Algebraic Bethe ansatz for the Izergin-Korepin R matrix
International Nuclear Information System (INIS)
Tarasov, V.O.
1989-01-01
The authors propose a generalization of the algebraic Bethe ansatz for the Izergin-Korepin R matrix - the simplest unstudied odd-dimensional solution of the Yang-Baxter equation - and they discuss some related questions. The first section of the paper is an introduction. In the second they indicate a way of generalizing the algebraic Bethe ansatz to the case of the Izergin-Korepin R matrix. The simplest monodromy matrices (L operators) for this R matrix are described in the third section. The fourth section is devoted to the proof of the proposed generalization of the algebraic Bethe ansatz
Algebraic Bethe ansatz for 19-vertex models with reflection conditions
International Nuclear Information System (INIS)
Utiel, Wagner
2003-01-01
In this work we solve the 19-vertex models with the use of algebraic Bethe ansatz for diagonal reflection matrices (Sklyanin K-matrices). The eigenvectors, eigenvalues and Bethe equations are given in a general form. Quantum spin chains of spin one derived from the 19-vertex models were also discussed
Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models
Directory of Open Access Journals (Sweden)
Sh. Khachatryan
2015-10-01
Full Text Available We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.
Correlation functions of the spin chains. Algebraic Bethe Ansatz approach
International Nuclear Information System (INIS)
Kitanine, N.
2007-09-01
Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)
Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE
Jiang, Yunfeng; Zhang, Yang
2018-03-01
In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.
Wang, Chunguang
Integrable quantum spin chains have close connections to integrable quantum field. theories, modern condensed matter physics, string and Yang-Mills theories. Bethe. ansatz is one of the most important approaches for solving quantum integrable spin. chains. At the heart of the algebraic structure of integrable quantum spin chains is. the quantum Yang-Baxter equation and the boundary Yang-Baxter equation. This. thesis focuses on four topics in Bethe ansatz. The Bethe equations for the isotropic periodic spin-1/2 Heisenberg chain with N. sites have solutions containing ±i/2 that are singular: both the corresponding energy and the algebraic Bethe ansatz vector are divergent. Such solutions must be carefully regularized. We consider a regularization involving a parameter that can be. determined using a generalization of the Bethe equations. These generalized Bethe. equations provide a practical way of determining which singular solutions correspond. to eigenvectors of the model. The Bethe equations for the periodic XXX and XXZ spin chains admit singular. solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to bephysical, in which case they correspond to genuine eigenvalues and eigenvectors of. the Hamiltonian. We analyze the ground state of the open spin-1/2 isotropic quantum spin chain. with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots. split evenly into two sets: those that remain finite, and those that become infinite. We. argue that the former satisfy conventional Bethe equations, while the latter satisfy a. generalization of the Richardson-Gaudin equations. We derive an expression for the. leading correction to the boundary energy in terms of the boundary parameters. We argue that the Hamiltonians for A(2) 2n open quantum spin chains
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
Energy Technology Data Exchange (ETDEWEB)
Cirilo António, N., E-mail: nantonio@math.ist.utl.pt [Centro de Análise Funcional e Aplicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Manojlović, N., E-mail: nmanoj@ualg.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto 2, PT-1649-003 Lisboa (Portugal); Departamento de Matemática, F.C.T., Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro (Portugal); Salom, I., E-mail: isalom@ipb.ac.rs [Institute of Physics, University of Belgrade, P.O. Box 57, 11080 Belgrade (Serbia)
2014-12-15
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
Directory of Open Access Journals (Sweden)
Samuel Belliard
2013-11-01
Full Text Available We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations formally similar to the ones obtained in the periodic case or with diagonal boundaries.
The q-deformed analogue of the Onsager algebra: Beyond the Bethe ansatz approach
International Nuclear Information System (INIS)
Baseilhac, Pascal
2006-01-01
The spectral properties of operators formed from generators of the q-Onsager non-Abelian infinite-dimensional algebra are investigated. Using a suitable functional representation, all eigenfunctions are shown to obey a second-order q-difference equation (or its degenerate discrete version). In the algebraic sector associated with polynomial eigenfunctions (or their discrete analogues), Bethe equations naturally appear. Beyond this sector, where the Bethe ansatz approach is not applicable in related massive quantum integrable models, the eigenfunctions are also described. The spin-half XXZ open spin chain with general integrable boundary conditions is reconsidered in light of this approach: all the eigenstates are constructed. In the algebraic sector which corresponds to special relations among the parameters, known results are recovered
Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity
Directory of Open Access Journals (Sweden)
Azat M. Gainutdinov
2016-08-01
Full Text Available For generic values of q, all the eigenvectors of the transfer matrix of the Uqsl(2-invariant open spin-1/2 XXZ chain with finite length N can be constructed using the algebraic Bethe ansatz (ABA formalism of Sklyanin. However, when q is a root of unity (q=eiπ/p with integer p≥2, the Bethe equations acquire continuous solutions, and the transfer matrix develops Jordan cells. Hence, there appear eigenvectors of two new types: eigenvectors corresponding to continuous solutions (exact complete p-strings, and generalized eigenvectors. We propose general ABA constructions for these two new types of eigenvectors. We present many explicit examples, and we construct complete sets of (generalized eigenvectors for various values of p and N.
Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications
International Nuclear Information System (INIS)
Martins, M.J.; Melo, C.S.
2009-01-01
We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U q [SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.
Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications
Martins, M. J.; Melo, C. S.
2009-10-01
We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.
Energy Technology Data Exchange (ETDEWEB)
Kitanine, N
2007-09-15
Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
International Nuclear Information System (INIS)
Manojlović, N.; Salom, I.
2017-01-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Directory of Open Access Journals (Sweden)
N. Manojlović
2017-10-01
Full Text Available The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
International Nuclear Information System (INIS)
Slavnov, N.A.
1989-01-01
The Bethe ansatz method is widely used to investigate two-dimensional completely integrable models. In the framework of the quantum inverse scattering method it has proved to be possible to construct an algebraic scheme of the Bethe ansatz, and this has been successfully applied to calculation of correlation functions. One of the important questions of the method is that of the scalar products of the wave functions. In particular, knowledge of the properties of the scalar products is necessary for investigating the form factors and correlation function. In the present paper the author considers a generalized model with R matrix of the model of the nonlinear Schroedinger equation. The main formulas and notation are given in Sec. 2. In Sec. 3 he calculates the scalar product of an arbitrary function and an eigenfunction of the Hamiltonian. The generalized two-site model is introduced in Sec. 4. In Sec. 5 he calculates the form factor of the particle number operator
Jurco, B.
2003-01-01
We describe an integrable model, related to the Gaudin magnet, and its relation to the matrix model of Brezin, Itzykson, Parisi and Zuber. Relation is based on Bethe ansatz for the integrable model and its interpretation using orthogonal polynomials and saddle point approximation. Lagre $N$ limit of the matrix model corresponds to the thermodynamic limit of the integrable system. In this limit (functional) Bethe ansatz is the same as the generating function for correlators of the matrix models.
International Nuclear Information System (INIS)
Skrypnyk, T.
2009-01-01
We construct quantum integrable systems associated with non-skew-symmetric gl(2)-valued classical r-matrices. We find a new explicit multiparametric family of such the non-skew-symmetric classical r-matrices. We consider two classes of examples of the corresponding integrable systems, namely generalized Gaudin systems with and without an external magnetic field. In the case of arbitrary r-matrices diagonal in a standard gl(2)-basis, we calculate the spectrum of the corresponding quantum integrable systems using the algebraic Bethe ansatz. We apply these results to a construction of integrable fermionic models and obtain a wide class of integrable Bardeen-Cooper-Schrieffer (BCS)-type fermionic Hamiltonians containing the pairing and electrostatic interaction terms. We also consider special cases when the corresponding integrable Hamiltonians contain only pairing interaction term and are exact analogs of the 'reduced BCS Hamiltonian' of Richardson
Colored Quantum Algebra and Its Bethe State
International Nuclear Information System (INIS)
Wang Jin-Zheng; Jia Xiao-Yu; Wang Shi-Kun
2014-01-01
We investigate the colored Yang—Baxter equation. Based on a trigonometric solution of colored Yang—Baxter equation, we construct a colored quantum algebra. Moreover we discuss its algebraic Bethe ansatz state and highest wight representation. (general)
Off-diagonal Bethe ansatz for exactly solvable models
Wang, Yupeng; Cao, Junpeng; Shi, Kangjie
2015-01-01
This book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems.
Where are the roots of the Bethe Ansatz equations?
Energy Technology Data Exchange (ETDEWEB)
Vieira, R.S., E-mail: rsvieira@df.ufscar.br; Lima-Santos, A., E-mail: dals@df.ufscar.br
2015-10-02
Changing the variables in the Bethe Ansatz Equations (BAE) for the XXZ six-vertex model we had obtained a coupled system of polynomial equations. This provided a direct link between the BAE deduced from the Algebraic Bethe Ansatz (ABA) and the BAE arising from the Coordinate Bethe Ansatz (CBA). For two magnon states this polynomial system could be decoupled and the solutions given in terms of the roots of some self-inversive polynomials. From theorems concerning the distribution of the roots of self-inversive polynomials we made a thorough analysis of the two magnon states, which allowed us to find the location and multiplicity of the Bethe roots in the complex plane, to discuss the completeness and singularities of Bethe's equations, the ill-founded string-hypothesis concerning the location of their roots, as well as to find an interesting connection between the BAE with Salem’s polynomials.
Algebraic Bethe Ansatz scheme for relativistic integrable field theories in continuum
International Nuclear Information System (INIS)
Bhattacharya, G.; Ghosh, S.
1989-01-01
The linear problem associated with the Lax operator of the classical sine-Gordon theory can be recast into the monodromy matrix form that can be extended to quantum theory as well. Product of the quantum monodromy matrices has contributions from the singularities arising out of the operator product expansions of sine-Gordon field. This enables one to find the star-triangle relations. This is a generalization of the method used by Thacker for the non-relativistic nonlinear Schrodinger field theory. In the infinite volume limit, it leads to an unambiguous description of the algebra involving the scattering data operators. Starting from a vacuum the module of physical states are constructed by the application of chains of the scattering operators and they turn out to have definite eigenvalues of energy and momentum
Bethe ansatz solution of the closed anisotropic supersymmetric U model with quantum supersymmetry
International Nuclear Information System (INIS)
Hibberd, Katrina; Roditi, Itzhak; Links, Jon; Foerster, Angela
1999-11-01
The nested algebraic Bethe Ansatz is presented for the anisotropic supersymmetric U model maintaining quantum a supersymmetry. The Bethe Ansatz equations of the model are obtained on a one-dimensional closed lattice and an expression for the energy is given. (author)
Bethe Ansatz and supersymmetric vacua
International Nuclear Information System (INIS)
Nekrasov, Nikita; Shatashvili, Samson
2009-01-01
Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.
The Yangians, Bethe ansatz and combinatorics
International Nuclear Information System (INIS)
Kirillov, A.N.; Reshetikhin, N.Yu.
1986-01-01
An axiomatic definition of a quantum monodromy matrix and the representations of its corresponding Hopf algebra are discussed. The connection between the quantum inverse transform method and the representation theory of a symmetric group is considered. A new approach to the completeness problem of Bethe vectors is also given. (orig.)
Thermodynamic Bethe ansatz with Haldane statistics
International Nuclear Information System (INIS)
Bytsko, A.G.; Fring, A.
1998-01-01
We derive the thermodynamic Bethe ansatz equation for the situation in which the statistical interaction of a multi-particle system is governed by Haldane statistics. We formulate a macroscopical equivalence principle for such systems. Particular CDD ambiguities play a distinguished role in compensating the ambiguity in the exclusion statistics. We derive Y-systems related to generalized statistics. We discuss several fermionic, bosonic and anyonic versions of affine Toda field theories and Calogero-Sutherland type models in the context of generalized statistics. (orig.)
Introduction to the thermodynamic Bethe ansatz
van Tongeren, Stijn J.
2016-08-01
We give a pedagogical introduction to the thermodynamic Bethe ansatz, a method that allows us to describe the thermodynamics of integrable models whose spectrum is found via the (asymptotic) Bethe ansatz. We set the stage by deriving the Fermi-Dirac distribution and associated free energy of free electrons, and then in a similar though technically more complicated fashion treat the thermodynamics of integrable models, focusing first on the one-dimensional Bose gas with delta function interaction as a clean pedagogical example, secondly the XXX spin chain as an elementary (lattice) model with prototypical complicating features in the form of bound states, and finally the {SU}(2) chiral Gross-Neveu model as a field theory example. Throughout this discussion we emphasize the central role of particle and hole densities, whose relations determine the model under consideration. We then discuss tricks that allow us to use the same methods to describe the exact spectra of integrable field theories on a circle, in particular the chiral Gross-Neveu model. We moreover discuss the simplification of TBA equations to Y systems, including the transition back to integral equations given sufficient analyticity data, in simple examples.
A universality test of the quantum string Bethe ansatz
DEFF Research Database (Denmark)
Freyhult, L.; Kristjansen, C.
2006-01-01
We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequent......, we use the quantum corrected string Bethe ansatz to predict the exact form of the non-analytic terms for the generic rational three-spin string.......We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequently...
International Nuclear Information System (INIS)
Mishra, A.K.; Kishore, R.
2009-01-01
The exact nested Bethe ansatz solution for the one dimensional (1-D) U infinity Hubbard model show that the state vectors are a product of spin-less fermion and spin wavefunctions, or an appropriate superposition of such factorized wavefunctions. The spin-less fermion component of the wavefunctions ensures no double occupancy at any site. It had been demonstrated that the nested Bethe ansatz wavefunctions in the U infinity limit obey orthofermi statistics. Gutzwiller projection operator formalism is the another well known technique employed to handle U infinity Hubbard model. In general, this approach does not lead to spin-less fermion wavefunctions. Therefore, the nested Bethe ansatz and Gutzwiller projection operator approach give rise to different kinds of the wavefunctions for the U infinity limit of 1-D Hubbard Hamiltonian. To compare the consequences of this dissimilarity in the wavefunctions, we have obtained the ground state energy of a finite system consisting of three particles on a four site closed chain. It is shown that in the nested Bethe ansatz implemented through orthofermion algebra, all the permissible 2 3 spin configurations are degenerate in the ground state. This eight fold degeneracy of the ground state is absent in the Gutzwiller projection operator approach. This finding becomes relevant in the context of known exact U infinity results, which require that all the energy levels are 2 N -fold degenerate for an N particle system.
ODE/IM correspondence and Bethe ansatz for affine Toda field equations
Directory of Open Access Journals (Sweden)
Katsushi Ito
2015-07-01
Full Text Available We study the linear problem associated with modified affine Toda field equation for the Langlands dual gˆ∨, where gˆ is an untwisted affine Lie algebra. The connection coefficients for the asymptotic solutions of the linear problem are found to correspond to the Q-functions for g-type quantum integrable models. The ψ-system for the solutions associated with the fundamental representations of g leads to Bethe ansatz equations associated with the affine Lie algebra gˆ. We also study the A2r(2 affine Toda field equation in massless limit in detail and find its Bethe ansatz equations as well as T–Q relations.
O(N)-matrix difference equations and a nested Bethe ansatz
International Nuclear Information System (INIS)
Babujian, Hrachya M; Foerster, Angela; Karowski, Michael
2012-01-01
A system of O(N)-matrix difference equations is solved by means of the off-shell version of the nested algebraic Bethe ansatz. In the nesting process, a new object, the Π-matrix, is introduced to overcome the complexities of the O(N)-group structure. The highest weight property of the solutions is proved and some explicit examples are discussed. (paper)
Energy Technology Data Exchange (ETDEWEB)
Milewski, J., E-mail: jsmilew@wp.pl [Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań (Poland); Lulek, B., E-mail: barlulek@amu.edu.pl [East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Lulek, T., E-mail: tadlulek@prz.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Łabuz, M., E-mail: labuz@univ.rzeszow.pl [University of Rzeszow, Institute of Physics, Rejtana 16a, 35-959 Rzeszów (Poland); Stagraczyński, R., E-mail: rstag@prz.edu.pl [Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, Powstańców Warszawy 6, 35-959 Rzeszów (Poland)
2014-02-01
The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. We demonstrate an explicit construction of these eigenfunctions by use of algebraic Bethe Ansatz, and point out a relation of degeneracy to parity conservation, applied to the configuration of strings for these eigenfunctions. Namely, the internal structure of the eigenfunctions (the 2-string and the 1-string, with opposite quasimomenta) admits generation of two mutually orthogonal eigenfunctions due to the fact that the strings which differ by their length are distinguishable objects.
Bethe ansatz study for ground state of Fateev Zamolodchikov model
International Nuclear Information System (INIS)
Ray, S.
1997-01-01
A Bethe ansatz study of a self-dual Z N spin lattice model, originally proposed by V. A. Fateev and A. B. Zamolodchikov, is undertaken. The connection of this model to the Chiral Potts model is established. Transcendental equations connecting the zeros of Fateev endash Zamolodchikov transfer matrix are derived. The free energies for the ferromagnetic and the anti-ferromagnetic ground states are found for both even and odd spins. copyright 1997 American Institute of Physics
From tricritical Ising to critical Ising by thermodynamic Bethe ansatz
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1991-01-01
A simple factorized scattering theory is suggested for the massless Goldstone fermions of the trajectory flowing from the tricritical Ising fixed point to the critical Ising one. The thermodynamic Bethe ansatz approach is applied to this scattering theory to support its interpretation both analytically and numerically. As a generalization a sequence of massless TBA systems is proposed which seems relevant for the trajectories interpolating between two successive minimal CFT models M p and M p-1 . (orig.)
Bethe ansatz equations for open spin chains from giant gravitons
International Nuclear Information System (INIS)
Nepomechie, Rafael I.
2009-01-01
We investigate the open spin chain describing the scalar sector of the Y = 0 giant graviton brane at weak coupling. We provide a direct proof of integrability in the SU(2) and SU(3) sectors by constructing the transfer matrices. We determine the eigenvalues of these transfer matrices in terms of roots of the corresponding Bethe ansatz equations (BAEs). Based on these results, we propose BAEs for the full SO(6) sector. We find that, in the weak-coupling limit, the recently-proposed all-loop BAEs essentially agree with those proposed in the present work.
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li, E-mail: wlyang@nwu.edu.cn [Institute of Modern Physics, Northwest University, Xian 710069 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2013-10-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived.
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
International Nuclear Information System (INIS)
Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2013-01-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived
A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons
International Nuclear Information System (INIS)
Hibberd, K.E.; Dunning, C.; Links, J.
2006-01-01
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PT-symmetric wavefunctions defined on a contour in the complex plane
Bethe ansatz solutions of the τ{sub 2}-model with arbitrary boundary fields
Energy Technology Data Exchange (ETDEWEB)
Xu, Xiaotian; Hao, Kun; Yang, Tao [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China); Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics,Institute of Physics, Chinese Academy of Sciences,Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter,Beijing (China); School of Physical Sciences, University of Chinese Academy of Sciences,Beijing (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences,Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China)
2016-11-11
The quantum τ{sub 2}-model with generic site-dependent inhomogeneity and arbitrary boundary fields is studied via the off-diagonal Bethe Ansatz method. The eigenvalues of the corresponding transfer matrix are given in terms of an inhomogeneous T−Q relation, which is based on the operator product identities among the fused transfer matrices and the asymptotic behavior of the transfer matrices. Moreover, the associated Bethe Ansatz equations are also obtained.
