WorldWideScience

Sample records for algae lithothamnion calcareum

  1. Gastroprotective and toxicological evaluation of the Lithothamnion calcareum algae.

    Science.gov (United States)

    Almeida, F; Schiavo, L V; Vieira, A D; Araújo, G L; Queiroz-Junior, C M; Teixeira, M M; Cassali, G D; Tagliati, C A

    2012-05-01

    Lithothamnion calcareum is a red alga of the Corallinacea family whose main feature is the formation of calcium carbonate precipitate in its cell walls. L. calcareum is marketed as a nutritional supplement for calcium and other minerals in Brazil and other countries under the pharmaceutical name of Vitality 50+. In this study, gastroprotective and pre-clinical toxicity assays were performed on this product. Doses of 30, 120 and 480 mg/kg were used in the gastroprotective study on Wistar rats. A dose of 2000 mg/kg was used in the preclinical acute toxicity study and oral doses of 1000 and 2000 mg/kg were used in the subchronic toxicity evaluation. L. calcareum played no significant role in the protection of the rats' gastric mucosa, nor did it cause increase in gastric irritation. No impact on the acute toxicity test was identified. In the subchronic toxicity test, serum levels of albumin, total protein and calcium decreased, and creatinine levels increased, suggesting hypercalcemia and possible kidney damage associated with liver damage, given that the majority of these parameters were irreversible. Thus, this work aims to discuss the relationship of the high concentration of calcium in the product with the observed effects.

  2. Uso da alga Lithothamnium calcareum como fonte alternativa de cálcio nas rações de frangos de corte Use of algae Lithothamnium calcareum as alternative source of calcium in diets for broiler chickens

    Directory of Open Access Journals (Sweden)

    André Carreira Carlos

    2011-08-01

    Full Text Available Objetivou-se, com este trabalho, avaliar o uso da alga Lithothamnium calcareum (Pallas Areschoug nas rações para frangos de corte de 1 a 21 e 21 a 42 dias de idade, em substituição à fonte de cálcio tradicional (calcário calcítico. Para isso, foram utilizados 300 pintos machos, da linhagem Cobb®, que receberam rações contendo o calcário calcítico e a alga Lithothamnium calcareum (colhida de inteira e na forma de areia biodentrítica como fontes de cálcio. O delineamento experimental utilizado foi o inteiramente casualizado, com três tratamentos e cinco repetições de 20 aves cada. As variáveis analisadas foram: ganho de peso (g/ave, consumo de ração (g/ave e conversão alimentar (g/g. No final do experimento foram avaliados os parâmetros ósseos: peso da tíbia (g, comprimento da tíbia (mm, diâmetro da tíbia (mm e teor de cinzas na tíbia (%. Na fase inicial (1 a 21 dias houve efeito (PThe objective of this study was to evaluate the use of the algae Lithothamnium calcareum (Pallas Areschoug in diets for broiler chickens from 1 to 21 and 21 to 42 days, to replace the traditional source of calcium (limestone. 300 male chicks from Cobb® strain, which received diets containing limestone and Lithothamnium calcareum algae (as a whole and as sand biodentritic were used as sources of calcium. The experimental design was completely randomized, with three treatments and five replicates of 20 birds each. The variables analyzed were: weight gain (g / bird, feed intake (g / bird, feed per again (g / g. At the end of the experiment the bone parameters: weight of the tibia (g, tibia length (mm, diameter of the tibia (mm and ash content in the tibia (%. Were evaluated in the initial phase (1 to 21 days there was an effect (P <0.05 between treatments for weight gain and feed per again, and the control treatment showed better results. For the growing phase (21 to 42 days and total period (1 to 42 days there was no effect among the

  3. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale.

    Science.gov (United States)

    Ragazzola, F; Foster, L C; Jones, C J; Scott, T B; Fietzke, J; Kilburn, M R; Schmidt, D N

    2016-01-01

    Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean.

  4. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale

    Science.gov (United States)

    Ragazzola, F.; Foster, L. C.; Jones, C. J.; Scott, T. B.; Fietzke, J.; Kilburn, M. R.; Schmidt, D. N.

    2016-02-01

    Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean.

  5. Lithothamnion muelleri Controls Inflammatory Responses, Target Organ Injury and Lethality Associated with Graft-versus-Host Disease in Mice

    Science.gov (United States)

    Rezende, Barbara M.; Bernardes, Priscila T. T.; Resende, Carolina B.; Arantes, Rosa M. E.; Souza, Danielle G.; Braga, Fernão C.; Castor, Marina G. M.; Teixeira, Mauro M.; Pinho, Vanessa

    2013-01-01

    Lithothamnion muelleri (Hapalidiaceae) is a marine red alga, which is a member of a group of algae with anti-inflammatory, antitumor, and immunomodulatory properties. The present study evaluated the effects of treatment with Lithothamnion muelleri extract (LM) in a model of acute graft-versus-host disease (GVHD), using a model of adoptive splenocyte transfer from C57BL/6 donors into B6D2F1 recipient mice. Mice treated with LM showed reduced clinical signs of disease and mortality when compared with untreated mice. LM-treated mice had reduced tissue injury, less bacterial translocation, and decreased levels of proinflammatory cytokines and chemokines (interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3) and chemokine (C-C motif) ligand 5 (CCL5)). The polysaccharide-rich fraction derived from LM could inhibit leukocyte rolling and adhesion in intestinal venules, as assessed by intravital microscopy. LM treatment did not impair the beneficial effects of graft-versus-leukaemia (GVL). Altogether, our studies suggest that treatment with Lithothamnion muelleri has a potential therapeutic application in GVHD treatment. PMID:23873335

  6. The Algae flora in Tekirdag - Istanbul coastline

    OpenAIRE

    Koç, Hüseyin; AYDIN, Ayten

    2001-01-01

    Abstract In this work 36 algae species were collected on the coastline between Tekirdag and Istanbul. There were 12 Chlorophyceae, 10 Phaeophyceae and 14 Rhodophyceae amongst them. The algae were f irst determined in Sea of Marmara are: Gigartina teedii, Cystoseira opuntioides, Lithothamnion lichenoides, Hildenbrandia prototypus, Rhodymenia corallicola.

  7. A Lithothamnion bank at Bonaire (Netherlands Antilles)

    NARCIS (Netherlands)

    Zaneveld, J.S.

    1958-01-01

    The part certain lime-secreting marine algae play in the building of coral reefs and in the formation of banks was discussed chiefly at the end of the last and in the beginnig of this century. At that time it was already known that extensive parts of the sublittoral zone of the Arctic sea were cover

  8. [From algae to "functional foods"].

    Science.gov (United States)

    Vadalà, M; Palmieri, B

    2015-01-01

    In the recent years, a growing interest for nutraceutical algae (tablets, capsules, drops) has been developed, due to their effective health benefits, as a potential alternative to the classic drugs. This review explores the use of cyanobacterium Spirulina, the microalgae Chlorella, Dunaliella, Haematococcus, and the macroalgae Klamath, Ascophyllum, Lithothamnion, Chondrus, Hundaria, Glacilaria, Laminaria, Asparagopsis, Eisenia, Sargassum as nutraceuticals and dietary supplements, in terms of production, nutritional components and evidence-based health benefits. Thus, our specific goals are: 1) Overview of the algae species currently used in nutraceuticals; 2) Description of their characteristics, action mechanisms, and possible side effects; 3) Perspective of specific algae clinical investigations development. PMID:26378764

  9. Algae.

    Science.gov (United States)

    Raven, John A; Giordano, Mario

    2014-07-01

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs. PMID:25004359

  10. Lithothamnium calcareum no tratamento de osteotomia experimental em coelhos (Oryctolagus cuniculus

    Directory of Open Access Journals (Sweden)

    N.S. Ucrós

    2012-06-01

    Full Text Available Avaliaram-se os efeitos da suplementação com Lithothamnium calcareum na consolidação de osteotomia experimental em coelhos, por meio de exames radiográfico e histológico. Utilizaram-se 10 coelhos machos da raça Nova Zelândia, de quatro a cinco meses de idade, com massa corporal média de 2,5kg, os quais foram submetidos à osteotomia do terço médio da tíbia direita e à fixação interna com dois pinos intramedulares. Os coelhos foram distribuídos aleatoriamente em dois grupos experimentais (A e B com cinco animais cada. O grupo A recebeu diariamente dieta contendo 0,75% de L. calcareum, e o grupo B constituiu o controle sem tratamento adicional à fixação da osteotomia. A evolução clínica ocorreu sem intercorrências. As radiografias foram realizadas antes do estudo e em intervalos de 15 dias até o final do experimento, e a histologia foi realizada aos 60 dias. As avaliações radiográficas permitiram acompanhar a evolução do processo de consolidação que ocorreu em todos os casos. Histologicamente, verificou-se consolidação completa em todos os animais do grupo B (controle e em 75% do grupo A. Dos resultados pode-se concluir que, embora tenha ocorrido a consolidação clínica e a radiográfica aos 60 dias em todos os casos, histologicamente o grupo-controle (B foi melhor, mostrando que o organismo sadio não necessita de estímulo para o processo de reparação óssea. Novas pesquisas devem ser realizadas para avaliar o efeito da suplementação mineral em animais portadores de deficiências nutricionais.

  11. The Study of Algae

    Science.gov (United States)

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  12. Coralline algae are global palaeothermometers with bi-weekly resolution

    Science.gov (United States)

    Kamenos, N. A.; Cusack, M.; Moore, P. G.

    2008-02-01

    High resolution palaeoclimate data are required for the Holocene to resolve differences recorded by current proxies. The pole to pole distribution of rhodoliths (coralline algae) with their annual and sub-annual calcite bands make these attractive candidates for such a role. These bands contain climate information in the form of elemental traces. In situ temperature (IST) was recorded at two rhodolith beds for 1.5 years. The concentrations of MgCO 3 and SrCO 3 (mol %) deposited in Lithothamion glaciale and Phymatolithon calcareum over this 18- month period were determined using electron and ion microprobes. Highly significant linear relationships exist between Mg, Sr and IST as well as sea surface temperature. Calibration between Mg concentration and IST was used to obtain a 2-year temperature profile from a subfossil rhodolith thallus indicating half the seasonal peak-to-peak temperature amplitude earlier during the Holocene than the present day. Both slow-growing species (rhodoliths make them unique globally distributed palaeothermometers which may help refine regional climate histories during the Holocene.

  13. Algae Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  14. Use of calcareous algae and monensin in Nellore cattle subjected to an abrupt change in diet

    Directory of Open Access Journals (Sweden)

    Roberta Ferreira Carvalho

    2016-04-01

    Full Text Available ABSTRACT: Additives are used in high concentrate diets to prevent metabolic disorders in cattle. This study was designed to evaluate the effect of calcium sources and monensin on the control of ruminal acidosis in Nellore cattle that were abruptly shifted to a high (92.3% concentrate diet. Eight cannulated steers were randomly assigned to two contemporary 4x4 Latin square. Treatments involved the addition of a calcium source, either limestone (LI or a product derived from calcareous algae (CA, to the basic diet with or without the presence of monensin. Calcareous alga (Lithothamnium calcareum is a natural and renewable product and a source of calcium carbonate. The quantity of added limestone, calcareous algae and monensin was 7.1g kg-1, 7.4g kg-1 and 30mg kg-1 DM, respectively. There was no effect of calcium source (P=0.607 or monensin (P=0.294 on feed intake or on the concentration of short chain fatty acids. Treatments with calcareous algae resulted in a higher mean ruminal pH (P=0.039, a shorter amount of time with the ruminal pH under 5.2 (P<0.001 and a better control of blood pH (P=0.006. Treatments with monensin also resulted in a shorter amount of time with the ruminal pH below 5.2 (P=0.023. Calcareous algae were shown to be effective in controlling adverse changes in the rumen and in blood variables for Nellore cattle that were subjected to an abrupt change to a high concentrate diet.

  15. Magnetic separation of algae

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  16. Alkaloids in Marine Algae

    OpenAIRE

    Ekrem Sezik; Aline Percot; Kasım Cemal Güven

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review...

  17. Algae liquefaction / Hope Baloyi

    OpenAIRE

    Baloyi, Hope

    2012-01-01

    The liquefaction of algae for the recovery of bio–oil was studied. Algae oil is a non–edible feedstock and has minimal impact on food security and food prices; furthermore, it has been identified as a favourable feedstock for the production of biodiesel and this is attributed to its high oil yield per hectare. Algae oil can be potentially used for fuel blending for conventional diesel. The recovery step for algae oil for the production of biodiesel is costly and demands a lot of energy due to...

  18. Let them eat algae

    Energy Technology Data Exchange (ETDEWEB)

    Ciferri, O.

    1981-09-24

    The blue-green alga, Spirulina appears to be one of the candidates for the solution of the global problems of energy, food and chemical feedstock supplies. The harvesting of algae from Lake Texcoco, Mexico for the making of bread was noted in the 16th century by the Spanish and over 400 years later, dried biscuits made from algae were noted in Chad. Recent investigations have shown that the alga contains a very high proportion of protein - even higher than soya beans and is of high quality. A pilot plant covering 2 hectares for culturing Spirulina in a closed system is under construction in Italy. The polyethylene tubes will function as solar collectors and so extend the production season of the algae in more temperate regions.

  19. Algae Derived Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Kauser [Rowan Univ., Glassboro, NJ (United States)

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  20. Algae and blue-green algae as mosquito food

    OpenAIRE

    Rettich, František; Popovský, Jiří; Cepák, Vladimír

    2001-01-01

    Ten genera of cyanophytes and 73 genera of algae were found in the guts of Aedes, Culex, Anopheles and Culiseta larvae collected in various breeding places of the Elbe-Lowland (Bohemia) and Prague. The quality and quantity of blue-green algae and algae found in mosquito guts depended on their presence in the water of mosquito breeding places and on the feeding type (filter fieders, scrapers) of mosquito larvae. Chlorophycean algae possesing cell wall with sporopollenin and algae with a mucila...

  1. Blue-green algae

    Science.gov (United States)

    ... for 6 months relieves allergy symptoms in adults. Arsenic poisoning. Early research shows that taking a combination of blue-green algae and zinc by mouth twice daily for 12 weeks reduces arsenic levels and its effects on the skin in ...

  2. The resource utilization of algae - preparing coal slurry with algae

    Energy Technology Data Exchange (ETDEWEB)

    Weidong Li; Weifeng Li; Haifeng Li [East China University of Science and Technology, Shanghai (China). Key Laboratory of Coal Gasification of Education Ministry of China

    2010-05-15

    Nowadays, the occurrence of harmful algal blooms is increasing rapidly all over the world. However, the methods of resource utilization of algae are very few. In this study, we propose a new way to dispose algae, which is gasification of coal-algae slurry. Coal slurries prepared with algae were investigated, and gasification reactivity of coal-algae slurry was compared with that of coal-water slurry (CWS). The results showed that, anaerobic fermentation, chemical treatment, high-speed shearing and heating are effective pre-treatment methods on reducing the viscosity of algae, which could obviously increase the maximum solids concentration of coal-algae slurry. When the de-ionized water/algae ratio is 1:1, the maximum solids concentration could get to 62.5 wt.%, which is almost the same as that of CWS. All the coal-algae slurries exhibit pseudo-plastic behavior, and this type of fluid is shear-thinning. Compared with CWS, the stability of coal-algae slurry is much better, which could be no solids deposition after 70 h. The coal-algae slurry displays better gasification reactivity than CWS. 30 refs., 6 figs., 3 tabs.

  3. Algae Review Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  4. Biological importance of marine algae

    OpenAIRE

    Ali A. El Gamal

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological...

  5. Miocene Coralline algae

    Energy Technology Data Exchange (ETDEWEB)

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  6. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  7. Transgenic algae engineered for higher performance

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  8. FUNCTIONAL VEGETABLE SALADS WITH ALGAE

    OpenAIRE

    Козонова, Ю.О.; Авдєєва, А.А.

    2015-01-01

    Now on the Ukrainian market frozen vegetable salads are well represented. They contain a small amount of protein and have an unbalanced composition nutrientny. Adding algae to the vegetable salads composition allows to resolve this contradiction. In this paper the functional vegetable salads expanding assortment possibilities are represented. The product components composition was designed. It is advisable to add different types of algae (kelp, spirulina and fucus) to the quick-frozen functio...

  9. Scenario studies for algae production

    OpenAIRE

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass productivity and energy consumption, while considering the uncertainty and complexity in such large-scale systems. In this thesis frameworks are developed to assess 1) the productivity during algae cultiva...

  10. Neuroprotective Effects of Marine Algae

    OpenAIRE

    Se-Kwon Kim; Ratih Pangestuti

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, choline...

  11. Carotenoids in Algae: Distributions, Biosyntheses and Functions

    OpenAIRE

    Shinichi Takaichi

    2011-01-01

    For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carote...

  12. Algae Bloom in a Lake

    OpenAIRE

    David Sanabria

    2008-01-01

    The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface...

  13. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  14. Formation of algae growth constitutive relations for improved algae modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  15. 21 CFR 184.1120 - Brown algae.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  16. 21 CFR 184.1121 - Red algae.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  17. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad;

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a sourc...

  18. Algae. LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  19. Scenario studies for algae production

    NARCIS (Netherlands)

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass producti

  20. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad;

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  1. Allelopatrhic effect of Acorus tatarinowii upon algae

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Besides competing with algae for light and mineralnutrients (i.e. N, P, etc.), the root system of Acorus tatarinowii excretes some chemical substances, which injure and eliminate alga cells, to inhibit the growth of the algae. When the algae cells were treated in "A. tatarinowii water", some of the chlorophyll a were destroyed and the photosynthetic rate of algae decreased markedly and the ability of alga cells to deoxidize triphenyltetrazolium chloride (TTC) reduced greatly. Then alga cells turned from bright red to bluish green under fluorescence microscope. These showed that the allelopathic effects of A.tatarinowii on algae were obvious and planting A. tatarinowii can control some green algae. The experiment on the extractions of the secretions of the root system showed that the inhibitory effect had a concentration effect. If the concentration of the root secretion was below 30 /disc, the inhibitory rate was negative; if it was over 45 /disc, the inhibitory rate was positive. This proved that the influence of the root secretion on the same acceptor was a kind of concentration effect. When the concentration of the root secretion was low, it promoted the growth of algae; when the concentration reached a definite threshold value, it restrained the growth of algae. In present case, the threshold value was between 30 /disc and 45 u?disc.

  2. PPR proteins of green algae

    OpenAIRE

    Tourasse, Nicolas J; Choquet, Yves; Vallon, Olivier

    2013-01-01

    Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage:...

  3. Parasites in algae mass culture

    Directory of Open Access Journals (Sweden)

    Todd William Lane

    2014-06-01

    Full Text Available Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry.

  4. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  5. Bacterial Enhancement of Vinyl Fouling by Algae

    OpenAIRE

    Holmes, Paul E.

    1986-01-01

    The role of bacteria in the development of algae on low-density vinyl was investigated. Unidentified bacterial contaminants in unialgal stock cultures of Phormidium faveolarum and Pleurochloris pyrenoidosa enhanced, by 1 to 2 orders of magnitude, colonization of vinyl by these algae, as determined by epifluorescence microscopy counts and chlorophyll a in extracts of colonized vinyl. Colonization by bacteria always preceded that by algae. Scanning electron microscopy of the colonized Phormidiu...

  6. Zeolite‐Based Algae Biofilm Rotating Photobioreactor for Algae and Biomass Production

    OpenAIRE

    Young, Ashton M.

    2011-01-01

    Alkaline conditions induced by algae growth in wastewater stabilization ponds create deprotonated ammonium ions that result in ammonia gas (NH3) volatilization. If algae are utilized to remediate wastewater through uptake of phosphorus, the resulting nitrogen loss will hinder this process because algae generally require a stoichiometric molar ratio of N16P1. Lower ratios of N/P due to loss of ammonia gas will limit the growth and yield of algae, and therefore will reduce phosphorus removal fr...

  7. Toxic Effects of Phthalates on Ocean Algae

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This article discusses the interaction of phthalates and ocean algae based on the standard appraisal method of chemical medicine for algae toxicity. Through the experiments on the toxic effects of dimethyl (o-) phthalate (DMP), diethyl (o-) phthalate (DEP), dibutyl (o-)phthalate (DBP) on ocean algae, the 50 % lethal concentration of the three substances in 48 h and 96 h for plaeodectylum tricornutum, platymonas sp, isochrysis galbana, and skeletonema costatum is obtained. Tolerance limits of the above ocean algae of DMP, DEP, and DBP are discussed.

  8. Waste streams for algae cultivation

    OpenAIRE

    Kautto, Antti

    2011-01-01

    ALDIGA, short for “Algae from Waste for Combined Biodiesel and Biogas Pro-duction”, aims to develop a concept for a closed circulation of resources in pro-ducing biodiesel and biogas from waste. The project is realized in co-operation between VTT, University of Helsinki, Lahti and Häme Universities of Applied Sciences, SYKE and funded by Tekes. The project’s first work phase ergo this bachelor’s thesis covered the mapping of available and suitable streams to be used in the cultivation of ...

  9. Cultivation of macroscopic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  10. Marine Algae and Seagrasses of Adana (Mediterranean, Turkey)

    OpenAIRE

    Aysel, V.; Erdugan, H.; Okudan, E. S.

    2006-01-01

    Abstract Marine algae and seagrasses were researched in the upper infralittoral zone of Adana (Turkish Mediterranean coasts) in this study. 381 algae and 5 seagrasses (Liliopsida) were determined (Total 386 taxa). 27 of them belong to blue-green algae (Cyanophyceae), 204 to red algae [Rhodellophyceae (2), Compsopogonophyceae (2), Bangiophyceae (5), Florideophyceae(195)], 78 to brown algae (Fucophyceae), 72 to green algae [Chlorophyceae (7), Ulvophyceae (18), Trentepohliophyceae (1), Cladophor...

  11. Marine Algae and Seagrasses of Hatay (Mediterranean, Turkey)

    OpenAIRE

    Aysel, V.; Erdugan, H.; Okudan, E. S.

    2006-01-01

    Abstract In this research, marine algae and seagrasses were investigated in the upper infralittoral zone of Hatay (Turkish Mediterranean coasts). A total of 377 algae and 5 seagrasses were determined. 30 of them belong to blue-green algae (Cyanophyceae), 201 to red algae [Rhodellophyceae (2), Compsopogonophyceae (2), Bangiophyceae (5), Florideophyceae (192)], 73 to brown algae (Fucophyceae), 73 to green algae [Chlorophyceae (5), Ulvophyceae (19), Trentepohliophyceae (1), Cladophorophyceae (24...

  12. Marine Algae and Seagrasses of Mersin Shore (Mediterranean, Turkey)

    OpenAIRE

    Aysel, V.; Okudan, E. S.; Erdugan, H.

    2006-01-01

    Abstract In this research, marine algae and seagrasses were investigated in the upper infralittoral zone of Mersin (Turkish Mediterranean coasts). A total of 396 algae and 5 seagrasses were determined. 36 of them belong to blue-green algae (Cyanophyceae), 204 to red algae [Rhodellophyceae (2), Compsopogonophyceae (2), Bangiophyceae (6), Florideophyceae(I94)], 82 to brown algae (Fucophyceae), 74 to green algae [Chlorophyceae (7), Ulvophyceae (19), Trentepohliophyceae (1), Cladophorophyceae (25...

  13. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-04-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  14. The ice nucleation activity of extremophilic algae.

    Science.gov (United States)

    Kviderova, Jana; Hajek, Josef; Worland, Roger M

    2013-01-01

    Differences in the level of cold acclimation and cryoprotection estimated as ice nucleation activity in snow algae (Chlamydomonas cf. nivalis and Chloromonas nivalis), lichen symbiotic algae (Trebouxia asymmetrica, Trebouxia erici and Trebouxia glomerata), and a mesophilic strain (Chlamydomonas reinhardti) were evaluated. Ice nucleation activity was measured using the freezing droplet method. Measurements were performed using suspensions of cells of A750 (absorbance at 750 nm) ~ 1, 0.1, 0.01 and 0.001 dilutions for each strain. The algae had lower ice nucleation activity, with the exception of Chloromonas nivalis contaminated by bacteria. The supercooling points of the snow algae were higher than those of lichen photobionts. The supercooling points of both, mesophilic and snow Chlamydomonas strains were similar. The lower freezing temperatures of the lichen algae may reflect either the more extreme and more variable environmental conditions of the original localities or the different cellular structure of the strains examined. PMID:23625082

  15. Algae inhibition experiment and load characteristics of the algae solution

    Science.gov (United States)

    Xiong, L.; Gao, J. X.; Zhang, Y. X.; Yang, Z. K.; Zhang, D. Q.; He, W.

    2016-08-01

    It is necessary to inhibit microbial growth in an industrial cooling water system. This paper has developed a Monopolar/Bipolar polarity high voltage pulser with load adaptability for an algal experimental study. The load characteristics of the Chlorella pyrenoidosa solution were examined, and it was found that the solution load is resistive. The resistance is related to the plate area, concentration, and temperature of the solution. Furthermore, the pulser's treatment actually inhibits the algae cell growth. This article also explores the influence of various parameters of electric pulses on the algal effect. After the experiment, the optimum pulse parameters were determined to be an electric field intensity of 750 V/cm, a pulse width per second of 120μs, and monopolar polarity.

  16. Algae Biofuel in the Nigerian Energy Context

    Science.gov (United States)

    Elegbede, Isa; Guerrero, Cinthya

    2016-05-01

    The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author's deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry) in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  17. DGDG and Glycolipids in Plants and Algae.

    Science.gov (United States)

    Kalisch, Barbara; Dörmann, Peter; Hölzl, Georg

    2016-01-01

    Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).

  18. Method and apparatus for processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  19. 21 CFR 73.275 - Dried algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  20. Nonlinear Analysis in a Nutrient-Algae-Zooplankton System with Sinking of Algae

    OpenAIRE

    Chuanjun Dai; Min Zhao

    2014-01-01

    A reaction-diffusion-advection model is proposed for the Zeya Reservoir to study interactions between algae and zooplankton, including the diffusive spread of algae and zooplankton and the sinking of algae. The model is investigated both with and without sinking. Conditions of Hopf and Turing bifurcation in the spatial domain are obtained, and conditions for differential-flow instability that gives rise to the formation of spatial patterns are derived. Using numerical simulation, the authors ...

  1. Dipeptides from the red alga Acanthopora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    An investigation of red alga Acanthophora spicifera afforded the known peptide, aurantiamide acetate and a new diastereoisomer of this dipeptide (dia-aurantiamide acetate). This is a first report of aurantiamide acetate from a marine source...

  2. 2011 Biomass Program Platform Peer Review: Algae

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joyce [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  3. THE SOIL ALGAE OF CIBODAS FOREST RESERVE

    Directory of Open Access Journals (Sweden)

    Anne Johnson

    2014-01-01

    Full Text Available Three species of green algae and one blue-green alga were recorded from eight samples of soil found associated with bryophytes in the Cibodas Forest Reserve. Chemical analysis of the soil showed severe leaching of soluable mineral substances associated with a low pH. The low light intensity under forest conditions and the low pH may account for the limited algal flora.

  4. Stochastic Forecasting of Algae Blooms in Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  5. Marine algae and seagrasses of Tekirdag (Black Sea,Turkey)*

    OpenAIRE

    Aysel, Veysel; Erdugan, Hüseyin; DURAL, Berrin; SükranOkudan, E.

    2006-01-01

    Abstract In this study, marine algae and seagrasses in the upper infralittoral zone of the Black Sea coast of Tekirdag (Turkey) were investigated. A total 156 taxon (153 algae and 3 seagrasses) in species or inferior to the species category were determined. 15 of them belong to blue-green bacteria (Cyanophyta), 84 to red algae (Rhodophyta), 26 to brown algae (Heterokontophyta), 28 to green algae (Chlorophyta) and 3 to marineflowering plants (Magnoliophyta).

  6. Inventory of North-West European algae initiatives

    OpenAIRE

    Spruijt, J.

    2015-01-01

    In 2012 an inventory of North-West European (NWE) algae initiatives was carried out to get an impression of the market and research activities on algae production and refinery, especially for bioenergy purposes. A questionnaire was developed that would provide the EnAlgae project with information on the value chains in which algae production was positioned within these initiatives. The questionnaire was used by EnAlgae project partners to collect information in Great Britain, Ireland, Germany...

  7. Antioxidant Activity of Hawaiian Marine Algae

    Directory of Open Access Journals (Sweden)

    Anthony D. Wright

    2012-02-01

    Full Text Available Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  8. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  9. Algae production for energy and foddering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Attila; Jobbagy, Peter; Durko, Emilia [University of Debrecen, Faculty of Applied Economics and Rural Development (UD-FAERD), Centre for Agricultural and Applied Economic Sciences, Debrecen (Hungary)

    2011-09-15

    This study not only presents the results of our own experiments in alga production, but also shows the expected economic results of the various uses of algae (animal feed, direct burning, pelleting, bio-diesel production), the technical characteristics of a new pelleting method based on literature, and also our own recommended alga production technology. In our opinion, the most promising alternative could be the production of alga species with high levels of oil content, which are suitable for utilization as by-products for animal feed and in the production of bio-diesel, as well as for use in waste water management and as a flue gas additive. Based on the data from our laboratory experiments, of the four species we analyzed, Chlorella vulgaris should be considered the most promising species for use in large-scale experiments. Taking expenses into account, our results demonstrate that the use of algae for burning technology purposes results in a significant loss under the current economic conditions; however, the utilization of algae for feeding and bio-diesel purposes - in spite of their innovative nature - is nearing the level needed for competitiveness. By using the alga production technology recommended by us and described in the present study in detail, with an investment of 545 to 727 thousand EUR/ha, this technology should be able to achieve approximately 0-29 thousand EUR/ha net income, depending on size. More favorable values emerge in the case of the 1-ha (larger) size, thanks to the significant savings on fixed costs (depreciation and personnel costs). (orig.)

  10. Radiation sterilization of harmful algae in water

    International Nuclear Information System (INIS)

    Complete text of publication follows. Objective: Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of harmful micro-organisms. The human and animal harmful algae is a waterborne risk to public health and economy because the algae are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Gamma and electron beam radiation technology is of growing in the water industry since it was demonstrated that gamma and electron beam radiation is very effective against harmful algae. Materials and Methods: Harmful algae (Scenedesmus quadricauda(Turpin) Brebisson 1835 (AG10003), Chlorella vulgaris Beijerinck 1896 (AG30007) and Chlamydomonas sp. (AG10061)) were distributed from Korean collection for type cultures (KCTC). Strains were cultured aerobically in Allen's medium at 25□ and 300 umol/m2s for 1 week using bioreactor. We investigated the disinfection efficiency of harmful algae irradiated with gamma (0.05 to 10 kGy for 30 min) and electron beam (1 to 19 kGy for 5 sec) rays. Results and Conclusion: We investigated the disinfection efficiency of harmful algae irradiated with gamma and electron beam rays of 50 to 19000 Gy. We established the optimum sterilization condition which use the gamma and electron beam radiation. Gamma ray disinfected harmful algae at 400 Gy for 30 min. Also, electron beam disinfected at 1000 Gy for 5 sec. This alternative disinfection practice had powerful disinfection efficiency. Hence, the multi-barrier approach for drinking water treatment in which a combination of various disinfectants and filtration technologies are applied for removal and inactivation of different microbial pathogens will guarantee a lower risk of microbial contamination.

  11. Algae Biofuel in the Nigerian Energy Context

    Directory of Open Access Journals (Sweden)

    Elegbede Isa

    2016-05-01

    Full Text Available The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author’s deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  12. Radiation effects on algae and its application

    International Nuclear Information System (INIS)

    The effects of radiation on algae have been summarized in this article. Today, algae are being considered to have the great potential to fulfill the demand of food, fodder, fuel and various pharmaceutical products. Red algae are particularly rich in the content of polysaccharides present in their cell wall. For isolation of these polysaccharides, separation of cells cemented together by middle lamella is essential. The gamma rays are known to bring about biochemical changes in the cell wall and cause the breakdown of the middle lamella. These rays ate also known to speed up the starch sugar inter-conversion in the cells which is very useful for the tapping the potential of algae to be used as biofuel as well as in pharmaceutical industries. Cyanobacteria, among algae and other plants are more resistant to the radiation. In some cyanobacteria the radiation treatment is known to enhance the resistance against the antibiotics. Radiation treatment is also known to enhance the diameter of cell and size of the nitrogen fixing heterocyst. (author)

  13. Controlled regular locomotion of algae cell microrobots.

    Science.gov (United States)

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications. PMID:27206511

  14. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  15. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. PMID:20547408

  16. Estimation of alga growth stage and lipid content growth rate

    Science.gov (United States)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  17. Freshwater algae of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs.

  18. Microspectroscopy of the photosynthetic compartment of algae.

    Science.gov (United States)

    Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Barsanti, Laura; Gualtieri, Paolo

    2006-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of algae belonging to different taxonomic divisions and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  19. Serpins in plants and green algae

    DEFF Research Database (Denmark)

    Roberts, Thomas Hugh; Hejgaard, Jørn

    2008-01-01

    . Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors...... of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting...

  20. Harvesting of algae by froth flotation.

    Science.gov (United States)

    LEVIN, G V; CLENDENNING, J R; GIBOR, A; BOGAR, F D

    1962-03-01

    A highly efficient froth flotation procedure has been developed for harvesting algae from dilute suspensions. The method does not depend upon the addition of flotants. Harvesting is carried out in a long column containing the feed solution which is aerated from below. A stable column of foam is produced and harvested from a side arm near the top of the column. The cell concentration of the harvest is a function of pH, aeration rate, aerator porosity, feed concentration, and height of foam in the harvesting column. The economic aspects of this process seem favorable for mass harvesting of algae for food or other purposes. PMID:14464557

  1. Foresight Brief: Seaweed & Algae as Biofuels Feedstocks

    OpenAIRE

    Institute, Marine

    2008-01-01

    Seaweed is a known potential carbon-dioxide (CO2) neutral source of second generation biofuels. When seaweed grows it absorbs CO2 from the atmosphere and this CO2 is released back to the atmosphere during combustion. What makes seaweed, and in particular micro algae, so promising as a fuel source is their growth rates and high lipid (oil) content. Algae are among the fastest-growing plants in the world. Energy is stored inside the cell as lipids and carbohydrates, and can be converted into fu...

  2. Association of thraustochytrids and fungi with living marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Nagarkar, S.; Raghukumar, S.

    Occurrence of thraustochytrids, yeasts and mycelial fungi in six marine algae was studied. Thraustochytrids and mycelial fungi were recovered from non-surface-sterilized as well as surface-sterilized pieces of algae, whereas yeasts were isolated...

  3. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  4. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    Science.gov (United States)

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  5. Catalog of marine benthic algae from New Caledonia

    OpenAIRE

    Garrigue, Claire; Tsuda, R.T.

    1988-01-01

    A catalog of the marine benthic algae (#Chlorophyta, Phaeophyta$ and #Rhodophyta$) reported from New Caledonia is presented in two sections : 1. Classification; 2. Check list with references and localities. There are 35 genera, 130 species of green algae; 23 genera, 59 species of brown algae; and 79 genera, 147 species of red algae which represent a rich algal flora for the subtropics. (Résumé d'auteur)

  6. Marine algae and seagrasses of Samsun (Black Sea, Turkey)

    OpenAIRE

    Aysel, Veysel; DURAL, Berrin; Şenkardeşler, Ayhan; Aysel, Hüseyin Erduğan and Fulya

    2008-01-01

    Abstract In this investigation, the presence and the distribution of the blue-green algae; Cyanophyeae, 20 taxa, red algae; Rhodophyceae, 106 taxa, one of them is new record for the Blacksea shore of Turkey, Gelidium pusillum (Stackhouse) Le Jolis var. pusillum brown algae; Fucophyceae, 27 taxa, green algae; Chlorophyceae, 21 taxa, and seagrasses, 2 taxa were identified in the upper infralittoral zone of Samsun (Black Sea) shore of Turkey. A total 176 taxon was determined.

  7. Algae Along Qatar Coasts Utilization And Future Prospects

    OpenAIRE

    Kornprobst, Jean-Michel

    1999-01-01

    Most of marine algae have no equivalent on earth and therefore could be considered as irreplaceable sources of primary and secondary metabolites. This is especially the case for hydrocolloids from red and brown algae that are cultured and used at an industrial scale for food-processing (carrageenans and agars from red algae and alginates from brown algae are widely used as gelling agents and thickeners) but also for pharmaceutical uses (agar gels for culture of microorganisms). Others main ap...

  8. New methodologies for integrating algae with CO2 capture

    NARCIS (Netherlands)

    Hernandez Mireles, I.; Stel, R.W. van der; Goetheer, E.L.V.

    2014-01-01

    It is generally recognized, that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient fe

  9. 21 CFR 73.185 - Haematococcus algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  10. How to Identify and Control Water Weeds and Algae.

    Science.gov (United States)

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  11. Novel Fiber Optic Fluorometer for the Measurement of Alga Concentration

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel fluorometer based on fiber optics is briefly introduced for the measurement of alga concentration. Both the exciting light and the fluorescence from alga chlorophyll are transmitted along a fiber cable. By this way, we can get alga concentration by measuring its chlorophyll-a fluorescence intensity. The experiment results show that this instrument is characterized by good sensitivity, linearity and accuracy.

  12. Inventory of North-West European algae initiatives

    NARCIS (Netherlands)

    Spruijt, J.

    2015-01-01

    In 2012 an inventory of North-West European (NWE) algae initiatives was carried out to get an impression of the market and research activities on algae production and refinery, especially for bioenergy purposes. A questionnaire was developed that would provide the EnAlgae project with information on

  13. Photosynthetic production of hydrogen by algae

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.

    1978-09-01

    Because hydrogen as a fuel is very attractive both in energy and ecological terms, the photosynthetic production of hydrogen by some algae is attracting considerable attention. In addition to the ordinary photosynthetic mechanisms, many algae have enzymes which can produce hydrogen: hydrogenation enzymes and nitrogen-fixation enzymes. Certain enzymes with the former begin to produce hydrogen after several hours in an anaerobic envirionment; the reason for the delay is that the hydrogen-producing enzymes must adjust to the anaerobic conditions. Eventually the production of hydrogen ceases because production of oxygen by the ordinary photosynthetic mechanism suppresses activity of the hydrogen-producing enzymes. Any use of these algae to produce hydrogen must involve alternating hydrogen production and rest. Nitrogen-fixing enzymes are found especially in the blue-green algae. These seem to produce hydrogen from organic compounds produced by the ordinary photosynthetic process. The nitrogen-fixation type of hydrogen-producing photosynthesis seems the more promising type for future exploitation.

  14. Isolation of glycoproteins from brown algae.

    OpenAIRE

    Surendraraj, Alagarsamy; Farvin Koduvayur Habeebullah , Sabeena; Jacobsen, Charlotte

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme and Termamyl and the glycoproteins were isolated from these enzyme extracts.

  15. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  16. Spirulina: The Alga That Can End Malnutrition.

    Science.gov (United States)

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  17. Bromophenols in Marine Algae and Their Bioactivities

    DEFF Research Database (Denmark)

    Ming, Liu; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect...

  18. Pheromone signaling during sexual reproduction in algae.

    Science.gov (United States)

    Frenkel, Johannes; Vyverman, Wim; Pohnert, Georg

    2014-08-01

    Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.

  19. THE USE OF ALGAE CONCENTRATES, DRIED ALGAE AND ALGAL SUBSTITUTES TO FEED BIVALVES

    Directory of Open Access Journals (Sweden)

    Ludi Parwadani Aji

    2011-01-01

    Full Text Available Microalgae have high nutritional value and are used to feed adult and larval stages of bivalves, the larvae of some fish and crustaceans and zooplankton. However, microalgae production for aquaculture animal is very expensive. To overcome this, the use of preserved microalgae such as algae concentrate and dried algae, or algal substitutes has been developed. There are both advantages and disadvantages to this alternative food. For example, even though the cost production for algal substitute yeast-based diet is cheaper, their nutritional value is much lower compared to fresh microalgae. Moreover, there is no significant difference in nutritional value between preserved (concentrated or dried and fresh microalgae; however, preserving microalgae for long periods will affect their nutritional value. In spite of this problem, preserved microalgae such as algal concentrate and dried algae seem to be more effective to feed bivalves than algal substitutes yeast based diet due to their availability and relatively high nutritional value. Furthermore, algae concentrates are more suitable to replace fresh algae than dried algae.

