WorldWideScience

Sample records for algebra and number theory

  1. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  2. Algebraic Geometry and Number Theory Summer School

    CERN Document Server

    Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk

    2017-01-01

    This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

  3. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  4. The Work of Lagrange in Number Theory and Algebra

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. The Work of Lagrange in Number Theory and Algebra. D P Patil, C R Pranesachar and Renuka RafJindran. (left) D P Patil got his Ph.D from the School of Math- ematics, TIFR and joined. IISc in 1992. His interests are commutative algebra, algebraic geometry and algebraic number theory. (right) C R ...

  5. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  6. Classical theory of algebraic numbers

    CERN Document Server

    Ribenboim, Paulo

    2001-01-01

    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  7. Distribution theory of algebraic numbers

    CERN Document Server

    Yang, Chung-Chun

    2008-01-01

    The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.

  8. Selected papers on number theory and algebraic geometry

    CERN Document Server

    Nomizu, Katsumi

    1996-01-01

    This book presents papers that originally appeared in the Japanese journal Sugaku from the Mathematical Society of Japan. The papers explore the relationship between number theory and algebraic geometry.

  9. Partial Fractions in Calculus, Number Theory, and Algebra

    Science.gov (United States)

    Yackel, C. A.; Denny, J. K.

    2007-01-01

    This paper explores the development of the method of partial fraction decomposition from elementary number theory through calculus to its abstraction in modern algebra. This unusual perspective makes the topic accessible and relevant to readers from high school through seasoned calculus instructors.

  10. Algorithmic and experimental methods in algebra, geometry, and number theory

    CERN Document Server

    Decker, Wolfram; Malle, Gunter

    2017-01-01

    This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved.  The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It off...

  11. A conversational introduction to algebraic number theory

    CERN Document Server

    Pollack, Paul

    2017-01-01

    Gauss famously referred to mathematics as the "queen of the sciences" and to number theory as the "queen of mathematics". This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field \\mathbb{Q}. Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three "fundamental theorems": unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise w...

  12. Elementary number theory an algebraic approach

    CERN Document Server

    Bolker, Ethan D

    2007-01-01

    This text uses the concepts usually taught in the first semester of a modern abstract algebra course to illuminate classical number theory: theorems on primitive roots, quadratic Diophantine equations, and the Fermat conjecture for exponents three and four. The text contains abundant numerical examples and a particularly helpful collection of exercises, many of which are small research problems requiring substantial study or outside reading. Some problems call for new proofs for theorems already covered or for inductive explorations and proofs of theorems found in later chapters.Ethan D. Bolke

  13. Algebraic K-theory and algebraic topology

    Energy Technology Data Exchange (ETDEWEB)

    Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)

    2003-09-15

    This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.

  14. Algebraic and stochastic coding theory

    CERN Document Server

    Kythe, Dave K

    2012-01-01

    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  15. Characterizing the Development of Specialized Mathematical Content Knowledge for Teaching in Algebraic Reasoning and Number Theory

    Science.gov (United States)

    Bair, Sherry L.; Rich, Beverly S.

    2011-01-01

    This article characterizes the development of a deep and connected body of mathematical knowledge categorized by Ball and Bass' (2003b) model of Mathematical Knowledge for Teaching (MKT), as Specialized Content Knowledge for Teaching (SCK) in algebraic reasoning and number sense. The research employed multiple cases across three years from two…

  16. Quantum measurement and algebraic quantum field theories

    International Nuclear Information System (INIS)

    DeFacio, B.

    1976-01-01

    It is shown that the physics and semantics of quantum measurement provide a natural interpretation of the weak neighborhoods of the states on observable algebras without invoking any ideas of ''a reading error'' or ''a measured range.'' Then the state preparation process in quantum measurement theory is shown to give the normal (or locally normal) states on the observable algebra. Some remarks are made concerning the physical implications of normal state for systems with an infinite number of degrees of freedom, including questions on open and closed algebraic theories

  17. Problems and proofs in numbers and algebra

    CERN Document Server

    Millman, Richard S; Kahn, Eric Brendan

    2015-01-01

    Designed to facilitate the transition from undergraduate calculus and differential equations to learning about proofs, this book helps students develop the rigorous mathematical reasoning needed for advanced courses in analysis, abstract algebra, and more. Students will focus on both how to prove theorems and solve problem sets in-depth; that is, where multiple steps are needed to prove or solve. This proof technique is developed by examining two specific content themes and their applications in-depth: number theory and algebra. This choice of content themes enables students to develop an understanding of proof technique in the context of topics with which they are already familiar, as well as reinforcing natural and conceptual understandings of mathematical methods and styles. The key to the text is its interesting and intriguing problems, exercises, theorems, and proofs, showing how students will transition from the usual, more routine calculus to abstraction while also learning how to “prove” or “sol...

  18. Algebraic and structural automata theory

    CERN Document Server

    Mikolajczak, B

    1991-01-01

    Automata Theory is part of computability theory which covers problems in computer systems, software, activity of nervous systems (neural networks), and processes of live organisms development.The result of over ten years of research, this book presents work in the following areas of Automata Theory: automata morphisms, time-varying automata, automata realizations and relationships between automata and semigroups.Aimed at those working in discrete mathematics and computer science, parts of the book are suitable for use in graduate courses in computer science, electronics, telecommunications, and control engineering. It is assumed that the reader is familiar with the basic concepts of algebra and graph theory.

  19. Numerical linear algebra theory and applications

    CERN Document Server

    Beilina, Larisa; Karchevskii, Mikhail

    2017-01-01

    This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.

  20. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    NARCIS (Netherlands)

    Put, Marius van der

    1999-01-01

    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  1. Homological methods, representation theory, and cluster algebras

    CERN Document Server

    Trepode, Sonia

    2018-01-01

    This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...

  2. L_∞ algebras and field theory

    International Nuclear Information System (INIS)

    Hohm, Olaf; Zwiebach, Barton

    2017-01-01

    We review and develop the general properties of L_∞ algebras focusing on the gauge structure of the associated field theories. Motivated by the L_∞ homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L_∞ structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L_∞ algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L_∞ algebra for the interacting theory. The analysis suggests that L_∞ algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Non-unique factorizations algebraic, combinatorial and analytic theory

    CERN Document Server

    Geroldinger, Alfred

    2006-01-01

    From its origins in algebraic number theory, the theory of non-unique factorizations has emerged as an independent branch of algebra and number theory. Focused efforts over the past few decades have wrought a great number and variety of results. However, these remain dispersed throughout the vast literature. For the first time, Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory offers a look at the present state of the theory in a single, unified resource.Taking a broad look at the algebraic, combinatorial, and analytic fundamentals, this book derives factorization results and applies them in concrete arithmetical situations using appropriate transfer principles. It begins with a basic introduction that can be understood with knowledge of standard basic algebra. The authors then move to the algebraic theory of monoids, arithmetic theory of monoids, the structure of sets of lengths, additive group theory, arithmetical invariants, and the arithmetic of Krull monoids. They also provide a s...

  4. Lectures on algebraic quantum field theory and operator algebras

    International Nuclear Information System (INIS)

    Schroer, Bert

    2001-04-01

    In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

  5. Operator theory, operator algebras and applications

    CERN Document Server

    Lebre, Amarino; Samko, Stefan; Spitkovsky, Ilya

    2014-01-01

    This book consists of research papers that cover the scientific areas of the International Workshop on Operator Theory, Operator Algebras and Applications, held in Lisbon in September 2012. The volume particularly focuses on (i) operator theory and harmonic analysis (singular integral operators with shifts; pseudodifferential operators, factorization of almost periodic matrix functions; inequalities; Cauchy type integrals; maximal and singular operators on generalized Orlicz-Morrey spaces; the Riesz potential operator; modification of Hadamard fractional integro-differentiation), (ii) operator algebras (invertibility in groupoid C*-algebras; inner endomorphisms of some semi group, crossed products; C*-algebras generated by mappings which have finite orbits; Folner sequences in operator algebras; arithmetic aspect of C*_r SL(2); C*-algebras of singular integral operators; algebras of operator sequences) and (iii) mathematical physics (operator approach to diffraction from polygonal-conical screens; Poisson geo...

  6. Certain number-theoretic episodes in algebra

    CERN Document Server

    Sivaramakrishnan, R

    2006-01-01

    Many basic ideas of algebra and number theory intertwine, making it ideal to explore both at the same time. Certain Number-Theoretic Episodes in Algebra focuses on some important aspects of interconnections between number theory and commutative algebra. Using a pedagogical approach, the author presents the conceptual foundations of commutative algebra arising from number theory. Self-contained, the book examines situations where explicit algebraic analogues of theorems of number theory are available. Coverage is divided into four parts, beginning with elements of number theory and algebra such as theorems of Euler, Fermat, and Lagrange, Euclidean domains, and finite groups. In the second part, the book details ordered fields, fields with valuation, and other algebraic structures. This is followed by a review of fundamentals of algebraic number theory in the third part. The final part explores links with ring theory, finite dimensional algebras, and the Goldbach problem.

  7. Operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Gabbiani, F.; Froehlich, J.

    1993-01-01

    We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)

  8. Algebraic quantum field theory, perturbation theory, and the loop expansion

    International Nuclear Information System (INIS)

    Duetsch, M.; Fredenhagen, K.

    2001-01-01

    The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)

  9. Scaling algebras and renormalization group in algebraic quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Verch, R.

    1995-01-01

    For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)

  10. Kac-Moody algebras and string theory

    International Nuclear Information System (INIS)

    Cleaver, G.B.

    1993-01-01

    The focus of this thesis is on (1) the role of Kac-Moody algebras in string theory and the development of techniques for systematically building string theory models based on a higher level (K ≥ 2) KM algebras and (2) fractional superstrings, a new class of solutions based on SU(2) K /U(1) conformal field theories. The content of this thesis is as follows. In chapter two they review KM algebras and their role in string theory. In the next chapter they present two results concerning the construction of modular invariant partition functions for conformal field theories build by tensoring together other conformal field theories. First they show how the possible modular invariants for the tensor product theory are constrained if the allowed modular invariants of the individuals conformal field theory factors have been classified. They illustrate the use of these constraints for theories of the type SU(2) KA direct-product SU(2) KB , finding all consistent theories for K A and K B odd. Second they show how known diagonal modular invariants can be used to construct inherently asymmetric invariants where the holomorphic and anti-holomorphic theories do not share the same chiral algebra. Explicit examples are given. Next, in chapter four they investigate some issues relating to recently proposed fractional superstring theories with D critical K/4 K/4 , as source of spacetime fermions, is demonstrated

  11. Vertex operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Huang, Y.Z.

    1992-01-01

    This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics

  12. Representation Theory of Algebraic Groups and Quantum Groups

    CERN Document Server

    Gyoja, A; Shinoda, K-I; Shoji, T; Tanisaki, Toshiyuki

    2010-01-01

    Invited articles by top notch expertsFocus is on topics in representation theory of algebraic groups and quantum groupsOf interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics

  13. Number theory and its history

    CERN Document Server

    Ore, Oystein

    1988-01-01

    A prominent mathematician presents the principal ideas and methods of number theory within a historical and cultural framework. Oystein Ore's fascinating, accessible treatment requires only a basic knowledge of algebra. Topics include prime numbers, the Aliquot parts, linear indeterminate problems, congruences, Euler's theorem, classical construction problems, and many other subjects.

  14. C*-algebras and operator theory

    CERN Document Server

    Murphy, Gerald J

    1990-01-01

    This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

  15. Linear algebra and group theory

    CERN Document Server

    Smirnov, VI

    2011-01-01

    This accessible text by a Soviet mathematician features material not otherwise available to English-language readers. Its three-part treatment covers determinants and systems of equations, matrix theory, and group theory. 1961 edition.

  16. Linear algebra and group theory for physicists

    CERN Document Server

    Rao, K N Srinivasa

    2006-01-01

    Professor Srinivasa Rao's text on Linear Algebra and Group Theory is directed to undergraduate and graduate students who wish to acquire a solid theoretical foundation in these mathematical topics which find extensive use in physics. Based on courses delivered during Professor Srinivasa Rao's long career at the University of Mysore, this text is remarkable for its clear exposition of the subject. Advanced students will find a range of topics such as the Representation theory of Linear Associative Algebras, a complete analysis of Dirac and Kemmer algebras, Representations of the Symmetric group via Young Tableaux, a systematic derivation of the Crystallographic point groups, a comprehensive and unified discussion of the Rotation and Lorentz groups and their representations, and an introduction to Dynkin diagrams in the classification of Lie groups. In addition, the first few chapters on Elementary Group Theory and Vector Spaces also provide useful instructional material even at an introductory level. An author...

  17. Spectral theory and quotients in Von Neumann algebras | West ...

    African Journals Online (AJOL)

    In this note we consider to what extent the functional calculus and the spectral theory in von Neumann algebras are preserved by the taking of quotients relative to two-sided ideals of the von Neumann algebra. Keywords:von Neumann algebra, functional calculus, spectral theory, quotient algebras. Quaestiones ...

  18. Algebraic conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1991-11-01

    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  19. Topological conformal algebra and BRST algebra in non-critical string theories

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Suzuki, Hiroshi.

    1991-03-01

    The operator algebra in non-critical string theories is studied by treating the cosmological term as a perturbation. The algebra of covariantly regularized BRST and related currents contains a twisted N = 2 superconformal algebra only at d = -2 in bosonic strings, and a twisted N = 3 superconformal algebra only at d = ±∞ in spinning strings. The bosonic string at d = -2 is examined by replacing the string coordinate by a fermionic matter with c = -2. The resulting bc-βγ system accommodates various forms of BRST cohomology, and the ghost number assignment and BRST cohomology are different in the c = -2 string theory and two-dimensional topological gravity. (author)

  20. Applications of inverse and algebraic scattering theories

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K. [Qinghua Univ., Beijing, BJ (China). Dept. of Physics

    1997-06-01

    Inverse scattering theories, algebraic scattering theory and exactly solvable scattering potentials are diverse ways by which scattering potentials can be defined from S-functions specified by fits to fixed energy, quantal scattering data. Applications have been made in nuclear (heavy ion and nucleon-nucleus scattering), atomic and molecular (electron scattering from simple molecules) systems. Three inverse scattering approaches are considered in detail; the semiclassical WKB and fully quantal Lipperheide-Fiedeldey method, than algebraic scattering theory is applied to heavy ion scattering and finally the exactly solvable Ginocchio potentials. Some nuclear results are ambiguous but the atomic and molecular inversion potentials are in good agreement with postulated forms. 21 refs., 12 figs.

  1. Nonassociativity, Malcev algebras and string theory

    International Nuclear Information System (INIS)

    Guenaydin, M.; Minic, D.

    2013-01-01

    Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. A Workshop on Algebraic Design Theory and Hadamard Matrices

    CERN Document Server

    2015-01-01

    This volume develops the depth and breadth of the mathematics underlying the construction and analysis of Hadamard matrices and their use in the construction of combinatorial designs. At the same time, it pursues current research in their numerous applications in security and cryptography, quantum information, and communications. Bridges among diverse mathematical threads and extensive applications make this an invaluable source for understanding both the current state of the art and future directions. The existence of Hadamard matrices remains one of the most challenging open questions in combinatorics. Substantial progress on their existence has resulted from advances in algebraic design theory using deep connections with linear algebra, abstract algebra, finite geometry, number theory, and combinatorics. Hadamard matrices arise in a very diverse set of applications. Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important ap...

  3. Algebraic K-theory

    CERN Document Server

    Srinivas, V

    1996-01-01

    Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...

  4. Algebraic Graph Theory Morphisms, Monoids and Matrices

    CERN Document Server

    Knauer, Ulrich

    2011-01-01

    This is a highly self-contained book about algebraic graph theory which iswritten with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures -like roads, computers, telephones -instances of abstract data structures -likelists, stacks, trees -and functional or object orient

  5. Krichever-Novikov type algebras theory and applications

    CERN Document Server

    Schlichenmaier, Martin

    2014-01-01

    Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are

  6. Quantum groups and algebraic geometry in conformal field theory

    International Nuclear Information System (INIS)

    Smit, T.J.H.

    1989-01-01

    The classification of two-dimensional conformal field theories is described with algebraic geometry and group theory. This classification is necessary in a consistent formulation of a string theory. (author). 130 refs.; 4 figs.; schemes

  7. Algebraic methods in statistical mechanics and quantum field theory

    CERN Document Server

    Emch, Dr Gérard G

    2009-01-01

    This systematic algebraic approach concerns problems involving a large number of degrees of freedom. It extends the traditional formalism of quantum mechanics, and it eliminates conceptual and mathematical difficulties common to the development of statistical mechanics and quantum field theory. Further, the approach is linked to research in applied and pure mathematics, offering a reflection of the interplay between formulation of physical motivations and self-contained descriptions of the mathematical methods.The four-part treatment begins with a survey of algebraic approaches to certain phys

  8. Quantization and representation theory of finite W algebras

    International Nuclear Information System (INIS)

    Boer, J. de; Tjin, T.

    1993-01-01

    In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)

  9. International Conference on Semigroups, Algebras and Operator Theory

    CERN Document Server

    Meakin, John; Rajan, A

    2015-01-01

    This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f...

  10. Toda theories, W-algebras, and minimal models

    International Nuclear Information System (INIS)

    Mansfield, P.; Spence, B.

    1991-01-01

    We discuss the classical W-algebra symmetries of Toda field theories in terms of the pseudo-differential Lax operator associated with the Toda Lax pair. We then show how the W-algebra transformations can be understood as the non-abelian gauge transformations which preserve the form of the Lax pair. This provides a new understanding of the W-algebras, and we discuss their closure and co-cycle structure using this approach. The quantum Lax operator is investigated, and we show that this operator, which generates the quantum W-algebra currents, is conserved in the conformally extended Toda theories. The W-algebra minimal model primary fields are shown to arise naturally in these theories, leading to the conjecture that the conformally extended Toda theories provide a lagrangian formulation of the W-algebra minimal models. (orig.)

  11. Vertex algebras and algebraic curves

    CERN Document Server

    Frenkel, Edward

    2004-01-01

    Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...

  12. Number theory

    CERN Document Server

    Andrews, George E

    1994-01-01

    Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl

  13. Introduction to modern algebra and matrix theory

    CERN Document Server

    Schreier, O; David, Martin

    2011-01-01

    This unique text provides students with a basic course in both calculus and analytic geometry. It promotes an intuitive approach to calculus and emphasizes algebraic concepts. Minimal prerequisites. Numerous exercises. 1951 edition.

  14. Matrix algebra theory, computations and applications in statistics

    CERN Document Server

    Gentle, James E

    2017-01-01

    This textbook for graduate and advanced undergraduate students presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and the second edition of this very popular textbook provides essential updates and comprehensive coverage on critical topics in mathematics in data science and in statistical theory. Part I offers a self-contained description of relevant aspects of the theory of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices in solutions of linear systems and in eigenanalysis. Part II considers various types of matrices encountered in statistics, such as...

  15. Geometric and Algebraic Approaches in the Concept of Complex Numbers

    Science.gov (United States)

    Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.

    2006-01-01

    This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…

  16. Number Theory and Applications : Proceedings of the International Conferences on Number Theory and Cryptography

    CERN Document Server

    Ramakrishnan, B

    2009-01-01

    This collection of articles contains the proceedings of the two international conferences (on Number Theory and Cryptography) held at the Harish - Chandra Research Institute. In recent years the interest in number theory has increased due to its applications in areas like error-correcting codes and cryptography. These proceedings contain papers in various areas of number theory, such as combinatorial, algebraic, analytic and transcendental aspects, arithmetic algebraic geometry, as well as graph theory and cryptography. While some papers do contain new results, several of the papers are expository articles that mention open questions, which will be useful to young researchers.

  17. Algebraic computability and enumeration models recursion theory and descriptive complexity

    CERN Document Server

    Nourani, Cyrus F

    2016-01-01

    This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic type...

  18. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    Foroutan, A.

    1996-12-01

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  19. Algebras of holomorphic functions and control theory

    CERN Document Server

    Sasane, Amol

    2009-01-01

    This accessible, undergraduate-level text illustrates the role of algebras of holomorphic functions in the solution of an important engineering problem: the stabilization of a linear control system. Its concise and self-contained treatment avoids the use of higher mathematics and forms a bridge to more advanced treatments. The treatment consists of two components: the algebraic framework, which serves as the abstract language for posing and solving the problem of stabilization; and the analysis component, which examines properties of specific rings of holomorphic functions. Elementary, self-co

  20. Locally semisimple algebras. Combinatorial theory and the K0-functor

    International Nuclear Information System (INIS)

    Vershik, A.M.; Kerov, S.V.

    1987-01-01

    Survey is devoted to theory of locally finite algebras and approximately finite-dimensional absolute value of AF- C*-algebras which has been developed intensively in recent years. It can serve as an introduction to the subject. Both known and new results are contained in it

  1. Australian Curriculum Linked Lessons: Reasoning in Number and Algebra

    Science.gov (United States)

    Day, Lorraine

    2014-01-01

    The Reasoning Proficiency in number and algebra is about children making sense of the mathematics by explaining their thinking, giving reasons for their decisions and describing mathematical situations and concepts. Lorraine Day notes, children need to be able to speak, read and write the language of mathematics while investigating pattern and…

  2. L{sub ∞} algebras and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY (United States); Zwiebach, Barton [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2017-03-15

    We review and develop the general properties of L{sub ∞} algebras focusing on the gauge structure of the associated field theories. Motivated by the L{sub ∞} homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L{sub ∞} structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L{sub ∞} algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L{sub ∞} algebra for the interacting theory. The analysis suggests that L{sub ∞} algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Numerical algebra, matrix theory, differential-algebraic equations and control theory festschrift in honor of Volker Mehrmann

    CERN Document Server

    Bollhöfer, Matthias; Kressner, Daniel; Mehl, Christian; Stykel, Tatjana

    2015-01-01

    This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on ...

  4. Theory and applications of differential algebra

    International Nuclear Information System (INIS)

    Pusch, G.D.

    1992-01-01

    Differential algebra (DA) is a new method of automatic differentiation. DA can rapidly and efficiently calculate the values of derivatives of arbitrarily complicated functions, in arbitrarily many variables, to arbitrary order, via its definition of multiplication. I provide a brief introduction to DA, and enumerate some of its recent applications. (author). 6 refs

  5. String field theory. Algebraic structure, deformation properties and superstrings

    International Nuclear Information System (INIS)

    Muenster, Korbinian

    2013-01-01

    This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the

  6. Nevanlinna theory, normal families, and algebraic differential equations

    CERN Document Server

    Steinmetz, Norbert

    2017-01-01

    This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers wor...

  7. Division algebra, generalized supersymmetries and octonionic M-theory

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2004-11-01

    This is the report of the talk given at the conference 'Number, Time and Relativity', held at the Bauman University, Moscow, August 2004, concerning the recent research activity of the author and his collaborators about the inter-relation of the concepts of division algebras, representations of Clifford algebras, generalized supersymmetries with the introduction of an alternative description of the M-algebra in terms of the non-associative structure of the octonions. (author)

  8. The Algebra of Complex Numbers.

    Science.gov (United States)

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  9. Operators and representation theory canonical models for algebras of operators arising in quantum mechanics

    CERN Document Server

    Jorgensen, Palle E T

    1987-01-01

    Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e

  10. Algebraic design theory

    CERN Document Server

    Launey, Warwick De

    2011-01-01

    Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...

  11. An Arithmetic-Algebraic Work Space for the Promotion of Arithmetic and Algebraic Thinking: Triangular Numbers

    Science.gov (United States)

    Hitt, Fernando; Saboya, Mireille; Cortés Zavala, Carlos

    2016-01-01

    This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils' spontaneous production…

  12. Model Theory in Algebra, Analysis and Arithmetic

    CERN Document Server

    Dries, Lou; Macpherson, H Dugald; Pillay, Anand; Toffalori, Carlo; Wilkie, Alex J

    2014-01-01

    Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

  13. K-theory for group C*-algebras and semigroup C*-algebras

    CERN Document Server

    Cuntz, Joachim; Li, Xin; Yu, Guoliang

    2017-01-01

    This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions.

  14. Algebraic K-theory and sums-of-squares formulas

    OpenAIRE

    Dugger, Daniel; Isaksen, Daniel C.

    2004-01-01

    We prove a result about the non-existence of certain sums-of-squares formulas over a field. This generalizes an old theorem which used topological K-theory to obtain obstruction conditions when the field is the real numbers. Our result applies to arbitrary fields not of characteristic 2, making use of algebraic K-theory in place of topological K-theory.

  15. Conference on Algebraic Geometry for Coding Theory and Cryptography

    CERN Document Server

    Lauter, Kristin; Walker, Judy

    2017-01-01

    Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this vo...

  16. Eisenstein Hecke algebras and Iwasawa theory

    Science.gov (United States)

    Wake, Preston

    We show that if an Eisenstein component of the p-adic Hecke algebra associated to modular forms is Gorenstein, then it is necessary that the plus-part of a certain ideal class group is trivial. We also show that this condition is sufficient whenever a conjecture of Sharifi holds. We also formulate a weaker Gorenstein property, and show that this weak Gorenstein property holds if and only if a weak form of Sharifi's conjecture and a weak form of Greenberg's conjecture hold.

  17. Contemporary developments in algebraic K-theory

    International Nuclear Information System (INIS)

    Karoubi, M.; Kuku, A.O.; Pedrini, C.

    2003-01-01

    The School and Conference on Algebraic K-theory which took place at ICTP July 8-26, 2002 was a follow-up to the earlier one in 1997, and like its predecessor, the 2002 meeting endeavoured to emphasise the multidisciplinary aspects of the subject. However, one special feature of the 2002 School and Conference is that the whole activity was dedicated to H. Bass, one of the founders of Algebraic K-theory, on the occasion of his seventieth birthday. The School during the first two weeks, July 8 to 19 was devoted to expository lectures meant to explore and highlight connections between K-theory and several other areas of mathematics - Algebraic Topology, Number theory, Algebraic Geometry, Representation theory, and Non-commutative Geometry. This volume, constituting the Proceedings of the School, is dedicated to H. Bass. The Proceedings of the Conference during the last week July 22 - 26, which will appear in Special issues of K-theory, is also dedicated to H. Bass. The opening contribution by M. Karoubi to this volume consists of a comprehensive survey of developments in K-theory in the last forty-five years, and covers a very broad spectrum of the subject, including Topological K-theory, Atiyah-Singer index theorem, K-theory of Banach algebras, Higher Algebraic K-theory, Cyclic Homology etc. J. Berrick's contribution on 'Algebraic K-theory and Algebraic Topology' treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers. The contributions by M. Kolster titled 'K-theory and Arithmetics' includes such topics as values of zeta functions and relations to K-theory, K-theory of integers in number fields and associated conjectures, Etale cohomology, Iwasawa theory etc. A.O. Kuku's contributions on 'K-theory and Representation theory

  18. Reduced-density-matrix theory and algebraic structures

    International Nuclear Information System (INIS)

    Kryachko, E.S.

    1978-01-01

    A survey of recent work on algebraic structures and reduced-density-matrix theory is presented. The approach leads to a method of classifying reduced density matrices and generalizes the notion of open and closed shells in many-body theory. 6 references

  19. Function algebras on finite sets basic course on many-valued logic and clone theory

    CERN Document Server

    Lau, Dietlinde

    2006-01-01

    Gives an introduction to the theory of function algebras. This book gives the general concepts of the Universal Algebra in order to familiarize the reader from the beginning on with the algebraic side of function algebras. It is a source on function algebras for students and researchers in mathematical logic and theoretical computer science.

  20. Topological insulators and C*-algebras: Theory and numerical practice

    International Nuclear Information System (INIS)

    Hastings, Matthew B.; Loring, Terry A.

    2011-01-01

    Research highlights: → We classify topological insulators using C* algebras. → We present new K-theory invariants. → We develop efficient numerical algorithms based on this technique. → We observe unexpected quantum phase transitions using our algorithm. - Abstract: We apply ideas from C*-algebra to the study of disordered topological insulators. We extract certain almost commuting matrices from the free Fermi Hamiltonian, describing band projected coordinate matrices. By considering topological obstructions to approximating these matrices by exactly commuting matrices, we are able to compute invariants quantifying different topological phases. We generalize previous two dimensional results to higher dimensions; we give a general expression for the topological invariants for arbitrary dimension and several symmetry classes, including chiral symmetry classes, and we present a detailed K-theory treatment of this expression for time reversal invariant three dimensional systems. We can use these results to show non-existence of localized Wannier functions for these systems. We use this approach to calculate the index for time-reversal invariant systems with spin-orbit scattering in three dimensions, on sizes up to 12 3 , averaging over a large number of samples. The results show an interesting separation between the localization transition and the point at which the average index (which can be viewed as an 'order parameter' for the topological insulator) begins to fluctuate from sample to sample, implying the existence of an unsuspected quantum phase transition separating two different delocalized phases in this system. One of the particular advantages of the C*-algebraic technique that we present is that it is significantly faster in practice than other methods of computing the index, allowing the study of larger systems. In this paper, we present a detailed discussion of numerical implementation of our method.