Bethe ansatz approach to quantum sine Gordon thermodynamics and finite temperature excitations
International Nuclear Information System (INIS)
Zotos, X.
1982-01-01
Takahashi and Suzuki (TS) using the Bethe ansatz method developed a formalism for the thermodynamics of the XYZ spin chain. Translating their formalism to the quantum sine-Gordon system, the thermodynamics and finite temperature elementary excitations are analyzed. Criteria imposed by TS on the allowed states simply correspond to the condition of normalizability of the wave functions. A set of coupled nonlinear integral equations for the thermodynamic equilibrium densities for particular values of the coupling constant in the attractive regime is derived. Solving numerically these Bethe ansatz equations, curves of the specific heat as a function of temperature are obtained. The soliton contribution peaks at a temperature of about 0.4 soliton masses shifting downward as the classical limit is approached. The weak coupling regime is analyzed by deriving the Bethe ansatz equations including the charged vacuum excitations. It is shown that they are necessary for a consistent presentation of the thermodynamics
Hopf structure and Green ansatz of deformed parastatistics algebras
Energy Technology Data Exchange (ETDEWEB)
Aneva, Boyka [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, bld. Tsarigradsko chaussee 72, BG-1784 Sofia (Bulgaria); Popov, Todor [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, bld. Tsarigradsko chaussee 72, BG-1784 Sofia (Bulgaria)
2005-07-22
Deformed parabose and parafermi algebras are revised and endowed with Hopf structure in a natural way. The noncocommutative coproduct allows for construction of parastatistics Fock-like representations, built out of the simplest deformed Bose and Fermi representations. The construction gives rise to quadratic algebras of deformed anomalous commutation relations which define the generalized Green ansatz.
Bethe Ansatz and exact form factors of the O(N) Gross Neveu-model
International Nuclear Information System (INIS)
Babujian, Hrachya M.; Foerster, Angela; Karowski, Michael
2016-01-01
We apply previous results on the O(N) Bethe Ansatz http://dx.doi.org/10.1088/1751-8113/45/5/055207, http://arxiv.org/abs/1204.3479, http://dx.doi.org/10.1007/JHEP11(2013)089 to construct a general form factor formula for the O(N) Gross-Neveu model. We examine this formula for several operators, such as the energy momentum, the spin-field and the current. We also compare these results with the 1/N expansion of this model and obtain full agreement. We discuss bound state form factors, in particular for the three particle form factor of the field. In addition for the two particle case we prove a recursion relation for the K-functions of the higher level Bethe Ansatz.
Thermodynamic Bethe Ansatz for the Spin-1/2 Staggered XXZ- Model
Mkhitaryan, V. V.; Sedrakyan, A. G.
2003-01-01
We develop the technique of Thermodynamic Bethe Ansatz to investigate the ground state and the spectrum in the thermodynamic limit of the staggered $XXZ$ models proposed recently as an example of integrable ladder model. This model appeared due to staggered inhomogeneity of the anisotropy parameter $\\Delta$ and the staggered shift of the spectral parameter. We give the structure of ground states and lowest lying excitations in two different phases which occur at zero temperature.
Long-range psu(2,2|4) Bethe ansatze for gauge theory and strings
International Nuclear Information System (INIS)
Beisert, Niklas; Staudacher, Matthias
2005-01-01
We generalize various existing higher-loop Bethe ansatze for simple sectors of the integrable long-range dynamic spin chain describing planar N=4 super-Yang-Mills theory to the full psu(2,2|4) symmetry and, asymptotically, to arbitrary loop order. We perform a large number of tests of our conjectured equations, such as internal consistency, comparison to direct three-loop diagonalization and expected thermodynamic behavior. In the special case of the su(1|2) subsector, corresponding to a long-range t-J model, we are able to derive, up to three loops, the S-matrix and the associated nested Bethe ansatz from the gauge theory dilatation operator. We conjecture novel all-order S-matrices for the su(1|2) and su(1,1|2) subsectors, and show that they satisfy the Yang-Baxter equation. Throughout the paper, we muse about the idea that quantum string theory on AdS 5 xS 5 is also described by a psu(2,2|4) spin chain. We propose asymptotic all-order Bethe equations for this putative ''string chain'', which differ in a systematic fashion from the gauge theory equations
Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz
Directory of Open Access Journals (Sweden)
Jan C. Zill, Tod M. Wright, Karen V. Kheruntsyan, Thomas Gasenzer, Matthew J. Davis
2018-02-01
Full Text Available We use the coordinate Bethe ansatz to study the Lieb-Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particles in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics.
Nested Bethe Ansatz for Spin Ladder Model with Open Boundary Conditions
International Nuclear Information System (INIS)
Wu Junfang; Zhang Chunmin; Yue Ruihong; Li Runling
2005-01-01
The nested Bethe ansatz (BA) method is applied to find the eigenvalues and the eigenvectors of the transfer matrix for spin-ladder model with open boundary conditions. Based on the reflection equation, we find the general diagonal solution, which determines the general boundary interaction in the Hamiltonian. We introduce the spin-ladder model with open boundary conditions. By finding the solution K ± of the reflection equation which determines the nontrivial boundary terms in the Hamiltonian, we diagonalize the transfer matrix of the spin-ladder model with open boundary conditions in the framework of nested BA.
Bethe ansatz for two-magnon scattering states in 2D and 3D Heisenberg–Ising ferromagnets
Bibikov, P. N.
2018-04-01
Two different versions of Bethe ansatz are suggested for evaluation of scattering two-magnon states in 2D and 3D Heisenberg–Ising ferromagnets on square and simple cubic lattices. It is shown that the two-magnon sector is subdivided on two subsectors related to non-interacting and scattering magnons. The former subsector possess an integrable regular dynamics and may be described by a natural modification of the usual Bethe Ansatz. The latter one is characterized by a non-integrable chaotic dynamics and may be treated only within discrete degenerative version of Bethe Ansatz previously suggested by the author. Some of these results are generalized for multi-magnon states of the Heisenberg–Ising ferromagnet on a D dimensional hyper cubic lattice. Dedicated to the memory of L D Faddeev.
Asymptotic Bethe ansatz S-matrix and Landau-Lifshitz-type effective 2d actions
International Nuclear Information System (INIS)
Roiban, R; Tirziu, A; Tseytlin, A A
2006-01-01
Motivated by the desire to relate Bethe ansatz equations for anomalous dimensions found on the gauge-theory side of the AdS/CFT correspondence to superstring theory on AdS 5 x S 5 we explore a connection between the asymptotic S-matrix that enters the Bethe ansatz and an effective two-dimensional quantum field theory. The latter generalizes the standard 'non-relativistic' Landau-Lifshitz (LL) model describing low-energy modes of ferromagnetic Heisenberg spin chain and should be related to a limit of superstring effective action. We find the exact form of the quartic interaction terms in the generalized LL-type action whose quantum S-matrix matches the low-energy limit of the asymptotic S-matrix of the spin chain of Beisert, Dippel and Staudacher (BDS). This generalizes to all orders in the 't Hooft coupling λ an earlier computation of Klose and Zarembo of the S-matrix of the standard LL model. We also consider a generalization to the case when the spin-chain S-matrix contains an extra 'string' phase and determine the exact form of the LL 4-vertex corresponding to the low-energy limit of the ansatz of Arutyunov, Frolov and Staudacher (AFS). We explain the relation between the resulting 'non-relativistic' non-local action and the second-derivative string sigma model. We comment on modifications introduced by strong-coupling corrections to the AFS phase. We mostly discuss the SU(2) sector but also present generalizations to the SL(2) and SU(1|1) sectors, confirming universality of the dressing phase contribution by matching the low-energy limit of the AFS-type spin-chain S-matrix with tree-level string-theory S-matrix
Log-gamma directed polymer with fixed endpoints via the replica Bethe Ansatz
International Nuclear Information System (INIS)
Thiery, Thimothée; Le Doussal, Pierre
2014-01-01
We study the model of a discrete directed polymer (DP) on a square lattice with homogeneous inverse gamma distribution of site random Boltzmann weights, introduced by Seppalainen (2012 Ann. Probab. 40 19–73). The integer moments of the partition sum, Z n -bar , are studied using a transfer matrix formulation, which appears as a generalization of the Lieb–Liniger quantum mechanics of bosons to discrete time and space. In the present case of the inverse gamma distribution the model is integrable in terms of a coordinate Bethe Ansatz, as discovered by Brunet. Using the Brunet-Bethe eigenstates we obtain an exact expression for the integer moments of Z n -bar for polymers of arbitrary lengths and fixed endpoint positions. Although these moments do not exist for all integer n, we are nevertheless able to construct a generating function which reproduces all existing integer moments and which takes the form of a Fredholm determinant (FD). This suggests an analytic continuation via a Mellin–Barnes transform and we thereby propose a FD ansatz representation for the probability distribution function (PDF) of Z and its Laplace transform. In the limit of a very long DP, this ansatz yields that the distribution of the free energy converges to the Gaussian unitary ensemble (GUE) Tracy-Widom distribution up to a non-trivial average and variance that we calculate. Our asymptotic predictions coincide with a result by Borodin et al (2013 Commun. Math. Phys. 324 215–32) based on a formula obtained by Corwin et al (2011 arXiv:1110.3489) using the geometric Robinson–Schensted–Knuth (gRSK) correspondence. In addition we obtain the dependence on the endpoint position and the exact elastic coefficient at a large time. We argue the equivalence between our formula and that of Borodin et al. As we will discuss, this provides a connection between quantum integrability and tropical combinatorics. (paper)
Bethe vectors for XXX-spin chain
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-11-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.
Bethe vectors for XXX-spin chain
International Nuclear Information System (INIS)
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-01-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included
Site-occupation embedding theory using Bethe ansatz local density approximations
Senjean, Bruno; Nakatani, Naoki; Tsuchiizu, Masahisa; Fromager, Emmanuel
2018-06-01
Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT) for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-function (or Green function)-based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wave function has been performed with the density-matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.
International Nuclear Information System (INIS)
Garbaczewski, P.
1982-01-01
Previously we have found that the semiclassical sine--Gordon/Thirring spectrum can be received in the absence of quantum solitons via the spin 1/2 approximation of the quantized sine--Gordon system on a lattice. Later on, we have recovered the Hilbert space of quantum soliton states for the sine--Gordon system. In the present paper we present a derivation of the Bethe Ansatz eigenstates for the generalized ice model in this soliton Hilbert space. We demonstrate that via ''Wick rotation'' of a fundamental parameter of the ice model one arrives at the Bethe Ansatz eigenstates of the quantum sine--Gordon system. The latter is a ''local transition matrix'' ancestor of the coventional sine--Gordon/Thirring model, as derived by Faddeev et al. within the quantum inverse-scattering method. Our result is essentially based on the N< infinity,Δ = 1,m<<1 regime. Consequently, the spectrum received, though resembling the semiclassical one, does not coincide with it at all
Algebraic structure of the Green's ansatz and its q-deformed analogue
International Nuclear Information System (INIS)
Palev, T.D.
1994-08-01
The algebraic structure of the Green's ansatz is analyzed in such a way that its generalization to the case of q-deformed para-Bose and para-Fermi operators is becoming evident. To this end the underlying Lie (super) algebraic properties of the parastatistics are essentially used. (author). 41 refs
Expanding the Bethe/Gauge dictionary
Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz
2017-11-01
We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.
Conformal partition functions of critical percolation from D 3 thermodynamic Bethe Ansatz equations
Morin-Duchesne, Alexi; Klümper, Andreas; Pearce, Paul A.
2017-08-01
Using the planar Temperley-Lieb algebra, critical bond percolation on the square lattice can be reformulated as a loop model. In this form, it is incorporated as {{ L}}{{ M}}(2, 3) in the Yang-Baxter integrable family of logarithmic minimal models {{ L}}{{ M}}( p, p\\prime) . We consider this model of percolation in the presence of boundaries and with periodic boundary conditions. Inspired by Kuniba, Sakai and Suzuki, we rewrite the recently obtained infinite Y-system of functional equations. In this way, we obtain nonlinear integral equations in the form of a closed finite set of TBA equations described by a D 3 Dynkin diagram. Following the methods of Klümper and Pearce, we solve the TBA equations for the conformal finite-size corrections. For the ground states of the standard modules on the strip, these agree with the known central charge c = 0 and conformal weights Δ1, s for \\renewcommand≥≥slant} s\\in {{ Z}≥slant 1} with Δr, s=\\big((3r-2s){\\hspace{0pt}}^2-1\\big)/24 . For the periodic case, the finite-size corrections agree with the conformal weights Δ0, s , Δ1, s with \\renewcommand{≥{≥slant} s\\in\\frac{1}{2}{{ Z}≥slant 0} . These are obtained analytically using Rogers dilogarithm identities. We incorporate all finite excitations by formulating empirical selection rules for the patterns of zeros of all the eigenvalues of the standard modules. We thus obtain the conformal partition functions on the cylinder and the modular invariant partition function (MIPF) on the torus. By applying q-binomial and q-Narayana identities, it is shown that our refined finitized characters on the strip agree with those of Pearce, Rasmussen and Zuber. For percolation on the torus, the MIPF is a non-diagonal sesquilinear form in affine u(1) characters given by the u(1) partition function Z2, 3(q)=Z2, 3{Circ}(q) . The u(1) operator content is {{ N}}Δ, \\barΔ=1 for Δ=\\barΔ=-\\frac{1}{24}, \\frac{35}{24} and {{ N}}Δ, \\barΔ=2 for
Nataf, Pierre; Mila, Frédéric
2018-04-01
We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.
Bethe states of the trigonometric SU(3) spin chain with generic open boundaries
Sun, Pei; Xin, Zhirong; Qiao, Yi; Wen, Fakai; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Tao; Yang, Wen-Li; Shi, Kangjie
2018-06-01
By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU (3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T - Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.
Comultiplication in ABCD algebra and scalar products of Bethe wave functions
International Nuclear Information System (INIS)
Mikhailov, A.
1995-01-01
The representation of scalar products of Bethe wave functions in terms of dual fields, plays an important role in the theory of completely integrable models. The proof is based on the explicit expression for the open-quotes seniorclose quotes coefficient, which was guessed in the Izergin paper and then proved to satisfy some recurrent relations, which determine it unambiguously. In this paper we present an alternative proof based on direct computation. It uses the operation of comultiplication in the ABCD-algebra
Algebraic Bethe ansatz for a quantum integrable derivative nonlinear Schroedinger model
International Nuclear Information System (INIS)
Basu-Mallick, B.; Bhattacharyya, Tanaya
2002-01-01
We find that the quantum monodromy matrix associated with a derivative nonlinear Schroedinger (DNLS) model exhibits U(2) or U(1,1) symmetry depending on the sign of the related coupling constant. By using a variant of quantum inverse scattering method which is directly applicable to field theoretical models, we derive all possible commutation relations among the operator valued elements of such monodromy matrix. Thus, we obtain the commutation relation between creation and annihilation operators of quasi-particles associated with DNLS model and find out the S-matrix for two-body scattering. We also observe that, for some special values of the coupling constant, there exists an upper bound on the number of quasi-particles which can form a soliton state for the quantum DNLS model
Quantum affine algebras and deformations of the virasoro and W-algebras
International Nuclear Information System (INIS)
Frenkel, E.; Reshetikhin, N.
1996-01-01
Using the Wakimoto realization of quantum affine algebras we define new Poisson algebras, which are q-deformations of the classical W-algebras. We also define their free field realizations, i.e. homomorphisms into some Heisenberg-Poisson algebras. The formulas for these homomorphisms coincide with formulas for spectra of transfer-matrices in the corresponding quantum integrable models derived by the Bethe-Ansatz method. (orig.)
Yang-Baxter algebra - Integrable systems - Conformal quantum field theories
International Nuclear Information System (INIS)
Karowski, M.
1989-01-01
This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)
Multi-Regge limit of the n-gluon bubble ansatz
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schomerus, V.; Sprenger, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-07-15
We investigate n-gluon scattering amplitudes in the multi-Regge region of N=4 supersymmetric Yang-Mills theory at strong coupling. Through a careful analysis of the thermodynamic bubble ansatz (TBA) for surfaces in AdS{sub 5} with n-g(lu)on boundary conditions we demonstrate that the multi-Regge limit probes the large volume regime of the TBA. In reaching the multi-Regge regime we encounter wall-crossing in the TBA for all n>6. Our results imply that there exists an auxiliary system of algebraic Bethe ansatz equations which encode valuable information on the analytical structure of amplitudes at strong coupling.
International Nuclear Information System (INIS)
Hartwig, J. T.; Stokman, J. V.
2013-01-01
We realize an extended version of the trigonometric Cherednik algebra as affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir element of the extended trigonometric Cherednik algebra to define an explicit nonstationary Schrödinger equation with delta-potential. We use coordinate Bethe ansatz methods to construct solutions of the nonstationary Schrödinger equation in terms of generalized Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine difference Knizhnik-Zamolodchikov equations as functions of the momenta. The relation to the vector valued root system analogs of the quantum Bose gas on the circle with delta-function interactions is indicated.
Norm of Bethe vectors in models with gl(m|n symmetry
Directory of Open Access Journals (Sweden)
A. Hutsalyuk
2018-01-01
Full Text Available We study quantum integrable models solvable by the nested algebraic Bethe ansatz and possessing gl(m|n-invariant R-matrix. We compute the norm of the Hamiltonian eigenstates. Using the notion of a generalized model we show that the square of the norm obeys a number of properties that uniquely fix it. We also show that a Jacobian of the system of Bethe equations obeys the same properties. In this way we prove a generalized Gaudin hypothesis for the norm of the Hamiltonian eigenstates.
Gaudin, Michel
2014-01-01
Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers in physics. It presents a mixture of mathematics interspersed with powerful physical intuition, retaining the author's unmistakably honest tone. The book begins with the Heisenberg spin chain, starting from the coordinate Bethe Ansatz and culminating in a discussion of its thermodynamic properties. Delta-interacting bosons (the Lieb-Liniger model) are then explored, and extended to exactly solvable models associated to a reflection group. After discussing the continuum limit of spin chains, the book covers six- and eight-vertex models in extensive detail, from their lattice definition to their thermodynamics. Later chapters examine advanced topics such as multi-component delta-interacting systems, Gaudin magnets and...
Sequential Bethe vectors and the quantum Ernst system
International Nuclear Information System (INIS)
Niedermaier, M.; Samtleben, H.
2000-01-01
We give a brief review on the use of Bethe Ansatz techniques to construct solutions of recursive functional equations which emerged in a bootstrap approach to the quantum Ernst system. The construction involves two particular limits of a rational Bethe Ansatz system with complex inhomogeneities. First, we pinch two insertions to the critical value. This links Bethe systems with different number of insertions and leads to the concept of sequential Bethe vectors. Second, we study the semiclassical limit of the system in which the scale parameter of the insertions tends to infinity. (author)
The algebraic curve of 1-loop planar N=4 SYM
International Nuclear Information System (INIS)
Schaefer-Nameki, S.