  20. Componentes funcionales en aceites de pescado y de alga Functional components in fish and algae oils

    Directory of Open Access Journals (Sweden)

    A. Conchillo

    2006-06-01

    Full Text Available Buena parte del desarrollo de nuevos alimentos funcionales está encaminada al descubrimiento o aplicación de componentes de los alimentos que favorezcan la instauración de un perfil lipídico saludable en el organismo. El objetivo del trabajo fue realizar la caracterización de la fracción lipídica de dos tipos de aceites, de pescado y de alga, para valorar su potencial utilización como ingredientes funcionales, tanto en relación con el contenido en ácidos grasos de alto peso molecular como con la presencia de esteroles y otros componentes de la fracción insaponificable. Ambos aceites presentaron una fracción lipídica muy rica en ácidos grasos poliinsaturados ω-3 de alto peso molecular, con un 33,75% en el caso del aceite de pescado y un 43,97% en el de alga, siendo el EPA el ácido graso mayoritario en el pescado y el DHA en el alga. La relación ω-6/ω-3 fue en ambos aceites inferior a 0,4. En cuanto a la fracciσn insaponificable, el aceite de alga presentσ un contenido 3 veces menor de colesterol y una mayor proporciσn de escualeno. El contenido en fitosteroles fue significativamente superior en el aceite de alga.An important area of the development of new functional foods is facussed on finding or applying food components which favour achieving a healthier lipid profile in the organism. The objective of this work was to carry out the characterisation of the lipid fraction of two oils, fish oil and algae oil, to evaluate their potential use as functional ingredients, in relation to the high molecular weight fatty acid content and the presence of sterols and other components of the unsaponificable fraction. Both oils showed a lipid fraction rich in high molecular weight polyunsaturated ω-3 fatty acids, containing a 33.75% in the fish oil and a 43.97% in the algae oil. Eicosapentaenoic acid was the major fatty acid in fish oil, whereas docosahexaenoic was the most abundant fatty acid in algae oil. The ω-6/ω-3 ratio was lower

  1. Photodegradation of Norfloxacin in aqueous solution containing algae

    Institute of Scientific and Technical Information of China (English)

    Junwei Zhang; Dafang Fu; Jilong Wu

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W,λmax =365 nm) was investigated.Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algaewater systems.The photodegradation rate of Norfloxacin increased with increasing algae concentration,and was greatly influenced by the temperature and pH of solution.Meanwhile,the cooperation action of algae and Fe(Ⅲ),and the ultrasound were beneficial to photodegradation of Norfloxaciu.The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae.In addition,we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae.This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae,for providing a new method to deal with antibiotics pollution.

  2. Biofuels from algae for sustainable development

    International Nuclear Information System (INIS)

    Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and useful chemicals. Two algae samples (Cladophora fracta and Chlorella protothecoid) were studied for biofuel production. Microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Microalgae can be converted to biodiesel, bioethanol, bio-oil, biohydrogen and biomethane via thermochemical and biochemical methods. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 liters per acre, per year; this is 7-31 times greater than the next best crop, palm oil. Algal oil can be used to make biodiesel for cars, trucks, and airplanes. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. The effect of temperature on the yield of hydrogen from two algae (C. fracta and C. protothecoid) by pyrolysis and steam gasification were investigated in this study. In each run, the main components of the gas phase were CO2, CO, H2, and CH4.The yields of hydrogen by pyrolysis and steam gasification processes of the samples increased with temperature. The yields of gaseous products from the samples of C. fracta and C. protothecoides increased from 8.2% to 39.2% and 9.5% to 40.6% by volume, respectively, while the final pyrolysis temperature was increased from 575 to 925 K. The percent of hydrogen in gaseous products from the samples of C. fracta and C. protothecoides increased from 25.8% to 44.4% and 27.6% to 48.7% by volume, respectively

  3. Microbes and algae for biodiesel production - Microfuel

    Energy Technology Data Exchange (ETDEWEB)

    Ruohonen, L. [VTT Technical Research Centre of Finland, Espoo (Finland)], email: laura.ruohonen@vtt.fi; Tamminen, T. [Finnish Environment Institute (SYKE), Helsinki (Finland)

    2012-07-01

    There is an acute need to identify alternatives to replace fossil resources, in particular in transportation fuels. Thus, biomass-based biofuels such as bioethanol and biodiesel have gained significant attention towards this goal. However, the source of biomass has raised concerns; competition with the food chain and arable land must be avoided. The project focused on identification of alternative ways to produce biomass for triacylglycerides production as raw material for biodiesel, that of autotrophic production by algae, and heterotrophic production by fungi. The fungal production process is already presently implemented by Neste Oil: In the press release on 28 August 2012, Neste Oil announced the completion of the first phase of its microbial oil pilot plant. A joint algae research programme between Neste Oil and SYKE was launched in August 2011, with the aim of further developing the knowledge basis for cost-effective microalgal production in industrial-scale volumes for future production needs.

  4. Structurally Distinct Cation Channelrhodopsins from Cryptophyte Algae.

    Science.gov (United States)

    Govorunova, Elena G; Sineshchekov, Oleg A; Spudich, John L

    2016-06-01

    Microbial rhodopsins are remarkable for the diversity of their functional mechanisms based on the same protein scaffold. A class of rhodopsins from cryptophyte algae show close sequence homology with haloarchaeal rhodopsin proton pumps rather than with previously known channelrhodopsins from chlorophyte (green) algae. In particular, both aspartate residues that occupy the positions of the chromophore Schiff base proton acceptor and donor, a hallmark of rhodopsin proton pumps, are conserved in these cryptophyte proteins. We expressed the corresponding polynucleotides in human embryonic kidney (HEK293) cells and studied electrogenic properties of the encoded proteins with whole-cell patch-clamp recording. Despite their lack of residues characteristic of the chlorophyte cation channels, these proteins are cation-conducting channelrhodopsins that carry out light-gated passive transport of Na(+) and H(+). These findings show that channel function in rhodopsins has evolved via multiple routes. PMID:27233115

  5. Radiokinetic study in betony marine algae

    International Nuclear Information System (INIS)

    The influx and outflux kinetics of some radionuclides in algae of the Rio de Janeiro coastline, were studied in order to select bioindicators for radioactive contamination in aquatic media, due to the presence of Nuclear Power Stations. Bioassays of the concentration and loss of radionuclides such as 137Cs, 51Cr, 60Co and 131I were performed in 1000cm3 aquarium under controlled laboratory conditions, using a single channel gamma counting system, to study the species of algae most frequently found in the region. The concentration and loss parameters for all the species and radionuclides studied were obtained from the normalized results. The loss parameters were computerwise adjusted using Powell's multiparametric method. (author)

  6. Flavonoids from the Red Alga Acanthophora spicifera

    Institute of Scientific and Technical Information of China (English)

    ZENG Long-Mei(曾陇梅); 曾陇梅; WANG Chao-Jie(王超杰); 王超杰; SU Jing-Yu(苏镜娱); 苏镜娱; LI Du(李笃); 李笃; OWEN Noel L.; OWEN Noel L; LU Yang(吕扬); 吕扬; LU Nan(鲁南); 鲁南; ZHENG Qi-Tai(郑启泰); 郑启泰

    2001-01-01

    Two new flavonoids, acanthophorin A (1) and acanthophorin B (2), along with three known compounds tiliroside (3),( - )-catechin (4) and quercetin (5) were isolated from the red alga Acanthophora spicifera. The structures of 1 and 2were determined to be kaempferol 3-O-α-L-fucopyranoside (1) and quercetin 3-O-α-L-fucopyranoside (2) by spectroscopic methods. Both 1 and 2 showed significant anfioxidant activity.

  7. Algae as reservoirs for coral pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Sweet

    Full Text Available Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS in the Indo-Pacific and Yellow Band Disease (YBD in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively. Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is

  8. Cytoskeleton and Early Development in Fucoid Algae

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cell polarization and asymmetric cell divisions play important roles during development in many multicellular eukaryotes.Fucoid algae have a long history as models for studying early developmental processes, probably because of the ease with which zygotes can be observed and manipulated in the laboratory. This review discusses cell polarization and asymmetric cell divisions in fucoid algal zygotes with an emphasis on the roles played by the cytoskeleton.

  9. Selenium Uptake and Volatilization by Marine Algae

    Science.gov (United States)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  10. Algae-Derived Dietary Ingredients Nourish Animals

    Science.gov (United States)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  11. Antibody Production in Plants and Green Algae.

    Science.gov (United States)

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae. PMID:26905655

  12. Electro-coagulation-flotation process for algae removal.

    Science.gov (United States)

    Gao, Shanshan; Yang, Jixian; Tian, Jiayu; Ma, Fang; Tu, Gang; Du, Maoan

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density=1 mA/cm(2), pH=4-7, water temperature=18-36 degrees C, algae density=0.55 x 10(9)-1.55 x 10(9) cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m(3). The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view. PMID:20042280

  13. Electro-coagulation-flotation process for algae removal

    International Nuclear Information System (INIS)

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm2, pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 109-1.55 x 109 cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m3. The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  14. Electro-coagulation-flotation process for algae removal

    Energy Technology Data Exchange (ETDEWEB)

    Gao Shanshan, E-mail: luck81919@hotmail.com [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, Hei Longjiang (China); Yang Jixian; Tian Jiayu; Ma Fang; Tu Gang; Du Maoan [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, Hei Longjiang (China)

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm{sup 2}, pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 10{sup 9}-1.55 x 10{sup 9} cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m{sup 3}. The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  15. Eradication of algae in ships' ballast water by electrolyzing

    Institute of Scientific and Technical Information of China (English)

    DANG Kun; SUN Pei-ting; XIAO Jing-kun; SONG Yong-xin

    2006-01-01

    In order to verify the effectiveness of electrolytic treatment on ships' ballast water,experiments are carried out by a pilot system in laboratory. The raw seawater and seawater with different concentrations of different algae are simulated as ships' ballast water. The algae in the raw seawater can be killed if it is treated by electrolysis with an initial residual chlorine concentration of 5 mg/L. If the seawater with one kind of algae (Nitzschia closterum, Dicrateria spp., or Pyramidomonnas sp.105cells/mL) is treated by electrolysis with an initial residual chlorine concentration of 5 mg/L, the alga can be sterilized. If the seawater with one kind of algae (Dunaliella sp., Platymonas or Chlorella spp.)is directly treated by electrolyzing with an initial residual chlorine concentration of 4 mg/L, the instant mortality changes with the concentration of different algae. However, after 72 hours, in all treated samples, there are no live algal cells found.

  16. Removal of Pb(2+) by biomass of marine algae.

    Science.gov (United States)

    Hamdy, A A

    2000-10-01

    New biosorbent material derived from ubiquitous marine algae has been examined in packed-bed flow for Pb(2+) removal through sorption columns. Mixed biomass of marine algae has been used, consisting of representative species of the following algae: Ulva lactuca (green algae), Jania rubens (red algae), and Sargassum asperifolium (brown algae). A mixture of these three species showed a promising removal capacity for Pb(2+) from aqueous solution. Lead uptake up to 281.8 mg/g dry algal mixture was observed. Equilibrium was achieved after 120 min. No significant effect of changing the flow rate on the removal capacity was noticed. It was found that Langmuir model expresses the system at pH 4. Mineral acids exhibited good elution properties (a mean of 93%) for recovery of sorbed biomass ions as compared with the tested alkalies (about 60%). PMID:10977889

  17. Bromophenols from Marine Algae with Potential Anti-Diabetic Activities

    Institute of Scientific and Technical Information of China (English)

    LIN Xiukun; LIU Ming

    2012-01-01

    Marine algae contain various bromophenols with a variety of biological activities,including antimicrobial,anticancer,and anti-diabetic effects.Here,we briefly review the recent progress in researches on the biomaterials from marine algae,emphasizing the relationship between the structure and the potential anti-diabetic applications.Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of protein tyrosine phosphatase 1B,α-glucosidase,as well as other mechanisms.

  18. Method and apparatus for iterative lysis and extraction of algae

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  19. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    Energy Technology Data Exchange (ETDEWEB)

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal

  20. Accumulation of 210Po by benthic marine algae

    International Nuclear Information System (INIS)

    The accumulation of polonium 210Po by various species of benthic marine seaweeds collected from 4 different points on the coast of Rio de Janeiro, showed variations by species and algal groups. The highest value found was in red alga, Plocamium brasiliensis followed by other organisms of the same group. In the group of the brown alga, the specie Sargassum stenophylum was outstanding. The Chlorophyta presented the lowest content of 210Po. The algae collected in open sea, revealed greater concentration factors of 210Po than the same species living in bays. The siliceous residue remaining after mineralization of the algae did not interfere with the detection of polonium. (author)

  1. Exploring the potential of using algae in cosmetics.

    Science.gov (United States)

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses. PMID:25537136

  2. Accumulation of /sup 210/Po by benthic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Gouvea, R.C.; Branco, M.E.C.; Santos, P.L.; Gouvea, V.A.

    1988-08-01

    The accumulation of polonium /sup 210/Po by various species of benthic marine seaweeds collected from 4 different points on the coast of Rio de Janeiro, showed variations by species and algal groups. The highest value found was in red alga, Plocamium brasiliensis followed by other organisms of the same group. In the group of the brown alga, the specie Sargassum stenophylum was outstanding. The Chlorophyta presented the lowest content of /sup 210/Po. The algae collected in open sea, revealed greater concentration factors of /sup 210/Po than the same species living in bays. The siliceous residue remaining after mineralization of the algae did not interfere with the detection of polonium.

  3. Importance of algae oil as a source of biodiesel

    International Nuclear Information System (INIS)

    Algae are the fastest-growing plants in the world. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae are very important as a biomass source. Algae will some day be competitive as a source for biofuel. Different species of algae may be better suited for different types of fuel. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Algae can be a replacement for oil based fuels, one that is more effective and has no disadvantages. Algae are among the fastest-growing plants in the world, and about 50% of their weight is oil. This lipid oil can be used to make biodiesel for cars, trucks, and airplanes. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 l per acre, per year; this is 7-31 times greater than the next best crop, palm oil. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. Most current research on oil extraction is focused on microalgae to produce biodiesel from algal oil. Algal-oil processes into biodiesel as easily as oil derived from land-based crops.

  4. Exploring the potential of using algae in cosmetics.

    Science.gov (United States)

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses.

  5. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    Science.gov (United States)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  6. Method and apparatus for lysing and processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  7. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  8. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    Science.gov (United States)

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  9. ALGAE AS AN ALTERNATIVE SOURCE OF ENERGY

    OpenAIRE

    Тітлова, О.А.

    2015-01-01

    Today humanity is beginning to understand the consequences of ill-considered use of energy resources. In the last decade  a new direction of the economy is actively developing – «The Blue Economy». Its aim is to find innovative solutions that are safe for the environment and society. Bioenergy is one of the directions of the «Blue Economy» which is actively developing lately. The article discusses the possibility, advisability and examples of the algae use as a feedstock for the energy resour...

  10. Algae-based oral recombinant vaccines.

    Science.gov (United States)

    Specht, Elizabeth A; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for "molecular pharming" in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered - from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  11. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.

    2009-08-15

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  12. Algae-based oral recombinant vaccines.

    Science.gov (United States)

    Specht, Elizabeth A; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for "molecular pharming" in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered - from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity.

  13. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  14. Epiphytic algae on mosses in the vicinity of Syowa Station, Antarctica

    OpenAIRE

    Shuji, Ohtani

    1986-01-01

    Species composition and abundance of epiphytic algae on mosses growing in the vicinity of Syowa Station were investigated. Moss samples were collected from three localities, East Ongul Island, Mukai Rocks and Langhovde. The epiphytic algae identified in these samples were 23 species in total, 16 of blue-green algae, 4 of diatoms, 3 of green algae. Blue-green algae were more frequently found among these epiphytic algae on mosses in each locality. Among the three localities, Langhovde was the m...

  15. Study on the effect of irradiation on algae by proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Il; Yoon, Yo Han; Kim, Jae Hun

    2010-06-15

    Algae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the algae is just beginning and the study on protein expression and growth by the change of condition was not reported. In this study, the effect of radiation on the protein expression was investigated for the protection mechanisms and new genome source and furthermore, isolation of new mutant strains. To monitor the growth of algae, absorbance and FDA staining methods were developed and the content of lipid of algae species were measured. With these methods, the radiation sensitivity of algae species was determined. To investigate the proteome of algae, 2D-electrophoresis methods was applied. From the comparison of proteomes, the radiation specific expressed protein was identified as thioredoxin-h and its nucleotide sequences was defined. The expression of thioredoxin-h was further defined on the mRNA level. Also, the extract of algae species was analyzed for its antioxidant activity and polyphenolic content. The changes in antioxidant activity of extract by radiation was investigated. From the radiation experiments, mutant Spirogyra species having higher resistant against radical stress was obtained. The mutant strain has higher antioxidant activity. This results can provide the proteome date and mutation technology of algae and further contribute in the activation of fishery industry and national health enhancement

  16. Study on the effect of irradiation on algae by proteomics

    International Nuclear Information System (INIS)

    Algae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the algae is just beginning and the study on protein expression and growth by the change of condition was not reported. In this study, the effect of radiation on the protein expression was investigated for the protection mechanisms and new genome source and furthermore, isolation of new mutant strains. To monitor the growth of algae, absorbance and FDA staining methods were developed and the content of lipid of algae species were measured. With these methods, the radiation sensitivity of algae species was determined. To investigate the proteome of algae, 2D-electrophoresis methods was applied. From the comparison of proteomes, the radiation specific expressed protein was identified as thioredoxin-h and its nucleotide sequences was defined. The expression of thioredoxin-h was further defined on the mRNA level. Also, the extract of algae species was analyzed for its antioxidant activity and polyphenolic content. The changes in antioxidant activity of extract by radiation was investigated. From the radiation experiments, mutant Spirogyra species having higher resistant against radical stress was obtained. The mutant strain has higher antioxidant activity. This results can provide the proteome date and mutation technology of algae and further contribute in the activation of fishery industry and national health enhancement

  17. The algae biodiesel physical property and spray parameters modeling

    OpenAIRE

    Колодницька, Руслана Віталіївна; Васильєв, Руслан

    2015-01-01

    The modelling of micro-algae biodiesel density, viscosity and surface tension was performed. The spray middle diameters of droplets in diesel engine were counted.   It was shown that the property of algae biodiesel can be compare with  traditional biodiesel based on rapeseed oil.

  18. New Records for the Freshwater Algae of Turkey

    OpenAIRE

    BAYKAL, Tülay; AKBULUT, Aydın; İlkay AÇIKGÖZ

    2009-01-01

    Algae samples were collected from important dam lakes and running waters of the Lower Euphrates Basin. Eighteen new records of Turkish freshwater algae were identified. Among these new records, 5 belong to Cyanophyta, 10 to Chlorophyta, 1 to Xanthophyta, and 2 to Bacillariophyta.

  19. First Case of Osteomyelitis Due to Shewanella algae

    OpenAIRE

    Botelho-Nevers, E.; Gouriet, F.; Rovery, C.; Paris, P.; Roux, V.; Raoult, D.; Brouqui, P.

    2005-01-01

    Shewanella spp. are infrequently recovered from clinical specimens. We report here on the first case of osteomyelitis due to Shewanella algae. This bacterium, at first misidentified by phenotypic tests as Shewanella putrefaciens, was subsequently identified correctly as S. algae by 16S rRNA gene sequence analysis.

  20. Video micrography of algae photomovement and vectorial method of biomonitoring

    Science.gov (United States)

    Posudin, Yuri I.; Massjuk, N. P.; Lilitskaya, G. G.

    1996-01-01

    The simultaneous recording of several photomovement parameters of algae as test-functions during biomonitoring is proposed. Green alga Dunaliella viridis Teod. was used as the test- object for the estimation of different heavy metals. The quantitative changes of photomovement parameters as a criterion of toxicity were determined by means of the vectorial method of biomonitoring.

  1. [Marine algae of Baja California Sur, Mexico: nutritional value].

    Science.gov (United States)

    Carrillo Domínguez, Silvia; Casas Valdez, Margarita; Ramos Ramos, Felipe; Pérez-Gil, Fernando; Sánchez Rodríguez, Ignacio

    2002-12-01

    The Baja California Peninsula is one of the richest regions of seaweed resources in México. The objective of this study was to determine the chemical composition of some marine algae species of Baja California Sur, with an economical potential due to their abundance and distribution, and to promote their use as food for human consumption and animal feeding. The algae studied were Green (Ulva spp., Enteromorpha intestinalis, Caulerpa sertularoides, Bryopsis hypnoides), Red (Laurencia johnstonii, Spyridia filamentosa, Hypnea valentiae) and Brown (Sargassum herporizum, S. sinicola, Padina durvillaei, Hydroclathrus clathrathus, Colpomenia sinuosa). The algae were dried and ground before analysis. In general, the results showed that algae had a protein level less than 11%, except L. johnstonii with 18% and low energy content. The ether extract content was lower than 1%. However, the algae were a good source of carbohydrates and inorganic matter. PMID:12868282

  2. Algae Farming in Low Earth Orbit: Past Present and Future

    Science.gov (United States)

    Morrison, N.

    Algal strains used as a production engine represent a novel example of living mechanical systems with tremendous potential for applications in space. Algae use photosynthesis to create lipids, glycerin, and biomass, with different strains of algae producing different oils. Algae can be grown to produce many types of oils, with low, medium or long hydrocarbon chain lengths. This article examines the history of algae research, as well as its value to astronauts as both a food supplement and as an oxygen production and carbon sequester engine. Consideration is given to ways algae is currently being used and tested in space, followed by a look forward envisioning dynamic living technological systems that can help to sustain our race as we travel the void between stars.

  3. Fermentation of algae sludge. Fermentering av algeslam

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, J.F. (Norges Landbrugshoegskole, Aas (NO). Mikrobiologisk institutt)

    1989-01-01

    Marine brown algae are used for production of alginate. In Norway Protan A/S, Drammen harvest Laminaria sp. and Ascophyllum nodosum along the Norwegian western coast for production of alginate. About 160000 tons fresh weight per year are harvested. The amount of precipitation and flotation sludges from the alginate production is estimated to 14000 ton dry weight per year. The sludges from the alginate production contain a high fraction of organic matter (75-80 % VS). Since the sludges from the alginic acid extraction process are considered as bulky wastes with a high pollution load a research programme on anaerobic digestion of these residues has been started. Preliminary results have shown that the sludges can be digested with a high yield of methane (0.15-0.30 m{sup 3}/kg VS added).

  4. The economics of producing biodiesel from algae

    International Nuclear Information System (INIS)

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  5. High-fidelity phototaxis in biflagellate algae

    Science.gov (United States)

    Leptos, Kyriacos; Chioccioli, Maurizio; Furlan, Silvano; Pesci, Adriana; Goldstein, Raymond

    2015-11-01

    The single-cell alga Chlamydomonas reinhardtii is a motile biflagellate that can swim towards light for its photosynthetic requirements, a behavior referred to as phototaxis. The cell responds upon light stimulation through its rudimentary eye - the eyespot - by changing the beating amplitude of its two flagella accordingly - a process called the photoresponse. All this occurs in a coordinated fashion as Chlamydomonas spins about its body axis while swimming, thus experiencing oscillating intensities of light. We use high-speed video microscopy to measure the flagellar dynamics of the photoresponse on immobilized cells and interpret the results with a mathematical model of adaptation similar to that used previously for Volvox. These results are incorporated into a model of phototactic steering to yield trajectories that are compared to those obtained by three-dimensional tracking. Implications of these results for the evolution of multicellularity in the Volvocales are discussed.

  6. An algae-covered alligator rests warily

    Science.gov (United States)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  7. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    Energy Technology Data Exchange (ETDEWEB)

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  8. Uptake of technetium by marine algae: autoradiographic localization

    Energy Technology Data Exchange (ETDEWEB)

    Bonotto, S.; Nuyts, G.; Robbrecht, V.; Cogneau, M.; Ben, D. van der

    1988-02-01

    The uptake of technetium (sup(95m)Tc) by marine algae was localized by autoradiography. In the brown (Ascophyllum nodosum, Fucus spiralis and F. vesiculosus) as well as in the red (Porphyra umbilicalis) species, the distribution of technetium was heterogeneous, this radioelement being mostly accumulated in the parts of the plant which bear reproductive cells or which contain young tissues. Since brown algae have high concentration factors, they could constitute an important link in the transfer of technetium through the food chain. On the contrary, the edible alga Porphyra umbilicalis shows a very low incorporation of technetium.

  9. Algae Technology for Reduction of Atmospheric CO2 Concentrations

    International Nuclear Information System (INIS)

    After a short overview about the climate situation with regard to CO2, the physiology of photosynthesis will be explained in nonprofessional's style using algae as an example. The photosynthesis products and their conversions into valuable materials for human nutrition or into base substances for diverse industries will be described. Furthermore, I will introduce the state of the art on current scientific projects aiming to improve algae productivity and for the synthesis of therapeutically medicinal proteins. A highly productive algae facility will be introduced including its integration in an energy concept.(author)

  10. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Recent work using radioactive nitrogen on the blue-green algae of paddy fields has been reviewed. These algae fix dinitrogen and photoassimilate carbon evolving oxygen, thereby augmenting nitrogen and carbon status of the soil and also providing oxygen to the water-logged rice paddies. Further studies using radioactive isotopes 13N, 24Na and 22Na on their nitrogen fixation, nitrogen assimilation pathways; regulation of nitrogenase, heterocysts production and sporulation and sodium transport and metabolism have been carried out and reported. The field application of blue green algae for N2 fixation was found to increase the status of soil nitrogen and yield of paddy. (M.G.B.)

  11. Shewanella alga bacteremia in two patients with lower leg ulcers

    DEFF Research Database (Denmark)

    Domínguez, H.; Vogel, Birte Fonnesbech; Gram, Lone;

    1996-01-01

    The first Danish cases of Shewanella alga bacteremia in two patients with chronic lower leg ulcers are reported. Both patients were admitted to the hospital during the same month of a very warm summer and had been exposed to the same marine environment, thereby suggesting the same source of infec......The first Danish cases of Shewanella alga bacteremia in two patients with chronic lower leg ulcers are reported. Both patients were admitted to the hospital during the same month of a very warm summer and had been exposed to the same marine environment, thereby suggesting the same source......'Etoile, France), but further genetic and physiological analyses identified them as Shewanella alga....

  12. Photobiological hydrogen production with switchable photosystem-II designer algae

    Science.gov (United States)

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  13. A survey of Marine Algae and Seagrasses of İstanbul, (Turkey)

    OpenAIRE

    Aysel, V.; Erduğan, H.; Dural, B.; Okudan, E.Ş.

    2008-01-01

    Abstract In this research, have been studied marine algae in the upper infralittoral zone of the Bosphorus coasts of İstanbul (including Bosphorus) . A total of 244 taxon have been determined. 11 of them belong to blue-green bacteria (Cyanophyta), 127 to red algae (Rhodophyta), 46 to brown algae (Heterokontophyta), 60 to green algae (Chlorophyta) and 2 to flowering plants (Tracheophyta).

  14. Effects of elevated CO2 on sensitivity of six species of algae and interspecific competition of three species of algae

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Effects of elevated CO2 (5000 μl/L) on sensitivity comparison of six species of algae and interspecific competition of three species of algae were investigated. The results showed that, the cell densities of six species of algae grown in elevated CO2significantly increased compared to those in ambient CO2 (360 μl/L), and with the time prolonged, the increasing extent increased.Therefore, elevated CO2 can promote the growth of six species of algae. However, there were differences in sensitivity between six species of algae. Based on the effects of elevated CO2 on biomass, the sensitive order (from high to low) was Platymanas sp.,Platymanas subcordiformis, Nitzschia closterium, Isochrysis galbana Parke 8701, Dunaliella salina, Chlorella sp., on the condition of solitary cultivation. Compared to ambient CO2, elevated CO2 promoted the growth of three species of algae, Platymanas subcordiformis, Nitzschia closterium and Isochrysis galbana Parke 8701 under the condition of mixed cultivation. The sensitivity of the three species to elevated CO2 in mixed cultivation changed a lot compared to the condition of solitary cultivation. When grown in elevated CO2 under the condition of mixed cultivation, the sensitive order from high to low were Nitzschia clostertium, Platymonas subcordiformis and Isochrysis galbana Parke 8701. However, under the condition of solitary cultivation, the sensitive order in elevated CO2 was Isochrysis galbana Parke 8701, Nitzschia clostertium, Platymonas subcordiformis, from sensitive to less sensitive. On the day 21, the dominant algae, the sub-dominant algae and inferior algae grown in elevated CO2 did not change. However, the population increasing dynamic and composition proportion of three algal species have significantly changed.

  15. Sterol composition of the Adriatic Sea algae Ulva lactuca, Codium dichotomum, Cystoseira adriatica and Fucus virsoides

    Directory of Open Access Journals (Sweden)

    RADOMIR KAPETANOVIC

    2005-12-01

    Full Text Available The sterol composition of two green algae and two brown algae from the South Adriatic was determined. In the green alga Ulva lactuca, the principal sterols were cholesterol and isofucosterol. In the brown alga Cystoseira adriatica, the main sterols were cholesterol and stigmast-5-en-3ß-ol, while the characteristic sterol of the brown algae, fucosterol, was found only in low concentration. The sterol fractions of the green alga Codium dichotomum and the brown alga Fucus virsoides contained practically only one sterol each, comprising more than 90 % of the total sterols (clerosterol in the former and fucosterol in the latter.

  16. AlgaeEconomics: bio-economic production models of micro-algae and downstream processing to produce bio energy carriers

    OpenAIRE

    Spruijt, J.; Schipperus, R.; Kootstra, A.M.J.; de Visser

    2015-01-01

    This report describes results of work carried out within the EnAlgae project to describe production costs and identify the variables that have most effect in determining future cost prices so that R&D can be focussed on these issues. This has been done by making use of pilots within the EnAlgae consortium and by describing the process in Excel models that have been spread among and discussed with stakeholders active in the field of commercial algae production. The expectation is that this...

  17. Application of synthetic biology in cyanobacteria and algae

    Directory of Open Access Journals (Sweden)

    Bo eWang

    2012-09-01

    Full Text Available Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In the article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed.

  18. Chemical examination of the Red alga Acanthophora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Kamat, S.Y.

    Analyses of petroleum ether and chloroform extracts of the marine alga Acanthophora spicifera exhibiting antifertility activity led to the isolation of sterols and fatty acids as well as the rare dipeptides aurantiamides. All the compounds were...

  19. Kalaärimeeste kohus algas venitamisega / Hindrek Riikoja

    Index Scriptorium Estoniae

    Riikoja, Hindrek

    2007-01-01

    Harju maakohtus algas kohtuprotsess veterinaar- ja toiduameti endise asejuhi Vladimir Razumovski väidetava altkäemaksuvõtmise üle, kus on süüdistavaid eraisikuid ja ettevõtjaid. Lisa: Kes on kohtu all?

  20. Glycolipids from the red alga Chondria armata (Kutz.) Okamura

    Digital Repository Service at National Institute of Oceanography (India)

    Al-Fadhli, A.; Wahidullah, S.; DeSouza, L.

    Three distinct fractions containing polar glycolipids (PF1–3) were isolated from the chloroform soluble fraction of crude methanolic extract of red alga Chondria armata (Kütz.) Okamura on gel chromatography over Sephadex LH20. Their structure...

  1. Colourful Cultures: Classroom Experiments with the Unicellular Alga Haematococcus pluvialis.

    Science.gov (United States)

    Delpech, Roger

    2001-01-01

    Describes an investigation into the photosynthetic potential of the different developmental stages of the green unicellular alga Haematococcus pluvialis. Reviews the biotechnological applications of astaxanthin, the red pigment which can be extracted from Haematococcus pluvialis. (Author/MM)

  2. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. PMID:27598569

  3. Bicarbonate produced from carbon capture for algae culture.

    Science.gov (United States)

    Chi, Zhanyou; O'Fallon, James V; Chen, Shulin

    2011-11-01

    Using captured CO(2) to grow microalgae is limited by the high cost of CO(2) capture and transportation, as well as significant CO(2) loss during algae culture. Moreover, algae grow poorly at night, but CO(2) cannot be temporarily stored until sunrise. To address these challenges, we discuss a process where CO(2) is captured as bicarbonate and used as feedstock for algae culture, and the carbonate regenerated by the culture process is used as an absorbent to capture more CO(2). This process would significantly reduce carbon capture costs because it does not require additional energy for carbonate regeneration. Furthermore, not only would transport of the aqueous bicarbonate solution cost less than for that of compressed CO(2), but using bicarbonate would also provide a superior alternative for CO(2) delivery to an algae culture system.

  4. Calculating the global contribution of coralline algae to carbon burial

    Directory of Open Access Journals (Sweden)

    L. H. van der Heijden

    2015-05-01

    Full Text Available The ongoing increase in anthropogenic carbon dioxide (CO2 emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term time scales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological time scales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Organic and inorganic production were estimated at 330 g C m−2 yr−1 and 880 g CaCO3 m−2 yr−1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr−1. Calcium carbonate production by free-living/crustose coralline algae (CCA corresponded to a sediment accretion of 70/450 mm kyr−1. Using this potential carbon storage by coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr−1 suggesting a total potential carbon sink of 1.6 × 109 t C yr−1. Coralline algae therefore have production rates similar to mangroves, saltmarshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store.

  5. Green algae Chlamydomonas reinhardtii possess endogenous sialylated N-glycans

    OpenAIRE

    Mamedov, Tarlan; Yusibov, Vidadi

    2011-01-01

    Green algae have a great potential as biofactories for the production of proteins. Chlamydomonas reinhardtii, a representative of eukaryotic microalgae, has been extensively used as a model organism to study light-induced gene expression, chloroplast biogenesis, photosynthesis, light perception, cell–cell recognition, and cell cycle control. However, little is known about the glycosylation machinery and N-linked glycan structures of green algae. In this study, we performed mass spectrometry a...

  6. MORPHOLOGICAL ANATOMICAL AND PHITOCHEMICAL CHARACTERISTICS OF SOME ALGAE

    OpenAIRE

    N. S. Kaysheva; M. N. Arkhipova; A. S. Kayshev

    2014-01-01

    Morphological and anatomical features of thalluses of brown (Laminaria saccharina, Fucus vesiculosus) and red (Ahnfeltia plicata) algae, procured at a coastal strip of the Northern basin in gulfs of Ura-Guba and Palkina-Guba at different depths. Compliance of Fucus and Ahnfeltia with pharmacopoeial norms and merchandising indices for Laminaria was established, except for high concentration of sand in Ahnfeltia thalluses. The identity of algae between each other was shown based on the results ...

  7. Homogeneity of Danish Environmental and Clinical Isolates of Shewanella algae

    OpenAIRE

    Vogel, Birte Fonnesbech; Holt, Hanne Marie; Gerner-Smidt, Peter; Bundvad, Anemone; Søgaard, Per; Gram, Lone

    2000-01-01

    Danish isolates of Shewanella algae constituted by whole-cell protein profiling a very homogeneous group, and no clear distinction was seen between strains from the marine environment and strains of clinical origin. Although variation between all strains was observed by ribotyping and random amplified polymorphic DNA analysis, no clonal relationship between infective strains was found. From several patients, clonally identical strains of S. algae were reisolated up to 8 months after the prima...

  8. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    OpenAIRE

    Fisher, Madeline M.; Wilcox, Lee W.; Linda E Graham

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phyl...

  9. Removal of nutrients by algae from municipal wastewater contaminated with heavy metals

    OpenAIRE

    Aryal, Bigyan

    2015-01-01

    Selected species of algae (green algae and blue green algae) were cultivated in municipal wastewater using PBR (photo-bioreactor) bottles. Uptake of nutrients by these algae species was measured on different dates. From the results of the experiments, it was observed that a combination of certain blue green algae species (cyanobacteria) was able to remove most of the nutrients from the wastewater. The presence of heavy metal ions in the wastewater also affected the nutrient-absorbing capacit...

  10. THE ALGAE OF LITTORAL SALT MARSHES OF THE MOLOCHNIY LIMAN LEFT BANK

    OpenAIRE

    Yaroviy S.O.; Solonenko A.M.; Yarovaya T.A.

    2011-01-01

    Data on algae floristic spectrum of coastal salt marshes of the left bank of Molochny liman were presented. Thealgae diversity was presented by four compartments: Cyanophyta, Chlorophyta, Bacillariophyta, and Xanthophyta. Theregistered algae belong to 15 orders, 20 families, and 27 genera. The Cyanophyta algae were the dominant in exploredsalt marshes, counted 56% from total discovered species. The schematic algae structure of left bank salt marshes ofMolochniy liman was performed, some algae...

  11. Macro-economics of algae products : Output WP2A7.02

    OpenAIRE

    Voort, van der, R.; Vulsteke, E.; de Visser

    2015-01-01

    This report is part of the EnAlgae Workpackage 2, Action 7, directed at the economics of algae production. The goal of this report is to highlight potential markets for algae. Per type of algae market the market size, product alternatives, constraints and prices are highlighted. Based on these market characteristics a conclusion is drawn on the market potential for algae products. Per market desk research is done and literature is consulted to create a reliable market outlook.

  12. An overview of algae biofuel production and potential environmental impact.

    Science.gov (United States)

    Menetrez, Marc Y

    2012-07-01

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential. PMID:22681590

  13. Development of Green Fuels From Algae - The University of Tulsa

    Energy Technology Data Exchange (ETDEWEB)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  14. Radionuclides and trace metals in eastern Mediterranean Sea algae

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M.S. E-mail: msmasri@aec.org.sy; Mamish, S.; Budier, Y

    2003-07-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that {sup 137}Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg{sup -1} dry weight) while the levels of naturally occurring radionuclides, such as {sup 210}Po and {sup 210}Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg{sup -1} dry weight) for {sup 210}Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate {sup 210}Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br.

  15. Study on Algae Removal by Immobilized Biosystem on Sponge

    Institute of Scientific and Technical Information of China (English)

    PEI Haiyan; HU Wenrong

    2006-01-01

    In this study, sponges were used to immobilize domesticated sludge microbes in a limited space, forming an immobilized biosystem capable of algae and microcystins removal. The removal effects on algae, microcystins and UV260 of this biosystem and the mechanism of algae removal were studied. The results showed that active sludge from sewage treatment plants was able to remove algae from a eutrophic lake's water after 7 d of domestication. The removal efficiency for algae,organic matter and microcystins increased when the domesticated sludge was immobilized on sponges. When the hydraulic retention time (HRT) was 5h, the removal rates of algae, microcystins and UV260 were 90%, 94.17% and 84%, respectively.The immobilized biosystem consisted mostly of bacteria, the Ciliata and Sarcodina protozoans and the Rotifer metazoans.Algal decomposition by zoogloea bacteria and preying by microcreatures were the two main modes of algal removal, which occurred in two steps: first, absorption by the zoogloea; second, decomposition by the zoogloea bacteria and the predacity of the microcreatures.

  16. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae.

    Science.gov (United States)

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-12-21

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  17. Micro-algae: French players discuss the matter

    International Nuclear Information System (INIS)

    About 75000 species of algae have been reported so far, the domains of application are huge and investment are increasing all around the world. One of the difficulties is to find the most appropriate algae to a specific application. Some development programs have failed scientifically or economically for instance the production of protein for animal food from the chlorella algae or the production of bio-fuel from C14-C18 chains, from zeaxanthine and from phycoerytrine. On the other side some research programs have led to promising industrial applications such as the production of food for fish and farm animals. Some research fields are completely innovative such as the use of micro-algae for the construction of bio-walls for buildings. Micro-algae are diverse and fragile. Photo-bioreactors have been designed to breed fragile algae like some types of chlorophycees used in bio-fuel and in cosmetics, a prototype has been tested for 15 months and its production is about 2 kg of dry matter a day. (A.C.)

  18. Microfluidic one-way streets for algae

    Science.gov (United States)

    Dunkel, Jorn; Kantsler, Vasily; Polin, Marco; Goldstein, Raymond E.

    2012-02-01

    Controlling locomotion and transport of microorganisms is a key challenge in the development of future biotechnological applications. Here, we demonstrate the use of optimized microfluidic ratchets to rectify the mean swimming direction in suspensions of the unicellular green alga Chlamydomonas reinhardtii, which is a promising candidate for the photosynthetic production of hydrogen. To assess the potential of microfluidic barriers for the manipulation of algal swimming, we studied first the scattering of individual C. reinhardtii from solid boundaries. High-speed imaging reveals the surprising result that these quasi-spherical ``puller''-type microswimmers primarily interact with surfaces via direct flagellar contact, whereas hydrodynamic effects play a subordinate role. A minimal theoretical model, based on run-and-turn motion and the experimentally measured surface-scattering law, predicts the existence of optimal wedge-shaped ratchets that maximize rectification of initially uniform suspensions. We confirm this prediction in experimental measurements with different geometries. Since the mechano-elastic properties of eukaryotic flagella are conserved across many genera, we expect that our results and methods are applicable to a broad class of biflagellate microorganisms.

  19. Is the Future Really in Algae?

    Science.gov (United States)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  20. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu

    2016-07-09

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians.

  1. Two-step evolution of endosymbiosis between hydra and algae.

    Science.gov (United States)

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. PMID:27404042

  2. [Comparison of histone-like proteins from blue-green algae with ribosomal basic proteins of alga and wheat germ histones].