  1. Geometric invariant theory over the real and complex numbers

    CERN Document Server

    Wallach, Nolan R

    2017-01-01

    Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry.  Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints. The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic ...

  2. Valued Graphs and the Representation Theory of Lie Algebras

    Directory of Open Access Journals (Sweden)

    Joel Lemay

    2012-07-01

    Full Text Available Quivers (directed graphs, species (a generalization of quivers and their representations play a key role in many areas of mathematics including combinatorics, geometry, and algebra. Their importance is especially apparent in their applications to the representation theory of associative algebras, Lie algebras, and quantum groups. In this paper, we discuss the most important results in the representation theory of species, such as Dlab and Ringel’s extension of Gabriel’s theorem, which classifies all species of finite and tame representation type. We also explain the link between species and K-species (where K is a field. Namely, we show that the category of K -species can be viewed as a subcategory of the category of species. Furthermore, we prove two results about the structure of the tensor ring of a species containing no oriented cycles. Specifically, we prove that two such species have isomorphic tensor rings if and only if they are isomorphic as “crushed” species, and we show that if K is a perfect field, then the tensor algebra of a K -species tensored with the algebraic closure of K is isomorphic to, or Morita equivalent to, the path algebra of a quiver.

  3. Linear {GLP}-algebras and their elementary theories

    Science.gov (United States)

    Pakhomov, F. N.

    2016-12-01

    The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.

  4. Representation theory of current algebra and conformal field theory on Riemann surfaces

    International Nuclear Information System (INIS)

    Yamada, Yasuhiko

    1989-01-01

    We study conformal field theories with current algebra (WZW-model) on general Riemann surfaces based on the integrable representation theory of current algebra. The space of chiral conformal blocks defined as solutions of current and conformal Ward identities is shown to be finite dimensional and satisfies the factorization properties. (author)

  5. Algebraic and analytic methods in representation theory

    CERN Document Server

    Schlichtkrull, Henrik

    1996-01-01

    This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field

  6. Surface charge algebra in gauge theories and thermodynamic integrability

    International Nuclear Information System (INIS)

    Barnich, Glenn; Compere, Geoffrey

    2008-01-01

    Surface charges and their algebra in interacting Lagrangian gauge field theories are constructed out of the underlying linearized theory using techniques from the variational calculus. In the case of exact solutions and symmetries, the surface charges are interpreted as a Pfaff system. Integrability is governed by Frobenius' theorem and the charges associated with the derived symmetry algebra are shown to vanish. In the asymptotic context, we provide a generalized covariant derivation of the result that the representation of the asymptotic symmetry algebra through charges may be centrally extended. Comparison with Hamiltonian and covariant phase space methods is made. All approaches are shown to agree for exact solutions and symmetries while there are differences in the asymptotic context

  7. Sequences, groups, and number theory

    CERN Document Server

    Rigo, Michel

    2018-01-01

    This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups.  This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.

  8. Bicomplex holomorphic functions the algebra, geometry and analysis of bicomplex numbers

    CERN Document Server

    Luna-Elizarrarás, M Elena; Struppa, Daniele C; Vajiac, Adrian

    2015-01-01

    The purpose of this book is to develop the foundations of the theory of holomorphicity on the ring of bicomplex numbers. Accordingly, the main focus is on expressing the similarities with, and differences from, the classical theory of one complex variable. The result is an elementary yet comprehensive introduction to the algebra, geometry and analysis of bicomplex numbers. Around the middle of the nineteenth century, several mathematicians (the best known being Sir William Hamilton and Arthur Cayley) became interested in studying number systems that extended the field of complex numbers. Hamilton famously introduced the quaternions, a skew field in real-dimension four, while almost simultaneously James Cockle introduced a commutative four-dimensional real algebra, which was rediscovered in 1892 by Corrado Segre, who referred to his elements as bicomplex numbers. The advantages of commutativity were accompanied by the introduction of zero divisors, something that for a while dampened interest in this subject. ...

  9. Algebraic quantization, good operators and fractional quantum numbers

    International Nuclear Information System (INIS)

    Aldaya, V.; Calixto, M.; Guerrero, J.

    1996-01-01

    The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the failure of the Ehrenfest theorem is clarified in terms of the already defined notion of good (and bad) operators. The analysis of constrained Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for quantum operators without classical analogue and for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric Quantization. This study is illustrated with the examples of the free particle on the circumference and the charged particle in a homogeneous magnetic field on the torus, both examples featuring anomalous operators, non-equivalent quantization and the latter, fractional quantum numbers. These provide the rationale behind flux quantization in superconducting rings and Fractional Quantum Hall Effect, respectively. (orig.)

  10. Classification of hypergeometric identities for pi and other logarithms of algebraic numbers.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1998-03-17

    This paper provides transcendental and algebraic framework for the classification of identities expressing pi and other logarithms of algebraic numbers as rapidly convergent generalized hypergeometric series in rational parameters. Algebraic and arithmetic relations between values of p+1Fp hypergeometric functions and their values are analyzed. The existing identities are explained, and new exhaustive classes of new ones are presented.

  11. Littlewood and Number Theory

    Indian Academy of Sciences (India)

    IAS Admin

    improved by Selberg [4] in 1941 who showed that a pos- ... be seen by entries of his first letter to G H Hardy in ... tary in the technical sense of the word, employed com- ..... III: On the expression of a number as a sum of primes, Acta Math.,.

  12. Representation theory of lattice current algebras

    International Nuclear Information System (INIS)

    Alekseev, A.Yu.; Eidgenoessische Technische Hochschule, Zurich; Faddeev, L.D.; Froehlich, L.D.; Schomerus, V.; Kyoto Univ.

    1996-04-01

    Lattice current algebras were introduced as a regularization of the left-and right moving degrees of freedom in the WZNW model. They provide examples of lattice theories with a local quantum symmetry U q (G). Their representation theory is studied in detail. In particular, we construct all irreducible representations along with a lattice analogue of the fusion product for representations of the lattice current algebra. It is shown that for an arbitrary number of lattice sites, the representation categories of the lattice current algebras agree with their continuum counterparts. (orig.)

  13. Quantum Conformal Algebras and Closed Conformal Field Theory

    CERN Document Server

    Anselmi, D

    1999-01-01

    We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a se...

  14. Number Theory and Combinatorics

    Indian Academy of Sciences (India)

    2012-02-24

    Feb 24, 2012 ... Primarily directed at students and teachers at the un- dergraduate .... ate good mathematics (irrespective of whether I could originally contribute to it or not). ..... The cyclotomic polynomials are useful in many ways and have.

  15. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    CERN Document Server

    Pitsch, Wolfgang; Zarzuela, Santiago

    2016-01-01

    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  16. On logical, algebraic, and probabilistic aspects of fuzzy set theory

    CERN Document Server

    Mesiar, Radko

    2016-01-01

    The book is a collection of contributions by leading experts, developed around traditional themes discussed at the annual Linz Seminars on Fuzzy Set Theory. The different chapters have been written by former PhD students, colleagues, co-authors and friends of Peter Klement, a leading researcher and the organizer of the Linz Seminars on Fuzzy Set Theory. The book also includes advanced findings on topics inspired by Klement’s research activities, concerning copulas, measures and integrals, as well as aggregation problems. Some of the chapters reflect personal views and controversial aspects of traditional topics, while others deal with deep mathematical theories, such as the algebraic and logical foundations of fuzzy set theory and fuzzy logic. Originally thought as an homage to Peter Klement, the book also represents an advanced reference guide to the mathematical theories related to fuzzy logic and fuzzy set theory with the potential to stimulate important discussions on new research directions in the fiel...

  17. Fundamentals of number theory

    CERN Document Server

    LeVeque, William J

    1996-01-01

    This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given - making the book self-contained in this respect.The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diopha

  18. Algebraic K-theory

    CERN Document Server

    Swan, R G

    1968-01-01

    From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."

  19. On two-primary algebraic K-theory of quadratic number rings with focus on K_2

    NARCIS (Netherlands)

    Crainic, M.; Østvær, Paul Arne

    1999-01-01

    We give explicit formulas for the 2-rank of the algebraic K-groups of quadratic number rings. A 4-rank formula for K2 of quadratic number rings given in [1] provides further information about the actual group structure. The K2 claculations are based on 2- and 4-rank formulas for Picard groups of

  20. Homological perturbation theory and the algebraic structure of the antifield-antibracket formalism for gauge theories

    International Nuclear Information System (INIS)

    Fisch, J.M.L.

    1990-01-01

    The algebraic structure of the antifield-antibracket formalism for both reducible and irreducible gauge theories is clarified. This is done by using the methods of Homological Perturbation Theory (HPT). A crucial ingredient of the construction is the Koszul-Tate complex associated with the stationary surface of the classical extremals. The Koszul-Tate differential acts on the antifields and is graded by the antighost number. It provides a resolution of the algebra A of functions defined on the stationary surface, namely, it is acyclic except at degree zero where its homology group reduces to A. Acyclicity only holds because of the introduction of the ghosts of ghosts and provides an alternative criterion for what is meant by a proper solution of the master equation. The existence of the BRST symmetry follows from the techniques of HPT. The classical Lagrangian BRST cohomology is completely worked out and shown to be isomorphic with the cohomology of the exterior derivative along the gauge orbits on the stationary surface. The algebraic structure of the formalism is identical with the structure of the Hamiltonian BRST construction. The role played there by the constraint surface is played here by the stationary surface. Only elementary quantum questions (general properties of the measure) are addressed. (orig.)

  1. Mathematics of the 19th century mathematical logic, algebra, number theory, probability theory

    CERN Document Server

    Yushkevich, A

    1992-01-01

    This multi-authored effort, Mathematics of the nineteenth century (to be fol­ lowed by Mathematics of the twentieth century), is a sequel to the History of mathematics fram antiquity to the early nineteenth century, published in three 1 volumes from 1970 to 1972. For reasons explained below, our discussion of twentieth-century mathematics ends with the 1930s. Our general objectives are identical with those stated in the preface to the three-volume edition, i. e. , we consider the development of mathematics not simply as the process of perfecting concepts and techniques for studying real-world spatial forms and quantitative relationships but as a social process as weIl. Mathematical structures, once established, are capable of a certain degree of autonomous development. In the final analysis, however, such immanent mathematical evolution is conditioned by practical activity and is either self-directed or, as is most often the case, is determined by the needs of society. Proceeding from this premise, we intend...

  2. C*-algebraic scattering theory and explicitly solvable quantum field theories

    International Nuclear Information System (INIS)

    Warchall, H.A.

    1985-01-01

    A general theoretical framework is developed for the treatment of a class of quantum field theories that are explicitly exactly solvable, but require the use of C*-algebraic techniques because time-dependent scattering theory cannot be constructed in any one natural representation of the observable algebra. The purpose is to exhibit mechanisms by which inequivalent representations of the observable algebra can arise in quantum field theory, in a setting free of other complications commonly associated with the specification of dynamics. One of two major results is the development of necessary and sufficient conditions for the concurrent unitary implementation of two automorphism groups in a class of quasifree representations of the algebra of the canonical commutation relations (CCR). The automorphism groups considered are induced by one-parameter groups of symplectic transformations on the classical phase space over which the Weyl algebra of the CCR is built; each symplectic group is conjugate by a fixed symplectic transformation to a one-parameter unitary group. The second result, an analog to the Birman--Belopol'skii theorem in two-Hilbert-space scattering theory, gives sufficient conditions for the existence of Moller wave morphisms in theories with time-development automorphism groups of the above type. In a paper which follows, this framework is used to analyze a particular model system for which wave operators fail to exist in any natural representation of the observable algebra, but for which wave morphisms and an associated S matrix are easily constructed

  3. Universal enveloping algebras of Toda field theories and the light-cone asymmetry parameter

    International Nuclear Information System (INIS)

    Itoyama, H.; Moxhay, P.

    1990-01-01

    The generators of the universal enveloping algebras in Toda field theories associated with Lie algebras are constructed. These form spectrum-generating algebras of the system which survive the constraints acting on the larger current algebra structure. It is found that the same generators fail to be a symmetry in the case of affine Toda field theory despite their close relationship with Mandelstam's soliton operators. We introduce the light-cone asymmetry parameter; its significance and utility are demonstrated. (orig.)

  4. Argyres-Douglas theories, chiral algebras and wild Hitchin characters

    Science.gov (United States)

    Fredrickson, Laura; Pei, Du; Yan, Wenbin; Ye, Ke

    2018-01-01

    We use Coulomb branch indices of Argyres-Douglas theories on S 1 × L( k, 1) to quantize moduli spaces M_H of wild/irregular Hitchin systems. In particular, we obtain formulae for the "wild Hitchin characters" — the graded dimensions of the Hilbert spaces from quantization — for four infinite families of M_H , giving access to many interesting geometric and topological data of these moduli spaces. We observe that the wild Hitchin characters can always be written as a sum over fixed points in M_H under the U(1) Hitchin action, and a limit of them can be identified with matrix elements of the modular transform ST k S in certain two-dimensional chiral algebras. Although naturally fitting into the geometric Langlands program, the appearance of chiral algebras, which was known previously to be associated with Schur operators but not Coulomb branch operators, is somewhat surprising.

  5. Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory

    CERN Document Server

    Molina, Mercedes

    2016-01-01

    Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are relevant in research and development in coding theory, cryptography and quantum mechanics. The topics in this volume were presented at the Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory, held May 23—25, 2014 at Cheikh Anta Diop University in Dakar, Senegal in honor of Professor Amin Kaidi. The workshop was hosted by the university's Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications, in cooperation with the University of Almería and the University of Málaga. Dr. Kaidi's work focuses on non-associative rings and algebras, operator theory and functional analysis, and he...

  6. Contemporary developments in algebraic K-theory

    Energy Technology Data Exchange (ETDEWEB)

    Karoubi, M [Univ. Paris (France); Kuku, A O [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Pedrini, C [Univ. Genova (Italy)

    2003-09-15

    The School and Conference on Algebraic K-theory which took place at ICTP July 8-26, 2002 was a follow-up to the earlier one in 1997, and like its predecessor, the 2002 meeting endeavoured to emphasise the multidisciplinary aspects of the subject. However, one special feature of the 2002 School and Conference is that the whole activity was dedicated to H. Bass, one of the founders of Algebraic K-theory, on the occasion of his seventieth birthday. The School during the first two weeks, July 8 to 19 was devoted to expository lectures meant to explore and highlight connections between K-theory and several other areas of mathematics - Algebraic Topology, Number theory, Algebraic Geometry, Representation theory, and Non-commutative Geometry. This volume, constituting the Proceedings of the School, is dedicated to H. Bass. The Proceedings of the Conference during the last week July 22 - 26, which will appear in Special issues of K-theory, is also dedicated to H. Bass. The opening contribution by M. Karoubi to this volume consists of a comprehensive survey of developments in K-theory in the last forty-five years, and covers a very broad spectrum of the subject, including Topological K-theory, Atiyah-Singer index theorem, K-theory of Banach algebras, Higher Algebraic K-theory, Cyclic Homology etc. J. Berrick's contribution on 'Algebraic K-theory and Algebraic Topology' treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers. The contributions by M. Kolster titled 'K-theory and Arithmetics' includes such topics as values of zeta functions and relations to K-theory, K-theory of integers in number fields and associated conjectures, Etale cohomology, Iwasawa theory etc. A.O. Kuku's contributions on 'K-theory and Representation theory

  7. Spectral theory and quantum mechanics mathematical foundations of quantum theories, symmetries and introduction to the algebraic formulation

    CERN Document Server

    Moretti, Valter

    2017-01-01

    This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing ...

  8. Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories.

    Science.gov (United States)

    Huang, Yu-tin; Johansson, Henrik

    2013-04-26

    We show that three-dimensional supergravity amplitudes can be obtained as double copies of either three-algebra super-Chern-Simons matter theory or two-algebra super-Yang-Mills theory when either theory is organized to display the color-kinematics duality. We prove that only helicity-conserving four-dimensional gravity amplitudes have nonvanishing descendants when reduced to three dimensions, implying the vanishing of odd-multiplicity S-matrix elements, in agreement with Chern-Simons matter theory. We explicitly verify the double-copy correspondence at four and six points for N = 12,10,8 supergravity theories and discuss its validity for all multiplicity.

  9. Stream ciphers and number theory

    CERN Document Server

    Cusick, Thomas W; Renvall, Ari R

    2004-01-01

    This is the unique book on cross-fertilisations between stream ciphers and number theory. It systematically and comprehensively covers known connections between the two areas that are available only in research papers. Some parts of this book consist of new research results that are not available elsewhere. In addition to exercises, over thirty research problems are presented in this book. In this revised edition almost every chapter was updated, and some chapters were completely rewritten. It is useful as a textbook for a graduate course on the subject, as well as a reference book for researchers in related fields. · Unique book on interactions of stream ciphers and number theory. · Research monograph with many results not available elsewhere. · A revised edition with the most recent advances in this subject. · Over thirty research problems for stimulating interactions between the two areas. · Written by leading researchers in stream ciphers and number theory.

  10. Noncommutative o*(N) and usp*(2N) algebras and the corresponding gauge field theories

    International Nuclear Information System (INIS)

    Bars, I.; Sheikh-Jabbari, M.M.; Vasiliev, M.A.

    2001-03-01

    The extension of the noncommutative u * (N) Lie algebra to noncommutative orthogonal and symplectic Lie algebras is studied. Using an anti-automorphism of the star-matrix algebra, we show that the u * (N) can consistently be restricted to o * (N) and usp * (N) algebras that have new mathematical structures. We give explicit fundamental matrix representations of these algebras, through which the formulation for the corresponding noncommutative gauge field theories are obtained. In addition, we present a D-brane configuration with an orientifold which realizes geometrically our algebraic construction, thus embedding the new noncommutative gauge theories in superstring theory in the presence of a constant background magnetic field. Some algebraic generalizations that may have applications in other areas of physics are also discussed. (author)

  11. String field theory-inspired algebraic structures in gauge theories

    International Nuclear Information System (INIS)

    Zeitlin, Anton M.

    2009-01-01

    We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.

  12. From rational numbers to algebra: separable contributions of decimal magnitude and relational understanding of fractions.

    Science.gov (United States)

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2015-05-01

    To understand the development of mathematical cognition and to improve instructional practices, it is critical to identify early predictors of difficulty in learning complex mathematical topics such as algebra. Recent work has shown that performance with fractions on a number line estimation task predicts algebra performance, whereas performance with whole numbers on similar estimation tasks does not. We sought to distinguish more specific precursors to algebra by measuring multiple aspects of knowledge about rational numbers. Because fractions are the first numbers that are relational expressions to which students are exposed, we investigated how understanding the relational bipartite format (a/b) of fractions might connect to later algebra performance. We presented middle school students with a battery of tests designed to measure relational understanding of fractions, procedural knowledge of fractions, and placement of fractions, decimals, and whole numbers onto number lines as well as algebra performance. Multiple regression analyses revealed that the best predictors of algebra performance were measures of relational fraction knowledge and ability to place decimals (not fractions or whole numbers) onto number lines. These findings suggest that at least two specific components of knowledge about rational numbers--relational understanding (best captured by fractions) and grasp of unidimensional magnitude (best captured by decimals)--can be linked to early success with algebraic expressions. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Introduction to algebraic quantum field theory

    International Nuclear Information System (INIS)

    Horuzhy, S.S.

    1990-01-01

    This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs

  14. Algebraic quantum field theory and noncommutative moment problems I

    International Nuclear Information System (INIS)

    Alcantara-Bode, J.; Yngvason, J.

    1988-01-01

    Let S denote Borcher's test function algebra and T c the locality ideal. It is shown that the quotient algebra S/T c admits a continuous C*-norm and thus has a faithful representation by bounded operators on Hilbert space. This representation can be chosen to be Poincare-covariant. Some further properties of the topology defined by the continuous C*-norms on this algebra are also established

  15. Differential algebras in field theory and their anomalies: two examples

    International Nuclear Information System (INIS)

    Stora, R.

    1986-06-01

    The expression of gauge symmetries in local field theory proceeds via the construction of some differential algebras as was remarked some ten years ago. The construction relevant to Yang Mills theories is recalled. As another popular example, we have chosen to describe the covariant quantization of the free bosonic string in the metric background gauge

  16. Super Virasoro algebra and solvable supersymmetric quantum field theories

    International Nuclear Information System (INIS)

    Yamanaka, Itaru; Sasaki, Ryu.

    1987-09-01

    Interesting and deep relationships between super Virasoro algebras and super soliton systems (super KdV, super mKdV and super sine-Gordon equations) are investigated at both classical and quantum levels. An infinite set of conserved quantities responsible for solvability is characterized by super Virasoro algebras only. Several members of the infinite set of conserved quantities are derived explicitly. (author)

  17. Matrix algebra and sampling theory : The case of the Horvitz-Thompson estimator

    NARCIS (Netherlands)

    Dol, W.; Steerneman, A.G.M.; Wansbeek, T.J.

    Matrix algebra is a tool not commonly employed in sampling theory. The intention of this paper is to help change this situation by showing, in the context of the Horvitz-Thompson (HT) estimator, the convenience of the use of a number of matrix-algebra results. Sufficient conditions for the

  18. Advanced number theory

    CERN Document Server

    Cohn, Harvey

    1980-01-01

    ""A very stimulating book ... in a class by itself."" - American Mathematical MonthlyAdvanced students, mathematicians and number theorists will welcome this stimulating treatment of advanced number theory, which approaches the complex topic of algebraic number theory from a historical standpoint, taking pains to show the reader how concepts, definitions and theories have evolved during the last two centuries. Moreover, the book abounds with numerical examples and more concrete, specific theorems than are found in most contemporary treatments of the subject.The book is divided into three parts

  19. On the binary expansions of algebraic numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl

    2003-07-01

    Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.

  20. Nilpotent algebras of the generalized differential forms and the geometry of superfield theories

    International Nuclear Information System (INIS)

    Zupnik, B.M.

    1991-01-01

    We consider a new algebraic approach in the geometry of supergauge theories and supergravity. An introduction of nilpotent algebras simplifies significantly the analysis of D = 3, 4, N = 1 supergravity constraints. Different terms in the invariant action functionals of SG- and SYM-theories are constructed as the integrals of corresponding generalized differential forms. (orig.)

  1. A systematic investigation of the link between rational number processing and algebra ability.

    Science.gov (United States)

    Hurst, Michelle; Cordes, Sara

    2018-02-01

    Recent research suggests that fraction understanding is predictive of algebra ability; however, the relative contributions of various aspects of rational number knowledge are unclear. Furthermore, whether this relationship is notation-dependent or rather relies upon a general understanding of rational numbers (independent of notation) is an open question. In this study, college students completed a rational number magnitude task, procedural arithmetic tasks in fraction and decimal notation, and an algebra assessment. Using these tasks, we measured three different aspects of rational number ability in both fraction and decimal notation: (1) acuity of underlying magnitude representations, (2) fluency with which symbols are mapped to the underlying magnitudes, and (3) fluency with arithmetic procedures. Analyses reveal that when looking at the measures of magnitude understanding, the relationship between adults' rational number magnitude performance and algebra ability is dependent upon notation. However, once performance on arithmetic measures is included in the relationship, individual measures of magnitude understanding are no longer unique predictors of algebra performance. Furthermore, when including all measures simultaneously, results revealed that arithmetic fluency in both fraction and decimal notation each uniquely predicted algebra ability. Findings are the first to demonstrate a relationship between rational number understanding and algebra ability in adults while providing a clearer picture of the nature of this relationship. © 2017 The British Psychological Society.

  2. Homotopy Theory of C*-Algebras

    CERN Document Server

    Ostvaer, Paul Arne

    2010-01-01

    Homotopy theory and C* algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It

  3. Chiral algebras for trinion theories

    International Nuclear Information System (INIS)

    Lemos, Madalena; Peelaers, Wolfger

    2015-01-01

    It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

  4. On the algebraic theory of kink sectors: Application to quantum field theory models and collision theory

    International Nuclear Information System (INIS)

    Schlingemann, D.

    1996-10-01

    Several two dimensional quantum field theory models have more than one vacuum state. An investigation of super selection sectors in two dimensions from an axiomatic point of view suggests that there should be also states, called soliton or kink states, which interpolate different vacua. Familiar quantum field theory models, for which the existence of kink states have been proven, are the Sine-Gordon and the φ 4 2 -model. In order to establish the existence of kink states for a larger class of models, we investigate the following question: Which are sufficient conditions a pair of vacuum states has to fulfill, such that an interpolating kink state can be constructed? We discuss the problem in the framework of algebraic quantum field theory which includes, for example, the P(φ) 2 -models. We identify a large class of vacuum states, including the vacua of the P(φ) 2 -models, the Yukawa 2 -like models and special types of Wess-Zumino models, for which there is a natural way to construct an interpolating kink state. In two space-time dimensions, massive particle states are kink states. We apply the Haag-Ruelle collision theory to kink sectors in order to analyze the asymptotic scattering states. We show that for special configurations of n kinks the scattering states describe n freely moving non interacting particles. (orig.)

  5. Fusion and braiding in W-algebra extended conformal theories

    International Nuclear Information System (INIS)

    Bilal, A.

    1990-01-01

    We define the chiral conformal blocks of integer-spin extended (W-algebra) conformal theories by the fusion of elementary ones. The braid group representation matrices which realize the exchange algebra are computed. They are shown to coincide with the Boltzmann weights - in a certain limit of the spectral parameter - of the critical face models of Jimbo et al. In the unitary cases, where the extended conformal theories can be realized as cosets g k + g 1 /g k+1 , we relate the braiding matrices of the former to those of the g WZW models. In this article we restrict ourselves to the case corresponding to symmetric tensor representations of A n . (orig.)

  6. Algebraic equations an introduction to the theories of Lagrange and Galois

    CERN Document Server

    Dehn, Edgar

    2004-01-01

    Meticulous and complete, this presentation of Galois' theory of algebraic equations is geared toward upper-level undergraduate and graduate students. The theories of both Lagrange and Galois are developed in logical rather than historical form. And they are given a more thorough exposition than is customary. For this reason, and also because the author concentrates on concrete applications of algebraic theory, Algebraic Equations is an excellent supplementary text, offering students a concrete introduction to the abstract principles of Galois theory. Of further value are the many numerical ex

  7. Elementary number theory

    CERN Document Server

    Dudley, Underwood

    2008-01-01

    Ideal for a first course in number theory, this lively, engaging text requires only a familiarity with elementary algebra and the properties of real numbers. Author Underwood Dudley, who has written a series of popular mathematics books, maintains that the best way to learn mathematics is by solving problems. In keeping with this philosophy, the text includes nearly 1,000 exercises and problems-some computational and some classical, many original, and some with complete solutions. The opening chapters offer sound explanations of the basics of elementary number theory and develop the fundamenta

  8. Algebraic K- and L-theory and applications to the topology of manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Hambleton, I [Department of Mathematics and Statistics, McMaster University, Hamilton (Canada)

    2002-08-15

    The development of geometric topology has led to the identification of specific algebraic structures of great richness and usefulness. A common theme in this area is the study of algebraic invariants of discrete groups or rings by topological methods. The resulting subject is now called algebraic K-theory. The purpose of these lecture notes is to survey some of the main constructions and techniques in algebraic K-theory, together with an indication of the topological backnd and applications. More details about proofs can be found in the references. The material is organized into some introductory sections, concerning linear and unitary K-theory, followed by descriptions of four important geometric problems and their related algebraic methods.

  9. Covariant representation theory of the Poincaré algebra and some of its extensions

    Science.gov (United States)

    Boels, Rutger

    2010-01-01

    There has been substantial calculational progress in the last few years for gauge theory amplitudes which involve massless four dimensional particles. One of the central ingredients in this has been the ability to keep precise track of the Poincaré algebra quantum numbers of the particles involved. Technically, this is most easily done using the well-known four dimensional spinor helicity method. In this article a natural generalization to all dimensions higher than four is obtained based on a covariant version of the representation theory of the Poincaré algebra. Covariant expressions for all possible polarization states, both bosonic and fermionic, are constructed. For the fermionic states the analysis leads directly to pure spinors. The natural extension to the representation theory of the on-shell supersymmetry algebra results in an elementary derivation of the supersymmetry Ward identities for scattering amplitudes with massless or massive legs in any integer dimension from four onwards. As a proof-of-concept application a higher dimensional analog of the vanishing helicity-equal amplitudes in four dimensions is presented in (super) Yang-Mills theory, Einstein (super-)gravity and superstring theory in a flat background.

