that will optimize the sum of generalized oscillator strengths and thus make the basis well suited for the calculation of stopping cross sections....
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Atomistic and orthoatomistic effect algebras
Tkadlec, Josef
2008-05-01
We characterize atomistic effect algebras, prove that a weakly orthocomplete Archimedean atomic effect algebra is orthoatomistic and present an example of an orthoatomistic orthomodular poset that is not weakly orthocomplete.
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Contractions of quantum algebraic structures
International Nuclear Information System (INIS)
Doikou, A.; Sfetsos, K.
2010-01-01
A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
Algebra & trigonometry super review
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y
Principles of algebraic geometry
Griffiths, Phillip A
1994-01-01
A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top
Artin, Emil
2007-01-01
The present text was first published in 1947 by the Courant Institute of Mathematical Sciences of New York University. Published under the title Modern Higher Algebra. Galois Theory, it was based on lectures by Emil Artin and written by Albert A. Blank. This volume became one of the most popular in the series of lecture notes published by Courant. Many instructors used the book as a textbook, and it was popular among students as a supplementary text as well as a primary textbook. Because of its popularity, Courant has republished the volume under the new title Algebra with Galois Theory.
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2010-01-01
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Pseudo Algebraically Closed Extensions
Bary-Soroker, Lior
2009-07-01
This PhD deals with the notion of pseudo algebraically closed (PAC) extensions of fields. It develops a group-theoretic machinery, based on a generalization of embedding problems, to study these extensions. Perhaps the main result is that although there are many PAC extensions, the Galois closure of a proper PAC extension is separably closed. The dissertation also contains the following subjects. The group theoretical counterpart of pseudo algebraically closed extensions, the so-called projective pairs. Applications to seemingly unrelated subjects, e.g., an analog of Dirichlet's theorem about primes in arithmetic progression for polynomial rings in one variable over infinite fields.
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Algebraic curves and cryptography
Murty, V Kumar
2010-01-01
It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on
Partially ordered algebraic systems
Fuchs, Laszlo
2011-01-01
Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Algebra & trigonometry I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
Homomorphisms between C∗ -algebra extensions
Indian Academy of Sciences (India)
C∗. -algebra extensions, Ext groups do not classify extension algebras. So one has to study the isomorphism equivalence of extensions. In fact, a homomorphism between two extension algebras may not map the essential ideal into the other in general, so we have to consider properties of extension homomorphisms.
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Process Algebra and Markov Chains
Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
International Nuclear Information System (INIS)
Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.
2008-01-01
A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Density form factors of the 1D Bose gas for finite entropy states
De Nardis, J.; Panfil, M.
2015-01-01
We consider the Lieb-Liniger model for a gas of bosonic delta-interacting particles. Using Algebraic Bethe Ansatz results we compute the thermodynamic limit of the form factors of the density operator between finite entropy eigenstates such as finite temperature states or generic non-equilibrium
One-particle dynamical correlations in the one-dimensional Bose gas
Caux, J.S.; Calabrese, P.; Slavnov, N.
2007-01-01
The momentum- and frequency-dependent one-body correlation function of the one-dimensional interacting Bose gas (Lieb-Liniger model) in the repulsive regime is studied using the Algebraic Bethe Ansatz and numerics. We first provide a determinant representation for the field form factor which is
Commutative algebra with a view toward algebraic geometry
Eisenbud, David
1995-01-01
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...
Quantitative Algebraic Reasoning
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon
2016-01-01
We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We deﬁne an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...
Fan, Yun; Zheng, Y L
2000-01-01
This volume is based on the lectures given by the authors at Wuhan University and Hubei University in courses on abstract algebra. It presents the fundamental concepts and basic properties of groups, rings, modules and fields, including the interplay between them and other mathematical branches and applied aspects.
Indian Academy of Sciences (India)
from India, I will describe mainly some work in four topics with which I am familiar: Moduli problem of vector bundles (and the related geometric invariant theory), the work of. CPRamanujam, Frobenius split varieties and algebraic .... One important series of works, by Seshadri in collaboration with V Lakshmibai, C Musili, and.
Indian Academy of Sciences (India)
To the Indian reader, the word discourse, evokes a respected figure interpreting divine wisdom to common folk in an accessible fash- ion. I dug a bit deeper with Google trans- late, and found that the original Russian ti- tle of Shafarevich's book was more like Se- lected Chapters of Algebra and that it was first published in a ...
Bergstra, J.A.; Middelburg, C.A.
2015-01-01
We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution
Gudder, Stan
2004-08-01
We define a special type of additive map J on an effect algebra E called a compression. We call J(1) the focus of J and if p is the focus of a compression then p is called a projection. The set of projections in E is denoted by P(E). A compression J is direct if J( a) ≤ a for all a ɛ E. We show that direct compressions are equivalent to projections onto components of cartesian products. An effect algebra E is said to be compressible if every compression on E is uniquely determined by its focus and every compression on E has a supplement. We define and characterize the commutant C(p) of a projection p and show that a compression with focus p is direct if and only if C(p) = E. We show that P(E) is an orthomodular poset. It is proved that the cartesian product of effect algebras is compressible if and only if each component is compressible. We then consider compressible sequential effect algebras, Lüders maps and conditional probabilities.
Thinking Visually about Algebra
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
Algebraic Thinking through Origami.
Higginson, William; Colgan, Lynda
2001-01-01
Describes the use of paper folding to create a rich environment for discussing algebraic concepts. Explores the effect that changing the dimensions of two-dimensional objects has on the volume of related three-dimensional objects. (Contains 13 references.) (YDS)
Operator algebras and topology
International Nuclear Information System (INIS)
Schick, T.
2002-01-01
These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)
Advanced modern algebra part 2
Rotman, Joseph J
2017-01-01
This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.
Siloxanes : A new class of candidate Bethe-Zel’dovich-Thompson fluids
Colonna, P.; Guardone, A.; Nannan, N.R.
2007-01-01
This paper presents a new class of Bethe-Zel’dovich-Thompson fluids, which are expected to exhibit nonclassical gasdynamic behavior in the single-phase vapor region. These are the linear and cyclic siloxanes, light silicon oils currently employed as working fluids in organic Rankine cycle turbines.
On Dunkl angular momenta algebra
Energy Technology Data Exchange (ETDEWEB)
Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2015-11-17
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Free Malcev algebra of rank three
Kornev, Alexandr
2011-01-01
We find a basis of the free Malcev algebra on three free generators over a field of characteristic zero. The specialty and semiprimity of this algebra are proved. In addition, we prove the decomposability of this algebra into subdirect sum of the free Lie algebra rank three and the free algebra of rank three of variety of Malcev algebras generated by a simple seven-dimensional Malcev algebra.
Datengeleitetes Lernen im studienbegleitenden Deutschunterricht am Beispiel des KoGloss-Ansatzes
Directory of Open Access Journals (Sweden)
Agnese Dubova
2016-04-01
Full Text Available Der vorliegende Aufsatz stellt den sprachdidaktischen Ansatz KoGloss vor und beschreibt die Möglichkeiten seines Einsatzes im studienbegleitenden Deutschunterricht. Als eine der Formen des datengeleiteten Lernens ermöglicht der KoGloss-Ansatz eine forschungsorientierte und lernerzentrierte Herangehensweise, die insbesondere im akademischen Sprachunterricht gefragt ist. Eine korpusbasierte Erschließung von (Fach-Wörtern und komplexen sprachlichen Mustern, das learning by doing, die Kooperation und Kollaboration zwischen den Lernenden und Lehrenden dienen als Schlüsselwörter zur Beschreibung der mit KoGloss angestrebten Lehr- und Lernform im studienbegleitenden Unterricht des Deutschen als Fremdsprache (bzw. Fachsprache. The paper deals with the didactic approach of KoGloss in language acquisition and describes the possibilities of its use in acquisition of German language as study-accompanying course. As one of the data-driven approaches types the KoGloss approach ensures research-driven and learner-centered learning, which is particularly important in language instruction in higher education. The keywords given by KoGloss for the learning and teaching method of acquisition of the “accompanying” study subject, i.e. the German language as foreign language (namely as language for special purposes – LSP are as follows: defining corpus-based special application of words and complex language patterns, learning by doing, cooperation and collaboration between the teaching staff and students.
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Jacobson-Witt algebras and Lie-admissible algebras
International Nuclear Information System (INIS)
Tomber, M.L.
1981-01-01
For any field PHI of characteristics p > 0 and integer m greater than or equal to 1, there is a Jacobson-Witt algebra which is a Lie algebra. In this paper, all flexible Lie-admissible algebras U, such that U - is a Jacobson-Witt algebra W/sub m/(p), are determined. For any W/sub m/(p), p > 2 there is exactly one such U and it is isomorphic to W/sub m/(p). There are two non-isomorphic algebras U such that U - is isomorphic to W 1 (2), and there are no algebras U with U - isomorphic to W/sub m/(2), m > 1
Algebras of Information States
Czech Academy of Sciences Publication Activity Database
Punčochář, Vít
2017-01-01
Roč. 27, č. 5 (2017), s. 1643-1675 ISSN 0955-792X R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : information states * relational semantics * algebraic semantics * intuitionistic logic * inquisitive disjunction Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.909, year: 2016
Algebra, Arithmetic, and Geometry
Tschinkel, Yuri
2009-01-01
The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont
Indian Academy of Sciences (India)
project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
International Nuclear Information System (INIS)
Todorov, Ivan
2010-12-01
Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)
Lutfiyya, Lutfi A
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.
Algebra & trigonometry II essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Compactly Generated de Morgan Lattices, Basic Algebras and Effect Algebras
Paseka, Jan; Riečanová, Zdenka
2010-12-01
We prove that a de Morgan lattice is compactly generated if and only if its order topology is compatible with a uniformity on L generated by some separating function family on L. Moreover, if L is complete then L is (o)-topological. Further, if a basic algebra L (hence lattice with sectional antitone involutions) is compactly generated then L is atomic. Thus all non-atomic Boolean algebras as well as non-atomic lattice effect algebras (including non-atomic MV-algebras and orthomodular lattices) are not compactly generated.