    Science.gov (United States)

    Gofshteĭn, L V; Iurina, N P; Romashkin, V I; Oparin, A I

    1975-01-01

    Histone-like proteins was found in blue-green alga Anacystis nidulans, which has no nucleus. F2b2, F2a2, F2a1 fractions were found in histone-like algae proteins and no fraction F1. Content of basic amino acids (arginine being prevailing in algae protein) is quite identical in histone-like algae proteins and in wheat germs histones, while the content of acid amino acids is considerably higher in algae. The presence in procaryotic cells of basic proteins similar in a number of properties to histones of higher organisms suggests that these proteins are evolutionary precursors of eucaryotic histones. PMID:813782

  3. Application of algae-biosensor for environmental monitoring.

    Science.gov (United States)

    Umar, Lazuardi; Alexander, Frank A; Wiest, Joachim

    2015-08-01

    Environmental problems including water and air pollution, over fertilization, insufficient wastewater treatment and even ecological disaster are receiving greater attention in the technical and scientific area. In this paper, a method for water quality monitoring using living green algae (Chlorella Kessleri) with the help of the intelligent mobile lab (IMOLA) is presented. This measurement used two IMOLA systems for measurement and reference simultaneously to verify changes due to pollution inside the measurement system. The IMOLA includes light emitting diodes to stimulate photosynthesis of the living algae immobilized on a biochip containing a dissolved oxygen microsensor. A fluid system is used to transport algae culture medium in a stop and go mode; 600s ON, 300s OFF, while the oxygen concentration of the water probe is measured. When the pump stops, the increase in dissolved oxygen concentration due to photosynthesis is detected. In case of a pollutant being transported toward the algae, this can be detected by monitoring the photosynthetic activity. Monitoring pollution is shown by adding emulsion of 0,5mL of Indonesian crude palm oil and 10mL algae medium to the water probe in the biosensor. PMID:26737928

  4. Method to transform algae, materials therefor, and products produced thereby

    Science.gov (United States)

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  5. Boron uptake, localization, and speciation in marine brown algae.

    Science.gov (United States)

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus. PMID:26679972

  6. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    Science.gov (United States)

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. PMID:26657897

  7. THE FAMILY CALCIFOLIACEAE EMEND.,MISSISSIPPIAN-EARLY PENNSYLVANIAN ALGAE

    Directory of Open Access Journals (Sweden)

    DANIEL VACHARD

    2006-03-01

    Full Text Available The family Fasciellaceae was created as a group of red algae. It was emended as a tribe Fascielleae of incertae sedis algae, and related to the tribe Calcifolieae Shuysky emend. Vachard & Cózar. The tribes Fascielleae and Calcifolieae both constitute the family Calcifoliaceae emend. This family is actually a homogeneous group, and could be more or less closely related with some questionable Moravamminales and Aoujgaliales: Claracrustaceae, Labyrinthoconaceae and Donezellaceae. All these microfossils were successively considered as green algae, red algae, "phylloid" algae, or fibres of calcispongia. The genera included in Fascielleae are: Fasciella, Praedonezella, and ?Kulikaella. The genera Calcifolium, Falsocalcifolium and Frustulata are included in the Calcifolieae. The phylogeny of the Calcifoliaceae is reconstructed. Thus, the family appears to be ancestrally linked, in the early Mississippian and even earlier in the Devonian, to Kulikaella, Stacheoidella, Pseudostacheoides, Pokorninella and Precorninella. The Calcifoliaceae are important for the zonation of the Late Mississippian-earliest Pennsylvanian (early Bashkirian interval (Asbian to Siuransky in the carbonate platform facies from western Palaeotethys and Ural Oceans.

  8. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  9. Importance of algae as a potential source of biofuel.

    Science.gov (United States)

    Singh, A K; Singh, M P

    2014-12-24

    Algae have a great potential source of biofuels and also have unique importance to reduce gaseous emissions, greenhouse gases, climatic changes, global warming receding of glaciers, rising sea levels and loss of biodiversity. The microalgae, like Scenedesmus obliquus, Neochloris oleabundans, Nannochloropsis sp., Chlorella emersonii, and Dunaliella tertiolecta have high oil content. Among the known algae, Scenedesmus obliquus is one of the most potential sources for biodiesel as it has adequate fatty acid (linolenic acid) and other polyunsaturated fatty acids. Bio—ethanol is already in the market of United States of America and Europe as an additive in gasoline. Bio—hydrogen is the cleanest biofuel and extensive efforts are going on to bring it to market at economical price. This review highlights recent development and progress in the field of algae as a potential source of biofuel.

  10. A look at diacylglycerol acyltransferases (DGATs) in algae.

    Science.gov (United States)

    Chen, Jit Ern; Smith, Alison G

    2012-11-30

    Triacylglycerols (TAGs) from algae are considered to be a potentially viable source of biodiesel and thereby renewable energy, but at the moment very little is known about the biosynthetic pathway in these organisms. Here we compare what is currently known in eukaryotic algal species, in particular the characteristics of algal diacylglycerol acyltransferase (DGAT), the last enzyme of de novo TAG biosynthesis. Several studies in plants and mammals have shown that there are two DGAT isoforms, DGAT1 and DGAT2, which catalyse the same reaction but have no clear sequence similarities. Instead, they have differences in functionality and spatial and temporal expression patterns. Bioinformatic searches of sequenced algal genomes reveal that most algae have multiple copies of putative DGAT2s, whereas other eukaryotes have single genes. Investigating whether these putative isoforms are indeed functional and whether they confer significantly different phenotypes to algal cells will be vital for future efforts to genetically modify algae for biofuel production.

  11. Are anti-fouling effects in coralline algae species specific?

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2004-03-01

    Full Text Available The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected.As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em

  12. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    Institute of Scientific and Technical Information of China (English)

    HUANG Xinping; ZHU Xiaobin; DENG Liping; DENG Zhiwei; LIN Wenhan

    2006-01-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2).cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5).cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, 1D and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  13. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  14. Algae from the arid southwestern United States: an annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  15. An updated comprehensive techno-economic analysis of algae biodiesel.

    Science.gov (United States)

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality.

  16. Characteristics of Red Algae Bioplastics/Latex Blends under Tension

    Directory of Open Access Journals (Sweden)

    M. Nizar Machmud

    2013-10-01

    Full Text Available Cassava, corn, sago and the other food crops have been commonly used as raw materials to produce green plastics. However, plastics produced from such crops cannot be tailored to fit a particular requirement due to their poor water resistance and mechanical properties. Nowadays, researchers are hence looking to get alternative raw materials from the other sustainable resources to produce plastics. Their recent published studies have reported that marine red algae, that has been already widely used as a raw material for producing biofuels, is one of the potential algae crops that can be turned into plastics. In this work, Eucheuma Cottonii, that is one of the red alga crops, was used as raw material to produce plastics by using a filtration technique. Selected latex of Artocarpus altilis and Calostropis gigantea was separately then blended with bioplastics derived from the red algae, to replace use of glycerol as plasticizer. Role of the glycerol and the selected latex on physical and mechanical properties of the red algae bioplastics obtained under a tensile test performed at room temperature are discussed. Tensile strength of some starch-based plastics collected from some recent references is also presented in this paperDoi: 10.12777/ijse.5.2.81-88 [How to cite this article: Machmud, M.N., Fahmi, R.,  Abdullah, R., and Kokarkin, C.  (2013. Characteristics of Red Algae Bioplastics/Latex Blends under Tension. International Journal of Science and Engineering, 5(2,81-88. Doi: 10.12777/ijse.5.2.81-88

  17. Algas (Phaeophyta) presentes en productos comerciales utilizados para adelgazar

    OpenAIRE

    Arenas, Patricia Marta; Correa, Rubén Florestan; Cortella, Alicia Rita

    1997-01-01

    Numerosos registros bibliográficos se refieren a la utilización de algas en tratamientos para combatir la obesidad. En particular, están muy difundidos los productos comerciales que contienen algas pardas (Phaeophyta), principalmente del género Fucus. En el presente trabajo se analizaron los contenidos de muestras comerciales de diverso origen, en sus distintas formas farmacéuticas. Se identificaron principalmente dos géneros de Phaeophyta: Fucus y Ascophyllum. Se encontraron además elementos...

  18. Homogeneity of Danish environmental and clinical isolates of Shewanella algae

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Holt, H.M.; Gerner-Smidt, P.;

    2000-01-01

    Danish isolates of Shewanella algae constituted by whole-cell protein profiling a very homogeneous group, and no clear distinction was seen between strains from the marine environment and strains of clinical origin. Although variation between all strains was observed by ribotyping and random...... amplified polymorphic DNA analysis, no clonal relationship between infective strains was found. From several patients, clonally identical strains of S. algae were reisolated up to 8 months after the primary isolation, indicating that the same strain may be able to maintain the infection....

  19. A Novel Aeration Method for the Preparation of Algae (Dunaliella Salina Biomass for Biofuel Production.

    Directory of Open Access Journals (Sweden)

    U.O. Enwereuzoh

    2014-09-01

    Full Text Available Preparation of algae (Dunaliela Salina biomass in ammonia (NH4 + and nitrate (NO3 - growth media for biofuel production was investigated, with special attention on the elimination of inhibitory oxygen that adversely affects algae growth. A novel aeration method based on high and efficient transfer of carbon dioxide (CO2 required to stabilize the CO2 of the algae growth medium in a short time was adopted for the elimination of the inhibitory oxygen. The novel aeration method was found to increase the algae growth rate in the growth media investigated as suggested by increases in pH and decreases in dissolved oxygen concentration. However, algae grown in ammonia medium showed 17% higher growth rate than algae grown in nitrate medium. The high mass transfer of CO2 and high energy efficiency make the novel aeration method of algae growth in ammonia medium better suited for high yield of algae biomass for biofuel production.

  20. Distribution and biomass estimation of shell-boring algae in the intertidal area at Goa India

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Sharma, S.; Lande, V.

    and particulate organic carbon (POC) values in cultures of the green alga Gomontia sp. and the blue-green alga Plectonema terebrans, in biomass and POC contribution of these two types of microalgae in shells were calculated....

  1. Value of crops: Quantity, quality and cost price. [algae as a nutritional supplement

    Science.gov (United States)

    Meyer, C.

    1979-01-01

    Possibilities of using algae as a nutritional supplement are examined. The nutritional value and protein content of spirulines of blue algae are discussed. A cost analysis of growing them artificially is presented.

  2. Algae of economic importance that accumulate cadmium and lead: a review

    OpenAIRE

    Priscila O. Souza; Lizângela R. Ferreira; Natanael R. X. Pires; Pedro J. S. Filho; Fabio A. Duarte; Claudio M. P. Pereira; Márcia F. Mesko

    2012-01-01

    Currently, algae and algae products are extensively applied in the pharmaceutical, cosmetic and food industries. Algae are the main organisms that take up and store heavy metals. Therefore, the use of compounds derived from algae by the pharmaceutical industry should be closely monitored for possible contamination. The pollution generated by heavy metals released by industrial and domestic sources causes serious changes in the aquatic ecosystem, resulting in a loss of biological diversity and...

  3. Epilithic algae from caves of the Krakowsko-Częstochowska Upland (Southern Poland)

    OpenAIRE

    Joanna Czerwik-Marcinkowska; Teresa Mrozińska

    2011-01-01

    This paper describes the first study of algae assemblages in 20 caves in the Krakowsko-Częstochowska Upland (Southern Poland), in the period between 2005-2006. The investigations showed mostly on epilithic algae and their subaeric habitats (rock faces within caves and walls at cave entrances). The morphological and cytological variability of algae were studied in fresh samples, in cultures grown on agar plates and in SPURR preparations. A total of 43 algae species was identified, mostly epili...

  4. Research of Influence of Aniline on the Growth of Ocean Algae

    Institute of Scientific and Technical Information of China (English)

    QIU Haiyuan; WANG Xian

    2005-01-01

    This article discusses the interaction of aniline and ocean algae based on the standard appraisal method of chemical medicine for algae toxicity. It is showed by experimental results that aniline has pretty toxic effects on algae. Suspended substances in water can offset some effects of aniline. It also discusses the dynamic constant of first order degradation reaction rate of algae on aniline from the point of view of chemical dynamics.

  5. Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration

    OpenAIRE

    Karsten, Ulf; Holzinger, Andreas

    2014-01-01

    Green algae are major components of biological soil crusts in alpine habitats. Together with cyanobacteria, fungi and lichens, green algae form a pioneer community important for the organisms that will succeed them. In their high altitudinal habitat these algae are exposed to harsh and strongly fluctuating environmental conditions, mainly intense irradiation, including ultraviolet radiation, and lack of water leading to desiccation. Therefore, green algae surviving in these environments must ...

  6. Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella, and Dunaliella

    OpenAIRE

    Tang, G.; Suter, P M

    2011-01-01

    Spirulina, chlorella, and dunalliella are unicellular algae that are commercially produced worldwide. These algae are concentrated sources of carotenoids (especially provitamin A carotenoids) and other nutrients, such as vitamin B12. Their health benefits as a complementary dietary source for macro and micro nutrients have been studied and confirmed in various populations. The safety of human consuming these algae and products derived from these algae by humans has been widely studied. It is ...

  7. Viruses of symbiotic Chlorella-like algae isolated from Paramecium bursaria and Hydra viridis

    OpenAIRE

    James L Van Etten; Meints, Russel H.; Kuczmarski, Daniel; Burbank, Dwight E.; Lee, Kit

    1982-01-01

    We previously reported that isolation of symbiotic Chlorella-like algae from the Florida strain of Hydra viridis induced replication of a virus (designated HVCV-1) in the algae. We now report that isolation of symbiotic Chlorella-like algae from four other sources of green hydra and one source of the protozoan Paramecium bursaria also induced virus synthesis. Algae from one of these hydra contained a virus identical to HVCV-1 (based on its rate of sedimentation, buoyant density, reaction to H...

  8. A review of the taxonomical and ecological studies on Netherlands’ Algae

    NARCIS (Netherlands)

    Koster, Joséphine Th.

    1939-01-01

    The earliest account of the Netherlands’ Algae appeared in 1781 in D. de Gorter, Flora VII Prov. Belgii foederati indigen. Here, however, in the Algae lichens and liverworts have been incorporated. The true Algae, of which 35 are enumerated, are principally marine, though also aërophytical and fresh

  9. New methodologies for the integration of power plants with algae ponds

    NARCIS (Netherlands)

    Schipper, K.; Gijp, S. van der; Stel, R.W van der; Goetheer, E.L.V.

    2013-01-01

    It is generally recognized that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient fee

  10. Relationship between carbohydrate movement and the symbiosis in lichens with green algae.

    Science.gov (United States)

    Hill, D J; Ahmadjian, V

    1972-09-01

    When isolated in pure culture, four genera of lichen algae were able to produce the polyol which is known to move from the alga to the fungus in lichens with these algae. This conclusion corrects earlier suggestions that the mobile polyol is only formed by the alga in the lichen thallus. Stichococcus produced sorbitol and it is therefore suggested that, in lichens with this alga, sorbitol moves between the symbionts. Hyalococcus and Stichococcus had a similar pattern of incorporation of H(14)CO 3 (-) in the light, suggesting a close relationship between these algae which are only separated now on morphological grounds.The pattern of incorporation of H(14)CO 3 (-) in the light into Cladonia cristatella and its alga (Trebouxia erici) in culture indicates that in the cultured algae more (14)C was incorporated into ethanol insoluble substances and lipids and less into ribitol than in the lichen. The pattern in a joint culture of the alga and the fungus of C. cristatella was approximately intermediate between that of the lichen and the alga. However, only a small amount of (14)C fixed by the alga reached the fungus in the joint culture, and it is therefore suggested that the presence of the fungus without morphological differentiation into a lichen thallus is not sufficient to promote the alga to release carbohydrate. PMID:24481561

  11. A simple classification of the volvocine algae by formal languages.

    Science.gov (United States)

    Yoshida, Hiroshi; Yokomori, Takashi; Suyama, Akira

    2005-11-01

    There are several explanations of why certain primitive multicellular organisms aggregate in particular forms and why their constituent cells cooperate with one another to a particular degree. Utilizing the framework of formal language theory, we have derived one possible simple classification of the volvocine algae-one of the primitive multicells-for some forms of aggregation and some degrees of cooperation among cells. The volvocine algae range from the unicellular Chlamydomonas to the multicellular Volvox globator, which has thousands of cells. The classification we use in this paper is based on the complexity of Parikh sets of families on Chomsky hierarchy in formal language theory. We show that an alga with almost no space closed to the environment, e.g., Gonium pectorale, can be characterized by PsFIN, one with a closed space and no cooperation, e.g., Eudorina elegans, by PsCF, and one with a closed space and cooperation, e.g., Volvox globator, by PslambdauSC. This classification should provide new insights into the necessity for specific forms and degrees of cooperation in the volvocine algae. PMID:16005503

  12. A REVIEW OF HEAVY METAL ADSORPTION BY MARINE ALGAE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

  13. Lipid constituents of the red alga Acantophora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Govenkar, M.B.

    A new steroid cholest-4-ene-3 alpha, 6 beta-diol together with the known cholest-4-ene-3-one, lauric acid and O-phathalic acid bis-(2-ethyl nonly)-ester were isolated from the red alga Acantophora spicifera. The structures of these compounds were...

  14. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  15. [Phycobiliproteins of blue-green, red and cryptophytic algae].

    Science.gov (United States)

    Stadnichuk, I N; Gusev, M V

    1979-04-01

    The present-day concepts on phycobiliproteins, the protein pigments of blue-green, red and cryptophyte algae are reviewed. The functions, distribution, localization, physico-chemical, spectral and immunochemical properties of phycobiliproteins are described. The properties of the polypeptide protein subunits and the composition and chemical structure of chromophores as well as their binding to the apoprotein molecules are discussed.

  16. Algas vene kirjanduse nädal / Raimu Hanson

    Index Scriptorium Estoniae

    Hanson, Raimu, 1957-

    2008-01-01

    22. septembril algas Tartu Linnaraamatukogus vene kirjanduse nädal Inga Ivanova raamatu "Kadunud koerte saladus" esitlusega; 24. sept. toimub Igor Kotjuhi autoriõhtu; 26.-28. toimub Tartu Ülikoolis vene kirjandusele pühendatud rahvusvaheline teaduskonverents. Raamatukogust saab osta ka venekeelseid raamatuid

  17. Oxidative stress and antioxidant indices of marine alga Porphyra vietnamensis

    Digital Repository Service at National Institute of Oceanography (India)

    Pise, N.M.; Gaikwad, D.K.; Jagtap, T.G.

    Oxidative stress and antioxidant defence systems were assessed in a marine red alga Porphyra vietnamensis Tanaka et Pham-Hoang Ho, from India. Lipid peroxidation (LPX) and hydrogen peroxide (H2O2) were measured as oxidative...

  18. Alga-lysing bioreactor and the dominant bacteria strain

    Institute of Scientific and Technical Information of China (English)

    PEI Hai-yan; HU Wen-rong; MU Rui-min; LI Xiao-cai

    2007-01-01

    Alga-lysing bacteria have been paid much attention to in recent years. In this study, the alga-lysing strain P05 which was isolated from an immobilizing biosystem was immobilized by coke and elastic filler, forming two biological reactors. The removal efficiencies of algae, NH3-N and organic matter using the two reactors were studied. The results showed that strain P05 was an ideal algal-lysing bacteria strain because it was easy to be immobilized by coke and elastic filler which are of cheap, low biodegradability and the simple immobilization procedure. After 7 d filming, the biological film could be formed and the reactors were used to treat the eutrophic water. These two reactors were of stability and high effect with low cost and easy operation. The optimal hydraulic retention time (HRT) of each reactor was 4 h. The algae removal rates were 80.38% and 82.1% (in term of Chl-a) of coke reactor and filler reactor, respectively. And that of NH3-N were 52.3% and 52.7%. The removal rates of CODMn were 39.03% and 39.64%. The strain P05 was identified as Bacillus sp. by PCR amplification of the 16S rRNA gene, BLAST analysis, and comparison with sequences in the GenBank nucleotide database.

  19. Photo-producing Hydrogen with Marine Green Algae

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Hydrogen is often hailed as a potential source of unlimited clean power.It can be produced with green algae from water and solar energy through a process called "photobiological hydrogen production."Although its efficiency is rather low at present, scientists believe,an increase to 10% would make this process economically feasible.

  20. A Novel Lanostanoid Lactone From the Alga Hypnea cerricornis

    Institute of Scientific and Technical Information of China (English)

    XU, Xiao-Hua; CHEN, Xiao; LU, Jian-Hua; YAO, Guang-Min; LI, Yah-Ming; ZE NG, Long-Mei

    2001-01-01

    A novel lanntanoid lactone (1) was first isolated fron the Alga Hypnen cerriconis collected from the Xisha Islands in theSouth China Sea. The structure of 1 was determined on spectral evidence as 5a-tansta-8-en-3β,22ζ-dihydroxy-22 (R), 24(S)-lactone.

  1. Fuzzy Pattern Recognition System for Detection of Alga Distribution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To realize the on-line measurement and make analysis on the density of algae and their cluster distribution, the fluorescent detection and fuzzy pattern recognition techniques are used. The principle of fluorescent fiber-optic detection is given as well as the method of fuzzy feature extraction using a class of neural network.

  2. The Occurrence of Hormesis in Plants and Algae

    DEFF Research Database (Denmark)

    Cedergreen, Nina; Streibig, Jens C; Kudsk, Per;

    2007-01-01

    This paper evaluated the frequency, magnitude and dose/concentration range of hormesis in four species: The aquatic plant Lemna minor, the micro-alga Pseudokirchneriella subcapitata and the two terrestrial plants Tripleurospermum inodorum and Stellaria media exposed to nine herbicides and one...

  3. Switchable photosystem-II designer algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  4. New bromotriterpene polyethers from the Indian alga Chondria armata

    Digital Repository Service at National Institute of Oceanography (India)

    Ciavatta, M.L.; Wahidullah, S.; DeSouza, L.; Scognamiglio, G.; Cimino, G.

    Six new bromotriterpene polyethers, armatol A-F (1-6), with a rearranged carbon skeleton, were isolated from the Indian Ocean red alga Chondria armata. The structures were characterized by spectroscopic techniques, in particular 1D- and 2D-NMR...

  5. Experimental analysis of the competition between algae and duckweed

    NARCIS (Netherlands)

    Roijackers, R.M.M.; Szabo, S.; Scheffer, M.

    2004-01-01

    We performed indoor competition experiments between algae and Lemna gibba L. in order to unravel mechanisms of competition. To separate effects of shading and physical interference from nutrient competition we grew the two groups physically separated while sharing the same water. A multifactorial de

  6. Expression and assembly of a fully active antibody in algae

    Science.gov (United States)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  7. Selenocystamine improves protein accumulation in chloroplasts of eukaryotic green algae

    OpenAIRE

    Ferreira-Camargo, Livia S; Tran, Miller; Beld, Joris; Burkart, Michael D.; Mayfield, Stephen P

    2015-01-01

    Eukaryotic green algae have become an increasingly popular platform for recombinant proteins production. In particular, Chlamydomonas reinhardtii, has garnered increased attention for having the necessary biochemical machinery to produce vaccines, human antibodies and next generation cancer targeting immunotoxins. While it has been shown that chloroplasts contain chaperones, peptidyl prolylisomerases and protein disulfide isomerases that facilitate these complex proteins folding and assembly,...

  8. Proteomics analysis of heterogeneous flagella in brown algae (stramenopiles).

    OpenAIRE

    Fu, Gang; Nagasato, Chikako; Oka, Seiko; Cock, J. Mark; Motomura, Taizo

    2014-01-01

    International audience Flagella are conserved organelles among eukaryotes and they are composed of many proteins, which are necessary for flagellar assembly, maintenance and function. Stramenopiles, which include brown algae, diatoms and oomycetes, possess two laterally inserted flagella. The anterior flagellum (AF) extends forward and bears tripartite mastigonemes, whilst the smooth posterior flagellum (PF) often has a paraflagellar body structure. These heterogeneous flagella have served...

  9. Emulsion properties of algae soluble protein isolate from Tetraselmis sp.

    NARCIS (Netherlands)

    Schwenzfeier, A.; Helbig, A.; Wierenga, P.A.; Gruppen, H.

    2013-01-01

    To study possible applications of microalgae proteins in foods, a colourless, protein-rich fraction was isolated from Tetraselmis sp. In the present study the emulsion properties of this algae soluble protein isolate (ASPI) were investigated. Droplet size and droplet aggregation of ASPI stabilized o

  10. Ecological assessments with algae: a review and synthesis.

    Science.gov (United States)

    Stevenson, Jan

    2014-06-01

    Algae have been used for a century in environmental assessments of water bodies and are now used in countries around the world. This review synthesizes recent advances in the field around a framework for environmental assessment and management that can guide design of assessments, applications of phycology in assessments, and refinements of those applications to better support management decisions. Algae are critical parts of aquatic ecosystems that power food webs and biogeochemical cycling. Algae are also major sources of problems that threaten many ecosystems goods and services when abundances of nuisance and toxic taxa are high. Thus, algae can be used to indicate ecosystem goods and services, which complements how algal indicators are also used to assess levels of contaminants and habitat alterations (stressors). Understanding environmental managers' use of algal ecology, taxonomy, and physiology can guide our research and improve its application. Environmental assessments involve characterizing ecological condition and diagnosing causes and threats to ecosystems goods and services. Recent advances in characterizing condition include site-specific models that account for natural variability among habitats to better estimate effects of humans. Relationships between algal assemblages and stressors caused by humans help diagnose stressors and establish targets for protection and restoration. Many algal responses to stressors have thresholds that are particularly important for developing stakeholder consensus for stressor management targets. Future research on the regional-scale resilience of algal assemblages, the ecosystem goods and services they provide, and methods for monitoring and forecasting change will improve water resource management.

  11. Survey of Hydrogenase Activity in Algae: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Brand, J. J.

    1982-04-01

    The capacity for hydrogen gas production was examined in nearly 100 strains of Eukaryotic algae. Each strain was assessed for rate of H2 production in darkness, at compensating light intensity and at saturating Tight intensity. Maximum H2 yield on illumination and sensitivity to molecular oxygen were also measured.

  12. Biosynthesis of Triacylglycerols (TAGs in plants and algae

    Directory of Open Access Journals (Sweden)

    Alexandro Cagliari

    2011-12-01

    Full Text Available Triacylglycerols (TAGs, which consist of three fatty acids bound to a glycerol backbone, are major storage lipids that accumulate in developing seeds, flower petals, pollen grains, and fruits of innumerous plant species. These storage lipids are of great nutritional and nutraceutical value and, thus, are a common source of edible oils for human consumption and industrial purposes. Two metabolic pathways for the production of TAGs have been clarified: an acyl¬ CoA-dependent pathway and an acyl-CoA-independent pathway. Lipid metabolism, specially the pathways to fatty acids and TAG biosynthesis, is relatively well understood in plants, but poorly known in algae. It is generally accepted that the basic pathways of fatty acid and TAG biosynthesis in algae are analogous to those of higher plants. However, unlike higher plants where individual classes of lipids may be synthesized and localized in a specific cell, tissue or organ, the complete pathway, from carbon dioxide fixation to TAG synthesis and sequestration, takes place within a single algal cell. Another distinguishing feature of some algae is the large amounts of very long-chain polyunsaturated fatty acids (VLC- PUFAs as major fatty acid components. Nowadays, the focus of attention in biotechnology is the isolation of novel fatty acid metabolizing genes, especially elongases and desaturases that are responsible for PUFAs synthesis, from different species of algae, and its transfer to plants. The aim is to boost the seed oil content and to generate desirable fatty acids in oilseed crops through genetic engineering approaches. This paper presents the current knowledge of the neutral storage lipids in plants and algae from fatty acid biosynthesis to TAG accumulation.

  13. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    Science.gov (United States)

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand. PMID:17721788

  14. MORPHOLOGICAL ANATOMICAL AND PHITOCHEMICAL CHARACTERISTICS OF SOME ALGAE

    Directory of Open Access Journals (Sweden)

    N. S. Kaysheva

    2014-01-01

    Full Text Available Morphological and anatomical features of thalluses of brown (Laminaria saccharina, Fucus vesiculosus and red (Ahnfeltia plicata algae, procured at a coastal strip of the Northern basin in gulfs of Ura-Guba and Palkina-Guba at different depths. Compliance of Fucus and Ahnfeltia with pharmacopoeial norms and merchandising indices for Laminaria was established, except for high concentration of sand in Ahnfeltia thalluses. The identity of algae between each other was shown based on the results of qualitative analysis on polysaccharides, alginic acids, reducing sugars, iodine, mannitol, amino acids presence. Quantitative content of polysaccharides, alginic acids, reducing sugars, pentosans, iodine, cellulose, mannitol, proteins, lipids, agar was determined. In comparison with Fucus and Ahnfeltia higher concentration of the following content was noted in Laminaria: alginic acids (1.4 and 5.75 times higher, polysaccharides (1.3 and 1.4 times, iodine (4.5 and 1.8 times, mannatol (1.5 and 2.5 times (data received is statistically reliable. Impropriety of storm algae for processing was shown as law quality raw material. The highest concentration of active substances was revealed in Laminaria thalluses which were procured at the depth of 10 m in a period from September to October. Active accumulation of sodium, potassium, calcium, iron, magnesium, manganese corresponding to similar sea water composition was established in algae. Mathematical equations of regression between protein and manganese, protein and iron content in algae were deduced. Under proper conditions of drying and storage high quality of the materials can be preserved during 3 years. Based on the findings of photochemical researches, taking into account squares of plantations and possible exploitation stocks, the possibility and prospectivity of industrial processing of Fucus vesiculosus and Ahnfeltia plicata together with Laminaria saccharina as plant sources of polysaccharides (mainly

  15. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    OpenAIRE

    Senthil Arun Kumar; Marie Magnusson; Leigh C. Ward; Paul, Nicholas A.; Lindsay Brown

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharide...

  16. The effects of ProAlgaZyme novel algae infusion on metabolic syndrome and markers of cardiovascular health

    Directory of Open Access Journals (Sweden)

    Hildreth DeWall J

    2007-09-01

    Full Text Available Abstract Background Metabolic Syndrome, or Syndrome X, is characterized by a set of metabolic and lipid imbalances that greatly increases the risk of developing diabetes and cardiovascular disease. The syndrome is highly prevalent in the United States and worldwide, and treatments are in high demand. ProAlgaZyme, a novel and proprietary freshwater algae infusion in purified water, has been the subject of several animal studies and has demonstrated low toxicity even with chronic administration at elevated doses. The infusion has been used historically for the treatment of several inflammatory and immune disorders in humans and is considered well-tolerated. Here, the infusion is evaluated for its effects on the cardiovascular risk factors present in metabolic syndrome in a randomized double-blind placebo-controlled study involving 60 overweight and obese persons, ages 25–60. All participants received four daily oral doses (1 fl oz of ProAlgaZyme (N = 22 or water placebo (N = 30 for a total of 10 weeks, and were encouraged to maintain their normal levels of physical activity. Blood sampling and anthropometric measurements were taken at the beginning of the study period and after 4, 8 and 10 weeks of treatment. Eight participants did not complete the study. Results ProAlgaZyme brought about statistically significant (p Conclusion ProAlgaZyme (4 fl oz daily consumption resulted in significant reductions in weight and blood glucose levels, while significantly improving serum lipid profiles and reducing markers of inflammation, thus improving cardiovascular risk factors in overweight and obese subjects over a course of 10 weeks with an absence of adverse side effects. Trial Registration US ClinicalTrials.gov NCT00489333

  17. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Deng Lin [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang Hongli [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China)]. E-mail: nsdengwhu@163.com

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps ({lambda}=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL{sup -1} and initial algae concentration ranged from ABS{sub algae} (the absorbency of algae)=0.025 to ABS{sub algae}=0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V{sub 0}=kC{sub 0}{sup 0.1718}A{sub algae}{sup 0.5235} (C{sub 0} was initial concentration of Cr(VI); A{sub algae} was initial concentration of algae) under the condition of pH 4.

  18. Sodium, potassium-atpases in algae and oomycetes.

    Science.gov (United States)

    Barrero-Gil, Javier; Garciadeblás, Blanca; Benito, Begoña

    2005-08-01

    We have investigated the presence of K(+)-transporting ATPases that belong to the phylogenetic group of animal Na(+),K(+)-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H(+)- and Na(+),K(+)-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells.

  19. Biosorption of lead and nickel by biomass of marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Holan, Z.R.; Volesky, B. (McGill Univ., Montreal, Quebec (Canada). Dept. of Chemical Engineering)

    1994-05-01

    Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales performed particularly well in this descending sequence: Fucus > Ascophyllum > Sargassum. Although decreasing the swelling of wetted biomass particles, their reinforcement by crosslinking may significantly affect the biosorption performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked Fucus vesiculosus and Ascophyllum nodosum. At low equilibrium residual concentrations of lead in solution, however, ion exchange resin Amberlite IR-120 had a higher lead uptake than the biosorbent materials. An order-of-magnitude lower uptake of nickel was observed in all of the sorbent materials examined.

  20. Neutron activation analysis of stable elements in marine algae

    International Nuclear Information System (INIS)

    The nuclear industry has grown during the last decades and continuing growth is predicted. Although considerable efforts are being made to minimize the release of the increasing amounts of radioactive wastes into marine environment, it is evident that the potential for radioactive contamination will continue to grow. The purposes of marine environment monitoring around nuclear facilities are to verify that they are functioning as it was designed and to detect the unplanned releases of radioactive contaminants. To provide a sufficient assessment with biological indicators of 60Co and 137Cs, most significant radionuclides in waste effluents released with nuclear power station, the concentration of stable elements in the Sargassum and other algae were surveyed with thermal neutron activation method. The results were followed: 1) The concentration of Mn, As, Zn, and Co were seem to be higher in the sargassum than in other algae. 2) The concentration of Co and Cs were higher in S. thunbergit than in other Sargassum. (author)

  1. Bioremoval of toxic elements with aquatic plants and algae

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.C.; Ramesh, G. [Harbor Branch Oceanographic Inst., Fort Pierce, FL (United States); Weissman, J.C.; Varadarajan, R. [Microbial Products, Inc., Vero Beach, FL (United States); Benemann, J.R.

    1995-12-31

    Aquatic plants were screened to evaluate their ability to adsorb dissolved metals. The plants screened included those that are naturally immobilized (attached algae and rooted plants) and those that could be easily separated from suspension (filamentous microalgae, macroalgae, and floating plants). Two plants were observed to have high adsorption capabilities for cadmium (Cd) and zinc (Zn) removal: one blue green filamentous alga of the genus Phormidium and one aquatic rooted plant, water milfoil (Myriophyllum spicatum). These plants could also reduce the residual metal concentration to 0.1 mg/L or less. Both plants also exhibited high specific adsorption for other metals (Pb, Ni, and Cu) both individually and in combination. Metal concentrations were analyzed with an atomic absorption spectrophotometer (AAS).

  2. Concentrations of technetium-99 in marine algae and seawater

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Shigeki (National Inst. of Radiological Sciences, Div. of Marine Radioecology, Ibaraki (Japan)); Matsuba, Mitsue (National Inst. of Radiological Sciences, Div. of Marine Radioecology, Ibaraki (Japan))

    1993-01-01

    A method for the determination of low level technetium-99 in seawater and marine algae was developed by radioisotope tracer experiment using technetium-95m. It was found that 50 ml of the anion exchange resin were enough to adsorb [sup 95m]TcO[sup -][sub 4] quantitatively from 100 litres of seawater. Using this technique technetium-99 was determined in 1,000 litres of seawater collected on the Isozaki Coast, Nakaminato City, Ibaraki Prefecture, Japan. The seawater concentrations of technetium-99 varied up to 225 mBq/m[sup 3] during the period from Nov. 1987 to June 1990. Concentrations of technetium-99 in marine algae were also determined. Relatively high concentrations of the nuclide were observed in several species of Sargassum sp. (orig.)

  3. Marine Polysaccharides from Algae with Potential Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-05-01

    Full Text Available There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  4. Biosorption of lead and nickel by biomass of marine algae.

    Science.gov (United States)

    Holan, Z R; Volesky, B

    1994-05-01

    Screening tests of different marine algae biomas types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales perfomed particularly well in this descending sequence: Fucus > Ascophyllum > Sargassum. Although decreasing the swelling of wetted biomass particles, their reinforcement by crosslinking may significantly affect the biosorption performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked Fucus vesiculosus and Ascophyllum nodosum. At low equilibrium residual concentrations of lead in solution, however, ion exchange resin Amberlite IR-120 had a higher lead uptake than the biosorbent materials. An order-of-magnitude lower uptake of nickel was observed in all of the sorbent materials examined. (c) 1994 John Wiley & Sons, Inc. PMID:18615510

  5. Accumulation and loss of technetium by macrophytic algae

    International Nuclear Information System (INIS)

    Preliminary results are presented of a study of the accumulation of Tc by four species of brown algae (Sargassum vulgare, Cystoseira complexa, Dictyopteris membranacea, Dictyota dichotama implexa) and one species of green algae (Chlorophyta, Ulva rigida). With the exception of Cystoseira complexa, the accumulation was very rapid, and concentration factors decreased from Sargassum vulgare to Ulva rigida. Young stipes of Cystoseira complexa concentrated twice as much more Tc than cylindrical main axes. Attempts were made to understand the mechanism of Tc accumulation by brown seaweed. Fucoidan, a pool of high molecular weight polysaccharides extracted from Fucus sp. was put with sup(95m)Tc in seawater for 48 h and then dialysed, but no activity was retained by Fucoidan. (UK)

  6. The Effects of Nutrient Enrichment and Herbivore Abundance on the Ability of Turf Algae to Overgrow Coral in the Caribbean

    OpenAIRE

    Vermeij, Mark J. A.; Imke van Moorselaar; Sarah Engelhard; Christine Hörnlein; Vonk, Sophie M.; Visser, Petra M

    2010-01-01

    Turf algae are multispecies communities of small marine macrophytes that are becoming a dominant component of coral reef communities around the world. To assess the impact of turf algae on corals, we investigated the effects of increased nutrients (eutrophication) on the interaction between the Caribbean coral Montastraea annularis and turf algae at their growth boundary. We also assessed whether herbivores are capable of reducing the abundance of turf algae at coral-algae boundaries. We foun...

  7. Techno-Economic Assessment of Micro-Algae Production Systems

    OpenAIRE

    Hoffman, Justin

    2016-01-01

    Global oil consumption is rising at an unprecedented rate renewing interest in alternative fuels. Micro-algae represents a promising feedstock due to inherent advantages such as high solar energy efficiencies, large lipid fractions, and utilization of various waste streams including industrial flue gas. Current technological challenges have limited the commercial viability of microalgae based biofuel production systems. This study directly evaluates and compares the economic viability of biom...

  8. Bioactivities from Marine Algae of the Genus Gracilaria

    OpenAIRE

    José M. Barbosa-Filho; Maria de Fátima V. de Souza; Luis C. Rodrigues; Athayde-Filho, Petrônio F.; Lira, Narlize S.; Camila De A. Montenegro; Lima, Gedson R. de M.; Batista, Leônia M.; Falcão, Heloina de S.; de Almeida, Cynthia Layse F.

    2011-01-01

    Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS), inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested fo...

  9. The life with harmful algae in Norway - management

    OpenAIRE

    Dahl, Einar; Tangen, Karl

    1999-01-01

    Harmful phytoplankton is a part of the natural, marine flora. The need for management and mitigation of their occurrence and effects has raised with the increased use and utilization of the coastal waters. Besides fisheries, fish farming and harvesting/cultivation of bivalves are activities in Norway, which have experienced problems, including economic losses, due to harmful algae. Management tools for tackling such problems and minimize losses are proper site selection of aqua...

  10. Sustainable Fuel from Algae: Challenges and New Directions

    OpenAIRE

    Aitken, Douglas; Antizar Ladislao, Blanca

    2013-01-01

    Research investigating the potential of producing biofuels from algae has been enjoying a recent revival due to heightened oil prices, uncertain fossil fuel sources and legislative targets aimed at reducing our contribution to climate change. If the concept is to become a reality however, many obstacles need to be overcome. It is necessary to minimise energetic inputs to the system and maximize energy recovery. The cultivation process can be one of the greatest energy consumption hotspots in ...

  11. Subunit structure of the phycobiliproteins of blue-green algae.

    Science.gov (United States)

    Glazer, A N; Cohen-Bazire, G

    1971-07-01

    The phycobiliproteins of the blue-green algae Synechococcus sp. and Aphanocapsu sp. were characterized with respect to homogeneity, isoelectric point, and subunit composition. Each of the biliproteins consisted of two different noncovalently associated subunits, with molecular weights of about 20,000 and 16,000 for phycocyanin, 17,500 and 15,500 for allophycocyanin, and 22,000 and 20,000 for phycoerythrin. Covalently bound chromophore was associated with each subunit.

  12. A computerized image database for freshwater algae recorded in Turkey

    OpenAIRE

    Şen, Bülent; SÖNMEZ, Feray; ÇETİN, Ahmet Kadri; ALP, Mehmet Tahir; ÖZER, Tülay BAYKAL

    2015-01-01

    A computer-based image database for freshwater algae recorded in Turkey has been established. A separate page was prepared for each algal taxon and each page includes images and taxonomic and ecological information related to the taxon. Algal images were obtained mainly from authors of algal studies previously carried out in various freshwater bodies in Turkey. Data were then standardized in accordance with that of the central database of Turkish herbaria and a database for Turkish freshwater...

  13. Visualization of oxygen distribution patterns caused by coral and algae

    OpenAIRE

    Haas, Andreas F; Allison K. Gregg; Smith, Jennifer E.; Abieri, Maria L.; Mark Hatay; Forest Rohwer

    2013-01-01

    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. ...