  10. Toda lattice field theories, discrete W algebras, Toda lattice hierarchies and quantum groups

    International Nuclear Information System (INIS)

    Bonora, L.; Colatto, L.P.; Constantinidis, C.P.

    1996-05-01

    In analogy with the Liouville case, we study the sl 3 Toda theory on the lattice and define the relevant quadratic algebra and out of it we recover the discrete W 3 algebra. We define an integrable system with respect to the latter and establish the relation with the Toda lattice hierarchy. We compute the relevant continuum limits. Finally we find the quantum version of the quadratic algebra. (author). 16 refs

  11. Cryptography and computational number theory

    CERN Document Server

    Shparlinski, Igor; Wang, Huaxiong; Xing, Chaoping; Workshop on Cryptography and Computational Number Theory, CCNT'99

    2001-01-01

    This volume contains the refereed proceedings of the Workshop on Cryptography and Computational Number Theory, CCNT'99, which has been held in Singapore during the week of November 22-26, 1999. The workshop was organized by the Centre for Systems Security of the Na­ tional University of Singapore. We gratefully acknowledge the financial support from the Singapore National Science and Technology Board under the grant num­ ber RP960668/M. The idea for this workshop grew out of the recognition of the recent, rapid development in various areas of cryptography and computational number the­ ory. The event followed the concept of the research programs at such well-known research institutions as the Newton Institute (UK), Oberwolfach and Dagstuhl (Germany), and Luminy (France). Accordingly, there were only invited lectures at the workshop with plenty of time for informal discussions. It was hoped and successfully achieved that the meeting would encourage and stimulate further research in information and computer s...

  12. Algebraic Rainich theory and antisymmetrization in higher dimensions

    International Nuclear Information System (INIS)

    Bergqvist, G; Hoeglund, A

    2002-01-01

    The classical Rainich(-Misner-Wheeler) theory gives necessary and sufficient conditions on an energy-momentum tensor T to be that of a Maxwell field (a 2-form) in four dimensions. Via Einstein's equations, these conditions can be expressed in terms of the Ricci tensor, thus providing conditions for a spacetime geometry to be an Einstein-Maxwell spacetime. One of the conditions is that T 2 is proportional to the metric, and it has previously been shown in arbitrary dimension that any tensor satisfying this condition is a superenergy tensor of a simple p-form. Here we examine algebraic Rainich conditions for general p-forms in higher dimensions and their relations to identities by antisymmetrization. Using antisymmetrization techniques we find new identities for superenergy tensors of these general (non-simple) forms, and we also prove in some cases the converse: that the identities are sufficient to determine the form. As an example we obtain the complete generalization of the classical Rainich theory to five dimensions

  13. Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems.

    Science.gov (United States)

    Geary, David C; Hoard, Mary K; Nugent, Lara; Rouder, Jeffrey N

    2015-12-01

    The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 ninth graders (92 girls) while controlling for parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation but not to schema memory. Frequency of fact retrieval errors was related to schema memory but not to coordinate plane or expression evaluation accuracy. The results suggest that the ANS may contribute to or be influenced by spatial-numerical and numerical-only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest that different brain and cognitive systems are engaged during the learning of different components of algebraic competence while controlling for demographic and domain general abilities. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Categories and Commutative Algebra

    CERN Document Server

    Salmon, P

    2011-01-01

    L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

  15. Fredholm theory in ordered Banach algebras | Benjamin ...

    African Journals Online (AJOL)

    This paper illustrates some initial steps taken in the effort of unifying the theory of positivity in ordered Banach algebas (OBAs) with the general Fred-holm theory in Banach algebras. We introduce here upper Weyl and upper Browder elements in an OBA relative to an arbitrary Banach algebra homomorphism and investigate ...

  16. Differential algebras in field theory

    International Nuclear Information System (INIS)

    Stora, R.

    1988-01-01

    The applications of differential algebras, as mathematical tools, in field theory are reviewed. The Yang-Mills theories are recalled and the free bosonic string model is treated. Moreover, in the scope of the work, the following topics are discussed: the Faddeev Popov fixed action, in a Feynman like gauge; the structure of local anomalies, including the algebric and the topological theories; the problem of quantizing a degenerate state; and the zero mode problem, in the treatment of the bosonic string conformal gauge. The analysis leads to the conclusion that not much is known about situations where a non involutive distribution is involved

  17. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  18. Extended KN algebras and extended conformal field theories over higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Ceresole, A.; Huang Chaoshang

    1990-01-01

    A global operator formalism for extended conformal field theories over higher genus Riemann surfaces is introduced and extended KN algebra are obtained by means of the KN bases. The BBSS construction of the spin-3 operator is carried out for Kac-Moody algebra A 2 over a Riemann surface of arbitrary genus. (orig.)

  19. Approximation of complex algebraic numbers by algebraic numbers of bounded degree

    OpenAIRE

    Bugeaud, Yann; Evertse, Jan-Hendrik

    2007-01-01

    We investigate how well complex algebraic numbers can be approximated by algebraic numbers of degree at most n. We also investigate how well complex algebraic numbers can be approximated by algebraic integers of degree at most n+1. It follows from our investigations that for every positive integer n there are complex algebraic numbers of degree larger than n that are better approximable by algebraic numbers of degree at most n than almost all complex numbers. As it turns out, these numbers ar...

  20. Quantum field theory on toroidal topology: Algebraic structure and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)

    2014-06-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu

  1. Quantum field theory on toroidal topology: Algebraic structure and applications

    International Nuclear Information System (INIS)

    Khanna, F.C.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.

    2014-01-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ D d =(S 1 ) d ×R D−d is developed from a Lie-group representation and c ∗ -algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ 4 1 . The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu–Jona-Lasinio models, are considered. Then

  2. Women in numbers Europe II contributions to number theory and arithmetic geometry

    CERN Document Server

    Ozman, Ekin; Johnson-Leung, Jennifer; Newton, Rachel

    2018-01-01

    Inspired by the September 2016 conference of the same name, this second volume highlights recent research in a wide range of topics in contemporary number theory and arithmetic geometry. Research reports from projects started at the conference, expository papers describing ongoing research, and contributed papers from women number theorists outside the conference make up this diverse volume. Topics cover a broad range of topics such as arithmetic dynamics, failure of local-global principles, geometry in positive characteristics, and heights of algebraic integers. The use of tools from algebra, analysis and geometry, as well as computational methods exemplifies the wealth of techniques available to modern researchers in number theory. Exploring connections between different branches of mathematics and combining different points of view, these papers continue the tradition of supporting and highlighting the contributions of women number theorists at a variety of career stages. Perfect for students and researche...

  3. The Hilbert polynomial and linear forms in the logarithms of algebraic numbers

    International Nuclear Information System (INIS)

    Aleksentsev, Yu M

    2008-01-01

    We prove a new estimate for homogeneous linear forms with integer coefficients in the logarithms of algebraic numbers. We obtain a qualitative improvement of the estimate depending on the coefficients of the linear form and the best value of the constant in the estimate in the case when the number of logarithms is not too large

  4. Automorphisms of W-algebras and extended rational conformal field theories

    International Nuclear Information System (INIS)

    Honecker, A.

    1992-11-01

    Many extended conformal algebras with one generator in addition to the Virasoro field as well as Casimir algebras have non-trivial outer automorphisms which enables one to impose 'twisted' boundary conditions on the chiral fields. We study their effect on the highest weight representations. We give formulae for the enlarged rational conformal field theories in both series of W-algebras with two generators and conjecture a general formula for the additional models in the minimal series of Casimir algebras. A third series of W-algebras with two generators which includes the spin three algebra at c = -2 also has finitely many additional fields in the twisted sector although the model itself is apparently not rational. The additional fields in the twisted sector have applications in statistical mechanics as we demonstrate for Z n -quantum spin chains with a particular type of boundary conditions. (orig.)

  5. Compactly supported Wannier functions and algebraic K -theory

    Science.gov (United States)

    Read, N.

    2017-03-01

    In a tight-binding lattice model with n orbitals (single-particle states) per site, Wannier functions are n -component vector functions of position that fall off rapidly away from some location, and such that a set of them in some sense span all states in a given energy band or set of bands; compactly supported Wannier functions are such functions that vanish outside a bounded region. They arise not only in band theory, but also in connection with tensor-network states for noninteracting fermion systems, and for flat-band Hamiltonians with strictly short-range hopping matrix elements. In earlier work, it was proved that for general complex band structures (vector bundles) or general complex Hamiltonians—that is, class A in the tenfold classification of Hamiltonians and band structures—a set of compactly supported Wannier functions can span the vector bundle only if the bundle is topologically trivial, in any dimension d of space, even when use of an overcomplete set of such functions is permitted. This implied that, for a free-fermion tensor network state with a nontrivial bundle in class A, any strictly short-range parent Hamiltonian must be gapless. Here, this result is extended to all ten symmetry classes of band structures without additional crystallographic symmetries, with the result that in general the nontrivial bundles that can arise from compactly supported Wannier-type functions are those that may possess, in each of d directions, the nontrivial winding that can occur in the same symmetry class in one dimension, but nothing else. The results are obtained from a very natural usage of algebraic K -theory, based on a ring of polynomials in e±i kx,e±i ky,..., which occur as entries in the Fourier-transformed Wannier functions.

  6. Control Systems and Number Theory

    Directory of Open Access Journals (Sweden)

    Fuhuo Li

    2012-01-01

    and PID-controllers are applied successfully in the EV control by J.-Y. Cao and B.-G. Cao 2006 and Cao et al. 2007, which we may unify in our framework. Finally, we mention some similarities between control theory and zeta-functions.

  7. Algebraic coding theory over finite commutative rings

    CERN Document Server

    Dougherty, Steven T

    2017-01-01

    This book provides a self-contained introduction to algebraic coding theory over finite Frobenius rings. It is the first to offer a comprehensive account on the subject. Coding theory has its origins in the engineering problem of effective electronic communication where the alphabet is generally the binary field. Since its inception, it has grown as a branch of mathematics, and has since been expanded to consider any finite field, and later also Frobenius rings, as its alphabet. This book presents a broad view of the subject as a branch of pure mathematics and relates major results to other fields, including combinatorics, number theory and ring theory. Suitable for graduate students, the book will be of interest to anyone working in the field of coding theory, as well as algebraists and number theorists looking to apply coding theory to their own work.

  8. Open and Closed String field theory interpreted in classical Algebraic Topology

    OpenAIRE

    Sullivan, Dennis

    2003-01-01

    There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.

  9. Utilization of variation theory in the classroom: Effect on students' algebraic achievement and motivation

    Science.gov (United States)

    Jing, Ting Jing; Tarmizi, Rohani Ahmad; Bakar, Kamariah Abu; Aralas, Dalia

    2017-01-01

    This study investigates the effect of utilizing Variation Theory Based Strategy on students' algebraic achievement and motivation in learning algebra. The study used quasi-experimental non-equivalent control group research design and involved 56 Form Two (Secondary Two) students in two classes (28 in experimental group, 28 in control group) in Malaysia The first class of students went through algebra class taught with Variation Theory Based Strategy (VTBS) while the second class of students experienced conventional teaching strategy. The instruments used for the study were a 24-item Algebra Test and 36-item Instructional Materials Motivation Survey. Result from analysis of Covariance indicated that experimental group students achieved significantly better test scores than control group. Result of Multivariate Analysis of Variance also shows evidences of significant effect of VTBS on experimental students' overall motivation in all the five subscales; attention, relevance, confidence, and satisfaction. These results suggested the utilization of VTBS would improve students' learning in algebra.

  10. Extended Virasoro algebra and algebra of area preserving diffeomorphisms

    International Nuclear Information System (INIS)

    Arakelyan, T.A.

    1990-01-01

    The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs

  11. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  12. Advanced number theory with applications

    CERN Document Server

    Mollin, Richard A

    2009-01-01

    Algebraic Number Theory and Quadratic Fields Algebraic Number Fields The Gaussian Field Euclidean Quadratic Fields Applications of Unique Factorization Ideals The Arithmetic of Ideals in Quadratic Fields Dedekind Domains Application to Factoring Binary Quadratic Forms Basics Composition and the Form Class Group Applications via Ambiguity Genus Representation Equivalence Modulo p Diophantine Approximation Algebraic and Transcendental Numbers Transcendence Minkowski's Convex Body Theorem Arithmetic Functions The Euler-Maclaurin Summation Formula Average Orders The Riemann zeta-functionIntroduction to p-Adic AnalysisSolving Modulo pn Introduction to Valuations Non-Archimedean vs. Archimedean Valuations Representation of p-Adic NumbersDirichlet: Characters, Density, and Primes in Progression Dirichlet Characters Dirichlet's L-Function and Theorem Dirichlet DensityApplications to Diophantine Equations Lucas-Lehmer Theory Generalized Ramanujan-Nagell Equations Bachet's Equation The Fermat Equation Catalan and the A...

  13. Chern-Simons theory, 2d Yang-Mills, and Lie algebra wanderers

    International Nuclear Information System (INIS)

    Haro, Sebastian de

    2005-01-01

    We work out the relation between Chern-Simons, 2d Yang-Mills on the cylinder, and Brownian motion. We show that for the unitary, orthogonal and symplectic groups, various observables in Chern-Simons theory on S 3 and lens spaces are exactly given by counting the number of paths of a Brownian particle wandering in the fundamental Weyl chamber of the corresponding Lie algebra. We construct a fermionic formulation of Chern-Simons on S 3 which allows us to identify the Brownian particles as B-model branes moving on a noncommutative two-sphere, and construct 1- and 2-matrix models to compute Brownian motion ensemble averages

  14. Infinite dimension algebra and conformal symmetry

    International Nuclear Information System (INIS)

    Ragoucy-Aubezon, E.

    1991-04-01

    A generalisation of Kac-Moody algebras (current algebras defined on a circle) to algebras defined on a compact supermanifold of any dimension and with any number of supersymmetries is presented. For such a purpose, we compute all the central extensions of loop algebras defined on this supermanifold, i.e. all the cohomology classes of these loop algebras. Then, we try to extend the relation (i.e. semi-direct sum) that exists between the two dimensional conformal algebras (called Virasoro algebra) and the usual Kac-Moody algebras, by considering the derivation algebra of our extended Kac-Moody algebras. The case of superconformal algebras (used in superstrings theories) is treated, as well as the cases of area-preserving diffeomorphisms (used in membranes theories), and Krichever-Novikov algebras (used for interacting strings). Finally, we present some generalizations of the Sugawara construction to the cases of extended Kac-Moody algebras, and Kac-Moody of superalgebras. These constructions allow us to get new realizations of the Virasoro, and Ramond, Neveu-Schwarz algebras

  15. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  16. Recoupling Lie algebra and universal ω-algebra

    International Nuclear Information System (INIS)

    Joyce, William P.

    2004-01-01

    We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure

  17. Quantum cluster algebras and quantum nilpotent algebras

    Science.gov (United States)

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  18. Foliation theory in algebraic geometry

    CERN Document Server

    McKernan, James; Pereira, Jorge

    2016-01-01

    Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

  19. Conferences on Combinatorial and Additive Number Theory

    CERN Document Server

    2014-01-01

    This proceedings volume is based on papers presented at the Workshops on Combinatorial and Additive Number Theory (CANT), which were held at the Graduate Center of the City University of New York in 2011 and 2012. The goal of the workshops is to survey recent progress in combinatorial number theory and related parts of mathematics. The workshop attracts researchers and students who discuss the state-of-the-art, open problems, and future challenges in number theory.

  20. Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications

    International Nuclear Information System (INIS)

    Aldazabal, G.; Camara, P.G.; Rosabal, J.A.

    2009-01-01

    We discuss the structure of 4D gauged supergravity algebras corresponding to globally non-geometric compactifications of F-theory, admitting a local geometric description in terms of 10D supergravity. By starting with the well-known algebra of gauge generators associated to non-geometric type IIB fluxes, we derive a full algebra containing all, closed RR and NSNS, geometric and non-geometric dual fluxes. We achieve this generalization by a systematic application of SL(2,Z) duality transformations and by taking care of the spinorial structure of the fluxes. The resulting algebra encodes much information about the higher dimensional theory. In particular, tadpole equations and Bianchi identities are obtainable as Jacobi identities of the algebra. When a sector of magnetized (p,q) 7-branes is included, certain closed axions are gauged by the U(1) transformations on the branes. We indicate how the diagonal gauge generators of the branes can be incorporated into the full algebra, and show that Freed-Witten constraints and tadpole cancellation conditions for (p,q) 7-branes can be described as Jacobi identities satisfied by the algebra mixing bulk and brane gauge generators

  1. Generalized space-time supersymmetries, division algebras and octonionic M-theory

    International Nuclear Information System (INIS)

    Lukierski, Jerzy; Toppan, Francesco

    2002-03-01

    We describe the set of generalized Poincare and conformal superalgebras in D= 4,5 and 7 dimensions as two sequences of superalgebraic structures, taking values in the division algebras R, C and H. The generalized conformal superalgebras are described for D = 4 by OSp(1;8|R), for D = 5 by SU(4,4;1) and for D = 7 by U α U (8;1|H). The relation with other schemes, in particular the framework of conformal spin (super) algebras and Jordan (super) algebras is discussed. By extending the division-algebra-valued super-algebras to octonions we get in D= 11 an octonionic generalized Poincare superalgebra, which we call octonionic M-algebra, describing the octonionic M-theory. It contains 32 real supercharges but, due to the octonionic structure only 52 real bosonic generators remain independent in place of the 528 bosonic charges of standard M-algebra. In octonionic M-theory there is a sort of equivalence between the octonionic M2 (supermembrane) and the octonionic M5 (super-5-brane) sectors. We also define the octonionic generalized conformal M-superalgebra with 239 bosonic generators. (author)

  2. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  3. An introduction to algebraic geometry and algebraic groups

    CERN Document Server

    Geck, Meinolf

    2003-01-01

    An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups

  4. Algebraic structure of cohomological field theory models and equivariant cohomology

    International Nuclear Information System (INIS)

    Stora, R.; Thuillier, F.; Wallet, J.Ch.

    1994-01-01

    The definition of observables within conventional gauge theories is settled by general consensus. Within cohomological theories considered as gauge theories of an exotic type, that question has a much less obvious answer. It is shown here that in most cases these theories are best defined in terms of equivariant cohomologies both at the field level and at the level of observables. (author). 21 refs

  5. Towards a structure theory for Lie-admissible algebras

    International Nuclear Information System (INIS)

    Wene, G.P.

    1981-01-01

    The concepts of radical and decomposition of algebras are presented. Following a discussion of the theory for associative algebras, examples are presented that illuminate the difficulties encountered in choosing a structure theory for nonassociative algebras. Suitable restrictions, based upon observed phenomenon, are given that reduce the class of Lie-admissible algebras to a manageable size. The concepts developed in the first part of the paper are then reexamined in the context of this smaller class of Lie-admissible algebras

  6. String fields, higher spins and number theory

    CERN Document Server

    Polyakov, Dimitri

    2018-01-01

    The book aims to analyze and explore deep and profound relations between string field theory, higher spin gauge theories and holography the disciplines that have been on the cutting edge of theoretical high energy physics and other fields. These intriguing relations and connections involve some profound ideas in number theory, which appear to be part of a unifying language to describe these connections.

  7. Algebraic K-theory of generalized schemes

    DEFF Research Database (Denmark)

    Anevski, Stella Victoria Desiree

    and geometry over the field with one element. It also permits the construction of important Arakelov theoretical objects, such as the completion \\Spec Z of Spec Z. In this thesis, we prove a projective bundle theorem for the eld with one element and compute the Chow rings of the generalized schemes Sp\\ec ZN......Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry......, appearing in the construction of \\Spec Z....

  8. Operator algebras and topology

    International Nuclear Information System (INIS)

    Schick, T.

    2002-01-01

    These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

  9. Constructive algebraic integration theory

    NARCIS (Netherlands)

    Spitters, B.A.W.

    2006-01-01

    For a long time people have been trying to develop probability theory starting from ‘finite’ events rather than collections of infinite events. In this way one can find natural replacements for measurable sets and integrable functions, but measurable functions seemed to be more difficult to find. We

  10. Hopf algebras and topological recursion

    International Nuclear Information System (INIS)

    Esteves, João N

    2015-01-01

    We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293–309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347–452). (paper)

  11. Kac--Moody current algebras of D = 2 massless gauge theories, their representations and applications

    International Nuclear Information System (INIS)

    Craigie, N.S.; Nahm, W.; Narain, K.S.

    1987-01-01

    We give a classification of the Kac--Moody current algebras of all the possible massless fermion-gauge theories in two dimensions. It is shown that only Kac--Moody algebras based on A/sub N/, B/sub N/, C/sub N/, and D/sub N/ in the Cartan classification with all possible central charge occur.The representation of local fermion fields and simply laced Kac--Moody algebras with minimal central charge in terms of free boson fields on a compactified space is discussed in detail, where stress is laid on the role played by the boundary conditions on the various collective modes. Fractional solitons and the possible soliton representation of certain nonsimply laced algebras is also analysed. We briefly discuss the relationship between the massless bound state sector of these two-dimensional gauge theories and the critically coupled two-dimensional nonlinear sigma model, which share the same current algebra. Finally we briefly discuss the relevance of Sp(n) Kac--Moody algebras to the physics of monopole-fermion systems. copyright 1987 Academic Press, Inc

  12. Algebra of Complex Vectors and Applications in Electromagnetic Theory and Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Kundeti Muralidhar

    2015-08-01

    Full Text Available A complex vector is a sum of a vector and a bivector and forms a natural extension of a vector. The complex vectors have certain special geometric properties and considered as algebraic entities. These represent rotations along with specified orientation and direction in space. It has been shown that the association of complex vector with its conjugate generates complex vector space and the corresponding basis elements defined from the complex vector and its conjugate form a closed complex four dimensional linear space. The complexification process in complex vector space allows the generation of higher n-dimensional geometric algebra from (n — 1-dimensional algebra by considering the unit pseudoscalar identification with square root of minus one. The spacetime algebra can be generated from the geometric algebra by considering a vector equal to square root of plus one. The applications of complex vector algebra are discussed mainly in the electromagnetic theory and in the dynamics of an elementary particle with extended structure. Complex vector formalism simplifies the expressions and elucidates geometrical understanding of the basic concepts. The analysis shows that the existence of spin transforms a classical oscillator into a quantum oscillator. In conclusion the classical mechanics combined with zeropoint field leads to quantum mechanics.

  13. Spin structures on algebraic curves and their applications in string theories

    International Nuclear Information System (INIS)

    Ferrari, F.

    1990-01-01

    The free fields on a Riemann surface carrying spin structures live on an unramified r-covering of the surface itself. When the surface is represented as an algebraic curve related to the vanishing of the Weierstrass polynomial, its r-coverings are algebraic curves as well. We construct explicitly the Weierstrass polynomial associated to the r-coverings of an algebraic curve. Using standard techniques of algebraic geometry it is then possible to solve the inverse Jacobi problem for the odd spin structures. As an application we derive the partition functions of bosonic string theories in many examples, including two general curves of genus three and four. The partition functions are explicitly expressed in terms of branch points apart from a factor which is essentially a theta constant. 53 refs., 4 figs. (Author)

  14. Algebraic K-theory and its applications. Proceedings of the workshop and symposium

    International Nuclear Information System (INIS)

    Bass, H.; Kuku, A.O.; Pedrini, C.

    1999-01-01

    The book contains 21 papers presented at the workshop (6 papers) and the symposium (15 papers) on 'Algebraic K-theory and its applications' held at the ICTP Trieste (Italy), between 1-19 September 1997. Four papers were considered within the INIS subject scope and indexed separately

  15. The $K$-theory of real graph $C*$-algebras

    OpenAIRE

    Boersema, Jeffrey L.

    2014-01-01

    In this paper, we will introduce real graph algebras and develop the theory to the point of being able to calculate the $K$-theory of such algebras. The $K$-theory situation is significantly more complicated than in the case for complex graph algebras. To develop the long exact sequence to compute the $K$-theory of a real graph algebra, we need to develop a generalized theory of crossed products for real C*-algebras for groups with involution. We also need to deal with the additional algebrai...

  16. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  17. Mathematical conversations multicolor problems, problems in the theory of numbers, and random walks

    CERN Document Server

    Dynkin, E B

    2006-01-01

    Comprises Multicolor Problems, dealing with map-coloring problems; Problems in the Theory of Numbers, an elementary introduction to algebraic number theory; Random Walks, addressing basic problems in probability theory. 1963 edition.

  18. Quadratic algebras

    CERN Document Server

    Polishchuk, Alexander

    2005-01-01

    Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

  19. KK -theory and spectral flow in von Neumann algebras

    DEFF Research Database (Denmark)

    Kaad, Jens; Nest, Ryszard; Rennie, Adam

    2012-01-01

    We present a definition of spectral flow for any norm closed ideal J in any von Neumann algebra N. Given a path of selfadjoint operators in N which are invertible in N/J, the spectral flow produces a class in Ko (J). Given a semifinite spectral triple (A, H, D) relative to (N, t) with A separable...

  20. Descartes on the Unification of Arithmetic, Algebra and Geometry Via the Theory of Proportions

    Czech Academy of Sciences Publication Activity Database

    Crippa, Davide

    2017-01-01

    Roč. 73, č. 3/4 (2017), s. 1239-1258 ISSN 0870-5283 Institutional support: RVO:67985955 Keywords : algebra * Descartes * Euclid * geometry * multiplication * proportion theory * structure Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology

  1. Informal introduction to extended algebras and conformal field theories with c ≥ 1

    International Nuclear Information System (INIS)

    Ravanini, F.

    1989-01-01

    We review some of the topics of Conformal Field Theory, like extended algebras, parafermions, coset constructions and generalized Feigin-Fuchs construction, modular invariant partition functions on the torus and the help they give in classification of CFTs. Some recent issues in RCFT are also discussed. (orig.)

  2. Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter

    Science.gov (United States)

    Cong, Iris; Cheng, Meng; Wang, Zhenghan

    2017-10-01

    We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev's quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.

  3. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  4. Domain wall solitons and Hopf algebraic translational symmetries in noncommutative field theories

    International Nuclear Information System (INIS)

    Sasai, Yuya; Sasakura, Naoki

    2008-01-01

    Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar φ 4 braided noncommutative field theory in Lie-algebraic noncommutative space-time, [x i ,x j ]=2iκε ijk x k (i,j,k=1,2,3), which has a Hopf algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of Derrick's theorem, and construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter κ. We then find the massless moduli field which propagates on the domain wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry

  5. Algebraic and group treatments to nonlinear displaced number states and their nonclassicality features: A new approach

    International Nuclear Information System (INIS)

    Asili Firouzabadi, N; Tavassoly, M K; Faghihi, M J

    2015-01-01

    Recently, nonlinear displaced number states (NDNSs) have been manually introduced, in which the deformation function f(n) has been artificially added to the previously well-known displaced number states (DNSs). Indeed, just a simple comparison has been performed between the standard coherent state and nonlinear coherent state for the formation of NDNSs. In the present paper, after expressing enough physical motivation of our procedure, four distinct classes of NDNSs are presented by applying algebraic and group treatments. To achieve this purpose, by considering the DNSs and recalling the nonlinear coherent states formalism, the NDNSs are logically defined through an algebraic consideration. In addition, by using a particular class of Gilmore–Perelomov-type of SU(1, 1) and a class of SU(2) coherent states, the NDNSs are introduced via group-theoretical approach. Then, in order to examine the nonclassical behavior of these states, sub-Poissonian statistics by evaluating Mandel parameter and Wigner quasi-probability distribution function associated with the obtained NDNSs are discussed, in detail. (paper)

  6. Tensor categories and endomorphisms of von Neumann algebras with applications to quantum field theory

    CERN Document Server

    Bischoff, Marcel; Longo, Roberto; Rehren, Karl-Henning

    2015-01-01

    C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).

  7. Understanding geometric algebra for electromagnetic theory

    CERN Document Server

    Arthur, John W

    2011-01-01

    "This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison"--Provided by publisher.

  8. Algebraic theory of locally nilpotent derivations

    CERN Document Server

    Freudenburg, Gene

    2017-01-01

    This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a unified treatment of the subject, beginning with 16 First Principles on which the theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane and the Cancellation Theorem for Curves. More recent results, such as Makar-Limanov's theorem for locally nilpotent derivations of polynomial rings, are also discussed. Topics of special interest include progress in classifying additive actions on three-dimensional affine space, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem. A lot of new material is included in this expanded second edition, such as canonical factoriza...

  9. Representations of algebras of extended supersymmetry and linearised supergravity theories

    International Nuclear Information System (INIS)

    Tejlor, Dzh.