2004-12-01
The algebraic curve for the psu(2,2 vertical stroke 4) quantum spin chain is determined from the thermodynamic limit of the algebraic Bethe ansatz. The Hamiltonian of this spin chain has been identified with the planar 1-loop dilatation operator of N=4 SYM. In the dual AdS 5 x S 5 string theory, various properties of the data defining the curve for the gauge theory are compared to the ones obtained from semiclassical spinning-string configurations, in particular for the case of strings on AdS 5 x S 1 and the su(2,2) spin chain agreement of the curves is shown. (orig.)
Algebraic aspects of exact models
International Nuclear Information System (INIS)
Gaudin, M.
1983-01-01
Spin chains, 2-D spin lattices, chemical crystals, and particles in delta function interaction share the same underlying structures: the applicability of Bethe's superposition ansatz for wave functions, the commutativity of transfer matrices, and the existence of a ternary operator algebra. The appearance of these structures and interrelations from the eight vortex model, for delta function interreacting particles of general spin, and for spin 1/2, are outlined as follows: I. Eight Vortex Model. Equivalences to Ising model and the dimer system. Transfer matrix and symmetry of the Self Conjugate model. Relation between the XYZ Hamiltonian and the transfer matrix. One parameter family of commuting transfer matrices. A representation of the symmetric group spin. Diagonalization of the transfer matrix. The Coupled Spectrum equations. II. Identical particles with Delta Function interaction. The Bethe ansatz. Yang's representation. The Ternary Algebra and intergrability. III. Identical particles with delta function interaction: general solution for two internal states. The problem of spin 1/2 fermions. The Operator method
Representations of the Virasoro algebra from lattice models
International Nuclear Information System (INIS)
Koo, W.M.; Saleur, H.
1994-01-01
We investigate in detail how the Virasoro algebra appears in the scaling limit of the simplest lattice models of XXZ or RSOS type. Our approach is straightforward but to our knowledge had never been tried so far. We simply formulate a conjecture for the lattice stress-energy tensor motivated by the exact derivation of lattice global Ward identities. We then check that the proper algebraic relations are obeyed in the scaling limit. The latter is under reasonable control thanks to the Bethe-ansatz solution. The results, which are mostly numerical for technical reasons, are remarkably precise. They are also corroborated by exact pieces of information from various sources, in particular Temperley-Lieb algebra representation theory. Most features of the Virasoro algebra (like central term, null vectors, metric properties, etc.) can thus be observed using the lattice models. This seems of general interest for lattice field theory, and also more specifically for finding relations between conformal invariance and lattice integrability, since a basis for the irreducible representations of the Virasoro algebra should now follow (at least in principle) from Bethe-ansatz computations. ((orig.))
Combinatorics of Generalized Bethe Equations
Kozlowski, Karol K.; Sklyanin, Evgeny K.
2013-10-01
A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.
Thermodynamic Bethe ansatz for boundary sine-Gordon model
International Nuclear Information System (INIS)
Lee, Taejun; Rim, Chaiho
2003-01-01
(R-channel) TBA is elaborated to find the effective central charge dependence on the boundary parameters for the massless boundary sine-Gordon model with the coupling constant (8π)/β 2 =1+λ with λ a positive integer. Numerical analysis of the massless boundary TBA demonstrates that at an appropriate boundary parameter range (cusp point) there exists a singularity crossing phenomena and this effect should be included in TBA to have the right behavior of the effective central charge
Bethe ansatz approach to quench dynamics in the Richardson model
Faribault, A.D.P.; Calabrese, P.; Caux, J.S.
2009-01-01
By instantaneously changing a global parameter in an extended quantum system, an initially equilibrated state will afterwards undergo a complex nonequilibrium unitary evolution whose description is extremely challenging. A nonperturbative method giving a controlled error in the long time limit
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
DEFF Research Database (Denmark)
Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.
2016-01-01
beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...
Construction of Bethe Salpeter wave functions and applications in QCD
International Nuclear Information System (INIS)
Gromes, D.
1993-01-01
We suggest an ansatz for the Bethe Salpeter wave function which is strictly covariant, obeys the spectrum conditions, and has the correct non relativistic limit. As a first simple application we present a wave function for the pion. It contains two parameters, one of them being the quark mass. The decay constant and the form factor derived from this are in excellent agreement with the data. (orig.)
Experimental observation of Bethe strings
Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois
2018-02-01
Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.
Indian Academy of Sciences (India)
2018-03-06
Mar 6, 2018 ... These theories formed the deep conceptual foundations of modern ... wrote on nuclear theory in the 1930's, often called 'Bethe's Bible', ... tions to solid state physics, fluid dynamics, shock waves, radar theory and reactor.
Garwin, Richard L.; Von Hippel, Frank
Hans Bethe, who died on March 6 at the age of 98, was exemplary as a scientist; a citizen-advocate seeking to stem the arms race; and an individual of warmth, generosity, tenacity, and modest habits. Bethe made major contributions to several areas of physics during his academic career. He earned a Nobel Prize in 1967 for his research into how the sun generates its energy by converting hydrogen to helium using carbon as a nuclear catalyst. A few years later, he made central contributions to the secret US World War II nuclear-weapon development programs (the "Manhattan Project").
Gaudin, M.; Caux, J.-S.
2014-01-01
Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers
Differential-algebraic solutions of the heat equation
Buchstaber, Victor M.; Netay, Elena Yu.
2014-01-01
In this work we introduce the notion of differential-algebraic ansatz for the heat equation and explicitly construct heat equation and Burgers equation solutions given a solution of a homogeneous non-linear ordinary differential equation of a special form. The ansatz for such solutions is called the $n$-ansatz, where $n+1$ is the order of the differential equation.
Obituary: Hans Albrecht Bethe, 1906-2005
Wijers, Ralph
2007-12-01
now call the "Bethe Ansatz." Soon after his acceptance of an assistant professorship at Tübingen in 1932, he had to flee Hitler's Germany because his mother was Jewish. Bethe went to the Bragg Institute in Manchester, England, where he worked again with Peierls. In 1934, Cornell University unexpectedly offered him a position as part of R. Clifton Gibbs's expansion of the physics department; he accepted and stayed there for the rest of his life. Right from the start, Bethe enjoyed America and its atmosphere very much. His first activity there was to write the "Bethe Bible": three articles in Reviews of Modern Physics to educate his colleagues in theoretical nuclear physics. Then he did the work that astrophysicists will still appreciate him most for, and which brought him the 1967 Nobel Prize. Having worked with George Gamow's student Charles Critchfield (at Gamow's suggestion) on the proton-proton chain for nuclear fusion in the Sun (published in 1938), Bethe was initially a bit discouraged with Arthur Eddington's estimates of the Solar core temperature; their calculations did not agree well with the observed solar luminosity. However, at the Washington conference in 1937, he heard of Strömgren's new estimates of the solar interior, which brought his and Critchfield's theory into much better agreement with the data. Fairly soon after the meeting, Bethe also worked out the process whereby more massive stars must accomplish hydrogen fusion, in what we now call the CNO cycle. Curiously, Bethe held up its publication briefly in order to compete for a prize for the best unpublished paper on energy production in stars. He did win, and used the money in part to bring his mother to the United States; eventually, the paper appeared in Physics Review in 1939, and founded a whole branch of astrophysics. The war brought Bethe to the Manhattan project, of which he became one of the intellectual leaders. He ploughed through problems theoretical and practical by attacking them
A representation basis for the quantum integrable spin chain associated with the su(3) algebra
Energy Technology Data Exchange (ETDEWEB)
Hao, Kun [Institute of Modern Physics, Northwest University, Xian 710069 (China); Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Li, Guang-Liang [Department of Applied Physics, Xian Jiaotong University, Xian 710049 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2016-05-20
An orthogonal basis of the Hilbert space for the quantum spin chain associated with the su(3) algebra is introduced. Such kind of basis could be treated as a nested generalization of separation of variables (SoV) basis for high-rank quantum integrable models. It is found that all the monodromy-matrix elements acting on a basis vector take simple forms. With the help of the basis, we construct eigenstates of the su(3) inhomogeneous spin torus (the trigonometric su(3) spin chain with antiperiodic boundary condition) from its spectrum obtained via the off-diagonal Bethe Ansatz (ODBA). Based on small sites (i.e. N=2) check, it is conjectured that the homogeneous limit of the eigenstates exists, which gives rise to the corresponding eigenstates of the homogenous model.
Spectral ansatz in quantum electrodynamics
International Nuclear Information System (INIS)
Atkinson, D.; Slim, H.A.
1979-01-01
An ansatz of Delbourgo and Salam for the spectral representation of the vertex function in quantum electrodynamics. The Ward-Takahashi identity is respected, and the electron propagator does not have a ghost. The infra-red and ultraviolet behaviours of the electron propagator in this theory are considered, and a rigorous existence theorem for the propagator in the Yennie gauge is presented
Five-dimensional Monopole Equation with Hedge-Hog Ansatz and Abel's Differential Equation
Kihara, Hironobu
2008-01-01
We review the generalized monopole in the five-dimensional Euclidean space. A numerical solution with the Hedge-Hog ansatz is studied. The Bogomol'nyi equation becomes a second order autonomous non-linear differential equation. The equation can be translated into the Abel's differential equation of the second kind and is an algebraic differential equation.
Bethe-salpeter equation from many-body perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Sander, Tobias; Starke, Ronald; Kresse, Georg [Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna (Austria)
2013-07-01
The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.
Bethe ansatz and ordinary differential equation correspondence for degenerate Gaudin models
El Araby, Omar; Gritsev, Vladimir; Faribault, Alexandre
2012-03-01
In this work, we generalize the numerical approach to Gaudin models developed earlier by us [Faribault, El Araby, Sträter, and Gritsev, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.235124 83, 235124 (2011)] to degenerate systems, showing that their treatment is surprisingly convenient from a numerical point of view. In fact, high degeneracies not only reduce the number of relevant states in the Hilbert space by a non-negligible fraction, they also allow us to write the relevant equations in the form of sparse matrix equations. Moreover, we introduce an inversion method based on a basis of barycentric polynomials that leads to a more stable and efficient root extraction, which most importantly avoids the necessity of working with arbitrary precision. As an example, we show the results of our procedure applied to the Richardson model on a square lattice.
Generalization of the Davydov Ansatz by squeezing
Energy Technology Data Exchange (ETDEWEB)
Grossmann, Frank; Werther, Michael [Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden (Germany); Chen, Lipeng; Zhao, Yang [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)
2016-12-20
We propose an extension of the Davydov Ansatz employing displaced squeezed states in the oscillator Hilbert space. The Dirac–Frenkel variational principle is used to derive the modified equations for the variational parameters. First numerical studies of the dynamics of the spin-boson model with a single bosonic degree of freedom reveal an overall improvement of the results as compared to the standard Davydov Ansatz.
GW and Bethe-Salpeter study of small water clusters
Energy Technology Data Exchange (ETDEWEB)
Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul [CNRS, Institut NEEL, F-38042 Grenoble (France); Bruneval, Fabien [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Fernandez-Serra, Marivi [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Duchemin, Ivan [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France)
2016-01-21
We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description of the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.
An exponential multireference wave-function Ansatz
International Nuclear Information System (INIS)
Hanrath, Michael
2005-01-01
An exponential multireference wave-function Ansatz is formulated. In accordance with the state universal coupled-cluster Ansatz of Jeziorski and Monkhorst [Phys. Rev. A 24, 1668 (1981)] the approach uses a reference specific cluster operator. In order to achieve state selectiveness the excitation- and reference-related amplitude indexing of the state universal Ansatz is replaced by an indexing which is based on excited determinants. There is no reference determinant playing a particular role. The approach is size consistent, coincides with traditional single-reference coupled cluster if applied to a single-reference, and converges to full configuration interaction with an increasing cluster operator excitation level. Initial applications on BeH 2 , CH 2 , Li 2 , and nH 2 are reported
Degeneration of Bethe subalgebras in the Yangian of gl_n
Ilin, Aleksei; Rybnikov, Leonid
2018-04-01
We study degenerations of Bethe subalgebras B( C) in the Yangian Y(gl_n), where C is a regular diagonal matrix. We show that closure of the parameter space of the family of Bethe subalgebras, which parameterizes all possible degenerations, is the Deligne-Mumford moduli space of stable rational curves \\overline{M_{0,n+2}}. All subalgebras corresponding to the points of \\overline{M_{0,n+2}} are free and maximal commutative. We describe explicitly the "simplest" degenerations and show that every degeneration is the composition of the simplest ones. The Deligne-Mumford space \\overline{M_{0,n+2}} generalizes to other root systems as some De Concini-Procesi resolution of some toric variety. We state a conjecture generalizing our results to Bethe subalgebras in the Yangian of arbitrary simple Lie algebra in terms of this De Concini-Procesi resolution.
Practitioner Profile: An Interview with Beth Crittenden
Directory of Open Access Journals (Sweden)
Martie Gillen
2016-12-01
Full Text Available Beth Crittenden offers financial wellness coaching to people who want growth both professionally and personally. Beth has been working with finances as a focus since 2009, after training in somatic psychology, healthy communication in relationship, and mindful meditation practices and theory.
Quarkonia in the Bethe--Salpeter formalism with background fields
International Nuclear Information System (INIS)
Mathur, Y.K.; Mitra, A.N.
1989-01-01
A QCD-oriented Bethe--Salpeter (BS) equation for a q bar q system is formulated in which the quark 4-momenta p μ are modified as p μ →p μ -gA μ (x) in the inverse propagators therein, and a Fock--Schwinger (FS) gauge expansion is employed for the gluon fields A μ (x). The first term (∼x μ ) of the FS representation yields a harmonic kernel when the BS equation is reduced to a 3-dimensional level via the null-plane ansatz (NPA). It also generates a spin-dependent interaction proportional to (j 1 +s 1 )·(j 2 +s 2 ), in close parallel to a J·S term generated by a vector-like (γ (1) gamma(2)) harmonic model for the q bar q interaction proposed earlier by the Delhi Group. A possible mechanism for confinement in an asymptotically linear scene is proposed within the BS framework, taking cue partly from the suggestions of multiple correlation effects (Shifman), and partly from the postulation of stochastic fields (Simonov)
Algebraic partial Boolean algebras
International Nuclear Information System (INIS)
Smith, Derek
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8
Integrable Floquet dynamics, generalized exclusion processes and "fused" matrix ansatz
Vanicat, Matthieu
2018-04-01
We present a general method for constructing integrable stochastic processes, with two-step discrete time Floquet dynamics, from the transfer matrix formalism. The models can be interpreted as a discrete time parallel update. The method can be applied for both periodic and open boundary conditions. We also show how the stationary distribution can be built as a matrix product state. As an illustration we construct parallel discrete time dynamics associated with the R-matrix of the SSEP and of the ASEP, and provide the associated stationary distributions in a matrix product form. We use this general framework to introduce new integrable generalized exclusion processes, where a fixed number of particles is allowed on each lattice site in opposition to the (single particle) exclusion process models. They are constructed using the fusion procedure of R-matrices (and K-matrices for open boundary conditions) for the SSEP and ASEP. We develop a new method, that we named "fused" matrix ansatz, to build explicitly the stationary distribution in a matrix product form. We use this algebraic structure to compute physical observables such as the correlation functions and the mean particle current.
Exact solutions of sl-boson system in U(2l + 1) reversible O(2l + 2) transitional region
Zhang Xin
2002-01-01
Exact eigen-energies and the corresponding wavefunctions of the interacting sl-boson system in U(2l + 1) reversible O(2l +2) transitional region are obtained by using an algebraic Bethe Ansatz with the infinite dimensional Lie algebraic technique. Numerical algorithm for solving the Bethe Ansatz equations by using mathematical package is also outlined
Entanglement entropy in quantum many-particle systems and their simulation via ansatz states
International Nuclear Information System (INIS)
Barthel, Thomas
2009-01-01
A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data
Entanglement entropy in quantum many-particle systems and their simulation via ansatz states
Energy Technology Data Exchange (ETDEWEB)
Barthel, Thomas
2009-12-10
A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
International Nuclear Information System (INIS)
Garcia, R.L.
1983-11-01
The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt
International Nuclear Information System (INIS)
Kedem, Rinat
2008-01-01
Q-systems first appeared in the analysis of the Bethe equations for the XXX model and generalized Heisenberg spin chains (Kirillov and Reshetikhin 1987 Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov. 160 211-21, 301). Such systems are known to exist for any simple Lie algebra and many other Kac-Moody algebras. We formulate the Q-system associated with any simple, simply-laced Lie algebras g in the language of cluster algebras (Fomin and Zelevinsky 2002 J. Am. Math. Soc. 15 497-529), and discuss the relation of the polynomiality property of the solutions of the Q-system in the initial variables, which follows from the representation-theoretical interpretation, to the Laurent phenomenon in cluster algebras (Fomin and Zelevinsky 2002 Adv. Appl. Math. 28 119-44)
Hans Bethe, Powering the Stars, and Nuclear Physics
dropdown arrow Site Map A-Z Index Menu Synopsis Hans Bethe, Energy Production in Stars, and Nuclear Physics physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of Laboratory] from 1943 to 1946. Prior to joining the Manhattan Project, Bethe taught physics at Cornell
Obituary: Hans Albrecht Bethe, 1906-2005
Wijers, R.
2007-01-01
One of the unquestioned giants of physics and astrophysics, Hans Bethe, died on 6 March 2005, at the venerable age of 98, in his home town of Ithaca, New York. Seven decades of contributing to research and a Nobel Prize for his work on stellar hydrogen burning make a listing of his honors
Vertex algebras and algebraic curves
Frenkel, Edward
2004-01-01
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...
African Journals Online (AJOL)
Tadesse
In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...
Villarreal, Rafael
2015-01-01
The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.
Polishchuk, Alexander
2005-01-01
Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.
The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Sazdjian, H.
1986-02-01
We show the formal equivalence between the wave equations of two-particle relativistic quantum mechanics, based on the manifestly covariant hamiltonian formalism with constraints, and the Bethe-Salpeter equation. This is achieved by algebraically transforming the latter so as to separate it into two independent equations which match the equations of hamiltonian relativistic quantum mechanics. The first equation determines the relative time evolution of the system, while the second one yields a three-dimensional eigenvalue equation. A connection is thus established between the Bethe-Salpeter wave function and its kernel on the one hand and the quantum mechanical wave function and interaction potential on the other. For the sector of solutions of the Bethe-Salpeter equation having non-relativistic limits, this relationship can be evaluated in perturbation theory. We also device a generalized form of the instantaneous approximation which simplifies the various expressions involved in the above relations. It also permits the evaluation of the normalization condition of the quantum mechanical wave function as a three-dimensional integral
Energy Technology Data Exchange (ETDEWEB)
Bhatnagar, Shashank [Department of Physics, Addis Ababa University, PO Box 101739, Addis Ababa (Ethiopia); Li Shiyuan [Department of Physics, Shandong University, Jinan, 250100 (China)
2006-07-15
We employ the framework of the Bethe-Salpeter equation under a covariant instantaneous ansatz to study the leptonic decays of vector mesons. The structure of the hadron-quark vertex function {gamma} is generalized to include various Dirac covariants (other than i{gamma} . {epsilon}) from their complete set. They are incorporated in accordance with a naive power counting rule order-by-order in powers of the inverse of the meson mass. The decay constants for {rho}, {omega} and {phi} mesons are calculated with the incorporation of leading-order covariants.