  14. Analytical approaches to photobiological hydrogen production in unicellular green algae

    OpenAIRE

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01

    Several species of unicellular green algae, such as the model green microalga Chlamydomonas reinhardtii, can operate under either aerobic photosynthesis or anaerobic metabolism conditions. A particularly interesting metabolic condition is that of “anaerobic oxygenic photosynthesis”, whereby photosynthetically generated oxygen is consumed by the cell’s own respiration, causing anaerobiosis in the culture in the light, and induction of the cellular “hydrogen metabolism” process. The latter enta...

  15. PCD and autophagy in the unicellular green alga Micrasterias denticulata

    OpenAIRE

    Affenzeller, Matthias Josef; Darehshouri, Anza; Andosch, Ancuela; Lütz, Cornelius; LÜTZ-MEINDL, URSULA

    2009-01-01

    Programmed cell death (PCD) plays a central role in normal plant development and is also induced by various biotic and abiotic stress factors. In the unicellular freshwater green alga Micrasterias denticulata morphological and biochemical hallmarks such as the appearance of autophagosomes, increased production of ROS and degradation of genomic DNA into small fragments (“DNA laddering”) indicate PCD. Our data not only demonstrate that Micrasterias is capable of performing PCD under salt stress...

  16. Expression and assembly of a fully active antibody in algae

    OpenAIRE

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene...

  17. Endolithic algae: an alternative source of photoassimilates during coral bleaching.

    OpenAIRE

    Fine, Maoz; Loya, Yossi

    2002-01-01

    Recent reports of worldwide coral bleaching events leading to devastating coral mortality have caused alarm among scientists and resource managers. Differential survival of coral species through bleaching events has been widely documented. We suggest that among the possible factors contributing to survival of coral species during such events are endolithic algae harboured in their skeleton, providing an alternative source of energy. We studied the dynamics of photosynthetic pigment concentrat...

  18. Enhanced Genetic Tools for Engineering Multigene Traits into Green Algae

    OpenAIRE

    Rasala, Beth A.; Syh-Shiuan Chao; Matthew Pier; Daniel J Barrera; Mayfield, Stephen P

    2014-01-01

    Transgenic microalgae have the potential to impact many diverse biotechnological industries including energy, human and animal nutrition, pharmaceuticals, health and beauty, and specialty chemicals. However, major obstacles to sophisticated genetic and metabolic engineering in algae have been the lack of well-characterized transformation vectors to direct engineered gene products to specific subcellular locations, and the inability to robustly express multiple nuclear-encoded transgenes withi...

  19. Toxicity of Fluoranthene and Its Biodegradation by Cyclotella caspia Alga

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fluoranthene is one of the polynuclear aromatic hydrocarbons with four benzene rings. Because of its toxicity,mutagenicity, and carcinogenicity, fluoranthene is on the black lists of 129 and 68 priority pollutants established by US Environmental Protection Agency and the People's Republic of China, respectively. In recent years, the amount of fluoranthene in the aquatic environment has been increasing with increases in anthropogenic discharge. Based on the biological investigation of tidal water in the Futian mangrove, Cyclotella caspia was selected as the dominant algal species to determine the toxicity of fluoranthene towards C. caspia alga and to investigate the biodegradation of fluoranthene by C. caspia under pure culture. The toxicity experiment showed that the 96-h EC50 vaiue for fluoranthene was 0.2 mg/mL. Four parameters, namely C. caspia algal growth rate,chlorophyll (Chi) a content, cell morphology, and superoxide dismutase (SOD) activity, were chosen as indices of toxicity and were measured at 6 d (144 h). The results showed that: (i) the toxicity of fluoranthene towards C.caspia alga was obvious; (ii) C. caspia algal growth rate and Chi a content decreased with increasing concentrations of fluoranthene; and (iii) the rate of cell deformation and SOD activity increased with increasing concentrations of fluoranthene. The biodegradation experiment showed that: (i) the rate of physical degradation of fluoranthene was only 5.86%; (ii) the rate of biodegradation of fluoranthene on the 1st and 6th days (i.e. at 24 and 144 h) was approximately 35% and 85%, respectively; and (iii) the biodegradation capability of C. caspia alga towards fluoranthene was high. It is suggested that further investigations on the toxicity of fluoranthene towards algae, as well as on algal biodegradation mechanisms, are of great importance to use C. caspia as a biological treatment species in an organic wastewater treatment system.

  20. Algae as test organisms of harmful effects of various radiations

    International Nuclear Information System (INIS)

    The report describes a complex biotest in which algae serve as the test organisms and where a variety of algal characteristics are employed as indicators of the effects of harmful radiations on the cultures and single organisms. Rules for a successful choice of a suitable algal organism are discussed and the preparation of the latter for the test as well as the growth and morphogenic tests and some physiological responses of algae to harmful radiation are described. The survival and lethality are related to the interpretation of the test results particularly from the physiological and genetic points of view. The complex biotest concerns not only toxic but also mutagenic effects of the factors tested. Some easily detectable mutations in algae are mentioned and their spectra are recommended. The stability of the mutations and the possibility of their delayed manifestation are considered. The possibility of occurrence of teratogenic effects is also dealt with and the negative role of phenocopies in the correct evaluation of the mutation effects is mentioned. Advice for the breeding and laboratory maintenance of suitable algal strains for the biotest is given. Practical use of the biotest is demonstrated on the results of a test using modified samples of waste water from uranium industries. It is recommended that biotests confined to the evaluation of single characteristics of the test organism be replaced by this complex biotest whose results can be interpreted more extensively and exhibit a higher reliability. (author). 268 refs., 1 tab., 9 figs

  1. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp in size; it contains a large single-copy (LSC, 76,598 bp and a small single-copy region (SSC, 42,977 bp, separated by two inverted repeats (IRa and IRb: 5,404 bp. The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.

  2. Microwave-enhanced pyrolysis of natural algae from water blooms.

    Science.gov (United States)

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time.

  3. Unveiling privacy: advances in microtomography of coralline algae.

    Science.gov (United States)

    Torrano-Silva, Beatriz N; Ferreira, Simone Gomes; Oliveira, Mariana C

    2015-05-01

    Marine calcareous algae are widespread in oceans of the world and known for their calcified cell walls and the generation of rhodolith beds that turn sandy bottoms into a complex structured ecosystem with high biodiversity. Rhodoliths are unattached, branching, crustose benthic marine red algae; they provide habitat for a rich variety of marine invertebrates. The resultant excavation is relevant to sediment production, while is common that the fragments or the whole specimens result in vast fossil deposits formed by rich material that can be "mined" for biological and geological data. Accordingly, microtomography (μCT) may enable a detailed investigation of biological and geological signatures preserved within the rhodolith structure in a non-destructive approach that is especially relevant when analyzing herbaria collections or rare samples. Therefore, we prepared coralline algae samples and submitted them to a range of capabilities provided by the SkyScan1176 micro-CT scanner, including reconstruction, virtual slicing, and pinpointing biological and geological signatures. To this end, polychaetes and mollusk shells, or their excavations, coral nucleation, sediment deposits and conceptacles were all observed. Although a similar technique has been applied previously to samples of living rhodoliths in Brazil, we show, for the first time, its successful application to fossil rhodoliths. We also provide a detailed working protocol and discuss the advantages and limitations of the microtomography within the rhodoliths.

  4. Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil.

    Science.gov (United States)

    Dunck, B; Nogueira, I S; Felisberto, S A

    2013-05-01

    The distribution of periphytic algae communities depends on various factors such as type of substrate, level of disturbance, nutrient availability and light. According to the prediction that impacts of anthropogenic activity provide changes in environmental characteristics, making impacted Palm swamps related to environmental changes such as deforestation and higher loads of nutrients via allochthonous, the hypothesis tested was: impacted Palm swamps have higher richness, density, biomass and biovolume of epiphytic algae. We evaluated the distribution and structure of epiphytic algae communities in 23 Palm swamps of Goiás State under different environmental impacts. The community structure attributes here analyzed were composition, richness, density, biomass and biovolume. This study revealed the importance of the environment on the distribution and structuration of algal communities, relating the higher values of richness, biomass and biovolume with impacted environments. Acidic waters and high concentration of silica were important factors in this study. Altogether 200 taxa were identified, and the zygnemaphycea was the group most representative in richness and biovolume, whereas the diatoms, in density of studied epiphyton. Impacted Palm swamps in agricultural area presented two indicator species, Gomphonema lagenula Kützing and Oedogonium sp, both related to mesotrophic to eutrophic conditions for total nitrogen concentrations of these environments.

  5. Microwave-enhanced pyrolysis of natural algae from water blooms.

    Science.gov (United States)

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. PMID:27128164

  6. Towards tradable permits for filamentous green algae pollution.

    Science.gov (United States)

    de Lange, W J; Botha, A M; Oberholster, P J

    2016-09-01

    Water pollution permit systems are challenging to design and implement. Operational systems that has maintained functionality remains few and far between, particularly in developing countries. We present current progress towards developing such a system for nutrient enrichment based water pollution, mainly from commercial agriculture. We applied a production function approach to first estimate the monetary value of the impact of the pollution, which is then used as reference point for establishing a reserve price for pollution permits. The subsequent market making process is explained according to five steps including permit design, terms, conditions and transactional protocol, the monitoring system, piloting and implementation. The monetary value of the impact of pollution was estimated at R1887 per hectare per year, which not only provide a "management budget" for filamentous green algae mitigation strategies in the study area, but also enabled the calculation of a reserve price for filamentous green algae pollution permits, which was estimated between R2.25 and R111 per gram filamentous algae and R8.99 per gram at the preferred state. PMID:27155255

  7. Towards tradable permits for filamentous green algae pollution.

    Science.gov (United States)

    de Lange, W J; Botha, A M; Oberholster, P J

    2016-09-01

    Water pollution permit systems are challenging to design and implement. Operational systems that has maintained functionality remains few and far between, particularly in developing countries. We present current progress towards developing such a system for nutrient enrichment based water pollution, mainly from commercial agriculture. We applied a production function approach to first estimate the monetary value of the impact of the pollution, which is then used as reference point for establishing a reserve price for pollution permits. The subsequent market making process is explained according to five steps including permit design, terms, conditions and transactional protocol, the monitoring system, piloting and implementation. The monetary value of the impact of pollution was estimated at R1887 per hectare per year, which not only provide a "management budget" for filamentous green algae mitigation strategies in the study area, but also enabled the calculation of a reserve price for filamentous green algae pollution permits, which was estimated between R2.25 and R111 per gram filamentous algae and R8.99 per gram at the preferred state.

  8. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  9. Bio sorption of copper ions with biomass of algae and dehydrated waste of olives; Biosorcion de iones cobre con biomasa de algas y orujos deshidratados

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, P.; Santander, M.; Pavez, O.; Valderrama, L.; Guzman, D.; Romero, L.

    2011-07-01

    They were carried out experiments of biosorption batch and in continuous to remove copper from aqueous solutions using as adsorbents green algae and olive residues under virgins conditions and chemically activated. The results of batch bio sorption indicate that the algae present mayor elimination capacities than the waste of olives, with uptakes of copper of the order of 96 % using activated algae with dissolution of Na{sub 2}SO{sub 4} under the optimum conditions. The results of the columns tests show that the virgin algae permits the removal of more copper ions than the activate algae, with removal efficiency of 98 % during the firth 20 min, a breakthrough time of 240 min and a saturation at time of 600 min. In the second cycle the regenerated biomass showed a best performance indicating that they can be used for another bio sorption cycle. (Author) 42 refs.

  10. Sludge-grown algae for culturing aquatic organisms: Part II. Sludge-grown algae as feeds for aquatic organisms

    Science.gov (United States)

    Wong, M. H.; Hung, K. M.; Chiu, S. T.

    1996-05-01

    This project investigated the feasibility of using sewage sludge to culture microalgae ( Chlorella-HKBU) and their subsequent usage as feeds for rearing different organisms. Part II of the project evaluated the results of applying the sludge-grown algae to feed Oreochromis mossambicus (fish), Macrobrachium hainenese (shrimp), and Moina macrocopa (cladocera). In general, the yields of the cultivated organisms were unsatisfactory when they were fed the sludge-grown algae directly. The body weights of O. mossambicus and M. macrocopa dropped 21% and 37%, respectively, although there was a slight increase (4.4%) in M. hainenese. However, when feeding the algal-fed cladocerans to fish and shrimp, the body weights of the fish and shrimp were increased 7% and 11% accordingly. Protein contents of the cultivated organisms were comparable to the control diet, although they contained a rather high amount of heavy metals. When comparing absolute heavy metal contents in the cultivated organisms, the following order was observed: alga > cladocera > shrimp, fish > sludge extracts. Bioelimination of heavy metals may account for the decreasing heavy metal concentrations in higher trophic organisms.

  11. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    International Nuclear Information System (INIS)

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe3+ ions was investigated. Algae, humic acid and Fe3+ ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 109 cells L-1 raw Chlorella vulgaris, 4 mg L-1 humic acid and 20 μmol L-1 Fe3+. The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment

  12. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  13. The Effects of Environmental Factors on the Growth and Competition of Algae

    Institute of Scientific and Technical Information of China (English)

    Jing; WANG; Jiazhang; CHEN; Shunlong; MENG

    2013-01-01

    In order to study the effect of environmental factors on the algae growth and competition,the author summarized overseas and domestic related researches in recent years.Most of the researches are about the influence of single factor on growth of algae.However,there is insufficient investment on the interaction of different factors and the competition between algae growth.This paper briefly introduced the classification of algae and the role they played in ecological system and focused on the influence which included temperature,illumination,nitrogen,phosphorus and pH on the growth and competition of algal.In the end,the author proposed key questions which were still needed to be studied in order to know more about the relationship between environment effects and growth and competition of algae.Therefore,people could better improve the community structure of algae and water ecological environment,and improve water primary productivity.

  14. Chemical and radioactivity study of sea alga distribution along the Syrian coast

    International Nuclear Information System (INIS)

    Three types of sea alga distributed along the Syrian coast have been studied from the chemical and radioactivity point of view. Results have shown the metals that red alga contains the highest levels of Ca and Mg while brown alga were found to contain relatively high concentrations of other elements and non metals such as Cl, I and Br. In addition, 137Cs concentrations in all the analyzed sample were low while the levels of naturally occurring radionuclides such as 210Po, 210Pb and radium isotopes were found to be high in red alga which indicates their selectivity to these isotopes. On the other hand, brown alga and especially Cysteseira has shown a clear selectivity for some trace elements such as As, Cr, Cd, Cu and Co, this selectivity may encourage the use of brown alga as biological indicator for trace elements pollution. (author)

  15. A Novel Aeration Method for the Preparation of Algae (Dunaliella Salina) Biomass for Biofuel Production.

    OpenAIRE

    U.O. Enwereuzoh; G.N. Onyeagoro

    2014-01-01

    Preparation of algae (Dunaliela Salina) biomass in ammonia (NH4 + ) and nitrate (NO3 - ) growth media for biofuel production was investigated, with special attention on the elimination of inhibitory oxygen that adversely affects algae growth. A novel aeration method based on high and efficient transfer of carbon dioxide (CO2) required to stabilize the CO2 of the algae growth medium in a short time was adopted for the elimination of the inhibitory oxygen. The novel aeration method was found...

  16. Toxic Algae and Early Warning Management in Yellow Sea and Bohai Sea of China

    Institute of Scientific and Technical Information of China (English)

    Song; Lun; Song; Guangjun; Song; Yonggang; Xu; Xiaohong

    2014-01-01

    The research status of toxic algae in Yellow Sea and Bohai Sea are reviewed from the aspects of toxicity characteristics,toxic mechanism and early warning management,and the existing toxic algae and their toxicity in Yellow Sea and Bohai Sea are analyzed in the paper. The early warning level of toxic algae in Yellow Sea and Bohai Sea of China is put forward,and the research direction of shellfish poisoning in future is summarized.

  17. Soil algae and mesofauna communities in biotopes of forest rehabilitation in zhovti vody (Dnipropetrovsk region

    Directory of Open Access Journals (Sweden)

    A. V. Posrednikova

    2009-03-01

    Full Text Available The variety of soil algae was studied on areas of revegetation and without it in the Zhovti Vody. The systematic and ecological structure of algal flora and algae dominant species were indicated. We counted 28 species of soil algae on the dumps of uranium mining: Chlorophyta – 11 species (39.5 %, Cyanophyta – 11 (39.5 %, Xanthophyta – 2 (7 %, Bacillariophyta – 2 (7 %, Eustigmatohyta – 2 (7 %.

  18. The place of algae in agriculture: policies for algal biomass production

    OpenAIRE

    Trentacoste, Emily M.; Martinez, Alice M.; Zenk, Tim

    2014-01-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and antic...

  19. SOIL ALGAE AND MESOFAUNA COMMUNITIES IN BIOTOPES OF FOREST REHABILITATION IN ZHOVTI VODY (DNIPROPETROVSK REGION)

    OpenAIRE

    A. V. Posrednikova; O. Y. Pakhomov; Y. L. Kulbachko

    2009-01-01

    The variety of soil algae was studied on areas of revegetation and without it in the Zhovti Vody. The systematic and ecological structure of algal flora and algae dominant species were indicated. We counted 28 species of soil algae on the dumps of uranium mining: Chlorophyta – 11 species (39.5 %), Cyanophyta – 11 (39.5 %), Xanthophyta – 2 (7 %), Bacillariophyta – 2 (7 %), Eustigmatohyta – 2 (7 %).

  20. Biosorption of Heavy Metal Ions to Brown Algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    OpenAIRE

    Seki, Hideshi; Suzuki, Akira

    1998-01-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to ...

  1. Low oxygen consumption in slow sand filtration by effective removal of floating algae

    OpenAIRE

    ISOBE, Yoshikuni; NAKAMOTO, Nobutada

    2004-01-01

    Slow Sand Filtration (SSF) is a biolofical system to purify tap water. In this study, dissolced oxygen concentration and its diurnal changes were measured at three different production rate was almost the same in there three different SSF plants. Different tratments of floating algae were done in these SSF plants. The daily respiration rate at the Sodeyama plant was the lowest rate. The floating algae were effectively removed at this plant. Therefore, oxygen consumption by floating algae beca...

  2. A preliminary study on automated freshwater algae recognition and classification system

    OpenAIRE

    Mosleh Mogeeb AA; Manssor Hayat; Malek Sorayya; Milow Pozi; Salleh Aishah

    2012-01-01

    Abstract Background Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated...

  3. Endozoic algae in shelled gastropods — a new symbiotic association in coral reefs?

    Science.gov (United States)

    Berner, T.; Wishkovsky, A.; Dubinsky, Z.

    1986-10-01

    Live algae were found in the hepatopancreas and gonads of the Red Sea snail Strombus tricornis. These organs are constantly concealed within the upper whorls of the snail's shell. Light penetration was 5 15% of the incident light reaching the shell. Pigment analysis indicated the presence of chlorophyll a, c and peridinin, a composition resembling the Dinoflagellata. Chlorophyll a concentration in the algae was 1.18±0.36 pg chl/cell. 14C assimilation of isolated algae incubated in the light exceeded that of dark controls, demonstrating the photosynthetic activity of the endozoic algae.

  4. How-to-Do-It: Diatoms: The Ignored Alga in High School Biology.

    Science.gov (United States)

    Hungerford, James J.

    1988-01-01

    Provides historical background, descriptions, uses and basis for identification of diatoms. Explains collection, dry-mount cleaning, and preparation procedures of the algae. Cites additional resources. (RT)

  5. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria.

    Science.gov (United States)

    Reichardt, Thomas A; Collins, Aaron M; McBride, Robert C; Behnke, Craig A; Timlin, Jerilyn A

    2014-08-20

    We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours. PMID:25321139

  6. Multispectral sorter for rapid, nondestructive optical bioprospecting for algae biofuels

    Science.gov (United States)

    Davis, Ryan W.; Wu, Hauwen; Singh, Seema

    2014-03-01

    Microalgal biotechnology is a nascent yet burgeoning field for developing the next generation of sustainable feeds, fuels, and specialty chemicals. Among the issues facing the algae bioproducts industry, the lack of efficient means of cultivar screening and phenotype selection represents a critical hurdle for rapid development and diversification. To address this challenge, we have developed a multi-modal and label-free optical tool which simultaneously assesses the photosynthetic productivity and biochemical composition of single microalgal cells, and provides a means for actively sorting attractive specimen (bioprospecting) based on the spectral readout. The device integrates laser-trapping micro-Raman spectroscopy and pulse amplitude modulated (PAM) fluorometry of microalgal cells in a flow cell. Specifically, the instrument employs a dual-purpose epi-configured IR laser for single-cell trapping and Raman spectroscopy, and a high-intensity VISNIR trans-illumination LED bank for detection of variable photosystem II (PSII) fluorescence. Micro-Raman scatter of single algae cells revealed vibrational modes corresponding to the speciation and total lipid content, as well as other major biochemical pools, including total protein, carbohydrates, and carotenoids. PSII fluorescence dynamics provide a quantitative estimate of maximum photosynthetic efficiency and regulated and non-regulated non-photochemical quenching processes. The combined spectroscopic readouts provide a set of metrics for subsequent optical sorting of the cells by the laser trap for desirable biomass properties, e.g. the combination of high lipid productivity and high photosynthetic yield. Thus the device provides means for rapid evaluation and sorting of algae cultures and environmental samples for biofuels development.

  7. The ecology of viruses that infect eukaryotic algae.

    Science.gov (United States)

    Short, Steven M

    2012-09-01

    Because viruses of eukaryotic algae are incredibly diverse, sweeping generalizations about their ecology are rare. These obligate parasites infect a range of algae and their diversity can be illustrated by considering that isolates range from small particles with ssRNA genomes to much larger particles with 560 kb dsDNA genomes. Molecular research has also provided clues about the extent of their diversity especially considering that genetic signatures of algal viruses in the environment rarely match cultivated viruses. One general concept in algal virus ecology that has emerged is that algal viruses are very host specific and most infect only certain strains of their hosts; with the exception of viruses of brown algae, evidence for interspecies infectivity is lacking. Although some host-virus systems behave with boom-bust oscillations, complex patterns of intraspecies infectivity can lead to host-virus coexistence obfuscating the role of viruses in host population dynamics. Within the framework of population dynamics, host density dependence is an important phenomenon that influences virus abundances in nature. Variable burst sizes of different viruses also influence their abundances and permit speculations about different life strategies, but as exceptions are common in algal virus ecology, life strategy generalizations may not be broadly applicable. Gaps in knowledge of virus seasonality and persistence are beginning to close and investigations of environmental reservoirs and virus resilience may answer questions about virus inter-annual recurrences. Studies of algal mortality have shown that viruses are often important agents of mortality reinforcing notions about their ecological relevance, while observations of the surprising ways viruses interact with their hosts highlight the immaturity of our understanding. Considering that just two decades ago algal viruses were hardly acknowledged, recent progress affords the optimistic perspective that future studies

  8. Bioactivities from Marine Algae of the Genus Gracilaria

    Directory of Open Access Journals (Sweden)

    José M. Barbosa-Filho

    2011-07-01

    Full Text Available Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS, inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted.

  9. Bioactivities from Marine Algae of the Genus Gracilaria

    Science.gov (United States)

    de Almeida, Cynthia Layse F.; Falcão, Heloina de S.; Lima, Gedson R. de M.; Montenegro, Camila de A.; Lira, Narlize S.; de Athayde-Filho, Petrônio F.; Rodrigues, Luis C.; de Souza, Maria de Fátima V.; Barbosa-Filho, José M.; Batista, Leônia M.

    2011-01-01

    Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS), inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted. PMID:21845096

  10. Multidimensional electronic spectroscopy of phycobiliproteins from cryptophyte algae

    Science.gov (United States)

    Turner, Daniel

    2011-03-01

    We describe new spectroscopic measurements which reveal additional information regarding the observed quantum coherences in proteins extracted from photosynthetic algae. The proteins we investigate are the phycobiliproteins phycoerythrin 545 and phycocyanin 645. Two new avenues have been explored. We describe how changes to the chemical and biological environment impact the quantum coherence present in the 2D electronic correlation spectrum. We also use new multidimensional spectroscopic techniques to reveal insights into the nature of the quantum coherence and the nature of the participating states.

  11. Fitoremediasi limbah budidaya sidat menggunakan filamentous algae (Spirogyra sp.

    Directory of Open Access Journals (Sweden)

    Tri Apriadi

    2014-09-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui potensi dari filamentous algae (Spirogyra sp. sebagai agen bioremediasi dalam mereduksi kandungan bahan organik limbah budidaya sidat. Penelitian menggunakan rancangan acak lengkap dengan perlakuan perbedaan dosis limbah (25 %, 50 %, 75 %, 100%. Wadah penelitian berupa akuarium resirkulasi menggunakan sistem carrousel. Dilakukan pengukuran secara rutin terhadap beberapa parameter kualitas air serta perubahan bobot Spirogyra sp. selama dua minggu retensi. Diperoleh hasil bahwa penurunan konsentrasi bahan organik menggunakan Spirogyra sp. berlangsung efektif hingga hari keenam. Spirogyra sp. mampu mentolelir limbah budidaya sidat pada dosis limbah 25% dan 50%. Spirogyra sp. pada perlakuan dosis limbah 50% memiliki kemampuan yang lebih baik dalam menurunkan bahan organik limbah budidaya sidat.

  12. Fibrinolytic Compounds Isolated from a Brown Alga, Sargassum fulvellum

    Directory of Open Access Journals (Sweden)

    Bin Bao

    2009-04-01

    Full Text Available Two of bioactive natural products were founded in a brown alga, Sargassum fulvellum. After isolation and purification, the molecular structures of these two products were investigated by NMR spectroscopy and GC-mass spectroscopy. The two compounds were identified to be 1-O-palmitoyl-2-O-oleoyl-3-O-(α-D-glucopyranosyl –glycerol (POGG and 1-O-myristoyl-2-O-oleoyl-3-O-(α-D-glucopyranosyl – glycerol (MOGG which were obtained from Sargassum fulvellum for the first time. POGG and MOGG showed fibrinolytic activity in the reaction system of pro-u-PA and plasminogen.

  13. Measuring Oscillatory Velocity Fields Due to Swimming Algae

    CERN Document Server

    Guasto, Jeffrey S; Gollub, J P

    2010-01-01

    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  14. The auxin concentration in sixteen Chinese marine algae

    Institute of Scientific and Technical Information of China (English)

    HAN Lijun

    2006-01-01

    The author determined the occurrence of indole-3-acetic acid in sixteen Chinese marine algae collected from the east coast of China with fluorescence spectrophotometry (FS) and wheat coleoptile bioanalysis methods (WCB). The concentration of indole-3-acetic acid (IAA) presented was from 1.1-46.9 ng/g Fw (fresh weight) with FS and 5.3-110.2 ng/g Fw with WCB. The results by the two methods were in the orders of 10-3-103 ng/g Fw reported previously from multiple references.

  15. The vacuum ultraviolet irradiation of green inicellular alga chlamydomonas reinbardtii

    International Nuclear Information System (INIS)

    The action of vacuum ultraviolet (Ar, 120-130 nm) irradiation of green alga Chlamydomonas reinhardtii was investigated. The high frequency discharge in Ar as a source of vacuum ultraviolet radiation was used. The registration of cell destruction by microscopic observation and photography was realized. The dependence of cells survival rate was compared with those by UV-B and UV-C irradiation. It was shown that most efficiency of cell's destruction by vacuum ultraviolet irradiation was realized. This work was carring out according with project proposed for vacuum ultraviolet support. 21 refs., 6 figs.,

  16. Multi-scale Characterization of Improved Algae Strains

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Taraka T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This report relays the important role biofuels such as algae could have in the energy market. The report cites that problem of crude oil becoming less abundant while the demand for energy continues to rise. There are many benefits of producing energy with biofuels such as fewer carbon emissions as well as less land area to produce the same amount of energy compared to other sources of renewable fuels. One challenge that faces biofuels right now is the cost to produce it is high.

  17. Production of Biodiesel from Marine Algae to Mitigate Environmental Pollution

    International Nuclear Information System (INIS)

    This research article demonstrates the conversion of oily contents of marine macroalgae, namely Cystoseira indica and Scinia hatei to fatty acid methyl ester (FAME) through alkaline transesterification. The algae were dried, crushed and grinded into the powder form, which were analyzed for physical appearance, water content and particle size profile. The oily contents from these powdered algae were extracted by using different non-polar solvents like n-hexane, n-heptane, dichloromethane, diethyl ether and n-hexane: diethyl ether (1:1) mixture at small scale. The efficiency index of the solvent was developed based on the yield of the oily content and boiling point of these solvents, which showed that n-hexane: diethyl ether (1:1) mixture is the best solvent system for the extraction of oils. The yield of oily contents with respect to the dried algal weight was found to be 2.81 ± 0.43 percentage w/w and 3.10 ± 0.27 percentage w/w for C. indica and S. hatei respectively. These oily contents were subjected to physical and chemical analysis. The oily contents were converted into biodiesel by alkaline transesterification using potassium methoxide as catalyst which is prepared by dissolving KOH in methanol (0.5g/12 ml, 4.2 percentage w/v) in a separate flask. All the reactions were carried out under completely anhydrous conditions using silica as desiccant and with continuous stirring so that the reactants in two immiscible phases of oily contents and methanol were remain in contact. The yield of biodiesel was found to be 89.0 ± 0.51 percentage w/w (2.50 percentage w/w of dried alga) and 90.6 ± 0.36 percentage w/w (2.81 percentage w/w of dried alga) of biodiesel from C. indica and S. hatei respectively. Finally, biodiesel was characterized by gas chromatography and American Society for Testing and Materials (ASTM) as well as by European (EN) standards which were found to be in agreement with the standard values of biodiesel. (author)

  18. Fucoidan from Marine Brown Algae Inhibits Lipid Accumulation

    OpenAIRE

    Changhyun Roh; Min-Kyoung Park; Uhee Jung

    2011-01-01

    In this study, we elucidated the inhibitory effect of fucoidan from marine brown algae on the lipid accumulation in differentiated 3T3-L1 adipocytes and its mechanism. The treatment of fucoidan in a dose-dependent manner was examined on lipid inhibition in 3T3-L1 cells by using Oil Red O staining. Fucoidan showed high lipid inhibition activity at 200 µg/mL concentration (P < 0.001). Lipolytic activity in adipocytes is highly dependent on hormone sensitive lipase (HSL), which is one of the ...

  19. Study on sterols from brown algae (Sargassum muticum)

    Institute of Scientific and Technical Information of China (English)

    WANG Peirong; XU Guanjun; BIAN Lizeng; ZHANG Shuichang; SONG Fuqing

    2006-01-01

    Various △5-3β-sterenols, whose carbon numbers range from C19-C23 to C26-C30and some compounds have many stereomers maximal up to six,have been detected out from the extract of brown algae (Sargassum muticum), which means that steranes with lower carbon numbers are likely different in the origin, and some corresponding sterol stereoisomers may have already existed in their precursor organisms. This provides some experimental evidence for supplementing and amending the traditional interpretation of the sterol stereoisomer transformation during the deposition and diagenesis of organic matter.

  20. Ecotoxicological effects of carbon nanomaterials on algae, fungi and plants.

    Science.gov (United States)

    Basiuk, Elena V; Ochoa-Olmos, Omar E; De la Mora-Estrada, León F

    2011-04-01

    The ecotoxicological effects of carbon nanomateriales (CNMs), namely fullerenes and carbon nanotubes, on algae, fungi and plants are analyzed. In different toxicity tests, both direct and indirect effects were found. The direct effects are determined by nanomaterial chemical composition and surface reactivity, which might catalyze redox reactions in contact with organic molecules and affect respiratory processes. Some indirect effects of carbon nanoparticles (CNPs) are physical restraints or release of toxic ions. Accumulation of CNPs in photosynthetic organs provokes obstruction in stomata, foliar heating and alteration in physiological processes. The phytotoxicity studies of CNMs should be focused on determining phytotoxicity mechanisms, size distribution of CNPs in solution, uptake and translocation of nanoparticles by plants, on characterization of their physical and chemical properties in rhizosphere and on root surfaces. More studies on plants and algae, as a part of food chain, are needed to understand profoundly the toxicity and health risks of CNMs as ecotoxicological stressors. Correct and detailed physical and chemical characterization of CNMs is very important to establish the exposure conditions matching the realistic ones. Ecotoxicity experiments should include examinations of both short and long-term effects. One must take into account that real carbon nanomaterials are complex mixtures of carbon forms and metal residues of variable chemistry and particle size, and the toxicity reported may reflect these byproducts/residues/impurities rather than the primary material structure. One more recommendation is not only to focus on the inherent toxicity of nanoparticles, but also consider their possible interactions with existing environmental contaminants.

  1. SULFOGLYCOLIPID FROM THE MARINE BROWN ALGA SARGASSUM HEMIPHYLLUM

    Institute of Scientific and Technical Information of China (English)

    ZHENG CUI; YU-SHAN LI; HONG-BING LIU; DAN YUAN; BAO-REN LU

    2001-01-01

    One kinds of glycolipid (SBI) have been isolated from the marine brown alga Sargassum hemiphyllum (Turn.) Ag. The structures of SBI have been determined as the sodium salt of 1-0-acyl-3-0-(6′-sulfo-c-D-quinovopyrannosyl) glycerol (acyl: tetradecanoyl, pentadecanoyl, 11-hexadecenoyl, hexadecanoyl, 10,13-octadecadienoyl, 9-octade cenoyl, 15-metylheptadecanoyl and 11-eicosenoyl 17:1.5:19:153:1: 19:1:2) on the basis of chemical and spectral evidence and GC-MS analysis, respectively. Four constituents of the SBI were new compounds [the sodium salt of 1-0-(ll″-hexadecenoyl)-3-0-(6′-sulfo-α-D-quinovopyrannosyl) glycerol, the sodium salt of 1-0-(10",13"-octadecadienoyl)-3-0-(6′-sulfo-α-D-quinovopyrannosyl) glycerol,and the sodium salt of 1-0-(15"-metylhexadecenoyl)-3-0-(6′-sulfo-c-D-quinovopyrannosyl)glycerol, and the sodium salt of 1-0-(ll"-eicosenoyl)-3-0-(6′-sulfo-α-D-quinovopyrannosyl)glycerol]. All compounds were isolated from marine brown alga for the first time.

  2. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    Science.gov (United States)

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high. PMID:27253478

  3. Identifying vital effects in Halimeda algae with Ca isotopes

    Directory of Open Access Journals (Sweden)

    C. L. Blättler

    2014-03-01

    Full Text Available Geochemical records of biogenic carbonates provide some of the most valuable records of the geological past, but are often difficult to interpret without a mechanistic understanding of growth processes. In this experimental study, Halimeda algae are used as a test organism to untangle some of the specific factors that influence their skeletal composition, in particular their Ca-isotope composition. Algae were stimulated to precipitate both calcite and aragonite by growth in artificial Cretaceous seawater. The Ca-isotope fractionation of the algal calcite is much smaller than that for the algal aragonite, similar to the behaviour observed in inorganic precipitates. However, the carbonate from Halimeda is isotopically heavier than inorganic forms, likely due to Rayleigh distillation within the algal intercellular space. In identifying specific vital effects and the magnitude of their influence on Ca-isotope ratios, this study suggests that mineralogy has a first-order control on the Ca-isotope budget of the carbonate sink and the Ca-isotope composition of seawater.

  4. Identifying vital effects in Halimeda algae with Ca isotopes

    Science.gov (United States)

    Blättler, C. L.; Stanley, S. M.; Henderson, G. M.; Jenkyns, H. C.

    2014-12-01

    Geochemical records of biogenic carbonates provide some of the most valuable records of the geological past, but are often difficult to interpret without a mechanistic understanding of growth processes. In this experimental study, Halimeda algae are used as a test organism to untangle some of the specific factors that influence their skeletal composition, in particular their Ca-isotope composition. Algae were stimulated to precipitate both calcite and aragonite by growth in artificial Cretaceous seawater, resulting in experimental samples with somewhat malformed skeletons. The Ca-isotope fractionation of the algal calcite (-0.6‰) appears to be much smaller than that for the algal aragonite (-1.4‰), similar to the behaviour observed in inorganic precipitates. However, the carbonate from Halimeda has higher Ca-isotope ratios than inorganic forms by approximately 0.25‰, likely because of Rayleigh distillation within the algal intercellular space. In identifying specific vital effects and the magnitude of their influence on Ca-isotope ratios, this study suggests that mineralogy has a first-order control on the marine Ca-isotope cycle.

  5. Health benefit of fucosterol from marine algae: a review.

    Science.gov (United States)

    Abdul, Qudeer Ahmed; Choi, Ran Joo; Jung, Hyun Ah; Choi, Jae Sue

    2016-04-01

    Seaweeds belong to a group of marine plants known as algae, which are consumed as sea vegetables in several Asian countries. Recent studies have focused on the biological and pharmacological activities of seaweeds and their highly bioactive secondary metabolites because of their potential in the development of new pharmaceutical agents. Although several varieties of bioactive novel compounds such as phlorotannins, diterpenes and polysaccharides from seaweeds have already been well scrutinized, fucosterol as a phytosterol still needs to reinvent itself. Fucosterol (24-ethylidene cholesterol) is a sterol that can be isolated from algae, seaweed and diatoms. Fucosterol exhibits various biological therapeutics, including anticancer, antidiabetic, antioxidant, hepatoprotective, antihyperlipidemic, antifungal, antihistaminic, anticholinergic, antiadipogenic, antiphotodamaging, anti-osteoporotic, blood cholesterol reducing, blood vessel thrombosis preventive and butyrylcholinesterase inhibitory activities. In this review, we address some potential approaches for arbitrating novel fucosterol biologics in the medical field, focusing on the selection of personalized drug candidates and highlighting the challenges and opportunities regarding medical breakthroughs. We also highlight recent advances made in the design of this novel compound, as the significant health benefits from using these optimized applications apply to the nutraceutical and pharmaceutical fields. PMID:26455344

  6. Identifying vital effects in Halimeda algae with Ca isotopes

    Directory of Open Access Journals (Sweden)

    C. L. Blättler

    2014-12-01

    Full Text Available Geochemical records of biogenic carbonates provide some of the most valuable records of the geological past, but are often difficult to interpret without a mechanistic understanding of growth processes. In this experimental study, Halimeda algae are used as a test organism to untangle some of the specific factors that influence their skeletal composition, in particular their Ca-isotope composition. Algae were stimulated to precipitate both calcite and aragonite by growth in artificial Cretaceous seawater, resulting in experimental samples with somewhat malformed skeletons. The Ca-isotope fractionation of the algal calcite (−0.6‰ appears to be much smaller than that for the algal aragonite (−1.4‰, similar to the behaviour observed in inorganic precipitates. However, the carbonate from Halimeda has higher Ca-isotope ratios than inorganic forms by approximately 0.25‰, likely because of Rayleigh distillation within the algal intercellular space. In identifying specific vital effects and the magnitude of their influence on Ca-isotope ratios, this study suggests that mineralogy has a first-order control on the marine Ca-isotope cycle.

  7. Solar-driven hydrogen production in green algae.

    Science.gov (United States)

    Burgess, Steven J; Tamburic, Bojan; Zemichael, Fessehaye; Hellgardt, Klaus; Nixon, Peter J

    2011-01-01

    The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H(2), biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H(2) production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H(2) evolution and discuss possible approaches to improve H(2) yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept. PMID:21807246

  8. Predicting toxicity of aromatic ternary mixtures to algae

    Institute of Scientific and Technical Information of China (English)

    LU GuangHua; WANG Chao; WANG PeiFang; YANG ChengZhi

    2009-01-01

    Aquatic ecosystems are often polluted with more than one type of contaminant, and information on the combined toxic effects of mixed pollutants on aquatic organisms is scarce at present. Acute toxicity of aromatic compounds and their ternary mixtures to the alga (Scenedesmus obliquus) was determined by the algae growth inhibition test. The median effective concentration (EC_(50)) value for a single aromatic compound and EC_(50mix) values for mixtures were obtained, the logarithm of n-octanol/water partition coefficient (logP_(mix)) and the frontier orbital energy gap (△E_(mix) for mixtures were calculated. Based on the quantitative structure-activity relationship model for single chemical toxicity log(1/EC_(50)) =0.426logP-1.150△E+12.61 (n=15, R~2=0.917 and Q~2=0.878), the following two-descriptor model was developed for the ternary mixture toxicity of aromatic compounds: log(1/EC_(50mix))=O.68210gP_(mix)-O.367△E_(mix)+ 4.971 (n=44, R~2-0.869 and Q~2=0.843). This model can be used to predict the combined toxicity of mixtures containing toxicants with different mechanisms of action.

  9. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  10. Sulfur utilization of corals is enhanced by endosymbiotic algae

    Directory of Open Access Journals (Sweden)

    Ikuko Yuyama

    2016-09-01

    Full Text Available Sulfur-containing compounds are important components of all organisms, but few studies have explored sulfate utilization in corals. Our previous study found that the expression of a sulfur transporter (SLC26A11 was upregulated in the presence of Symbiodinium cells in juveniles of the reef-building coral Acropora tenuis. In this study, we performed autoradiography using 35S-labeled sulfate ions (35SO4 2− to examine the localization and amount of incorporated radioactive sulfate in the coral tissues and symbiotic algae. Incorporated 35SO4 2− was detected in symbiotic algal cells, nematocysts, ectodermal cells and calicoblast cells. The combined results of 35S autoradiography and Alcian Blue staining showed that incorporated 35S accumulated as sulfated glycosaminoglycans (GAGs in the ectodermal cell layer. We also compared the relative incorporation of 35SO4 2− into coral tissues and endosymbiotic algae, and their chemical fractions in dark versus light (photosynthetic conditions. The amount of sulfur compounds, such as GAGs and lipids, generated from 35SO4 2− was higher under photosynthetic conditions. Together with the upregulation of sulfate transporters by symbiosis, our results suggest that photosynthesis of algal endosymbionts contributes to the synthesis and utilization of sulfur compounds in corals.