    1985-01-01

    In the lecture an attempt is made to acquaint the reader with the theory of extended supersymmetry, to characterize the corresponding particle spectrum and to explain how it can be used in supersymmetry with the least difficulties. Superalgebras are classified, their irreducible representations are given. Superfields and superspace are introduced, their role in the superalgebra realization is analyzed. Examples of linearized Lagrangians and auxiliary fields for the theories of supergravity with N=1 and N=2 are presented. Methods of spin reduction with the central charges are considered. The possibility to construct supergravity model with N>=3 off mass shell is considered

  10. Spectral theory of linear operators and spectral systems in Banach algebras

    CERN Document Server

    Müller, Vladimir

    2003-01-01

    This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...

  11. Number theory and the periodicity of matter

    CERN Document Server

    Boeyens, Jan C A

    2008-01-01

    Presents a fully scientific account of the use of the golden ratio and explores the observation that stable nucleides obey a number theory based general lawThe interest in number theory is worldwide and covers the entire spectrum of human knowledge. Those aspects covered here will not be immediately accessible to the general lay readership, but, scientists of all pursuations immediately appreciate the importance of the applications described hereThe well-known interest of engineers, medical practitioners and information technologists in popular scientific matters, should make this an attractive buy for such individuals. Undergraduate students in these disciplines should be equally interested.

  12. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  13. Riemann surfaces and algebraic curves a first course in Hurwitz theory

    CERN Document Server

    Cavalieri, Renzo

    2016-01-01

    Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.

  14. Quantum field theories on algebraic curves. I. Additive bosons

    International Nuclear Information System (INIS)

    Takhtajan, Leon A

    2013-01-01

    Using Serre's adelic interpretation of cohomology, we develop a 'differential and integral calculus' on an algebraic curve X over an algebraically closed field k of constants of characteristic zero, define algebraic analogues of additive multi-valued functions on X and prove the corresponding generalized residue theorem. Using the representation theory of the global Heisenberg algebra and lattice Lie algebra, we formulate quantum field theories of additive and charged bosons on an algebraic curve X. These theories are naturally connected with the algebraic de Rham theorem. We prove that an extension of global symmetries (Witten's additive Ward identities) from the k-vector space of rational functions on X to the vector space of additive multi-valued functions uniquely determines these quantum theories of additive and charged bosons.

  15. Quantum double actions on operator algebras and orbifold quantum field theories

    International Nuclear Information System (INIS)

    Mueger, M.

    1996-06-01

    Starting from a local quantum field theory with an unbroken compact symmetry group G in 1+1 dimensional spacetime we construct disorder fields implementing gauge transformations on the fields (order variables) localized in a wedge region. Enlarging the local algebras by these disorder fields we obtain a nonlocal field theory, the fixpoint algebras of which under the appropriately extended action of the group G are shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case of a finite group G the extended theory is acted upon in a completely canonical way by the quantum double D(G) and satisfies R-matrix commutation relations as well as a Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent approach to bosonization. The main technical ingredient is a strengthened version of the split property which should hold in all reasonable massive theories. In the appendices (part of) the results are extended to arbitary locally compact groups and our methods are adapted to chiral theories on the circle. (orig.)

  16. Number theory meets Higgs physics

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Inspired by results from modern number theory and algebraic geometry, a lot of progress has recently been made regarding the computation of multi-loop integrals and scattering amplitudes. I will discuss various new approaches to the computation of loop integrals, and illustrate them on the first computation of a quantity at N3LO in perturbative QCD, the soft-virtual part of the inclusive Higgs-boson cross section in gluon fusion at N3LO.

  17. Clifford algebra in finite quantum field theories

    International Nuclear Information System (INIS)

    Moser, M.

    1997-12-01

    We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)

  18. Computing with impure numbers - Automatic consistency checking and units conversion using computer algebra

    Science.gov (United States)

    Stoutemyer, D. R.

    1977-01-01

    The computer algebra language MACSYMA enables the programmer to include symbolic physical units in computer calculations, and features automatic detection of dimensionally-inhomogeneous formulas and conversion of inconsistent units in a dimensionally homogeneous formula. Some examples illustrate these features.

  19. Finite automata, their algebras and grammars towards a theory of formal expressions

    CERN Document Server

    Büchi, J Richard

    1989-01-01

    The author, who died in 1984, is well-known both as a person and through his research in mathematical logic and theoretical computer science. In the first part of the book he presents the new classical theory of finite automata as unary algebras which he himself invented about 30 years ago. Many results, like his work on structure lattices or his characterization of regular sets by generalized regular rules, are unknown to a wider audience. In the second part of the book he extends the theory to general (non-unary, many-sorted) algebras, term rewriting systems, tree automata, and pushdown automata. Essentially Büchi worked independent of other rersearch, following a novel and stimulating approach. He aimed for a mathematical theory of terms, but could not finish the book. Many of the results are known by now, but to work further along this line presents a challenging research program on the borderline between universal algebra, term rewriting systems, and automata theory. For the whole book and aga...

  20. Methods of algebraic geometry in control theory

    CERN Document Server

    Falb, Peter

    1999-01-01

    "Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...

  1. The algebra of space-time as basis of a quantum field theory of all fermions and interactions

    International Nuclear Information System (INIS)

    Wolf, A.K.

    2005-01-01

    In this thesis a construction of a grand unified theory on the base of algebras of vector fields on a Riemannian space-time is described. Hereby from the vector and covector fields a Clifford-geometrical algebra is generated. (HSI)

  2. GRG computer algebra system in gravitation and general relativity theory

    International Nuclear Information System (INIS)

    Zhitnikov, V.V.; Obukhova, I.G.

    1985-01-01

    The main concepts and capabilities of the GRG specialized computer agebra system intended for performing calculations in the gravitation theory are described. The GRG system is written in the STANDARD LISP language. The program consists of two parts: the first one - for setting initial data, the second one - for specifying a consequence of calculations. The system can function in three formalisms: a coordinate, a tetradic with the Lorentz basis and a spinor ones. The major capabilities of the GRG system are the following: calculation of connectivity and curvature according to the specified metrics, tetrad and torsion; metric type determination according to Petrov; calculation of the Bianchi indentities; operation with an electromagnetic field; tetradic rotations; coordinate conversions

  3. Perturbative quantum field theory via vertex algebras

    International Nuclear Information System (INIS)

    Hollands, Stefan; Olbermann, Heiner

    2009-01-01

    In this paper, we explain how perturbative quantum field theory can be formulated in terms of (a version of) vertex algebras. Our starting point is the Wilson-Zimmermann operator product expansion (OPE). Following ideas of a previous paper (S. Hollands, e-print arXiv:0802.2198), we consider a consistency (essentially associativity) condition satisfied by the coefficients in this expansion. We observe that the information in the OPE coefficients can be repackaged straightforwardly into 'vertex operators' and that the consistency condition then has essentially the same form as the key condition in the theory of vertex algebras. We develop a general theory of perturbations of the algebras that we encounter, similar in nature to the Hochschild cohomology describing the deformation theory of ordinary algebras. The main part of the paper is devoted to the question how one can calculate the perturbations corresponding to a given interaction Lagrangian (such as λφ 4 ) in practice, using the consistency condition and the corresponding nonlinear field equation. We derive graphical rules, which display the vertex operators (i.e., OPE coefficients) in terms of certain multiple series of hypergeometric type.

  4. Algebraic methods in system theory

    Science.gov (United States)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  5. Structure of N = 2 superconformally invariant unitary ''minimal'' theories: Operator algebra and correlation functions

    International Nuclear Information System (INIS)

    Kiritsis, E.B.

    1987-01-01

    N = 2 superconformal-invariant theories are studied and their general structure is analyzed. The geometry of N = 2 complex superspace is developed as a tool to study the correlation functions of the theories above. The Ward identities of the global N = 2 superconformal symmetry are solved, to restrict the form of correlation functions. Advantage is taken of the existence of the degenerate operators to derive the ''fusion'' rules for the unitary minimal systems with c<1. In particular, the closure of the operator algebra for such systems is shown. The c = (1/3 minimal system is analyzed and its two-, three-, and four-point functions as well as its operator algebra are calculated explicitly

  6. Real division algebras and other algebras motivated by physics

    International Nuclear Information System (INIS)

    Benkart, G.; Osborn, J.M.

    1981-01-01

    In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations

  7. The Epstein-Glaser approach to perturbative quantum field theory: graphs and Hopf algebras

    International Nuclear Information System (INIS)

    Lange, Alexander

    2005-01-01

    The paper aims at investigating perturbative quantum field theory in the approach of Epstein and Glaser (EG) and, in particular, its formulation in the language of graphs and Hopf algebras (HAs). Various HAs are encountered, each one associated with a special combination of physical concepts such as normalization, localization, pseudounitarity, causal regularization, and renormalization. The algebraic structures, representing the perturbative expansion of the S-matrix, are imposed on operator-valued distributions equipped with appropriate graph indices. Translation invariance ensures the algebras to be analytically well defined and graded total symmetry allows to formulate bialgebras. The algebraic results are given embedded in the corresponding physical framework, covering the two EG versions by Fredenhagen and Scharf that differ with respect to the concrete recursive implementation of causality. Besides, the ultraviolet divergences occurring in Feynman's representation are mathematically reasoned. As a final result, the change of the renormalization scheme in the context of EG is modeled via a HA and interpreted as the EG analog of Kreimer's HA

  8. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  9. Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras

    International Nuclear Information System (INIS)

    Gebert, R.W.

    1993-09-01

    The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)

  10. Algebraic complexities and algebraic curves over finite fields.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1987-04-01

    We consider the problem of minimal (multiplicative) complexity of polynomial multiplication and multiplication in finite extensions of fields. For infinite fields minimal complexities are known [Winograd, S. (1977) Math. Syst. Theory 10, 169-180]. We prove lower and upper bounds on minimal complexities over finite fields, both linear in the number of inputs, using the relationship with linear coding theory and algebraic curves over finite fields.

  11. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

    Directory of Open Access Journals (Sweden)

    Ion C. Baianu

    2009-04-01

    Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.

  12. Algebraic monoids, group embeddings, and algebraic combinatorics

    CERN Document Server

    Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang

    2014-01-01

    This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

  13. Introduction to the theory of abstract algebras

    CERN Document Server

    Pierce, Richard S

    2014-01-01

    Intended for beginning graduate-level courses, this text introduces various aspects of the theory of abstract algebra. The book is also suitable as independent reading for interested students at that level as well as a primary source for a one-semester course that an instructor may supplement to expand to a full year. Author Richard S. Pierce, a Professor of Mathematics at Seattle's University of Washington, places considerable emphasis on applications of the theory and focuses particularly on lattice theory.After a preliminary review of set theory, the treatment presents the basic definitions

  14. Clifford Algebras and magnetic monopoles

    International Nuclear Information System (INIS)

    Recami, E.

    1987-01-01

    It is known that the introduction of magnetic monopolies in electromagnetism does still present formal problems from the point of view of classical field theory. The author attempts to overcome at least some of them by making recourse to the Clifford Algebra formalism. In fact, while the events of a two-dimensional Minkowski space-time M(1,1) are sufficiently well represented by ordinary Complex Numbers, when dealing with the events of the four-dimensional Minkowski space M(1,3)identical to M/sub 4/ one has of course to look for hypercomplex numbers or, more generally, for the elements of a Clifford Algebra. The author uses the Clifford Algebras in terms of ''multivectors'', and in particular by Hestenes' language, which suits space-time quite well. He recalls that the Clifford product chiγ is the sum of the internal product chi . γ and of the wedge product chiΛγ

  15. Nekrasov and Argyres-Douglas theories in spherical Hecke algebra representation

    Science.gov (United States)

    Rim, Chaiho; Zhang, Hong

    2017-06-01

    AGT conjecture connects Nekrasov instanton partition function of 4D quiver gauge theory with 2D Liouville conformal blocks. We re-investigate this connection using the central extension of spherical Hecke algebra in q-coordinate representation, q being the instanton expansion parameter. Based on AFLT basis together with intertwiners we construct gauge conformal state and demonstrate its equivalence to the Liouville conformal state, with careful attention to the proper scaling behavior of the state. Using the colliding limit of regular states, we obtain the formal expression of irregular conformal states corresponding to Argyres-Douglas theory, which involves summation of functions over Young diagrams.

  16. Nekrasov and Argyres–Douglas theories in spherical Hecke algebra representation

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Chaiho, E-mail: rimpine@sogang.ac.kr; Zhang, Hong, E-mail: kilar@itp.ac.cn

    2017-06-15

    AGT conjecture connects Nekrasov instanton partition function of 4D quiver gauge theory with 2D Liouville conformal blocks. We re-investigate this connection using the central extension of spherical Hecke algebra in q-coordinate representation, q being the instanton expansion parameter. Based on AFLT basis together with intertwiners we construct gauge conformal state and demonstrate its equivalence to the Liouville conformal state, with careful attention to the proper scaling behavior of the state. Using the colliding limit of regular states, we obtain the formal expression of irregular conformal states corresponding to Argyres–Douglas theory, which involves summation of functions over Young diagrams.

  17. Perturbed Chern-Simons theory, fractional statistics, and Yang-Baxter algebra

    International Nuclear Information System (INIS)

    Chatterjee, A.; Sreedhar, V.V.

    1992-01-01

    Topological Chern-Simons theory coupled to matter fields is analysed in the framework of Dirac's method of quantising constrained systems in a general class of linear, non-local gauges. We show that in the weak coupling limit gauge invariant operators in the theory transform under an exchange according to a higher dimensional representation of the braid group which is built out of the fundamental representation matrices of the gauge group and thus behave like anyons. We also discover new solutions of the Yang-Baxter equation which emerges as a consistency condition on the structure functions of the operator algebra of the matter fields. (orig.)

  18. Generating loop graphs via Hopf algebra in quantum field theory

    International Nuclear Information System (INIS)

    Mestre, Angela; Oeckl, Robert

    2006-01-01

    We use the Hopf algebra structure of the time-ordered algebra of field operators to generate all connected weighted Feynman graphs in a recursive and efficient manner. The algebraic representation of the graphs is such that they can be evaluated directly as contributions to the connected n-point functions. The recursion proceeds by loop order and vertex number

  19. Tensor spaces and exterior algebra

    CERN Document Server

    Yokonuma, Takeo

    1992-01-01

    This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.

  20. Number Theory : A Seminar held at the Graduate School and University Center of the City University of New York

    CERN Document Server

    Chudnovsky, Gregory; Cohn, Harvey; Nathanson, Melvyn

    1989-01-01

    The New York Number Theory Seminar was organized in 1982 to provide a forum for the presentation and discussion of recent advances in higher arithmetic and its applications. Papers included in this volume are based on the lectures presented by their authors at the Seminar at the Graduate Center of C.U.N.Y. in 1985-88. Papers in the volume cover a wide spectrum of number theoretic topics ranging from additive number theory and diophantine approximations to algebraic number theory and relations with algebraic geometry and topology.

  1. On the algebra of deformed differential operators, and induced integrable Toda field theory

    International Nuclear Information System (INIS)

    Hssaini, M.; Kessabi, M.; Maroufi, B.; Sedra, M.B.

    2000-07-01

    We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular the first leading orders of this q-deformed hierarchy namely the q-KdV and q-Boussinesq integrable systems. We also present the q-generalisation of the conformal transformations of the currents u n , n ≥ 2 and discuss the primary condition of the fields w n , n ≥ 2 by using the Volterra gauge group transformations for the q-covariant Lax operators. An induced su(n)-Toda(su(2)-Liouville) field theory construction is discussed and other important features are presented. (author)

  2. Elliptic Tales Curves, Counting, and Number Theory

    CERN Document Server

    Ash, Avner

    2012-01-01

    Elliptic Tales describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics--the Birch and Swinnerton-Dyer Conjecture. The Clay Mathematics Institute is offering a prize of 1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem. The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from

  3. Conference on Number Theory and Arithmetic Geometry

    CERN Document Server

    Silverman, Joseph; Stevens, Glenn; Modular forms and Fermat’s last theorem

    1997-01-01

    This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. Contributor's includeThe purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi-stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, ...

  4. Local algebras in Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Guerra, Francesco.

    1975-06-01

    The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr

  5. Entanglement distillation protocols and number theory

    International Nuclear Information System (INIS)

    Bombin, H.; Martin-Delgado, M.A.

    2005-01-01

    We show that the analysis of entanglement distillation protocols for qudits of arbitrary dimension D benefits from applying basic concepts from number theory, since the set Z D n associated with Bell diagonal states is a module rather than a vector space. We find that a partition of Z D n into divisor classes characterizes the invariant properties of mixed Bell diagonal states under local permutations. We construct a very general class of recursion protocols by means of unitary operations implementing these local permutations. We study these distillation protocols depending on whether we use twirling operations in the intermediate steps or not, and we study them both analytically and numerically with Monte Carlo methods. In the absence of twirling operations, we construct extensions of the quantum privacy algorithms valid for secure communications with qudits of any dimension D. When D is a prime number, we show that distillation protocols are optimal both qualitatively and quantitatively

  6. Scalar potential for the gauged Heisenberg algebra and a non-polynomial antisymmetric tensor theory

    International Nuclear Information System (INIS)

    D'Auria, R.; Ferrara, S.; Trigiante, M.; Vaula, S.

    2005-01-01

    We study some issues related to the effective theory of Calabi-Yau compactifications with fluxes in type II theories. At first the scalar potential for a generic electric Abelian gauging of the Heisenberg algebra, underlying all possible gaugings of R-R isometries, is presented and shown to exhibit, in some circumstances, a 'dual' no-scale structure under the interchange of hypermultiplets and vector multiplets. Subsequently a new setting of such theories, when all R-R scalars are dualized into antisymmetric tensors, is discussed. This formulation falls in the class of non-polynomial tensor theories considered long ago by Freedman and Townsend and it may be relevant for the introduction of both electric and magnetic charges

  7. S-duality and the prepotential in N=2⋆ theories (I): the ADE algebras

    International Nuclear Information System (INIS)

    Billó, M.; Frau, M.; Fucito, F.; Lerda, A.; Morales, J.F.

    2015-01-01

    The prepotential of N=2 ⋆ supersymmetric theories with unitary gauge groups in an Ω background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on the prepotential as a Fourier transform we generalise this result to N=2 ⋆ theories with gauge algebras of the D and E type and show that their prepotentials can be written in terms of quasi-modular forms of SL(2,ℤ). The results are checked against microscopic multi-instanton calculus based on localization for the A and D series and reproduce the known 1-instanton prepotential of the pure N=2 theories for any gauge group of ADE type. Our results can also be used to obtain the multi-instanton terms in the exceptional theories for which the microscopic instanton calculus and the ADHM construction are not available.

  8. S-duality and the prepotential in N={2}^{star } theories (I): the ADE algebras

    Science.gov (United States)

    Billó, M.; Frau, M.; Fucito, F.; Lerda, A.; Morales, J. F.

    2015-11-01

    The prepotential of N={2}^{star } supersymmetric theories with unitary gauge groups in an Ω background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on the prepotential as a Fourier transform we generalise this result to N={2}^{star } theories with gauge algebras of the D and E type and show that their prepotentials can be written in terms of quasi-modular forms of SL(2, {Z}) . The results are checked against microscopic multi-instanton calculus based on localization for the A and D series and reproduce the known 1-instanton prepotential of the pure N=2 theories for any gauge group of ADE type. Our results can also be used to obtain the multi-instanton terms in the exceptional theories for which the microscopic instanton calculus and the ADHM construction are not available.

  9. Quantum W-algebras and elliptic algebras

    International Nuclear Information System (INIS)

    Feigin, B.; Kyoto Univ.; Frenkel, E.

    1996-01-01

    We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)

  10. Classical open-string field theory: A∞-algebra, renormalization group and boundary states

    International Nuclear Information System (INIS)

    Nakatsu, Toshio

    2002-01-01

    We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles

  11. Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics

    CERN Document Server

    Ismail, Mourad

    2001-01-01

    These are the proceedings of the conference "Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics" held at the Department of Mathematics, University of Florida, Gainesville, from November 11 to 13, 1999. The main emphasis of the conference was Com­ puter Algebra (i. e. symbolic computation) and how it related to the fields of Number Theory, Special Functions, Physics and Combinatorics. A subject that is common to all of these fields is q-series. We brought together those who do symbolic computation with q-series and those who need q-series in­ cluding workers in Physics and Combinatorics. The goal of the conference was to inform mathematicians and physicists who use q-series of the latest developments in the field of q-series and especially how symbolic computa­ tion has aided these developments. Over 60 people were invited to participate in the conference. We ended up having 45 participants at the conference, including six one hour plenary speakers and 28 half hour speakers. T...

  12. Open BRST algebras, ghost unification and string field theory

    NARCIS (Netherlands)

    Baulieu, Laurent; Bergshoeff, Eric; Sezgin, Ergin

    1988-01-01

    Geometrical aspects of the BRST quantization of charged antisymmetric tensor fields and string fields are studied within the framework of the Batalin and Vilkovisky method. In both cases, candidate anomalies which obey the Wess-Zumino consistency conditions are given.

  13. Open BRST algebras, ghost unification and string field theory

    International Nuclear Information System (INIS)

    Baulieu, L.; Bergshoeff, E.; Sezgin, E.

    1988-01-01

    Geometrical aspects of the BRST quantization of charged antisymmetric tensor fields and string fields are studied within the framework of the Batalin and Vilkovisky method. In both cases, candidate anomalies which obey the Wess-Zumino consistency conditions are given. (author). 18 refs, 1 fig

  14. Decomposition Theory in the Teaching of Elementary Linear Algebra.

    Science.gov (United States)

    London, R. R.; Rogosinski, H. P.

    1990-01-01

    Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)

  15. Topology, ergodic theory, real algebraic geometry Rokhlin's memorial

    CERN Document Server

    Turaev, V

    2001-01-01

    This book is dedicated to the memory of the outstanding Russian mathematician, V. A. Rokhlin (1919-1984). It is a collection of research papers written by his former students and followers, who are now experts in their fields. The topics in this volume include topology (the Morse-Novikov theory, spin bordisms in dimension 6, and skein modules of links), real algebraic geometry (real algebraic curves, plane algebraic surfaces, algebraic links, and complex orientations), dynamics (ergodicity, amenability, and random bundle transformations), geometry of Riemannian manifolds, theory of Teichmüller

  16. An application of the division algebras, Jordan algebras and split composition algebras

    International Nuclear Information System (INIS)

    Foot, R.; Joshi, G.C.

    1992-01-01

    It has been established that the covering group of the Lorentz group in D = 3, 4, 6, 10 can be expressed in a unified way, based on the four composition division algebras R, C, Q and O. In this paper, the authors discuss, in this framework, the role of the complex numbers of quantum mechanics. A unified treatment of quantum-mechanical spinors is given. The authors provide an explicit demonstration that the vector and spinor transformations recently constructed from a subgroup of the reduced structure group of the Jordan algebras M n 3 are indeed the Lorentz transformations. The authors also show that if the division algebras in the construction of the covering groups of the Lorentz groups in D = 3, 4, 6, 10 are replaced by the split composition algebras, then the sequence of groups SO(2, 2), SO(3, 3) and SO(5, 5) result. The analysis is presumed to be self-contained as the relevant aspects of the division algebras and Jordan algebras are reviewed. Some applications to physical theory are indicated

  17. Introduction to analytic and probabilistic number theory

    CERN Document Server

    Tenenbaum, Gérald

    2015-01-01

    This book provides a self contained, thorough introduction to the analytic and probabilistic methods of number theory. The prerequisites being reduced to classical contents of undergraduate courses, it offers to students and young researchers a systematic and consistent account on the subject. It is also a convenient tool for professional mathematicians, who may use it for basic references concerning many fundamental topics. Deliberately placing the methods before the results, the book will be of use beyond the particular material addressed directly. Each chapter is complemented with bibliographic notes, useful for descriptions of alternative viewpoints, and detailed exercises, often leading to research problems. This third edition of a text that has become classical offers a renewed and considerably enhanced content, being expanded by more than 50 percent. Important new developments are included, along with original points of view on many essential branches of arithmetic and an accurate perspective on up-to-...

  18. Computer algebra in quantum field theory integration, summation and special functions

    CERN Document Server

    Schneider, Carsten

    2013-01-01

    The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including

  19. Algebraic and analyticity properties of the n-point function in quantum field theory

    International Nuclear Information System (INIS)

    Bros, Jacques

    1970-01-01

    The general theory of quantized fields (axiomatic approach) is investigated. A systematic study of the algebraic properties of all the Green functions of a local field, which generalize the ordinary retarded and advanced functions, is presented. The notion emerges of a primitive analyticity domain of the n-point function, and of the existence of auxiliary analytic functions into which the various Green functions can be decomposed. Certain processes of analytic completion are described, and then applied to enlarging the primitive domain, particularly for the case n = 4; among the results the crossing property for all scattering amplitudes which involve two incoming and two outgoing particles is proved. (author) [fr

  20. Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory

    CERN Document Server

    Landau, Olav Arnfinn

    2011-01-01

    This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o

  1. Introduction to number theory

    CERN Document Server

    Vazzana, Anthony; Garth, David

    2007-01-01

    One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topics.

  2. Field algebras in quantum theory with indefinite metric. III. Spectrum of modular operator and Tomita's fundamental theorem

    International Nuclear Information System (INIS)

    Dadashyan, K.Yu.; Khoruzhii, S.S.

    1987-01-01

    The construction of a modular theory for weakly closed J-involutive algebras of bounded operators on Pontryagin spaces is continued. The spectrum of the modular operator Δ of such an algebra is investigated, the existence of a strongly continuous J-unitary group is established and, under the condition that the spectrum lies in the right half-plane, Tomita's fundamental theorem is proved

  3. Algebraic K-theory of crystallographic groups the three-dimensional splitting case

    CERN Document Server

    Farley, Daniel Scott

    2014-01-01

    The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.

  4. Advances in Statistical Control, Algebraic Systems Theory, and Dynamic Systems Characteristics A Tribute to Michael K Sain

    CERN Document Server

    Won, Chang-Hee; Michel, Anthony N

    2008-01-01

    This volume - dedicated to Michael K. Sain on the occasion of his seventieth birthday - is a collection of chapters covering recent advances in stochastic optimal control theory and algebraic systems theory. Written by experts in their respective fields, the chapters are thematically organized into four parts: Part I focuses on statistical control theory, where the cost function is viewed as a random variable and performance is shaped through cost cumulants. In this respect, statistical control generalizes linear-quadratic-Gaussian and H-infinity control. Part II addresses algebraic systems th

  5. Algebraic groups and their birational invariants

    CERN Document Server

    Voskresenskiĭ, V E

    2011-01-01

    Since the late 1960s, methods of birational geometry have been used successfully in the theory of linear algebraic groups, especially in arithmetic problems. This book--which can be viewed as a significant revision of the author's book, Algebraic Tori (Nauka, Moscow, 1977)--studies birational properties of linear algebraic groups focusing on arithmetic applications. The main topics are forms and Galois cohomology, the Picard group and the Brauer group, birational geometry of algebraic tori, arithmetic of algebraic groups, Tamagawa numbers, R-equivalence, projective toric varieties, invariants of finite transformation groups, and index-formulas. Results and applications are recent. There is an extensive bibliography with additional comments that can serve as a guide for further reading.

  6. q-Derivatives, quantization methods and q-algebras

    International Nuclear Information System (INIS)

    Twarock, Reidun

    1998-01-01

    Using the example of Borel quantization on S 1 , we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number τ. This extension is denoted as quasi-crystal Lie algebra, because this is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed

  7. Glimpses of soliton theory the algebra and geometry of nonlinear PDEs

    CERN Document Server

    Kasman, Alex

    2010-01-01

    Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstr...

  8. An introduction to central simple algebras and their applications to wireless communication

    CERN Document Server

    Berhuy, Gre�gory

    2013-01-01

    Central simple algebras arise naturally in many areas of mathematics. They are closely connected with ring theory, but are also important in representation theory, algebraic geometry and number theory. Recently, surprising applications of the theory of central simple algebras have arisen in the context of coding for wireless communication. The exposition in the book takes advantage of this serendipity, presenting an introduction to the theory of central simple algebras intertwined with its applications to coding theory. Many results or constructions from the standard theory are presented in classical form, but with a focus on explicit techniques and examples, often from coding theory. Topics covered include quaternion algebras, splitting fields, the Skolem-Noether Theorem, the Brauer group, crossed products, cyclic algebras and algebras with a unitary involution. Code constructions give the opportunity for many examples and explicit computations. This book provides an introduction to the theory of central alg...

  9. Einstein algebras and general relativity

    International Nuclear Information System (INIS)

    Heller, M.

    1992-01-01

    A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs

  10. Affine.m—Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras

    Science.gov (United States)

    Nazarov, Anton

    2012-11-01

    In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent

  11. Wavelets and quantum algebras

    International Nuclear Information System (INIS)

    Ludu, A.; Greiner, M.