Krňávek, Jan; Kühr, Jan
2011-12-01
Basic algebras are a generalization of MV-algebras, also including orthomodular lattices and lattice effect algebras. A pre-ideal of a basic algebra is a non-empty subset that is closed under the addition ⊕ and downwards closed with respect to the underlying order. In this paper, we study the pre-ideal lattices of algebras in a particular subclass of basic algebras which are closer to MV-algebras than basic algebras in general. We also prove that finite members of this subclass are exactly finite MV-algebras.
Bauer, Juergen
2014-01-01
Dieser Beitrag untersucht den Soundscape-Ansatz als Design-Werkzeug für Architekten im Dialog mit Akustikern. In diesem Zusammenhang formuliert er zunächst drei Prämissen für die Akustik und die Architektur bzw. Raumplanung. Im folgenden wird die Relevanz des Soundscape-Ansatzes für den architektonischen Entwurfsprozess untersucht. Abschliessend werden die übergeordneten Ziele der Raumplanung erörtert und Schlussfolgerungen für die Implementierung von Soundscape-Szenarios und Soundsca...
Assessing Algebraic Solving Ability: A Theoretical Framework
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Einstein algebras and general relativity
International Nuclear Information System (INIS)
Heller, M.
1992-01-01
A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs
Fusion rules of chiral algebras
International Nuclear Information System (INIS)
Gaberdiel, M.
1994-01-01
Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)
Categorical Algebra and its Applications
1988-01-01
Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.
"Lost chains" in algebraic models
Fortunato, L.; de Graaf, W. A.
2011-03-01
The algebraic structure of some of the simplest algebraic models u(2), u(3) and u(4), widely used in several branches of physics either as toy models or as working instruments, are reanalyzed under a new perspective that releases the requirement that chains should terminate or pass through the angular momentum algebra. Unitary algebras are non-semisimple, therefore we first apply the Levi-Malcev decomposition. Then we use the theory of weighted Dynkin diagrams to identify conjugacy classes of A1 ~ su(2) ~ so(3) subalgebras: a complete classification of new angular momentum non conserving (AMNC) dynamical symmetries follows that we substantiate with examples.
Applications of Computer Algebra Conference
Martínez-Moro, Edgar
2017-01-01
The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.
Introduction to algebraic independence theory
Philippon, Patrice
2001-01-01
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
Computational aspects of algebraic curves
Shaska, Tanush
2005-01-01
The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove
International Nuclear Information System (INIS)
Jabar, A.; Masrour, R.; Benyoussef, A.; Hamedoun, M.
2016-01-01
The magnetic properties of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice have been studied by using the Monte Carlo simulations. The ground state phase diagrams of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice has been obtained. The thermal total magnetization and magnetization of spins-5/2 and spin-2 with the different exchange interactions, external magnetic field and temperatures have been studied. The critical temperature have been deduced. The magnetic hysteresis cycle on the Bethe lattice has been deduced for different values of exchange interactions, for different values of crystal field and for different sizes. The magnetic coercive field has been deduced. - Highlights: • The alternate mixed spin-5/2 and -2 on the Bethe lattice is studied. • The critical temperature has been deduced. • The magnetic coercive filed has been deduced.
The Beer/Bethe/Uexküll paper (1899) and misinterpretations surrounding 'vitalistic behaviorism'.
Mildenberger, Florian
2006-01-01
In the history of behaviorism the paper of the three physiologists Theodor Beer, Albrecht Bethe and Jakob von Uexküll from 1899 plays an important role. Many researchers were influenced by this paper and identified it as fundamental for objective psychological research. But during the period of its adoption (1900-1925) psychologists did not notice that Beer, Bethe and Uexküll had distanced themselves from their own paper, because it had been ignored in physiological and biological discussions. Moreover, one of the three (Beer) had to resign from the scientific community because of private scandal and another one (Uexküll) changed all of his views and left the base of objective science for subjective vitalism. However, this did not change his adoption of behaviorism.
Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state
de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.
2018-03-01
Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.
Accuracy of the Bethe approximation for hyperparameter estimation in probabilistic image processing
International Nuclear Information System (INIS)
Tanaka, Kazuyuki; Shouno, Hayaru; Okada, Masato; Titterington, D M
2004-01-01
We investigate the accuracy of statistical-mechanical approximations for the estimation of hyperparameters from observable data in probabilistic image processing, which is based on Bayesian statistics and maximum likelihood estimation. Hyperparameters in statistical science correspond to interactions or external fields in the statistical-mechanics context. In this paper, hyperparameters in the probabilistic model are determined so as to maximize a marginal likelihood. A practical algorithm is described for grey-level image restoration based on a Gaussian graphical model and the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We examine the accuracy of hyperparameter estimation when we use the Bethe approximation. It is well known that a practical algorithm for probabilistic image processing can be prescribed analytically when a Gaussian graphical model is adopted as a prior probabilistic model in Bayes' formula. We are therefore able to compare, in a numerical study, results obtained through mean-field-type approximations with those based on exact calculation
The planar algebra of a semisimple and cosemisimple Hopf algebra
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
[TngGlk] Etingof Pavel and Gelaki Shlomo, On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic. Int. Math. Res. Notices,. 16 (1998) 851–864. [DasKdy] Das Paramita and Vijay Kodiyalam, Planar algebras and the Ocneanu–. Szymanski theorem, Proc. AMS, 133 (2005) 2751–2759.
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
Put, Marius van der
1999-01-01
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.
Dynamical entropy of C* algebras and Von Neumann algebras
International Nuclear Information System (INIS)
Connes, A.; Narnhofer, H.; Thirring, W.
1986-01-01
The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry and ge...
Quantum deformation of the affine transformation algebra
International Nuclear Information System (INIS)
Aizawa, N.; Sato, Haru-Tada
1994-01-01
We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...
The spin-3/2 Blume-Capel model on the Bethe lattice using the recursion method
International Nuclear Information System (INIS)
Albayrak, Erhan; Keskin, Mustafa
2000-01-01
The spin-3/2 Blume-Capel model is solved on the Bethe lattice using the exact recursion equations. The nature of the variation of the Curie temperature with the ratio of the single-ion anisotropy term to the exchange-coupling constant is studied and the phase diagrams are constructed on the Bethe lattice with the co-ordination numbers q=3 and 6. A comparison is made with the results of the other approximation schemes
The spin-3/2 Blume-Capel model on the Bethe lattice using the recursion method
Albayrak, E
2000-01-01
The spin-3/2 Blume-Capel model is solved on the Bethe lattice using the exact recursion equations. The nature of the variation of the Curie temperature with the ratio of the single-ion anisotropy term to the exchange-coupling constant is studied and the phase diagrams are constructed on the Bethe lattice with the co-ordination numbers q=3 and 6. A comparison is made with the results of the other approximation schemes.
Macris, Nicolas; Vuffray, Marc
2013-01-01
The main objective of this paper is to explore the precise relationship between the Bethe free energy (or entropy) and the Shannon conditional entropy of graphical error correcting codes. The main result shows that the Bethe free energy associated with a low-density parity-check code used over a binary symmetric channel in a large noise regime is, with high probability, asymptotically exact as the block length grows. To arrive at this result we develop new techniques for rather general graphi...
Perturbation theory for the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.; Litskevich, I.K.
1990-01-01
The completeness and orthogonality of the solutions of the Bethe-Salpeter equation is proven. A correct derivation of perturbation-theory equations is given. A generalization that includes the field of a plane electromagnetic wave is proposed. The rate of one-photon annihilation of positronium in this field is calculated. If the one-photon decay is allowed, the stationary states of the system are found (states of light-positronium)
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Algebraic topology and concurrency
DEFF Research Database (Denmark)
Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric
2006-01-01
We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...
Hazewinkel, M
2008-01-01
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i
New examples of continuum graded Lie algebras
International Nuclear Information System (INIS)
Savel'ev, M.V.
1989-01-01
Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs
Fractional supersymmetry and infinite dimensional lie algebras
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
2001-01-01
In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed
Electronic structure of disordered binary alloys with short range correlation in Bethe lattice
International Nuclear Information System (INIS)
Moreno, I.F.
1987-01-01
The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt
A generalized Uhlenbeck and Beth formula for the third cluster coefficient
Energy Technology Data Exchange (ETDEWEB)
Larsen, Sigurd Yves [Department of Physics, Temple University, Philadelphia, PA 19122 (United States); Lassaut, Monique [Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex (France); Amaya-Tapia, Alejandro, E-mail: jano@icf.unam.mx [Instituto de Ciencias Fi ´sicas, Universidad Nacional Autónoma de México, AP 48-3, Cuernavaca, Mor. 62251 (Mexico)
2016-11-15
Relatively recently (Amaya-Tapia et al., 2011), we presented a formula for the evaluation of the third Bose fugacity coefficient–leading to the third virial coefficient–in terms of three-body eigenphase shifts, for particles subject to repulsive forces. An analytical calculation for a 1-dim. model, for which the result is known, confirmed the validity of this approach. We now extend the formalism to particles with attractive forces, and therefore must allow for the possibility that the particles have bound states. We thus obtain a true generalization of the famous formula of Uhlenbeck and Beth (Uhlenbeck and Beth, 1936; Beth and Uhlenbeck, 1937) and of Gropper (Gropper, 1936, 1937) for the second virial. We illustrate our formalism by a calculation, in an adiabatic approximation, of the third cluster in one dimension, using McGuire’s model as in our previous paper, but with attractive forces. The inclusion of three-body bound states is trivial; taking into account states having asymptotically two particles bound, and one free, is not.
Symmetry preserving truncations of the gap and Bethe-Salpeter equations
Binosi, Daniele; Chang, Lei; Papavassiliou, Joannis; Qin, Si-Xue; Roberts, Craig D.
2016-05-01
Ward-Green-Takahashi (WGT) identities play a crucial role in hadron physics, e.g. imposing stringent relationships between the kernels of the one- and two-body problems, which must be preserved in any veracious treatment of mesons as bound states. In this connection, one may view the dressed gluon-quark vertex, Γμa , as fundamental. We use a novel representation of Γμa , in terms of the gluon-quark scattering matrix, to develop a method capable of elucidating the unique quark-antiquark Bethe-Salpeter kernel, K , that is symmetry consistent with a given quark gap equation. A strength of the scheme is its ability to expose and capitalize on graphic symmetries within the kernels. This is displayed in an analysis that reveals the origin of H -diagrams in K , which are two-particle-irreducible contributions, generated as two-loop diagrams involving the three-gluon vertex, that cannot be absorbed as a dressing of Γμa in a Bethe-Salpeter kernel nor expressed as a member of the class of crossed-box diagrams. Thus, there are no general circumstances under which the WGT identities essential for a valid description of mesons can be preserved by a Bethe-Salpeter kernel obtained simply by dressing both gluon-quark vertices in a ladderlike truncation; and, moreover, adding any number of similarly dressed crossed-box diagrams cannot improve the situation.