  11. Spectrin-like proteins in green algae (Desmidiaceae).

    Science.gov (United States)

    Holzinger, A; De Ruijter, N; Emons, A M; Lütz-Meindl, U

    1999-01-01

    Immunochemical detection of actin as well as spectrin-like proteins have been carried out in the green algae Micrasterias denticulata, Closterium lunula, and Euastrum oblongum. In these algae, actin is detected on Western blots at 43 kDa with antibodies to actin from higher plant and animal origin. By use of antibodies to human and chicken erythrocyte spectrin a cross-reactivity with desmid proteins is found at about the molecular mass of 220 kDa, where also human erythrocyte spectrin is detected. Additional bands are present at 120 kDa and 70 kDa, which are probably breakdown products. An antibody against chicken alpha-actinin, a small protein of the spectrin superfamily, recognizes bands at 90 kDa, where it is expected, and 70 kDa, probably the same breakdown product as mentioned for spectrin. Isoelectric focusing provides staining at pI 4.6 with antibodies against spectrin. Immunogold labelling of spectrin and alpha-actinin antigens on high-pressure frozen, freeze-substituted Micrasterias denticulata cells with the same antibodies exhibits staining, especially at membranes of different populations of secretory vesicles, at dictyosomes, and the plasma membrane. However, no clear correlation to the growth pattern of the cell could be observed. Taken together, our results demonstrate the presence of spectrin-like proteins in desmid cells which are probably functional in exocytosis. PMID:10579899

  12. Biodiesel Fuel Production from Algae as Renewable Energy

    Directory of Open Access Journals (Sweden)

    A. B.M. Sharif Hossain

    2008-01-01

    Full Text Available Biodiesel is biodegradable, less CO2 and NOx emissions. Continuous use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Algae have emerged as one of the most promising sources for biodiesel production. It can be inferred that algae grown in CO2-enriched air can be converted to oily substances. Such an approach can contribute to solve major problems of air pollution resulting from CO2 evolution and future crisis due to a shortage of energy sources. This study was undertaken to know the proper transesterification, amount of biodiesel production (ester and physical properties of biodiesel. In this study we used common species Oedogonium and Spirogyra to compare the amount of biodiesel production. Algal oil and biodiesel (ester production was higher in Oedogonium than Spirogyra sp. However, biomass (after oil extraction was higher in Spirogyra than Oedogonium sp. Sediments (glycerine, water and pigments was higher in Spirogyra than Oedogonium sp. There was no difference of pH between Spirogyra and Oedogonium sp. These results indicate that biodiesel can be produced from both species and Oedogonium is better source than Spirogyra sp.

  13. Photosynthetic hydrogen and oxygen production by green algae

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    An overview of photosynthetic hydrogen and oxygen production by green algae in the context of its potential as a renewable chemical feed stock and energy carrier is presented. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of photosynthesis throughout the entire range of terrestrial solar irradiance--including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transport and (3) the minimum number of light reactions that are required to split water to elemental hydrogen and oxygen. Each of these research topics is being actively addressed by the photobiological hydrogen research community.

  14. Algas: da economia nos ambientes aquáticos à bioremediação e à química analítica Algae: from aquatic environment economy to bioremediation and analytical chemistry

    Directory of Open Access Journals (Sweden)

    Eliane Cristina Vidotti

    2004-02-01

    Full Text Available Algae constitute a large group of many different organisms, essentially aquatic and able to live in all systems giving them sufficient light and humidity. Some algae species have been used in the evaluation or in the bioremediation of aquatic systems. More recently algae have been suggested as interesting tools in the field of analytical chemistry. In this work the most important aspects related to the different uses of algae are presented with a brief discussion.

  15. FRESHWATER ALGAE OF RAE LAKES BASIN, KINGS CANYON NATIONAL PARK (CALIFORNIA)

    Science.gov (United States)

    This report illustrates and characterizes algae (exclusive of diatoms) found in Kings Canyon National Park, California and describes their distribution among the Rae Lakes within. It is the first taxonomic study of the freshwater algae for the southern Sierra Nevada and the most ...

  16. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at differe

  17. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  18. DYNAMICS OF ALGAE NUMBER AND BIOMASS OF STEPPE BIOGEOCOENOSES AND AGROCOENOSES IN KHERSON REGION

    Directory of Open Access Journals (Sweden)

    Shcherbina V.V.

    2011-12-01

    Full Text Available Characteristics of daily dynamics of seaweeds abundance and biomass were determined for steppe biogeocoenosis and agrocoenosis of Biosphere reserve “Askaniya-Nova” in spring of 2011. Fluctuation ranges in seaweeds abundance and biomass have been registered.Analyzing the indices of total number and algae biomass in studied biogeocoenoses it should be noted that the maximal values of alga number in virgin soil steppe exceeded minimal in 3,3 times; biomasses - in 2,1. For virgin soil steppe of post-fire-induced development the relation between maximum and minimal value of total number of algae was up to 2,1; biomass - 2,4. For agrocoenosis we noted the largest ranges in variation of number and biomass. In conditions of dry-land arable land the maximum values of total number of alga exceeded minimal in 21,9 times; biomasses - in 8,7; for irrigated arable land - in 12,5 and 5,6 respectively.In soil samples, selected within the limits of virgin soil biogeocoenoses of biosphere reserve “Askania-Nova” and agrocoenosis of dry-land and irrigated arable land in biosphere reserve by direct count, the algae species of Bacillariophyta, Cyanophyta, Chlorophyta, Xanthophyta and Eustigmatophyta have been found. The largest contribution to number and biomass of algae belonged to Bacillariophyta. The number and biomass of agrocoenosis algae is more dynamic feature, than for algae of virgin soil biogeocoenoses.

  19. Crustose coralline algae can suppress macroalgal growth and recruitment on Hawaiian coral reefs

    NARCIS (Netherlands)

    M.J.A. Vermeij; M.L. Dailer; C.M. Smith

    2011-01-01

    Crustose coralline algae are important components of tropical reef communities because they promote successful settlement by corals and contribute to solidification of the reef framework. We show experimentally that crustose coralline algae are also capable of suppressing the growth and recruitment

  20. Can stormwater be detected by algae in an urban reef in Hawai‘i?

    International Nuclear Information System (INIS)

    Highlights: • Invasive and native algae are a part of a reef assemblage located in an urban area. • Algal nitrogen (N) composition tested if N was enriched from storm-drain outlets. • Elevated N values indicated a mixed, high nutrient environment. • Storm-drains as plausible nitrogenous source was not supported. • Temporal and spatial values indicate algae incorporated terrestrial derived N. -- Abstract: Nitrogen (N) enrichment of tropical reefs can result in the dominance of invasive algae. The invasive alga Acanthophora spicifera and the native alga Laurencia nidifica are part of a diverse reef assemblage in ‘Ewa Beach, O‘ahu. Their N contents and δ15N values were investigated to determine if N was enriched and to evaluate potential nitrogenous sources near and removed from storm-drain outlets. δ15N values of algae (3.8–17.7‰) were within and above the range for algae around the island (1.9–11.9‰). Elevated algae N isotope values (δ15N > +7‰, [N] > 1.6%) and seawater nitrate + nitrite levels (0.59–7.93 μM) indicated a mixed, high nutrient environment. The overlap in δ15N values with multiple nitrogenous sources precluded identification. However, spatial and temporal patterns did not support stormwater as the dominant, nitrogenous source. Patterns were congruent with algal incorporation of terrestrial derived N, subjected to a high degree of biogeochemical cycling

  1. Blue-green algae in rice fields. Their ecology and their use as inoculant

    International Nuclear Information System (INIS)

    This paper is a short review on blue-green algae in rice fields, their ecology and their use as inoculants. Some emphasis has been given to the recent studies of the relations between blue-green algae and rice which include the availability of algal nitrogen to the rice plant and epiphytic relationships. (author)

  2. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian

    2014-09-16

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  3. Toxicity of silver nanoparticles to green algae – towards a biotic ligand understanding

    DEFF Research Database (Denmark)

    Laruelle, Sacha; Sørensen, Sara Nørgaard; Cupi, Denisa;

    with the freshwater green algae Pseudokirschneriella subcapitata were carried out to falsify the hypothesis: “The toxicity of silver nanoparticles towards algae is solely caused by the monovalent silver ion”. These experiments were based on PHREEQC modeling of silver ion behavior (added as AgNO3) in 72h OECD algal...

  4. All Fiber-optic Fluorescent Spectral Measurement and Analysis on Alga Chla/c Characteristics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fluorescent principle used for measuring alga characteristic parameters and the optimum structure design of the instrument are discussed. The fluorescent spectrum of Chla/c and the time-resolved different spectrum ΔA(λ,t) are given. The research provides an effective method for considering the density and the classification of algae, which will be helpful to monitor sea pollution.

  5. Spatiotemporal associations of reservoir nutrient characteristics and the invasive, harmful alga Prymnesium parvum in West Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.

  6. The potential of optimized process design to advance LCA performance of algae production systems

    NARCIS (Netherlands)

    Boxtel, van A.J.B.; Perez-Lopez, P.; Breitmayer, E.; Slegers, P.M.

    2015-01-01

    Environmental impact is an essential aspect for the introduction of algae production systems. As information of large scale algae production is hardly available, process simulation is the only way to evaluate environmental sustainability in an early phase of process design. Simulation results allow

  7. The current potential of algae biofuels in the United Arab Emirates

    Science.gov (United States)

    In spite of future uncertainties about industrial algae biofuel production, the UAE is planning to become "a world leader in biofuels from the algae industry by 2020;" thus joining major countries which have already started producing renewable energy and biofuels (biodiesel and bioethanol) from rene...

  8. Fluorescence action spectra of algae and bean leaves at room and at liquid nitrogen temperatures

    NARCIS (Netherlands)

    Goedheer, J.C.

    1965-01-01

    Fluorescence action spectra were determined, both at room temperature and at liquid nitrogen temperature, with various blue-green, red and green algae, and greening bean leaves. The action spectra of algae were established with samples of low light absorption as well as dense samples. Fluorescence

  9. Interaction between the macrophyte Stratiotes aloides and filamentous algae: does it indicate allelopathy?

    NARCIS (Netherlands)

    Mulderij, G.; Mau, B.; De Senerpont Domis, L.N.; Smolders, A.J.P.; Van Donk, E.

    2009-01-01

    The aquatic macrophyte Stratiotes aloides Linnaeus, which has recently received attention in studies on allelopathy, has been shown to suppress phytoplankton growth. In the Netherlands, S. aloides often co-occurs with floating filamentous algae. However, filamentous algae are generally absent in clo

  10. Biochemical composition of some brown algae from Iskenderun Bay, the northeastern Mediterranean coast of Turkey

    OpenAIRE

    2015-01-01

    AbstractThe present study aimed to determine total protein, total carbohydrate, total phenolic substances and pigment contents of brown algae collected in Iskenderun Bay, the northeastern Mediterranean coast of Turkey. Totally eight brown algae samples (Cystoseira barbata, Cystoseira corniculata, Cystoseira compressa, Dictyota dichotoma, Padina pavonia, Sargassum vulgare, Stypocaulon scoparium, Stypopodium schimperii) were analyzed. The highest protein content was obtained from S. schimperii ...

  11. Field testing for toxic algae with a microarray: initial results from the MIDTAL project

    OpenAIRE

    2012-01-01

    In: Pagou, P. and Hallegraeff, G. (eds). Proceedings of the 14th International Conference on Harmful Algae. International Society for the Study of Harmful Algae and Intergovernmental Oceanographic Commission of UNESCO 2012 ISBN 978-87-990827-3-5 Archived in DUO with permission from ISSHA.

  12. Preliminary Study of Cytotoxic and Antimicrobial Activities of Algae from South Sulawesi Waters

    OpenAIRE

    Zainuddin, Elmi Nurhaidah

    2013-01-01

    This presentation will cover recent progress from our laboratory into South Sulawesi marine algae and their microbial symbionts, as a source of cytotoxic and antimicrobial compounds. Preliminary data on the activities of algae extracts against human, aquaculture organism and plant pathogens will be presented along with the identification and characterization of microbial symbionts and pathogens.

  13. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae.

    Science.gov (United States)

    Barott, Katie L; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L; Vermeij, Mark J A; Smith, Jennifer E; Rohwer, Forest L

    2012-04-22

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.

  14. Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe

    NARCIS (Netherlands)

    Blaas, H.; Kroeze, C.

    2014-01-01

    Biodiesel is increasingly considered as an alternative for fossil diesel. Biodiesel can be produced from rapeseed, palm, sunflower, soybean and algae. In this study, the consequences of large-scale production of biodiesel from micro-algae for eutrophication in four large European seas are analysed.

  15. Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans

    DEFF Research Database (Denmark)

    Christensen, Anne Munch; Faaborg-Andersen, S.; Ingerslev, Flemming;

    2007-01-01

    ) as single substances and of citalopram, fluoxetine. and sertraline in binary mixtures in two standardized bioassays. Test organisms were the freshwater algae Pseudo-kirchneriella subcapitata and the freshwater crustacean Daphnia magna. In algae, test median effect concentrations (EC50s) ranged from 0...

  16. The Chloroplast Protein Translocation Complexes of Chlamydomonas reinhardtii: A Bioinformatic Comparison of Toc and Tic Components in Plants, Green Algae and Red Algae

    OpenAIRE

    Kalanon, Ming; McFadden, Geoffrey I

    2008-01-01

    The recently completed genome of Chlamydomonas reinhardtii was surveyed for components of the chloroplast protein translocation complexes. Putative components were identified using reciprocal BlastP searches with the protein sequences of Arabidopsis thaliana as queries. As a comparison, we also surveyed the new genomes of the bryophyte Physcomitrella patens, two prasinophyte green algae (Ostreococcus lucimarinus and Ostreococcus tauri), the red alga Cyanidioschizon merolae, and several cyanob...

  17. Adsorption Studies of Lead by Enteromorpha Algae and Its Silicates Bonded Material

    Directory of Open Access Journals (Sweden)

    Hassan H. Hammud

    2014-01-01

    Full Text Available Lead adsorption by green Enteromorpha algae was studied. Adsorption capacity was 83.8 mg/g at pH 3.0 with algae (E and 1433.5 mg/g for silicates modified algae (EM. FTIR and thermal analysis of algae materials were studied. Thomas and Yoon-Nelson column model were best for adsorbent (E and algae after reflux (ER and Yan model for (EM with capacity 76.2, 71.1, and 982.5 mg/g, respectively. (ER and (EM show less swelling and better flow rate control than (E. Nonlinear methods are more appropriate technique. Error function calculations proved valuable for predicting the best adsorption isotherms, kinetics, and column models.

  18. Cars will be fed on algae; Quand nos voitures rouleront aux algues

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, G. [CEA-CNRS, Laboratoire de bioenergetique des bacteries et microalgues, Centre de Cadarache, 13108 Saint-Paul-les-Durance (France)

    2012-02-15

    The development of the first and second generations of bio-fuels has led to a rise in food prices and the carbon balance sheet is less good than expected. Great hopes have been put on unicellular algae for they can synthesize oils, sugar and even hydrogen and the competition with food production is far less harsh than with actual bio-fuels. Moreover, when you grow micro-algae, the loss of water through evaporation is less important than in the case of intensive farm cultures. In 2009 10.000 tonnes of micro-algae were produced worldwide, they were mainly used for the production of fish food and of complements for humane food (fat acids and antioxidants). Different research programs concern unicellular algae: they aim at modifying micro-algae genetically in order to give them a higher productivity or to make them produce an oil more adapted for motor fuel or more easily recoverable. (A.C.)

  19. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Yan, X.J.

    1998-01-01

    The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than...... those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae...... were investigated. In addition, the seasonal variation of inorganic elements in Sargassum kjellmanianum was also studied. (C) 1998 Elsevier Science B.V. All rights reserved....

  20. Computational Visual Stress Level Analysis of Calcareous Algae Exposed to Sedimentation.

    Science.gov (United States)

    Osterloff, Jonas; Nilssen, Ingunn; Eide, Ingvar; de Oliveira Figueiredo, Marcia Abreu; de Souza Tâmega, Frederico Tapajós; Nattkemper, Tim W

    2016-01-01

    This paper presents a machine learning based approach for analyses of photos collected from laboratory experiments conducted to assess the potential impact of water-based drill cuttings on deep-water rhodolith-forming calcareous algae. This pilot study uses imaging technology to quantify and monitor the stress levels of the calcareous algae Mesophyllum engelhartii (Foslie) Adey caused by various degrees of light exposure, flow intensity and amount of sediment. A machine learning based algorithm was applied to assess the temporal variation of the calcareous algae size (∼ mass) and color automatically. Measured size and color were correlated to the photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, [Formula: see text]) and degree of sediment coverage using multivariate regression. The multivariate regression showed correlations between time and calcareous algae sizes, as well as correlations between fluorescence and calcareous algae colors. PMID:27285611

  1. Computational Visual Stress Level Analysis of Calcareous Algae Exposed to Sedimentation

    Science.gov (United States)

    Nilssen, Ingunn; Eide, Ingvar; de Oliveira Figueiredo, Marcia Abreu; de Souza Tâmega, Frederico Tapajós; Nattkemper, Tim W.

    2016-01-01

    This paper presents a machine learning based approach for analyses of photos collected from laboratory experiments conducted to assess the potential impact of water-based drill cuttings on deep-water rhodolith-forming calcareous algae. This pilot study uses imaging technology to quantify and monitor the stress levels of the calcareous algae Mesophyllum engelhartii (Foslie) Adey caused by various degrees of light exposure, flow intensity and amount of sediment. A machine learning based algorithm was applied to assess the temporal variation of the calcareous algae size (∼ mass) and color automatically. Measured size and color were correlated to the photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, ΦPSIImax) and degree of sediment coverage using multivariate regression. The multivariate regression showed correlations between time and calcareous algae sizes, as well as correlations between fluorescence and calcareous algae colors. PMID:27285611

  2. Antioxidant response of the brown algae Dictyota dichotoma epiphytized by the invasive red macroalgae Lophocladia lallemandii

    Institute of Scientific and Technical Information of China (English)

    Silvia Tejada; Antoni Sureda

    2014-01-01

    Objective: To evaluate the response of the brown alga Dictyota dichotoma (D. dichotoma) epiphytized by the red alga Lophocladia lallemandii in Mallorca coastal waters (Balearic Islands) by means of biomarker measures. Methods: Samples of epiphytized and non-epiphytized D. dichotoma were collected in Cala Morlanda (East Mallorca, Balearic Islands). Markers of lipid peroxidation and activities of antioxidant enzymes were measured in D. dichotoma. Results: Lipid peroxidation measured as malondialdehyde and all the antioxidant activities measured were significantly higher in the epiphytized brown algae when compared with the control algae. Conclusions:In conclusion, the invasive algae Lophocladia lallemandii seems to produce a more oxidized status in the epiphytized D. dichotoma and cellular damage that could induce increased mortality.

  3. Paleoecology of Late Carboniferous Phylloid Algae in Southern Guizhou,SW China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Phylloid algae are important reef-builders in the late Carboniferous. This paper focuses on the paleoecology of phylloid algae in the Late Carboniferous on well-exposed reefs in Ziyun County,Guizhou Province. Phylloid algae growing closely packed are attached via holdfast or similar structure to substrate. They were growing in environments such as shallow water, photic zone and below the wave base with medium energy currents. They have a variety of morphological forms, such as single cup-shaped, cabbage-shaped and clustering cup-shaped. The thalli are of certain tenacity and intensity. In the areas dominated by phylloid algae, other marine organisms are relatively scarce.Obviously, phylloid algae are stronger competitors for living space than other co-occurring organisms.

  4. Antioxidant response of the brown algae Dictyota dichotoma epiphytized by the invasive red macroalgae Lophocladia lallemandii

    Directory of Open Access Journals (Sweden)

    Silvia Tejada

    2014-05-01

    Full Text Available Objective: To evaluate the response of the brown alga Dictyota dichotoma (D. dichotoma epiphytized by the red alga Lophocladia lallemandii in Mallorca coastal waters (Balearic Islands by means of biomarker measures. Methods: Samples of epiphytized and non-epiphytized D. dichotoma were collected in Cala Morlanda (East Mallorca, Balearic Islands. Markers of lipid peroxidation and activities of antioxidant enzymes were measured in D. dichotoma. Results: Lipid peroxidation measured as malondialdehyde and all the antioxidant activities measured were significantly higher in the epiphytized brown algae when compared with the control algae. Conclusions: In conclusion, the invasive algae Lophocladia lallemandii seems to produce a more oxidized status in the epiphytized D. dichotoma and cellular damage that could induce increased mortality.

  5. Benthic soft-bodied algae as bioindicators of stream water quality

    Directory of Open Access Journals (Sweden)

    Stancheva R.

    2016-01-01

    Full Text Available This review presents the state-of-the-art of benthic soft-bodied algae as biondicators of stream and river water quality, with emphasis on bioassessments set by the legislation (e.g., European Water Framework Directive, USA Clean Water Act to promote the restoration and ensure ecological sustainability of water resources. The advantages and shortcomings of a variety of bioassessment field and laboratory methods for algae are discussed. The increasing use of soft-bodied algae in biotic indices to assess individual anthropogenic stressors, and in multimetric indices of biotic integrity to evaluate ecological condition in streams is summarized. Rapid microscopic and molecular approaches for inferring nutrient supply with heterocystous cyanobacteria and other sensitive algae are proposed. The need of better understanding of soft-bodied algae as bioindicators is discussed and suggestions are made for obtaining meaningful bioassessment information with cost-efficient efforts.

  6. Algae of economic importance that accumulate cadmium and lead: a review

    Directory of Open Access Journals (Sweden)

    Priscila O. Souza

    2012-08-01

    Full Text Available Currently, algae and algae products are extensively applied in the pharmaceutical, cosmetic and food industries. Algae are the main organisms that take up and store heavy metals. Therefore, the use of compounds derived from algae by the pharmaceutical industry should be closely monitored for possible contamination. The pollution generated by heavy metals released by industrial and domestic sources causes serious changes in the aquatic ecosystem, resulting in a loss of biological diversity and a magnification and bioaccumulation of toxic agents in the food chain. Since algae are at the bottom of the aquatic food chain, they are the most important vector for transfer of pollution to upper levels of the trophic chain in aquatic environments. Moreover, microalgae are also used for the bioremediation of wastewater, a process that does not produce secondary pollution, that enables efficient recycling of nutrients and that generates biomass useful for the production of bioactive compounds and biofuel.

  7. Snow algae in an ice core drilled on Grigoriev Ice cap in the Kyrgyz Tien Shen Mountains

    OpenAIRE

    本多, 愛美; 竹内, 望; 世良, 峻太郎; 藤田, 耕史; 岡本, 祥子; 直木, 和弘; Vladimr, Aizen

    2010-01-01

    Snow algae are photosynthetic microorganisms and are living on the surfase of glaciers. They grow on melting surface from spring to summer and their the biomass and community structure are changed with physical and chemical conditions on the glacier. Ice cores drilled from glaciers also contain snow algae that grew in the past. Studing biomass and community structure of snow algae in ice cores may clean that not only restoring the amont of the paleo-snow algae but also environmental condition...

  8. The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean.

    Directory of Open Access Journals (Sweden)

    Mark J A Vermeij

    Full Text Available Turf algae are multispecies communities of small marine macrophytes that are becoming a dominant component of coral reef communities around the world. To assess the impact of turf algae on corals, we investigated the effects of increased nutrients (eutrophication on the interaction between the Caribbean coral Montastraea annularis and turf algae at their growth boundary. We also assessed whether herbivores are capable of reducing the abundance of turf algae at coral-algae boundaries. We found that turf algae cause visible (overgrowth and invisible negative effects (reduced fitness on neighbouring corals. Corals can overgrow neighbouring turf algae very slowly (at a rate of 0.12 mm 3 wk(-1 at ambient nutrient concentrations, but turf algae overgrew corals (at a rate of 0.34 mm 3 wk(-1 when nutrients were experimentally increased. Exclusion of herbivores had no measurable effect on the rate turf algae overgrew corals. We also used PAM fluorometry (a common approach for measuring of a colony's "fitness" to detect the effects of turf algae on the photophysiology of neighboring corals. Turf algae always reduced the effective photochemical efficiency of neighbouring corals, regardless of nutrient and/or herbivore conditions. The findings that herbivores are not capable of controlling the abundance of turf algae and that nutrient enrichment gives turf algae an overall competitive advantage over corals together have serious implications for the health of Caribbean coral reef systems. At ambient nutrient levels, traditional conservation measures aimed at reversing coral-to-algae phase shifts by reducing algal abundance (i.e., increasing herbivore populations by establishing Marine Protected Areas or tightening fishing regulations will not necessarily reduce the negative impact of turf algae on local coral communities. Because turf algae have become the most abundant benthic group on Curaçao (and likely elsewhere in the Caribbean, new conservation

  9. Characterization of phosphorus forms in lake macrophytes and algae by solution 31P nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Aquatic macrophytes and algae are important sources of phosphorus (P) in the lake environment that cause blooms of algae under certain biogeochemical conditions. However, the knowledge of forms of P in these plants and algae and their contribution to internal loads of lake P is very limited. Witho...

  10. Managing phosphorus fertilizer to reduce algae, maintain water quality, and sustain yields in water-seeded rice

    Science.gov (United States)

    In water-seeded rice systems blue-green algae (cyanobacteria) hinder early-season crop growth by dislodging rice seedlings and reducing light. Since algae are often phosphorus (P) limited, we investigated whether changing the timing of P fertilizer application could reduce algae without reducing cro...

  11. Muscle antioxidant (vitamin E) and major fatty acid groups, lipid oxidation and retail colour of meat from lambs fed a roughage based diet with flaxseed or algae.

    Science.gov (United States)

    Ponnampalam, Eric N; Burnett, Viv F; Norng, Sorn; Hopkins, David L; Plozza, Tim; Jacobs, Joe L

    2016-01-01

    The effect of feeding flaxseed or algae supplements to lambs on muscle antioxidant potential (vitamin E), major fatty acid groups, lipid oxidation and retail colour was investigated. Lambs (n=120) were randomly allocated to one of 4 dietary treatments according to liveweight and fed the following diets for eight weeks: Annual ryegrass hay [60%]+subterranean clover hay [40%] pellets=Basal diet; Basal diet with flaxseed (10.7%)=Flax; Basal diet with algae (1.8%)=Algae; Basal diet with flaxseed (10.7%) and algae (1.8%)=FlaxAlgae. Flaxseed or algae supplementation significantly affected major fatty acid groups in muscle. The addition of algae (average of Algae and FlaxAlgae) resulted in lower vitamin E concentration in muscle (Pdiet without algae (average of Basal and Flax). Increasing muscle EPA+DHA by algae supplementation significantly increased lipid oxidation, but retail display colour of fresh meat was not affected.

  12. Surface gas-exchange processes of snow algae.

    Science.gov (United States)

    Williams, William E; Gorton, Holly L; Vogelmann, Thomas C

    2003-01-21

    The red-colored chlorophyte Chlamydomonas nivalis is commonly found in summer snowfields. We used a modified Li-Cor gas-exchange system to investigate surface gas-exchange characteristics of snow colonized by this alga, finding rates of CO(2) uptake up to 0.3 micromol.m(-2).s(-1) in dense algal blooms. Experiments varying the irradiance resulted in light curves that resembled those of the leaves of higher plants. Red light was more effective than white and much more effective than green or blue, because of the red astaxanthin that surrounds and masks the algal chloroplasts. Integrating daily course measurements of gas exchange showed CO(2) uptake around 2,300 micromol.m(-2).day(-1) in heavily colonized patches, indicating that summer snowfields can be surprisingly productive. PMID:12518048

  13. Self-deconstructing algae biomass as feedstock for transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan Wesley [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Biomass Science and Conversion Technologies

    2014-09-01

    The potential for producing biofuels from algae has generated much excitement based on projections of large oil yields with relatively little land use. However, numerous technical challenges remain for achieving market parity with conventional non-renewable liquid fuel sources. Among these challenges, the energy intensive requirements of traditional cell rupture, lipid extraction, and residuals fractioning of microalgae biomass have posed significant challenges to the nascent field of algal biotechnology. Our novel approach to address these problems was to employ low cost solution-state methods and biochemical engineering to eliminate the need for extensive hardware and energy intensive methods for cell rupture, carbohydrate and protein solubilization and hydrolysis, and fuel product recovery using consolidated bioprocessing strategies. The outcome of the biochemical deconstruction and conversion process consists of an emulsion of algal lipids and mixed alcohol products from carbohydrate and protein fermentation for co-extraction or in situ transesterification.

  14. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  15. TAXONOMY OF VISEAN MARINE CALCAREOUS ALGAE, FERNIE, BRITISH COLUMBIA (CANADA

    Directory of Open Access Journals (Sweden)

    BERNARD MAMET

    2006-11-01

    Full Text Available Reports a diverse microflora from the Late Viséan Opal Member, Fernie, Rocky Mountains, Canada.  A shallow-water limestone level yields forty identifiable taxa of green and red algae associated with  microproblematica.  Four  species are new :  Cabrieropora opalae, Cribrokamaena ferniensis, Koninckopora pachytheca and Moravammina ? enigmatica.  Inferred sedimentation is open marine, in normal salinity, from the middle part of the euphotic zone, within the fair-weather wave zone.  A semi-restricted lagoon located nearby provides floated calcispheres.  The high diversity is due to the excellent preservation of the thalli which were protected by a thin early coating of bacterial micrite. 

  16. Convergence of joint mechanics in independently evolving, articulated coralline algae.

    Science.gov (United States)

    Janot, Kyra; Martone, Patrick T

    2016-02-01

    Flexible joints are a key innovation in the evolution of upright coralline algae. These structures have evolved in parallel at least three separate times, allowing the otherwise rigid, calcified thalli of upright corallines to achieve flexibility when subjected to hydrodynamic stress. As all bending occurs at the joints, stress is amplified, which necessitates that joints be made of material that is both extensible and strong. Data presented here indicate that coralline joints are in fact often stronger and more extensible, as well as tougher, than fleshy seaweed tissues. Corallinoids are particularly strong and tough, which is largely due to the presence of secondary cell walls that strengthen the joint tissue without adding bulk to the joint itself. Cell wall thickness is shown to be a large contributing factor to strength across all groups, with the exception of the corallinoid Cheilosporum sagittatum, which likely possesses distinct chemical composition in its walls to increase strength beyond that of all other species tested.

  17. PCD and autophagy in the unicellular green alga Micrasterias denticulata.

    Science.gov (United States)

    Affenzeller, Matthias Josef; Darehshouri, Anza; Andosch, Ancuela; Lütz, Cornelius; Lütz-Meindl, Ursula

    2009-08-01

    Programmed cell death (PCD) plays a central role in normal plant development and is also induced by various biotic and abiotic stress factors. In the unicellular freshwater green alga Micrasterias denticulata morphological and biochemical hallmarks such as the appearance of autophagosomes, increased production of ROS and degradation of genomic DNA into small fragments ("DNA laddering") indicate PCD. Our data not only demonstrate that Micrasterias is capable of performing PCD under salt stress, but also that it is triggered by the ionic and not osmotic component of salinity. Additionally, results from the present and previous studies suggest that different inducers may lead to different cell death pathways in one and the same organism. PMID:19430197

  18. PCD and autophagy in the unicellular green alga Micrasterias denticulata

    Science.gov (United States)

    Affenzeller, Matthias Josef; Darehshouri, Anza; Andosch, Ancuela; Lütz, Cornelius; Lütz-Meindl, Ursula

    2010-01-01

    Programmed cell death (PCD) plays a central role in normal plant development and is also induced by various biotic and abiotic stress factors. In the unicellular freshwater green alga Micrasterias denticulata morphological and biochemical hallmarks such as the appearance of autophagosomes, increased production of ROS and degradation of genomic DNA into small fragments (“DNA laddering”) indicate PCD. Our data not only demonstrate that Micrasterias is capable of performing PCD under salt stress, but also that it is triggered by the ionic and not osmotic component of salinity. Additionally, results from the present and previous studies suggest that different inducers may lead to different cell death pathways in one and the same organism. PMID:19430197

  19. Toxicity testing with the marine algae, Symbiodinium kawagutii (Dinophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Gorrie, J.R.; Bidwell, J.R.; Rippingale, R.J. [Curtin Univ. of Technology, Bentley (Australia)

    1994-12-31

    The dinoflagellate, Symbiodinium kawagutii, is among the algal taxa which exist in symbiosis with a range of marine invertebrates. S. kawagutii is commonly found in association with the Hawaiian stony coral, Montipora verrucosa. The algae has been successfully cultured in the laboratory using a common marine algal growth media (Guillard f/2), and sufficient cell densities were achieved in a 96-hr bioassay to allow statistical evaluation of toxicity data. A 96-hr EC{sub 50} of 6.47 mg/L (95% C.I.: 3.54--9.88 mg/L) was calculated after exposure to potassium dichromate. Wide distribution of the coral host and ecological importance of the symbiosis make S. kawagutii an excellent candidate species for hazard evaluation in tropical marine ecosystems. Continuing research will seek to further refine the bioassay, including the use of a microplate technique for more rapid testing.

  20. Phytochemical Studies On The Marine Algae Of Qatar, Arabian Gulf

    OpenAIRE

    Heiba, H. I. [حلمي اسماعيل هيبة

    1990-01-01

    The most dominant twenty three algal species representing the main three groups of benthic macroalgae, Chlorophyceae, Phaeophyceae and Rhodophyceae were collected from the coastal zones of the Qatar peninsula. These algae were screened for alkaloids, coumarins, flavonoids, saponins and tannins. The moisture, ash, protein, lipid, carbohydrate, minerals and trace elements content of the investigated algal species were determined. يشمل البحث المسح الكيميائي لثلاثة وعشرين طحلبا تمثل أكثر الأنو...

  1. Ecotoxicological effects of Mikado and Viper on algae and daphnids.

    Science.gov (United States)

    Marques, C R; Gonçalves, A M M; Pereira, R; Gonçalves, F

    2012-12-01

    The toxicity of single and combined formulated herbicides (Mikado and Viper) was assessed on several endpoints in species from two trophic levels: algae growth-Pseudokirchneriella subcapitata and Chlorella vulgaris-immobilization and life-history traits (only for single compound toxicity) of daphnids-Daphnia longispina and Daphnia magna. Viper was the most toxic formulated herbicide. It was hypothesized that the toxicity of both formulated herbicides could have been enhanced by adjuvants, especially for Viper. In most cases, the sublethal endpoints were the most sensitive and affected by both formulations, comparatively to their acute effects. Concentration addition (CA) and independent action (IA) models provided an accurate description of Mikado and Viper joint action on algae growth and immobilization of daphnids, although significant deviations were always detected. A low-dose antagonism and high-dose synergism were identified for P. subcapitata, whereas C. vulgaris response deviated antagonistically from CA and synergistically from IA. For both daphnids, however, synergistic effects were observed for higher mixture concentrations. Under a regulatory standpoint, CA provided the most conservative estimation either because the mixture effects were overestimated or less subestimated than IA. Overall, the great sensitivity differences observed within species did not allow the conclusion that one trophic level was more tolerant than the other. Instead, P. subcapitata was always the most sensitive species to both herbicide formulations, followed by D. longispina, while D. magna and C. vulgaris were the most tolerant species. On a whole, further studies are needed toward a comprehensive understanding of herbicides mode of action, their effects at lower biological-level endpoints, and under different mixture designs. PMID:21374788

  2. Developing a Forward Model of Encrusting Coralline Algae

    Science.gov (United States)

    Ng, J.; Williams, B.; Thompson, D. M.; Halfar, J.

    2014-12-01

    Climate proxy data has traditionally been interpreted through inverse models, which extract physical climate variables from proxy variables. This approach assumes stationarity of the proxy-climate relationship, typically reduces climate signal to a single variable, and requires extensive observational records. In contrast, forward models reverse the relationship, simulating proxy variables from physical climate variables for comparison to observed proxy variables. Since this approach accounts for multiple climate variables and avoids stationarity issues, forward models have been developed for several climate proxies, including tree ring width and oxygen stable isotopes (δ18O) of corals. Here we develop a basic forward model for the climate archive coralline alga Clathromorphum sp.This long-lived alga grows in mid-to-high latitude regions and forms a solid calcite skeleton with annual growth bands similar to those of trees and tropical corals. Sub-annually resolved δ18O in annual growth bands (δ18Ospec) provide a record of local environmental and climatic factors, notably sea surface temperature (SST) and sea water oxygen stable isotopes (δ18Osw). We model Clathromorphum δ18Ospec in the Aleutian islands from gridded SST and δ18Osw of the growing season from 1960 to 2004. The strongest climate signal is observed in July, likely due to suppressed growth in other months. Initial results suggest no influence of growth rate on the fractionation of oxygen isotopes and indicate that δ18Ospec anomalies are significantly correlated with summer SST anomalies. We run this forward model with observed SST and δ18Osw and compare the resulting simulated δ18Ospec with that measured in live-collected specimens. This foundational model may be adapted to other regions and modified to include other variables influencing coralline isotope records, such as light availability and ice coverage.

  3. Evidence for methane production by the marine algae Emiliania huxleyi

    Science.gov (United States)

    Lenhart, Katharina; Klintzsch, Thomas; Langer, Gerald; Nehrke, Gernot; Bunge, Michael; Schnell, Sylvia; Keppler, Frank

    2016-06-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.

  4. Mannitol metabolism in brown algae involves a new phosphatase family.

    Science.gov (United States)

    Groisillier, Agnès; Shao, Zhanru; Michel, Gurvan; Goulitquer, Sophie; Bonin, Patricia; Krahulec, Stefan; Nidetzky, Bernd; Duan, Delin; Boyen, Catherine; Tonon, Thierry

    2014-02-01

    Brown algae belong to a phylogenetic lineage distantly related to green plants and animals, and are found predominantly in the intertidal zone, a harsh and frequently changing environment. Because of their unique evolutionary history and of their habitat, brown algae feature several peculiarities in their metabolism. One of these is the mannitol cycle, which plays a central role in their physiology, as mannitol acts as carbon storage, osmoprotectant, and antioxidant. This polyol is derived directly from the photoassimilate fructose-6-phosphate via the action of a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase (M1Pase). Genome analysis of the brown algal model Ectocarpus siliculosus allowed identification of genes potentially involved in the mannitol cycle. Among these, two genes coding for haloacid dehalogenase (HAD)-like enzymes were suggested to correspond to M1Pase activity, and thus were named EsM1Pase1 and EsM1Pase2, respectively. To test this hypothesis, both genes were expressed in Escherichia coli. Recombinant EsM1Pase2 was shown to hydrolyse the phosphate group from mannitol-1-phosphate to produce mannitol but was not active on the hexose monophosphates tested. Gene expression analysis showed that transcription of both E. siliculosus genes was under the influence of the diurnal cycle. Sequence analysis and three-dimensional homology modelling indicated that EsM1Pases, and their orthologues in Prasinophytes, should be seen as founding members of a new family of phosphatase with original substrate specificity within the HAD superfamily of proteins. This is the first report describing the characterization of a gene encoding M1Pase activity in photosynthetic organisms. PMID:24323504

  5. Determination of Algae and Macrophyte Species Distribution in Three Wastewater Stabilization Ponds Using Metagenomics Analysis

    Directory of Open Access Journals (Sweden)

    Jack Wallace

    2015-06-01

    Full Text Available This study involved the evaluation of algae and macrophyte species distributions in three wastewater stabilization ponds (WSPs at a wastewater treatment plant in Ontario, Canada, which has experienced high pH levels at the final effluent and excessive algae growth during the summer since 2003. From samples collected from the system, the relative abundances of specific algae and aquatic plant (macrophyte taxa were assessed and correlated to water chemistry data. A strong shift from the dominance of green algae, chlorophyceae, in WSP#2, to the dominance of aquatic macrophytes, embryophyta, in WSP#4, was observed and corresponded to field observations. Correlation of the abundances to nutrient parameters suggested that the macronutrient rich conditions in WSP#2 allowed floating green algae to proliferate against macrophytes. In WSP#1 and WSP#4, macrophytes competed against algae and thrived, due to their adaptability to lower nutrient conditions. The pH increases occurred primarily in WSP#2 and were not buffered or reduced in WSP#1 and WSP#4. Two alternatives strategies for pH control were recommended for the system: decreasing algae growth in WSP#2 through duckweed seeding or macronutrient loading reduction; or designing and implementing a constructed wetland (CW in WSP#4 with soil and vegetation to buffer pH prior to release.