    1995-09-01

    A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

  12. An adventurer's guide to number theory

    CERN Document Server

    Friedberg, Richard

    1995-01-01

    In this delightful guide, a noted mathematician and teacher offers a witty, historically oriented introduction to number theory, dealing with properties of numbers and with numbers as abstract concepts. Written for readers with an understanding of arithmetic and beginning algebra, the book presents the classical discoveries of number theory, including the work of Pythagoras, Euclid, Diophantus, Fermat, Euler, Lagrange and Gauss.Unlike many authors, however, Mr. Friedberg encourages students to think about the imaginative, playful qualities of numbers as they consider such subjects as primes

  13. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  14. Twisted vertex algebras, bicharacter construction and boson-fermion correspondences

    International Nuclear Information System (INIS)

    Anguelova, Iana I.

    2013-01-01

    The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras

  15. Applied number theory

    CERN Document Server

    Niederreiter, Harald

    2015-01-01

    This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas.  Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc.  Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...

  16. Lectures on algebraic model theory

    CERN Document Server

    Hart, Bradd

    2001-01-01

    In recent years, model theory has had remarkable success in solving important problems as well as in shedding new light on our understanding of them. The three lectures collected here present recent developments in three such areas: Anand Pillay on differential fields, Patrick Speissegger on o-minimality and Matthias Clasen and Matthew Valeriote on tame congruence theory.

  17. Hurwitz Algebras and the Octonion Algebra

    Science.gov (United States)

    Burdik, Čestmir; Catto, Sultan

    2018-02-01

    We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.

  18. Logic, algebra and topology: investigations into canonical extensions, duality theory and point-free topology

    NARCIS (Netherlands)

    Vosmaer, J.

    2010-01-01

    In this dissertation we discuss three subjects: canonical extensions of lattice-based algebras, Stone duality for distributive lattices with operators, and a generalization of the point-free Vietoris powerlocale construction.

  19. Lie-algebra expansions, Chern-Simons theories and the Einstein-Hilbert Lagrangian

    International Nuclear Information System (INIS)

    Edelstein, Jose D.; Hassaine, Mokhtar; Troncoso, Ricardo; Zanelli, Jorge

    2006-01-01

    Starting from gravity as a Chern-Simons action for the AdS algebra in five dimensions, it is possible to modify the theory through an expansion of the Lie algebra that leads to a system consisting of the Einstein-Hilbert action plus non-minimally coupled matter. The modified system is gauge invariant under the Poincare group enlarged by an Abelian ideal. Although the resulting action naively looks like general relativity plus corrections due to matter sources, it is shown that the non-minimal couplings produce a radical departure from GR. Indeed, the dynamics is not continuously connected to the one obtained from Einstein-Hilbert action. In a matter-free configuration and in the torsionless sector, the field equations are too strong a restriction on the geometry as the metric must satisfy both the Einstein and pure Gauss-Bonnet equations. In particular, the five-dimensional Schwarzschild geometry fails to be a solution; however, configurations corresponding to a brane-world with positive cosmological constant on the worldsheet are admissible when one of the matter fields is switched on. These results can be extended to higher odd dimensions

  20. M2- and M5-branes in E11 current algebra formulation of M-theory

    Science.gov (United States)

    Shiba, Shotaro; Sugawara, Hirotaka

    2018-03-01

    Equations of motion for M2- and M5-branes are written down in the E11 current algebra formulation of M-theory. These branes correspond to currents of the second and the fifth rank antisymmetric tensors in the E11 representation, whereas the electric and magnetic fields (coupled to M2- and M5-branes) correspond to currents of the third and the sixth rank antisymmetric tensors, respectively. We show that these equations of motion have solutions in terms of the coordinates on M2- and M5-branes. We also discuss the geometric equations, and show that there are static solutions when M2- or M5-brane exists alone and also when M5-brane wraps around M2-brane. This situation is realized because our Einstein-like equation contains an extra term which can be interpreted as gravitational energy contributing to the curvature, thus avoiding the usual intersection rule.

  1. K-theory and periodic cyclic homology of some noncompact quantum algebras

    International Nuclear Information System (INIS)

    Do Ngoc Diep; Kuku, Aderemi O.

    2003-07-01

    We prove in this paper that the periodic cyclic homology of the quantized algebras of functions on coadjoint orbits of connected and simply connected Lie group, are isomorphic to the periodic cyclic homology of the quantized algebras of functions on coadjoint orbits of compact maximal subgroups, without localization. Some noncompact quantum groups and algebras were constructed and their irreducible representations were classified in recent works of Do Ngoc Diep and Nguyen Viet Hai [DH1]-[DH2] and Do Due Hanh [DD] by using deformation quantization. In this paper we compute their K-groups, periodic cyclic homology groups and their Chern characters. (author)

  2. Frobenius theory for positive maps of von Neumann algebras

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoegh-Krohn, R.

    1978-01-01

    Frobenius theory about the cyclic structure of eigenvalues of irreducible non negative matrices is extended to the case of positive linear maps of von Neumann algebras. Semigroups of such maps and ergodic properties are also considered. (orig.) [de

  3. Chiral-Yang-Mills theory, non commutative differential geometry, and the need for a Lie super-algebra

    International Nuclear Information System (INIS)

    Thierry-Mieg, Jean

    2006-01-01

    In Yang-Mills theory, the charges of the left and right massless Fermions are independent of each other. We propose a new paradigm where we remove this freedom and densify the algebraic structure of Yang-Mills theory by integrating the scalar Higgs field into a new gauge-chiral 1-form which connects Fermions of opposite chiralities. Using the Bianchi identity, we prove that the corresponding covariant differential is associative if and only if we gauge a Lie-Kac super-algebra. In this model, spontaneous symmetry breakdown naturally occurs along an odd generator of the super-algebra and induces a representation of the Connes-Lott non commutative differential geometry of the 2-point finite space

  4. Modular structure of the local algebras associated with the free massless scalar field theory

    International Nuclear Information System (INIS)

    Hislop, P.D.; Longo, R.

    1982-01-01

    The modular structure of the von Neuman algebra of local observables associated with a double cone in the vacuum representation of the free massless scalar field theory of any number of dimensions is described. The modular automorphism group is induced by the unitary implementation of a family of generalized fractional linear transformations on Minkowski space and is a subgroup of the conformal group. The modular conjugation operator is the anti-unitary impementation of a product of time reversal and relativistic ray inversion. The group generated by the modular conjugation operators for the local algebras associated with the family of double cone regions is the group of proper conformal transformations. A theorem is presented asserting the unitary equivalence of local algebras associated with lightcones, double cones and wedge regions. For the double cone algebras, this provides an explicitly realization of spacelike duality and establishes the known type III 1 factor property. It is shown that the timelike duality property of the lightcone algebras does not hold for the double cone algebras. A different definition of the von Neumann algebras associated with a region is introduced which agrees with the standard one for a lightcone or a double cone region but which allows the timelike duality property for the double cone algebras. In the case of one spatial dimension, the standard local algebras associated with the double cone regions satisfy both specelike and timelike duality. (orig.)

  5. Algebraic Theory of Linear Viscoelastic Nematodynamics

    International Nuclear Information System (INIS)

    Leonov, Arkady I.

    2008-01-01

    This paper consists of two parts. The first one develops algebraic theory of linear anisotropic nematic 'N-operators' build up on the additive group of traceless second rank 3D tensors. These operators have been implicitly used in continual theories of nematic liquid crystals and weakly elastic nematic elastomers. It is shown that there exists a non-commutative, multiplicative group N 6 of N-operators build up on a manifold in 6D space of parameters. Positive N-operators, which in physical applications hold thermodynamic stability constraints, do not generally form a subgroup of group N 6 . A three-parametric, commutative transversal-isotropic subgroup S 3 subset of N 6 of positive symmetric nematic operators is also briefly discussed. The special case of singular, non-negative symmetric N-operators reveals the algebraic structure of nematic soft deformation modes. The second part of the paper develops a theory of linear viscoelastic nematodynamics applicable to liquid crystalline polymer. The viscous and elastic nematic components in theory are described by using the Leslie-Ericksen-Parodi (LEP) approach for viscous nematics and de Gennes free energy for weakly elastic nematic elastomers. The case of applied external magnetic field exemplifies the occurrence of non-symmetric stresses. In spite of multi-(10) parametric character of the theory, the use of nematic operators presents it in a transparent form. When the magnetic field is absent, the theory is simplified for symmetric case with six parameters, and takes an extremely simple, two-parametric form for viscoelastic nematodynamics with possible soft deformation modes. It is shown that the linear nematodynamics is always reducible to the LEP-like equations where the coefficients are changed for linear memory functionals whose parameters are calculated from original viscosities and moduli

  6. Wild kernels for higher K-theory of division and semi-simple algebras

    International Nuclear Information System (INIS)

    Quo Xuejun; Kuku, Aderemi

    2003-06-01

    Let Σ be a semi-simple algebra over a number field F. In this paper, we prove that for all n ≥ 0, the wild kernel WK n (Σ):Ker(K n (Σ) → Π finiteυ K n (Σ υ )) is contained in the torsion part of the image of the natural homomorphism K n (Λ) → K n (Σ), where Λ is a maximal order in Σ. In particular, WK n (Σ) is finite. In the process, we prove that if Λ is a maximal order in a central division algebra D over F, then the kernel of the reduction map K 2n-1 (Λ) → π υ Π finiteυ K 2n-1 (d υ ) is finite. In paragraph 3 we investigate the connections between WK n (D) and div(K n (D)) and prove that divK 2 (Σ) is a subset of WK 2 (Σ); if the index of D is square free, then div(K 2 (D)) ≅ div(K 2 (F)), WK 2 (F) ≅ WK 2 (D) and vertical bar WK 2 (D)/div(K 2 (D)) vertical bar ≤ 2. Finally we prove that if D is a central division algebra over F with [D : F] = m 2 , then (1) div(K n (D)) l = WK n (D) l for all odd primes I and n ≤ 2; (2) if I does not divide m, then div(K 3 (D)) l = WK 3 (D) l = 0; (3) if F = Q and I does not divide m, then div(K n (D)) l is a subset of WK n (D) l for all n. (author)

  7. Coproduct and star product in field theories on Lie-algebra noncommutative space-times

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Arzano, Michele

    2002-01-01

    We propose a new approach to field theory on κ-Minkowski noncommutative space-time, a popular example of Lie-algebra space-time. Our proposal is essentially based on the introduction of a star product, a technique which is proving to be very fruitful in analogous studies of canonical noncommutative space-times, such as the ones recently found to play a role in the description of certain string-theory backgrounds. We find to be incorrect the expectation, previously reported in the literature, that the lack of symmetry of the κ-Poincare coproduct should lead to interaction vertices that are not symmetric under exchanges of the momenta of identical particles entering the relevant processes. We show that in κ-Minkowski the coproduct and the star product must indeed treat momenta in a nonsymmetric way, but the overall structure of interaction vertices is symmetric under exchange of identical particles. We also show that in κ-Minkowski field theories it is convenient to introduce the concepts of 'planar' and 'nonplanar' Feynman loop diagrams, again in close analogy with the corresponding concepts previously introduced in the study of field theories in canonical noncommutative space-times

  8. NATO Advanced Study Institute on Structural Theory of Automata, Semigroups and Universal Algebra

    CERN Document Server

    Rosenberg, Ivo; Goldstein, Martin

    2005-01-01

    Several of the contributions to this volume bring forward many mutually beneficial interactions and connections between the three domains of the title. Developing them was the main purpose of the NATO ASI summerschool held in Montreal in 2003. Although some connections, for example between semigroups and automata, were known for a long time, developing them and surveying them in one volume is novel and hopefully stimulating for the future. Another aspect is the emphasis on the structural theory of automata that studies ways to contstruct big automata from small ones. The volume also has contributions on top current research or surveys in the three domains. One contribution even links clones of universal algebra with the computational complexity of computer science. Three contributions introduce the reader to research in the former East block.

  9. A note on the algebraic evaluation of correlators in local chiral conformal field theory

    International Nuclear Information System (INIS)

    Honecker, A.

    1992-09-01

    We comment on a program designed for the study of local chiral algebras and their representations in 2D conformal field theory. Based on the algebraic approach described by W. Nahm, this program efficiently calculates arbitrary n-point functions of these algebras. The program is designed such that calculations involving e.g. current algebras, W-algebras and N-Superconformal algebras can be performed. As a non-trivial application we construct an extension of the Virasoro algebra by two fields with spin four and six using the N=1-Super-Virasoro algebra. (orig.)

  10. Symmetric linear systems - An application of algebraic systems theory

    Science.gov (United States)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  11. Affine Kac-Moody algebras and their representations

    International Nuclear Information System (INIS)

    Slansky, R.

    1988-01-01

    Highest weight representation theory of finite dimensional and affine Kac-Moody algebras is summarized from a unified point of view. Lattices of discrete additive quantum numbers and the presentation of Lie algebras on Cartan matrices are the central points of departure for the analysis. (author)

  12. Algebraic differential calculus for gauge theories

    International Nuclear Information System (INIS)

    Landi, G.; Marmo, G.

    1990-01-01

    The guiding idea in this paper is that, from the point of view of physics, functions and fields are more important than the (space time) manifold over which they are defined. The line pursued in these notes belongs to the general framework of ideas that replaces the space M by the ring of functions on it. Our essential observation, underlying this work, is that much of mathematical physics requires only a few differential operators (Lie derivative, d, δ) operating on modules of sections of suitable bundles. A connection (=gauge potential) can be described by a lift of vector fields from the base to the total space of a principal bundle. Much of the information can be encoded in the lift without reference to the bundle structures. In this manner, one arrives at an 'algebraic differential calculus' and its graded generalization that we are going to discuss. We are going to give an exposition of 'algebraic gauge theory' in both ungraded and graded versions. We show how to deal with the essential features of electromagnetism, Dirac, Kaluza-Klein and 't Hooft-Polyakov monopoles. We also show how to break the symmetry from SU(2) to U(1) without Higgs field. We briefly show how to deal with tests particles in external fields and with the Lagrangian formulation of field theories. (orig./HSI)

  13. Clifford Algebras and Spinorial Representation of Linear Canonical Transformations in Quantum Theory

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.

    2017-11-01

    This work is a continuation of previous works that we have done concerning linear canonical transformations and a phase space representation of quantum theory. It is mainly focused on the description of an approach which permits to establish spinorial representation of linear canonical transformations. It begins with an introduction section in which the reason and context of the content are discussed. The introduction section is followed by a brief recall about Clifford algebra and spin group. The description of the approach is started with the presentation of an adequate parameterization of linear canonical transformations which permits to represent them with special pseudo-orthogonal transformations in an operators space. The establishment of the spinorial representation is deduced using relation between special pseudo-orthogonal groups and spin groups. The cases of one dimension quantum mechanics and general multidimensional theory are both studied. The case of linear canonical transformation related to Minkowski space is particularly studied and it is shown that Lorentz transformation may be considered as particular case of linear canonical transformation. Some results from the spinorial representation are also exploited to define operators which may be used to establish equations for fields if one considers the possibility of envisaging a field theory which admits as main symmetry group the group constituted by linear canonical transformations.

  14. The current algebra on the circle as a germ of local field theories

    International Nuclear Information System (INIS)

    Buchholz, D.; Mack, G.; Todorov, I.; Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika)

    1988-01-01

    Methods of algebraic quantum field theory are used to classify all field- and observable algebras, whose common germ is the U(1)-current algebra. An elementary way is described to compute characters of such algebras. It exploits the Kubo-Martin-Schwinger condition for Gibbs states. (orig.)

  15. Sums of residues on algebraic surfaces and application to coding theory

    OpenAIRE

    Couvreur , Alain

    2009-01-01

    International audience; In this paper, we study residues of differential 2-forms on a smooth algebraic surface over an arbitrary field and give several statements about sums of residues. Afterwards, using these results we give a new construction of algebraic-geometric codes which can be regarded as an extension to surfaces of the well-known construction of differential codes on curves. We also study some properties of these codes and extend to them some known properties for codes on curves.; ...

  16. Conformal covariance, modular structure, and duality for local algebras in free massless quantum field theories

    International Nuclear Information System (INIS)

    Hislop, P.D.

    1988-01-01

    The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation of SU(2, 2), a covering group of the conformal group. An irreducible set of ''standard'' linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. The modular operators for these algebras are obtained in explicit form using the conformal covariance and the results of Bisognano and Wichmann on the modular structure of the wedge algebras. The modular automorphism groups are implemented by one-parameter groups of conformal transformations. The modular conjugation operators are used to prove the duality property for the double-cone algebras and the timelike duality property for the lightcone algebras. copyright 1988 Academic Press, Inc

  17. Algebraic Methods to Design Signals

    Science.gov (United States)

    2015-08-27

    to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory

  18. Conformally reduced WZNW theory, new extended chiral algebras and their associated Toda type integrable systems (II) an example

    International Nuclear Information System (INIS)

    Hou Boyu; Zhao Liu

    1993-01-01

    As an example and application of the method of the previous work, the authors construct explicitly the W algebra W[p q p] 2 ] by the use of the canonical formalism of the corresponding generalized Toda theory, namely the (p q p) 2 Toda theory. Then the authors discuss various special limits of W[p q p) 2 ] and point out the isomorphism between W[(p q p) 2 ] and W[(p q + p) 1

  19. Conditions of the existence of the exact symmetric representation for some algebra classes with involution of the fields of real and complex numbers

    International Nuclear Information System (INIS)

    Ivanov, V.P.

    1980-01-01

    Necessary and sufficient conditions for existence of the exact symmetric representation of algebras with involution called sometimes regular of the fields of real and complex numbers are formulated in the paper

  20. Loop homotopy algebras in closed string field theory

    International Nuclear Information System (INIS)

    Markl, M.

    2001-01-01

    Barton Zwiebach (1993) constructed ''string products'' on the Hilbert space of a combined conformal field theory of matter and ghosts, satisfying the ''main identity''. It has been well known that the ''tree level'' of the theory gives an example of a strongly homotopy Lie algebra (though, as we will see later, this is not the whole truth). Strongly homotopy Lie algebras are now well-understood objects. On the one hand, strongly homotopy Lie algebra is given by a square zero coderivation on the cofree cocommutative connected coalgebra on the other hand, strongly homotopy Lie algebras are algebras over the cobar dual of the operad Com for commutative algebras. No such characterization of the structure of string products for arbitrary genera has been available, though there are two series of papers directly pointing towards the requisite characterization. As far as the characterization in terms of (co)derivations is concerned, we need the concept of higher order (co)derivations. For our characterization we need to understand the behavior of these higher (co)derivations on (co)free (co)algebras. The necessary machinery for the operadic approach is that of modular operads. We also indicate how to adapt the loop homotopy structure to the case of open string field theory. (orig.)

  1. Residue number systems theory and applications

    CERN Document Server

    Mohan, P V Ananda

    2016-01-01

    This new and expanded monograph improves upon Mohan's earlier book, Residue Number Systems (Springer, 2002) with a state of the art treatment of the subject. Replete with detailed illustrations and helpful examples, this book covers a host of cutting edge topics such as the core function, the quotient function, new Chinese Remainder theorems, and large integer operations. It also features many significant applications to practical communication systems and cryptography such as FIR filters and elliptic curve cryptography. Starting with a comprehensive introduction to the basics and leading up to current research trends that are not yet widely distributed in other publications, this book will be of interest to both researchers and students alike.

  2. Graded contractions of Jordan algebras and of their representations

    International Nuclear Information System (INIS)

    Kashuba, Iryna; Patera, JirI

    2003-01-01

    Contractions of Jordan algebras and Jordan superalgebras which preserve a chosen grading are defined and studied. Simultaneous grading of Jordan algebras and their representation spaces is used to develop a theory of grading, preserving contractions of representations of Jordan algebras

  3. Number theory an introduction via the density of primes

    CERN Document Server

    Fine, Benjamin

    2016-01-01

    Now in its second edition, this textbook provides an introduction and overview of number theory based on the density and properties of the prime numbers. This unique approach offers both a firm background in the standard material of number theory, as well as an overview of the entire discipline. All of the essential topics are covered, such as the fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. New in this edition are coverage of p-adic numbers, Hensel's lemma, multiple zeta-values, and elliptic curve methods in primality testing. Key topics and features include: A solid introduction to analytic number theory, including full proofs of Dirichlet's Theorem and the Prime Number Theorem Concise treatment of algebraic number theory, including a complete presentation of primes, prime factorizations in algebraic number fields, and unique factorization of ideals Discussion of the AKS algorithm, which shows that primality testing is...

  4. Dynamical theory of subconstituents based on ternary algebras

    International Nuclear Information System (INIS)

    Bars, I.; Guenaydin, M.

    1980-01-01

    We propose a dynamical theory of possible fundamental constituents of matter. Our scheme is based on (super) ternary algebras which are building blocks of Lie (super) algebras. Elementary fields, called ''ternons,'' are associated with the elements of a (super) ternary algebra. Effective gauge bosons, ''quarks,'' and ''leptons'' are constructed as composite fields from ternons. We propose two- and four-dimensional (super) ternon theories whose structures are closely related to CP/sub N/ and Yang-Mills theories and their supersymmetric extensions. We conjecture that at large distances (low energies) the ternon theories dynamically produce effective gauge theories and thus may be capable of explaining the present particle-physics phenomenology. Such a scenario is valid in two dimensions

  5. Bootstrapping non-commutative gauge theories from L∞ algebras

    Science.gov (United States)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  6. Prime divisors and noncommutative valuation theory

    CERN Document Server

    Marubayashi, Hidetoshi

    2012-01-01

    Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves.  But the noncommutative equivalent is mainly applied to finite dimensional skewfields.  Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture.  This arithmetical nature is also present in the theory of maximal orders in central simple algebras.  Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras.  Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized a...

  7. The Work of Lagrange in Number Theory and Algebra

    Indian Academy of Sciences (India)

    Here the first relation is an identity. The others ... course the only even prime 2 is also a sum of two square integers: 2 = 12 + .... The proof is by 'descent', a common method used to prove .... finite set X with n elements is a finite group of order n!

  8. Geometric approach to the (BRS-) differential algebras of supersymmetric YM-theories

    International Nuclear Information System (INIS)

    Gieres, F.

    1987-01-01

    The (BRS-) differential algebra of susy YM-theories is defined in terms of superfields and forms on rigid U(N)-superspace. For d = 4 and N = 1.2 we show that it projects to the ''BRS-component field algebra in the WZ-gauge'' without any supergauge fixing. In this process the supergeometry is destroyed with the result that the final algebra becomes a prototype for a differential algebra which cannot be associated with an ordinary Lie algebra

  9. Path operator algebras in conformal quantum field theories

    International Nuclear Information System (INIS)

    Roesgen, M.

    2000-10-01

    Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)

  10. Number theory and modular forms papers in memory of Robert A Rankin

    CERN Document Server

    Ono, Ken

    2003-01-01

    Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics. This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.

  11. Infinite-dimensional Lie algebras in 4D conformal quantum field theory

    International Nuclear Information System (INIS)

    Bakalov, Bojko; Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan

    2008-01-01

    The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V M (x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp(∞,R) corresponding to the field R of reals, of u(∞, ∞) associated with the field C of complex numbers, and of so*(4∞) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively

  12. Current algebra formulation of radiative corrections in gauge theories and the universality of the weak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sirlin, A.

    1978-07-01

    A current algebra formulation of the radiative corrections in gauge theories, with special applications to the analysis of the universality of the weak interactions, is developed in the framework of quantum chromodynamics. For definiteness, we work in the SU(2) x U(1) model with four quark flavors, but the methods are quite general and can be applied to other theories. The explicit cancellation of ultraviolet divergences for arbitrary semileptonic processes is achieved relying solely on the Ward identities and general considerations, both in the W and Higgs sectors. The finite parts of order G/sub F/..cap alpha.. are then evaluated in the case of the superallowed Fermi transitions, including small effects proportional to g/sup -2//sub S/(kappa/sup 2/), which are induced by the strong interactions in the asymptotic domain. We consider here both the simplest version of the Weinberg--Salam model in which the Higgs scalars transform as a single isospinsor, as well as the case of general symmetry breaking. Except for the small effects proportional to g/sup -2//sub S/(kappa/sup 2/), the results are identical to the answers previously found on the basis of heuristic arguments. The phenomenological verification of Cabibbo universality on the basis of these corrections and the superallowed Fermi transitions has been discussed before and found to be in very good agreement with present experimental evidence. The analogous calculation for the transition rate of pion ..beta.. decay is given. Theoretical alternatives to quantum chromdynamics as a framework for the evaluate ion of the radiative corrections are briefly discussed. The appendixes contain a generalization of an important result in the theory of radiative corrections, an analysis of the hadronic contributions to the W and phi propagators, mathematical methods for evaluating the g/sup -2//sub S/(kappa/sup 2/) corrections, and discussions of quark mass renormalization and the absence of operator &apos

  13. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  14. How does Complex Mathematical Theory Arise? Phylogenetic and Cultural Origins of Algebra

    Science.gov (United States)

    Cruz, Helen De

    Algebra has emergent properties that are neither found in the cultural context in which mathematicians work, nor in the evolved cognitive abilities for mathematical thought that enable it. In this paper, I argue that an externalization of mathematical operations in a consistent symbolic notation system is a prerequisite for these emergent properties. In particular, externalism allows mathematicians to perform operations that would be impossible in the mind alone. By comparing the development of algebra in three distinct historical cultural settings - China, the medieval Islamic world and early modern Europe - I demonstrate that such an active externalism requires specific cultural conditions, including a metaphysical view of the world compatible with science, a notation system that enables the symbolic notation of operations, and the ontological viewpoint that mathematics is a human endeavour. I discuss how extending mathematical operations from the brain into the world gives algebra a degree of autonomy that is impossible to achieve were it performed in the mind alone.

  15. Lectures on W algebras and W gravity

    International Nuclear Information System (INIS)

    Pope, C.N.

    1992-01-01

    We give a review of the extended conformal algebras, known as W algebras, which contain currents of spins higher than 2 in addition to the energy-momentum tensor. These include the non-linear W N algebras; the linear W ∞ and W 1+∞ algebras; and their super-extensions. We discuss their applications to the construction of W-gravity and W-string theories. (author). 46 refs

  16. Invitation to number theory

    CERN Document Server

    Ore, Oystein

    2017-01-01

    Number theory is the branch of mathematics concerned with the counting numbers, 1, 2, 3, … and their multiples and factors. Of particular importance are odd and even numbers, squares and cubes, and prime numbers. But in spite of their simplicity, you will meet a multitude of topics in this book: magic squares, cryptarithms, finding the day of the week for a given date, constructing regular polygons, pythagorean triples, and many more. In this revised edition, John Watkins and Robin Wilson have updated the text to bring it in line with contemporary developments. They have added new material on Fermat's Last Theorem, the role of computers in number theory, and the use of number theory in cryptography, and have made numerous minor changes in the presentation and layout of the text and the exercises.

  17. Promoting Number Theory in High Schools or Birthday Problem and Number Theory

    Science.gov (United States)

    Srinivasan, V. K.

    2010-01-01

    The author introduces the birthday problem in this article. This can amuse willing members of any birthday party. This problem can also be used as the motivational first day lecture in number theory for the gifted students in high schools or in community colleges or in undergraduate classes in colleges.

  18. Generalized algebra-valued models of set theory

    NARCIS (Netherlands)

    Löwe, B.; Tarafder, S.

    2015-01-01

    We generalize the construction of lattice-valued models of set theory due to Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel set theory.

  19. What is algebraic in process theory?

    NARCIS (Netherlands)

    Luttik, B.

    2006-01-01

    This is an extended version of an essay with the same title that I wrote for the workshop Algebraic process calculi : the first twenty five years and beyond, held in Bertinoro, Italy in the first week of August 2005.

  20. What is algebraic in process theory?

    NARCIS (Netherlands)

    Luttik, B.

    2006-01-01

    This is an extended version of an essay with the same title that I wrote for the workshop Algebraic Process Calculi: The First Twenty Five Years and Beyond, held in Bertinoro, Italy in the first week of August 2005.

  1. Macdonald index and chiral algebra

    Science.gov (United States)

    Song, Jaewon

    2017-08-01

    For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.

  2. Algebraic partial Boolean algebras

    International Nuclear Information System (INIS)

    Smith, Derek

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

  3. Introduction to algebra and trigonometry

    CERN Document Server

    Kolman, Bernard

    1981-01-01

    Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are

  4. Algebraic Algorithm Design and Local Search

    National Research Council Canada - National Science Library

    Graham, Robert

    1996-01-01

    .... Algebraic techniques have been applied successfully to algorithm synthesis by the use of algorithm theories and design tactics, an approach pioneered in the Kestrel Interactive Development System (KIDS...