International Nuclear Information System (INIS)
Bhatnagar, Shashank; Li Shiyuan
2006-01-01
We employ the framework of the Bethe-Salpeter equation under a covariant instantaneous ansatz to study the leptonic decays of vector mesons. The structure of the hadron-quark vertex function Γ is generalized to include various Dirac covariants (other than iγ . ε) from their complete set. They are incorporated in accordance with a naive power counting rule order-by-order in powers of the inverse of the meson mass. The decay constants for ρ, ω and φ mesons are calculated with the incorporation of leading-order covariants
Special issue on cluster algebras in mathematical physics
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-02-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March
Knitting Ansatz and solutions to Yang-Baxter equation
International Nuclear Information System (INIS)
Zhang Jun; Guo Hanying; Yan Hong
1997-01-01
The authors suggest a new method, named knitting Ansatz, to generate solutions to Yang-Baxter equation with lower dimensional representations of braid group. To support this Ansatz, the authors work out an example of a new 16 x 16 R-matrix constructed along this idea, with two 4 x 4 braid group representations of familiar 6-vertex type with different q-parameters
Goodstein, R L
2007-01-01
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Jordan algebras versus C*- algebras
International Nuclear Information System (INIS)
Stormer, E.
1976-01-01
The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)
Spherical Hecke algebra in the Nekrasov-Shatashvili limit
Energy Technology Data Exchange (ETDEWEB)
Bourgine, Jean-Emile [Asia Pacific Center for Theoretical Physics (APCTP),Pohang, Gyeongbuk 790-784 (Korea, Republic of)
2015-01-21
The Spherical Hecke central (SHc) algebra has been shown to act on the Nekrasov instanton partition functions of N=2 gauge theories. Its presence accounts for both integrability and AGT correspondence. On the other hand, a specific limit of the Omega background, introduced by Nekrasov and Shatashvili (NS), leads to the appearance of TBA and Bethe like equations. To unify these two points of view, we study the NS limit of the SHc algebra. We provide an expression of the instanton partition function in terms of Bethe roots, and define a set of operators that generates infinitesimal variations of the roots. These operators obey the commutation relations defining the SHc algebra at first order in the equivariant parameter ϵ{sub 2}. Furthermore, their action on the bifundamental contributions reproduces the Kanno-Matsuo-Zhang transformation. We also discuss the connections with the Mayer cluster expansion approach that leads to TBA-like equations.
Obituary: Beth Brown (1969-2008)
Bregman, Joel
2011-12-01
The astronomical community lost one of its most buoyant and caring individuals when Beth Brown died, unexpectedly, at the age of 39 from a pulmonary embolism. Beth Brown was born in Roanoke, Virginia where she developed a deep interest in astronomy, science, and science fiction (Star Trek). After graduating as the valedictorian of William Fleming High School's Class of 1987, she attended Howard University, where she graduated summa cum laude in 1991 with a bachelor's degree in astrophysics. Following a year in the graduate physics program at Howard, she entered the graduate program in the Department of Astronomy at the University of Michigan, the first African-American woman in the program. She received her PhD in 1998, working with X-ray observations of elliptical galaxies from the Röntgen Satellite (ROSAT; Joel Bregman was her advisor). She compiled and analyzed the first large complete sample of such galaxies with ROSAT and her papers in this area made an impact in the field. Following her PhD, Beth Brown held a National Academy of Science & National Research Council Postdoctoral Research Fellowship at NASA's Goddard Space Flight Center. Subsequently, she became a civil servant at the National Space Science Data Center at GSFC, where she was involved in data archival activities as well as education and outreach, a continuing passion in her life. In 2006, Brown became an Astrophysics Fellow at GSFC, during which time she worked as a visiting Assistant Professor at Howard University, where she taught and worked with students and faculty to improve the teaching observatory. At the time of her death, she was eagerly looking forward to a new position at GSFC as the Assistant Director for Science Communications and Higher Education. Beth Brown was a joyous individual who loved to work with people, especially in educating them about our remarkable field. Her warmth and openness was a great aid in making accessible explanations of otherwise daunting astrophysical
Centenary Birth Anniversary of E. W. Beth (1908-1964)
Bagni, Giorgio T.
2008-01-01
Evert Willem Beth (1908-1964) was a Dutch logician, mathematician and philosopher, whose work mainly concerned the foundations of mathematics. Beth was among the founders of the Commission Internationale pour l'Etude et l'Amelioration de l'Enseignement des Mathematiques and was a member of the Central Committee of the International Commission on…
Ford, Timothy J
2017-01-01
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Exact tensor network ansatz for strongly interacting systems
Zaletel, Michael P.
It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Model of pair aggregation on the Bethe lattice
DEFF Research Database (Denmark)
Baillet, M.V.-P.; Pacheco, A.F.; Gómez, J.B.
1997-01-01
We extend a recent model of aggregation of pairs of particles, analyzing the case in which the supporting framework is a Bethe lattice. The model exhibits a critical behavior of the percolation theory type....
Overlaps of partial Néel states and Bethe states
International Nuclear Information System (INIS)
Foda, O; Zarembo, K
2016-01-01
Partial Néel states are generalizations of the ordinary Néel (classical anti-ferromagnet) state that can have arbitrary integer spin. We study overlaps of these states with Bethe states. We first identify this overlap with a partial version of reflecting-boundary domain-wall partition function, and then derive various determinant representations for off-shell and on-shell Bethe states. (paper: quantum statistical physics, condensed matter, integrable systems)
Bethe-Salpeter amplitudes and static properties of the deuteron
International Nuclear Information System (INIS)
Kaptari, L.P.; Bondarenko, S.G.; Khanna, F.C.; Kaempfer, B.; Technische Univ. Dresden
1996-04-01
Extended calculations of the deuteron's static properties, based on the numerical solution of the Bethe-Salpeter equation, are presented. A formalism is developed, which provides a comparative analysis of the covariant amplitudes in various representations and nonrelativistic wave functions. The magnetic and quadrupole moments of the deuteron are calculated in the Bethe-Salpeter formalism and the role of relativistic corrections is discussed. (orig.)
The Bethe-Salpeter equation with fermions
International Nuclear Information System (INIS)
Efimov, G.V.
2007-01-01
The Bethe-Salpeter (BS) equation in the ladder approximation is studied within a fermion theory: two fermion fields (constituents) with mass m interacting via an exchange of a scalar field with mass μ. The BS equation can be written in the form of an integral equation in the configuration Euclidean x-space with the symmetric kernel K for which Tr K 2 = ∞ due to the singular character of the fermion propagator. This kernel is represented in the form K = K 0 + K I . The operator K 0 with Tr K 0 2 ∞ is of the 'fall at the center' potential type and describes a continuous spectrum only. Besides the presence of this operator leads to a restriction on the value of the coupling constant. The kernel K I with Tr K I 2 2 c 2 and the variational procedure of calculations of eigenvalues and eigenfunctions can be applied. The quantum pseudoscalar and scalar mesodynamics is considered. The binding energy of the state 1 + (deuteron) as a function of the coupling constant is calculated in the framework of the procedure formulated above. It is shown that this bound state is absent in the pseudoscalar mesodynamics and does exist in the scalar mesodynamics. A comparison with the non-relativistic Schroedinger picture is made. (author)
Nuclear forces the making of the physicist Hans Bethe
Schweber, Silvan S
2012-01-01
On the fiftieth anniversary of Hiroshima, Nobel-winning physicist Hans Bethe called on his fellow scientists to stop working on weapons of mass destruction. What drove Bethe, the head of Theoretical Physics at Los Alamos during the Manhattan Project, to renounce the weaponry he had once worked so tirelessly to create? That is one of the questions answered by "Nuclear Forces", a riveting biography of Bethe's early life and development as both a scientist and a man of principle. As Silvan Schweber follows Bethe from his childhood in Germany, to laboratories in Italy and England, and on to Cornell University, he shows how these differing environments were reflected in the kind of physics Bethe produced. Many of the young quantum physicists in the 1930s, including Bethe, had Jewish roots, and Schweber considers how Liberal Judaism in Germany helps explain their remarkable contributions. A portrait emerges of a man whose strategy for staying on top of a deeply hierarchical field was to tackle only those problems h...
Algebraic entropy for algebraic maps
International Nuclear Information System (INIS)
Hone, A N W; Ragnisco, Orlando; Zullo, Federico
2016-01-01
We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)
International Nuclear Information System (INIS)
MacCallum, M.A.H.
1990-01-01
The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Null-plane formulation of Bethe-Salpeter qqq dynamics: Baryon mass spectra
International Nuclear Information System (INIS)
Kulshreshtha, D.S.; Mitra, A.N.
1988-01-01
The Bethe-Salpeter (BS) equation for a qqq system is formulated in the null-plane approximation (NPA) for the BS wave function, as a direct generalization of a corresponding QCD-motivated formalism developed earlier for qq-bar systems. The confinement kernel is assumed vector type (γ/sub μ//sup (1)/γ/sub μ//sup (2)/) for both qq-bar and qq pairs, with identical harmonic structures, and with the spring constant proportional, among other things, to the running coupling constant α/sub s/ (for an explicit QCD motivation). The harmonic kernel is given a suitable Lorentz-invariant definition [not D'Alembertian 2 δ 4 (q)], which is amenable to NPA reduction in a covariant form. The reduced qqq equation in NPA is solved algebraically in a six-dimensional harmonic-oscillator (HO) basis, using the techniques of SO(2,1) algebra interlinked with S 3 symmetry. The results on the nonstrange baryon mass spectra agree well with the data all the way up to N = 6, thus confirming the asymptotic prediction M∼N/sup 2/3/ characteristic of vector confinement in HO form. There are no extra parameters beyond the three basic constants (ω 0 ,C 0 ,m/sub u//sub d/) which were earlier found to provide excellent fits to meson spectra (qq-bar)
Indian Academy of Sciences (India)
tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).
Indian Academy of Sciences (India)
Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.
Selected Works Of Hans A Bethe (With Commentary)
International Nuclear Information System (INIS)
Bethe, Hans A.
1997-01-01
Hans A Bethe received the Nobel Prize for Physics in 1967 for his work on the production of energy in stars. A living legend among the physics community, he helped to shape classical physics into quantum physics and increased the understanding of the atomic processes responsible for the properties of matter and of the forces governing the structures of atomic nuclei. This collection of papers by Prof Bethe dates from 1928, when he received his PhD, to now. It covers several areas and reflects the many contributions in research and discovery made by one of the most important and eminent physicists of all time. Special commentaries have been written by Prof Bethe to complement the selected papers
Quantum Waveguide Properties of Bethe Lattices with a Ring
International Nuclear Information System (INIS)
Zhi-Ping, Lin; Zhi-Lin, Hou; You-Yan, Liu
2008-01-01
Based on waveguide theory we investigate electronic transport properties of Bethe lattices with a mesoscopic ring threaded by a magnetic flux. The generalized eigen-function method (GEM) is used to calculate the transmission and reflection coefficients up to the fifth generation of Bethe lattices. The relationships among the transmission coefficient T, magnetic flux φ and wave vector kl are investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux φ are observed and discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Machon, Uwe Rainer
2009-01-01
Ziel der Dissertation „Entwicklung von Cysteinproteaseinhibitoren – ein klassischer und ein kombinatorischer Ansatz zur Inhibitoroptimierung“ war die Optimierung von neuen Inhibitoren von Falcipain-2 und Rhodesain als neue potentielle Wirkstoffe gegen Malaria bzw. die Schlafkrankheit über zwei verschiedene Methoden. Es handelt sich hierbei um einen klassischen und einen kombinatorischen Ansatz. Der klassische Ansatz basiert auf einer Struktur, deren Aktivität per Zufall entdeckt wurde. In Scr...
Algebraic characterizations of measure algebras
Czech Academy of Sciences Publication Activity Database
Jech, Thomas
2008-01-01
Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008
Quantum W-algebras and elliptic algebras
International Nuclear Information System (INIS)
Feigin, B.; Kyoto Univ.; Frenkel, E.
1996-01-01
We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)
International Nuclear Information System (INIS)
Mohammad, N.; Siddiqui, A.H.
1987-11-01
The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
International Nuclear Information System (INIS)
Jacob, M.
1967-01-01
The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr
Pionierin der Religionspsychologie: Marianne Beth (1890-1984)
Belzen, J.A.
2010-01-01
This article deals with the contributions to the psychology of religion made by Dr. Marianne Beth (1890-1984), an almost totally forgotten pioneer of the psychology of religion. The article especially contextualizes her initiative to turn "unbelief" into a topic for research in psychology of
Hans Bethe, Quantum Mechanics, and the Lamb Shift
Indian Academy of Sciences (India)
addressed by Bethe in his own inimitable style: He was returning to ... the solution in the train itself (!), on his return journey ... was a viable atomic model to account for some cru- ... The WS conditions in turn were based on the Hamilton-.
Kleyn, Aleks
2007-01-01
The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.
International Nuclear Information System (INIS)
Dragon, N.
1979-01-01
The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)
International Nuclear Information System (INIS)
Yau, Donald
2011-01-01
We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.
Bliss, Gilbert Ames
1933-01-01
This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t
Iterated Leavitt Path Algebras
International Nuclear Information System (INIS)
Hazrat, R.
2009-11-01
Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
Ein Integraler Gestalt-Ansatz fuer Therapie und Beratung
Directory of Open Access Journals (Sweden)
Martina Gremmler-Fuhr
2005-06-01
Full Text Available Zusammenfassung: In diesem Text stellen wir unseren Ansatz für Psychotherapie und Beratung auf dem Hintergrund des integralen Paradigmas dar. Wir erläutern zunächst kurz vier Anforderungen an ein integrales Konzept in diesem professionellen Bereich: Umgang mit Komplexität und Vielperspektivität, Berücksichtigung gerichteter, vieldimensionaler Entwicklung, Orientierungs- und Sinngebungsfunktion, Realisierung relationaler Qualitäten in der Arbeit. Nach einer Begriffsbestimmung von „Therapie“, „Beratung“ und „Bildung“ charakterisieren wir das seit vielen Jahren von uns entwickelte Konzept für den Integralen Gestalt-Ansatz unter den Fragen nach (1 den Intentionen und Aufgaben von Therapie und Beratung, (2 der Gestaltung der Kommunikation und Beziehung, (3 der Art der Problemdefinition und dem Umgang mit Diagnostik sowie (4 den Strategien und Methoden – alle unter Rückkopplung an die zuvor erläuterten Anforderungen an ein integrales Konzept. Abstract: In this text we present our approach to psychotherapy and counseling on the background of the integral paradigm. We shortly explain four major requirements for such an integral concept: handling complexity and multi-perspectivity, considering directed and multi-dimensional development, offering orientation and meaning, relational qualities. After defining the terms „psychotherapy“, „counselling“, and „education“ we present our concept for the Integral Gestalt Approach which we have developed and evaluated for many years by dealing with four questions: (1 the intentions and tasks of therapy and counselling, (2 the formation of communication and relationship, (3 the specific way of defining problems and using diagnostics, and (4 the strategies and methods – all related back to the major requirements of an integral concept.
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...
Miyanishi, Masayoshi
2000-01-01
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
International Nuclear Information System (INIS)
Carbonell, J.; Frederico, T.; Karmanov, V.A.
2017-01-01
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
Glueball properties from the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Kellermann, Christian
2012-01-01
For over thirty years bound states of gluons are an outstanding problem of both theoretical and experimental physics. Being predicted by Quantum-Chromodynamics their experimental confirmation is one of the foremost goals of large experimental facilities currently under construction like FAIR in Darmstadt. This thesis presents a novel approach to the theoretical determination of physical properties of bound states of two gluons, called glueballs. It uses the consistent combination of Schwinger-Dyson equations for gluons and ghosts and appropriate Bethe-Salpeter equations describing their corresponding bound-states. A rigorous derivation of both sets of equations, starting from an 2PI effective action is given as well as a general determination of appropriate decompositions of Bethe-Salpeter amplitudes to a given set of quantum numbers of a glueball. As an application example bound state masses of glueballs in a simple truncation scheme are calculated. (orig.)
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
Energy Technology Data Exchange (ETDEWEB)
Carbonell, J. [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Frederico, T. [Instituto Tecnologico de Aeronautica, DCTA, Sao Jose dos Campos (Brazil); Karmanov, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)
2017-01-15
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
Bethe-Salpeter analysis of the radiative pion disintegration
Energy Technology Data Exchange (ETDEWEB)
Abad, J.; Pacheco, A.F. (Zaragoza Univ. (Spain). Dept. de Fisica Teorica); Rodriguez-Trias, R.; Esteve, J.G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)
1990-04-01
The structure-dependent amplitude of the decay {pi}{yields}e{nu}{gamma} is evaluated in the framework of a Bethe-Salpeter description for the pion. We assume a general B-S wave function in the S-wave. Within this hypothesis, we show that the gauge invariance constrains the different contributions of the wave functions to the amplitude, resulting in the vanishing of the axial form factor. (orig.).
Covariant Bethe-Salpeter wave functions for heavy hadrons
International Nuclear Information System (INIS)
Hussain, F.
1992-09-01
In recent years the dynamics of heavy mesons and baryons has considerably simplified by the development of the so-called heavy quark effective theory (HQET). A covariant formulation of heavy meson and heavy baryon decays in the leading order of the HQET is presented. The method is based on a Bethe-Salpeter formulation in the limit of the heavy quark mass going to infinity. 15 refs, 4 figs
Excited charmonium states from Bethe-Salpeter Equation
Czech Academy of Sciences Publication Activity Database
Šauli, Vladimír; Bicudo, P.
2012-01-01
Roč. 7, 043 (2012), s. 1-10 ISSN 1824-8039. [International Workshop on QCD Green’s Functions. Tranto, 05.09.2011-09.09.2011] R&D Projects: GA MŠk(CZ) LG11005 Institutional research plan: CEZ:AV0Z10480505 Keywords : charmonium * Bethe-Salpeter Equation Subject RIV: BE - Theoretical Physics http:// pos .sissa.it/archive/conferences/136/043/QCD-TNT-II_043.pdf
Quantum graphs with the Bethe-Sommerfeld property
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Turek, Ondřej
2017-01-01
Roč. 8, č. 3 (2017), s. 305-309 ISSN 2220-8054 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : periodic quantum graphs * gap number * delta-coupling * rectangular lattice graph * scale-invariant coupling * Bethe-Sommerfeld conjecture * golden mean Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Periodic quantum graphs from the Bethe-Sommerfeld perspective
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Turek, Ondřej
2017-01-01
Roč. 50, č. 45 (2017), č. článku 455201. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : quantum graphs * Bethe-Sommerfeld conjecture * vertex coupling * Diophantine approximation * periodic structure Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
The Yoneda algebra of a K2 algebra need not be another K2 algebra
Cassidy, T.; Phan, C.; Shelton, B.
2010-01-01
The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.
Dzhumadil'daev, A. S.
2002-01-01
Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
Foulis, David J.; Pulmannov, Sylvia
2018-04-01
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
Two site spin correlation function in Bethe-Peierls approximation for Ising model
Energy Technology Data Exchange (ETDEWEB)
Kumar, D [Roorkee Univ. (India). Dept. of Physics
1976-07-01
Two site spin correlation function for an Ising model above Curie temperature has been calculated by generalising Bethe-Peierls approximation. The results derived by a graphical method due to Englert are essentially the same as those obtained earlier by Elliott and Marshall, and Oguchi and Ono. The earlier results were obtained by a direct generalisation of the cluster method of Bethe, while these results are derived by retaining that class of diagrams , which is exact on Bethe lattice.