  6. Concentration factors for Cs-137 in marine algae from Japanese coastal waters

    International Nuclear Information System (INIS)

    Concentration factors (CF: Bq·kg-1 in wet algae/Bq·kg-1 in filtered seawater) for Cs-137 in Japanese coastal algae, were investigated during 1984-1990. Cs-137/Cs (stable) atom ratios were also examined to clarify the distribution equilibrium of Cs-137 in marine algae and sea water. The CFs in marine algae were within the range of 5.4-92, and the geometric mean of CF was 28±2 (standard error) in Japanese coastal species. The CFs in edible species were within the range of 5.4-67, and the geometric means of CF was 26±4 (standard error). The values of Cs-137/Cs atom ratios in marine algae and sea water indicated that Cs-137 reached an equilibrium state in partition between algae and sea water. Therefore, the CF value obtained in the present study can be regarded as an equilibrated value. Our results showed that hte CF for Cs-137 in Japanese coastal algae were consistent with the Japanese guideline CFs, but were smaller than the recommended value by IAEA. (author)

  7. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    Directory of Open Access Journals (Sweden)

    Fernando Norambuena

    Full Text Available Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet of algae in fish feed (aquafeed resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal, Verdemin (derived from Ulva ohnoi and Rosamin (derived from diatom Entomoneis spp. for their possible inclusion into diet of Atlantic Salmon (Salmo salar. Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination, in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA content in whole body of fish fed 5% Rosamin was observed.

  8. Feeding preferences and the nutritional value of tropical algae for the abalone Haliotis asinina.

    Science.gov (United States)

    Angell, Alex R; Pirozzi, Igor; de Nys, Rocky; Paul, Nicholas A

    2012-01-01

    Understanding the feeding preferences of abalone (high-value marine herbivores) is integral to new species development in aquaculture because of the expected link between preference and performance. Performance relates directly to the nutritional value of algae--or any feedstock--which in turn is driven by the amino acid content and profile, and specifically the content of the limiting essential amino acids. However, the relationship between feeding preferences, consumption and amino acid content of algae have rarely been simultaneously investigated for abalone, and never for the emerging target species Haliotis asinina. Here we found that the tropical H. asinina had strong and consistent preferences for the red alga Hypnea pannosa and the green alga Ulva flexuosa, but no overarching relationship between protein content (sum of amino acids) and preference existed. For example, preferred Hypnea and Ulva had distinctly different protein contents (12.64 vs. 2.99 g 100 g(-1)) and the protein-rich Asparagopsis taxiformis (>15 g 100 g(-1) of dry weight) was one of the least preferred algae. The limiting amino acid in all algae was methionine, followed by histidine or lysine. Furthermore we demonstrated that preferences can largely be removed using carrageenan as a binder for dried alga, most likely acting as a feeding attractant or stimulant. The apparent decoupling between feeding preference and algal nutritive values may be due to a trade off between nutritive values and grazing deterrence associated with physical and chemical properties.

  9. Feeding preferences and the nutritional value of tropical algae for the abalone Haliotis asinina.

    Directory of Open Access Journals (Sweden)

    Alex R Angell

    Full Text Available Understanding the feeding preferences of abalone (high-value marine herbivores is integral to new species development in aquaculture because of the expected link between preference and performance. Performance relates directly to the nutritional value of algae--or any feedstock--which in turn is driven by the amino acid content and profile, and specifically the content of the limiting essential amino acids. However, the relationship between feeding preferences, consumption and amino acid content of algae have rarely been simultaneously investigated for abalone, and never for the emerging target species Haliotis asinina. Here we found that the tropical H. asinina had strong and consistent preferences for the red alga Hypnea pannosa and the green alga Ulva flexuosa, but no overarching relationship between protein content (sum of amino acids and preference existed. For example, preferred Hypnea and Ulva had distinctly different protein contents (12.64 vs. 2.99 g 100 g(-1 and the protein-rich Asparagopsis taxiformis (>15 g 100 g(-1 of dry weight was one of the least preferred algae. The limiting amino acid in all algae was methionine, followed by histidine or lysine. Furthermore we demonstrated that preferences can largely be removed using carrageenan as a binder for dried alga, most likely acting as a feeding attractant or stimulant. The apparent decoupling between feeding preference and algal nutritive values may be due to a trade off between nutritive values and grazing deterrence associated with physical and chemical properties.

  10. Natural impacted freshwaters: in situ use of alginate immobilized algae to the assessment of algal response.

    Science.gov (United States)

    Corrêa, A X R; Tamanaha, M S; Horita, C O; Radetski, M R; Corrêa, R; Radetski, C M

    2009-05-01

    The objective of this study was to investigate the feasibility of an in situ phytotoxicity test using alginate-immobilized algae for 60 days, in the assessment of water quality in an impacted small peri-urban stream. After laboratory optimization of algae immobilization/de-immobilization processes, the performance of immobilized/de-immobilized algae was compared to the performance of free algae in terms of specific algal growth and sensitivity. This was done by comparing 72 h EC50 values obtained with zinc and the pesticides clomazone and carbofuran. The results showed a similar performance, which allow us to conclude that immobilization for 60 days do not cause any significant alteration in algae physiology. In the field, immobilized algae were exposed at different times (2, 4 and 7 days) to water samples in both disturbed and undisturbed sites. Both laboratory and field experiments indicated that alginate-immobilized algae for 60 days were sufficiently sensitive for use in the in situ assessment of water quality.

  11. Changes of Cellular Superficial Configuration of Symbiotic Algae During Cultivation from Two Anemones Found in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Symbiotic algae from two anemones, Radianthus macrodactylus and Stichodactyla mertensii, found in the South China Sea, were cultivated in ASP-8A medium in this study. Changes of superficial configuration of symbiotic algae during the cultivation were studied by means of a microscope and a scanning electron microscope (SEM). A number of small cavities appeared on the surfaces of symbiotic algae after they were cultivated for 10 h. The cavities enlarged and the cell contents were lost with extended cultivation. Our data suggested that the presence of cavities on symbiotic algae surfaces may be one of the main reasons for failure to culture symbiotic algae in an artificial medium.

  12. Platinum anniversary: virus and lichen alga together more than 70 years.

    Directory of Open Access Journals (Sweden)

    Karel Petrzik

    Full Text Available Trebouxia aggregata (Archibald Gärtner (phylum Chlorophyta, family Trebouxiaceae, a lichen symbiotic alga, has been identified as host of the well-known herbaceous plant virus Cauliflower mosaic virus (CaMV, family Caulimoviridae. The alga had been isolated from Xanthoria parietina more than 70 years ago and has been maintained in a collection since that time. The CaMV detected in this collection entry has now been completely sequenced. The virus from T. aggregata is mechanically transmissible to a herbaceous host and induces disease symptoms there. Its genome differs by 173 nt from the closest European CaMV-D/H isolate from cauliflower. No site under positive selection was found on the CaMV genome from T. aggregata. We therefore assume that the virus's presence in this alga was not sufficiently long to fix any specific changes in its genome. Apart from this symbiotic alga, CaMV capsid protein sequences were amplified from many other non-symbiotic algae species maintained in a collection (e.g., Oonephris obesa, Elliptochloris sp., Microthamnion kuetzingianum, Chlorella vulgaris, Pseudococcomyxa sp.. CaMV-free Chlorella vulgaris was treated with CaMV to establish virus infection. The virus was still detected there after five passages. The virus infection is morphologically symptomless on Chlorella algae and the photosynthesis activity is slightly decreased in comparison to CaMV-free alga culture. This is the first proof as to the natural presence of CaMV in algae and the first demonstration of algae being artificially infected with this virus.

  13. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    Energy Technology Data Exchange (ETDEWEB)

    Attalah, Said; Waller, Peter M.; Khawam, George; Ryan, Randy D.; Huesemann, Michael H.

    2015-06-03

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  14. Snow algae of the Sierra Nevada, Spain, and High Atlas mountains of Morocco.

    Science.gov (United States)

    Duval, B; Duval, E; Hoham, R W

    1999-03-01

    Snow algae (Chlorophyta) are reported from the Sierra Nevada mountains in southern Spain and the High Atlas mountains of Morocco. Populations of the snow algae Chlamydomonas sp., coloring the snow orange-red, were collected from Pico de Veleta, Spain, while snow samples from Mt. Neltner in the High Atlas mountains, contained resting spores of an orange-green colored Chloromonas sp. Other microbes observed in snow samples include bacteria, fungi, heterotrophic euglenids, diatoms, nematodes, and heterotrophic mastigotes (flagellated protists). This is the first report of snow algae from the Sierra Nevada mountains of Spain and from the Afro-alpine environment. PMID:10943390

  15. The seasonal change of snow algae on snowpack in Qaanaaq, Greenland in 2013

    OpenAIRE

    大沼, 友貴彦; 竹内, 望; 植竹, 淳; 永塚, 尚子; 朽木, 勝幸; 庭野, 匡思; 青木, 輝夫

    2013-01-01

    It is known that phototrophic microbes called snow algae grow on the snow surface in thawing season. Bloom of snow algae can reduce reflectance of snow surface, resulting in promotion of snow melting. Therefore, it is important to determine factors of their growth in order to predict melting of snow coverage. However, it is still not known what the most major factor for the growth is. In this study, we aimed to determine the factors of initiation and growth of snow algae on snowpack on Qaanaa...

  16. The effect of temporal variability in salinity on the invasive red alga Gracilaria vermiculophylla

    DEFF Research Database (Denmark)

    Nejrup, Lars Brammer; Pedersen, Morten Foldager

    2012-01-01

    Non-native, invasive species are often characterized by being tolerant to environmental stressors, leaving them more fit relative to native species. The red alga Gracilaria vermiculophylla originates from the NW Pacific but has recently spread along the coastlines of Western Europe, where it has...... was reduced at salinities below 15 psu. Variable salinity reduced the growth rate and larger oscillations were more stressful than small ones. Exposure to very low salinity (0–5 psu) was stressful for the alga and algae exposed to these low levels for 2–4 days were unable to recover fully. Gracilaria...

  17. Study on the Adsorption of Metal Ions by Immobilized Marine Algae with the Existence of Clay

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The process of adsorption of metal ions by immobilized marine algae with the existence of clay was investigated. It can be noted from the results that, after mixing with clay,the adsorption rate increases rapidly with the increasing amount of the marine algae. When pH=5, the best ratio between the clay and the marine algae is 1:4 for Pb2+. The result of in situ handling of the waste water containing heavy metals shows that the average adsorption rates of heavy metal irons Cu2+, Cd2+, Pb2+ and Ni2+ are all over 70 %.

  18. Studies on Biquaternary Ammonium Salt Algaecide for Removing Red Tide Algae

    Institute of Scientific and Technical Information of China (English)

    刘洁生; 张珩; 杨维东; 高洁; 柯琼

    2004-01-01

    The paper deals with the removal and control of red tide algae, Phaeoecystis globosa and Alexandrium tamarense by biquaternary ammonium salt algaecide. The results show that the efficient concentration of biquaternary ammonium salt to control the two algaes in 96 h is 0.8 mg · L-1 and 0.4 mg · L-1, respectively. It is found that biquaternary ammonium salt has high efficiency and longer duration of action in the removal and control of algae.Biquaternary ammonium salt might be an excellent algaecide to control HAB.

  19. The Dynamics of a Diffusive Nutrient-Algae Model Based upon the Sanyang Wetland

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2015-01-01

    Full Text Available The stability and spatiotemporal dynamics of a diffusive nutrient-algae model are investigated mathematically and numerically. Mathematical theoretical studies have considered the positivity and boundedness of the solution and the existence, local stability, and global stability of equilibria. Turing instability has also been studied. Furthermore, a series of numerical simulations was performed and a complex Turing pattern found. These results indicate that the nutrient input rate has an important influence on the density and spatial distribution of algae populations. This may help us to obtain a better understanding of the interactions of nutrient and algae and to investigate plankton dynamics in aquatic ecosystems.

  20. Marine algae-derived bioactive peptides for human nutrition and health.

    Science.gov (United States)

    Fan, Xiaodan; Bai, Lu; Zhu, Liang; Yang, Li; Zhang, Xuewu

    2014-09-24

    Within the parent protein molecule, most peptides are inactive, and they are released with biofunctionalities after enzymatic hydrolysis. Marine algae have high protein content, up to 47% of the dry weight, depending on the season and the species. Recently, there is an increasing interest in using marine algae protein as a source of bioactive peptides due to their health promotion and disease therapy potentials. This review presents an overview of marine algae-derived bioactive peptides and especially highlights some key issues, such as in silico proteolysis and quantitative structure-activity relationship studies, in vivo fate of bioactive peptides, and novel technologies in bioactive peptides studies and production. PMID:25179496

  1. Natural Abundance 14C Content of Dibutyl Phthalate (DBP from Three Marine Algae

    Directory of Open Access Journals (Sweden)

    Kazuyo Ukai

    2006-11-01

    Full Text Available Abstract: Analysis of the natural abundance 14C content of dibutyl phthalate (DBP from two edible brown algae, Undaria pinnatifida and Laminaria japonica, and a green alga, Ulva sp., revealed that the DBP was naturally produced. The natural abundance 14C content of di-(2-ethylhexyl phthalate (DEHP obtained from the same algae was about 50-80% of the standard sample and the 14C content of the petrochemical (industrial products of DBP and DEHP were below the detection limit.

  2. Comparing the effects of symbiotic algae (Symbiodinium clades C1 and D on early growth stages of Acropora tenuis.

    Directory of Open Access Journals (Sweden)

    Ikuko Yuyama

    Full Text Available Reef-building corals switch endosymbiotic algae of the genus Symbiodinium during their early growth stages and during bleaching events. Clade C Symbiodinium algae are dominant in corals, although other clades - including A and D - have also been commonly detected in juvenile Acroporid corals. Previous studies have been reported that only molecular data of Symbiodinium clade were identified within field corals. In this study, we inoculated aposymbiotic juvenile polyps with cultures of clades C1 and D Symbiodinium algae, and investigated the different effect of these two clades of Symbiodinium on juvenile polyps. Our results showed that clade C1 algae did not grow, while clade D algae grew rapidly during the first 2 months after inoculation. Polyps associated with clade C1 algae exhibited bright green fluorescence across the body and tentacles after inoculation. The growth rate of polyp skeletons was lower in polyps associated with clade C1 algae than those associated with clade D algae. On the other hand, antioxidant activity (catalase of corals was not significantly different between corals with clade C1 and clade D algae. Our results suggested that clade D Symbiodinium algae easily form symbiotic relationships with corals and that these algae could contribute to coral growth in early symbiosis stages.

  3. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator Growth in Chlorella kessleri (Prey Mass Cultures for Algae Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Vishnupriya Pradeep

    2015-08-01

    Full Text Available A single Brachionus rotifer can consume thousands of algae cells per hour causing an algae pond to crash within days of infection. Thus, there is a great need to reduce rotifers in order for algal biofuel production to become reality. Copper can selectively inhibit rotifers in algae ponds, thereby protecting the algae crop. Differential toxicity tests were conducted to compare the copper sensitivity of a model rotifer—B. calyciflorus and an alga, C. kessleri. The rotifer LC50 was <0.1 ppm while the alga was not affected up to 5 ppm Cu(II. The low pH of the rotifer stomach may make it more sensitive to copper. However, when these cultures were combined, a copper concentration of 1.5 ppm was needed to inhibit the rotifer as the alga bound the copper, decreasing its bioavailability. Copper (X ppm had no effect on downstream fatty acid methyl ester extraction.

  4. Effects of extreme seasonality on community structure and functional group dynamics of coral reef algae in the southern Red Sea (Eritrea)

    NARCIS (Netherlands)

    Ateweberhan, M.; Bruggemann, J. H.; Breeman, A. M.

    2006-01-01

    Spatial and temporal variation in the biomass of four functional groups of coral reef algae (canopy algae, foliose algae, turf algae and crustose corallines) was investigated in the southern Red Sea. This region is characterised by extremely high summer temperatures (ca. 35 degrees C). Strong season

  5. Enhancement of biodiesel production from different species of algae

    Directory of Open Access Journals (Sweden)

    El-Moneim M. R. Afify, Abd

    2010-12-01

    Full Text Available Eight algal species (4 Rhodo, 1 chloro and 1 phaeophycean macroalgae, 1 cyanobacterium and 1 green microalga were used for the production of biodiesel using two extraction solvent systems (Hexane/ether (1:1, v/v and (Chloroform/ methanol (2:1, v/v. Biochemical evaluations of algal species were carried out by estimating biomass, lipid, biodiesel and sediment (glycerin and pigments percentages. Hexane/ ether (1:1, v/v extraction solvent system resulted in low lipid recoveries (2.3-3.5% dry weight while; chloroform/methanol (2: 1, v/v extraction solvent system was proved to be more efficient for lipid and biodiesel extraction (2.5 – 12.5% dry weight depending on algal species. The green microalga Dictyochloropsis splendida extract produced the highest lipid and biodiesel yield (12.5 and 8.75% respectively followed by the cyanobacterium Spirulina platensis (9.2 and 7.5 % respectively. On the other hand, the macroalgae (red, brown and green produced the lowest biodiesel yield. The fatty acids of Dictyochloropsis splendida Geitler biodiesel were determined using gas liquid chromatography. Lipids, biodiesel and glycerol production of Dictyochloropsis splendida Geitler (the promising alga were markedly enhanced by either increasing salt concentration or by nitrogen deficiency with maximum production of (26.8, 18.9 and 7.9 % respectively at nitrogen starvation condition.

    Ocho especies de algas (4 Rhodo, 1 cloro y 1 macroalgas phaeophycean, 1 cianobacteria y 1 microalga verde fueron utilizados para la producción de biodiesel utilizando dos sistemas de extracción con disolventes (hexano/éter (1:1, v/v y (Cloroformo / metanol (2:1, v/v. La evaluación bioquímica de las especies de algas se llevó a cabo mediante la estimación de los porcentajes de biomasa, de lípidos, de biodiesel y de sedimento (glicerina y pigmentos. El sistema extracción con el disolvente hexano/éter (1:1, v

  6. Bioecology of an articulated coralline alga Amphiroa fragilissima from Anjuna, Goa, Central Western Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ambiye, V.; Untawale, A.G.

    .0 to 30.2 during the monsoon. Intergenicula showed `C' type surface morphology and the presence of trichocytes when viewed under a scanning electron microscope. This alga avoids fouling by shedding its epithalial layer. Aspects regarding its seasonal...

  7. Development of chemistry support programme for algae control in spray pond waters of CIRUS reactor

    International Nuclear Information System (INIS)

    A major problem in any open recirculating cooling water system, is the growth of micro-organisms, especially algae, which adversely affects the efficient and safe operation of the plant. The algae control depends to a great extent, on the selection of an effective algaecide and on the adoption of proper dose and dosing frequency of the algaecide. The present paper describes the development of (i) a generally applicable analytical method for comparing the algicidal efficacies of available commercial algaecides, for the specific local strains of algae in the spray pond waters of CIRUS reactor at Trombay, and (ii) a procedure for assessing 'algicide demand' in open recirculating cooling water systems, which can be used to establish an effective and efficient algae control programme. (author)

  8. Biological activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis from Persian Gulf.

    Directory of Open Access Journals (Sweden)

    S Saeidnia

    2009-01-01

    Full Text Available Among marine organisms, algae are a large and diverse group of organisms from which a wide range of secondary metabolites have been isolated. A number of these compounds possess biological activity. In this study, we aim to evaluate the cytotoxic, antibacterial and antifungal activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis, collected from Persian Gulf. Ethyl acetate extracts of both algae showed a potent cytotoxic effect against Artemia salina nauplii (LC50 = 3 and 4 μg.ml−1, respectively. Aqueous methanol (50% extracts were also effective. None of the methanol and aqueous methanol extracts of the algae showed antifungal and antibacterial activity against Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus niger by the Broth-dilution method. Only the ethyl acetate extracts exhibited antibacterial activity (MIC = 2 μg.ml−1 on S. aureus. In conclusion, G. salicornia and H. flagelliformis could be a promising source of cytotoxic components.

  9. Method and apparatus for detecting phycocyanin-pigmented algae and bacteria from reflected light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting phycocyanin algae or bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  10. Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae

    DEFF Research Database (Denmark)

    Ehimen, Ehiazesebhor Augustine; Holm-Nielsen, Jens Bo; Poulsen, M.;

    2013-01-01

    biomass blending (20% compared to use of a mechanical size reduction method alone. The methane yields from Rhizoclonium biomass were however observed to be considerably lower than those of other algae species from...

  11. Study on contrast test of PPC pre-oxidation and coagulation for algae removal and deodorization

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The effect of treating algae-bearing water and induced odor by use of permanganate potassium composite (PPC) pre-oxidation was investigated, and was compared with the effect of treatments by pre-chlorination, permanganate potassium pre-oxidation and simple coagulation. The results showed that simple coagulation and pre-chlorination were less effective in removing algae and its odor, whereas PPC pre-oxidation was the most effective in algae removal and deodorization. Upon oxidation with PPC, the cells of Oscillatoria agardhic were inactivated and some intra-cellular and extra-cellular components were released into the water, which may help the coagulation by their bridging effect. The efficient removal of algae by PPC pre-oxidation is believed to be the joint contribution of several mechanisms.

  12. Characteristic and mechanism of inactivating algae with O3 and ClO2

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Both O3 and ClO2 have a high effect on inacti- vating-algae in source water with no forming THMs which do harm to human in producing drinking water, so they will be favorably substituted for Cl2. In order to make certain of the mechanism of inactivating algae with O3 and ClO2, the algal cell number change and its different characteristics of figures and structures in treated and untreated water have been studied by the microscopy and SEM and the mode of inactivating algae has been inferred. The results show that the mechanism of inactivating algae by O3 is not completely identical with that by ClO2. The actual reaction process and efficiency have been controlled by many factors, such as the different characteristics of oxidants and algal cells.

  13. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    Science.gov (United States)

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed.

  14. High efficiency metal removal from hexane-extracted algae oil using super and subcritical propane

    International Nuclear Information System (INIS)

    Highlights: • Metal removal from algae oil was achieved by supercritical propane solvent extraction. • Continuous metal removing process was developed. • Required energy for metal removing was calculated. - Abstract: As a renewable energy source, oil-producing algae have received much attention in recent years. Raw oil, which is normally extracted from algae using solvents such as hexane or ethyl acetate, includes trace metal compounds that rapidly deactivate the hydrogenation catalyst. In this study, metal removal from hexane-extracted algae oil with supercritical and subcritical propane extraction was examined at temperatures from 40 °C to 130 °C and at 6 MPa pressure. The results showed that the metal concentration became decreasing with temperature increasing and metals were not detectable at 114 °C. Using these results, an energy saving process was proposed. Simulation results showed that the metal removal required a mere 3–4% energy consumption compared to a lower heating value of raw oil

  15. Bioactivity of marine organisms. Part 3. Screening of marine algae of Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; Naik, C.G.; DeSouza, L.; Jayasree, V.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts from Indian marine algae have been tested for anti-viral, anti-bacterial, anti-fungal, anti-fertility, hypoglycaemic and a wide range of pharmacological activities. Of 34 species investigated 17 appeared biologically active. Six...

  16. Anticancer and antioxidant activities of the peptide fraction from algae protein waste.

    Science.gov (United States)

    Sheih, I-Chuan; Fang, Tony J; Wu, Tung-Kung; Lin, Peng-Hsiang

    2010-01-27

    Algae protein waste is a byproduct during production of algae essence from Chlorella vulgaris. There is no known report on the anticancer peptides derived from the microalgae protein waste. In this paper, the peptide fraction isolated from pepsin hydrolysate of algae protein waste had strong dose-dependent antiproliferation and induced a post-G1 cell cycle arrest in AGS cells; however, no cytotoxicity was observed in WI-38 lung fibroblasts cells in vitro. The peptide fraction also revealed much better antioxidant activity toward peroxyl radicals and LDL than those of Trolox. Among these peptides, a potent antiproliferative, antioxidant, and NO-production-inhibiting hendecapeptide was isolated, and its amino acid sequence was VECYGPNRPQF. These results demonstrate that inexpensive algae protein waste could be a new alternative to produce anticancer peptides. PMID:19916544

  17. Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Burgess, K.; Delany, J.E.; Mesbahi, E.

    algae as the evolutionary link between cellular individuality and cellular cooperation has been largely unstudied. Here, we show that clonal populations of a unicellular chlorophyte, Tetraselmis indica, consist of morphologically and ultrastructurally...

  18. Bioaccumulation of gasoline in brackish green algae and popular clams

    Directory of Open Access Journals (Sweden)

    Gihan A. El-Shoubaky

    2016-03-01

    Full Text Available The green algae (Ulva lactuca and Enteromorpha clathrata and the clams (Tapes decussates and Venerupis aurea grow together in Timsah Lake, Suez Canal, Egypt. Our ultimate goal is to validate the bioaccumulation of gasoline in the marine organisms and their behavior after exposure to the pollutant, experimentally. These species were treated with a serial treatment of gasoline (1000, 4000, 16,000 and 64,000 μl in aquaria with brackish sea-water for 72 h. The tested green algae and clams were taken for an analysis of total hydrocarbon accumulation daily. The statistical analysis showed significant differences between the four species and also between the duration of exposure. The accumulation of gasoline in U. lactuca and E. clathrata reached their maximum after 48 h at 1000 and 4000 μl. The highest absorption was registered after 24 h only at 16,000 and at 64,000 μl. U. lactuca recorded complete mortality in 64,000 μl at 72 h whereas E. clathrata registered death at 48 h and 72 h in the same treatment. V. aurea was more sensitive than T. decussates. The accumulation of gasoline reached its maximum in V. aurea after only 24 h in the first treatment while it retarded to 48 h in T. decussates with a lesser accumulation. However, both clam species accumulated the highest amount of petroleum hydrocarbons during the first hour of exposure at the first treatment. In the third and fourth treatments, clams did not accumulate gasoline but began to dispose it from their tissues till it became less than that in the control. Mortality gradually increased with time in each treatment except the last one (64,000 μl in which 100% death of the specimens was observed. In general, the bioaccumulation of gasoline level was in a descending order as follows: U. lactuca > E. clathrata > V. aurea > T. decussates. Their behavior changed from accumulation to detoxification with time and with the increase in pollutant concentration. Generally, these

  19. Algae biodiesel life cycle assessment using current commercial data.

    Science.gov (United States)

    Passell, Howard; Dhaliwal, Harnoor; Reno, Marissa; Wu, Ben; Ben Amotz, Ami; Ivry, Etai; Gay, Marcus; Czartoski, Tom; Laurin, Lise; Ayer, Nathan

    2013-11-15

    Autotrophic microalgae represent a potential feedstock for transportation fuels, but life cycle assessment (LCA) studies based on laboratory-scale or theoretical data have shown mixed results. We attempt to bridge the gap between laboratory-scale and larger scale biodiesel production by using cultivation and harvesting data from a commercial algae producer with ∼1000 m(2) production area (the base case), and compare that with a hypothetical scaled up facility of 101,000 m(2) (the future case). Extraction and separation data are from Solution Recovery Services, Inc. Conversion and combustion data are from the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET). The LCA boundaries are defined as "pond-to-wheels". Environmental impacts are quantified as NER (energy in/energy out), global warming potential, photochemical oxidation potential, water depletion, particulate matter, and total NOx and SOx. The functional unit is 1 MJ of energy produced in a passenger car. Results for the base case and the future case show an NER of 33.4 and 1.37, respectively and GWP of 2.9 and 0.18 kg CO2-equivalent, respectively. In comparison, petroleum diesel and soy diesel show an NER of 0.18 and 0.80, respectively and GWP of 0.12 and 0.025, respectively. A critical feature in this work is the low algal productivity (3 g/m(2)/day) reported by the commercial producer, relative to the much higher productivities (20-30 g/m(2)/day) reported by other sources. Notable results include a sensitivity analysis showing that algae with an oil yield of 0.75 kg oil/kg dry biomass in the future case can bring the NER down to 0.64, more comparable with petroleum diesel and soy biodiesel. An important assumption in this work is that all processes are fully co-located and that no transport of intermediate or final products from processing stage to stage is required. PMID:23900083

  20. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Brian

    2013-12-31

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the

  1. Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis: Effects of Cultivation Parameters

    Institute of Scientific and Technical Information of China (English)

    Ping He; James Duncan; James Barber

    2007-01-01

    The green alga, Haematococcus pluvialis Flotow is used as a source of the ketocarotenoid astaxanthin for application in fish aquaculture, pharmaceutical and cosmetic industries. Cells of the green alga were induced by the application of different light and starvation conditions to evaluate the effect in astaxanthin accumulate. The condiphosphate starvation. The results show that stresses applied in culture, which interfere with cell division, trigger the accumulation of astaxanthin. Notably, sulfur starvation results in a massive accumulation of this commercially important carotenoid.

  2. Advanced emission control system: CO2 sequestration using algae integrated management system (AIMS)

    International Nuclear Information System (INIS)

    One of the companies under Algae tech, Sasaran Bio fuel Sdn. Bhd. provides project management, technology transfer and technical expertise to develop a solution to minimize and mitigate Carbon Dioxide (CO2) emissions through the diversion of the CO2 to open algal ponds and enclosed photo-bioreactors as algal propagation technologies to consume CO2 waste stream. The company is presently consulting a listed company from Indonesia to address the technology know-how and implementation of microalgae development from the flue gas of the Groups power plants. Nowadays, one of the aspects that contribute to the air pollution is the emission of flue gases from the factories. So, we provide a system that can reduce the emission of flue gas to the atmosphere and at the same time, cultivate certain strain of algae. With the technology, Algae Integrated Management System (AIMS), it will be for sure a new beginning for way to reduce air pollution. The utilization of power plant resources for growing selected microalgae at a low energy cost for valuable products and bio-fuels while providing CO2 sequestering. In the same time, it also a low cost algae agriculture. By doing so, it provides all year algae production which can be an income. This residual energy used CO2 produced from power stations and industrial plants to feed the process (CO2 recycling and bio-fixation) in cultivation of algae. This will be a low cost flue gas (CO2) to the developer. In a nutshell, CO2 Sequestration by algae reactors is a potential to reduce greenhouse gas emission by using the CO2 in the stack gases to produce algae. (author)

  3. Monitoring of qualitative parameters of milk from dairy cows fed algae

    OpenAIRE

    Dědinová, Lenka

    2012-01-01

    The subject of this research was to determine the possible influence of adding green algae Chlorella sp. to the diet of dairy cows and evaluate the subsequent effects on milk quality. Algae contain high levels of protein, essential fatty acids, and a number of important vitamins and minerals, to improve and enrich the diet of dairy cows with subsequent benefits to the quality of milk. Continuing cost increases of feedstuffs directly affects the selling price of the milk produced, which is ...

  4. Chemical composition and antioxidant activities of Jeddah corniche algae, Saudi Arabia

    OpenAIRE

    Al-Amoudi, Omar A.; Mutawie, Hawazin H.; Patel, Asmita V.; Blunden, Gerald

    2009-01-01

    The increased use of natural product in the pharmaceutical industry has led to an increase in demand for screening for bioactive compounds in marine algae. An important economic algae, through chemical composition analysis and their antioxidant activities were investigated in this study. Chemical composition analysis of three algal samples from the Chlorophyta Ulva lactuca (U), Phaeophyta Sargassum crassifolia (S) and Rhodophyta Digenea simplex (D) was tested. Main components were sugars (57....

  5. Biofuels from algae: technology options, energy balance and GHG emissions: Insights from a literature review

    OpenAIRE

    ROCCA STEFANIA; AGOSTINI ALESSANDRO; GIUNTOLI JACOPO; MARELLI Luisa

    2015-01-01

    During the last decade(s), algal biomass received increasing interest as a potential source of advanced biofuels production resulting in a considerable attention from research, industry and policy makers. In fact, algae are expected to offer several advantages compared to land-based biomass crops, including: better photosynthetic efficiency; higher oil yield; growth on non-fertile land; tolerance to a variety of water sources (i.e. fresh, brackish, saline) and CO2 re-using potential. The alga...

  6. Microorganisms living on algae : An interesting reservoir of enzymes hydrolyzing algal biomass

    OpenAIRE

    Martin, Marjolaine; Biver, Sophie; Barbeyron, Tristan; Michel, Gurvan; Portetelle, Daniel; Vandenbol, Micheline

    2013-01-01

    Algal polysaccharides are increasingly used in food industry for their gelling properties and in pharmacology for their therapeutic properties. Furthermore, increasingly interest is taken on algae for their use in the production of biofuels and bioenergies. To purify algal polysaccharides and degrade algal biomass, specific microbial enzymes are needed. Microorganisms living on algae are an interesting source of those enzymes, as they are in constant interaction with algal biomass. The aim...

  7. Preliminary results on accumulation and loss of artificial radionuclides in marine benthic algae

    International Nuclear Information System (INIS)

    The acummulation and the loss of artificial radionuclides in three species of marine benthic algae of the state of Rio de Janeiro were studied under laboratory conditions, so that a selection of biological indicators for radioctive contamination of the marine environment could be made. Medium concentration factors were calculated, the most significant figures being those obtained for the algae Pterocladia Capillacea (Gmelin) Bornet et Thuret (132+-40) p/ sub(131) I and Sargassum vulgares J. Agardh (19+-5) p/ 51Cr

  8. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities

    OpenAIRE

    Bell, Tisza A. S.; Prithiviraj, Bharath; Wahlen, Brad D.; Matthew W Fields; Peyton, Brent M.

    2016-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgari...

  9. Effect of ultraviolet radiation on laboratory cultures of green algae and cyanobacteria

    International Nuclear Information System (INIS)

    Since the discovery of the ozone hole, an increasing amount of work has been devoted to measuring the impact of the UV-radiation on living organisms. In this point of view, algae as the primer producers of aquatic ecosystems, get to the central part of the interest. The aim of the study was to study the effect of ultraviolet radiation on laboratory cultures of green algae and cyanobacteria

  10. Molecular biology and physiology of isolated chloroplasts from the algae Vaucheria

    OpenAIRE

    Didriksen, Alena

    2010-01-01

    Sea slugs of the genus Elysia (e.g. E. chlorotica) are known for their ability to incorporate chloroplasts from the yellow-green alga Vaucheria litorea. These “kleptoplasts” stay active in the digestive tract of the sea slug for several months. Chloroplasts from Vaucheria litorea are also reported to be significantly more stable after in vitro isolation than chloroplasts of other algae or of higher plants. In organello assays with isolated chloroplasts are used in studies on photosynthetical ...

  11. Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial

    Science.gov (United States)

    van der Heijden, L. H.; Kamenos, N. A.

    2015-11-01

    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term timescales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological timescales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Net organic and inorganic production were estimated at 330 g C m-2 yr-1 and 900 g CaCO3 m-2 yr-1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr-1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr-1. Using this potential carbon storage for coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr-1 suggesting a total potential carbon sink of 1.6 × 109 tonnes per year. Coralline algae therefore have production rates similar to mangroves, salt marshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store.

  12. Sistema de control automático de plataformas de crecimiento de algas en el espacio

    OpenAIRE

    Rodriguez Mota, Gabriel

    2016-01-01

    This final degree work has been done with the aim to study and build a system capable of automatically controlling algae growth platforms. It is a land simulation of an ECLSS "Environmental Control and Life Support System". The study of algae as a species to be incorporated into closed bioregenerative systems for space missions is interesting. Because thanks to their photosynthetic and filtering properties they can generate food and other vital substances to the space crew, in addition to reg...

  13. Sublethal concentrations of ichthyotoxic alga Prymnesium parvum affect rainbow trout susceptibility to viral haemorrhagic septicaemia virus

    DEFF Research Database (Denmark)

    Andersen, Nikolaj Gedsted; Lorenzen, Ellen; Boutrup, Torsten Snogdal;

    2016-01-01

    concentrations of the ichthyotoxic alga Prymnesium parvum affect the susceptibility of rainbow trout Oncorhynchus mykiss to viral haemorrhagic septicaemia virus (VHSV). During exposure to sublethal algal concentrations, the fish increased production of mucus on their gills. When fish were exposed to the algae...... on the experimental setup. We concluded that depending on the local exposure conditions, sublethal concentrations of P. parvum could affect susceptibility of fish to infectious agents such as VHSV....

  14. Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review

    OpenAIRE

    Sambusiti, Cécilia; Bellucci, Micol; Zabaniotou, Anastasia; Beneduce, Luciano; Monlau, Florian

    2015-01-01

    Interest is growing in the production of biohydrogen from algae through dark fermentation, as alternative to fossil fuels. However, one of the limiting steps of biohydrogen production is the conversion of polymeric carbohydrates into monomeric sugars. Thus, physical, chemical and biological pretreatments are usually employed in order to facilitate carbohydrates de-polymerization and enhancing biohydrogen production from algae. Considering the overall process, biohydrogen production through da...

  15. Distribution of blue-green algae (Cyanophyta) in streams of Mt. Stara planina: Serbia

    OpenAIRE

    Simić Snežana B.

    2002-01-01

    Distribution of blue-green algae was studied at 14 sites along five streams in the Stara Planina mountains. Algological samples were taken from the community of benthos and periphyton in the spring (March-May 1991), summer (June-August 1991, August 1996, July 1997), and autumn (September-November 1991, September 1997). Algae of the classes Chamaesiphonophyceae (species of the genus Chamaesiphon) and Hormogoniophyceae (species of the genera Symploca, Phormidium, Oscillatoria, Schizothrix, Nost...

  16. Recent developments in the commercial production of DHA and EPA rich oils from micro-algae

    OpenAIRE

    Winwood Robert J.

    2013-01-01

    The regular intake of marine omega 3’s DHA and EPA has been scientifically established as providing a wide range of health benefits. This paper reviews recent developments in the commercial production of DHA and EPA rich oils from micro-algae. The selection of suitable micro-algae species is discussed. The complexities of producing algal oil rich in marine omega 3’s is examined in terms of both upstream and downstream production.

  17. Antibiofilm Activity of the Brown Alga Halidrys siliquosa against Clinically Relevant Human Pathogens

    OpenAIRE

    Alessandro Busetti; Thompson, Thomas P.; Diana Tegazzini; Julianne Megaw; Maggs, Christine A.; Gilmore, Brendan F.

    2015-01-01

    The marine brown alga Halidrys siliquosa is known to produce compounds with antifouling activity against several marine bacteria. The aim of this study was to evaluate the antimicrobial and antibiofilm activity of organic extracts obtained from the marine brown alga H. siliquosa against a focused panel of clinically relevant human pathogens commonly associated with biofilm-related infections. The partially fractionated methanolic extract obtained from H. siliquosa collected along the shores o...

  18. Cell death in the unicellular green alga Micrasterias upon H2O2 induction

    OpenAIRE

    Darehshouri, Anza; Affenzeller, Matthias; LÜTZ-MEINDL, URSULA

    2008-01-01

    In the present study we investigate whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction and by which morphological, molecular and physiological hallmarks it is characterized. This is particularly interesting as unicellular fresh water green algae growing in shallow bog ponds are exposed to extreme environmental conditions and the capability to perform PCD may provide an important strategy to guarantee surv...

  19. Brown Algae (Phaeophyceae) from the Coast of Madagascar: preliminary Bioactivity Studies and Isolation of Natural Products

    OpenAIRE

    Rahelivao, Marie Pascaline; Gruner, Margit; Andriamanantoanina, Hanta; Bauer, Ingmar; Knölker, Hans-Joachim

    2015-01-01

    Abstract Eight species of brown algae (Phaeophyceae) from the coast of Madagascar have been investigated for their chemical constituents. Fucosterol (3) was obtained as the most abundant compound. The brown alga Sargassum ilicifolium was the source for the first isolation of the terpenoid C27-alcohol 1,1′,2-trinorsqualenol (1) from marine sources. From S. incisifolium we isolated the highly unsaturated glycolipid 1-O-palmitoyl-2-O-stearidonoyl-3-O-β-D-galactopyranosylglycerol (4) and we repor...

  20. The marine algae Sargassum spp. (Sargassaceae) as feed for sheep in tropical and subtropical regions

    OpenAIRE

    Marín Álvarez, Alejandro; Casas Valdez, María Margarita; Carrillo Domínguez, Silvia; Hernández Contreras, Hugo; Monroy, Alberto; Sanginés, Leonor; Pérez-Gil, Fernando

    2009-01-01

    The objective of this study was to evaluate Sargassum meal as feed for sheep through the measures of in vivo digestibility, dry matter degradability, pH, ammonia and volatile fatty acids in rumen. The Sargassum algae used in this experiment were collected at the end of spring, when they are more abundant, bigger, and have completed their reproductive cycle. Four tons (wet weigth) were collected manually from the intertidal zone of La Paz bay, Baja California Sur, Mexico. These algae were sun-...

  1. DRY BIOMASS OF FRESH WATER ALGAE OF CHLORELLA GENUS IN THE COMBINED FORAGES FOR LAYING HENS

    OpenAIRE

    SVETLANA GRIGOROVA

    2006-01-01

    Dry biomass of algae is a good source of nutrients and biologically active substances, which in the last years attracted the interest of the specialists in their search for natural, ecologically and healthy sound foods for the animals. The aim of the present study was to characterize the chemical composition and the nutritive value of the dry biomass of fresh water algae of Chlorella genus cultivated in Bulgaria and to establish its effect on the laying hen productivity and the morphological ...