  5. The mathematics of ciphers number theory and RSA cryptography

    CERN Document Server

    Coutinho, S C

    1999-01-01

    This book is an introduction to the algorithmic aspects of number theory and its applications to cryptography, with special emphasis on the RSA cryptosys-tem. It covers many of the familiar topics of elementary number theory, all with an algorithmic twist. The text also includes many interesting historical notes.

  6. John Knopfmacher, [Abstract] Analytic Number Theory, and the ...

    African Journals Online (AJOL)

    Abstract. In this paper some important contributions of John Knopfmacher to ' Analytic Number Theory' are described. This theory investigates semigroups with countably many generators (generalized 'primes'), with a norm map (or a 'degree map'), and satisfying certain conditions on the number of elements with norm less

  7. Factors Relating to the Success or Failure of College Algebra Internet Students: A Grounded Theory Study

    OpenAIRE

    Walker, Christine

    2008-01-01

    The purpose of this grounded theory study was to discover the factors that contribute to the success or failure of college algebra for students taking college algebra by distance education Internet, and then generate a theory of success or failure of the group of College Algebra Internet students at one Utah college. Qualitative data were collected and analyzed on students’ perceptions and perspectives of a College Algebra Internet course that they took during the spring or summer 2006 semest...

  8. Rota-Baxter algebras and the Hopf algebra of renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, K.

    2006-06-15

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  9. Rota-Baxter algebras and the Hopf algebra of renormalization

    International Nuclear Information System (INIS)

    Ebrahimi-Fard, K.

    2006-06-01

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  10. Regular algebra and finite machines

    CERN Document Server

    Conway, John Horton

    2012-01-01

    World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg

  11. Analytic number theory

    CERN Document Server

    Iwaniec, Henryk

    2004-01-01

    Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results, many of which belong to the mainstream of arithmetic. One of the main attractions of analytic number theory is the vast diversity of concepts and methods it includes. The main goal of the book is to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, its beautiful theorems and powerful techniques. The book is written with graduate students in mind, and the authors tried to balance between clarity, completeness, and generality. The exercis

  12. Surface defects and chiral algebras

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)

    2017-05-26

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  13. CUNY Graduate Center Workshops on Combinatorial and Additive Number Theory

    CERN Document Server

    2017-01-01

    Based on talks from the 2015 and 2016 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 19 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, primality testing, and cryptography are among the topics featured in this volume. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. Researchers and graduate students interested in the current progress in number theory will find this selection of articles relevant and compelling. .

  14. Number theory via Representation theory

    Indian Academy of Sciences (India)

    2014-11-09

    Number theory via Representation theory. Eknath Ghate. November 9, 2014. Eightieth Annual Meeting, Chennai. Indian Academy of Sciences1. 1. This is a non-technical 20 minute talk intended for a general Academy audience.

  15. Fundamentals of set and number theory

    CERN Document Server

    Rodionov, Timofey V

    2018-01-01

    The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monogr...

  16. Algebra, Geometry and Mathematical Physics Conference

    CERN Document Server

    Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander

    2014-01-01

    This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...

  17. Bicovariant quantum algebras and quantum Lie algebras

    International Nuclear Information System (INIS)

    Schupp, P.; Watts, P.; Zumino, B.

    1993-01-01

    A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)

  18. The Boolean algebra and central Galois algebras

    Directory of Open Access Journals (Sweden)

    George Szeto

    2001-01-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  19. Number Theory and Public-Key Cryptography.

    Science.gov (United States)

    Lefton, Phyllis

    1991-01-01

    Described are activities in the study of techniques used to conceal the meanings of messages and data. Some background information and two BASIC programs that illustrate the algorithms used in a new cryptographic system called "public-key cryptography" are included. (CW)

  20. Soft Drinks, Mind Reading, and Number Theory

    Science.gov (United States)

    Schultz, Kyle T.

    2009-01-01

    Proof is a central component of mathematicians' work, used for verification, explanation, discovery, and communication. Unfortunately, high school students' experiences with proof are often limited to verifying mathematical statements or relationships that are already known to be true. As a result, students often fail to grasp the true nature of…

  1. Number theory III Diophantine geometry

    CERN Document Server

    1991-01-01

    From the reviews of the first printing of this book, published as Volume 60 of the Encyclopaedia of Mathematical Sciences: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the broad scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication ... Although in the series of number theory, this volume is on diophantine geometry, and the reader will notice that algebraic geometry is present in every chapter. ... The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities. Reading and rereading this book I noticed that the topics ...

  2. General algebraic theory of identical particle scattering

    International Nuclear Information System (INIS)

    Bencze, G.; Redish, E.F.

    1978-01-01

    We consider the nonrelativistic N-body scattering problem for a system of particles in which some subsets of the particles are identical. We demonstrate how the particle identity can be included in a general class of linear integral equations for scattering operators or components of scattering operators. The Yakubovskii, Yakubovskii--Narodestkii, Rosenberg, and Bencze--Redish--Sloan equations are included in this class. Algebraic methods are used which rely on the properties of the symmetry group of the system. Operators depending only on physically distinguishable labels are introduced and linear integral equations for them are derived. This procedure maximally reduces the number of coupled equations while retaining the connectivity properties of the original equations

  3. Building bridges between algebra and topology

    CERN Document Server

    Pitsch, Wolfgang; Zarzuela, Santiago

    2018-01-01

    This volume presents an elaborated version of lecture notes for two advanced courses: (Re)Emerging Methods in Commutative Algebra and Representation Theory and Building Bridges Between Algebra and Topology, held at the CRM in the spring of 2015. Homological algebra is a rich and ubiquitous subject; it is both an active field of research and a widespread toolbox for many mathematicians. Together, these notes introduce recent applications and interactions of homological methods in commutative algebra, representation theory and topology, narrowing the gap between specialists from different areas wishing to acquaint themselves with a rapidly growing field. The covered topics range from a fresh introduction to the growing area of support theory for triangulated categories to the striking consequences of the formulation in the homotopy theory of classical concepts in commutative algebra. Moreover, they also include a higher categories view of Hall algebras and an introduction to the use of idempotent functors in al...

  4. Vertex algebras and mirror symmetry

    International Nuclear Information System (INIS)

    Borisov, L.A.

    2001-01-01

    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)

  5. On Roots of Polynomials and Algebraically Closed Fields

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2017-10-01

    Full Text Available In this article we further extend the algebraic theory of polynomial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials and show that both the real numbers and finite domains are not algebraically closed [5, 7]. We also prove the identity theorem for polynomials and that the number of multiple roots is bounded by the polynomial’s degree [4, 6].

  6. Algebraic topology and concurrency

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric

    2006-01-01

    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...

  7. Elementary theory of numbers

    CERN Document Server

    Sierpinski, Waclaw

    1988-01-01

    Since the publication of the first edition of this work, considerable progress has been made in many of the questions examined. This edition has been updated and enlarged, and the bibliography has been revised.The variety of topics covered here includes divisibility, diophantine equations, prime numbers (especially Mersenne and Fermat primes), the basic arithmetic functions, congruences, the quadratic reciprocity law, expansion of real numbers into decimal fractions, decomposition of integers into sums of powers, some other problems of the additive theory of numbers and the theory of Gaussian

  8. Algebraic isomorphism in two-dimensional anomalous gauge theories

    International Nuclear Information System (INIS)

    Carvalhaes, C.G.; Belvedere, L.V.; Filho, H.B.; Natividade, C.P.

    1997-01-01

    The operator solution of the anomalous chiral Schwinger model is discussed on the basis of the general principles of Wightman field theory. Some basic structural properties of the model are analyzed taking a careful control on the Hilbert space associated with the Wightman functions. The isomorphism between gauge noninvariant and gauge invariant descriptions of the anomalous theory is established in terms of the corresponding field algebras. We show that (i) the Θ-vacuum representation and (ii) the suggested equivalence of vector Schwinger model and chiral Schwinger model cannot be established in terms of the intrinsic field algebra. copyright 1997 Academic Press, Inc

  9. Algebra: A Challenge at the Crossroads of Policy and Practice

    Science.gov (United States)

    Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.

    2011-01-01

    The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…

  10. Computational linear and commutative algebra

    CERN Document Server

    Kreuzer, Martin

    2016-01-01

    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  11. Yang-Baxter algebra - Integrable systems - Conformal quantum field theories

    International Nuclear Information System (INIS)

    Karowski, M.

    1989-01-01

    This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)

  12. Blocks and families for cyclotomic Hecke algebras

    CERN Document Server

    Chlouveraki, Maria

    2009-01-01

    The definition of Rouquier for the families of characters introduced by Lusztig for Weyl groups in terms of blocks of the Hecke algebras has made possible the generalization of this notion to the case of complex reflection groups. The aim of this book is to study the blocks and to determine the families of characters for all cyclotomic Hecke algebras associated to complex reflection groups. This volume offers a thorough study of symmetric algebras, covering topics such as block theory, representation theory and Clifford theory, and can also serve as an introduction to the Hecke algebras of complex reflection groups.

  13. 7th International Conference on Elementary and Analytic Number Theory

    CERN Document Server

    Steuding, Jörn; Steuding, Rasa

    2016-01-01

    This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany. Ranging from the theory of arithmetical functions to diophantine problems, to analytic aspects of zeta-functions, the various research and survey articles cover the broad interests of the well-known number theorist and cherished colleague Wolfgang Schwarz (1934-2013), who contributed over one hundred articles on number theory, its history and related fields. Readers interested in elementary or analytic number theory and related fields will certainly find many fascinating topical results among the contributions from both respected mathematicians and up-and-coming young researchers. In addition, some biographical articles highlight the life and mathematical works of Wolfgang Schwarz.

  14. Alternative analysis: the prime numbers theory and an extension of the real numbers set

    OpenAIRE

    Sukhotin A.; Zvyagin M.

    2016-01-01

    Here we consider the theory of prime numbers at a new methodology. The theory of prime numbers is one of the most ancient mathematical branches. We found an estimate of the all prime numbers sum using the notions of infinite lager numbers and infinitely small numbers, farther we estimated the value of the maximal prime number. We proved that Hardy–Littlewood Hypothesis has the positive decision too. The infinite small numbers define a new methodology of the well–known function o(x) applicatio...

  15. Number Worlds: Visual and Experimental Access to Elementary Number Theory Concepts

    Science.gov (United States)

    Sinclair, Nathalie; Zazkis, Rina; Liljedahl, Peter

    2004-01-01

    Recent research demonstrates that many issues related to the structure of natural numbers and the relationship among numbers are not well grasped by students. In this article, we describe a computer-based learning environment called "Number Worlds" that was designed to support the exploration of elementary number theory concepts by…

  16. Associative-algebraic approach to logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Read, N.; Saleur, Hubert

    2007-01-01

    We set up a strategy for studying large families of logarithmic conformal field theories by using the enlarged symmetries and non-semisimple associative algebras appearing in their lattice regularizations (as discussed in a companion paper [N. Read, H. Saleur, Enlarged symmetry algebras of spin chains, loop models, and S-matrices, cond-mat/0701259]). Here we work out in detail two examples of theories derived as the continuum limit of XXZ spin-1/2 chains, which are related to spin chains with supersymmetry algebras gl(n|n) and gl(n+1 vertical bar n), respectively, with open (or free) boundary conditions in all cases. These theories can also be viewed as vertex models, or as loop models. Their continuum limits are boundary conformal field theories (CFTs) with central charge c=-2 and c=0 respectively, and in the loop interpretation they describe dense polymers and the boundaries of critical percolation clusters, respectively. We also discuss the case of dilute (critical) polymers as another boundary CFT with c=0. Within the supersymmetric formulations, these boundary CFTs describe the fixed points of certain nonlinear sigma models that have a supercoset space as the target manifold, and of Landau-Ginzburg field theories. The submodule structures of indecomposable representations of the Virasoro algebra appearing in the boundary CFT, representing local fields, are derived from the lattice. A central result is the derivation of the fusion rules for these fields

  17. Foundations of quantum theory from classical concepts to operator algebras

    CERN Document Server

    Landsman, Klaas

    2017-01-01

    This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.

  18. Lie groups and Lie algebras for physicists

    CERN Document Server

    Das, Ashok

    2015-01-01

    The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras.

  19. Difference sets connecting algebra, combinatorics, and geometry

    CERN Document Server

    Moore, Emily H

    2013-01-01

    Difference sets belong both to group theory and to combinatorics. Studying them requires tools from geometry, number theory, and representation theory. This book lays a foundation for these topics, including a primer on representations and characters of finite groups. It makes the research literature on difference sets accessible to students who have studied linear algebra and abstract algebra, and it prepares them to do their own research. This text is suitable for an undergraduate capstone course, since it illuminates the many links among topics that the students have already studied. To this end, almost every chapter ends with a coda highlighting the main ideas and emphasizing mathematical connections. This book can also be used for self-study by anyone interested in these connections and concrete examples. An abundance of exercises, varying from straightforward to challenging, invites the reader to solve puzzles, construct proofs, and investigate problems--by hand or on a computer. Hints and solutions are...

  20. Mattson Solomon transform and algebra codes

    DEFF Research Database (Denmark)

    Martínez-Moro, E.; Benito, Diego Ruano

    2009-01-01

    In this note we review some results of the first author on the structure of codes defined as subalgebras of a commutative semisimple algebra over a finite field (see Martínez-Moro in Algebra Discrete Math. 3:99-112, 2007). Generator theory and those aspects related to the theory of Gröbner bases ...

  1. Graded-Lie-algebra cohomology and supergravity

    International Nuclear Information System (INIS)

    D'Auria, R.; Fre, P.; Regge, T.

    1980-01-01

    Detailed explanations of the cohomology invoked in the group-manifold approach to supergravity is given. The Chevalley cohomology theory of Lie algebras is extended to graded Lie algebras. The scheme of geometrical theories is enlarged so to include cosmological terms and higher powers of the curvature. (author)

  2. An invitation to general algebra and universal constructions

    CERN Document Server

    Bergman, George M

    2015-01-01

    Rich in examples and intuitive discussions, this book presents General Algebra using the unifying viewpoint of categories and functors. Starting with a survey, in non-category-theoretic terms, of many familiar and not-so-familiar constructions in algebra (plus two from topology for perspective), the reader is guided to an understanding and appreciation of the general concepts and tools unifying these constructions. Topics include: set theory, lattices, category theory, the formulation of universal constructions in category-theoretic terms, varieties of algebras, and adjunctions. A large number of exercises, from the routine to the challenging, interspersed through the text, develop the reader's grasp of the material, exhibit applications of the general theory to diverse areas of algebra, and in some cases point to outstanding open questions. Graduate students and researchers wishing to gain fluency in important mathematical constructions will welcome this carefully motivated book.

  3. Model theory and algebraic geometry an introduction to E. Hrushovski’s proof of the geometric Mordell-Lang conjecture

    CERN Document Server

    1998-01-01

    This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.

  4. Algebras, lattices and strings 1986

    International Nuclear Information System (INIS)

    Olive, D.

    1987-01-01

    The formulation of the string theory of unified elementary particle interactions in terms of operators in a Fock space is now seen to relate to the representation theory of certain infinite dimensional algebras. This insight has enhanced the understanding of the physical and mathematical theories involved and furthermore has led to applications in other branches of theoretical physics. A brief account of the new results is given here. (orig.)

  5. An Integrated Theory of Whole Number and Fractions Development

    Science.gov (United States)

    Siegler, Robert S.; Thompson, Clarissa A.; Schneider, Michael

    2011-01-01

    This article proposes an integrated theory of acquisition of knowledge about whole numbers and fractions. Although whole numbers and fractions differ in many ways that influence their development, an important commonality is the centrality of knowledge of numerical magnitudes in overall understanding. The present findings with 11- and 13-year-olds…

  6. Rational conformal theories involving a U(1) current algebra

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1989-01-01

    The problem of constructing and classifying rational conformal theories is illustrated on the example of extended chiral algebras involving a single U(1) current. The bulk of the paper is a self contained review (with some improvements) of recent work of R. Paunov and the author. (author)

  7. Homotopy of operads and Grothendieck–Teichmüller groups part 1 the algebraic theory and its topological background

    CERN Document Server

    Fresse, Benoit

    2017-01-01

    The Grothendieck-Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck-Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of...

  8. New topological structures of Skyrme theory: baryon number and monopole number

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M. [Chinese Academy of Science, Institute of Modern Physics, Lanzhou (China); Konkuk University, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of); Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, Seoul (Korea, Republic of); Zhang, Pengming [Chinese Academy of Science, Institute of Modern Physics, Lanzhou (China)

    2017-02-15

    Based on the observation that the skyrmion in Skyrme theory can be viewed as a dressed monopole, we show that the skyrmions have two independent topology, the baryon topology π{sub 3}(S{sup 3}) and the monopole topology π{sub 2}(S{sup 2}). With this we propose to classify the skyrmions by two topological numbers (m, n), the monopole number m and the shell (radial) number n. In this scheme the popular (non spherically symmetric) skyrmions are classified as the (m, 1) skyrmions but the spherically symmetric skyrmions are classified as the (1, n) skyrmions, and the baryon number B is given by B = mn. Moreover, we show that the vacuum of the Skyrme theory has the structure of the vacuum of the Sine-Gordon theory and QCD combined together, which can also be classified by two topological numbers (p, q). This puts the Skyrme theory in a totally new perspective. (orig.)

  9. Algebraic Systems and Pushdown Automata

    Science.gov (United States)

    Petre, Ion; Salomaa, Arto

    We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.

  10. Algebraic renormalization perturbative twisted considerations on topological Yang-Mills theory and on N=2 supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Fucito, F.; Tanzini, A.; Sorella, S.P.

    1997-07-01

    The aim of these notes is to provide a simple and pedagogical (as much as possible) introduction to what is nowadays commonly called Algebraic Renormalization. As the same itself let it understand, the Algebraic Renormalization gives a systematic set up in order to analyse the quantum extension of a given set of classical symmetries. The framework is purely algebraic, yielding a complete characterization of all possible anomalies and invariant counterterms without making use of any explicit computation of the Feynman diagrams. This goal is achieved by collecting, with the introduction of suitable ghost fields, all the symmetries into a unique operation summarized by a generalized Slavnov-Taylor (or master equation) identity which is the starting point for the quantum analysis. The Slavnov-Taylor identity allows to define a nilpotent operator whose cohomology classes in the space of the integrated local polynomials in the fields and their derivatives with dimensions bounded by power counting give all nontrivial anomalies and counterterms. I other words, the proof of the renormalizability is reduced to the computation of some cohomology classes. (author)

  11. Classical algebra its nature, origins, and uses

    CERN Document Server

    Cooke, Roger L

    2008-01-01

    This insightful book combines the history, pedagogy, and popularization of algebra to present a unified discussion of the subject. Classical Algebra provides a complete and contemporary perspective on classical polynomial algebra through the exploration of how it was developed and how it exists today. With a focus on prominent areas such as the numerical solutions of equations, the systematic study of equations, and Galois theory, this book facilitates a thorough understanding of algebra and illustrates how the concepts of modern algebra originally developed from classical algebraic precursors. This book successfully ties together the disconnect between classical and modern algebraand provides readers with answers to many fascinating questions that typically go unexamined, including: What is algebra about? How did it arise? What uses does it have? How did it develop? What problems and issues have occurred in its history? How were these problems and issues resolved? The author answers these questions and more,...

  12. Ghost properties of algebraically extended theories of gravitation

    International Nuclear Information System (INIS)

    Kelly, P.F.; Mann, R.B.

    1986-01-01

    Recently a technique for extending general relativity called algebraic extension was shown to yield only five classes of gravitational theories (general relativity plus four extensions). The particle spectra of these theories are analysed and it is shown that only one of these extensions is ghost free. Two inequivalent theories are shown to result from this extension at the linearised level. One of these is the linearised version of Moffat's theory of gravitation; the other is a new theory which possesses an additional gauge invariance which has been associated with a closed string. (author)

  13. W∞ and the Racah-Wigner algebra

    International Nuclear Information System (INIS)

    Pope, C.N.; Shen, X.; Romans, L.J.

    1990-01-01

    We examine the structure of a recently constructed W ∞ algebra, an extension of the Virasoro algebra that describes an infinite number of fields with all conformal spins 2,3..., with central terms for all spins. By examining its underlying SL(2,R) structure, we are able to exhibit its relation to the algebas of SL(2,R) tensor operators. Based upon this relationship, we generalise W ∞ to a one-parameter family of inequivalent Lie algebras W ∞ (μ), which for general μ requires the introduction of formally negative spins. Furthermore, we display a realisation of the W ∞ (μ) commutation relations in terms of an underlying associative product, which we denote with a lone star. This product structure shares many formal features with the Racah-Wigner algebra in angular-momentum theory. We also discuss the relation between W ∞ and the symplectic algebra on a cone, which can be viewed as a co-adjoint orbit of SL(2,R). (orig.)

  14. Algebraic Modeling of Topological and Computational Structures and Applications

    CERN Document Server

    Theodorou, Doros; Stefaneas, Petros; Kauffman, Louis

    2017-01-01

    This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a w...

  15. The large numbers hypothesis and a relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Lau, Y.K.; Prokhovnik, S.J.

    1986-01-01

    A way to reconcile Dirac's large numbers hypothesis and Einstein's theory of gravitation was recently suggested by Lau (1985). It is characterized by the conjecture of a time-dependent cosmological term and gravitational term in Einstein's field equations. Motivated by this conjecture and the large numbers hypothesis, we formulate here a scalar-tensor theory in terms of an action principle. The cosmological term is required to be spatially dependent as well as time dependent in general. The theory developed is appled to a cosmological model compatible with the large numbers hypothesis. The time-dependent form of the cosmological term and the scalar potential are then deduced. A possible explanation of the smallness of the cosmological term is also given and the possible significance of the scalar field is speculated

  16. Cosmological applications of algebraic quantum field theory in curved spacetimes

    CERN Document Server

    Hack, Thomas-Paul

    2016-01-01

    This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.

  17. Anomalous quantum numbers and topological properties of field theories

    International Nuclear Information System (INIS)

    Polychronakos, A.P.

    1987-01-01

    We examine the connection between anomalous quantum numbers, symmetry breaking patterns and topological properties of some field theories. The main results are the following: In three dimensions the vacuum in the presence of abelian magnetic field configurations behaves like a superconductor. Its quantum numbers are exactly calculable and are connected with the Atiyah-Patodi-Singer index theorem. Boundary conditions, however, play a nontrivial role in this case. Local conditions were found to be physically preferable than the usual global ones. Due to topological reasons, only theories for which the gauge invariant photon mass in three dimensions obeys a quantization condition can support states of nonzero magnetic flux. For similar reasons, this mass induces anomalous angular momentum quantum numbers to the states of the theory. Parity invariance and global flavor symmetry were shown to be incompatible in such theories. In the presence of mass less flavored fermions, parity will always break for an odd number of fermion flavors, while for even fermion flavors it may not break but only at the expense of maximally breaking the flavor symmetry. Finally, a connection between these theories and the quantum Hall effect was indicated

  18. Elementary number theory with programming

    CERN Document Server

    Lewinter, Marty

    2015-01-01

    A successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and con

  19. Classical Affine W-Algebras and the Associated Integrable Hamiltonian Hierarchies for Classical Lie Algebras

    Science.gov (United States)

    De Sole, Alberto; Kac, Victor G.; Valeri, Daniele

    2018-06-01

    We prove that any classical affine W-algebra W (g, f), where g is a classical Lie algebra and f is an arbitrary nilpotent element of g, carries an integrable Hamiltonian hierarchy of Lax type equations. This is based on the theories of generalized Adler type operators and of generalized quasideterminants, which we develop in the paper. Moreover, we show that under certain conditions, the product of two generalized Adler type operators is a Lax type operator. We use this fact to construct a large number of integrable Hamiltonian systems, recovering, as a special case, all KdV type hierarchies constructed by Drinfeld and Sokolov.

  20. Higher spin fields and the Gelfand-Dickey algebra

    International Nuclear Information System (INIS)

    Bakas, I.

    1989-01-01

    We show that in 2-dimensional field theory, higher spin algebras are contained in the algebra of formal pseudodifferential operators introduced by Gelfand and Dickey to describe integrable nonlinear differential equations in Lax form. The spin 2 and 3 algebras are discussed in detail and the generalization to all higher spins is outlined. This provides a conformal field theory approach to the representation theory of Gelfand-Dickey algebras. (orig.)

  1. Fusion algebra and fusing matrices

    International Nuclear Information System (INIS)

    Gao Yihong; Li Miao; Yu Ming.

    1989-09-01

    We show that the Wilson line operators in topological field theories form a fusion algebra. In general, the fusion algebra is a relation among the fusing (F) matrices. In the case of the SU(2) WZW model, some special F matrix elements are found in this way, and the remaining F matrix elements are then determined up to a sign. In addition, the S(j) modular transformation of the one point blocks on the torus is worked out. Our results are found to agree with those obtained from the quantum group method. (author). 24 refs

  2. Renormalization in quantum field theory and the Riemann-Hilbert problem. I. Hopf algebra structure of graphs and the main theorem

    International Nuclear Information System (INIS)

    Connes, A.; Kreimer, D.

    2000-01-01

    This paper gives a complete selfcontained proof of our result (1999) showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra H which is commutative asan algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra G whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of H. We show then that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop γ(z) element of G, z element of C, where C is a small circle of complex dimensions around the integer dimension D of space-time. Our main result is that the renormalized theory is just the evaluation at z=D of the holomorphic part γ + of the Birkhoff decomposition of γ. We begin to analyse the group G and show that it is a semi-direct product of an easily understood abelian group by a highly non-trivial group closely tied up with groups of diffeomorphisms. (orig.)

  3. Quantum ergodicity and a quantum measure algebra

    International Nuclear Information System (INIS)

    Stechel, E.B.

    1985-01-01

    A quantum ergodic theory for finite systems (such as isolated molecules) is developed by introducing the concept of a quantum measure algebra. The basic concept in classical ergodic theory is that of a measure space. A measure space is a set M, together with a specified sigma algebra of subsets in M and a measure defined on that algebra. A sigma algebra is closed under the formation of intersections and symmetric differences. A measure is a nonnegative and countably additive set function. For this to be further classified as a dynamical system, a measurable transformation is introduced. A measurable transformation is a mapping from a measure space into a measure space, such that the inverse image of every measurable set is measurable. In conservative dynamical systems, a measurable transformation is measure preserving, which is to say that the inverse image of every measurable set has the same measure as the original set. Once the measure space and the measurable transformation are defined, ergodic theory can be investigated on three levels: describable as analytic, geometric and algebraic. The analytic level studies linear operators induced by a transformation. The geometric level is concerned directly with transformations on a measure space and the algebraic treatments substitute a measure algebra for the measure space and basically equate sets that differ only by sets of measure zero. It is this latter approach that is most directly paralleled here. A measure algebra for a quantum dynamical system is defined within which stochastic concepts in quantum mechanics can be investigated. The quantum measure algebra differs from a normal measure algebra only in that multiplication is noncommutative and addition is nonassociative. Nonetheless, the quantum measure algebra preserves the essence of a normal measure algebra

  4. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  5. Profinite algebras and affine boundedness

    OpenAIRE

    Schneider, Friedrich Martin; Zumbrägel, Jens

    2015-01-01

    We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...

  6. An introduction to Clifford algebras and spinors

    CERN Document Server

    Vaz, Jayme

    2016-01-01

    This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and i...

  7. Basic matrix algebra and transistor circuits

    CERN Document Server

    Zelinger, G

    1963-01-01

    Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

  8. Linearizing W-algebras

    International Nuclear Information System (INIS)

    Krivonos, S.O.; Sorin, A.S.

    1994-06-01

    We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs

  9. The large number hypothesis and Einstein's theory of gravitation

    International Nuclear Information System (INIS)

    Yun-Kau Lau

    1985-01-01

    In an attempt to reconcile the large number hypothesis (LNH) with Einstein's theory of gravitation, a tentative generalization of Einstein's field equations with time-dependent cosmological and gravitational constants is proposed. A cosmological model consistent with the LNH is deduced. The coupling formula of the cosmological constant with matter is found, and as a consequence, the time-dependent formulae of the cosmological constant and the mean matter density of the Universe at the present epoch are then found. Einstein's theory of gravitation, whether with a zero or nonzero cosmological constant, becomes a limiting case of the new generalized field equations after the early epoch

  10. 2016 Gainesville Number Theory Conference

    CERN Document Server

    Garvan, Frank

    2017-01-01

    Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory.  Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find th...

  11. Basic algebraic topology and its applications

    CERN Document Server

    Adhikari, Mahima Ranjan

    2016-01-01

    This book provides an accessible introduction to algebraic topology, a field at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book offers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. T...

  12. The Jordan structure of lie and Kac-Moody algebras

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Gomes, J.F.; Teotonio Sobrinho, P.; Zimerman, A.H.