Graded associative conformal algebras of finite type
Kolesnikov, Pavel
2011-01-01
In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...
Galois Connections for Flow Algebras
DEFF Research Database (Denmark)
Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis
2011-01-01
to the approach taken by Monotone Frameworks and other classical analyses. We present a generic framework for static analysis based on flow algebras and program graphs. Program graphs are often used in Model Checking to model concurrent and distributed systems. The framework allows to induce new flow algebras...
Ultraproducts of von Neumann algebras
DEFF Research Database (Denmark)
Ando, Hiroshi; Haagerup, Uffe
2014-01-01
We study several notions of ultraproducts of von Neumann algebras from a unified viewpoint. In particular, we show that for a sigma-finite von Neumann algebra M , the ultraproduct MωMω introduced by Ocneanu is a corner of the ultraproduct ∏ωM∏ωM introduced by Groh and Raynaud. Using...
Orthogonal symmetries and Clifford algebras
Indian Academy of Sciences (India)
a universal property of the even Clifford algebra in §3. ..... symmetry if σ2 = id. In the literature, such maps are sometimes also called “orthogonal involutions” (cf. Ch. III, §5 of [4]). We have, however, preferred to use the former ...... [7] Helmstetter J and Micali A, Quadratic mappings and Clifford algebras (Basel: Birkhäuser.
Six Lectures on Commutative Algebra
Elias, J; Miro-Roig, Rosa Maria; Zarzuela, Santiago
2009-01-01
Interest in commutative algebra has surged over the years. In order to survey and highlight the developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. This title offers a synthesis of the lectures presented at the Summer School
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
1995-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and
Linear Algebra and Image Processing
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
Ahadpanah, A.; Borumand Saeid, A.
2011-01-01
In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.
The Algebra of Complex Numbers.
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Modular specifications in process algebra
R.J. van Glabbeek (Rob); F.W. Vaandrager (Frits)
1987-01-01
textabstractIn recent years a wide variety of process algebras has been proposed in the literature. Often these process algebras are closely related: they can be viewed as homomorphic images, submodels or restrictions of each other. The aim of this paper is to show how the semantical reality,
Linear Algebra and Linear Models
Indian Academy of Sciences (India)
Linear Algebra and Linear. Models. Kalyan Das. Linear Algebra and linear Models. (2nd Edn) by R P Bapat. Hindustan Book Agency, 1999 pp.xiii+180, Price: Rs.135/-. This monograph provides an introduction to the basic aspects of the theory oflinear estima- tion and that of testing linear hypotheses. The primary objective ...
Quantum Observables and Effect Algebras
Dvurečenskij, Anatolij
2017-11-01
We study observables on monotone σ-complete effect algebras. We find conditions when a spectral resolution implies existence of the corresponding observable. We characterize sharp observables of a monotone σ-complete homogeneous effect algebra using its orthoalgebraic skeleton. In addition, we study compatibility in orthoalgebras and we show that every orthoalgebra satisfying RIP is an orthomodular poset.
Algebraic study of chiral anomalies
Indian Academy of Sciences (India)
2012-06-14
Jun 14, 2012 ... Abstract. The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles ... Editor's Note: †Reproduced with kind permission from Springer Science+Business Media: Algebraic study of chiral anoma- ..... We shall see in the sequel several examples in which this ambiguity helps.
Practical algebraic renormalization
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias
2001-01-01
A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ
Waterloo Workshop on Computer Algebra
Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday
2018-01-01
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.
Invariants of triangular Lie algebras
International Nuclear Information System (INIS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-01-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated
Elements of algebraic coding systems
Cardoso da Rocha, Jr, Valdemar
2014-01-01
Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...
Representations of affine Hecke algebras
Xi, Nanhua
1994-01-01
Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest
Loop expansion around the Bethe approximation through the M-layer construction
Altieri, Ada; Chiara Angelini, Maria; Lucibello, Carlo; Parisi, Giorgio; Ricci-Tersenghi, Federico; Rizzo, Tommaso
2017-11-01
For every physical model defined on a generic graph or factor graph, the Bethe M-layer construction allows building a different model for which the Bethe approximation is exact in the large M limit, and coincides with the original model for M=1 . The 1/M perturbative series is then expressed by a diagrammatic loop expansion in terms of so-called fat diagrams. Our motivation is to study some important second-order phase transitions that do exist on the Bethe lattice, but are either qualitatively different or absent in the corresponding fully connected case. In this case, the standard approach based on a perturbative expansion around the naive mean field theory (essentially a fully connected model) fails. On physical grounds, we expect that when the construction is applied to a lattice in finite dimension there is a small region of the external parameters, close to the Bethe critical point, where strong deviations from mean-field behavior will be observed. In this region, the 1/M expansion for the corrections diverges, and can be the starting point for determining the correct non-mean-field critical exponents using renormalization group arguments. In the end, we will show that the critical series for the generic observable can be expressed as a sum of Feynman diagrams with the same numerical prefactors of field theories. However, the contribution of a given diagram is not evaluated by associating Gaussian propagators to its lines, as in field theories: one has to consider the graph as a portion of the original lattice, replacing the internal lines with appropriate one-dimensional chains, and attaching to the internal points the appropriate number of infinite-size Bethe trees to restore the correct local connectivity of the original model. The actual contribution of each (fat) diagram is the so-called line-connected observable, which also includes contributions from sub-diagrams with appropriate prefactors. In order to compute the corrections near to the critical
(Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras
Directory of Open Access Journals (Sweden)
Dusko Pavlovic
2017-01-01
Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.
Rota-Baxter algebras and the Hopf algebra of renormalization
International Nuclear Information System (INIS)
Ebrahimi-Fard, K.
2006-06-01
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Universal enveloping Lie Rota-Baxter algebra of preLie and post-Lie algebras
Gubarev, Vsevolod
2017-01-01
Universal enveloping Lie Rota-Baxter algebras of pre-Lie and post-Lie algebras are constructed. It is proved that the pairs of varieties (Lie Rota-Baxter algebras of zero weight,preLie algebras) and (Lie Rota-Baxter algebras of nonzero weight,post-Lie algebras) are PBW-pairs and the variety of Lie Rota-Baxter algebras is not Schreier.
Lie algebra in quantum physics by means of computer algebra
Kikuchi, Ichio; Kikuchi, Akihito
2017-01-01
This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...
Head First Algebra A Learner's Guide to Algebra I
Pilone, Tracey
2008-01-01
Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Current algebra for parafields
International Nuclear Information System (INIS)
Palev, Ch.D.
1976-01-01
Within the framework of the Lagrangean QFT a generalization of canonical commutation and anticommutation relations in terms of three-linear commutation relations, corresponding to the parastatistics, s discussed. A detailed derivation of these three-linear relations for a set of parafermi fields is presented. Then for a Lagrangean, depending of a family of parabose fields and a family of paraferm fields, is shown that the fundamental hypothesis of current algebra is valid. In other words, the currents corresponding to the linear gauge transformations are found to meet the commutation relation: [Jsub(f)sup(0)(x), Jsub(g)sup(0)]sub(x 0 =y 0 ) = -idelta(x vector - y vector)Jsub([f,g])sup(0) (x), where Jsub(f)sup(0) is a time component of the current, corresponding to transformation f. (S.P.)
Meijer, Alko R
2016-01-01
This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...
Hestenes, David
2015-01-01
This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...
Energy Technology Data Exchange (ETDEWEB)
2017-08-01
AMG is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the BoomerAMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL and is very similar to the AMG2013 benchmark with additional optimizations. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem with a 27-point stencil, which can be scaled up and is designed to solve a very large problem. A second problem simulates a time dependent problem, in which successively various smnllcr systems are solved.
Applications of computer algebra
1985-01-01
Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa tion and obtains a closed for...
Macdonald index and chiral algebra
Song, Jaewon
2017-08-01
For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.
Quantum algebra of N superspace
International Nuclear Information System (INIS)
Hatcher, Nicolas; Restuccia, A.; Stephany, J.
2007-01-01
We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the κ-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra
Vertex algebras and mirror symmetry
International Nuclear Information System (INIS)
Borisov, L.A.
2001-01-01
Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)
Semiprojectivity of universal -algebras generated by algebraic elements
DEFF Research Database (Denmark)
Shulman, Tatiana
2012-01-01
Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....
Topological Ã-algebras with CÃ-enveloping algebras II
Indian Academy of Sciences (India)
subalgebra and contained in the crossed product *-algebra *(, , ) satisfies ()=*(, , ). If G = R , if is an -invariant dense Frechet ∗-subalgebra of such that () = , and if the action on is -tempered, smooth and by continuous ...
Coxeter groups and Hopf algebras
Aguiar, Marcelo
2011-01-01
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary backgrou
Linear operators in Clifford algebras
International Nuclear Information System (INIS)
Laoues, M.
1991-01-01
We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators M eI,eJ defined by x→e I .x.e J , where the e I are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (M eI,eJ ) is exactly a basis in the even case. (orig.)
Homology theory on algebraic varieties
Wallace, Andrew H
1958-01-01
Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n
Clifford algebraic symmetries in physics
International Nuclear Information System (INIS)
Salingaros, N.
1986-01-01
This paper reviews the following appearances of Clifford algebras in theoretical physics: statistical mechanics; general relativity; quantum electrodynamics; internal symmetries; the vee product; classical electrodynamics; charged-particle motion; and the Lorentz group. It is concluded that the power of the Clifford-algebraic description resides in its ability to perform representation-free calculations which are generalizations of the traditional vector algebra and that this considerable computational asset, in combination with the intrinsic symmetry, provides a practical framework for much of theoretical physics. 5 references
Kolman, Bernard; Levitan, Michael L
1985-01-01
Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
Introduction to applied algebraic systems
Reilly, Norman R
2009-01-01
This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as
Introduction to algebra and trigonometry
Kolman, Bernard
1981-01-01
Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are
Study guide for college algebra
Snow, James W; Shapiro, Arnold
1981-01-01
Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what
Planar algebra of the subgroup-subfactor
Indian Academy of Sciences (India)
G in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra sub- factor RG ⊂ RH and the G-invariant planar subalgebra of the planar algebra of the 'flip' of ⋆n. Keywords. Planar algebras; subfactors; standard invariant. 1. Introduction. For every pair H ⊂ G of finite groups, ...