An exact conformal symmetry Ansatz on Kaluza-Klein reduced TMG
Moutsopoulos, George; Ritter, Patricia
2011-11-01
Using a Kaluza-Klein dimensional reduction, and further imposing a conformal Killing symmetry on the reduced metric generated by the dilaton, we show an Ansatz that yields many of the known stationary axisymmetric solutions to TMG.
On the completeness of the set of Bethe-Hulthen solutions of the linear Heisenberg system
International Nuclear Information System (INIS)
Caspers, W J; Labuz, M; Wal, A
2006-01-01
In this work we formulate the standard form of the solutions of the Heisenberg chain with periodic boundary conditions and show that these solutions can be transformed into the well-known Bethe-Hulthen solutions. The standard form is found by solving the secular problem, separated according to the irreducible representations of the translation group. The relevant parameters exp(ik j ) of the Bethe-Hulthen solutions are found from a set of linear equations with coefficients derived from the standard solutions. This correspondence between standard and Bethe-Hulthen solutions realizes the completeness of the Bethe-Hulthen method
Abrams, Gene; Siles Molina, Mercedes
2017-01-01
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...
Datengeleitetes Lernen im studienbegleitenden Deutschunterricht am Beispiel des KoGloss-Ansatzes
Dubova, Agnese; Proveja, Egita
2016-01-01
Der vorliegende Aufsatz stellt den sprachdidaktischen Ansatz KoGloss vor und beschreibt die Möglichkeiten seines Einsatzes im studienbegleitenden Deutschunterricht. Als eine der Formen des datengeleiteten Lernens ermöglicht der KoGloss-Ansatz eine forschungsorientierte und lernerzentrierte Herangehensweise, die insbesondere im akademischen Sprachunterricht gefragt ist. Eine korpusbasierte Erschließung von (Fach-)Wörtern und komplexen sprachlichen Mustern, das learning by doing, die Kooperatio...
An algebraic scheme associated with the non-commutative KP hierarchy and some of its extensions
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2005-01-01
A well-known ansatz ('trace method') for soliton solutions turns the equations of the (non-commutative) KP hierarchy, and those of certain extensions, into families of algebraic sum identities. We develop an algebraic formalism, in particular involving a (mixable) shuffle product, to explore their structure. More precisely, we show that the equations of the non-commutative KP hierarchy and its extension (xncKP) in the case of a Moyal-deformed product, as derived in previous work, correspond to identities in this algebra. Furthermore, the Moyal product is replaced by a more general associative product. This leads to a new even more general extension of the non-commutative KP hierarchy. Relations with Rota-Baxter algebras are established
Anomalous magnetic nucleon moments in a Bethe-Salpeter model
International Nuclear Information System (INIS)
Chak Wing Chan.
1978-01-01
We investigate the anomalous magnetic moment of the nucleon in a field theoretic many-channel model for the electromagnetic form factors of the N anti N, the ππ, the K anti K, the πω and the πrho systems. Propagator self-energy corrections from the Ward idendity and phenomenological strong vertex corrections are both included. The photon is coupled minimally to pions, kaons and nucleons with power multiplicative renormalization. With solutions in the framework of the Bethe-Salpeter equation we obtain a value 1.84 for the isovector moment and a value -0.02 for the isoscalar moment. (orig.)
Physics over easy Breakfasts with Beth and physics
Azaroff, L V
2010-01-01
During a sequence of meals, the author relates the principal features of physics in easy-to-understand conversations with his wife Beth. Beginning with the studies of motion by Galileo and Newton through to the revolutionary theories of relativity and quantum mechanics in the 20th century, all important aspects of electricity, energy, magnetism, gravity and the structure of matter and atoms are explained and illustrated. The second edition similarly recounts the more recent application of these theories to nanoparticles, Bose-Einstein condensates, quantum entanglement and quantum computers. By
Covariant solutions of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Williams, A.G.; Kusaka, K.; Simpson, K.M.
1997-01-01
There is a need for covariant solutions of bound state equations in order to construct realistic QCD based models of mesons and baryons. Furthermore, we ideally need to know the structure of these bound states in all kinematical regimes, which makes a direct solution in Minkowski space (without any 3-dimensional reductions) desirable. The Bethe-Salpeter equation (BSE) for bound states in scalar theories is reformulated and solved for arbitrary scattering kernels in terms of a generalized spectral representation directly in Minkowski space. This differs from the conventional Euclidean approach, where the BSE can only be solved in ladder approximation after a Wick rotation. (author)
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Boicescu, V; Georgescu, G; Rudeanu, S
1991-01-01
The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.
Introduction to quantum algebras
International Nuclear Information System (INIS)
Kibler, M.R.
1992-09-01
The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs
Multifield stochastic particle production: beyond a maximum entropy ansatz
Energy Technology Data Exchange (ETDEWEB)
Amin, Mustafa A.; Garcia, Marcos A.G.; Xie, Hong-Yi; Wen, Osmond, E-mail: mustafa.a.amin@gmail.com, E-mail: marcos.garcia@rice.edu, E-mail: hxie39@wisc.edu, E-mail: ow4@rice.edu [Physics and Astronomy Department, Rice University, 6100 Main Street, Houston, TX 77005 (United States)
2017-09-01
We explore non-adiabatic particle production for N {sub f} coupled scalar fields in a time-dependent background with stochastically varying effective masses, cross-couplings and intervals between interactions. Under the assumption of weak scattering per interaction, we provide a framework for calculating the typical particle production rates after a large number of interactions. After setting up the framework, for analytic tractability, we consider interactions (effective masses and cross couplings) characterized by series of Dirac-delta functions in time with amplitudes and locations drawn from different distributions. Without assuming that the fields are statistically equivalent, we present closed form results (up to quadratures) for the asymptotic particle production rates for the N {sub f}=1 and N {sub f}=2 cases. We also present results for the general N {sub f} >2 case, but with more restrictive assumptions. We find agreement between our analytic results and direct numerical calculations of the total occupation number of the produced particles, with departures that can be explained in terms of violation of our assumptions. We elucidate the precise connection between the maximum entropy ansatz (MEA) used in Amin and Baumann (2015) and the underlying statistical distribution of the self and cross couplings. We provide and justify a simple to use (MEA-inspired) expression for the particle production rate, which agrees with our more detailed treatment when the parameters characterizing the effective mass and cross-couplings between fields are all comparable to each other. However, deviations are seen when some parameters differ significantly from others. We show that such deviations become negligible for a broad range of parameters when N {sub f}>> 1.
Generalized EMV-Effect Algebras
Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.
2018-04-01
Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.
Asveld, P.R.J.
1976-01-01
Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Categories and Commutative Algebra
Salmon, P
2011-01-01
L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.
The Bethe Sum Rule and Basis Set Selection in the Calculation of Generalized Oscillator Strengths
DEFF Research Database (Denmark)
Cabrera-Trujillo, Remigio; Sabin, John R.; Oddershede, Jens
1999-01-01
Fulfillment of the Bethe sum rule may be construed as a measure of basis set quality for atomic and molecular properties involving the generalized oscillator strength distribution. It is first shown that, in the case of a complete basis, the Bethe sum rule is fulfilled exactly in the random phase...
Abstract algebra for physicists
International Nuclear Information System (INIS)
Zeman, J.
1975-06-01
Certain recent models of composite hadrons involve concepts and theorems from abstract algebra which are unfamiliar to most theoretical physicists. The algebraic apparatus needed for an understanding of these models is summarized here. Particular emphasis is given to algebraic structures which are not assumed to be associative. (2 figures) (auth)
Combinatorial commutative algebra
Miller, Ezra
2005-01-01
Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
International Nuclear Information System (INIS)
Hudetz, T.
1989-01-01
As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Computer algebra and operators
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
International Nuclear Information System (INIS)
Goddard, Peter
1990-01-01
The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
International Nuclear Information System (INIS)
Feigin, B.L.; Semikhatov, A.M.
2004-01-01
We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras
Bicovariant quantum algebras and quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
Diagonal K-matrices and transfer matrix eigenspectra associated with the G(1)2 R-matrix
International Nuclear Information System (INIS)
Yung, C.M.; Batchelor, M.T.
1995-01-01
We find all the diagonal K-matrices for the R-matrix associated with the minimal representation of the exceptional affine algebra G (1) 2 . The corresponding transfer matrices are diagonalized with a variation of the analytic Bethe ansatz. We find many similarities with the case of the Izergin-Korepin R-matrix associated with the affine algebra A (2) 2 . ((orig.))
Low-temperature excitations within the Bethe approximation
International Nuclear Information System (INIS)
Biazzo, I; Ramezanpour, A
2013-01-01
We propose the variational quantum cavity method to construct a minimal energy subspace of wavevectors that are used to obtain some upper bounds for the energy cost of the low-temperature excitations. Given a trial wavefunction we use the cavity method of statistical physics to estimate the Hamiltonian expectation and to find the optimal variational parameters in the subspace of wavevectors orthogonal to the lower-energy wavefunctions. To this end, we write the overlap between two wavefunctions within the Bethe approximation, which allows us to replace the global orthogonality constraint with some local constraints on the variational parameters. The method is applied to the transverse Ising model and different levels of approximations are compared with the exact numerical solutions for small systems. (paper)
Nonflexible Lie-admissible algebras
International Nuclear Information System (INIS)
Myung, H.C.
1978-01-01
We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type
Recoupling Lie algebra and universal ω-algebra
International Nuclear Information System (INIS)
Joyce, William P.
2004-01-01
We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure
Hurwitz Algebras and the Octonion Algebra
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
On Some Algebraic and Combinatorial Properties of Dunkl Elements
Kirillov, Anatol N.
2013-06-01
We introduce and study a certain class of nonhomogeneous quadratic algebras together with the special set of mutually commuting elements inside of each, the so-called Dunkl elements. We describe relations among the Dunkl elements. This result is a further generalization of similar results obtained in [S. Fomin and A. N. Kirillov, Quadratic algebras, Dunkl elements and Schubert calculus, in Advances in Geometry (eds. J.-S. Brylinski, V. Nistor, B. Tsygan and P. Xu), Progress in Math. Vol. 172 (Birkhäuser Boston, Boston, 1995), pp. 147-182, A. Postnikov, On a quantum version of Pieri's formula, in Advances in Geometry (eds. J.-S. Brylinski, R. Brylinski, V. Nistor, B. Tsygan and P. Xu), Progress in Math. Vol. 172 (Birkhäuser Boston, 1995), pp. 371-383 and A. N. Kirillov and T. Maenor, A Note on Quantum K-Theory of Flag Varieties, preprint]. As an application we describe explicitly the set of relations among the Gaudin elements in the group ring of the symmetric group, cf. [E. Mukhin, V. Tarasov and A. Varchenko, Bethe Subalgebras of the Group Algebra of the Symmetric Group, preprint arXiv:1004.4248]. Also we describe a few combinatorial properties of some special elements in the associative quasi-classical Yang-Baxter algebra in a connection with the values of the β-Grothendieck polynomials for some special permutations, and on the other hand, with the Ehrhart polynomial of the Chan-Robbins polytope.
Extended Virasoro algebra and algebra of area preserving diffeomorphisms
International Nuclear Information System (INIS)
Arakelyan, T.A.
1990-01-01
The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Generalized hedgehog ansatz and Gribov copies in regions with nontrivial topologies
Canfora, Fabrizio; Salgado-Rebolledo, Patricio
2013-02-01
In this paper the arising of Gribov copies both in Landau and Coulomb gauges in regions with nontrivial topologies but flat metric, (such as closed tubes S1×D2, or R×T2) will be analyzed. Using a novel generalization of the hedgehog ansatz beyond spherical symmetry, analytic examples of Gribov copies of the vacuum will be constructed. Using such ansatz, we will also construct the elliptic Gribov pendulum. The requirement of absence of Gribov copies of the vacuum satisfying the strong boundary conditions implies geometrical constraints on the shapes and sizes of the regions with nontrivial topologies.
Semeriyanov, F.; Saphiannikova, M.; Heinrich, G.
2009-11-01
Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.
International Nuclear Information System (INIS)
Semeriyanov, F; Saphiannikova, M; Heinrich, G
2009-01-01
Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.
International Nuclear Information System (INIS)
Takao, Masaru
1989-01-01
We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)
Representations of quantum bicrossproduct algebras
International Nuclear Information System (INIS)
Arratia, Oscar; Olmo, Mariano A del
2002-01-01
We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Givant, Steven
2017-01-01
This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Twisted classical Poincare algebras
International Nuclear Information System (INIS)
Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.
1993-11-01
We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)
Directory of Open Access Journals (Sweden)
Frank Roumen
2017-01-01
Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.
Shafarevich, Igor Rostislavovich
2005-01-01
This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Kimura, Taro; Pestun, Vasily
2018-06-01
For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.
Computer algebra simulation - what can it do?; Was leistet Computer-Algebra-Simulation?
Energy Technology Data Exchange (ETDEWEB)
Braun, S. [Visual Analysis AG, Muenchen (Germany)
2001-07-01
Shortened development times require new and improved calculation methods. Numeric methods have long become state of the art. However, although numeric simulations provide a better understanding of process parameters, they do not give a feast overview of the interdependences between parameters. Numeric simulations are effective only if all physical parameters are sufficiently known; otherwise, the efficiency will decrease due to the large number of variant calculations required. Computer algebra simulation closes this gap and provides a deeper understanding of the physical fundamentals of technical processes. [German] Neue und verbesserte Berechnungsmethoden sind notwendig, um die staendige Verkuerzung der Entwicklungszyklen zu ermoeglichen. Herkoemmliche Methoden, die auf einem rein numerischen Ansatz basieren, haben sich in vielen Anwendungsbereichen laengst zum Standard entwickelt. Aber nicht nur die staendig kuerzer werdenden Entwicklungszyklen, sondern auch die weiterwachsende Komplexitaet machen es notwendig, ein besseres Verstaendnis der beteiligten Prozessparameter zu gewinnen. Die numerische Simulation besticht zwar durch Detailloesungen, selbst bei komplexen Strukturen und Prozessen, allerdings liefert sie keine schnelle Abschaetzung ueber die Zusammenhaenge zwischen den einzelnen Parametern. Die numerische Simulation ist nur dann effektiv, wenn alle physikalischen Parameter hinreichend bekannt sind; andernfalls sinkt die Effizienz durch die notwendige Anzahl von notwendigen Variantenrechnungen sehr stark. Die Computer-Algebra-Simulation schliesst diese Luecke in dem sie es erlaubt, sich einen tieferen Einblick in die physikalische Funktionsweise technischer Prozesse zu verschaffen. (orig.)
From Rota-Baxter algebras to pre-Lie algebras
International Nuclear Information System (INIS)
An Huihui; Ba, Chengming
2008-01-01
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras
Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra
van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of
Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra
N.W. van den Hijligenberg; R. Martini
1995-01-01
textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra
Algebraic monoids, group embeddings, and algebraic combinatorics
Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang
2014-01-01
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular. Graduate students as well a...
A Political End to a Pioneering Career: Marianne Beth and the Psychology of Religion
Directory of Open Access Journals (Sweden)
Jacob A. Belzen
2011-07-01
Full Text Available Although forgotten in both Religionswissenschaft (the Science of Religion and psychology, Marianne Beth (1880-1984, initially trained as a lawyer and already in 1928 called a “leading European woman”, must be considered as one of the female pioneers of these fields. She has been active especially in the psychology of religion, a field in which she, together with her husband Karl Beth, founded a research institute, an international organization and a journal. In 1932, the Beths organized in Vienna (where Karl was a professor the largest conference ever in the history of the psychology of religion. Because of her Jewish descent, Marianne Beth fled to the USA when Austria was annexed by Nazi Germany in 1938. This brought an abrupt end to her career as researcher and writer. The article reconstructs Marianne Beth’s path into psychology, analyzes some of her work and puts her achievements in an international perspective.
Lepton-pair production of a light pseudoscalar particle via the Bethe-Heitler process
International Nuclear Information System (INIS)
Kim, B.R.; Stamm, C.
1983-01-01
Bethe-Heitler processes of light pseudoscalar particles off nuclei are at present very important experimentally. For these processes we present our results which seem to differ from previous theoretical calculations found in the literature. (orig.)
Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.
1988-01-01
A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak
Generalized Bethe-Negele inequalities for excited states in muonic atoms
International Nuclear Information System (INIS)
Klarsfeld, S.
1976-11-01
Rigorous upper and lower bounds are derived for the Bethe logarithms in excited states of muonic atoms. Comparison with previous empirical estimates shows that the latter are inadequate in certain cases
On the central quadric ansatz: integrable models and Painlevé reductions
International Nuclear Information System (INIS)
Ferapontov, E V; Huard, B; Zhang, A
2012-01-01
It was observed by Tod (1995 Class. Quantum Grav.12 1535–47) and later by Dunajski and Tod (2002 Phys. Lett. A 303 253–64) that the Boyer–Finley (BF) and the dispersionless Kadomtsev–Petviashvili (dKP) equations possess solutions whose level surfaces are central quadrics in the space of independent variables (the so-called central quadric ansatz). It was demonstrated that generic solutions of this type are described by Painlevé equations P III and P II , respectively. The aim of our paper is threefold: (1) Based on the method of hydrodynamic reductions, we classify integrable models possessing the central quadric ansatz. This leads to the five canonical forms (including BF and dKP). (2) Applying the central quadric ansatz to each of the five canonical forms, we obtain all Painlevé equations P I –P VI , with P VI corresponding to the generic case of our classification. (3) We argue that solutions coming from the central quadric ansatz constitute a subclass of two-phase solutions provided by the method of hydrodynamic reductions. (paper)
International Nuclear Information System (INIS)
Nasri, Salah; Schechter, Joseph; Moussa, Sherif
2004-01-01
We further study the previously proposed ansatz, Tr(M ν )=0, for a prediagonal light Majorana type neutrino mass matrix. If CP violation is neglected this enables one to use the existing data on squared mass differences to estimate (up to a discrete ambiguity) the neutrino masses themselves. If it is assumed that only the conventional CP phase is present, the ansatz enables us to estimate this phase in addition to all three masses. If it is assumed that only the two Majorana CP phases are present, the ansatz enables us to present a one parameter family of solutions for the masses and phases. This enables us to obtain a simple 'global' view of lepton number violation effects. Furthermore using an SO(10) motivation for the ansatz suggests an amusing toy (clone) model in which the heavy neutrinos have the same mixing pattern and mass ratios as the light ones. In this case only their overall mass scale is not known (although it is constrained by the initial motivation). Using this toy model we make a rough estimate of the magnitude of the baryon to photon ratio induced by the leptogenesis mechanism. Solutions close to the CP conserving cases seem to be favored
(Quasi-)Poisson enveloping algebras
Yang, Yan-Hong; Yao, Yuan; Ye, Yu
2010-01-01
We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.