  2. Micro-algae come of age as a platform for recombinant protein production

    OpenAIRE

    Specht, Elizabeth; Miyake-Stoner, Shigeki; Mayfield, Stephen

    2010-01-01

    A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae...

  3. Characteristic Study of the Marine Algae Sargassum sp. on Metal Adsorption

    OpenAIRE

    A. Saravanan; V. Brindha; Soundarajan Krishnan

    2011-01-01

    Problem statement: Biomass of brown marine macro algae is a biological resource that is available in large quantities and can form a good base for the development of biosorbent material. Approach: Algae have been found to be potentially suitable biosorbents because of its cheap availability, both in fresh or salt water, relatively high surface area and high binding affinity. Results: The study considered the molecular status of the biomass such as DNA, Protein and Pigment ...

  4. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    OpenAIRE

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a c...

  5. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    OpenAIRE

    Azin Ahmadi; Soheil Zorofchian Moghadamtousi; Sazaly Abubakar; Keivan Zandi

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinat...

  6. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    OpenAIRE

    Atsushi Kurotani; Tetsuya Sakurai

    2015-01-01

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reporte...

  7. Identifying vital effects in Halimeda algae with Ca isotopes

    OpenAIRE

    Blättler, C. L.; S. M. Stanley; Henderson, G. M.; Jenkyns, H.C

    2014-01-01

    Geochemical records of biogenic carbonates provide some of the most valuable records of the geological past, but are often difficult to interpret without a mechanistic understanding of growth processes. In this experimental study, Halimeda algae are used as a test organism to untangle some of the specific factors that influence their skeletal composition, in particular their Ca-isotope composition. Algae were stimulated to precipitate both calcite and aragon...

  8. Comparison of passive and standard dosing of polycyclic aromatic hydrocarbons to the marine algae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Witt, G.; Niehus, N. C.; Konopka, K.;

    2015-01-01

    dosing according to the standard marine algae test procedure on microtiter plates. A comparison of the EC50 values of passive dosing vs. EC50 values of standard dosing showed an underestimation of the effects when using nominal standard dosing probably due to sorption, evaporation and limiting....... Passive dosing is a practical and economical way of improving the exposure of HOCs in aquatic toxicity or bioconcentration tests like the algae growth inhibition test. \

  9. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    Science.gov (United States)

    Park, Sichoon; Van Ginkel, Steven W; Pradeep, Priya; Igou, Thomas; Yi, Christine; Snell, Terry; Chen, Yongsheng

    2016-01-01

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC(50) for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC(50) for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes.

  10. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    Energy Technology Data Exchange (ETDEWEB)

    Peng Zhang' e [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: zhepeng@126.com; Wu Feng [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: fengwu@whu.edu.cn; Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: nsdengwhu@163.com

    2006-12-15

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe{sup 3+} ions was investigated. Algae, humic acid and Fe{sup 3+} ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 10{sup 9} cells L{sup -1} raw Chlorella vulgaris, 4 mg L{sup -1} humic acid and 20 {mu}mol L{sup -1} Fe{sup 3+}. The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment.

  11. The cell walls of green algae: a journey through evolution and diversity

    Directory of Open Access Journals (Sweden)

    David eDomozych

    2012-05-01

    Full Text Available The green algae represent a large group of morphologically diverse photosynthetic eukaryotes that occupy virtually every photic habitat on the planet. The extracellular coverings of green algae including cell walls are also diverse. A recent surge of research in green algal cell walls fueled by new emerging technologies has revealed new and critical insight concerning these coverings. For example, the late divergent taxa of the Charophycean Green Algae possess cell walls containing assemblages of polymers with notable similarity to the cellulose, pectins, hemicelluloses, arabinogalactan proteins, extensin and lignin present in embryophyte walls. Ulvophycean seaweeds have cell wall components whose most abundant fibrillar constituents may change from cellulose to β-mannans to β-xylans and during different life cycle phases. Likewise, these algae produce complex sulfated polysaccharides, arabinogalactan proteins and extensin. Chlorophycean green algae produce a wide array of walls ranging from cellulose-pectin complexes to ones made of hydroxyproline-rich glycoproteins. Larger and more detailed surveys of the green algal taxa including incorporation of emerging genomic and transcriptomic data are required in order to more fully resolve evolutionary trends within the green algae and in relationship with higher plants as well as potential applications of wall components in the food and pharmaceutical industries.

  12. Pressurized thermal and hydrothermal decomposition of algae, wood chip residue, and grape marc: A comparative study

    International Nuclear Information System (INIS)

    Pressurized thermal decomposition of two marine algae, Pinus radiata chip residue and grape marc using high temperature, high pressure reactions has been studied. The yields and composition of the products obtained from liquefactions under CO of a mixture of biomass and H2O (with or without catalyst) were compared with products from liquefaction of dry biomass under N2, at different temperatures, gas pressures and for CO runs, water to biomass ratios. Thermochemical reactions of algae produced significantly higher dichloromethane solubles and generally higher product yields to oil and asphaltene than Pinus radiata and grape marc under the reaction conditions used. Furthermore, the biofuels derived from algae contained significant concentrations of aliphatic hydrocarbons as opposed to those from radiata pine and grape marc which were richer in aromatic compounds. The possibility of air transport fuel production from algae thus appears to have considerable advantages over that from radiata pine and grape marc. - Highlights: • Liquefaction of algae gave more oil than that of Pinus radiata and grape marc. • Reactions under CO/H2O produced higher yields of oil than N2. • Water to biomass ratio had little effect on the yields. • Bio-oil from algae contained substantial amounts of aliphatic hydrocarbons. • Pinus radiata oil was low in N but high in O

  13. Transcriptome-wide evolutionary analysis on essential brown algae (Phaeophyceae) in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jing; LIU Tao; YU Jun; WANG Liang; WU Shuangxiu; WANG Xumin; XIAO Jingfa; CHI Shan; LIU Cui; REN Lufeng; ZHAO Yuhui

    2014-01-01

    Brown algae (Chromista, Ochrophyta, Phaeophyceae) are a large group of multicellular algae that play im-portant roles in the ocean's ecosystem and biodiversity. However, poor molecular bases for studying their phylogenetic evolutions and novel metabolic characteristics have hampered progress in the field. In this study, we sequenced the de novo transcriptome of 18 major species of brown algae in China, covering six orders and seven families, using the high-throughput sequencing platform Illumina HiSeq 2000. From the transcriptome data of these 18 species and publicly available genome data of Ectocarpus siliculosus and Phaeodactylum tricornutum, we identified 108 nuclear-generated orthologous genes and clarified the phy-logenetic relationships among these brown algae based on a multigene method. These brown algae could be separated into two clades:Clade Ishigeales-Dictyotales and Clade Ectocarpales-Laminariales-Desmares-tiale-Fucales. The former was at the base of the phylogenetic tree, indicating its early divergence, while the latter was divided into two branches, with Order Fucales diverging from Orders Ectocarpales, Laminariales, and Desmarestiale. In our analysis of taxonomy-contentious species, Sargassum fusiforme and Saccharina sculpera were found to be closely related to genera Sargassum and Saccharina, respectively, while Petalonia fascia showed possible relation to genus Scytosiphon. The study provided molecular evidence for the phylo-genetic taxonomy of brown algae.

  14. PIXE application for measurement of bioaccumulation of lead by marine micro-algae

    International Nuclear Information System (INIS)

    Marine micro-algae (Nannochloropsis sp., and Phaeodactylum sp.,) were obtained from the Pacific Ocean of Iwate Pref., Japan and purely cultured in nutritive seawater as a culture solution. The culture size for algae was 10-250 ml and every apparatus was small and of low cost. Marine micro-algae were given in different culture solutions including Pb2+ from 0.01 to 1.0 mg/l. The algae in 5 ml of the culture solution were collected on a polycarbonate filter (pore size: 1.0 μm) by suction filtration. The algae on the filter were subjected to PIXE analysis. Concentrations of Na, Mg, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, Sr and Pb were simultaneously determined. PIXE can do multi-element analysis for a sample of below 1 mg. The quantity of lead in marine micro-algae increases in proportion to the Pb2+ concentration in the culture solution. The concentration factor (wet weight base) for lead is given as 200±20 ml/g for Nannochloropsis sp. and 1900±400 ml/g for Phaeodactylum sp.. It is shown that PIXE is a powerful tool for the measurement of the bioaccumulation of trace elements. (author)

  15. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. PMID:26961939

  16. Epilithic algae from caves of the Krakowsko-Częstochowska Upland (Southern Poland

    Directory of Open Access Journals (Sweden)

    Joanna Czerwik-Marcinkowska

    2011-04-01

    Full Text Available This paper describes the first study of algae assemblages in 20 caves in the Krakowsko-Częstochowska Upland (Southern Poland, in the period between 2005-2006. The investigations showed mostly on epilithic algae and their subaeric habitats (rock faces within caves and walls at cave entrances. The morphological and cytological variability of algae were studied in fresh samples, in cultures grown on agar plates and in SPURR preparations. A total of 43 algae species was identified, mostly epilithic species and tolerant of low light intensities. The largest group was formed by representatives of the division Chlorophyta (24 species, and then the division Chrysophyta (Heterokontophyta - 17 species, with 9 species belonging to the class Bacillariophyceae, 7 species - Xanthophyceae and 1 species representing the class Eustigmatophyceae. Dinophyta (2 species constituted the last and the smallest group. Among the collected algae, the following species deserve special attention: Thelesphaera alpina, Bracteacoccus minor, Trachychloron simplex, Tetracystis intermedia and T. cf. isobilateralis. The last species was not earlier found in Europe. Identification of species was greatly aided by examination of cell ultrastructure, which provided an array of further features, increasing chances of correct species identification. Furthermore, the studies focused that algae, although usually remaining under dominance of cyanobacteria, excellently differentiate this special area and even enrich it.

  17. FRESH-WATER GREEN ALGAE (CHLOROPHYTA AS A NATURAL PIGMENT FOR MOJOSARI DUCKS

    Directory of Open Access Journals (Sweden)

    B. Indarsih

    2015-09-01

    Full Text Available An experiment in a completely randomize design was undertaken to study the use of fresh-watergreen algae as a yolk coloring agent in Mojosari ducks during a laying period on productiveperformance and egg quality from 36 to 44 wk of age. A total of 80 thirty-six wk–old laying ducks weredivided into four dietary treatments and each of four replicates with 5 birds. Diets were formulated witha commercial concentrate, rice bran and yellow corn (2:4:4 according to a commercial standard diet asa control, and three other dietary treatments with 2, 4 or 8% of green algae were included. Fresh watergreen algae had a significant effect on the feed uptake, egg production, and feed conversion ratio (FCR(p<0.05. Egg production and FCR improved at added 2 and 4% green algae. No differences wereobserved in egg yolk index, albumen index, Haugh Unit, and egg shell thickness (P>0.05 except eggyolk color. The yolk color increased within 7 days after feeding with the test diets. The present studyindicated that fresh-water green algae could be used as a natural coloring agent in laying ducks and at8% of green algae showed the highest score of (Roche Yellow Color-15.

  18. Predicting the risk of toxic blooms of golden alga from cell abundance and environmental covariates

    Science.gov (United States)

    Patino, Reynaldo; VanLandeghem, Matthew M.; Denny, Shawn

    2016-01-01

    Golden alga (Prymnesium parvum) is a toxic haptophyte that has caused considerable ecological damage to marine and inland aquatic ecosystems worldwide. Studies focused primarily on laboratory cultures have indicated that toxicity is poorly correlated with the abundance of golden alga cells. This relationship, however, has not been rigorously evaluated in the field where environmental conditions are much different. The ability to predict toxicity using readily measured environmental variables and golden alga abundance would allow managers rapid assessments of ichthyotoxicity potential without laboratory bioassay confirmation, which requires additional resources to accomplish. To assess the potential utility of these relationships, several a priori models relating lethal levels of golden alga ichthyotoxicity to golden alga abundance and environmental covariates were constructed. Model parameters were estimated using archived data from four river basins in Texas and New Mexico (Colorado, Brazos, Red, Pecos). Model predictive ability was quantified using cross-validation, sensitivity, and specificity, and the relative ranking of environmental covariate models was determined by Akaike Information Criterion values and Akaike weights. Overall, abundance was a generally good predictor of ichthyotoxicity as cross validation of golden alga abundance-only models ranged from ∼ 80% to ∼ 90% (leave-one-out cross-validation). Environmental covariates improved predictions, especially the ability to predict lethally toxic events (i.e., increased sensitivity), and top-ranked environmental covariate models differed among the four basins. These associations may be useful for monitoring as well as understanding the abiotic factors that influence toxicity during blooms.

  19. Time course transcriptome changes in Shewanella algae in response to salt stress.

    Directory of Open Access Journals (Sweden)

    Xiuping Fu

    Full Text Available Shewanella algae, which produces tetrodotoxin and exists in various seafoods, can cause human diseases, such as spondylodiscitis and bloody diarrhea. In the present study, we focused on the temporal, dynamic process in salt-stressed S. algae by monitoring the gene transcript levels at different time points after high salt exposure. Transcript changes in amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport, regulatory functions, and cellular signaling were found to be important for the high salt response in S. algae. The most common strategies used by bacteria to survive and grow in high salt environments, such as Na+ efflux, K+ uptake, glutamate transport and biosynthesis, and the accumulation of compatible solutes, were also observed in S. algae. In particular, genes involved in peptidoglycan biosynthesis and DNA repair were highly and steadily up-regulated, accompanied by rapid and instantaneous enhancement of the transcription of large- and small-ribosome subunits, which suggested that the structural changes in the cell wall and some stressful responses occurred in S. algae. Furthermore, the transcription of genes involved in the tricarboxylic acid (TCA cycle and the glycolytic pathway was decreased, whereas the transcription of genes involved in anaerobic respiration was increased. These results, demonstrating the multi-pathway reactions of S. algae in response to salt stress, increase our understanding of the microbial stress response mechanisms.

  20. Development of a ground-based space micro-algae photo-bioreactor

    Science.gov (United States)

    Ai, W.; Guo, S.; Qin, L.; Tang, Y.

    The purpose of the research is to develop a photo-bioreactor which may produce algae protein and oxygen for future astronauts in comparatively long-term exploration, and remove carbon dioxide in a controlled ecological life support system. Based on technical parameters and performance requirements, the project planning, design drafting, and manufacture were conducted. Finally, a demonstration test for producing algae was done. Its productivity for micro-algae and performance of the photo-bioreactor were evaluated. The facility has nine subsystems, including the reactor, the illuminating unit, the carbon dioxide (CO2) production unit and oxygen (O2) generation unit, etc. The demonstration results showed that the facility worked well, and the parameters, such as energy consumption, volume, and productivity for algae, met with the design requirement. The density of algae in the photo-bioreactor increased from 0.174 g (dry weight) L-1 to 4.064 g (dry weight) L-1 after 7 days growth. The principle of providing CO2 in the photo-bioreactor for algae and removing O2 from the culture medium was suitable for the demand of space conditions. The facility has reasonable technical indices, and smooth and dependable performances.

  1. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    Directory of Open Access Journals (Sweden)

    Atsushi Kurotani

    2015-08-01

    Full Text Available Recent proteome analyses have reported that intrinsically disordered regions (IDRs of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  2. Determining surface areas of marine alga cells by acid-base titration method.

    Science.gov (United States)

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae. PMID:9297794

  3. Growth characteristics of algae during early stages of phytoplankton bloom in Lake Taihu, China

    Institute of Scientific and Technical Information of China (English)

    Yuhong Jia; Johnson Dan; Min Zhang; Fanxiang Kong

    2013-01-01

    Three treatments,sediment plus lake water (S+W),sterilized sediment plus lake water (SS+W),and sediment plus filtered lake water (S+FW),were recruited to investigate the growth characteristics of algae during pre-bloom and the importance of algal inocula in the water column and sediment.The results showed that in the water column,biomass of all algae increased in all treatments when recruitment was initiated,whereas this tendency differed among treatments with further increment of temperature.The process of algal growth consisted of two stages:Stage Ⅰ,the onset of recruitment and Stage Ⅱ,the subsequent growth of algae.Compared with S+W,in Stage Ⅰ,SS+W significantly increased the biomass of cyanophytes by 178.70%,and decreased the biomass of non-cyanophytes by 43.40%; In Stage Ⅱ,SS+W notably stimulated the growth of all algae,thus incurring the occurrence of phytoplankton bloom.Further analyses revealed that both metabolic activity and photochemical activity of algae were enhanced in SS+W,which resulted from the releasing of nutrients from sediment.These results suggest that algal growth in Stage Ⅱ and algal inocula in the water column can be important factors for the formation of phytoplankton bloom.In addition,possible mechanisms promoting algal recruitment and subsequent growth of algae were explored.

  4. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans

    Energy Technology Data Exchange (ETDEWEB)

    Phaneuf, D.; Cote, I.; Dumas, P.; Ferron, L.A.; LeBlanc, A. [CHUQ, Sainte-Foy, Quebec (Canada). Centre de Toxicologie du Quebec

    1999-02-01

    The goal of the study was to assess the contamination of marine algae (seaweeds) growing in the St. Lawrence River estuary and Gulf of St. Lawrence and to evaluate the risks to human health from the consumption of these algae. Algae were collected by hand at low tide. A total of 10 sites on the north and south shores of the St. Lawrence as well as in Baie des Chaleurs were sampled. The most frequently collected species of algae were Fucus vesiculosus, Ascophyllum nodosum, Laminaria Longicruris, Palmaria palmata, Ulva lactuca, and Fucus distichus. Alga samples were analyzed for metals iodine, and organochlorines. A risk assessment was performed using risk factors. In general, concentrations in St. Lawrence algae were not very high. Consequently, health risks associated with these compounds in St. Lawrence algae were very low. Iodine concentration, on the other hand, could be of concern with regard to human health. Regular consumption of algae, especially of Laminaria sp., could result in levels of iodine sufficient to cause thyroid problems. For regular consumers, it would be preferable to choose species with low iodine concentrations, such as U. lactuca and P. palmata, in order to prevent potential problems. Furthermore, it would also be important to assess whether preparation for consumption or cooking affects the iodine content of algae. Algae consumption may also have beneficial health effects. Scientific literature has shown that it is a good source of fiber and vitamins, especially vitamin B{sub 12}.

  5. Floristic account of the marine benthic algae from Jarvis Island and Kingman Reef, Line Islands, Central Pacific

    Directory of Open Access Journals (Sweden)

    Vroom, P.S.

    2012-05-01

    Full Text Available The marine benthic algae from Jarvis Island and Kingman Reef were identified from collections obtained from the Whippoorwill Expedition in 1924, the Itasca Expedition in 1935, the U.S. Coast Guard Cutter Taney in 1938, the Smithsonian Institution’s Pacific Ocean Biological Survey Program in 1964 and the U.S. National Oceanic and Atmospheric Administration’s Reef Assessment and Monitoring Program (RAMP in 2000, 2001, 2002, 2004 and 2006. A total of 124 species, representing 8 Cyanobacteria (blue-green algae, 82 Rhodophyta (red algae, 6 Heterokontophyta (brown algae and 28 Chlorophyta (green algae, are reported from both islands. Seventy-nine and 95 species of marine benthic algae are recorded from Jarvis Island and Kingman Reef, respectively. Of the 124 species, 77 species or 62% (4 blue-green algae, 57 red algae, 2 brown algae and 14 green algae have never before been reported from the 11 remote reefs, atolls and low islands comprising the Line Islands in the Central Pacific.

  6. Toxicity of silver nanoparticles against bacteria, yeast, and algae

    Energy Technology Data Exchange (ETDEWEB)

    Dorobantu, Loredana S., E-mail: loredana@ualberta.ca; Fallone, Clara [University of Alberta, Department of Chemical and Materials Engineering (Canada); Noble, Adam J. [Trent University, Department of Biology (Canada); Veinot, Jonathan; Ma, Guibin [University of Alberta, Department of Chemistry (Canada); Goss, Greg G. [University of Alberta, Department of Biological Sciences (Canada); Burrell, Robert E. [University of Alberta, Department of Biomedical Engineering (Canada)

    2015-04-15

    The toxicity mechanism employed by silver nanoparticles against microorganisms has captivated scientists for nearly a decade and remains a debatable issue. The question most frequently asked is whether silver nanoparticles exert specific effects on microorganisms beyond the well-documented antimicrobial activity of Ag{sup +}. Here, we study the effects of citrate- (d = 17.5 ± 9.4 nm) and 11-mercaptoundecanoic acid (d = 38.8 ± 3.6 nm)-capped silver nanoparticles on microorganisms belonging to various genera. The antimicrobial effect of Ag{sup +} was distinguished from that of nanosilver by monitoring microbial growth in the presence and absence of nanoparticles and by careful comparison of the responses of equimolar silver nitrate solution. The results show that when using equimolar silver solutions, silver nitrate has higher toxic potential on all microorganisms than both nanoparticles tested. Furthermore, some microorganisms are more susceptible to silver than others and the choice of capping agent is relevant in the toxicity. Atomic force microscopy disclosed that AgNO{sub 3} had a destructive effect on algae. The antimicrobial activity of nanosilver could be exploited to prevent microbial colonization of medical devices and to determine the fate of nanoparticles in the environment.

  7. Biosorption of cadmium by biomass of marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Holan, Z.R.; Volesky, B.; Prasetyo, I. (McGill Univ., Montreal, Quebec (Canada))

    1993-04-01

    Biomass of nonliving, dried brown marine algae Sargassum natans, Fucus vesiculosus, and Ascophyllum nodosum demonstrated high equilibrium uptake of cadmium from aqueous solutions. The metal uptake by these materials was quantitatively evaluated using sorption isotherms. Biomass of A. nodosum accumulated the highest amount of cadmium exceeding 100 mg Cd[sup 2+]/g (at the residual concentration of 100 mg Cd/L and pH 3.5), outperforming a commercial ion exchange resin DUOLITE GT-73. A new biosorbent material based on A. nodosum biomass was obtained by reinforcing the algal biomass by formaldehyde cross-linking. The prepared sorbent possessed good mechanical properties, chemical stability of the cell wall polysaccharides and low swelling volume. Desorption of deposited cadmium with 0.1-0.5 M HCl resulted in no changes of the biosorbent metal uptake capacity through five subsequent adsorption/desorption cycles. There was no damage to the biosorbent which retained its macroscopic appearance and performance in repeated metal uptake/elution cycles.

  8. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor; Gobler, Christopher; Salamov, Asaf; Kuo, Alan; Terry, Astrid; Pangillian, Jasmyn; Lindquist, Erika; Lucas, Susan; Berry, Dianna; Dyhrman, Sonya; Wilhelm, Steven; Lobanov, Alexei; Zhang, Yan; Collier, Jackie; Wurch, Louie; Kusta, Adam; Dill, Brian; Shsh, Manesh; VerBerkmoes, Nathan; Paulsen, Ian; Hattenrath-Lehmann, Theresa; Talmage, Stephanie; Walker, Elyse; Koch, Florian; Burson, Amanda; Marcoval, Maria; Tang, Yin-Zhong; LeCleir, Gary; Coyne, Kathyrn; Berg, Gry; Bertrand, Erin; Saito, Mak; Gladyshev, Vadim

    2011-02-18

    Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.

  9. Modeling the dynamic modulation of light energy in photosynthetic algae.

    Science.gov (United States)

    Papadakis, Ioannis A; Kotzabasis, Kiriakos; Lika, Konstadia

    2012-05-01

    An integrated cell-based dynamic mathematical model that take into account the role of the photon absorbing process, the partition of excitation energy, and the photoinactivation and repair of photosynthetic units, under variable light and dissolved inorganic carbon (DIC) availability is proposed. The modeling of the photon energy absorption and the energy dissipation is based on the photoadaptive changes of the underlying mechanisms. The partition of the excitation energy is based on the relative availability of light and DIC to the cell. The modeling of the photoinactivation process is based on the common aspect that it occurs under any light intensity and the modeling of the repair process is based on the evidence that it is controlled by chloroplast and nuclear-encoded enzymes. The present model links the absorption of photons and the partitioning of excitation energy to the linear electron flow and other quenchers with chlorophyll fluorescence emission parameters, and the number of the functional photosynthetic units with the photosynthetic oxygen production rate. The energy allocation to the LEF increases as DIC availability increases and/or light intensity decreases. The rate of rejected energy increases with light intensity and with DIC availability. The resulting rate coefficient of photoinactivation increases as light intensity and/or as DIC concentration increases. We test the model against chlorophyll fluorescence induction and photosynthetic oxygen production rate measurements, obtained from cultures of the unicellular green alga Scenedesmus obliquus, and find a very close quantitative and qualitative correspondence between predictions and data.

  10. Heavy metal accumulation by carrageenan and agar producing algae

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, K.S. [Moscow State Univ. (Russian Federation). Faculty of Biology; Bird, K.T. [North Carolina Univ., Wilmington, NC (United States). Center for Marine Science Research

    1994-09-01

    The accumulation of six heavy metals Cu, Cd, Ni, Zn, Mn and Pb was measured in living and lzophilized algal thalli. The agar producing algae were Gracilaria tikvahiae and Gelidium pusillum. The carrageenan producing macroalgae were Agardhiella subulata and the gametophyte and tetrasporophyte phases of Chondrus crispus. These produce primarily iota, kappa and lambda carrageenans, respectively. At heavy metal concentrations of 0.5 mg L{sup -1}, living thalli of Gracilaria tikvahiae generally showed the greatest amount of accumulation of the 6 heavy metals tested. The accumulation of Pb was greater in the living thalli of all four species than in the lyophilized thalli. Except for Agardhiella subulata, lyophilized thalli showed greater accumulation of Ni, Cu and Zn. There was no difference in heavy metal accumulation between living and lyophilized thalli in the accumulation of Cd. Manganese showed no accumulation at the tested concentration. There did not appear to be a relationship between algal hydrocolloid characteristics and the amounts of heavy metals accumulated. (orig.)

  11. Aspects of chemoattractant recognition by the alga Dunaliella tertiolecta

    Energy Technology Data Exchange (ETDEWEB)

    Millard, P.J.

    1984-01-01

    Studies on the molecular nature of algal chemotaxis were performed using the halophilic chlorophyte Dunaliella tertiolecta as a model. Several physical and chemical parameters for generation of maximum chemotactic response in capillary assays are described. Inhibition of chemotaxis to NH/sub 4//sup +/ and several aromatic amino acid by sublethal concentrations of certain heavy metals, including Zn/sup 2 +/, Co/sup 2 +/, Ni/sup 2 +/, Cu/sup 2 +/, and Hg/sup 2 +/ is demonstrated. Inhibition by Zn/sup 2/ of the response of NH/sub 4//sup +/ is partially reversed by increased concentrations of Ca/sup 2 +/. Attraction of L-phenylalanine, L-tyrosine, L-tryptophan, their structural analogs, and other compounds has been quantified using a capillary assay. Radiolabeled L-phenylalanine was used as a ligand to investigate algal binding and uptake. No internalization of the amino acid by D. tertiolectra occurred, even after 3 hr. Specific binding of /sup 3/H-L-phenylalanine was below 100 molecules per alga at 10/sup -8/ M L-phenylalanine. No evidence for the alteration of L-phenylalnine by D. tertiolecta was found following 22 hr incubation with the substrate in light or darkness. To further probe the molecular components of the chemosensory system of D. tertiolecta, a procedure for isolation and purification of trinitrobenzene sulfonic acid (TNBS)-labeled plasma membrane vesicles was developed. Plasma membrane purity was assessed by criteria of chlorophyll content, succinic dehydrogenase activity and protein pattern.

  12. Equal Sex Ratios of a Marine Green Alga, Bryopsis plumosa

    Institute of Scientific and Technical Information of China (English)

    Tatsuya Togashi; Paul Alan Cox

    2008-01-01

    By finding some important culture conditions as below, we succeeded in experimentally controlling the whole life history of a dioecious marine green alga, Bryopsis plumosa (Hudson) C. Agardh. In this study, we focused on the primary and secondary sex ratios (i.e. at inception and maturity) using these culture techniques. Gametogenesis was induced by culturing haploid gametophytes with Provasoli's enriched seawater (PES) medium under a 14:10 h light: dark cycle at 14 ℃. Formed zygotes grew into diploid sporophytes, which were cultured for 3 months with PES medium under a 14:10 h light: nbsp;dark cycle at 18℃. Then they were transferred into Schreiber medium and cultured under a 10:14 h light: dark cycle at 22℃. Within 1 week, zoosporogenesis was observed. Zoospores were released within a couple of days. Each zoospore soon germinated and grew into a unisexual gametophyte. The primary sex ratio was examined in gametophytes that originated from a single sporophyte. The secondary sex ratio was studied in the field. Both were estimated as 1:1.Synchronized meiotic cell divisions might occur during zoosporogenesis dividing each sex-determining factor evenly among zoospores. Given the equal sex ratio at maturity, there seems to be no environmental factor that differentially affects the survival of male or female gametophytes in nature.

  13. Analytical approaches to photobiological hydrogen production in unicellular green algae.

    Science.gov (United States)

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01

    Several species of unicellular green algae, such as the model green microalga Chlamydomonas reinhardtii, can operate under either aerobic photosynthesis or anaerobic metabolism conditions. A particularly interesting metabolic condition is that of "anaerobic oxygenic photosynthesis", whereby photosynthetically generated oxygen is consumed by the cell's own respiration, causing anaerobiosis in the culture in the light, and induction of the cellular "hydrogen metabolism" process. The latter entails an alternative photosynthetic electron transport pathway, through the oxygen-sensitive FeFe-hydrogenase, leading to the light-dependent generation of molecular hydrogen in the chloroplast. The FeFe-hydrogenase is coupled to the reducing site of photosystem-I via ferredoxin and is employed as an electron-pressure valve, through which electrons are dissipated, thus permitting a sustained electron transport in the thylakoid membrane of photosynthesis. This hydrogen gas generating process in the cells offers testimony to the unique photosynthetic metabolism that can be found in many species of green microalgae. Moreover, it has attracted interest by the biotechnology and bioenergy sectors, as it promises utilization of green microalgae and the process of photosynthesis in renewable energy production. This article provides an overview of the principles of photobiological hydrogen production in microalgae and addresses in detail the process of induction and analysis of the hydrogen metabolism in the cells. Furthermore, methods are discussed by which the interaction of photosynthesis, respiration, cellular metabolism, and H(2) production in Chlamydomonas can be monitored and regulated. PMID:19291418

  14. Improved hydrogen photoproduction from photosynthetic bacteria and green algae

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.F.; Lien, S.; Seibert, M.

    1979-01-01

    Photosynthetic bacteria evolve hydrogen at much higher rates than do other classes of photosynthetic microorganisms. In addition, they tolerate harsh environments, grow rapidly, and utilize both visible and near infrared light in photosynthesis. They do not split water, but this does not necessarily eliminate their potential use in future applied systems. They are easily manipulated genetically, and thus might be modified to metabolize common biomass waste materials in place of expensive defined organic substrates. Furthermore, the potential for increasing hydrogen photoproduction via genetic techniques is promising. Strains that partially degrade cellulose, have high photoproduction rates, or contain very large amounts of the enzymes associated with hydrogen metabolism have been isolated. Green algae also produce hydrogen but are capable of using water as a substrate. For example, C. reinhardi can evolve hydrogen and oxygen at a molar ratio approaching 2:1. Based upon effect of dichlorophenyl dimethylurea (a specific inhibitor of photosystem II, PSII) on hydrogen photoproduction in the wild type strain and upon results obtained with PSII mutants, one can demonstrate that water is the major source of electrons for hydrogen production. The potential efficiency of in vivo coupling between hydrogenase and the photosynthetic electron transport system is high. Up to 76% of the reductants generated by the electron transport system can be channeled directly to the enzyme for in vivo hydrogen production. Rates exceeding 170 ..mu..moles of H/sub 2/ mg Chl/sup -1/ hr/sup -1/ have been observed.

  15. Sesquiterpenes from the Brazilian Red Alga Laurencia dendroidea J. Agardh

    Directory of Open Access Journals (Sweden)

    Fernanda Lacerda da Silva Machado

    2014-03-01

    Full Text Available Two new chamigrane sesquiterpenes 1–2 and three known compounds 3–5 were isolated from a lipophilic extract of the red alga Laurencia dendroidea collected from the Southeastern Brazilian coast. Dendroidone (1 and dendroidiol (2 were isolated from samples collected at Biscaia Inlet, Angra dos Reis, Rio de Janeiro and at Manguinhos Beach, Serra, Espírito Santo, respectively. Debromoelatol (3, obtusane (4 and (1S*,2S*,3S*,5S*,8S*,9S*-2,3,5,9-tetramethyltricyclo[6.3.0.01.5]undecan-2-ol (5 were obtained from specimens collected at Vermelha Beach, Parati, Rio de Janeiro. The structures of new compounds were elucidated by extensive NMR (1H-, 13C-, COSY, HSQC, HMBC and NOESY and high resolution mass spectrometry analysis. Additionally, the absolute configuration of compound 2 was assigned by X-ray analysis. Full spectroscopic data is described for the first time for compound 3. Anti-inflammatory and antimycobacterial activities of compounds 2–5 were evaluated. Compounds 3–5 inhibited the release of inflammatory mediator NO while TNF-α levels were only affected by 3. All compounds tested displayed moderate antimycobacterial action.

  16. Sesquiterpenes from the Brazilian red alga Laurencia dendroidea J. Agardh.

    Science.gov (United States)

    da Silva Machado, Fernanda Lacerda; Ventura, Thatiana Lopes Biá; Gestinari, Lísia Mônica de Souza; Cassano, Valéria; Resende, Jackson Antônio Lamounier Camargos; Kaiser, Carlos Roland; Lasunskaia, Elena B; Muzitano, Michelle Frazão; Soares, Angélica Ribeiro

    2014-03-17

    Two new chamigrane sesquiterpenes 1-2 and three known compounds 3-5 were isolated from a lipophilic extract of the red alga Laurencia dendroidea collected from the Southeastern Brazilian coast. Dendroidone (1) and dendroidiol (2) were isolated from samples collected at Biscaia Inlet, Angra dos Reis, Rio de Janeiro and at Manguinhos Beach, Serra, Espírito Santo, respectively. Debromoelatol (3), obtusane (4) and (1S*,2S*,3S*,5S*,8S*,9S*)-2,3,5,9-tetramethyltricyclo[6.3.0.0¹·⁵]undecan-2-ol (5) were obtained from specimens collected at Vermelha Beach, Parati, Rio de Janeiro. The structures of new compounds were elucidated by extensive NMR (¹H-, ¹³C-, COSY, HSQC, HMBC and NOESY) and high resolution mass spectrometry analysis. Additionally, the absolute configuration of compound 2 was assigned by X-ray analysis. Full spectroscopic data is described for the first time for compound 3. Anti-inflammatory and antimycobacterial activities of compounds 2-5 were evaluated. Compounds 3-5 inhibited the release of inflammatory mediator NO while TNF-α levels were only affected by 3. All compounds tested displayed moderate antimycobacterial action.

  17. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A.; Putschew, A.; Jekel, M. [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  18. Combined toxicity of pesticide mixtures on green algae and photobacteria.

    Science.gov (United States)

    Liu, Shu-Shen; Wang, Cheng-Lin; Zhang, Jin; Zhu, Xiang-Wei; Li, Wei-Ying

    2013-09-01

    Different organisms have diverse responses to the same chemicals or mixtures. In this paper, we selected the green algae Chlorella pyrenoidosa (C. pyrenoidosa) and photobacteria Vibrio qinghaiensis sp.-Q67 (V. qinghaiensis) as target organisms and determined the toxicities of six pesticides, including three herbicides (simetryn, bromacil and hexazinone), two fungicides (dodine and metalaxyl) and one insecticide (propoxur), and their mixtures by using the microplate toxicity analysis. The toxicities of three herbicides to C. pyrenoidosa are much higher than those to V. qinghaiensis, and the toxicities of metalaxyl and propoxur to V. qinghaiensis are higher than those to C. pyrenoidosa, while the toxicity of dodine to C. pyrenoidosa is similar to those to V. qinghaiensis. Using the concentration addition as an additive reference model, the binary pesticide mixtures exhibited different toxicity interactions, i.e., displayed antagonism to C. pyrenoidosa but synergism to V. qinghaiensis. However, the toxicities of the multi-component mixtures of more than two components are additive and can be predicted by the concentration addition model.

  19. In situ evaluation of cadmium biomarkers in green algae

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Dana F.; Davis, Thomas A. [Department of Chemistry, University of Montreal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada); Tercier-Waeber, Mary-Lou [Analytical and Biophysical Environmental Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1211 Geneva 4 (Switzerland); England, Roxane [Department of Chemistry, University of Montreal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada); Wilkinson, Kevin J., E-mail: kj.wilkinson@umontreal.ca [Department of Chemistry, University of Montreal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada)

    2011-10-15

    In situ measurements provide data that are the highly representative of the natural environment. In this paper, laboratory-determined biomarkers of Cd stress that were previously identified for the green alga Chlamydomonas reinhardtii, were tested in two French rivers: a contaminated site on the Riou Mort River and an 'uncontaminated' reference site on the Lot River. Transcript abundance levels were determined by real time qPCR for biomarkers thought to be Cd sensitive. Transcript levels were significantly higher (>5 fold) for organisms exposed to the contaminated site as compared to those exposed at the uncontaminated site. Biomarker mRNA levels were best correlated to free Cd (Cd{sup 2+}) rather than intracellular Cd, suggesting that they may be useful indicators of in situ stress. The paper shows that biomarker expression levels increased with time, were sensitive to metal levels and metal speciation and were higher in the 'contaminated' as opposed to the 'reference' site. - Highlights: > Biomarkers of Cd stress were tested in a contaminated and a reference site. > The organism was viable under exposure conditions and metal accumulation occurred. > Biomarker levels were correlated to Cd{sup 2+} and were higher in the contaminated site. - Algal transcription levels of several biomarkers were studied in two natural waters in situ.

  20. D-lactate metabolism in the alga, Chlamydomonas Reinhardtii

    International Nuclear Information System (INIS)

    [14C]D-lactate rapidly accumulates in Chlamydomonas cells under anaerobic conditions from the sugar-phosphate pools which are labeled during photosynthesis with 14CO2. A soluble D-lactate dehydrogenase (30 μmol NADH oxidized/h/mg Chl), which functions only in the direction of pyruvate reduction, has been partially purified and characterized. The D-lactate is reoxidized in Chlamydomonas by a mitochondrial membrane-bound dehydrogenase. This enzyme is known in the plant literature as glycolate dehydrogenase, an enzyme of the oxidative photosynthetic carbon (C2) cycle. This dehydrogenase may be linked to the mitochondrial electron transport chain, although the direct electron acceptor is unknown. Therefore, D-lactate accumulation may be, in part, due to the shut down of electron transport during anaerobiosis. In vivo chase experiments have shown that the D-lactate turns over rapidly when algal cells, which have been grown with air levels of CO2 (0.04%), are returned to aerobic conditions in the light. Such turnover is not observed in cells which had been grown with 1 to 5% CO2. Cells grown with high CO2 have lower levels of glycolate dehydrogenase activity. They are currently using mutants of Chlamydomonas deficient in mitochondrial respiration to study the role of D-lactate oxidation in these algae

  1. [Food value of spiruline algae for the laying hen].

    Science.gov (United States)

    Blum, J C; Guillaumin, S; Calet, C

    1975-01-01

    The three diets (composition in table I) were isonitrogenous (16,4 p. 100 crude protein), similar in their content of lysine and sulfur amino acids, but with different levels of spiruline algae : 0 (control); 7.5 or 15 p. 100. Each diet was used for the feeding of 48 hybrid pullets of medium size during a 24-week test period (32 to 56 weeks). Egg production (table II) was slightly better (47.1 g/hen/day) with 7.5 p. 100 of spirulines, compared to the control (45.3 g/hen/day), the difference being significant (P less than 0.01). With 15 p. 100 of spirulines egg production was similar to that observed in the control, but the average egg weight was reduced (58.5 vs 60.5 g) as a result of a lower albumen content. The colour of the egg yolk (table IV) was very light in the controls, but was a deep orange (above the maximum in the Roch scale) with 7.5 or 15 p. 100 of spirulines in the laying hen diet. The diet consumption, feed conversion and live weight variations (table III) show that the energy level is no higher in laying hens (about 2 500 kcal M.E./kg spirulines) than in the broiler. PMID:825006

  2. Characterization of the Uptake of Quantum Dots by Algae

    Science.gov (United States)

    Bhattacharya, Priyanka; Lin, Sijie; Sun, Xiaoqian; Brune, David; Ke, Pu-Chun

    2009-03-01

    The exposure of living systems to nanoparticles is inevitable due to a dramatic increase in their release into the environment, the most likely pathways being through inhalation, ingestion and skin uptake. The extremely small size of the nanoparticles may facilitate their tissue and cellular uptake by plants and animals, resulting in either positive (drug delivery, antioxidation) or negative (toxicity, cellular dysfunction) effects. Here we report the effects of quantum dots uptake by algae, the single-celled plant species and major food sources for aquatic organisms. In our studies, the presence of quantum dots in algal cells was detected using fluorescence microscopy and electron microscopy. Using spectrophotometry we found a supralinear increase of the uptake with the concentration of quantum dots, with a saturation of the uptake occurring beyond a concentration of 15 mg/mL. Using a bicarbonate indicator we further evaluated the effects of quantum dots uptake on algal photosynthesis and respiration. Such study facilitates our understanding of the environmental impact of nanomaterials.