Abstract algebra an introduction with applications
Robinson, Derek JS
2015-01-01
This is the second edition of the introduction to abstract algebra. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. There is ample material here for a two semester course in abstract algebra.
Homomorphisms of certain Banach function algebras
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
. } < ∞ is denoted by Lipα(X, d). These algebras are called Lipschitz algebras of order α and were first studied by Sherbert. The Lipschitz algebras Lipα(X, d) for α ≤ 1 are natural. Banach function algebras on X under the norm f α = f X + pα(f ) ...
Particle-like structure of Lie algebras
Vinogradov, A. M.
2017-07-01
If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.
Contraction of graded su(2) algebra
International Nuclear Information System (INIS)
Patra, M.K.; Tripathy, K.C.
1989-01-01
The Inoenu-Wigner contraction scheme is extended to Lie superalgebras. The structure and representations of extended BRS algebra are obtained from contraction of the graded su(2) algebra. From cohomological consideration, we demonstrate that the graded su(2) algebra is the only superalgebra which, on contraction, yields the full BRS algebra. (orig.)
AT -algebras and extensions of AT-algebras
Indian Academy of Sciences (India)
and E has real rank zero, then E is an AT-algebra if and only if the index maps are both zero. Accordingly, in this ... It is well-known that two extensions with the same index are isomorphic as C. ∗. -algebras. We call these .... where each Bi = I (Ei) is a direct sum of K. By Lemma 2.3, I (E) = B. Without loss of generality, we may ...
Lectures on algebraic quantum field theory and operator algebras
International Nuclear Information System (INIS)
Schroer, Bert
2001-04-01
In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)
Topological أ-algebras with Cأ-enveloping algebras II
Indian Academy of Sciences (India)
A with the locally convex inductive limit topology t is a locally m-convex Q-algebra satisfying EًKnc. A ق ¼ EًKAق ¼ A. (3) If A has a countable bounded approximate identity, then ًKnc. A ; tق is an LFQ-algebra. In general KA 6¼ Knc. A , though KA Knc. A . Now KA has been interpreted as a non- commutative analogue of CcًXق.
Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.
Boulougouris, Georgios C
2014-05-15
The evaluation of the free energy is essential in molecular simulation because it is intimately related with the existence of multiphase equilibrium. Recently, it was demonstrated that it is possible to evaluate the Helmholtz free energy using a single statistical ensemble along an entire isotherm by accounting for the "chemical work" of transforming each molecule, from an interacting one, to an ideal gas. In this work, we show that it is possible to perform such a free energy perturbation over a liquid vapor phase transition. Furthermore, we investigate the link between a general free energy perturbation scheme and the novel nonequilibrium theories of Crook's and Jarzinsky. We find that for finite systems away from the thermodynamic limit the second law of thermodynamics will always be an inequality for isothermal free energy perturbations, resulting always to a dissipated work that may tend to zero only in the thermodynamic limit. The work, the heat, and the entropy produced during a thermodynamic free energy perturbation can be viewed in the context of the Crooks and Jarzinsky formalism, revealing that for a given value of the ensemble average of the "irreversible" work, the minimum entropy production corresponded to a Gaussian distribution for the histogram of the work. We propose the evaluation of the free energy difference in any free energy perturbation based scheme on the average irreversible "chemical work" minus the dissipated work that can be calculated from the variance of the distribution of the logarithm of the work histogram, within the Gaussian approximation. As a consequence, using the Gaussian ansatz for the distribution of the "chemical work," accurate estimates for the chemical potential and the free energy of the system can be performed using much shorter simulations and avoiding the necessity of sampling the computational costly tails of the "chemical work." For a more general free energy perturbation scheme that the Gaussian ansatz may not be
Pre-Algebra Essentials For Dummies
Zegarelli, Mark
2010-01-01
Many students worry about starting algebra. Pre-Algebra Essentials For Dummies provides an overview of critical pre-algebra concepts to help new algebra students (and their parents) take the next step without fear. Free of ramp-up material, Pre-Algebra Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in a typical pre-algebra course, from fractions, decimals, and percents to scientific notation and simple variable equations. This guide is also a perfect reference for parents who need to review critical pre-algebra
Connections between algebra, combinatorics, and geometry
Sather-Wagstaff, Sean
2014-01-01
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Cartooning in Algebra and Calculus
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
International Nuclear Information System (INIS)
Baeuerle, G.G.A.; Kerf, E.A. de
1990-01-01
The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
Computational linear and commutative algebra
Kreuzer, Martin
2016-01-01
This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...
Completeness of algebraic CPS simulations
Directory of Open Access Journals (Sweden)
Ali Assaf
2012-07-01
Full Text Available The algebraic lambda calculus and the linear algebraic lambda calculus are two extensions of the classical lambda calculus with linear combinations of terms. They arise independently in distinct contexts: the former is a fragment of the differential lambda calculus, the latter is a candidate lambda calculus for quantum computation. They differ in the handling of application arguments and algebraic rules. The two languages can simulate each other using an algebraic extension of the well-known call-by-value and call-by-name CPS translations. These simulations are sound, in that they preserve reductions. In this paper, we prove that the simulations are actually complete, strengthening the connection between the two languages.
Cluster algebras in mathematical physics
International Nuclear Information System (INIS)
Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-01-01
This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm
The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice
International Nuclear Information System (INIS)
Queiroz, S.L.A. de.
1977-07-01
The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt
Probabilistic image processing by means of the Bethe approximation for the Q-Ising model
International Nuclear Information System (INIS)
Tanaka, Kazuyuki; Inoue, Jun-ichi; Titterington, D M
2003-01-01
The framework of Bayesian image restoration for multi-valued images by means of the Q-Ising model with nearest-neighbour interactions is presented. Hyperparameters in the probabilistic model are determined so as to maximize the marginal likelihood. A practical algorithm is described for multi-valued image restoration based on the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We conclude that, in real world grey-level images, the Q-Ising model can give us good results
Stieltjes-Bethe equations in higher genus and branched coverings with even ramifications
Korotkin, Dmitry
2018-02-01
We describe projective structures on a Riemann surface corresponding to monodromy groups which have trivial SL (2) monodromies around singularities and trivial PSL (2) monodromies along homologically non-trivial loops on a Riemann surface. We propose a natural higher genus analog of Stieltjes-Bethe equations. Links with branched projective structures and with Hurwitz spaces with ramifications of even order are established. We find a higher genus analog of the genus zero Yang-Yang function (the function generating accessory parameters) and describe its similarity and difference with Bergman tau-function on the Hurwitz spaces.
Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Salomon, M.
1992-07-01
We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs
A Cluster-Bethe lattice treatment for the F-center in alkali-halides
International Nuclear Information System (INIS)
Queiroz, S.L.A. de; Koiller, B.; Maffeo, B.; Brandi, H.S.
1977-01-01
The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Cluster-Bethe lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second- neighbors to it, respectively, cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides [pt
A characterisation of algebraic exactness
Garner, Richard
2011-01-01
An algebraically exact category in one that admits all of the limits and colimits which every variety of algebras possesses and every forgetful functor between varieties preserves, and which verifies the same interactions between these limits and colimits as hold in any variety. Such categories were studied by Ad\\'amek, Lawvere and Rosick\\'y: they characterised them as the categories with small limits and sifted colimits for which the functor taking sifted colimits is continuous. They conject...
Distribution theory of algebraic numbers
Yang, Chung-Chun
2008-01-01
The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.
Nineteen papers on algebraic semigroups
Aizenshtat, A Ya; Podran, N E; Ponizovskii, IS; Shain, BM
1988-01-01
This volume contains papers selected by leading specialists in algebraic semigroups in the U.S., the United Kingdom, and Australia. Many of the papers strongly influenced the development of algebraic semigroups, but most were virtually unavailable outside the U.S.S.R. Written by some of the most prominent Soviet researchers in the field, the papers have a particular emphasis on semigroups of transformations. Boris Schein of the University of Arkansas is the translator.
Mass matrix ansatz and lepton flavor violation in the two-Higgs doublet model-III
International Nuclear Information System (INIS)
Diaz-Cruz, J.L.; Noriega-Papaqui, R.; Rosado, A.
2004-01-01
Predictive Higgs-boson-fermion couplings can be obtained when a specific texture for the fermion mass matrices is included in the general two-Higgs doublet model. We derive the form of these couplings in the charged lepton sector using a Hermitian mass matrix ansatz with four-texture zeros. The presence of unconstrained phases in the vertices φ i l i l j modifies the pattern of flavor-violating Higgs boson interactions. Bounds on the model parameters are obtained from present limits on rare lepton flavor-violating processes, which could be extended further by the search for the decay τ→μμμ and μ-e conversion at future experiments. The signal from Higgs boson decays φ i →τμ could be searched for at the CERN Large Hadron Collider, while e-μ transitions could produce a detectable signal at a future eμ collider, through the reaction e + μ - →h 0 →τ + τ -
XY vs X Mixer in Quantum Alternating Operator Ansatz for Optimization Problems with Constraints
Wang, Zhihui; Rubin, Nicholas; Rieffel, Eleanor G.
2018-01-01
Quantum Approximate Optimization Algorithm, further generalized as Quantum Alternating Operator Ansatz (QAOA), is a family of algorithms for combinatorial optimization problems. It is a leading candidate to run on emerging universal quantum computers to gain insight into quantum heuristics. In constrained optimization, penalties are often introduced so that the ground state of the cost Hamiltonian encodes the solution (a standard practice in quantum annealing). An alternative is to choose a mixing Hamiltonian such that the constraint corresponds to a constant of motion and the quantum evolution stays in the feasible subspace. Better performance of the algorithm is speculated due to a much smaller search space. We consider problems with a constant Hamming weight as the constraint. We also compare different methods of generating the generalized W-state, which serves as a natural initial state for the Hamming-weight constraint. Using graph-coloring as an example, we compare the performance of using XY model as a mixer that preserves the Hamming weight with the performance of adding a penalty term in the cost Hamiltonian.