    1989-01-01

    A precise relation between the structures of Lie and Jordan algebras by presenting a method of constructing one type of algebra from the other is established. The method differs in some aspects of the Tits construction and Jordan pairs. The examples of the Lie algebras associated to simple Jordan algebras M m (n ) and Clifford algebras are discussed in detail. This approach will shed light on the role of the realizations of Jordan algebras through some types of Fermi fields used in the construction of Kac-Moodey and Virasoro algebras as well as its relevance in the study of some aspects of conformal fields theories. (author)

  13. Vertex operators, semiclassical limit for soliton S-matrices and the number of bound states in Affine Toda Field Theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A.C.

    1999-10-01

    Soliton time delays and the semiclassical limit for soliton S-matrices are calculated for non-simply laced Affine Toda Field Theories. The phase shift is written as a sum over bilinears on the soliton conserved charges. The results apply to any two solitons of any Affine Toda Field Theory. As a by-product, a general expression for the number of bound states and the values of the coupling in which the S-matrix can be diagonal are obtained. In order to arrive at these results, a vertex operator is constructed, in the principal gradation, for non-simply laced affine Lie algebras, extending the previous constructions for simply laced and twisted affine Lie algebras. (author)

  14. Circle Maps and C*-algebras

    DEFF Research Database (Denmark)

    Schmidt, Thomas Lundsgaard

    such a map, generalising the transformation groupoid of a local homeomorphism first introduced by Renault in \\cite{re}. We conduct a detailed study of the relationship between the dynamics of $\\phi$, the properties of these groupoids, the structure of their corresponding reduced groupoid $C^*$-algebras, and......, for certain classes of maps, the K-theory of these algebras. When the map $\\phi$ is transitive, we show that the algebras $C^*_r(\\Gamma_\\phi)$ and $C^*_r(\\Gamma_\\phi^+)$ are purely infinite and satisfy the Universal Coefficient Theorem. Furthermore, we find necessary and sufficient conditions for simplicity...... of these algebras in terms of dynamical properties of $\\phi$. We proceed to consider the situation when the algebras are non-simple, and describe the primitive ideal spectrum in this case. We prove that any irreducible representation factors through the $C^*$-algebra of the reduction of the groupoid to the orbit...

  15. Variants of bosonization in parabosonic algebra: the Hopf and super-Hopf structures in parabosonic algebra

    International Nuclear Information System (INIS)

    Kanakoglou, K; Daskaloyannis, C

    2008-01-01

    Parabosonic algebra in finite or infinite degrees of freedom is considered as a Z 2 -graded associative algebra, and is shown to be a Z 2 -graded (or super) Hopf algebra. The super-Hopf algebraic structure of the parabosonic algebra is established directly without appealing to its relation to the osp(1/2n) Lie superalgebraic structure. The notion of super-Hopf algebra is equivalently described as a Hopf algebra in the braided monoidal category CZ 2 M. The bosonization technique for switching a Hopf algebra in the braided monoidal category H M (where H is a quasitriangular Hopf algebra) into an ordinary Hopf algebra is reviewed. In this paper, we prove that for the parabosonic algebra P B , beyond the application of the bosonization technique to the original super-Hopf algebra, a bosonization-like construction is also achieved using two operators, related to the parabosonic total number operator. Both techniques switch the same super-Hopf algebra P B to an ordinary Hopf algebra, thus producing two different variants of P B , with an ordinary Hopf structure

  16. Introduction to relation algebras relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

  17. Reconstructing Bohr's Reply to EPR in Algebraic Quantum Theory

    Science.gov (United States)

    Ozawa, Masanao; Kitajima, Yuichiro

    2012-04-01

    Halvorson and Clifton have given a mathematical reconstruction of Bohr's reply to Einstein, Podolsky and Rosen (EPR), and argued that this reply is dictated by the two requirements of classicality and objectivity for the description of experimental data, by proving consistency between their objectivity requirement and a contextualized version of the EPR reality criterion which had been introduced by Howard in his earlier analysis of Bohr's reply. In the present paper, we generalize the above consistency theorem, with a rather elementary proof, to a general formulation of EPR states applicable to both non-relativistic quantum mechanics and algebraic quantum field theory; and we clarify the elements of reality in EPR states in terms of Bohr's requirements of classicality and objectivity, in a general formulation of algebraic quantum theory.

  18. Three-dimensional spin-3 theories based on general kinematical algebras

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Grumiller, Daniel; Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria); Rosseel, Jan [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)

    2017-01-25

    We initiate the study of non- and ultra-relativistic higher spin theories. For sake of simplicity we focus on the spin-3 case in three dimensions. We classify all kinematical algebras that can be obtained by all possible Inönü-Wigner contraction procedures of the kinematical algebra of spin-3 theory in three dimensional (anti-) de Sitter space-time. We demonstrate how to construct associated actions of Chern-Simons type, directly in the ultra-relativistic case and by suitable algebraic extensions in the non-relativistic case. We show how to give these kinematical algebras an infinite-dimensional lift by imposing suitable boundary conditions in a theory we call “Carroll Gravity”, whose asymptotic symmetry algebra turns out to be an infinite-dimensional extension of the Carroll algebra.

  19. Noncommutative Common Cause Principles in algebraic quantum field theory

    International Nuclear Information System (INIS)

    Hofer-Szabó, Gábor; Vecsernyés, Péter

    2013-01-01

    States in algebraic quantum field theory “typically” establish correlation between spacelike separated events. Reichenbach's Common Cause Principle, generalized to the quantum field theoretical setting, offers an apt tool to causally account for these superluminal correlations. In the paper we motivate first why commutativity between the common cause and the correlating events should be abandoned in the definition of the common cause. Then we show that the Noncommutative Weak Common Cause Principle holds in algebraic quantum field theory with locally finite degrees of freedom. Namely, for any pair of projections A, B supported in spacelike separated regions V A and V B , respectively, there is a local projection C not necessarily commuting with A and B such that C is supported within the union of the backward light cones of V A and V B and the set {C, C ⊥ } screens off the correlation between A and B.

  20. International Conference on Automorphic Forms and Number Theory

    CERN Document Server

    Al-Baali, Mehiddin; Ibukiyama, Tomoyoshi; Rupp, Florian

    2014-01-01

    This edited volume presents a collection of carefully refereed articles covering the latest advances in Automorphic Forms and Number Theory, that were primarily developed from presentations given at the 2012 “International Conference on Automorphic Forms and Number Theory,” held in Muscat, Sultanate of Oman. The present volume includes original research as well as some surveys and outlines of research altogether providing a contemporary snapshot on the latest activities in the field and covering the topics of: Borcherds products Congruences and Codes Jacobi forms Siegel and Hermitian modular forms Special values of L-series Recently, the Sultanate of Oman became a member of the International Mathematical Society. In view of this development, the conference provided the platform for scientific exchange and collaboration between scientists of different countries from all over the world. In particular, an opportunity was established for a close exchange between scientists and students of Germany, Oman, and J...

  1. Topics in number theory

    CERN Document Server

    LeVeque, William J

    2002-01-01

    Classic two-part work now available in a single volume assumes no prior theoretical knowledge on reader's part and develops the subject fully. Volume I is a suitable first course text for advanced undergraduate and beginning graduate students. Volume II requires a much higher level of mathematical maturity, including a working knowledge of the theory of analytic functions. Contents range from chapters on binary quadratic forms to the Thue-Siegel-Roth Theorem and the Prime Number Theorem. Includes numerous problems and hints for their solutions. 1956 edition. Supplementary Reading. List of Symb

  2. Antieigenvalue analysis for continuum mechanics, economics, and number theory

    Directory of Open Access Journals (Sweden)

    Gustafson Karl

    2016-01-01

    Full Text Available My recent book Antieigenvalue Analysis, World-Scientific, 2012, presented the theory of antieigenvalues from its inception in 1966 up to 2010, and its applications within those forty-five years to Numerical Analysis, Wavelets, Statistics, Quantum Mechanics, Finance, and Optimization. Here I am able to offer three further areas of application: Continuum Mechanics, Economics, and Number Theory. In particular, the critical angle of repose in a continuum model of granular materials is shown to be exactly my matrix maximum turning angle of the stress tensor of the material. The important Sharpe ratio of the Capital Asset Pricing Model is now seen in terms of my antieigenvalue theory. Euclid’s Formula for Pythagorean triples becomes a special case of my operator trigonometry.

  3. Algebraic computing program for studying the gauge theory

    International Nuclear Information System (INIS)

    Zet, G.

    2005-01-01

    An algebraic computing program running on Maple V platform is presented. The program is devoted to the study of the gauge theory with an internal Lie group as local symmetry. The physical quantities (gauge potentials, strength tensors, dual tensors etc.) are introduced either as equations in terms of previous defined quantities (tensors), or by manual entry of the component values. The components of the strength tensor and of its dual are obtained with respect to a given metric of the space-time used for describing the gauge theory. We choose a Minkowski space-time endowed with spherical symmetry and give some example of algebraic computing that are adequate for studying electroweak or gravitational interactions. The field equations are also obtained and their solutions are determined using the DEtools facilities of the Maple V computing program. (author)

  4. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  5. Towers of algebras in rational conformal field theories

    International Nuclear Information System (INIS)

    Gomez, C.; Sierra, G.

    1991-01-01

    This paper reports on Jones fundamental construction applied to rational conformal field theories. The Jones algebra which emerges in this application is realized in terms of duality operations. The generators of the algebra are an open version of Verlinde's operators. The polynomial equations appear in this context as sufficient conditions for the existence of Jones algebra. The ADE classification of modular invariant partition functions is put in correspondence with Jones classification of subfactors

  6. Borel reductibility and classification of von neumann algebras

    DEFF Research Database (Denmark)

    Sasyk, R.; Törnquist, Asger Dag

    2009-01-01

    We announce some new results regarding the classification problem for separable von Neumann algebras. Our results are obtained by applying the notion of Borel reducibility and Hjorth's theory of turbulence to the isomorphism relation for separable von Neumann algebras....

  7. Abstract algebra

    CERN Document Server

    Garrett, Paul B

    2007-01-01

    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  8. A Cohomological Perspective on Algebraic Quantum Field Theory

    Science.gov (United States)

    Hawkins, Eli

    2018-05-01

    Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.

  9. A Cohomological Perspective on Algebraic Quantum Field Theory

    Science.gov (United States)

    Hawkins, Eli

    2018-02-01

    Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.

  10. Iwahori-Hecke algebras and Schur algebras of the symmetric group

    CERN Document Server

    Mathas, Andrew

    1999-01-01

    This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the q-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and q-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in Chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the q-Schur algebras. T...

  11. Algebra of strong and electroweak interactions

    International Nuclear Information System (INIS)

    Bolokhov, S.V.; Vladimirov, Yu.S.

    2004-01-01

    The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru

  12. Special set linear algebra and special set fuzzy linear algebra

    OpenAIRE

    Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.

    2009-01-01

    The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...

  13. Geometry, algebra and applications from mechanics to cryptography

    CERN Document Server

    Encinas, Luis; Gadea, Pedro; María, Mª

    2016-01-01

    This volume collects contributions written by different experts in honor of Prof. Jaime Muñoz Masqué. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.

  14. Synthesis of models for order-sorted first-order theories using linear algebra and constraint solving

    Directory of Open Access Journals (Sweden)

    Salvador Lucas

    2015-12-01

    Full Text Available Recent developments in termination analysis for declarative programs emphasize the use of appropriate models for the logical theory representing the program at stake as a generic approach to prove termination of declarative programs. In this setting, Order-Sorted First-Order Logic provides a powerful framework to represent declarative programs. It also provides a target logic to obtain models for other logics via transformations. We investigate the automatic generation of numerical models for order-sorted first-order logics and its use in program analysis, in particular in termination analysis of declarative programs. We use convex domains to give domains to the different sorts of an order-sorted signature; we interpret the ranked symbols of sorted signatures by means of appropriately adapted convex matrix interpretations. Such numerical interpretations permit the use of existing algorithms and tools from linear algebra and arithmetic constraint solving to synthesize the models.

  15. Particle-like structure of Lie algebras

    Science.gov (United States)

    Vinogradov, A. M.

    2017-07-01

    If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.

  16. Microeconomic theory and computation applying the maxima open-source computer algebra system

    CERN Document Server

    Hammock, Michael R

    2014-01-01

    This book provides a step-by-step tutorial for using Maxima, an open-source multi-platform computer algebra system, to examine the economic relationships that form the core of microeconomics in a way that complements traditional modeling techniques.

  17. Taking off the square root of Nambu-Goto action and obtaining Filippov-Lie algebra gauge theory action

    International Nuclear Information System (INIS)

    Park, Jeong-Hyuck; Sochichiu, Corneliu

    2009-01-01

    We propose a novel prescription to take off the square root of the Nambu-Goto action for a p-brane, which generalizes the Brink-Di Vecchia-Howe-Tucker, also known as the Polyakov method. With an arbitrary decomposition, d+n=p+1, our resulting action is a modified d-dimensional Polyakov action, which is gauged and possesses a Nambu n-bracket squared potential. We first spell out how the (p+1)-dimensional diffeomorphism is realized in the lower dimensional action. Then we discuss a possible gauge fixing of it to a direct product of d-dimensional diffeomorphism and n-dimensional volume preserving diffeomorphism. We show that the latter naturally leads to a novel Filippov-Lie n-algebra based gauge theory action in d dimensions. (orig.)

  18. The large numbers hypothesis and the Einstein theory of gravitation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1979-01-01

    A study of the relations between large dimensionless numbers leads to the belief that G, expressed in atomic units, varies with the epoch while the Einstein theory requires G to be constant. These two requirements can be reconciled by supposing that the Einstein theory applies with a metric that differs from the atomic metric. The theory can be developed with conservation of mass by supposing that the continual increase in the mass of the observable universe arises from a continual slowing down of the velocity of recession of the galaxies. This leads to a model of the Universe that was first proposed by Einstein and de Sitter (the E.S. model). The observations of the microwave radiation fit in with this model. The static Schwarzchild metric has to be modified to fit in with the E.S. model for large r. The modification is worked out, and also the motion of planets with the new metric. It is found that there is a difference between ephemeris time and atomic time, and also that there should be an inward spiralling of the planets, referred to atomic units, superposed on the motion given by ordinary gravitational theory. These are effects that can be checked by observation, but there is no conclusive evidence up to the present. (author)

  19. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  20. Algebraic curves and cryptography

    CERN Document Server

    Murty, V Kumar

    2010-01-01

    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  1. Dialectics Between Theory and Practice: Theoretical Issues and Aspects of Practice from an Early Algebra Project

    Science.gov (United States)

    Malara, Nicolina A.

    2003-01-01

    Our teaching conception acknowledges the teacher's central role as a decision maker, influenced by knowledge, beliefs, and emotions. We believe that teachers' education must be focused on teachers' awareness of the complexity of the teaching process, of the incidence of these factors in it, and of the importance of looking at theory as a strong…

  2. Verifying Process Algebra Proofs in Type Theory

    NARCIS (Netherlands)

    Sellink, M.P.A.

    In this paper we study automatic verification of proofs in process algebra. Formulas of process algebra are represented by types in typed λ-calculus. Inhabitants (terms) of these types represent proofs. The specific typed λ-calculus we use is the Calculus of Inductive Constructions as implemented

  3. The distribution of prime numbers and associated problems in number theory

    International Nuclear Information System (INIS)

    Nair, M.

    1991-01-01

    Some problems in number theory, namely the gaps between consecutive primes, the distribution of primes in arithmetic progressions, Brun-Titchmarsh theorem, Fermat's last theorem, The Thue equation, the gaps between square-free numbers are discussed

  4. Phenomenological aspects of theories for baryon and lepton number violation

    International Nuclear Information System (INIS)

    Duerr, Michael

    2013-01-01

    The renormalizable couplings of the Standard Model are invariant under two accidental global symmetries, which correspond to conserved baryon and lepton numbers. In this thesis, we discuss possible roles of these symmetries in extension of the Standard Model. Two approaches are considered: explicit violation of lepton number by two units in the renormalizable couplings of the Lagrangian, and promotion of the global symmetries to local gauge symmetries that are spontaneously broken. The former approach directly leads to Majorana neutrino masses and neutrinoless double beta decay. We discuss the interplay of the contributions to this decay in a one-loop neutrino mass model, the colored seesaw mechanism. We find that, depending on the parameters of the model, both the light Majorana neutrino exchange and the contribution of the new colored particles may be dominant. Additionally, an experimental test is presented, which allows for a discrimination of neutrinoless double beta decay from unknown nuclear background using only one isotope. In the latter approach, fascinating implications originate from the attempt to write down an anomaly-free and spontaneously broken gauge theory for baryon and lepton numbers, such as an automatically stable dark matter candidate. When gauging the symmetries in a left-right symmetric setup, the same fields that allow for an anomaly-free theory generate neutrino masses via the type III seesaw mechanism.

  5. Dynamical systems and linear algebra

    OpenAIRE

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  6. Why two local BRS algebras in bosonic string theory

    International Nuclear Information System (INIS)

    Bouda, A.

    1993-01-01

    This paper is the first of a set of two articles in which a local Becchi-Rouet-Stora (BRS) operator for string and superstring theories is constructed by using a new procedure in which the nil potency is automatically guaranteed. In this article, it is shown that in bosonic string theory, there are two different methods of dilating the ghost which give rise to two different local BRS algebras. The first method leads to well-known results, already obtained by another procedure. The second method has been applied previously by the author. (author). 8 refs

  7. Projector bases and algebraic spinors

    International Nuclear Information System (INIS)

    Bergdolt, G.

    1988-01-01

    In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors

  8. Conference on Representation Theory, Number Theory and Invariant Theory: on the Occasion of Roger Howe’s 70th Birthday

    CERN Document Server

    Kim, Ju-Lee; Zhu, Chen-Bo

    2017-01-01

    This book contains selected papers based on talks given at the "Representation Theory, Number Theory, and Invariant Theory" conference held at Yale University from June 1 to June 5, 2015. The meeting and this resulting volume are in honor of Professor Roger Howe, on the occasion of his 70th birthday, whose work and insights have been deeply influential in the development of these fields. The speakers who contributed to this work include Roger Howe's doctoral students, Roger Howe himself, and other world renowned mathematicians. Topics covered include automorphic forms, invariant theory, representation theory of reductive groups over local fields, and related subjects.

  9. Current algebra and the local nature of symmetries in local quantum theory

    International Nuclear Information System (INIS)

    Doplicher, S.

    In this report we mainly discuss the problem of finding local observables which measure the charges in a volume smaller than their localization region, in particular providing the existence of local observables with a specific physical interpretation. In the same way we can also establish the existence of a version of the current algebra structure. Similar local observables can be constructed for the energy-momentum; we also comment on the local implementation of supersymmetries. (orig./HSI)

  10. Fermi-Dirac statistics and the number theory

    OpenAIRE

    Kubasiak, A.; Korbicz, J.; Zakrzewski, J.; Lewenstein, M.

    2005-01-01

    We relate the Fermi-Dirac statistics of an ideal Fermi gas in a harmonic trap to partitions of given integers into distinct parts, studied in number theory. Using methods of quantum statistical physics we derive analytic expressions for cumulants of the probability distribution of the number of different partitions.

  11. Residues and duality for projective algebraic varieties

    CERN Document Server

    Kunz, Ernst; Dickenstein, Alicia

    2008-01-01

    This book, which grew out of lectures by E. Kunz for students with a background in algebra and algebraic geometry, develops local and global duality theory in the special case of (possibly singular) algebraic varieties over algebraically closed base fields. It describes duality and residue theorems in terms of K�hler differential forms and their residues. The properties of residues are introduced via local cohomology. Special emphasis is given to the relation between residues to classical results of algebraic geometry and their generalizations. The contribution by A. Dickenstein gives applications of residues and duality to polynomial solutions of constant coefficient partial differential equations and to problems in interpolation and ideal membership. D. A. Cox explains toric residues and relates them to the earlier text. The book is intended as an introduction to more advanced treatments and further applications of the subject, to which numerous bibliographical hints are given.

  12. Vertex operator algebras of Argyres-Douglas theories from M5-branes

    Science.gov (United States)

    Song, Jaewon; Xie, Dan; Yan, Wenbin

    2017-12-01

    We study aspects of the vertex operator algebra (VOA) corresponding to Argyres-Douglas (AD) theories engineered using the 6d N=(2, 0) theory of type J on a punctured sphere. We denote the AD theories as ( J b [ k], Y), where J b [ k] and Y represent an irregular and a regular singularity respectively. We restrict to the `minimal' case where J b [ k] has no associated mass parameters, and the theory does not admit any exactly marginal deformations. The VOA corresponding to the AD theory is conjectured to be the W-algebra W^{k_{2d}}(J, Y ) , where {k}_{2d}=-h+b/b+k with h being the dual Coxeter number of J. We verify this conjecture by showing that the Schur index of the AD theory is identical to the vacuum character of the corresponding VOA, and the Hall-Littlewood index computes the Hilbert series of the Higgs branch. We also find that the Schur and Hall-Littlewood index for the AD theory can be written in a simple closed form for b = h. We also test the conjecture that the associated variety of such VOA is identical to the Higgs branch. The M5-brane construction of these theories and the corresponding TQFT structure of the index play a crucial role in our computations.

  13. Regularity of C*-algebras and central sequence algebras

    DEFF Research Database (Denmark)

    Christensen, Martin S.

    The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

  14. Process Algebra and Markov Chains

    NARCIS (Netherlands)

    Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  15. Process algebra and Markov chains

    NARCIS (Netherlands)

    Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.

    2001-01-01

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  16. Private quantum subsystems and quasiorthogonal operator algebras

    International Nuclear Information System (INIS)

    Levick, Jeremy; Kribs, David W; Pereira, Rajesh; Jochym-O’Connor, Tomas; Laflamme, Raymond

    2016-01-01

    We generalize a recently discovered example of a private quantum subsystem to find private subsystems for Abelian subgroups of the n-qubit Pauli group, which exist in the absence of private subspaces. In doing so, we also connect these quantum privacy investigations with the theory of quasiorthogonal operator algebras through the use of tools from group theory and operator theory. (paper)

  17. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  18. Perturbative algebraic quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Lindner, Falk

    2013-08-01

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  19. The relation between quantum W algebras and Lie algebras

    International Nuclear Information System (INIS)

    Boer, J. de; Tjin, T.

    1994-01-01

    By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)

  20. Fundamental number theory with applications

    CERN Document Server

    Mollin, Richard A

    2008-01-01

    An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition           Removal of all advanced material to be even more accessible in scope           New fundamental material, including partition theory, generating functions, and combinatorial number theory           Expa

  1. Exact WKB analysis and cluster algebras

    International Nuclear Information System (INIS)

    Iwaki, Kohei; Nakanishi, Tomoki

    2014-01-01

    We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  2. Algebraic geometry in India

    Indian Academy of Sciences (India)

    algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

  3. Higher-spin extended conformal algebras and W-gravities

    International Nuclear Information System (INIS)

    Hull, C.M.

    1991-01-01

    The construction of classical W 3 gravity is reviewed. It is suggested that the hidden symmetry for quantum W 3 gravity in the chiral gauge is not SL(3, R) but a group contraction of this, ISL(2, R). This is extended to W N gravity, and the case of W 4 gravity is presented in detail. The gauge transformations are realized on D free bosons, with the spin-n conserved current (2 ≤ n ≤ N) taking the form d sub(i i ...i n ) δ + Φ sup(i 1 ) δ + Φ sup(i n ) for some constant tensor d sub(i i ...i n ). The d-tensors must satisfy N-2 non-linear algebraic constraints and these constraints are shown to be satisfied if the d-tensors are taken to be the structure-tensors of an Nth degree Jordan algebra. The relation with Jordan algebras is used to give solutions of the d-tensor constraints for any value of D, N. The free-boson construction of the W N algebras is generalized to give a Sugaware-type construction of a large class of classical extended conformal algebras. The chiral gauging of any classical extended conformal algebra is shown to require only a linear Noether coupling to world-sheet gauge-fields, while gauging a non-chiral algebra in general leads to a non-polynomial action. A number of examples are examined, including W ∞ W-supergravity, Knizhnik-Berschadsky supergravity and 'W N/M ' algebras. Theories of higher-spin W-gravity of the type described are only possible in one and two space-time dimensions, and the one-dimensional cases is briefly discussed. The covariant formulation of W-gravity is briefly discussed and the relation between classical and quantum extended conformal algebras is analyzed. (orig.)

  4. Algebraic characterization of vector supersymmetry in topological field theories

    International Nuclear Information System (INIS)

    Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G.; Sorella, S.P.

    1997-01-01

    An algebraic cohomological characterization of a class of linearly broken Ward identities is provided. The examples of the topological vector supersymmetry and of the Landau ghost equation are discussed in detail. The existence of such a linearly broken Ward identities turns out to be related to BRST exact anti-field dependent cocycles with negative ghost number, according to the cohomological reformulation of the Noether theorem given by M. Henneaux et al. (author)

  5. Algebraic characterization of vector supersymmetry in topological field theories

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, S.P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica. Dept. de Fisica Teorica

    1997-01-01

    An algebraic cohomological characterization of a class of linearly broken Ward identities is provided. The examples of the topological vector supersymmetry and of the Landau ghost equation are discussed in detail. The existence of such a linearly broken Ward identities turns out to be related to BRST exact anti-field dependent cocycles with negative ghost number, according to the cohomological reformulation of the Noether theorem given by M. Henneaux et al. (author). 32 refs., 5 tabs.

  6. Jordan algebras versus C*- algebras

    International Nuclear Information System (INIS)

    Stormer, E.

    1976-01-01

    The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)

  7. Unsolved problems in number theory

    CERN Document Server

    Guy, Richard K

    1994-01-01

    Unsolved Problems in Number Theory contains discussions of hundreds of open questions, organized into 185 different topics. They represent numerous aspects of number theory and are organized into six categories: prime numbers, divisibility, additive number theory, Diophantine equations, sequences of integers, and miscellaneous. To prevent repetition of earlier efforts or duplication of previously known results, an extensive and up-to-date collection of references follows each problem. In the second edition, not only extensive new material has been added, but corrections and additions have been included throughout the book.

  8. Multidimensional analysis algebras and systems for science and engineering

    CERN Document Server

    Hart, George W

    1995-01-01

    This book deals with the mathematical properties of dimensioned quantities, such as length, mass, voltage, and viscosity. Beginning with a careful examination of how one expresses the numerical results of a measurement and uses these results in subsequent manipulations, the author rigorously constructs the notion of dimensioned numbers and discusses their algebraic structure. The result is a unification of linear algebra and traditional dimensional analysis that can be extended from the scalars to which the traditional analysis is perforce restricted to multidimensional vectors of the sort frequently encountered in engineering, systems theory, economics, and other applications.

  9. A functorial model theory newer applications to algebraic topology, descriptive sets, and computing categories topos

    CERN Document Server

    Nourani, Cyrus F

    2014-01-01

    IntroductionCategorical PreliminariesCategories and FunctorsMorphismsFunctorsCategorical ProductsNatural TransformationsProducts on Models Preservation of LimitsModel Theory and Topoi More on Universal ConstructionsChapter ExercisesInfinite Language CategoriesBasicsLimits and Infinitary Languages Generic Functors and Language String ModelsFunctorial Morphic Ordered Structure ModelsChapter ExercisesFunctorial Morphic Ordered Structure ModelsFunctorial Fragment M

  10. Towards a classification of fusion rule algebras in rational conformal field theories

    International Nuclear Information System (INIS)

    Ravanini, F.

    1991-01-01

    We review the main topics concerning Fusion Rule Algebras (FRA) of Rational Conformal Field Theories. After an exposition of their general properties, we examine known results on the complete classification for low number of fields (≤4). We then turn our attention to FRA's generated polynomially by one (real) fundamental field, for which a classification is known. Attempting to generalize this result, we describe some connections between FRA's and Graph Theory. The possibility to get new results on the subject following this ''graph'' approach is briefly discussed. (author)

  11. Circle Maps and C*-algebras

    DEFF Research Database (Denmark)

    Schmidt, Thomas Lundsgaard; Thomsen, Klaus

    2015-01-01

    We consider a construction of $C^*$-algebras from continuous piecewise monotone maps on the circle which generalizes the crossed product construction for homeomorphisms and more generally the construction of Renault, Deaconu and Anantharaman-Delaroche for local homeomorphisms. Assuming that the map...... is surjective and not locally injective we give necessary and sufficient conditions for the simplicity of the $C^*$-algebra and show that it is then a Kirchberg algebra. We provide tools for the calculation of the K-theory groups and turn them into an algorithmic method for Markov maps....