Cluster-Bethe-Lattice study of a planar antiferromagnet: Rb2NiF4
International Nuclear Information System (INIS)
Cruz, G.A.C. de la; Silva, C.E.T.G. da
1979-01-01
A discussion of the Cluster-Bethe-Lattice method is presented for a planar antiferromagnet for which the hamiltonian parameters are known and the one-magnon density of states may be computed exactly. All the square clusters of 1 to 121 atoms are studied both connected to and isolated from the Bethe lattices. It is shown that, even for the largest cluster treated, the approximation is still far from the exact result. It is discussed the limitations of the method [pt
Approximate, analytic solutions of the Bethe equation for charged particle range
Swift, Damian C.; McNaney, James M.
2009-01-01
By either performing a Taylor expansion or making a polynomial approximation, the Bethe equation for charged particle stopping power in matter can be integrated analytically to obtain the range of charged particles in the continuous deceleration approximation. Ranges match reference data to the expected accuracy of the Bethe model. In the non-relativistic limit, the energy deposition rate was also found analytically. The analytic relations can be used to complement and validate numerical solu...
Validity of various approximations for the Bethe-Salpeter equation and their WKB quantization
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Bilal, A.; Gignoux, C.; Schuck, P.
1984-01-01
The validity of the instantaneous approximation for the Bethe-Salpeter equation is questioned within the framework of the simple scalar-scalar model of Cutkosky. Detailed numerous results for various approximations are compared to the exact ones. WKB quantization is applied to these relativistic approximations. An unexpected question arises: is the currently used Bethe-Salpeter equation (i.e., the ladder approximation) well suited to describe two interacting relativistic particles
A cluster-bethe-lattice approach to spin-waves in dilute ferromagnets
International Nuclear Information System (INIS)
Salzberg, J.B.; Silva, C.E.T.G. da; Falicov, L.M.
1975-01-01
The spin-wave spectra of a dilute ferromagnet within the cluster-bethe-lattice approximation is studied. Short range order effects for the alloy are included. A study of finite size clusters connected at their edges to Bethe lattices of the same coordination number allows one to determine:(i) the stability condition for the magnetic system; (ii) the continuum spin-wave local density of states and (iii) the existence of localized states below and above the continuum states
A systematic approach to sketch Bethe-Salpeter equation
Directory of Open Access Journals (Sweden)
Qin Si-xue
2016-01-01
Full Text Available To study meson properties, one needs to solve the gap equation for the quark propagator and the Bethe-Salpeter (BS equation for the meson wavefunction, self-consistently. The gluon propagator, the quark-gluon vertex, and the quark–anti-quark scattering kernel are key pieces to solve those equations. Predicted by lattice-QCD and Dyson-Schwinger analyses of QCD’s gauge sector, gluons are non-perturbatively massive. In the matter sector, the modeled gluon propagator which can produce a veracious description of meson properties needs to possess a mass scale, accordingly. Solving the well-known longitudinal Ward-Green-Takahashi identities (WGTIs and the less-known transverse counterparts together, one obtains a nontrivial solution which can shed light on the structure of the quark-gluon vertex. It is highlighted that the phenomenologically proposed anomalous chromomagnetic moment (ACM vertex originates from the QCD Lagrangian symmetries and its strength is proportional to the magnitude of dynamical chiral symmetry breaking (DCSB. The color-singlet vector and axial-vector WGTIs can relate the BS kernel and the dressed quark-gluon vertex to each other. Using the relation, one can truncate the gap equation and the BS equation, systematically, without violating crucial symmetries, e.g., gauge symmetry and chiral symmetry.
Bethe, Oppenheimer, Teller and the Fermi Award: Norris Bradbury Speaks
Energy Technology Data Exchange (ETDEWEB)
Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-28
In 1956 the Enrico Fermi Presidential Award was established to recognize scientists, engineers, and science policymakers who gave unstintingly over their careers to advance energy science and technology. The first recipient was John von Neumann. .1 Among those scientists who were thought eligible for the award were Hans Bethe, J. Robert Oppenheimer, and Edward Teller. In 1959 Norris Bradbury was asked to comment on the relative merits of each these three men, whom he knew well from their affiliation with Los Alamos. Below is a reproduction of the letter Bradbury sent to Dr. Warren C. Johnson of the AEC’s General Advisory Committee(GAC) containing his evaluation of each man. The letter might surprise those not accustomed to Bradbury’s modus operandi of providing very detailed and forthright answers to the AEC. The letter, itself, was found in cache of old microfilm. Whether because of the age of the microfilm or the quality of the filming process, portions of the letter are not legible. Where empty brackets appear, the word or words could not be read or deduced. Words appearing in brackets are guesses that appear, from the image, to be what was written. These guesses, of course, are just that – guesses.
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…
Learning Activity Package, Algebra.
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
Herriott, Scott R.; Dunbar, Steven R.
2009-01-01
The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…
Seo, Young Joo; Kim, Young Hee
2016-01-01
In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.
Hayden, Dunstan; Cuevas, Gilberto
The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…
International Nuclear Information System (INIS)
Calmet, J.
1982-01-01
A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)
Algebraic Description of Motion
Davidon, William C.
1974-01-01
An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Cluster algebras bases on vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2016-01-01
Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300
Algebraic K-theory and algebraic topology
Energy Technology Data Exchange (ETDEWEB)
Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)
2003-09-15
This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.
An introduction to algebraic geometry and algebraic groups
Geck, Meinolf
2003-01-01
An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups
Springer, T A
1998-01-01
"[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Quantitative Algebraic Reasoning
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon
2016-01-01
We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We deﬁne an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have ﬁnitary and continuous versions. The four cases are: Hausdorﬀ metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...
Chatterjee, D
2007-01-01
About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the
Adaptive algebraic reconstruction technique
International Nuclear Information System (INIS)
Lu Wenkai; Yin Fangfang
2004-01-01
Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency
Cohen, A.M.; Liu, S.
2011-01-01
For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular
Profinite algebras and affine boundedness
Schneider, Friedrich Martin; Zumbrägel, Jens
2015-01-01
We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...
Pseudo-Riemannian Novikov algebras
Energy Technology Data Exchange (ETDEWEB)
Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn
2008-08-08
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.
International Nuclear Information System (INIS)
Lebedenko, V.M.
1978-01-01
The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language
Ansatz from nonlinear optics applied to trapped Bose-Einstein condensates
International Nuclear Information System (INIS)
Keceli, Murat; Ilday, F. Oe.; Oktel, M. Oe.
2007-01-01
A simple analytical ansatz, which has been used to describe the intensity profile of the similariton laser (a laser with self-similar propagation of ultrashort pulses), is used as a variational wave function to solve the Gross-Pitaevskii equation for a wide range of interaction parameters. The variational form interpolates between the noninteracting density profile and the strongly interacting Thomas-Fermi profile smoothly. The simple form of the ansatz is modified for both cylindrically symmetric and completely anisotropic harmonic traps. The resulting ground-state density profile and energy are in very good agreement with both the analytical solutions in the limiting cases of interaction and the numerical solutions in the intermediate regime
Indian Academy of Sciences (India)
algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Algebraic Semantics for Narrative
Kahn, E.
1974-01-01
This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)
Leamer, Micah J.
2004-01-01
Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS
Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra
van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud
1995-01-01
We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
Institute of Scientific and Technical Information of China (English)
Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA
2004-01-01
In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.
Polynomials in algebraic analysis
Multarzyński, Piotr
2012-01-01
The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Currents on Grassmann algebras
International Nuclear Information System (INIS)
Coquereaux, R.; Ragoucy, E.
1993-09-01
Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs
Introduction to abstract algebra
Nicholson, W Keith
2012-01-01
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be
Comment on 'New ansatz for metric operator calculation in pseudo-Hermitian field theory'
International Nuclear Information System (INIS)
Bender, Carl M.; Benincasa, Gregorio; Jones, H. F.
2009-01-01
In a recent Brief Report by Shalaby, a new first-order perturbative calculation of the metric operator for an iφ 3 scalar field theory is given. It is claimed that the incorporation of derivative terms in the ansatz for the metric operator results in a local solution, in contrast to the nonlocal solution previously obtained by Bender, Brody, and Jones. Unfortunately, Shalaby's calculation is not valid because of sign errors.
The Boolean algebra of Galois algebras
Directory of Open Access Journals (Sweden)
Lianyong Xue
2003-02-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={bÃ¢ÂˆÂˆB|bx=g(xbÃ¢Â€Â‰for allÃ¢Â€Â‰xÃ¢ÂˆÂˆB} for each gÃ¢ÂˆÂˆG, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|gÃ¢ÂˆÂˆG}, e a nonzero element in Ba, and He={gÃ¢ÂˆÂˆG|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.
Real division algebras and other algebras motivated by physics
International Nuclear Information System (INIS)
Benkart, G.; Osborn, J.M.
1981-01-01
In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations
Random-fractal Ansatz for the configurations of two-dimensional critical systems.
Lee, Ching Hua; Ozaki, Dai; Matsueda, Hiroaki
2016-12-01
Critical systems have always intrigued physicists and precipitated the development of new techniques. Recently, there has been renewed interest in the information contained in the configurations of classical critical systems, whose computation do not require full knowledge of the wave function. Inspired by holographic duality, we investigated the entanglement properties of the classical configurations (snapshots) of the Potts model by introducing an Ansatz ensemble of random fractal images. By virtue of the central limit theorem, our Ansatz accurately reproduces the entanglement spectra of actual Potts snapshots without any fine tuning of parameters or artificial restrictions on ensemble choice. It provides a microscopic interpretation of the results of previous studies, which established a relation between the scaling behavior of snapshot entropy and the critical exponent. More importantly, it elucidates the role of ensemble disorder in restoring conformal invariance, an aspect previously ignored. Away from criticality, the breakdown of scale invariance leads to a renormalization of the parameter Σ in the random fractal Ansatz, whose variation can be used as an alternative determination of the critical exponent. We conclude by providing a recipe for the explicit construction of fractal unit cells consistent with a given scaling exponent.
Testing invisible momentum ansatze in missing energy events at the LHC
Kim, Doojin; Matchev, Konstantin T.; Moortgat, Filip; Pape, Luc
2017-08-01
We consider SUSY-like events with two decay chains, each terminating in an invisible particle, whose true energy and momentum are not measured in the detector. Nevertheless, a useful educated guess about the invisible momenta can still be obtained by optimizing a suitable invariant mass function. We review and contrast several proposals in the literature for such ansatze: four versions of the M T 2-assisted on-shell reconstruction (MAOS), as well as several variants of the on-shell constrained M 2 variables. We compare the performance of these methods with regards to the mass determination of a new particle resonance along the decay chain from the peak of the reconstructed invariant mass distribution. For concreteness, we consider the event topology of dilepton t\\overline{t} events and study each of the three possible subsystems, in both a t\\overline{t} and a SUSY example. We find that the M 2 variables generally provide sharper peaks and therefore better ansatze for the invisible momenta. We show that the performance can be further improved by preselecting events near the kinematic endpoint of the corresponding variable from which the momentum ansatz originates.
About the differential calculus on the quantum groups
International Nuclear Information System (INIS)
Bernard, D.
1992-01-01
Given a solution R of the Yang-Baxter equation admitting a quasi-triangular decomposition we define a quasi-triangular quantum Lie algebra. We describe how to any quasi-triangular quantum Lie algebra U(G R ) is associated a Hopf algebra F(G R ) with a differential calculus on it such that the algebra of the quantum Lie derivatives is the algebra U(G R ). This allows us to make the connection between the differential calculus on quantum groups and the exchange algebras of the algebraic Bethe ansatz. (orig.)
Special set linear algebra and special set fuzzy linear algebra
Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.
2009-01-01
The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...
Hecke algebras with unequal parameters
Lusztig, G
2003-01-01
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...
Axis Problem of Rough 3-Valued Algebras
Institute of Scientific and Technical Information of China (English)
Jianhua Dai; Weidong Chen; Yunhe Pan
2006-01-01
The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.
Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study
International Nuclear Information System (INIS)
Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.
2016-01-01
The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.
Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2016-03-01
The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.
Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2015-11-01
The magnetic properties of spins-S and σ Ising model on the Bethe lattice have been investigated by using the Monte Carlo simulation. The thermal total magnetization and magnetization of spins S and σ with the different exchange interactions, different external magnetic field and different temperatures have been studied. The critical temperature and compensation temperature have been deduced. The magnetic hysteresis cycle of Ising ferrimagnetic system on the Bethe lattice has been deduced for different values of exchange interactions between the spins S and σ, for different values of crystal field and for different sizes. The magnetic coercive filed has been deduced. - Highlights: • The magnetic properties of Bethe lattice have been investigated. • The critical temperature and compensation temperature have been deduced. • The magnetic coercive filed has been deduced.
Davidson, Kenneth R
1996-01-01
The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea
Algebra II workbook for dummies
Sterling, Mary Jane
2014-01-01
To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr
Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function
Gao, Fei; Chang, Lei; Liu, Yu-xin
2017-07-01
We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.
Pessoa em Bethânia: os versos do desassossego na voz do encantamento
Barros, Andre Luiz Calsone
2013-01-01
Pessoa em Bethânia tem por tema a recriação dos versos de Caeiro no espetáculo Rosa dos Ventos O Show Encantado, tendo por intérprete Maria Bethânia. O corpus é o Poema VIII de Alberto Caeiro, heterônimo de Fernando Pessoa, da obra O Guardador de Rebanhos (1911 1912), transformado em roteiro dramáticomusical e tornado performance no espetáculo Rosa dos Ventos. Reinterpretado por meio da voz, do corpo, da música e dos mais variados recursos cênicos, o poema de Fernando ...
Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice
Chen, Haiyan; Zhang, Fuji
2013-08-01
In this paper, we study the sandpile model on the generalized finite Bethe lattice with a particular boundary condition. Using a combinatorial method, we give the exact expressions for all single-site probabilities and some two-site joint probabilities. As a by-product, we prove that the height probabilities of bulk vertices are all the same for the Bethe lattice with certain given boundary condition, which was found from numerical evidence by Grassberger and Manna ["Some more sandpiles," J. Phys. (France) 51, 1077-1098 (1990)], 10.1051/jphys:0199000510110107700 but without a proof.
Srinivas, V
1996-01-01
Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...
Regularity of C*-algebras and central sequence algebras
DEFF Research Database (Denmark)
Christensen, Martin S.
The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...
Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra
Pitsch, Wolfgang; Zarzuela, Santiago
2016-01-01
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...
Quantum cluster algebra structures on quantum nilpotent algebras
Goodearl, K R
2017-01-01
All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.
Slavnov and Gaudin-Korepin formulas for models without U (1) symmetry: the XXX chain on the segment
Belliard, S.; Pimenta, R. A.
2016-04-01
We consider the isotropic spin -\\frac{1}{2} Heisenberg chain with the most general integrable boundaries. The scalar product between the on-shell Bethe vector and its off-shell dual, obtained by means of the modified algebraic Bethe ansatz, is given by a modified Slavnov formula. The corresponding Gaudin-Korepin formula, i.e., the square of the norm, is also obtained.
Identities and derivations for Jacobian algebras
International Nuclear Information System (INIS)
Dzhumadil'daev, A.S.
2001-09-01
Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
Launey, Warwick De
2011-01-01
Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...
Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf
1992-01-01
The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...
Wadsworth, A R
2017-01-01
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.
Bloch, Spencer J
2000-01-01
This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.
Olver, Peter J
2018-01-01
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
Deo, Satya
2018-01-01
This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...
The relation between quantum W algebras and Lie algebras
International Nuclear Information System (INIS)
Boer, J. de; Tjin, T.
1994-01-01
By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Converting nested algebra expressions into flat algebra expressions
Paredaens, J.; Van Gucht, D.
1992-01-01
Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
Computer Program For Linear Algebra
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Algebra for Gifted Third Graders.
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Gradings on simple Lie algebras
Elduque, Alberto
2013-01-01
Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.
Tensor spaces and exterior algebra
Yokonuma, Takeo
1992-01-01
This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Projector bases and algebraic spinors
International Nuclear Information System (INIS)
Bergdolt, G.
1988-01-01
In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors
Contractions of quantum algebraic structures
International Nuclear Information System (INIS)
Doikou, A.; Sfetsos, K.
2010-01-01
A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Polynomial Heisenberg algebras
International Nuclear Information System (INIS)
Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M
2004-01-01
Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively
Classical algebraic chromodynamics
International Nuclear Information System (INIS)
Adler, S.L.
1978-01-01
I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Partially ordered algebraic systems
Fuchs, Laszlo
2011-01-01
Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i
Hohn, Franz E
2012-01-01
This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur
Principles of algebraic geometry
Griffiths, Phillip A
1994-01-01
A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...
Algebraic curves and cryptography
Murty, V Kumar
2010-01-01
It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2010-01-01
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Algebra & trigonometry I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq
Algebra & trigonometry super review
2012-01-01
Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras
International Nuclear Information System (INIS)
Gebert, R.W.
1993-09-01
The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)
The theory of algebraic numbers
Pollard, Harry
1998-01-01
An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.
Spin-4 extended conformal algebras
International Nuclear Information System (INIS)
Kakas, A.C.
1988-01-01
We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Thomys, Janus; Zhang, Xiaohong
2013-01-01
We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Process Algebra and Markov Chains
Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Process algebra and Markov chains
Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.
2001-01-01
This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study
Algebraic Methods to Design Signals
2015-08-27
to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory
Comment on the analysis of Bethe-Salpeter scattering states by Hormozdiari and Huang
International Nuclear Information System (INIS)
Tryon, E.P.
1978-01-01
The analysis of Bethe-Salpeter scattering states by Hormozdiari and Huang appears to contain invalid mathematical arguments. When these arguments are rectified, one arrives at substantially different conclusions. In particular, the prescription of Hormozdiari and Huang for constructing such states does not seem applicable to any process occurring in nature
Stochastic integration of the Bethe-Salpeter equation for two bound fermions
International Nuclear Information System (INIS)
Salomon, M.
1988-09-01
A non-perturbative method using a Monte Carlo algorithm is used to integrate the Bethe-Salpeter equation in momentum space. Solutions for two scalars and two fermions with an arbitrary coupling constant are calculated for bound states in the ladder approximation. The results are compared with other numerical methods. (Author) (13 refs., 2 figs.)
Deep inelastic scattering on the deuteron in the Bethe-Salpeter formalism
International Nuclear Information System (INIS)
Kaptari, L.P.; Kazakov, K.Yu.; Umnikov, A.Yu.; Khanna, F.C.
1996-01-01
The nuclear effects in the spin structure functions of the deuteron g 1 and b 2 are estimated in a fully covariant approach of the Bethe-Salpeter formalism. The construction of the relativistic wave function of the deuteron is discussed in detail. Numerical results for g 1 and b 2 are compared with nonrelativistic results and relativistic corrections are discussed [ru
Heavy quark effective theory, interpolating fields and Bethe-Salpeter amplitudes
International Nuclear Information System (INIS)
Hussain, F.; Thomspon, G.
1994-07-01
We use the LSZ reduction theorem and interpolating fields, along with the heavy quark effective theory, to investigate the structure of the Bethe-Salpeter amplitude for heavy hadrons. We show how a simple form of this amplitude, used extensively in heavy hadron decay calculations, follows naturally up to O(1/M) from these field theoretic considerations. (author). 13 refs, 1 tab
Mertz, Leslie
2018-01-01
Work is already underway to bring blockchain technology to the healthcare industry, and hospital administrators are trying to figure out what it can do for them, their clinicians, and their patients. That includes administrators at Beth Israel Deaconess Medical Center, a leading academic medical center located in Boston.