First-principles momentum-dependent local ansatz approach to correlated electron system
Kakehashi, Yoshiro; Chandra, Sumal
In spite of a great success of the density functional theory (DFT), quantitative description of correlated electron systems has not yet been achieved because of the difficulty in improvement of exchange-correlation potential. Toward the quantitative description of correlated electrons, we recently proposed the momentum-dependent local ansatz approach (MLA) based on the wavefunction method. The theory describes exactly the weak Coulomb interaction regime, and goes beyond the Gutzwiller wavefunction method in both the weak and strong interaction regimes. We present here the first principles version of the MLA, which is obtained by combining the LDA +U Hamiltonian with the MLA. We demonstrate that the theory describes quantitatively the Hund-rule correlation energies, the charge fluctuations, the amplitudes of local moments, the momentum distribution functions, as well as the mass enhancement factors in iron-group transition metals. The DFT does not describe these quantities because it is based on the Hohenberg-Kohn theorem and the Kohn-Sham independent-electron scheme.
Algebras with actions and automata
Directory of Open Access Journals (Sweden)
W. Kühnel
1982-01-01
Full Text Available In the present paper we want to give a common structure theory of left action, group operations, R-modules and automata of different types defined over various kinds of carrier objects: sets, graphs, presheaves, sheaves, topological spaces (in particular: compactly generated Hausdorff spaces. The first section gives an axiomatic approach to algebraic structures relative to a base category B, slightly more powerful than that of monadic (tripleable functors. In section 2 we generalize Lawveres functorial semantics to many-sorted algebras over cartesian closed categories. In section 3 we treat the structures mentioned in the beginning as many-sorted algebras with fixed scalar or input object and show that they still have an algebraic (or monadic forgetful functor (theorem 3.3 and hence the general theory of algebraic structures applies. These structures were usually treated as one-sorted in the Lawvere-setting, the action being expressed by a family of unary operations indexed over the scalars. But this approach cannot, as the one developed here, describe continuity of the action (more general: the action to be a B-morphism, which is essential for the structures mentioned above, e.g. modules for a sheaf of rings or topological automata. Finally we discuss consequences of theorem 3.3 for the structure theory of various types of automata. The particular case of algebras with fixed natural numbers object has been studied by the authors in [23].
Algebraic Systems and Pushdown Automata
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
Wörz-Busekros, Angelika
1980-01-01
The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and tran...
Chirivì, Rocco; Dvornicich, Roberto
2017-01-01
Questo libro – primo di due volumi - presenta oltre 250 esercizi scelti di algebra ricavati dai compiti d'esame dei corsi di Aritmetica tenuti dagli autori all'Università di Pisa. Ogni esercizio viene presentato con una o più soluzioni accuratamente redatte con linguaggio e notazioni uniformi. Caratteristica distintiva del libro è che gli esercizi proposti sono tutti diversi uno dall'altro e le soluzioni richiedono sempre una piccola idea originale; ciò rende il libro unico nel genere. Gli argomenti di questo primo volume sono: principio d'induzione, combinatoria, congruenze, gruppi abeliani, anelli commutativi, polinomi, estensioni di campi, campi finiti. Il libro contiene inoltre una dettagliata sezione di richiami teorici e può essere usato come libro di riferimento per lo studio. Una serie di esercizi preliminari introduce le tecniche principali da usare per confrontarsi con i testi d'esame proposti. Il volume è rivolto a tutti gli studenti del primo anno dei corsi di laur ea in Matematica e Inf...
Approximation of complex algebraic numbers by algebraic numbers of bounded degree
Bugeaud, Yann; Evertse, Jan-Hendrik
2007-01-01
We investigate how well complex algebraic numbers can be approximated by algebraic numbers of degree at most n. We also investigate how well complex algebraic numbers can be approximated by algebraic integers of degree at most n+1. It follows from our investigations that for every positive integer n there are complex algebraic numbers of degree larger than n that are better approximable by algebraic numbers of degree at most n than almost all complex numbers. As it turns out, these numbers ar...
Chen, Lipeng; Borrelli, Raffaele; Zhao, Yang
2017-11-22
The dynamics of a coupled electron-boson system is investigated by employing a multitude of the Davydov D 1 trial states, also known as the multi-D 1 Ansatz, and a second trial state based on a superposition of the time-dependent generalized coherent state (GCS Ansatz). The two Ansätze are applied to study population dynamics in the spin-boson model and the Holstein molecular crystal model, and a detailed comparison with numerically exact results obtained by the (multilayer) multiconfiguration time-dependent Hartree method and the hierarchy equations of motion approach is drawn. It is found that the two methodologies proposed here have significantly improved over that with the single D 1 Ansatz, yielding quantitatively accurate results even in the critical cases of large energy biases and large transfer integrals. The two methodologies provide new effective tools for accurate, efficient simulation of many-body quantum dynamics thanks to a relatively small number of parameters which characterize the electron-nuclear wave functions. The wave-function-based approaches are capable of tracking explicitly detailed bosonic dynamics, which is absent by construct in approaches based on the reduced density matrix. The efficiency and flexibility of our methods are also advantages as compared with numerically exact approaches such as QUAPI and HEOM, especially at low temperatures and in the strong coupling regime.
Mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system on the Bethe lattice
International Nuclear Information System (INIS)
Albayrak, Erhan; Keskin, Mustafa
2003-01-01
The mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system is studied on the Bethe lattice by using the exact recursion equations. Exact expressions for the magnetization, the quadrupolar moment, the Curie temperature and the free energy are found and the phase diagrams are constructed on the Bethe lattice with the coordination numbers q=3, 4, 5 and 6. The existence of a tricritical point is investigated for different values of q. The results are compared with those of other approximate methods and with the exact result on the Bethe lattice by using a discrete nonlinear map and also the exact results that are available for the case of the honeycomb lattice
Free probability on Hecke algebras and certain group C^{*}-algebras induced by Hecke algebras
Directory of Open Access Journals (Sweden)
Ilwoo Cho
2016-01-01
Full Text Available In this paper, by establishing free-probabilistic models on the Hecke algebras \\(\\mathcal{H}\\left(GL_{2}(\\mathbb{Q}_{p}\\right\\ induced by \\(p\\-adic number fields \\(\\mathbb{Q}_{p}\\, we construct free probability spaces for all primes \\(p\\. Hilbert-space representations are induced by such free-probabilistic structures. We study \\(C^{*}\\-algebras induced by certain partial isometries realized under the representations.
Homological methods, representation theory, and cluster algebras
Trepode, Sonia
2018-01-01
This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...
Extended Kac-Moody algebras and applications
International Nuclear Information System (INIS)
Ragoucy, E.; Sorba, P.
1991-04-01
The notion of a Kac-Moody algebra defined on the S 1 circle is extended to super Kac-Moody algebras defined on MxG N , M being a smooth closed compact manifold of dimension greater than one, and G N the Grassman algebra with N generators. All the central extensions of these algebras are computed. Then, for each such algebra the derivation algebra constructed from the MxG N diffeomorphism is determined. The twists of such super Kac-Moody algebras as well as the generalization to non-compact surfaces are partially studied. Finally, the general construction is applied to the study of conformal and superconformal algebras, as well as area-preserving diffeomorphisms algebra and its supersymmetric extension. (author) 65 refs
Infinite dimension algebra and conformal symmetry
International Nuclear Information System (INIS)
Ragoucy-Aubezon, E.
1991-04-01
A generalisation of Kac-Moody algebras (current algebras defined on a circle) to algebras defined on a compact supermanifold of any dimension and with any number of supersymmetries is presented. For such a purpose, we compute all the central extensions of loop algebras defined on this supermanifold, i.e. all the cohomology classes of these loop algebras. Then, we try to extend the relation (i.e. semi-direct sum) that exists between the two dimensional conformal algebras (called Virasoro algebra) and the usual Kac-Moody algebras, by considering the derivation algebra of our extended Kac-Moody algebras. The case of superconformal algebras (used in superstrings theories) is treated, as well as the cases of area-preserving diffeomorphisms (used in membranes theories), and Krichever-Novikov algebras (used for interacting strings). Finally, we present some generalizations of the Sugawara construction to the cases of extended Kac-Moody algebras, and Kac-Moody of superalgebras. These constructions allow us to get new realizations of the Virasoro, and Ramond, Neveu-Schwarz algebras
Solution to Bethe-Salpeter equation via Mellin-Barnes transform
Energy Technology Data Exchange (ETDEWEB)
Allendes, Pedro [Concepcion Univ. (Chile). Dept. de Fisica; Kniehl, Bernd [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor; Rojas Medar, Marko [Univ. del Bio-Bio, Chillan (Chile). Dept. de Ciencias Basicas; Notte Cuello, Eduardo A. [Univ. de La Serena (Chile). Facultad de Ciencias
2012-06-15
We consider Mellin-Barnes transform of triangle ladder-like scalar diagram in d=4 dimensions. It is shown how multi-fold MB transform of the momentum integral corresponding to any number of rungs is reduced to two-fold MB transform. For this purpose we use Belokurov-Usyukina reduction method for four-dimensional scalar integrals in the position space. The result is represented in terms of Euler {psi}-function and its derivatives. We derive new formulas for MB two-fold integration in the complex planes of two complex variables. We demonstrate that these formulas solve Bethe-Salpeter equation. We comment on further applications of solution to Bethe-Salpeter equation for vertices in N=4 supersymmetric Yang-Mills theory. We show that the recursive property of MB transforms observed in the present work for that kind of diagrams has nothing to do with quantum field theory, theory of integral transforms, or with theory of polylogarithms in general, but has an origin in a simple recursive property for smooth functions which can be shown by using basic methods of mathematical analysis.
International Nuclear Information System (INIS)
Wallace, Christine
2001-01-01
Assessment of research records of Boron Neutron Capture Therapy was conducted at Brookhaven National Laboratory and Beth Israel Deaconess Medical Center using the Code of Federal Regulations, FDA Regulations and Good Clinical Practice Guidelines. Clinical data were collected FR-om subjects' research charts, and differences in conduct of studies at both centers were examined. Records maintained at Brookhaven National Laboratory were not in compliance with regulatory standards. Beth Israel's records followed federal regulations. Deficiencies discovered at both sites are discussed in the reports
Finite-dimensional division algebras over fields
Jacobson, Nathan
2009-01-01
Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of parti
Principles of linear algebra with Mathematica
Shiskowski, Kenneth M
2013-01-01
A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings,
Double-partition Quantum Cluster Algebras
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Zhang, Hechun
2012-01-01
A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....