  12. Applied linear algebra and matrix analysis

    CERN Document Server

    Shores, Thomas S

    2018-01-01

    In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. This approach places special emphasis on linear algebra as an experimental science that provides tools for solving concrete problems. The second edition’s revised text discusses applications of linear algebra like graph theory and network modeling methods used in Google’s PageRank algorithm. Other new materials include modeling examples of diffusive processes, linear programming, image processing, digital signal processing, and Fourier analysis. These topics are woven into the core material of Gaussian elimination and other matrix operations; eigenvalues, eigenvectors, and discrete dynamical systems; and the geometrical aspects of vector spaces. Intended for a one-semester undergraduate course without a strict calculus prerequisite, Applied Linear Algebra and M...

  13. Current algebras and many-body physics

    International Nuclear Information System (INIS)

    Albertin, U.K.

    1989-01-01

    Several applications of current algebras in many body physics are examined. The first is the interacting Bose gas in three dimensions. Theories for phonons, vortices and rotons are all described within the current algebra formalism. Next the one dimensional electron gas is examined within the approximation of linear dispersion so that relativistic current algebra techniques may be used. The relation with Thirring strings and compactified boson models is examined, and points of enhanced symmetry in the compactified boson models are shown to lie on phase transition lines for the electron gas. Finally, mathematical aspects of the current algebra are studied. The theory of induced representations of the diffeomorphism group are used to describe the Aharanov-Bohm effect, the thermodynamics of the Bose gas, and the Bose gas in the presence of vortex filaments

  14. Quantum-field theories as representations of a single $^\\ast$-algebra

    OpenAIRE

    Raab, Andreas

    2013-01-01

    We show that many well-known quantum field theories emerge as representations of a single $^\\ast$-algebra. These include free quantum field theories in flat and curved space-times, lattice quantum field theories, Wightman quantum field theories, and string theories. We prove that such theories can be approximated on lattices, and we give a rigorous definition of the continuum limit of lattice quantum field theories.

  15. Generating functional for Donaldson invariants and operator algebra in topological D=4 Yang-Mills theory

    International Nuclear Information System (INIS)

    Johansen, A.A.

    1992-01-01

    It is shown, that under the certain constraints the generating functional for the Donaldson invariants in the D=4 topological Yang-Mills theory can be interpreted as a partition function for the renormalizable theory. 20 refs

  16. Linear response theory an analytic-algebraic approach

    CERN Document Server

    De Nittis, Giuseppe

    2017-01-01

    This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3–5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. The book closes with a chapter about...

  17. Clifford Algebras and Spinors

    International Nuclear Information System (INIS)

    Todorov, Ivan

    2010-12-01

    Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)

  18. Kac-Moody algebras and controlled chaos

    International Nuclear Information System (INIS)

    Wesley, Daniel H

    2007-01-01

    Compactification can control chaotic Mixmaster behaviour in gravitational systems with p-form matter: we consider this in light of the connection between supergravity models and Kac-Moody algebras. We show that different compactifications define 'mutations' of the algebras associated with the noncompact theories. We list the algebras obtained in this way, and find novel examples of wall systems determined by Lorentzian (but not hyperbolic) algebras. Cosmological models with a smooth pre-big bang phase require that chaos is absent: we show that compactification alone cannot eliminate chaos in the simplest compactifications of the heterotic string on a Calabi-Yau, or M theory on a manifold of G 2 holonomy. (fast track communication)

  19. Exponentiation and deformations of Lie-admissible algebras

    International Nuclear Information System (INIS)

    Myung, H.C.

    1982-01-01

    The exponential function is defined for a finite-dimensional real power-associative algebra with unit element. The application of the exponential function is focused on the power-associative (p,q)-mutation of a real or complex associative algebra. Explicit formulas are computed for the (p,q)-mutation of the real envelope of the spin 1 algebra and the Lie algebra so(3) of the rotation group, in light of earlier investigations of the spin 1/2. A slight variant of the mutated exponential is interpreted as a continuous function of the Lie algebra into some isotope of the corresponding linear Lie group. The second part of this paper is concerned with the representation and deformation of a Lie-admissible algebra. The second cohomology group of a Lie-admissible algebra is introduced as a generalization of those of associative and Lie algebras in the Hochschild and Chevalley-Eilenberg theory. Some elementary theory of algebraic deformation of Lie-admissible algebras is discussed in view of generalization of that of associative and Lie algebras. Lie-admissible deformations are also suggested by the representation of Lie-admissible algebras. Some explicit examples of Lie-admissible deformation are given in terms of the (p,q)-mutation of associative deformation of an associative algebra. Finally, we discuss Lie-admissible deformations of order one

  20. The elastic theory of shells using geometric algebra.

    Science.gov (United States)

    Gregory, A L; Lasenby, J; Agarwal, A

    2017-03-01

    We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.

  1. Forward error correction based on algebraic-geometric theory

    CERN Document Server

    A Alzubi, Jafar; M Chen, Thomas

    2014-01-01

    This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

  2. arXiv Algebraic Cycles and Local Anomalies in F-Theory

    CERN Document Server

    Bies, Martin; Weigand, Timo

    2017-11-16

    We introduce a set of identities in the cohomology ring of elliptic fibrations which are equivalent to the cancellation of gauge and mixed gauge-gravitational anomalies in F-theory compactifications to four and six dimensions. The identities consist in (co)homological relations between complex codimension-two cycles. The same set of relations, once evaluated on elliptic Calabi-Yau three-folds and four-folds, is shown to universally govern the structure of anomalies and their Green-Schwarz cancellation in six- and four-dimensional F-theory vacua, respectively. We furthermore conjecture that these relations hold not only within the cohomology ring, but even at the level of the Chow ring, i.e. as relations among codimension-two cycles modulo rational equivalence. We verify this conjecture in non-trivial examples with Abelian and non-Abelian gauge groups factors. Apart from governing the structure of local anomalies, the identities in the Chow ring relate different types of gauge backgrounds on elliptically fibre...

  3. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    Science.gov (United States)

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  4. Fundamental structures of algebra and discrete mathematics

    CERN Document Server

    Foldes, Stephan

    2011-01-01

    Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.

  5. An algebraic description of perturbation theory in quantum electrodynamics

    International Nuclear Information System (INIS)

    Wright, J.D.

    1982-01-01

    An algebraic formulation of the electromagnetic field, in which various quantization procedures can be described, is used to discuss perturbation calculations. The Feynman rules and the second order calculation of the self-energy of the electron can be developed on the basis of the Fermi method of quantization. The algebraic approach clarifies the problems in defining the vacuum and other states, which are associated with calculations in terms of field algebra operators. The vacuum state defined on the field algebra by Schwinger leads to incorrect results in the self-energy calculation

  6. Algebraic renormalization. Perturbative renormalization, symmetries and anomalies

    International Nuclear Information System (INIS)

    Piguet, O.

    1995-01-01

    This book is an introduction to the algebraic method in the perturbative renormalization of relativistic quantum field theory. After a general introduction to renormalized perturbation theory the quantum action principle and Ward identities are described. Then Yang-Mills gauge theories are considered. Thereafter the BRS cohomology and descent equations are described. Then nonrenormalization theorems and topological field theories are considered. Finally an application to the bosonic string is described. (HSI)

  7. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  8. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator algebras

    International Nuclear Information System (INIS)

    Marquette, Ian

    2013-01-01

    We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently

  9. Lie algebras and linear differential equations.

    Science.gov (United States)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  10. Lie groups, lie algebras, and representations an elementary introduction

    CERN Document Server

    Hall, Brian

    2015-01-01

    This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compac...

  11. Open algebraic surfaces

    CERN Document Server

    Miyanishi, Masayoshi

    2000-01-01

    Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

  12. Additional operations in algebra of structural numbers for control algorithm development

    Directory of Open Access Journals (Sweden)

    Morhun A.V.

    2016-12-01

    Full Text Available The structural numbers and the algebra of the structural numbers due to the simplicity of representation, flexibility and current algebraic operations are the powerful tool for a wide range of applications. In autonomous power supply systems and systems with distributed generation (Micro Grid mathematical apparatus of structural numbers can be effectively used for the calculation of the parameters of the operating modes of consumption of electric energy. The purpose of the article is the representation of the additional algebra of structural numbers. The standard algebra was proposed to be extended by the additional operations and modification current in order to expand the scope of their use, namely to construct a flexible, adaptive algorithms of control systems. It is achieved due to the possibility to consider each individual component of the system with its parameters and provide easy management of entire system and each individual component. Thus, structural numbers and extended algebra are the perspective line of research and further studying is required.

  13. Analytic number theory, approximation theory, and special functions in honor of Hari M. Srivastava

    CERN Document Server

    Rassias, Michael

    2014-01-01

    This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality, and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics, and other computational and applied sciences.

  14. Algebraic construction of interacting higher spin field theories

    International Nuclear Information System (INIS)

    Fougere, F.

    1991-10-01

    We develop a general framework which we believe may provide some insights into the structure of interacting 'high spin' field theories. A finite or infinite set of classical spin fields is described by means of a field defined on an enlarged spacetime manifold. The free action and its gauge symmetries are gathered into a nilpotent differential operator on this manifold. In particular, the choice of Grassmann-valued extra coordinates leads to theories involving only a finite set of fields, the possible contents (spin multiplicities, degree of reducibility, etc.) of which are classified according to the representations of a unitary algebra. The interacting theory is characterized by a functional of the field on the enlarged manifold. We show that there is among these functionals a natural graded Lie algebra structure allowing one to rewrite the gauge invariance condition of the action in a concise form which is a nonlinear generalization of the nilpotency condition of the free theory. We obtain the general solution of this 'classical master equation' , which can be built recurrently starting form the cubic vertex, and we study its symmetries. Our formalism lends itself to a systematic introduction of additional conditions, such as locality, polynomiality, etc. We write down the general form of the solutions exhibiting a scale invariance. The case of a spin 1 field yields, as a unique solution, Yang-Mills theory. In view of quantization, we show that the solution of the classical master equation straightforwardly provides a solution of the (quantum) Batalin-Vilkoviski master equation. One may then obtain a gauge fixed action in the usual way

  15. International conference on Algebraic and Complex Geometry

    CERN Document Server

    Kloosterman, Remke; Schütt, Matthias

    2014-01-01

    Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...

  16. Perturbative algebraic quantum field theory an introduction for mathematicians

    CERN Document Server

    Rejzner, Kasia

    2016-01-01

    Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...

  17. Unipotent and nilpotent classes in simple algebraic groups and lie algebras

    CERN Document Server

    Liebeck, Martin W

    2012-01-01

    This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of...

  18. Algebra

    CERN Document Server

    Sepanski, Mark R

    2010-01-01

    Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems

  19. Separable algebras

    CERN Document Server

    Ford, Timothy J

    2017-01-01

    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  20. Twisted boundary states and representation of generalized fusion algebra

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi; Tani, Taro

    2006-01-01

    The mutual consistency of boundary conditions twisted by an automorphism group G of the chiral algebra is studied for general modular invariants of rational conformal field theories. We show that a consistent set of twisted boundary states associated with any modular invariant realizes a non-negative integer matrix representation (NIM-rep) of the generalized fusion algebra, an extension of the fusion algebra by representations of the twisted chiral algebra associated with the automorphism group G. We check this result for several concrete cases. In particular, we find that two NIM-reps of the fusion algebra for su(3) k (k=3,5) are organized into a NIM-rep of the generalized fusion algebra for the charge-conjugation automorphism of su(3) k . We point out that the generalized fusion algebra is non-commutative if G is non-Abelian and provide some examples for G-bar S 3 . Finally, we give an argument that the graph fusion algebra associated with simple current extensions coincides with the generalized fusion algebra for the extended chiral algebra, and thereby explain that the graph fusion algebra contains the fusion algebra of the extended theory as a subalgebra

  1. Tensor algebra over Hilbert space: Field theory in classical phase space

    International Nuclear Information System (INIS)

    Matos Neto, A.; Vianna, J.D.M.

    1984-01-01

    It is shown using tensor algebras, namely Symmetric and Grassmann algebras over Hilbert Space that it is possible to introduce field operators, associated to the Liouville equation of classical statistical mechanics, which are characterized by commutation (for Symmetric) and anticommutation (for Grassmann) rules. The procedure here presented shows by construction that many-particle classical systems admit an algebraic structure similar to that of quantum field theory. It is considered explicitly the case of n-particle systems interacting with an external potential. A new derivation of Schoenberg's result about the equivalence between his field theory in classical phase space and the usual classical statistical mechanics is obtained as a consequence of the algebraic structure of the theory as introduced by our method. (Author) [pt

  2. Al- Khwarizmi and axiomatic foundation of algebra

    International Nuclear Information System (INIS)

    Fares, N.

    2015-01-01

    This paper intends to investigate the axiomatic foundations of algebra, as they were presented in the book of algebra of al-Khwarizmi (9 th century), and as they were developed in many subsequent Arabic works. The paper gives also a description of algebra evolution towards a discipline independent ofgeometry and arithmetic: the two disciplines whosemarriage had led to its birth.By an in depth reading of some details in the text of al Khwarizmi , we concluded that this mathematician intended to lay down the axiomatic foundations of that new discipline. His resort to arithmetical and geometrical means was a way of making his theory more accessible. He used them to justify the axioms: those that were not explicitly introduced per se, and those that were remained implicit. The paper also relies on some unedited writingsof al-Khwarizmi's successors, which could shedlight on the ways they used to consolidate the foundations of algebra and improve its methods. (author)

  3. Rank of quantized universal enveloping algebras and modular functions

    International Nuclear Information System (INIS)

    Majid, S.; Soibelman, Ya.S.

    1991-01-01

    We compute an intrinsic rank invariant for quasitriangular Hopf algebras in the case of general quantum groups U q (g). As a function of q the rank has remarkable number theoretic properties connected with modular covariance and Galois theory. A number of examples are treated in detail, including rank (U q (su(3)) and rank (U q (e 8 )). We briefly indicate a physical interpretation as relating Chern-Simons theory with the theory of a quantum particle confined to an alcove of g. (orig.)

  4. The algebraic versus geometric approach to quantum field theory

    International Nuclear Information System (INIS)

    Schroer, B.

    1990-06-01

    Some recent developments in algebraic QFT are reviewed and confronted with results obtained by geometric methods. In particular a critical evaluation of the present status of the quantum symmetry discussion is given and the possible relation of the (Gepner-Witten) modularity in conformal QFT 2 and the Tomita modularity (existence of quantum reflections) of the algebraic approach is commented on. (author) 34 refs

  5. An algebraic approach towards the classification of 2 dimensional conformal field theories

    International Nuclear Information System (INIS)

    Bouwknegt, P.G.

    1988-01-01

    This thesis treats an algebraic method for the construction of 2-dimensional conformal field theories. The method consists of the study of the representation theory of the Virasoro algebra and suitable extensions of this. The classification of 2-dimensional conformal field theories is translated into the classification of combinations of representations which satisfy certain consistence conditions (unitarity and modular invariance). For a certain class of 2-dimensional field theories, namely the one with central charge c = 1 from the theory of Kac-Moody algebra's. there exist indications, but as yet mainly hope, that this construction will finally lead to a classification of 2-dimensional conformal field theories. 182 refs.; 2 figs.; 26 tabs

  6. Associative and Lie deformations of Poisson algebras

    OpenAIRE

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  7. On the algebraic scattering theory for heavy ions

    International Nuclear Information System (INIS)

    Amos, K.; Kiedeldey, H.; Morrison, I.; Allen, L.J.

    1989-01-01

    Algebraic potentials from SO(3,1) and SO(3,2) representations of scattering functions are deduced by matching to scattering functions obtained by fitting 12 C- 12 C elastic scattering differential cross-sections. Their variations with energy suggest a simple mapping between algebraic and coordinate space interactions. 13 refs., 5 figs., 2 tabs

  8. Algebraic perturbation theory for dense liquids with discrete potentials

    Science.gov (United States)

    Adib, Artur B.

    2007-06-01

    A simple theory for the leading-order correction g1(r) to the structure of a hard-sphere liquid with discrete (e.g., square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic and surprisingly accurate expression for g1(r) . The structure of a discrete “core-softened” model for liquids with anomalous thermodynamic properties is reproduced as an application.

  9. Algebraic renormalization of supersymmetric gauge theories with dimensionful parameters

    International Nuclear Information System (INIS)

    Golterman, Maarten; Shamir, Yigal

    2010-01-01

    It is usually believed that there are no perturbative anomalies in supersymmetric gauge theories beyond the well-known chiral anomaly. In this paper we revisit this issue, because previously given arguments are incomplete. Specifically, we rule out the existence of soft anomalies, i.e., quantum violations of supersymmetric Ward identities proportional to a mass parameter in a classically supersymmetric theory. We do this by combining a previously proven theorem on the absence of hard anomalies with a spurion analysis, using the methods of algebraic renormalization. We work in the on-shell component formalism throughout. In order to deal with the nonlinearity of on-shell supersymmetry transformations, we take the spurions to be dynamical, and show how they nevertheless can be decoupled.

  10. Tensor models, Kronecker coefficients and permutation centralizer algebras

    Science.gov (United States)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye

    2017-11-01

    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  11. Theory of pseudo-differential operators over C*-Algebras

    International Nuclear Information System (INIS)

    Mohammad, N.

    1987-06-01

    In this article the behaviour of adjoints and composition of pseudo-differential operators in the framework of a C*-algebra is studied. It results that the class of pseudo-differential operators of order zero is a C*-algebra. 8 refs

  12. Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.

    Science.gov (United States)

    Zabet, K; Rossiter, J A; Haber, R; Abdullah, M

    2017-11-01

    This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.

  13. Non-freely generated W-algebras and construction of N=2 super W-algebras

    International Nuclear Information System (INIS)

    Blumenhagen, R.

    1994-07-01

    Firstly, we investigate the origin of the bosonic W-algebras W(2, 3, 4, 5), W(2, 4, 6) and W(2, 4, 6) found earlier by direct construction. We present a coset construction for all three examples leading to a new type of finitely, non-freely generated quantum W-algebras, which we call unifying W-algebras. Secondly, we develop a manifest covariant formalism to construct N = 2 super W-algebras explicitly on a computer. Applying this algorithm enables us to construct the first four examples of N = 2 super W-algebras with two generators and the N = 2 super W 4 algebra involving three generators. The representation theory of the former ones shows that all examples could be divided into four classes, the largest one containing the N = 2 special type of spectral flow algebras. Besides the W-algebra of the CP(3) Kazama-Suzuki coset model, the latter example with three generators discloses a second solution which could also be explained as a unifying W-algebra for the CP(n) models. (orig.)

  14. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  15. Algebraic and coordinate space potentials from heavy ion scattering

    International Nuclear Information System (INIS)

    Amos, K.; Berge, L.; Allen, L.J.; Fiedeldey, H.

    1993-01-01

    An inversion scheme is presented to derive the potentials of algebraic scattering theory from the corresponding S-functions. Representative heavy ion scattering data of 12 C, 14 N and 16 O ions on 208 Pb, accurately fitted by McIntyre strong absorption type S-functions, are employed to obtain exact algebraic potentials and to generalize the analytical shapes proposed previously by Alhassid et al. The coordinate space potentials corresponding to a number of S-functions are also obtained via semiclassical inversion. The major advantage of the algebraic potentials is that, at a theoretical level they are more directly related to the S-functions than are coordinate space potentials. 16 refs., 1 tab., 9 figs

  16. Additive theory of prime numbers

    CERN Document Server

    Hua, L K

    2009-01-01

    Loo-Keng Hua was a master mathematician, best known for his work using analytic methods in number theory. In particular, Hua is remembered for his contributions to Waring's Problem and his estimates of trigonometric sums. Additive Theory of Prime Numbers is an exposition of the classic methods as well as Hua's own techniques, many of which have now also become classic. An essential starting point is Vinogradov's mean-value theorem for trigonometric sums, which Hua usefully rephrases and improves. Hua states a generalized version of the Waring-Goldbach problem and gives asymptotic formulas for the number of solutions in Waring's Problem when the monomial x^k is replaced by an arbitrary polynomial of degree k. The book is an excellent entry point for readers interested in additive number theory. It will also be of value to those interested in the development of the now classic methods of the subject.

  17. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Science.gov (United States)

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  18. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  19. Computation and theory of Euler sums of generalized hyperharmonic numbers

    OpenAIRE

    Xu, Ce

    2017-01-01

    Recently, Dil and Boyadzhiev \\cite{AD2015} proved an explicit formula for the sum of multiple harmonic numbers whose indices are the sequence $\\left( {{{\\left\\{ 0 \\right\\}}_r},1} \\right)$. In this paper we show that the sums of multiple harmonic numbers whose indices are the sequence $\\left( {{{\\left\\{ 0 \\right\\}}_r,1};{{\\left\\{ 1 \\right\\}}_{k-1}}} \\right)$ can be expressed in terms of (multiple) zeta values, multiple harmonic numbers and Stirling numbers of the first kind, and give an explic...

  20. Lorentz-diffeomorphism quasi-local conserved charges and Virasoro algebra in Chern–Simons-like theories of gravity

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2016-08-01

    Full Text Available The Chern–Simons-like theories of gravity (CSLTG are formulated at first order formalism. In this formalism, the derivation of the entropy of a black hole on bifurcation surface, as a quasi-local conserved charge is problematic. In this paper we overcome these problems by considering the concept of total variation and the Lorentz–Lie derivative. We firstly find an expression for the ADT conserved current in the context of the CSLTG which is based on the concept of the Killing vector fields. Then, we generalize it to be conserved for all diffeomorphism generators. Thus, we can extract an off-shell conserved charge for any vector field which generates a diffeomorphism. The formalism presented here is based on the concept of quasi-local conserved charges which are off-shell. The charges can be calculated on any codimension two space-like surface surrounding a black hole and the results are independent of the chosen surface. By using the off-shell quasi-local conserved charge, we investigate the Virasoro algebra and find a formula to calculate the central extension term. We apply the formalism to the BTZ black hole solution in the context of the Einstein gravity and the Generalized massive gravity, then we find the eigenvalues of their Virasoro generators as well as the corresponding central charges. Eventually, we calculate the entropy of the BTZ black hole by the Cardy formula and we show that the result exactly matches the one obtained by the concept of the off-shell conserved charges.

  1. Lectures of David Olive on gauge theories and Lie algebras with some applications to spontaneous symmetry breaking and integrable dynamical systems

    CERN Document Server

    Turok, Neil

    2018-01-01

    Professor David Olive was a renowned British theoretical physicist who made seminal contributions to superstrings, quantum gauge theories and mathematical physics. He was awarded the Dirac Medal by the International Centre for Theoretical Physics in Trieste in 1997, with his long-standing collaborator Peter Goddard. David Olive was a Fellow of the Royal Society and a Founding Fellow of the Learned Society of Wales. David Olive was known for his visionary conjectures, including electromagnetic duality in spontaneously broken gauge theories, as well as his exceptionally clear and insightful style of exposition. These lectures, delivered by David Olive in 1982 at the University of Virginia, provide a pedagogical, self-contained introduction to gauge theory, Lie algebras, electromagnetic duality and integrable models. Despite enormous subsequent developments, they still provide a valuable entry point to some of the deepest topics in quantum gauge theory.

  2. An introduction to Kac-Moody algebras and their physical applications

    International Nuclear Information System (INIS)

    Goddard, P.; Olive, D.

    1986-01-01

    Kac-Moody algebras, the physical applications and results on their representation theory are surveyed. The Sugawara construction of the Virasoro algebra associated with a Kac-Moody algebra is described and it is used to produce the full discrete series of representations of the Virasoro algebra. The quark model construction of representations of Kac-Moody algebras is also described. Conditions necessary for the equivalence of two-dimensional σ-models to free fermion theories are derived

  3. Coherent states and classical limit of algebraic quantum models

    International Nuclear Information System (INIS)

    Scutaru, H.

    1983-01-01

    The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines

  4. Fractional supersymmetry and infinite dimensional lie algebras

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    2001-01-01

    In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed

  5. From symmetries to number theory

    International Nuclear Information System (INIS)

    Tempesta, P.

    2009-01-01

    It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.

  6. Algebra for All: The Effect of Algebra Coursework and Classroom Peer Academic Composition on Low-Achieving Students

    Science.gov (United States)

    Nomi, Takako; Raudenbush, Stephen W.

    2014-01-01

    Algebra is often considered as a gateway for later achievement. A recent report by the Mathematics Advisory Panel (2008) underscores the importance of improving algebra learning in secondary school. Today, a growing number of states and districts require algebra for all students in ninth grade or earlier. Chicago is at the forefront of this…

  7. Algebras, rings and modules

    CERN Document Server

    Hazewinkel, Michiel; Kirichenko, V V

    Provides both the classical aspects of the theory of groups and their representations as well as a general introduction to the modern theory of representations, including the representations of quivers and finite partially ordered sets. This volume provides the theory of semiprime Noetherian semiperfect and semidistributive rings.

  8. Dynamical entropy of C* algebras and Von Neumann algebras

    International Nuclear Information System (INIS)

    Connes, A.; Narnhofer, H.; Thirring, W.

    1986-01-01

    The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)

  9. Gauge theory for baryon and lepton numbers with leptoquarks.

    Science.gov (United States)

    Duerr, Michael; Fileviez Pérez, Pavel; Wise, Mark B

    2013-06-07

    Models where the baryon (B) and lepton (L) numbers are local gauge symmetries that are spontaneously broken at a low scale are revisited. We find new extensions of the standard model which predict the existence of fermions that carry both baryon and lepton numbers (i.e., leptoquarks). The local baryonic and leptonic symmetries can be broken at a scale close to the electroweak scale and we do not need to postulate the existence of a large desert to satisfy the experimental constraints on baryon number violating processes like proton decay.

  10. Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions, and missing momentum modes

    Energy Technology Data Exchange (ETDEWEB)

    Günaydin, Murat [Institute for Gravitation and the Cosmos, Physics Department,Pennsylvania State University, University Park, PA 16802 (United States); Lüst, Dieter [Arnold Sommerfeld Center for Theoretical Physics, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München (Germany); Malek, Emanuel [Arnold Sommerfeld Center for Theoretical Physics, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München (Germany)

    2016-11-07

    We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginary octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g{sub s}.

  11. Blocks of tame representation type and related algebras

    CERN Document Server

    Erdmann, Karin

    1990-01-01

    This monograph studies algebras that are associated to blocks of tame representation type. Over the past few years, a range of new results have been obtained and a comprehensive account of these is provided here to- gether with some new proofs of known results. Some general theory of algebras is also presented, as a means of understanding the subject. The book is addressed to researchers and graduate students interested in the links between representations of finite-dimensional algebras and modular group representation theory. The basic properties of modules and finite-dimensional algebras are assumed known.

  12. Superspace formulation in a three-algebra approach to D=3, N=4, 5 superconformal Chern-Simons matter theories

    International Nuclear Information System (INIS)

    Chen Famin; Wu Yongshi

    2010-01-01

    We present a superspace formulation of the D=3, N=4, 5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new superpotential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras, and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4, 5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be re-derived in our 3-algebra approach. All known N=4, 5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie algebra realization of symplectic 3-algebras.

  13. Introduction to applied algebraic systems

    CERN Document Server

    Reilly, Norman R

    2009-01-01

    This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as

  14. On Associative Conformal Algebras of Linear Growth

    OpenAIRE

    Retakh, Alexander

    2000-01-01

    Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

  15. 2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras

    International Nuclear Information System (INIS)

    Ayupov, Shavkat; Kudaybergenov, Karimbergen

    2016-01-01

    The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)

  16. Quantum complexity of graph and algebraic problems

    International Nuclear Information System (INIS)

    Doern, Sebastian

    2008-01-01

    This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

  17. Quantum complexity of graph and algebraic problems

    Energy Technology Data Exchange (ETDEWEB)

    Doern, Sebastian

    2008-02-04

    This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

  18. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  19. An application of vector coherent state theory to the SO95) proton-neutron quasi-spin algebra

    International Nuclear Information System (INIS)

    Berej, W.

    2002-01-01

    Vector coherent state theory (VCS), developed for computing Lie group and Lie algebra representations and coupling coefficients, has been used for many groups of interest an actual physics applications. It is shown that VCS construction of a rotor type can be performed for the SO(5) ∼ Sp(4) quasi-spin group where the relevant physical subgroup SU(2) x U(1) is generalized by the isospin operators and the number of particle operators [ru

  20. Unitary representations of some infinite-dimensional Lie algebras motivated by string theory on AdS3

    International Nuclear Information System (INIS)

    Andreev, Oleg

    1999-01-01

    We consider some unitary representations of infinite-dimensional Lie algebras motivated by string theory on AdS 3 . These include examples of two kinds: the A,D,E type affine Lie algebras and the N=4 superconformal algebra. The first presents a new construction for free field representations of affine Lie algebras. The second is of a particular physical interest because it provides some hints that a hybrid of the NSR and GS formulations for string theory on AdS 3 exists