A political end to a pioneering career: Marianne Beth and the psychology of religion
Belzen, J.A.
2011-01-01
Although forgotten in both Religionswissenschaft (the Science of Religion) and psychology, Marianne Beth (1880-1984), initially trained as a lawyer and already in 1928 called a "leading European woman", must be considered as one of the female pioneers of these fields. She has been active especially
The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics
Energy Technology Data Exchange (ETDEWEB)
Borrelli, Raffaele, E-mail: raffaele.borrelli@unito.it [DISAFA, Università di Torino, I-10095 Grugliasco (Italy); Gelin, Maxim F. [Departement of Chemistry, Technische Universität München, D-85747 Garching (Germany)
2016-12-20
A new ansatz for molecular vibronic wave functions based on a superposition of time-dependent Generalized Coherent States is developed and analysed. The methodology is specifically tailored to describe the time evolution of the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave packet parameters are obtained by using the Dirac–Frenkel time-dependent variational principle. The methodology is used to describe the quantum dynamical behavior of a model polaron system and its scaling and convergence properties are discussed and compared with numerically exact results.
Form factors in quantum integrable models with GL(3)-invariant R-matrix
Energy Technology Data Exchange (ETDEWEB)
Pakuliak, S., E-mail: pakuliak@theor.jinr.ru [Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Reg. (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Reg. (Russian Federation); Institute of Theoretical and Experimental Physics, 117259 Moscow (Russian Federation); Ragoucy, E., E-mail: eric.ragoucy@lapth.cnrs.fr [Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex (France); Slavnov, N.A., E-mail: nslavnov@mi.ras.ru [Steklov Mathematical Institute, Moscow (Russian Federation)
2014-04-15
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.
International Nuclear Information System (INIS)
Balantekin, A. B.; Pehlivan, Y.
2007-01-01
We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators
A note on glN type-I integrable defects
International Nuclear Information System (INIS)
Doikou, Anastasia
2014-01-01
Type-I quantum defects are considered in the context of the gl N spin chain. The type-I defects are associated with the generalized harmonic oscillator algebra, and the chosen defect matrix is that of the vector nonlinear Schrödinger (NLS) model. The transmission matrices relevant to this particular type of defects are computed via the Bethe ansatz methodology. (paper)
Bergstra, J.A.; Middelburg, C.A.
2015-01-01
We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution
Indian Academy of Sciences (India)
BOOK REVIEW ... To the Indian reader, the word discourse, evokes a respected ... I dug a bit deeper with Google trans- late, and ... published in a journal of mathematics educa- tion. ... The article on Shafarevich's work elsewhere ... goal then, is to develop the basics of algebra in ... ometric Greeks, and works like a magician.
Thinking Visually about Algebra
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
The algebraic collective model
International Nuclear Information System (INIS)
Rowe, D.J.; Turner, P.S.
2005-01-01
A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei
Benjamin, Carl; And Others
Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…
Swan, R G
1968-01-01
From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."
Bergstra, J.A.; Baeten, J.C.M.
1993-01-01
The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication
Commutative algebra with a view toward algebraic geometry
Eisenbud, David
1995-01-01
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...
Operator algebras and topology
International Nuclear Information System (INIS)
Schick, T.
2002-01-01
These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)
Advanced modern algebra part 2
Rotman, Joseph J
2017-01-01
This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.
International Nuclear Information System (INIS)
Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA
1992-01-01
The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)
Hopf algebras in noncommutative geometry
International Nuclear Information System (INIS)
Varilly, Joseph C.
2001-10-01
We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)
On Dunkl angular momenta algebra
Energy Technology Data Exchange (ETDEWEB)
Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2015-11-17
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Energy Technology Data Exchange (ETDEWEB)
Semeriyanov, F; Saphiannikova, M; Heinrich, G [Leibniz Institute of Polymer Research Dresden, Hohe str. 6, 01069 Dresden (Germany)], E-mail: fsemeriyanov@yahoo.de
2009-11-20
Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.
Energy Technology Data Exchange (ETDEWEB)
Dorkin, S M [Dal` nevostochnyj Gosudarstvennyj Univ., Vladivostok (Russian Federation); Kaptar` , L P; Semikh, S S [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics
1997-12-31
The problem of calculating the energy spectrum of a two-fermion bound state within the Bethe-Salpeter formalism is discussed. An expansion of the kernel of the spinor-spinor Bethe-Salpeter equation in the ladder approximation is found in terms of a bi-orthogonal basis of the generalized Gilbert-Schmidt series for symmetric equations of the Fredholm type. According to this expansion, a new method of solving the Bethe-Salpeter equation and finding the mass spectrum is proposed. Methodological result of numerical solutions of equations with scalar interaction is presented. (author). 20 refs., 3 figs.
International Nuclear Information System (INIS)
Marquette, Ian
2013-01-01
We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
Directory of Open Access Journals (Sweden)
María Carolina Spinel G.
1990-01-01
Con esta base, en posteriores artículos de divulgación, presentaremos algunas aplicaciones que muestren la ventaja de su empleo en la descripción de sistema físico. Dado el amplio conocimiento que se tiene de los espacios vectoriales. La estructura y propiedades del algebra de Clifford suele presentarse con base en los elementos de un espacio vectorial. En esta dirección, en la sección 2 se define la notación y se describe la estructura de un algebra de Clifford Gn, introduciendo con detalle las operaciones básicas entre los elementos del álgebra. La sección 3 se dedica a describir una base tensorial de Gn.
Indian Academy of Sciences (India)
project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Beigie, Darin
2014-01-01
Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…
Fundamentals of linear algebra
Dash, Rajani Ballav
2008-01-01
FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.
Algebras of Information States
Czech Academy of Sciences Publication Activity Database
Punčochář, Vít
2017-01-01
Roč. 27, č. 5 (2017), s. 1643-1675 ISSN 0955-792X R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : information states * relational semantics * algebraic semantics * intuitionistic logic * inquisitive disjunction Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.909, year: 2016
International Nuclear Information System (INIS)
Todorov, Ivan
2010-12-01
Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)
Algebra & trigonometry II essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica
Lutfiyya, Lutfi A
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
Energy Technology Data Exchange (ETDEWEB)
Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2016-01-01
The magnetic properties of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice have been studied by using the Monte Carlo simulations. The ground state phase diagrams of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice has been obtained. The thermal total magnetization and magnetization of spins-5/2 and spin-2 with the different exchange interactions, external magnetic field and temperatures have been studied. The critical temperature have been deduced. The magnetic hysteresis cycle on the Bethe lattice has been deduced for different values of exchange interactions, for different values of crystal field and for different sizes. The magnetic coercive field has been deduced. - Highlights: • The alternate mixed spin-5/2 and -2 on the Bethe lattice is studied. • The critical temperature has been deduced. • The magnetic coercive filed has been deduced.
Accuracy of the Bethe approximation for hyperparameter estimation in probabilistic image processing
International Nuclear Information System (INIS)
Tanaka, Kazuyuki; Shouno, Hayaru; Okada, Masato; Titterington, D M
2004-01-01
We investigate the accuracy of statistical-mechanical approximations for the estimation of hyperparameters from observable data in probabilistic image processing, which is based on Bayesian statistics and maximum likelihood estimation. Hyperparameters in statistical science correspond to interactions or external fields in the statistical-mechanics context. In this paper, hyperparameters in the probabilistic model are determined so as to maximize a marginal likelihood. A practical algorithm is described for grey-level image restoration based on a Gaussian graphical model and the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We examine the accuracy of hyperparameter estimation when we use the Bethe approximation. It is well known that a practical algorithm for probabilistic image processing can be prescribed analytically when a Gaussian graphical model is adopted as a prior probabilistic model in Bayes' formula. We are therefore able to compare, in a numerical study, results obtained through mean-field-type approximations with those based on exact calculation
The Beer/Bethe/Uexküll paper (1899) and misinterpretations surrounding 'vitalistic behaviorism'.
Mildenberger, Florian
2006-01-01
In the history of behaviorism the paper of the three physiologists Theodor Beer, Albrecht Bethe and Jakob von Uexküll from 1899 plays an important role. Many researchers were influenced by this paper and identified it as fundamental for objective psychological research. But during the period of its adoption (1900-1925) psychologists did not notice that Beer, Bethe and Uexküll had distanced themselves from their own paper, because it had been ignored in physiological and biological discussions. Moreover, one of the three (Beer) had to resign from the scientific community because of private scandal and another one (Uexküll) changed all of his views and left the base of objective science for subjective vitalism. However, this did not change his adoption of behaviorism.
International Nuclear Information System (INIS)
Williams, A.G.
1998-01-01
There is a need for covariant solutions of bound state equations in order to construct realistic QCD based models of mesons and baryons. Furthermore, we ideally need to know the structure of these bound states in all kinematical regimes, which makes a direct solution in Minkowski space (without any 3-dimensional reductions) desirable. The Bethe-Salpeter equation (BSE) for bound states in scalar theories is reformulated and solved for arbitrary scattering kernels in terms of a generalized spectral representation directly in Minkowski space. This differs from the conventional Euclidean approach, where the BSE can only be solved in ladder approximation after a Wick rotation. An application of covariant Bethe-Salpeter solutions to a quark-diquark model of the nucleon is also briefly discussed. (orig.)
Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state
de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.
2018-03-01
Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.
Assessing Algebraic Solving Ability: A Theoretical Framework
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Fusion rules of chiral algebras
International Nuclear Information System (INIS)
Gaberdiel, M.
1994-01-01
Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)
Einstein algebras and general relativity
International Nuclear Information System (INIS)
Heller, M.
1992-01-01
A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
Perturbation theory for the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.; Litskevich, I.K.
1990-01-01
The completeness and orthogonality of the solutions of the Bethe-Salpeter equation is proven. A correct derivation of perturbation-theory equations is given. A generalization that includes the field of a plane electromagnetic wave is proposed. The rate of one-photon annihilation of positronium in this field is calculated. If the one-photon decay is allowed, the stationary states of the system are found (states of light-positronium)
The spin-3/2 Blume-Capel model on the Bethe lattice using the recursion method
International Nuclear Information System (INIS)
Albayrak, Erhan; Keskin, Mustafa
2000-01-01
The spin-3/2 Blume-Capel model is solved on the Bethe lattice using the exact recursion equations. The nature of the variation of the Curie temperature with the ratio of the single-ion anisotropy term to the exchange-coupling constant is studied and the phase diagrams are constructed on the Bethe lattice with the co-ordination numbers q=3 and 6. A comparison is made with the results of the other approximation schemes
The spin-3/2 Blume-Capel model on the Bethe lattice using the recursion method
Albayrak, E
2000-01-01
The spin-3/2 Blume-Capel model is solved on the Bethe lattice using the exact recursion equations. The nature of the variation of the Curie temperature with the ratio of the single-ion anisotropy term to the exchange-coupling constant is studied and the phase diagrams are constructed on the Bethe lattice with the co-ordination numbers q=3 and 6. A comparison is made with the results of the other approximation schemes.
Categorical Algebra and its Applications
1988-01-01
Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.
International Nuclear Information System (INIS)
Kakehashi, Yoshiro; Chandra, Sumal
2016-01-01
We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi–Dirac function for the d electrons with e g symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data. (author)
Kakehashi, Yoshiro; Chandra, Sumal
2016-04-01
We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.
Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit
Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas
2018-04-01
Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.
Electronic structure of disordered binary alloys with short range correlation in Bethe lattice
International Nuclear Information System (INIS)
Moreno, I.F.
1987-01-01
The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt
Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.
2015-01-01
Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.
Applications of Computer Algebra Conference
Martínez-Moro, Edgar
2017-01-01
The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
Computational aspects of algebraic curves
Shaska, Tanush
2005-01-01
The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove
Hu, Q.; Vidal, G.
2017-07-01
The generalization of the multiscale entanglement renormalization ansatz (MERA) to continuous systems, or cMERA [Haegeman et al., Phys. Rev. Lett. 110, 100402 (2013), 10.1103/PhysRevLett.110.100402], is expected to become a powerful variational ansatz for the ground state of strongly interacting quantum field theories. In this Letter, we investigate, in the simpler context of Gaussian cMERA for free theories, the extent to which the cMERA state |ΨΛ⟩ with finite UV cutoff Λ can capture the spacetime symmetries of the ground state |Ψ ⟩. For a free boson conformal field theory (CFT) in 1 +1 dimensions, as a concrete example, we build a quasilocal unitary transformation V that maps |Ψ ⟩ into |ΨΛ⟩ and show two main results. (i) Any spacetime symmetry of the ground state |Ψ ⟩ is also mapped by V into a spacetime symmetry of the cMERA |ΨΛ⟩. However, while in the CFT, the stress-energy tensor Tμ ν(x ) (in terms of which all the spacetime symmetry generators are expressed) is local, and the corresponding cMERA stress-energy tensor Tμν Λ(x )=V Tμ ν(x )V† is quasilocal. (ii) From the cMERA, we can extract quasilocal scaling operators OαΛ(x ) characterized by the exact same scaling dimensions Δα, conformal spins sα, operator product expansion coefficients Cα β γ, and central charge c as the original CFT. Finally, we argue that these results should also apply to interacting theories.
2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras
International Nuclear Information System (INIS)
Ayupov, Shavkat; Kudaybergenov, Karimbergen
2016-01-01
The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)
Dynamical entropy of C* algebras and Von Neumann algebras
International Nuclear Information System (INIS)
Connes, A.; Narnhofer, H.; Thirring, W.
1986-01-01
The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)
Abstract Algebra to Secondary School Algebra: Building Bridges
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
Put, Marius van der
1999-01-01
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.
Topological أ-algebras with Cأ-enveloping algebras II
Indian Academy of Sciences (India)
necessarily complete) pro-Cأ-topology which coincides with the relative uniform .... problems in Cأ-algebras, Phillips introduced more general weakly Cأ- .... Banach أ-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pًxق where.
A modal characterization of Peirce algebras
M. de Rijke (Maarten)
1995-01-01
textabstractPeirce algebras combine sets, relations and various operations linking the two in a unifying setting.This note offers a modal perspective on Peirce algebras.It uses modal logic to characterize the full Peirce algebras.
Quantum deformation of the affine transformation algebra
International Nuclear Information System (INIS)
Aizawa, N.; Sato, Haru-Tada
1994-01-01
We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)
Loop expansion around the Bethe approximation through the M-layer construction
Altieri, Ada; Chiara Angelini, Maria; Lucibello, Carlo; Parisi, Giorgio; Ricci-Tersenghi, Federico; Rizzo, Tommaso
2017-11-01
For every physical model defined on a generic graph or factor graph, the Bethe M-layer construction allows building a different model for which the Bethe approximation is exact in the large M limit, and coincides with the original model for M=1 . The 1/M perturbative series is then expressed by a diagrammatic loop expansion in terms of so-called fat diagrams. Our motivation is to study some important second-order phase transitions that do exist on the Bethe lattice, but are either qualitatively different or absent in the corresponding fully connected case. In this case, the standard approach based on a perturbative expansion around the naive mean field theory (essentially a fully connected model) fails. On physical grounds, we expect that when the construction is applied to a lattice in finite dimension there is a small region of the external parameters, close to the Bethe critical point, where strong deviations from mean-field behavior will be observed. In this region, the 1/M expansion for the corrections diverges, and can be the starting point for determining the correct non-mean-field critical exponents using renormalization group arguments. In the end, we will show that the critical series for the generic observable can be expressed as a sum of Feynman diagrams with the same numerical prefactors of field theories. However, the contribution of a given diagram is not evaluated by associating Gaussian propagators to its lines, as in field theories: one has to consider the graph as a portion of the original lattice, replacing the internal lines with appropriate one-dimensional chains, and attaching to the internal points the appropriate number of infinite-size Bethe trees to restore the correct local connectivity of the original model. The actual contribution of each (fat) diagram is the so-called line-connected observable, which also includes contributions from sub-diagrams with appropriate prefactors. In order to compute the corrections near to the critical
DEFF Research Database (Denmark)
Høyrup, Jens
with basic Assyriology but otherwise philological details are avoided. All of these texts are from the second half of the Old Babylonian period, that is, 1800–1600 BCE. It is indeed during this period that the “algebraic” discipline, and Babylonian mathematics in general, culminates. Even though a few texts...... particular culture. Finally, it describes the origin of the discipline and its impact in later mathematics, not least Euclid’s geometry and genuine algebra as created in medieval Islam and taken over in European medieval and Renaissance mathematics....
Algebraic topology and concurrency
DEFF Research Database (Denmark)
Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric
2006-01-01
We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...
Clark, Allan
1984-01-01
This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to
Hazewinkel, M
2008-01-01
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i
The Unitality of Quantum B-algebras
Han, Shengwei; Xu, Xiaoting; Qin, Feng
2018-02-01
Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.
Fractional supersymmetry and infinite dimensional lie algebras
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
2001-01-01
In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed
New examples of continuum graded Lie algebras
International Nuclear Information System (INIS)
Savel'ev, M.V.
1989-01-01
Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs
Graded associative conformal algebras of finite type
Kolesnikov, Pavel
2011-01-01
In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...
Linear Algebra and Image Processing
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
Templates for Linear Algebra Problems
Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der
1995-01-01
The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and
Differential Equation over Banach Algebra
Kleyn, Aleks
2018-01-01
In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.
Ahadpanah, A.; Borumand Saeid, A.
2011-01-01
In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.
General distributions in process algebra
Katoen, Joost P.; d' Argenio, P.R.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.
2001-01-01
This paper is an informal tutorial on stochastic process algebras, i.e., process calculi where action occurrences may be subject to a delay that is governed by a (mostly continuous) random variable. Whereas most stochastic process algebras consider delays determined by negative exponential
Tilting-connected symmetric algebras
Aihara, Takuma
2010-01-01
The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.
Algebraic study of chiral anomalies
Indian Academy of Sciences (India)
2012-06-14
Jun 14, 2012 ... They form a group G which acts on the (affine) space of ... The curvature F of A is defined by (notice that in this paper the bracket is defined ... This purely algebraic formulation easily extends to the consideration of the Lie algebra of vector .... namely the case of perturbatively renormalizable theories in four ...
Logarithmic residues in Banach algebras
H. Bart (Harm); T. Ehrhardt; B. Silbermann
1994-01-01
textabstractLet f be an analytic Banach algebra valued function and suppose that the contour integral of the logarithmic derivative f′f-1 around a Cauchy domain D vanishes. Does it follow that f takes invertible values on all of D? For important classes of Banach algebras, the answer is positive. In
Modular specifications in process algebra
R.J. van Glabbeek (Rob); F.W. Vaandrager (Frits)
1987-01-01
textabstractIn recent years a wide variety of process algebras has been proposed in the literature. Often these process algebras are closely related: they can be viewed as homomorphic images, submodels or restrictions of each other. The aim of this paper is to show how the semantical reality,
Galois Connections for Flow Algebras
DEFF Research Database (Denmark)
Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis
2011-01-01
to the approach taken by Monotone Frameworks and other classical analyses. We present a generic framework for static analysis based on flow algebras and program graphs. Program graphs are often used in Model Checking to model concurrent and distributed systems. The framework allows to induce new flow algebras...
The Algebra of Complex Numbers.
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Donaldson invariants in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)
Learning Algebra from Worked Examples
Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.