Discrete event systems in dioid algebra and conventional algebra
Declerck, Philippe
2013-01-01
This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i
Dynamical systems of algebraic origin
Schmidt, Klaus
1995-01-01
Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...
Algebraic geometry and effective lagrangians
International Nuclear Information System (INIS)
Martinec, E.J.; Chicago Univ., IL
1989-01-01
N=2 supersymmetric Landau-Ginsburg fixed points describe nonlinear models whose target spaces are algebraic varieties in certain generalized projective spaces; the defining equation is precisely the zero set of the superpotential, considered as a condition in the projective space. The ADE classification of modular invariants arises as the classification of projective descriptions of P 1 ; in general, the hierarchy of fixed points is conjectured to be isomorphic to the classification of quasihomogeneous singularities. The condition of vanishing first Chern class is an integrality condition on the Virasoro central charge; the central charge is determined by the superpotential. The operator algebra is given by the algebra of Wick contractions of perturbations of the superpotential. (orig.)
Logarithmic exotic conformal Galilean algebras
Energy Technology Data Exchange (ETDEWEB)
Henkel, Malte, E-mail: Malte.henkel@univ-lorraine.fr [Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198), Université de Lorraine Nancy, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex (France); Hosseiny, Ali, E-mail: al_hosseiny@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 19839 (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Rouhani, Shahin, E-mail: rouhani@ipm.ir [Department of Physics, Sharif University of Technology, P.O. Box 11165-9161, Tehran (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2014-02-15
Logarithmic representations of the conformal Galilean algebra (CGA) and the Exotic Conformal Galilean algebra (ECGA) are constructed. This can be achieved by non-decomposable representations of the scaling dimensions or the rapidity indices, specific to conformal Galilean algebras. Logarithmic representations of the non-exotic CGA lead to the expected constraints on scaling dimensions and rapidities and also on the logarithmic contributions in the co-variant two-point functions. On the other hand, the ECGA admits several distinct situations which are distinguished by different sets of constraints and distinct scaling forms of the two-point functions. Two distinct realisations for the spatial rotations are identified as well. This is the first concrete example of a reducible, but non-decomposable representation, without logarithmic terms. Such cases had been anticipated before.
Visualizing automorphisms of graph algebras
DEFF Research Database (Denmark)
Avery, James Emil; Johansen, Rune; Szymanski, Wojciech
2018-01-01
Graph C*-algebras have been celebrated as C*-algebras that can be seen, because many important properties may be determined by looking at the underlying graph. This paper introduces the permutation graph for a permutative endomorphism of a graph C*-algebra as a labeled directed multigraph...... that gives a visual representation of the endomorphism and facilitates computations. Combinatorial criteria have previously been developed for deciding when such an endomorphism is an automorphism, but here the question is reformulated in terms of the permutation graph and new proofs are given. Furthermore......, it is shown how to use permutation graphs to efficiently generate exhaustive collections of permutative automorphisms. Permutation graphs provide a natural link to the textile systems representing induced endomorphisms on the edge shift of the given graph, and this allows the powerful tools of the theory...
Topics in quaternion linear algebra
Rodman, Leiba
2014-01-01
Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...
Zorn algebra in general relativity
International Nuclear Information System (INIS)
Oliveira, C.G.; Maia, M.D.
The covariant differential properties of the split Cayley subalgebra of local real quaternion tetrads is considered. Referred to this local quaternion tetrad several geometrical objects are given in terms of Zorn-Weyl matrices. Associated to a pair of real null vectors we define two-component spinor fields over the curved space and the associated Zorn-Weyl matrices which satisfy the Dirac equation written in terms of the Zorn algebra. The formalism is generalized by considering a field of complex tetrads defining a Hermitian second rank tensor. The real part of this tensor describes the gravitational potentials and the imaginary part the electromagnetic potentials in the Lorentz gauge. The motion of a charged spin zero test body is considered. The Zorn-Weyl algebra associated to this generalized formalism has elements belonging to the full octonion algebra [pt
Evolution algebras generated by Gibbs measures
International Nuclear Information System (INIS)
Rozikov, Utkir A.; Tian, Jianjun Paul
2009-03-01
In this article we study algebraic structures of function spaces defined by graphs and state spaces equipped with Gibbs measures by associating evolution algebras. We give a constructive description of associating evolution algebras to the function spaces (cell spaces) defined by graphs and state spaces and Gibbs measure μ. For finite graphs we find some evolution subalgebras and other useful properties of the algebras. We obtain a structure theorem for evolution algebras when graphs are finite and connected. We prove that for a fixed finite graph, the function spaces have a unique algebraic structure since all evolution algebras are isomorphic to each other for whichever Gibbs measures are assigned. When graphs are infinite graphs then our construction allows a natural introduction of thermodynamics in studying of several systems of biology, physics and mathematics by theory of evolution algebras. (author)
ON THE BINARY DIGITS OF ALGEBRAIC NUMBERS
KANEKO, HAJIME
2010-01-01
Borel conjectured that all algebraic irrational numbers are normal in base 2. However, very little is known about this problem. We improve the lower bounds for the number of digit changes in the binary expansions of algebraic irrational numbers.
Current algebra, baryons and quark confinement
International Nuclear Information System (INIS)
Witten, E.
1983-01-01
It is shown that ordinary baryons can be understood as solitons in current algebra effective lagrangiangs. The formation of color flux tubes can also be seen in current algebra, under certain conditions. (orig.)
Hopf algebra structures in particle physics
International Nuclear Information System (INIS)
Weinzierl, Stefan
2004-01-01
In the recent years, Hopf algebras have been introduced to describe certain combinatorial properties of quantum field theories. I give a basic introduction to these algebras and review some occurrences in particle physics. (orig.)
Generalized Galilean algebras and Newtonian gravity
González, N.; Rubio, G.; Salgado, P.; Salgado, S.
2016-04-01
The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
Comments on N=4 superconformal algebras
International Nuclear Information System (INIS)
Rasmussen, J.
2001-01-01
We present a new and asymmetric N=4 superconformal algebra for arbitrary central charge, thus completing our recent work on its classical analogue with vanishing central charge. Besides the Virasoro generator and 4 supercurrents, the algebra consists of an internal SU(2)xU(1) Kac-Moody algebra in addition to two spin 1/2 fermions and a bosonic scalar. The algebra is shown to be invariant under a linear twist of the generators, except for a unique value of the continuous twist parameter. At this value, the invariance is broken and the algebra collapses to the small N=4 superconformal algebra. The asymmetric N=4 superconformal algebra may be seen as induced by an affine SL(2 vertical bar 2) current superalgebra. Replacing SL(2 vertical bar 2) with the coset SL(2 vertical bar 2)/U(1), results directly in the small N=4 superconformal algebra
Generalized NLS hierarchies from rational W algebras
International Nuclear Information System (INIS)
Toppan, F.
1993-11-01
Finite rational W algebras are very natural structures appearing in coset constructions when a Kac-Moody subalgebra is factored out. The problem of relating these algebras to integrable hierarchies of equations is studied by showing how to associate to a rational W algebra its corresponding hierarchy. Two examples are worked out, the sl(2)/U(1) coset, leading to the Non-Linear Schroedinger hierarchy, and the U(1) coset of the Polyakov-Bershadsky W algebra, leading to a 3-field representation of the KP hierarchy already encountered in the literature. In such examples a rational algebra appears as algebra of constraints when reducing a KP hierarchy to a finite field representation. This fact arises the natural question whether rational algebras are always associated to such reductions and whether a classification of rational algebras can lead to a classification of the integrable hierarchies. (author). 19 refs
Applied matrix algebra in the statistical sciences
Basilevsky, Alexander
2005-01-01
This comprehensive text offers teachings relevant to both applied and theoretical branches of matrix algebra and provides a bridge between linear algebra and statistical models. Appropriate for advanced undergraduate and graduate students. 1983 edition.
Quantum Groupoids Acting on Semiprime Algebras
Directory of Open Access Journals (Sweden)
Inês Borges
2011-01-01
Full Text Available Following Linchenko and Montgomery's arguments we show that the smash product of an involutive weak Hopf algebra and a semiprime module algebra, satisfying a polynomial identity, is semiprime.
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
Invariants of generalized Lie algebras
International Nuclear Information System (INIS)
Agrawala, V.K.
1981-01-01
Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants
Introduction to computational linear algebra
Nassif, Nabil; Erhel, Jocelyne
2015-01-01
Introduction to Computational Linear Algebra introduces the reader with a background in basic mathematics and computer programming to the fundamentals of dense and sparse matrix computations with illustrating examples. The textbook is a synthesis of conceptual and practical topics in ""Matrix Computations."" The book's learning outcomes are twofold: to understand state-of-the-art computational tools to solve matrix computations problems (BLAS primitives, MATLAB® programming) as well as essential mathematical concepts needed to master the topics of numerical linear algebra. It is suitable for s
Computational triadic algebras of signs
Energy Technology Data Exchange (ETDEWEB)
Zadrozny, W. [T.J. Watson Research Center, Yorktown Heights, NY (United States)
1996-12-31
We present a finite model of Peirce`s ten classes of signs. We briefly describe Peirce`s taxonomy of signs; we prove that any finite collection of signs can be extended to a finite algebra of signs in which all interpretants are themselves being interpreted; and we argue that Peirce`s ten classes of signs can be defined using constraints on algebras of signs. The paper opens the possibility of defining multimodal cognitive agents using Peirce`s classes of signs, and is a first step towards building a computational logic of signs based on Peirce`s taxonomies.
Entropic Forms and Related Algebras
Directory of Open Access Journals (Sweden)
Antonio Maria Scarfone
2013-02-01
Full Text Available Starting from a very general trace-form entropy, we introduce a pair of algebraic structures endowed by a generalized sum and a generalized product. These algebras form, respectively, two Abelian fields in the realm of the complex numbers isomorphic each other. We specify our results to several entropic forms related to distributions recurrently observed in social, economical, biological and physical systems including the stretched exponential, the power-law and the interpolating Bosons-Fermions distributions. Some potential applications in the study of complex systems are advanced.
Algebraic geometry and theta functions
Coble, Arthur B
1929-01-01
This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and
The planar algebra associated to a Kac algebra
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
and not just the plane). ..... We will need the following facts from [L], which we state as a proposition for conve- nience of reference. PROPOSITION 3.3. Suppose P (L; R) is an exchange relation planar algebra. Then,. (i) dimPn(L; R) < ∞ ∀n;.
AT-algebras and extensions of AT-algebras
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 120; Issue 2. A T -Algebras and Extensions of A T ... School of Science, Nanjing University of Science and Technology, Nanjing 210014, People's Republic of China; Department of Mathematics, Tongji University, Shanghai 200092, People's Republic of China ...
Parts of the Whole: An Algebra Lesson
Directory of Open Access Journals (Sweden)
Dorothy Wallace
2011-07-01
Full Text Available This column draws on research of Eon Harper to demonstrate how an understanding of his proposed stages of algebra acquisition would inform a systemic overhaul of algebra education. Harper's stages also explain why students may pass a series of algebra courses yet still be unable to make sense of calculus, as well as offering insight on what aspects of algebra support quantitative literacy.
Discrimination in a General Algebraic Setting
Directory of Open Access Journals (Sweden)
Benjamin Fine
2015-01-01
Full Text Available Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.
Discrimination in a General Algebraic Setting.
Fine, Benjamin; Gaglione, Anthony; Lipschutz, Seymour; Spellman, Dennis
2015-01-01
Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.
Post-Lie algebras and factorization theorems
Ebrahimi-Fard, Kurusch; Mencattini, Igor; Munthe-Kaas, Hans
2017-09-01
In this note we further explore the properties of universal enveloping algebras associated to a post-Lie algebra. Emphasizing the role of the Magnus expansion, we analyze the properties of group like-elements belonging to (suitable completions of) those Hopf algebras. Of particular interest is the case of post-Lie algebras defined in terms of solutions of modified classical Yang-Baxter equations. In this setting we will study factorization properties of the aforementioned group-like elements.
Quantized Matrix Algebras and Quantum Seeds
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Pagani, Chiara
2015-01-01
We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....
Simple Lie algebras and Dynkin diagrams
International Nuclear Information System (INIS)
Buccella, F.
1983-01-01
The following theorem is studied: in a simple Lie algebra of rank p there are p positive roots such that all the other n-3p/2 positive roots are linear combinations of them with integer non negative coefficients. Dykin diagrams are built by representing the simple roots with circles and drawing a junction between the roots. Five exceptional algebras are studied, focusing on triple junction algebra, angular momentum algebra, weights of the representation, antisymmetric tensors, and subalgebras
The large N=4 superconformal W∞ algebra
International Nuclear Information System (INIS)
Beccaria, Matteo; Candu, Constantin; Gaberdiel, Matthias R.
2014-01-01
The most general large N=4 superconformal W ∞ algebra, containing in addition to the superconformal algebra one supermultiplet for each integer spin, is analysed in detail. It is found that the W ∞ algebra is uniquely determined by the levels of the two su(2) algebras, a conclusion that holds both for the linear and the non-linear case. We also perform various cross-checks of our analysis, and exhibit two different types of truncations in some detail.
Algebra success in 20 minutes a day
LearningExpress, LLC
2014-01-01
Stripped of unnecessary math jargon but bursting with algebra essentials, this handy guide covers vital algebra skills that apply to real-world scenarios. Whether you're new to algebra or just looking for a refresher, Algebra Success in 20 Minutes a Day offers a lesson plan that provides quick and thorough instruction in practical, critical skills. All lessons can be completed in just 20 minutes a day, for a manageable and non-intimidating learning experience.
Chomology of Heisenberg Hom-Lie algebras
Nejib, Saadaoui
2017-01-01
In this paper, we define the Heisenberg Hom-Lie algebra. We determine the minimal dimension of faithful representation for Heisenberg Hom-Lie algebra.We study the adjoint representation, the trivial representation and the faithful representation of Heisenberg Hom-Lie algebra.
Quantum groups and double quiver algebras
International Nuclear Information System (INIS)
Huang Hualin; Yang Shilin
2004-07-01
For a finite dimensional sernisimple Lie algebra g and a root q of unity in a field k we associate to these data a double quiver Q-bar. It is shown that a restricted version of the quantized enveloping algebras U q (g) is a quotient of the double quiver algebra kQ-bar. (author)
Algebra in Dutch education, 1600-2000
Krüger, Jenneke
2015-01-01
Algebra became part of mathematics education in the Netherlands in course of the seventeenth century. At first in the form of cossic algebra, but by the end of the century, the influence of the notation of Descartes was noticeable. In the eighteenth century, algebra was part of the basic curriculum
Feature-Oriented Programming with Object Algebras
B.C.d.S. Oliveira (Bruno); T. van der Storm (Tijs); A. Loh; W.R. Cook
2013-01-01
htmlabstractObject algebras are a new programming technique that enables a simple solution to basic extensibility and modularity issues in programming languages. While object algebras excel at deﬁning modular features, the composition mechanisms for object algebras (and features) are still
Classifying bicrossed products of two Taft algebras
Agore, A. L.
2016-01-01
We classify all Hopf algebras which factorize through two Taft algebras $\\mathbb{T}_{n^{2}}(\\bar{q})$ and respectively $T_{m^{2}}(q)$. To start with, all possible matched pairs between the two Taft algebras are described: if $\\bar{q} \
Fractional superLie algebras and groups
Energy Technology Data Exchange (ETDEWEB)
Ahmedov, H. [Feza Gursey Institute, Cengelkoy, Istanbul (Turkey)]. E-mail: hagi@gursey.gov.tr; Yildiz, A. [ Feza Gursey Institute, Cengelkoy, Istanbul (Turkey); Ucan, Y. [Yildiz Technical University, Department of Mathematics, Besiktas, Istanbul (Turkey)
2001-08-24
The nth root of a Lie algebra and its dual (that is the fractional supergroup) based on the permutation group S{sub n} invariant forms is formulated in the Hopf algebra formalism. Detailed discussion of S{sub 3}-graded sl(2) algebras is performed. (author)
Directory of Open Access Journals (Sweden)
Fu-Gui Shi
2010-01-01
Full Text Available The notion of (L,M-fuzzy σ-algebras is introduced in the lattice value fuzzy set theory. It is a generalization of Klement's fuzzy σ-algebras. In our definition of (L,M-fuzzy σ-algebras, each L-fuzzy subset can be regarded as an L-measurable set to some degree.
Teaching Strategies to Improve Algebra Learning
Zbiek, Rose Mary; Larson, Matthew R.
2015-01-01
Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
of Pauli matrices follow from the underlying algebra. Clif- ford algebraic approach provides a geometrical and hence intuitive way to understand quantum theory of spin, and is a natural formalism to study spin. Clifford algebraic formal- ism has lot of applications in every field where spin plays an important role. Introduction.
New family of Maxwell like algebras
Energy Technology Data Exchange (ETDEWEB)
Concha, P.K., E-mail: patillusion@gmail.com [Departamento de Ciencias, Facultad de Artes y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia (Chile); Durka, R., E-mail: remigiuszdurka@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Merino, N., E-mail: nemerino@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Rodríguez, E.K., E-mail: everodriguezd@gmail.com [Departamento de Ciencias, Facultad de Artes y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Casilla 567, Valdivia (Chile)
2016-08-10
We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.
Coherent state quantization of paragrassmann algebras
Energy Technology Data Exchange (ETDEWEB)
El Baz, M; Hassouni, Y [Laboratoire de Physique Theorique, LPT-URAC 13, Faculte des Sciences, Universite Mohamed V, Av.Ibn Battouta, BP 1014 Agdal Rabat (Morocco); Fresneda, R [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo (Brazil); Gazeau, J P, E-mail: elbaz@fsr.ac.m, E-mail: fresneda@gmail.co, E-mail: gazeau@apc.univ-paris7.f, E-mail: y-hassou@fsr.ac.m [Laboratoire APC, Universite Paris Diderot (Paris 7), 10, rue A Domon et L Duquet 75205 Paris Cedex 13 (France)
2010-09-24
By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices realizes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators leads to interesting conclusions.
A Balancing Act: Making Sense of Algebra
Gavin, M. Katherine; Sheffield, Linda Jensen
2015-01-01
For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…
New family of Maxwell like algebras
International Nuclear Information System (INIS)
Concha, P.K.; Durka, R.; Merino, N.; Rodríguez, E.K.
2016-01-01
We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.
Banana Algebra: Compositional Syntactic Language Extension
DEFF Research Database (Denmark)
Andersen, Jacob; Brabrand, Claus; Christiansen, David Raymond
2013-01-01
algebra as presented in the paper is implemented as the Banana Algebra Tool which may be used to syntactically extend languages in an incremental and modular fashion via algebraic composition of previously defined languages and transformations. We demonstrate and evaluate the tool via several kinds...
Build an Early Foundation for Algebra Success
Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela
2016-01-01
Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…
Teacher Actions to Facilitate Early Algebraic Reasoning
Hunter, Jodie
2015-01-01
In recent years there has been an increased emphasis on integrating the teaching of arithmetic and algebra in primary school classrooms. This requires teachers to develop links between arithmetic and algebra and use pedagogical actions that facilitate algebraic reasoning. Drawing on findings from a classroom-based study, this paper provides an…
On Elementary and Algebraic Cellular Automata
Gulak, Yuriy
In this paper we study elementary cellular automata from an algebraic viewpoint. The goal is to relate the emergent complex behavior observed in such systems with the properties of corresponding algebraic structures. We introduce algebraic cellular automata as a natural generalization of elementary ones and discuss their applications as generic models of complex systems.
Implementing the Standards: Teaching Informal Algebra.
Schultz, James E.
1991-01-01
Presents suggestions for developing algebraic concepts beginning in the early grades to develop a gradual building from informal to formal algebraic concepts that progresses over the K-12 curriculum. Includes suggestions for representing relationships, solving equations, employing meaningful applications of algebra, and using of technology. (MDH)
Role of associativity in Ramsey algebras
Indian Academy of Sciences (India)
Andrew Rajah
2017-11-02
Nov 2, 2017 ... to understand the role associativity plays in a binary system being a Ramsey algebra. Specifically, we show that the nonassociative Moufang loop of octonions is not a Ramsey algebra. Keywords. Binary systems; Ramsey algebras; octonions; semigroups; associativity; nonassociative Moufang loops ...