2014-01-01
For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…
Covariant representations of nuclear *-algebras
International Nuclear Information System (INIS)
Moore, S.M.
1978-01-01
Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations
Practical algebraic renormalization
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias
2001-01-01
A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ
Shafarevich, Igor Rostislavovich
1994-01-01
Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...
Invariants of triangular Lie algebras
International Nuclear Information System (INIS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-01-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated
Waterloo Workshop on Computer Algebra
Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday
2018-01-01
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.
Elements of algebraic coding systems
Cardoso da Rocha, Jr, Valdemar
2014-01-01
Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...
Representations of affine Hecke algebras
Xi, Nanhua
1994-01-01
Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest
(Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras
Directory of Open Access Journals (Sweden)
Dusko Pavlovic
2017-01-01
Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.
Algebra of pseudo-differential operators over C*-algebra
International Nuclear Information System (INIS)
Mohammad, N.
1982-08-01
Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Rota-Baxter algebras and the Hopf algebra of renormalization
International Nuclear Information System (INIS)
Ebrahimi-Fard, K.
2006-06-01
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
The BRS algebra of a free differential algebra
International Nuclear Information System (INIS)
Boukraa, S.
1987-04-01
We construct in this work, the Weil and the universal BRS algebras of theories that can have as a gauge symmetry a free differential (Sullivan) algebra, the natural extension of Lie algebras allowing the definition of p-form gauge potentials (p>1). The finite gauge transformations of these potentials are deduced from the infinitesimal ones and the group structure is shown. The geometrical meaning of these p-form gauge potentials is given by the notion of a Quillen superconnection. (author). 19 refs
Lie algebra in quantum physics by means of computer algebra
Kikuchi, Ichio; Kikuchi, Akihito
2017-01-01
This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...
Head First Algebra A Learner's Guide to Algebra I
Pilone, Tracey
2008-01-01
Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i
Free energy calculations, enhanced by a Gaussian ansatz, for the "chemical work" distribution.
Boulougouris, Georgios C
2014-05-15
The evaluation of the free energy is essential in molecular simulation because it is intimately related with the existence of multiphase equilibrium. Recently, it was demonstrated that it is possible to evaluate the Helmholtz free energy using a single statistical ensemble along an entire isotherm by accounting for the "chemical work" of transforming each molecule, from an interacting one, to an ideal gas. In this work, we show that it is possible to perform such a free energy perturbation over a liquid vapor phase transition. Furthermore, we investigate the link between a general free energy perturbation scheme and the novel nonequilibrium theories of Crook's and Jarzinsky. We find that for finite systems away from the thermodynamic limit the second law of thermodynamics will always be an inequality for isothermal free energy perturbations, resulting always to a dissipated work that may tend to zero only in the thermodynamic limit. The work, the heat, and the entropy produced during a thermodynamic free energy perturbation can be viewed in the context of the Crooks and Jarzinsky formalism, revealing that for a given value of the ensemble average of the "irreversible" work, the minimum entropy production corresponded to a Gaussian distribution for the histogram of the work. We propose the evaluation of the free energy difference in any free energy perturbation based scheme on the average irreversible "chemical work" minus the dissipated work that can be calculated from the variance of the distribution of the logarithm of the work histogram, within the Gaussian approximation. As a consequence, using the Gaussian ansatz for the distribution of the "chemical work," accurate estimates for the chemical potential and the free energy of the system can be performed using much shorter simulations and avoiding the necessity of sampling the computational costly tails of the "chemical work." For a more general free energy perturbation scheme that the Gaussian ansatz may not be
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Meijer, Alko R
2016-01-01
This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...
Hestenes, David
2015-01-01
This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...
Current algebra for parafields
International Nuclear Information System (INIS)
Palev, Ch.D.
1976-01-01
Within the framework of the Lagrangean QFT a generalization of canonical commutation and anticommutation relations in terms of three-linear commutation relations, corresponding to the parastatistics, s discussed. A detailed derivation of these three-linear relations for a set of parafermi fields is presented. Then for a Lagrangean, depending of a family of parabose fields and a family of paraferm fields, is shown that the fundamental hypothesis of current algebra is valid. In other words, the currents corresponding to the linear gauge transformations are found to meet the commutation relation: [Jsub(f)sup(0)(x), Jsub(g)sup(0)]sub(x 0 =y 0 ) = -idelta(x vector - y vector)Jsub([f,g])sup(0) (x), where Jsub(f)sup(0) is a time component of the current, corresponding to transformation f. (S.P.)
Applications of computer algebra
1985-01-01
Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa tion and obtains a closed for...
Pérez López, César
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...
Quantum algebra of N superspace
International Nuclear Information System (INIS)
Hatcher, Nicolas; Restuccia, A.; Stephany, J.
2007-01-01
We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the κ-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra
Macdonald index and chiral algebra
Song, Jaewon
2017-08-01
For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.
Vertex algebras and mirror symmetry
International Nuclear Information System (INIS)
Borisov, L.A.
2001-01-01
Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)
Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Salomon, M.
1992-07-01
We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs
Probabilistic image processing by means of the Bethe approximation for the Q-Ising model
International Nuclear Information System (INIS)
Tanaka, Kazuyuki; Inoue, Jun-ichi; Titterington, D M
2003-01-01
The framework of Bayesian image restoration for multi-valued images by means of the Q-Ising model with nearest-neighbour interactions is presented. Hyperparameters in the probabilistic model are determined so as to maximize the marginal likelihood. A practical algorithm is described for multi-valued image restoration based on the Bethe approximation. The algorithm corresponds to loopy belief propagation in artificial intelligence. We conclude that, in real world grey-level images, the Q-Ising model can give us good results
The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice
International Nuclear Information System (INIS)
Queiroz, S.L.A. de.
1977-07-01
The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt
Single-time reduction of bethe-salpeter formalism for two-fermion system
International Nuclear Information System (INIS)
Arkhipov, A.A.
1988-01-01
The single-time reduction method proposed in other refs. for the system of two scalar particles is generalized for the case of two-fermion system. A self-consistent procedure of single-time reduction has been constructed both in terms of the Bethe-Salpeter wave function and in terms of the Green's function of two-fermion system. Three-dimensional dynamic equations have been obtained for single-time wave functions and two-time Green's functions of a two-fermion system and the Schroedinger structure of the equations obtained is shown to be a consequence of the causality structure of the local QFT. 32 refs
Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach
Energy Technology Data Exchange (ETDEWEB)
Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer
2010-12-01
We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.
Study of Y and Lu iron garnets using Bethe-Peierls-Weiss method
Goveas, Neena; Mukhopadhyay, G.; Mukhopadhyay, P.
1994-11-01
We study here the magnetic properties of Y- and Lu- Iron Garnets using the Bethe- Peierls-Weiss method modified to suit complex systems like these Garnets. We consider these Garnets as described by Heisenberg Hamiltonian with two sublattices (a,d) and determine the exchange interaction parameters Jad, Jaa and Jdd by matching the exerimental susceptibility curves. We find Jaa and Jdd to be much smaller than those determined by Néel theory, and consistent with those obtained by the study of spin wave spectra; the spin wave dispersion relation constant obtained using these parameters gives good agreement with the experimental values.
Stieltjes-Bethe equations in higher genus and branched coverings with even ramifications
Korotkin, Dmitry
2018-02-01
We describe projective structures on a Riemann surface corresponding to monodromy groups which have trivial SL (2) monodromies around singularities and trivial PSL (2) monodromies along homologically non-trivial loops on a Riemann surface. We propose a natural higher genus analog of Stieltjes-Bethe equations. Links with branched projective structures and with Hurwitz spaces with ramifications of even order are established. We find a higher genus analog of the genus zero Yang-Yang function (the function generating accessory parameters) and describe its similarity and difference with Bergman tau-function on the Hurwitz spaces.
Bethe-Salpeter kernels and particle structure in the Yukawa2 quantum field theory
International Nuclear Information System (INIS)
Cooper, A.S.
1981-01-01
The author discusses the extension to the (weakly coupled) Yukawa quantum field theory in two space-time dimensions (Y 2 ), with equal bare masses, of some techniques used in the analysis of particle structure for weakly coupled even P(PHI) 2 . In particular he considers existence, regularity, and decay properties for the inverse two point functions and various Bethe-Salpeter kernels of the theory. These properties suffice to ensure that in the +-2 fermion sectors the mass spectrum is discrete below 2m 0 and the S-matrix is unitary up to 2m 0 + epsilon. (Auth.)
A Cluster-Bethe lattice treatment for the F-center in alkali-halides
International Nuclear Information System (INIS)
Queiroz, S.L.A. de; Koiller, B.; Maffeo, B.; Brandi, H.S.
1977-01-01
The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Cluster-Bethe lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second- neighbors to it, respectively, cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides [pt
1996-01-01
Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear d
P-commutative topological *-algebras
International Nuclear Information System (INIS)
Mohammad, N.; Thaheem, A.B.
1991-07-01
If P(A) denotes the set of all continuous positive functionals on a unital complete Imc *-algebra and S(A) the extreme points of P(A), and if the spectrum of an element χ Ε A coincides with the set {f(χ): f Ε S(A)}, then A is shown to be P-commutative. Moreover, if A is unital symmetric Frechet Q Imc *-algebra, then this spectral condition is, in fact, necessary. Also, an isomorphism theorem between symmetric Frechet P-commutative Imc *-algebras is established. (author). 12 refs
Introduction to applied algebraic systems
Reilly, Norman R
2009-01-01
This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as
International Nuclear Information System (INIS)
Barbarin, F.; Sorba, P.; Ragoucy, E.
1996-01-01
The property of some finite W algebras to be the commutant of a particular subalgebra of a simple Lie algebra G is used to construct realizations of G. When G ≅ so (4,2), unitary representations of the conformal and Poincare algebras are recognized in this approach, which can be compared to the usual induced representation technique. When G approx=(2, R), the anyonic parameter can be seen as the eigenvalue of a W generator in such W representations of G. The generalization of such properties to the affine case is also discussed in the conclusion, where an alternative of the Wakimoto construction for sl(2) k is briefly presented. (authors)
Lectures on Algebraic Geometry I
Harder, Gunter
2012-01-01
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho
Lie Algebras and Integrable Systems
International Nuclear Information System (INIS)
Zhang Yufeng; Mei Jianqin
2012-01-01
A 3 × 3 matrix Lie algebra is first introduced, its subalgebras and the generated Lie algebras are obtained, respectively. Applications of a few Lie subalgebras give rise to two integrable nonlinear hierarchies of evolution equations from their reductions we obtain the nonlinear Schrödinger equations, the mKdV equations, the Broer-Kaup (BK) equation and its generalized equation, etc. The linear and nonlinear integrable couplings of one integrable hierarchy presented in the paper are worked out by casting a 3 × 3 Lie subalgebra into a 2 × 2 matrix Lie algebra. Finally, we discuss the elliptic variable solutions of a generalized BK equation. (general)
Study guide for college algebra
Snow, James W; Shapiro, Arnold
1981-01-01
Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what
Kolman, Bernard; Levitan, Michael L
1985-01-01
Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.
Coxeter groups and Hopf algebras
Aguiar, Marcelo
2011-01-01
An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary backgrou
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
Linear operators in Clifford algebras
International Nuclear Information System (INIS)
Laoues, M.
1991-01-01
We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators M eI,eJ defined by x→e I .x.e J , where the e I are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (M eI,eJ ) is exactly a basis in the even case. (orig.)
Introduction to algebra and trigonometry
Kolman, Bernard
1981-01-01
Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are
Constructing Meanings and Utilities within Algebraic Tasks
Ainley, Janet; Bills, Liz; Wilson, Kirsty
2004-01-01
The Purposeful Algebraic Activity project aims to explore the potential of spreadsheets in the introduction to algebra and algebraic thinking. We discuss two sub-themes within the project: tracing the development of pupils' construction of meaning for variable from arithmetic-based activity, through use of spreadsheets, and into formal algebra,…
Liu, S.
2013-01-01
We present an algebra related to the Coxeter group of type F4 which can be viewed as the Brauer algebra of type F4 and is obtained as a subalgebra of the Brauer algebra of type E6. We also describe some properties of this algebra.
Contraction of graded su(2) algebra
International Nuclear Information System (INIS)
Patra, M.K.; Tripathy, K.C.
1989-01-01
The Inoenu-Wigner contraction scheme is extended to Lie superalgebras. The structure and representations of extended BRS algebra are obtained from contraction of the graded su(2) algebra. From cohomological consideration, we demonstrate that the graded su(2) algebra is the only superalgebra which, on contraction, yields the full BRS algebra. (orig.)
Located actions in process algebra with timing
Bergstra, J.A.; Middelburg, C.A.
2004-01-01
We propose a process algebra obtained by adapting the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, 2002, Chap. 4] to spatially located actions. This process algebra makes it possible to deal with the behaviour of systems with a
Liu, S.
2012-01-01
We present an algebra related to the Coxeter group of type F4 which can be viewed as the Brauer algebra of type F4 and is obtained as a subalgebra of the Brauer algebra of type E6. We also describe some properties of this algebra.
Strongly \\'etale difference algebras and Babbitt's decomposition
Tomašić, Ivan; Wibmer, Michael
2015-01-01
We introduce a class of strongly \\'{e}tale difference algebras, whose role in the study of difference equations is analogous to the role of \\'{e}tale algebras in the study of algebraic equations. We deduce an improved version of Babbitt's decomposition theorem and we present applications to difference algebraic groups and the compatibility problem.
Particle-like structure of Lie algebras
Vinogradov, A. M.
2017-07-01
If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.
Galilean contractions of W-algebras
Directory of Open Access Journals (Sweden)
Jørgen Rasmussen
2017-09-01
Full Text Available Infinite-dimensional Galilean conformal algebras can be constructed by contracting pairs of symmetry algebras in conformal field theory, such as W-algebras. Known examples include contractions of pairs of the Virasoro algebra, its N=1 superconformal extension, or the W3 algebra. Here, we introduce a contraction prescription of the corresponding operator-product algebras, or equivalently, a prescription for contracting tensor products of vertex algebras. With this, we work out the Galilean conformal algebras arising from contractions of N=2 and N=4 superconformal algebras as well as of the W-algebras W(2,4, W(2,6, W4, and W5. The latter results provide evidence for the existence of a whole new class of W-algebras which we call Galilean W-algebras. We also apply the contraction prescription to affine Lie algebras and find that the ensuing Galilean affine algebras admit a Sugawara construction. The corresponding central charge is level-independent and given by twice the dimension of the underlying finite-dimensional Lie algebra. Finally, applications of our results to the characterisation of structure constants in W-algebras are proposed.
The Centroid of a Lie Triple Algebra
Directory of Open Access Journals (Sweden)
Xiaohong Liu
2013-01-01
Full Text Available General results on the centroids of Lie triple algebras are developed. Centroids of the tensor product of a Lie triple algebra and a unitary commutative associative algebra are studied. Furthermore, the centroid of the tensor product of a simple Lie triple algebra and a polynomial ring is completely determined.
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
Then the various algebraic properties of Pauli matricesare studied as properties of matrix algebra. What has beenshown in this article is that Pauli matrices are a representationof Clifford algebra of spin and hence all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a ...
On the path integral representation of the Wigner function and the Barker–Murray ansatz
International Nuclear Information System (INIS)
Sels, Dries; Brosens, Fons; Magnus, Wim
2012-01-01
The propagator of the Wigner function is constructed from the Wigner–Liouville equation as a phase space path integral over a new effective Lagrangian. In contrast to a paper by Barker and Murray (1983) , we show that the path integral can in general not be written as a linear superposition of classical phase space trajectories over a family of non-local forces. Instead, we adopt a saddle point expansion to show that the semiclassical Wigner function is a linear superposition of classical solutions for a different set of non-local time dependent forces. As shown by a simple example the specific form of the path integral makes the formulation ideal for Monte Carlo simulation. -- Highlights: ► We derive the quantum mechanical propagator of the Wigner function in the path integral representation. ► We show that the Barker–Murray ansatz is incomplete, explain the error and provide an alternative. ► An example of a Monte Carlo simulation of the semiclassical path integral is included.
XY vs X Mixer in Quantum Alternating Operator Ansatz for Optimization Problems with Constraints
Wang, Zhihui; Rubin, Nicholas; Rieffel, Eleanor G.
2018-01-01
Quantum Approximate Optimization Algorithm, further generalized as Quantum Alternating Operator Ansatz (QAOA), is a family of algorithms for combinatorial optimization problems. It is a leading candidate to run on emerging universal quantum computers to gain insight into quantum heuristics. In constrained optimization, penalties are often introduced so that the ground state of the cost Hamiltonian encodes the solution (a standard practice in quantum annealing). An alternative is to choose a mixing Hamiltonian such that the constraint corresponds to a constant of motion and the quantum evolution stays in the feasible subspace. Better performance of the algorithm is speculated due to a much smaller search space. We consider problems with a constant Hamming weight as the constraint. We also compare different methods of generating the generalized W-state, which serves as a natural initial state for the Hamming-weight constraint. Using graph-coloring as an example, we compare the performance of using XY model as a mixer that preserves the Hamming weight with the performance of adding a penalty term in the cost Hamiltonian.
Mass matrix ansatz and lepton flavor violation in the two-Higgs doublet model-III
International Nuclear Information System (INIS)
Diaz-Cruz, J.L.; Noriega-Papaqui, R.; Rosado, A.
2004-01-01
Predictive Higgs-boson-fermion couplings can be obtained when a specific texture for the fermion mass matrices is included in the general two-Higgs doublet model. We derive the form of these couplings in the charged lepton sector using a Hermitian mass matrix ansatz with four-texture zeros. The presence of unconstrained phases in the vertices φ i l i l j modifies the pattern of flavor-violating Higgs boson interactions. Bounds on the model parameters are obtained from present limits on rare lepton flavor-violating processes, which could be extended further by the search for the decay τ→μμμ and μ-e conversion at future experiments. The signal from Higgs boson decays φ i →τμ could be searched for at the CERN Large Hadron Collider, while e-μ transitions could produce a detectable signal at a future eμ collider, through the reaction e + μ - →h 0 →τ + τ -
Yeung, Chuck
2018-06-01
The assumption that the local order parameter is related to an underlying spatially smooth auxiliary field, u (r ⃗,t ) , is a common feature in theoretical approaches to non-conserved order parameter phase separation dynamics. In particular, the ansatz that u (r ⃗,t ) is a Gaussian random field leads to predictions for the decay of the autocorrelation function which are consistent with observations, but distinct from predictions using alternative theoretical approaches. In this paper, the auxiliary field is obtained directly from simulations of the time-dependent Ginzburg-Landau equation in two and three dimensions. The results show that u (r ⃗,t ) is equivalent to the distance to the nearest interface. In two dimensions, the probability distribution, P (u ) , is well approximated as Gaussian except for small values of u /L (t ) , where L (t ) is the characteristic length-scale of the patterns. The behavior of P (u ) in three dimensions is more complicated; the non-Gaussian region for small u /L (t ) is much larger than that in two dimensions but the tails of P (u ) begin to approach a Gaussian form at intermediate times. However, at later times, the tails of the probability distribution appear to decay faster than a Gaussian distribution.
Semiprojectivity of universal -algebras generated by algebraic elements
DEFF Research Database (Denmark)
Shulman, Tatiana
2012-01-01
Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given.......Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....