Yang-Mills and some related algebras
Connes, Alain; Dubois-Violette, Michel
2004-01-01
15 pages. Contribution to the Proceedings of Rigorous Quantum Field Theory in the honour of Jacques Bros.; International audience; After a short introduction on the theory of homogeneous algebras we describe the application of this theory to the analysis of the cubic Yang-Mills algebra, the quadratic self-duality algebras, their \\"super\\" versions as well as to some generalization.
Computations in finite-dimensional Lie algebras
Cohen, A.M.; Graaf, W.A. de; Rónyai, L.
1997-01-01
This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System), within the computer algebra package GAP. A first sketch of the packagecan be found in Cohen and de Graaf[1]. Since then, in a collaborative
Algebraic treatment of three-body problems
International Nuclear Information System (INIS)
Bijker, R.; Leviatan, A.
1998-01-01
We discuss an algebraic treatment of three-body systems in terms of a U(7) spectrum-generating algebra. In particular, we develop the formalism for nonilnear configurations and present an algebraic description of vibrational and rotational excitations of, symmetric (X 3 ) and asymmetric tops (XY 2 and XYZ). The relevant point-group symmetry is incorporated exactly. (author)
Algebraic scattering theory and heavy ion scattering
International Nuclear Information System (INIS)
Allen, L.J.; Amos, K.; Berge, L.; Fiedeldey, H.
1993-01-01
Algebraic scattering theory is used to analyze elastic scattering cross-sections from heavy ion collisions. Collisions epitomized by strong absorption lead to algebraic potentials that can be described by simple exponential forms. But for collisions that are 'transparent', while asymptotically the algebraic potentials are exponential, their actual form (for low 1-values) is quite complex. 7 refs., 4 figs
On Condensation Properties of Bethe Roots Associated with the XXZ Chain
Kozlowski, Karol K.
2018-02-01
I prove that the Bethe roots describing either the ground state or a certain class of "particle-hole" excited states of the XXZ spin-1/2 chain in any sector with magnetisation m \\in [0;1/2] exist, are uniquely defined, and form, in the infinite volume limit, a dense distribution on a subinterval of R. The results hold for any value of the anisotropy {Δ ≥ -1}. In fact, I establish an even stronger result, namely the existence of an all order asymptotic expansion of the counting function associated with such roots. As a corollary, these results allow one to prove the existence and form of the infinite volume limit of various observables attached to the model -the excitation energy, momentum, the zero temperature correlation functions, so as to name a few- that were argued earlier in the literature.
Cluster-Bethe-lattice treatment of the interstitial boron centre in irradiated gallium arsenide
Energy Technology Data Exchange (ETDEWEB)
Kleinert, P. (Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Elektronenphysik)
1984-08-01
The radiation-induced interstitial defect B(1) in GaAs is theoretically analysed by a cluster-Bethe lattice treatment. Theoretical results obtained for a B-Ga dumbbell in gallium arsenide agree quite well with experimental data. The dumbbell coupling is about three times stiffer than the bonds between host-lattice atoms. The separation of the dumbbell atoms amounts to one lattice constant. Due to the isotopy of gallium atoms all B(1) bands should exhibit a double-peak structure with a small frequency split of about 1, 0.1, and 0.4 cm/sup -1/ for the A/sub 1/, B/sub 1/, and B/sub 2/ modes, respectively. A resolution of these splittings would supply additional evidence for the B(1) defect model discussed here.
Improvements in the G W and Bethe-Salpeter-equation calculations on phosphorene
Ferreira, F.; Ribeiro, R. M.
2017-09-01
Phosphorene is a bidimensional material that has properties useful for semiconductor devices. In this work we studied the electronic and optical properties of this material using the G W approximation and the Bethe-Salpeter equation (BSE) methods. We stress the importance of a careful convergence study of the most relevant parameters, and we show how they affect the result of the calculations. A comparison with previous results is given. The QP band gap obtained was 2.06 eV and it is in good agreement with experimental results. BSE calculations were performed on top of G0W0 to include excitonic effects. The absorption spectrum was analyzed and an optical gap of 1.22 eV was obtained. The calculated excitonic binding energy is 0.84 eV, also in good agreement with experimental results.
"Her mouth is medicine": Beth Brant and Paula Gunn Allen's decolonizing queer erotics.
Burford, Arianne
2013-01-01
This article asserts the need to recognize the complexity of the theoretical work of more lesbian Native American writers, focusing specifically Beth Brant (Bay of Quinte Mohawk) and Paula Gunn Allen (Laguna Pueblo). Their poetry and short stories provide a theoretically nuanced analysis of how heteronormativity is intertwined in and dependent on colonialism, and thus a methodology for Queer Theory that requires an understanding of it in relation to colonialism. They reject heteronormative Pocahontas fantasies about Native women, offering a lesbian-based tactic for decolonization through the expression of erotic desire. This article demonstrates the endless possibilities for fierce queer resistance, revolutionary change, and healing from the trauma of genocide and the accompanying colonialist heteropatriarchal disciplining of Native women's bodies.
Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz.
Directory of Open Access Journals (Sweden)
Rhiju Das
Full Text Available Consistently predicting biopolymer structure at atomic resolution from sequence alone remains a difficult problem, even for small sub-segments of large proteins. Such loop prediction challenges, which arise frequently in comparative modeling and protein design, can become intractable as loop lengths exceed 10 residues and if surrounding side-chain conformations are erased. Current approaches, such as the protein local optimization protocol or kinematic inversion closure (KIC Monte Carlo, involve stages that coarse-grain proteins, simplifying modeling but precluding a systematic search of all-atom configurations. This article introduces an alternative modeling strategy based on a 'stepwise ansatz', recently developed for RNA modeling, which posits that any realistic all-atom molecular conformation can be built up by residue-by-residue stepwise enumeration. When harnessed to a dynamic-programming-like recursion in the Rosetta framework, the resulting stepwise assembly (SWA protocol enables enumerative sampling of a 12 residue loop at a significant but achievable cost of thousands of CPU-hours. In a previously established benchmark, SWA recovers crystallographic conformations with sub-Angstrom accuracy for 19 of 20 loops, compared to 14 of 20 by KIC modeling with a comparable expenditure of computational power. Furthermore, SWA gives high accuracy results on an additional set of 15 loops highlighted in the biological literature for their irregularity or unusual length. Successes include cis-Pro touch turns, loops that pass through tunnels of other side-chains, and loops of lengths up to 24 residues. Remaining problem cases are traced to inaccuracies in the Rosetta all-atom energy function. In five additional blind tests, SWA achieves sub-Angstrom accuracy models, including the first such success in a protein/RNA binding interface, the YbxF/kink-turn interaction in the fourth 'RNA-puzzle' competition. These results establish all-atom enumeration as
La cerámica Khirbet Kerak (Beth Yerah, Israel y la etnicidad: un enfoque alternativo
Directory of Open Access Journals (Sweden)
Bernardo Gandulla
2007-07-01
Full Text Available La cerámica Khirbet Kerak, descubierta en el sudoeste del Mar de Galilea en 1930 por W. F. Albright, ha sido desde entonces motivo de muchas controversias. Las razones de las discusiones en torno a este estilo radican en su carácter aparentemente intrusivo en Palestina, entre el 2800-2400 a.C., puesto que esta cerámica es típica en la Cultura Transcaucásica Temprana o Cultura Kura-Araxes y en Siria Septentrional, durante el Bronce Antiguo, siendo especialmente abundante en la etapa final de este período. Sin embargo los estudios realizados en Beth Shan (Chazan y McGovern, ver n. 17, muestran que los materiales Khirbet Kerak fueron de producción local lo que parece descartar su carácter intrusivo. Por tanto, desde nuestro punto de vista, el “fenómeno Khirbet Kerak” constituye así un hito de singular importancia en la conformación de las tradiciones culturales de Canaan a partir de un sustrato etnocultural común hurrita, en un eje de interacción cultural norte a sur desde la región del Lago Van, que habrá de proyectarse de distintas formas en la macrorregión alcanzando hasta los antiguos hebreos, en cuanto cananeos, como se reflejan en instituciones del derecho privado presentes en las narraciones del Génesis.Palabras clave: Canaán - Bronce Antiguo - Beth Yerah - Khirbet Kerak - Hurritas- Hebreos
In Defence of Geometrical Algebra
Blasjo, V.N.E.
The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that
Algebraic Methods in Plane Geometry
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Algebraic Methods in Plane Geometry - The Use of Conic Sections. Shailesh A Shirali. General Article Volume 13 Issue 10 October 2008 pp 916-928. Fulltext. Click here to view fulltext PDF. Permanent link:
Max Algebraic Complementary Basic Matrices
Czech Academy of Sciences Publication Activity Database
Fiedler, Miroslav; Hall, F.J.
2014-01-01
Roč. 457, 15 September (2014), s. 287-292 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : CB-matrix * Max algebra * Max permanent * Max eigenvalues Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014
An introduction to abstract algebra
Robinson, Derek JS
2003-01-01
This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader''s skill and progress. The book should be suitable for students ...
Adventures in Flipping College Algebra
Van Sickle, Jenna
2015-01-01
This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…
Weaving Geometry and Algebra Together
Cetner, Michelle
2015-01-01
When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…
Gleason parts of bidual algebras
Kosiek, Marek; Rudol, Krzysztof
2017-01-01
It is shown that the embeding of any Gleason part of a uniform algebra into the spectrum of its second dual is an entire Gleason part. This result is based on the equality of weak-star and norm topologies on the Bear-Gleason part.
Inequalities, Assessment and Computer Algebra
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…
Algebraic Methods in Plane Geometry
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Algebraic Methods in ... General Article Volume 13 Issue 10 October 2008 pp 916-928 ... Keywords. Conics; family of curves; Pascal's theorem; homogeneous coordinates; Butterfly theorem; abelian group; associativity of addition; group law.
Elementary Algebra Connections to Precalculus
Lopez-Boada, Roberto; Daire, Sandra Arguelles
2013-01-01
This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…