  3. Factors influencing methane fermentation of micro-algae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.H.

    1987-01-01

    The study included both treatment of harvested algae prior to the admission to the fermentation reactor and operational variables within the fermentation reactor. In the case of pretreatment best conversion efficiency was attained with temperature of 100/sup 0/C for 8 hours at a concentration of 3.7% solid and zero NaOH. A mathematical model of the process was then constructed to predict efficiency as a function of all levels of these variables. For digestion conditions the best efficiency was attained at pH 7.0 to 8.1, volatile acid concentration under 500 mg/1 as acetic acid, alkalinity at 3000 to 8000 mg/1 as CaCo/sub 3/, C/N ratio of 30, mixing speed of 100 rpm, retention time of 30 days, feed concentration of 3.5% and temperature of 40/sup 0/C. Greatest gas yield was attained with Dunaliella species and least with Euglena viridis. Based on these data and the mathematical model a computer simulation model was designed to predict the combined influence on efficiency of fermentation on pretreatment time, pretreatment temperature, pretreatment concentration, mixing speed, digestion temperature, feeding concentration, and retention time.

  4. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    Energy Technology Data Exchange (ETDEWEB)

    Gobler, C J; Grigoriev, I V; Berry, D L; Dyhrman, S T; Wilhelm, S W; Salamov, A; Lobanov, A V; Zhang, Y; Collier, J L; Wurch, L L; Kustka, A B; Dill, B D; Shah, M; VerBerkomes, N C; Kuo, A; Terry, A; Pangilinan, J; Lindquist, E A; Lucas, S; Paulsen, I; Hattenrath-Lehmann, T K; Talmage, S; Walker, E A; Koch, F; Burson, A M; Marcoval, M A; Tang, Y; LeCleir, G R; Coyne, K J; Berg, G M; Bertrand, E M; Saito, M A; Gladyshev, V N

    2011-03-02

    Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.

  5. An improved method for karyotype analyses of marine algae

    Science.gov (United States)

    Wang, Juan; Dai, Jixun

    2008-05-01

    Modified carbol fuchsin staining method was successfully introduced into the karyotype analyses of marine algae, including Porphyra, Undaria pinnatifida and Laminaria japonica. Haploid chromosomes were numbered clearly in the vegetative, spermatangial and conchosporangial cells of P. haitanensis and P. yezoensis. Diploid chromosomes were observed and numbered in immature conchosporangial cells of P. haitanensis and P. yezoensis. Pit-connections of Porphyra were also clearly demonstrated. Prophase chromosomes of conchocelis cells were also clearly stained with modified carbol fuchsin. One molar per liter hydrochloric hydrolysis at 60°C for 7-8 min is necessary for getting transparent cytoplasm for conchosporangial karyotype analysis of Porphyra. Staining effects of the three methods using iron alum acetocarmine, aceto-iron-haematoxylin-chloral hydrate and modified carbol fuchsin were compared on the vegetative, spermatangial and conchosporangial cells of Porphyra and the gametophytes of U. pinnatifida and L. japonica. Among the three methods, the modified carbol fuchsin method gave the best result of deep staining and good contrast between nucleus and cytoplasm.

  6. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

    Energy Technology Data Exchange (ETDEWEB)

    Gobler, Christopher J. [Stony Brook University (SUNY); Berry, Dianna L. [Stony Brook University (SUNY); Dyhrman, Sonya T. [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Wilhelm, Steven W [ORNL; Salamov, Asaf [U.S. Department of Energy, Joint Genome Institute; Lobanov, Alexei V. [Brigham and Women' s Hospital; Zhang, Yan [Brigham and Women' s Hospital; Collier, Jackie L. [Stony Brook University (SUNY); Wurch, Louie L. [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Kustka, Adam B. [Rutgers University; Dill, Brian [ORNL; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL

    2011-01-01

    Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.

  7. An Improved Method for Karyotype Analyses of Marine Algae

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; DAI Jixun

    2008-01-01

    Modified carbol fuchsin staining method was successfully introduced into the karyotype analyses of marine algae, in-cluding Porphyra, Undaria pinnatifida and Laminaria japonica. Haploid chromosomes were numbered clearly in the vegetative, spermatangial and conchosporangial cells of P. haitanensis and P. yezoensis. Diploid chromosomes were observed and numbered in immature conchosporangial cells of P. haitanensis and P. yezoensis. Pit-connections of Porphyra were also clearly demonstrated. Prophase chromosomes of conchocelis cells were also clearly stained with modified carbol fuchsin. One molar per liter hydrochloric hydrolysis at 60℃ for 7-8min is necessary for getting transparent cytoplasm for conchosporangial karyotype analysis of Porphyra. Staining effects of the three methods using iron alum acetocarmine, aceto-iron-haematoxylin-chloral hydrate and modified carbol fuchsin were compared on the vegetative, sperrnatangial and conchosporangial cells of Porphyra and the gametophytes of U. pinnati-fida and L. japonica. Among the three methods, the modified carbol fuchsin method gave the best result of deep staining and good contrast between nucleus and cytoplasm.

  8. Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream

    Science.gov (United States)

    Mori, J. F.; Neu, T. R.; Lu, S.; Händel, M.; Totsche, K. U.; Küsel, K.

    2015-09-01

    Filamentous macroscopic algae were observed in slightly acidic to circumneutral (pH 5.9-6.5), metal-rich stream water that leaked out from a former uranium mining district (Ronneburg, Germany). These algae differed in color and morphology and were encrusted with Fe-deposits. To elucidate their potential interaction with Fe(II)-oxidizing bacteria (FeOB), we collected algal samples at three time points during summer 2013 and studied the algae-bacteria-mineral compositions via confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectra, and a 16S and 18S rRNA gene-based bacterial and algae community analysis. Surprisingly, sequencing analysis of 18S rRNA gene regions of green and brown algae revealed high homologies with the freshwater algae Tribonema (99.9-100 %). CLSM imaging indicated a loss of active chloroplasts in the algae cells, which may be responsible for the change in color in gene-targeted studies revealed that Gallionella-related FeOB dominated the bacterial RNA and DNA communities (70-97 and 63-96 %, respectively), suggesting their capacity to compete with the abiotic Fe-oxidation under the putative oxygen-saturated conditions that occur in association with photosynthetic algae. Quantitative PCR (polymerase chain reaction) revealed even higher Gallionella-related 16S rRNA gene copy numbers on the surface of green algae compared to the brown algae. The latter harbored a higher microbial diversity, including some putative predators of algae. A loss of chloroplasts in the brown algae could have led to lower photosynthetic activities and reduced EPS production, which is known to affect predator colonization. Collectively, our results suggest the coexistence of oxygen-generating algae Tribonema sp. and strictly microaerophilic neutrophilic FeOB in a heavy metal-rich environment.

  9. Biosorción de iones cobre con biomasa de algas y orujos deshidratados

    Directory of Open Access Journals (Sweden)

    Romero, L.

    2011-02-01

    Full Text Available They were carried out experiments of biosorption batch and in continuous to remove copper from aqueous solutions using as adsorbent green algae and olive residues under virgins conditions and chemically activated. The results of batch biosorption indicate that the algae present mayor elimination capacities than the waste of olives, with uptakes of copper of the order of 96 % using activated algae with dissolution of Na2SO4 under the optimum conditions. The results of the columns tests show that the virgin algae permits the removal of more copper ions than the activate algae, with removal efficiency of 98 % during the firth 20 min, a breakthrough time of 240 min and a saturation at time of 600 min. In the second cycle the regenerated biomass showed a best performance indicating that they can be used for another biosorption cycle.

    Se realizaron experimentos de biosorción batch y en continuo para remover cobre desde soluciones acuosas usando como adsorbentes algas verdes y residuos de aceituna en condiciones vírgenes y activadas químicamente. Los resultados de la biosorción a escala batch indican que las algas presentan mayor capacidad de eliminación que los orujos, alcanzándose captaciones de cobre del orden de 96 % con algas activadas con disoluciones de Na2SO4 bajo condiciones óptimas de las variables estudiadas. Los resultados de los ensayos en columna muestran que las algas vírgenes captan más iones cobre que las activadas con Na2SO4, con eficacias de eliminación del 98 % durante los primeros 20 min, con un tiempo de ruptura de 240 min y una saturación a los 600 min. Al ser sometidas a un segundo ciclo de biosorción, las algas regeneradas muestran un mejor rendimiento lo que indica que pueden ser usadas en otro ciclo de eliminación.

  10. A molecular phylogeny of the heterokont algae based on analyses of choroplast-encoded rbcL sequence data

    DEFF Research Database (Denmark)

    Daugbjerg, Niels; Andersen, Robert A.

    1997-01-01

    Nearly complete ribulose-1,5-bisphosphate carboxylase/ oxygenase (rbcL)sequences from 27 taxa of heterokont algae were determined and combined with rbcL sequences obtained from GenBank for four other heterokont algae and three red algae. The phylogeny of the morphologically diverse haterokont algae...... was inferred from an unambiguously aligned data matrix using the red algae as the root, Significantly higher levels of mutational saturation in third codon positions were found when plotting the pair-wise substitutions with and without corrections for multiple substitutions at the same site for first...... of heterokont algae. The Eustigmatophyceae were the most basal group, and the Dictyochophyceae branched off as the second most basal group. The branching pattern for the other classes was well supported in terms of bootstrap values in the weightedparsimony analysis but was weakly supported in the maximum...

  11. Response of freshwater algae to water quality in Qinshan Lake within Taihu Watershed, China

    Science.gov (United States)

    Zhang, Jianying; Ni, Wanmin; Luo, Yang; Jan Stevenson, R.; Qi, Jiaguo

    Although frequent algal blooms in Taihu Lake in China have become major environmental problems and have drawn national and international attention, little is understood about the relationship between algal blooms and water quality. The goal of this study was to assess the growth and species responses of freshwater algae to variation in water quality in Qinshan Lake, located in headwaters of the Taihu watershed. Water samples were collected monthly from ten study sites in the Qinshan Lake and were analyzed for species distribution of freshwater algae and physiochemical parameters such as total nitrogen (TN), NH4+-N, NO3--N, total phosphorus (TP), chemical oxygen demand (COD Mn) and Chl-a. The results showed that average TN was 4.47 mg/L, with 92.2% of values greater than the TN standard set by the Chinese Environmental Protection Agency; average TP was 0.051 mg/L, with 37.9% of values above the TP national standard; and average trophic level index (TLI) was 53, the lower end of eutrophic condition. Average Chl-a concentration was 12.83 mg/m 3. Green algae and diatom far outweighed other freshwater algae and were dominant most time of the year, with the highest relative abundances of 96% and 99%, respectively. Blue-green algae, composed mainly toxic strains like Microcystis sp ., Nostoc sp. and Oscillatoria sp., became most dominant in the summer with the maximum relative abundance of 69%. The blue-green algae sank to the lake bottom to overwinter, and then dinoflagellates became the dominant species in the winter, with highest relative abundance of 89%. Analysis indicated that nutrients, especially control of ammonia and co-varying nutrients were the major restrictive factor of population growth of blue-green algae, suggesting that control in nutrient enrichments is the major preventive measure of algal blooms in Qinshan Lake.

  12. THE EFFECTS OF ULTRAVIOLET-B RADIATION ON ANTARCTIC SEA-ICE ALGAE(1).

    Science.gov (United States)

    Ryan, Ken G; McMinn, Andrew; Hegseth, Else N; Davy, Simon K

    2012-02-01

    The impacts of ultraviolet-B radiation (UVB) on polar sea-ice algal communities have not yet been demonstrated. We assess the impacts of UV on these communities using both laboratory experiments on algal isolates and by modification of the in situ spectral distribution of the under-ice irradiance. In the latter experiment, filters were attached to the upper surface of the ice so that the algae were exposed in situ to treatments of ambient levels of PAR and UV radiation, ambient radiation minus UVB, and ambient radiation minus all UV. After 16 d, significant increases in chl a and cell numbers were recorded for all treatments, but there were no significant differences among the different treatments. Bottom-ice algae exposed in vitro were considerably less tolerant to UVB than those in situ, but this tolerance improved when algae were retained within a solid block of ice. In addition, algae extracted from brine channels in the upper meter of sea ice and exposed to PAR and UVB in the laboratory were much more tolerant of high UVB doses than were any bottom-ice isolates. This finding indicates that brine algae may be better adapted to high PAR and UVB than are bottom-ice algae. The data indicate that the impact of increased levels of UVB resulting from springtime ozone depletion on Antarctic bottom-ice communities is likely to be minimal. These algae are likely protected by strong UVB attenuation by the overlying ice and snow, by other inorganic and organic substances in the ice matrix, and by algal cells closer to the surface. PMID:27009652

  13. WATER POLLUTION AND RIVER ALGAE: STUDY IN ZAYANDEH ROOD RIVER – ISFAHAN

    Directory of Open Access Journals (Sweden)

    H POUR MOGHADAS

    2001-06-01

    Full Text Available Introduction: Dischange of domestic, agricultural and industrial waste water into the rivers increase chemical substances such as nitrate and phosphate. These chemical changes increase algal population. High density of algae may cause changes in color, odor and taste of water. Some of the algae such as Oscillatoria, Microcystis and Anabeana produce toxins and in high concentrations may kill fishes. While Zayandehrud river is considered as one of the main water supply sources for drinking water and valuable water resources of Isfahan Province, water quality control of this river is important. The study of algae of the river in relation with the concentration of nitrate and phosphate is the purpose of this research project. Methods: To perform this projects, seven sampling stations from "Pole Vahid" to .Pole choom. were selected. Grab methods were used for sampling of the river water. 147 water samples were collected in one year of the study.The samples were analyzed for phosphate, nitrate and genera of the algae. Nitrate and phosphate of the water samples were determined using Phenol Disulfonic Acid and Stanous chloride methods, respectively. The genera of the algae were detennined using the keys. Results and Disccusion:The result of the study showed that the frequency of the algae increased with increasing nitrate and phosphate. Overall.35 genera of algae in the area of the study were observed, which six of them were indicators of water pollution. Minimum frequency of indicators of pollution was observed in the enterance of Isfahan city and maximum frequency was observed after the discharge of municipal water from waste water treatment plant (pole Choom.

  14. Geographic variation in the damselfish-red alga cultivation mutualism in the Indo-West Pacific

    Directory of Open Access Journals (Sweden)

    Watanabe Katsutoshi

    2010-06-01

    Full Text Available Abstract Background On coral reefs, damselfish defend their territories from invading herbivores and maintain algal turfs, from which they harvest filamentous algae. In southern Japan, intensive weeding of indigestible algae by Stegastes nigricans results in overgrowth by one filamentous alga, Polysiphonia sp. 1. Because this alga is highly susceptible to grazing and is competitively inferior to other algae, it survives only within the protective territories of this fish species, suggesting an obligate mutualism between damselfish and their cultivated alga. The wide distribution of damselfish species through the Indo-Central Pacific raises the question of whether this species-specific mutualism is maintained throughout the geographic range of the fish. To address this question, from all 18 damselfish species we conducted comprehensive surveys of algal flora within their territories throughout the Indo-West Pacific, and identified species of Polysiphonia using morphological examination and gene sequencing data. Results Several species of the genus Polysiphonia were observed as a major crop in territories throughout the geographic range of S. nigricans. Polysiphonia sp. 1 occurred only in territories of S. nigricans in central areas of the Indo-Pacific. However, its occurrence was low from the Great Barrier Reef and Mauritius. In contrast, other indigenous Polysiphonia species, which formed a clade with Polysiphonia sp. 1, occurred in the territories of fishes from Egypt, Kenya, and the Maldives. The other Polysiphonia species in the clade only inhabited damselfish territories and were never found elsewhere. Conclusions Cultivation mutualism between the damselfish S. nigricans and algae of Polysiphonia was maintained throughout the Indo-West Pacific, although algal crop species and the mode of cultivation (e.g., presence/absence of selective weeding, the species composition of algal turfs varied among localities. This finding implies that

  15. Origin of land plants: Do conjugating green algae hold the key?

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2011-04-01

    Full Text Available Abstract Background The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales. For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial. Results Here, we use a large data set of nuclear-encoded genes (129 proteins from 40 green plant taxa (Viridiplantae including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes. Conclusions Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the

  16. Esfenvalerate toxicity to the cladoceran Ceriodaphnia dubia in the presence of green algae, Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Brander, Susanne M; Mosser, Christopher M; Geist, Juergen; Hladik, Michelle L; Werner, Inge

    2012-11-01

    The presence of phytoplankton, like other particulate organic matter, can interfere with the effects of hydrophobic contaminants such as pyrethroid pesticides. However, the reduction or elimination of toxicity by algae added as food during testing is not taken into account in standard US EPA whole effluent toxicity (WET) zooplankton tests. On the other hand, WET test conditions may overestimate toxicity of such compounds in highly productive surface waters with high concentrations of detritus and other particulate matter. In addition, WET tests do not measure impaired swimming ability or predator avoidance behavior as an indicator of increased mortality risk. This study used a modified version of the US EPA WET Ceriodaphnia dubia acute test to investigate the effects of phytoplankton on toxicity of the pyrethroid insecticide, esfenvalerate. Animals were exposed simultaneously to different concentrations of esfenvalerate and green algae (Pseudokirchneriella subcapitata). Mortality and predation risk were recorded after 4 and 24 h. Algae at or below concentrations specified in the WET protocol significantly reduced mortality. Regardless, organisms exposed to esfenvalerate were unable to avoid simulated predation in the presence of algae at any concentration. After 12 h, esfenvalerate adsorbed to algae represented 68-99 % of the total amount recovered. The proportion of algae-bound insecticide increased with algal concentration indicating that conclusions drawn from toxicity tests in which algae are added as food must be interpreted with caution as the dissolved fraction of such hydrophobic contaminants is reduced. Additionally, our results strongly suggest that the EPA should consider adding ecologically-relevant endpoints such as swimming behavior to standard WET protocols. PMID:22975895

  17. Influence of the Brown Marine Algae on the Physicochemical and Sensory Characteristcs of the Sausages

    Directory of Open Access Journals (Sweden)

    Claudiu Dan Sălăgean

    2015-11-01

    Full Text Available  The aim of this study was to asses the influence of the brown algae on the quality in manufacturing of a certain halfsmoked sausages assortment.  Exploiting the natural plant resources as well as reducing the animal fat in the finished product by replacing it with proteins, fibers and minerals (provided by the brown marine algae were also intended. Two technological variants with different ratios of algae (V1-10% respectively V2-15% from those 25% of fat (the remaining of 75% beeing represented, in each case, by beef were experienced and compared with the control sample (VM, without algae, 75% beef and 25% fat. The finished products were analyzed in terms of organoleptic and physicochemical, in different stages of storage, at 24 hours after obtaining and seven days of storage at 10 to 12 degrees. The correlations between investigated quality parameters and the ratios of algae were also established. The physicochemical analysis highlighted the highest values regarding the protein, moisture, sodium chloride and the lowest fat content values in the case of the V2 variant compared to the V1 and VM variants. Furthermore, an increase in protein, fat, sodium chloride and a decrease of the moisture content have been found in all variants observed during the storage. The shelf life of the product was not negatively affected by the addition of algae due to their antimicrobial activity. The addition of algae in combination with beef components led to obtaining a higher quality product with functional characteristics.

  18. Cytotoxic activity of marine algae against cancerous cells

    Directory of Open Access Journals (Sweden)

    Élica A. C. Guedes

    2013-08-01

    Full Text Available This paper presents an investigation on the cytotoxic activity in human tumor cell from dichloromethane, chloroform, methanol, ethanol, water extracts, and hexane and chloroform fractions from green, brown and red algae collected at Riacho Doce Beach, north coast of Alagoas, Brazil, against the cancer cells K562 (chronic myelocytic leukemia, HEp-2 (laryngeal epidermoid carcinoma and NCI-H292 (human lung mucoepidermoid carcinoma through the MTT colorimetric method. The dichloromethane extract and chloroform fraction of Hypnea musciformis showed the best cytotoxic activity against K562 (3.8±0.2 µg.mL-1 and 6.4±0.4 µg.mL-1, respectively. Dichloromethane extracts of Dictyota dichotoma (16.3±0.3 µg.mL-1 and the chloroform fraction of H. musciformis (6.0±0.03 µg.mL-1 and chloroform fraction of P. gymnospora (8.2±0.4 were more active against HEp-2 as well as ethanol extracts of P. gymnospora (15.9±2.8 µg.mL-1 and chloroform fraction of H. musciformis (15.0±1.3 µg.mL-1 against the cell NCI-H292. The constituents with higher anticancer action are present in the extracts of dichloromethane and chloroform and in the chloroform fraction of H. musciformis, Digenea simplex, P. gymnospora, and D.dichotoma. In the case of the seaweed S. vulgare, the anticancer constituents are present in the aqueous extract.

  19. Hidden genetic diversity in the green alga Spirogyra (Zygnematophyceae, Streptophyta

    Directory of Open Access Journals (Sweden)

    Chen Charlotte

    2012-06-01

    Full Text Available Abstract Background The unbranched filamentous green alga Spirogyra (Streptophyta, Zygnemataceae is easily recognizable based on its vegetative morphology, which shows one to several spiral chloroplasts. This simple structure falsely points to a low genetic diversity: Spirogyra is commonly excluded from phylogenetic analyses because the genus is known as a long-branch taxon caused by a high evolutionary rate. Results We focused on this genetic diversity and sequenced 130 Spirogyra small subunit nuclear ribosomal DNA (SSU rDNA strands of different origin. The resulting SSU rDNA sequences were used for phylogenetic analyses using complex evolutionary models (posterior probability, maximum likelihood, neighbor joining, and maximum parsimony methods. The sequences were between 1672 and 1779 nucleotides long. Sequence comparisons revealed 53 individual clones, but our results still support monophyly of the genus. Our data set did not contain a single slow-evolving taxon that would have been placed on a shorter branch compared to the remaining sequences. Out of 130 accessions analyzed, 72 showed a secondary loss of the 1506 group I intron, which formed a long-branched group within the genus. The phylogenetic relationship to the genus Spirotaenia was not resolved satisfactorily. The genetic distance within the genus Spirogyra exceeded the distances measured within any other genus of the remaining Zygnemataceae included in this study. Conclusion Overall, we define eight distinct clades of Spirogyra, one of them including the genus Sirogonium. A large number of non-homoplasious synapomorphies (NHS; 114 NHS in total was found for Spirogyra (41 NHS and for each clade (totaling 73 NHS. This emphasizes the high genetic diversity of this genus and the distance to the remaining Zygnematophyceae.

  20. The mitochondrial genome of the entomoparasitic green alga helicosporidium.

    Directory of Open Access Journals (Sweden)

    Jean-François Pombert

    Full Text Available BACKGROUND: Helicosporidia are achlorophyllous, non-photosynthetic protists that are obligate parasites of invertebrates. Highly specialized, these pathogens feature an unusual cyst stage that dehisces inside the infected organism and releases a filamentous cell displaying surface projections, which will penetrate the host gut wall and eventually reproduce in the hemolymph. Long classified as incertae sedis or as relatives of other parasites such as Apicomplexa or Microsporidia, the Helicosporidia were surprisingly identified through molecular phylogeny as belonging to the Chlorophyta, a phylum of green algae. Most phylogenetic analyses involving Helicosporidia have placed them within the subgroup Trebouxiophyceae and further suggested a close affiliation between the Helicosporidia and the genus Prototheca. Prototheca species are also achlorophyllous and pathogenic, but they infect vertebrate hosts, inducing protothecosis in humans. The complete plastid genome of an Helicosporidium species was recently described and is a model of compaction and reduction. Here we describe the complete mitochondrial genome sequence of the same strain, Helicosporidium sp. ATCC 50920 isolated from the black fly Simulium jonesi. METHODOLOGY/PRINCIPAL FINDINGS: The circular mapping 49343 bp mitochondrial genome of Helicosporidium closely resembles that of the vertebrate parasite Prototheca wickerhamii. The two genomes share an almost identical gene complement and display a level of synteny that is higher than any other sequenced chlorophyte mitochondrial DNAs. Interestingly, the Helicosporidium mtDNA feature a trans-spliced group I intron, and a second group I intron that contains two open reading frames that appear to be degenerate maturase/endonuclease genes, both rare characteristics for this type of intron. CONCLUSIONS/SIGNIFICANCE: The architecture, genome content, and phylogeny of the Helicosporidium mitochondrial genome are all congruent with its close

  1. Cryptic sex in the smallest eukaryotic marine green alga.

    Science.gov (United States)

    Grimsley, Nigel; Péquin, Bérangère; Bachy, Charles; Moreau, Hervé; Piganeau, Gwenaël

    2010-01-01

    Ostreococcus spp. are common worldwide oceanic picoeukaryotic pelagic algae. The complete genomes of three strains from different ecological niches revealed them to represent biologically distinct species despite their identical cellular morphologies (cryptic species). Their tiny genomes (13 Mb), with approximately 20 chromosomes, are colinear and densely packed with coding sequences, but no sexual life cycle has been described. Seventeen new strains of one of these species, Ostreococcus tauri, were isolated from 98 seawater samplings from the NW Mediterranean by filtering, culturing, cloning, and plating for single colonies and identification by sequencing their ribosomal 18S gene. In order to find the genetic markers for detection of polymorphisms and sexual recombination, we used an in silico approach to screen available genomic data. Intergenic regions of DNA likely to evolve neutrally were analyzed following polymerase chain reaction amplification of sequences using flanking primers from adjacent conserved coding sequences that were present as syntenic pairs in two different species of Ostreococcus. Analyses of such DNA regions from eight marker loci on two chromosomes from each strain revealed that the isolated O. tauri clones were haploid and that the overall level of polymorphism was approximately 0.01. Four different genetic tests for recombination showed that sexual exchanges must be inferred to account for the between-locus and between-chromosome marker combinations observed. However, our data suggest that sexual encounters are infrequent because we estimate the frequency of meioses/mitoses among the sampled strains to be 10(-6). Ostreococcus tauri and related species encode and express core genes for mitosis and meiosis, but their mechanisms of cell division and recombination, nevertheless, remain enigmatic because a classical eukaryotic spindle with 40 canonical microtubules would be much too large for the available approximately 0.9-microm(3) cellular

  2. Radar manifestations of ship wakes in algae bloom zones

    Science.gov (United States)

    Mityagina, Marina I.; Lavrova, Olga Yu.

    2014-10-01

    between occurrences of this type of ship wake manifestations and areas of algae blooms is established.

  3. Pengaruh Penambahan Glukosa Sebagai Co-substrate dalam Pengolahan Air Limbah Minyak Solar Menggunakan Sistem High Rate Alga Reactor (HRAR)

    OpenAIRE

    Laksmisari Rakhma Putri; Agus Slamet; Joni Hermana

    2014-01-01

    Kandungan minyak dalam air limbah umumnya relatif sulit untuk diuraikan oleh mikroorganisme pada pengolahan air limbah secara biologis. Sistem alga dalam High Rate Alga Reactor (HRAR) telah banyak dikembangkan dan digunakan sebagai pengolah air limbah domestik dan industri. Aplikasi sistem alga dalam HRAR ini dicoba untuk diaplikasikan dalam pengolahan air limbah mengandung minyak solar. Penelitian dilakukan untuk mengkaji kemampuan HRAR dalam menurunkan kandungan minyak solar dengan penambah...

  4. The Influence of Culture Medium and Light Cycle on the Productivity of the Green Algae Neochloris Oleoabundans

    OpenAIRE

    Clark, Candace

    2010-01-01

    Biofuels from algae are a promising source of alternative energy. One algae species, Neochloris oleoabundans, shows potential for successful biodiesel production, where biodiesel is produced from the neutral lipid content of the algae. Algal neutral lipid content may be influenced and increased by changes in the surrounding environment. One possible way to influence lipid synthesis is through the growth medium. Two published growth mediums were compared using photobioreactors. Two experimenta...

  5. Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions

    OpenAIRE

    Rademacher, Nadine; Kern, Ramona; Fujiwara, Takayuki; Mettler-Altmann, Tabea; Miyagishima, Shin-Ya; Hagemann, Martin; Eisenhut, Marion; Weber, Andreas P. M.

    2016-01-01

    Photorespiration is essential for all organisms performing oxygenic photosynthesis. The evolution of photorespiratory metabolism began among cyanobacteria and led to a highly compartmented pathway in plants. A molecular understanding of photorespiration in eukaryotic algae, such as glaucophytes, rhodophytes, and chlorophytes, is essential to unravel the evolution of this pathway. However, mechanistic detail of the photorespiratory pathway in red algae is scarce. The unicellular red alga Cyani...

  6. Natural history of coral-algae competition across a gradient of human activity in the Line Islands

    OpenAIRE

    Barott, K.L.; Williams, G. J.; Vermeij, M.J.A.; Harris, J.; Smith, J. E.; Rohwer, F.L.; Sandin, S.A.

    2012-01-01

    Competition between corals and benthic algae is prevalent on coral reefs worldwide and has the potential to influence the structure of the reef benthos. Human activities may influence the outcome of these interactions by favoring algae to become the superior competitor, and this type of change in competitive dynamics is a potential mechanism driving coral−algal phase shifts. Here we surveyed the types and outcomes of coral interactions with benthic algae in the Line Islands of the Central Pac...

  7. Influence of foliar application of algae extract and amino acids mixture on fenugreek plants in sandy and clay soils

    OpenAIRE

    SHAHIRA A. TARRAF; Talaat, Iman M.; ABO EL-KHAIR B. EL-SAYED; LAILA K. BALBAA

    2015-01-01

    Abstract. Tarraf SA, Talaat IM, El-Sayed AEB, Balbaa LK. 2015. Influence of foliar application of algae extract and amino acids mixture on fenugreek plants in sandy and clay soils. Nusantara Bioscience 7: 33-37. Two pot experiments were conducted to study the effect of foliar application of algae extract and amino acids mixture on the growth and chemical constituents of fenugreek plants (Trigonella foenum-graecum L.). Plants were sprayed with different concentrations of algae extract (0.0, 2....

  8. Characteristics and phylogeny of light-harvesting complex gene encoded proteins from marine red alga Griffithsia japonica

    Institute of Scientific and Technical Information of China (English)

    LIU Chenlin; HUANG Xiaohang; LEE Yookyung; LEE Hongkum; LI Guangyou

    2005-01-01

    Six genes encoding light-harvesting complex (LHC) protein have been characterized in the multicellular red alga Griffithsia japonica EST analysis. Three of them were full sequences while others were partial sequences with 3'-UTRs. The cleavage sites between signal peptide and mature LHC protein were analyzed on these three full sequences. The sequence characteristics, calculated molecular weights and isoelectric point (pI) values and hydrophobieity of the mature proteins were deduced and analyzed. Comparing the LHC sequences of G. japonica with higher plant, Chlorophyta, chromophytes and other red algae, the high conservation of the chlorophyll (Chl) binding site among chromophytes and red algae were revealed. Phylogenetic analysis on LHC proteins from higher plant, green algae, euglena, brown algae, diatom, cryptomonad, Raphidophyte and red algae reveals that (1) there are two distinct groups of Chl a/b and Chl a/c -binding LHC; (2) Chl a binding proteins of red algae share greater similarities with the Chl a/c-binding proteins of the chromophytes and dinoflagellate than with the Chl a/b - binding proteins of the green algae and higher plants; (3) chromophyte' s LHC is supposed to be evolved from red algae LHC.

  9. Gain and loss of polyadenylation signals during evolution of green algae

    Directory of Open Access Journals (Sweden)

    Glöckner Gernot

    2007-04-01

    Full Text Available Abstract Background The Viridiplantae (green algae and land plants consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related sequence 13 to 30 nucleotides upstream from the cleavage site, which is commonly referred to as the near upstream element (NUE. However, it has been reported that the pentanucleotide UGUAA is used as polyadenylation signal for some genes in volvocalean algae. Results We set out to investigate polyadenylation signal differences between streptophytes and chlorophytes that may have emerged shortly after the evolutionary split between Streptophyta and Chlorophyta. We therefore analyzed expressed genes (ESTs from three streptophyte algae, Mesostigma viride, Klebsormidium subtile and Coleochaete scutata, and from two early-branching chlorophytes, Pyramimonas parkeae and Scherffelia dubia. In addition, to extend the database, our analyses included ESTs from six other chlorophytes (Acetabularia acetabulum, Chlamydomonas reinhardtii, Helicosporidium sp. ex Simulium jonesii, Prototheca wickerhamii, Scenedesmus obliquus and Ulva linza and one streptophyte (Closterium peracerosum. Our results indicate that polyadenylation signals in green algae vary widely. The UGUAA motif is confined to late-branching Chlorophyta. Most streptophyte algae do not have an A-rich sequence motif like that in embryophytes, animals and fungi. We observed polyadenylation signals similar to those of Arabidopsis and other land plants only in Mesostigma. Conclusion Polyadenylation signals in green algae show considerable variation. A new NUE (UGUAA was invented in derived chlorophytes and replaced

  10. Cultivation of phagotrophic algae with waste activated sludge as a fast approach to reclaim waste organics.

    Science.gov (United States)

    Li, Cong; Xiao, Suo; Ju, Lu-Kwang

    2016-03-15

    Substantial energy is reserved in waste activated sludge (WAS) organics but much of it is difficult to recover because the solid organics require long time to solubilize. In this work we introduced the new approach of recovering WAS organics into the biomass of phagotrophic algae. Phagotrophic algae have the unique ability to grow by ingesting insoluble organic particles including microbial cells. This phagotrophic ability renders the solubilization of WAS organics unnecessary and makes this approach remarkably fast. The approach consists of two stages: a short anaerobic digestion treatment followed by the algal growth on treated WAS. The short anaerobic digestion was exploited to release discrete bacteria from WAS flocs. Phagotrophic algae could then grow rapidly with the released bacteria as well as the solubilized nutrients in the treated WAS. The results showed that WAS organics could be quickly consumed by phagotrophic algae. Among all studied conditions the highest WAS volatile solids (VS) reduction was achieved with 72 h anaerobic digestion and 24 h algal growth. In this optimal process, 28% of WAS VS was reduced, and 41% and 20% of the reduced VS were converted into algal biomass and lipids, respectively. In comparison, only 18% WAS VS were reduced after the same time of aerobic digestion without algae addition. Through this approach, the amount of WAS organics requiring further treatment for final disposal is significantly reduced. With the production of significant amounts of algal biomass and lipids, WAS treatment is expected to be more economical and sustainable in material recycling.

  11. Biosorption of nonylphenol by pure algae, field-collected planktons and their fractions

    International Nuclear Information System (INIS)

    Algal samples were fractionated into lipid (LP), lipid free (LF), alkaline nonhydrolyzable carbon (ANHC), and acid nonhydrolyzable carbon (NHC) fractions, and were characterized by the quantitative 13C multiCP NMR technique. The biosorption isotherms for nonylphenol (NP) were established and compared with previously published data for phenanthrene (Phen). The log KOC values are significantly higher for the field-collected plankton samples than for the commercial algae and cultured algae samples, correlating with their lipid contents and aliphatic carbon structure. As the NHC fraction contains more poly(methylene) carbon, it exhibits a higher biosorption capacity. The sorption capacities are negatively related to the polarity index, COO/N–C=O, polar C and O-alkyl C concentrations, but are positively related to the H/O atomic ratios and poly(methylene) carbon. The higher sorption capacities observed for NP than for Phen on the investigated samples are explained by specific interactions such as hydrogen bonding and π–π interaction. - Highlights: • Quantitative 13C NMR technique was applied to algae and their fraction samples. • The biosorption isotherms for the ANHC and NHC fractions are nonlinear. • Polarity and lipid affect the biosorption capacity of NP. • The sorption capacity is positively related to polymethylene carbon. • The hydrogen and π–π interactions between NP and algae could be important. - The NHC fractions are chemically and structurally different from other fractions, and their biosorption for NP is much higher than that of the bulk algae

  12. Effect of Feeding with Algae on Fatty Acid Profile of Goat’S Milk

    Directory of Open Access Journals (Sweden)

    Kouřimská L.

    2014-09-01

    Full Text Available The study was conducted to determine whether the inclusion of algae Chlorella vulgaris in dairy goats’ diets would change the fatty acid profile and increase the proportion of unsaturated fatty acids in goat’s milk. White short-haired dairy goats on 2nd and 3rd lactations were fed 5 and 10 g of dried algae supplementation for six weeks. The fatty acids profile of milk was analyzed using gass chromatography (flame ionization detector (FID. The addition of dried algae caused changes of the profile of fatty acids in the milk. The more algae were added to the diet, the greater the changes in the fatty acids profile of milk were found. A statistically significant effect (P = 0.0390 was found between the control group and the group supplemented with 10 g of Chlorella vulgaris per goat per day. The greatest effect of dietary treatment was seen in the relative reduction of palmitic acid content and increased oleic, linoleic, and linolenic acids content. Results suggested that the addition of algae also increased the nutritional quality of goat’s milk. There was a positive change in the ratio of SFA:MUFA:PUFA in terms of reducing the proportion of saturated fatty acids, as well as a change in the ratio of n-6 and n-3 PUFAs

  13. Antihyperglycemic effect of crude extracts of some Egyptian plants and algae.

    Science.gov (United States)

    AbouZid, Sameh Fekry; Ahmed, Osama Mohamed; Ahmed, Rasha Rashad; Mahmoud, Ayman; Abdella, Ehab; Ashour, Mohamed Badr

    2014-03-01

    Diabetes mellitus is a major global health problem. Various plant extracts have proven antidiabetic activity and are considered as promising substitution for antidiabetic drugs. The antihyperglycemic effect of 16 plants and 4 algae, commonly used in Egypt for the treatment of diabetes mellitus, was investigated. A diabetes model was induced by intraperitoneal injection of nicotinamide (120 mg/kg body weight [b.wt.]), then streptozotocin (200 mg/kg b.wt.) after 15 min. Hydroethanolic extracts (80%) of the plants and algae under investigation were prepared. The extracts were orally administered to nicotinamide-streptozotocin-induced diabetic mice by a gastric tube at doses 10 or 50 mg/kg b.wt. for 1 week. The antidiabetic activity was assessed by detection of serum glucose concentrations at the fasting state and after 2 h of oral glucose loading (4.2 mg/kg b.wt.). Extracts prepared from Cassia acutifolia, Fraxinus ornus, Salix aegyptiaca, Cichorium intybus, and Eucalyptus globulus showed the highest antihyperglycemic activity among the tested plants. Extracts prepared from Sonchus oleraceus, Bougainvillea spectabilis (leaves), Plantago psyllium (seeds), Morus nigra (leaves), and Serena repens (fruits) were found to have antihyperglycemic potentials. Extracts prepared from Caulerpa lentillifera and Spirulina versicolor showed the most potent antihyperglycemic activity among the tested algae. However, some of the tested plants have insulinotropic effects, all assessed algae have not. Identification of lead compounds from these plants and algae for novel antidiabetic drug development is recommended. PMID:24404976

  14. Costs and benefits of chemical defence in the Red Alga Bonnemaisonia hamifera.

    Directory of Open Access Journals (Sweden)

    Göran M Nylund

    Full Text Available A number of studies have shown that the production of chemical defences is costly in terrestrial vascular plants. However, these studies do not necessarily reflect the costs of defence production in macroalgae, due to structural and functional differences between vascular plants and macroalgae. Using a specific culturing technique, we experimentally manipulated the defence production in the red alga Bonnemaisonia hamifera to examine if the defence is costly in terms of growth. Furthermore, we tested if the defence provides fitness benefits by reducing harmful bacterial colonisation of the alga. Costly defences should provide benefits to the producer in order to be maintained in natural populations, but such benefits through protection against harmful bacterial colonisation have rarely been documented in macroalgae. We found that algae with experimentally impaired defence production, but with an externally controlled epibacterial load, grew significantly better than algae with normal defence production. We also found that undefended algae exposed to a natural epibacterial load experienced a substantial reduction in growth and a 6-fold increase in cell bleaching, compared to controls. Thus, this study provides experimental evidence that chemical defence production in macroalgae is costly, but that the cost is outweighed by fitness benefits provided through protection against harmful bacterial colonisation.

  15. Aislamiento de algas del embalse del Neusa por medio de cultivos In Vitro

    Directory of Open Access Journals (Sweden)

    Moreno E.

    2000-12-01

    Full Text Available

    EI cultivo de algas a nivel mundial es un oficio de vieja data, pero en Colombia se encuentra en sus primeras etapas de desarrollo. El presente trabajo desarrollado en el Laboratorio de Bioensayos, Departamento de Biología, Universidad Nacional de Colombia está encaminado a aportar técnicas en el desarrollo del cultivo de algas. En la parte practica del trabajo se utilizaron muestras de agua del embalse del Neusa las cuales se cultivaron en medios líquido y solido. Se observo un mejor crecimiento de cianofíceas filamentosas en medio solido y algas verdes en medio líquido. Las clamidomonas se ven favorecidas en ambos medios, hecho que permitió aislar una sepa pura de este tipo de algas. Las diatorneas por el hecho de crecer en relación con algas verdes generan un problema metodológico para su aislamiento, que aun se encuentra sin resolver.

  16. Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration.

    Science.gov (United States)

    Karsten, Ulf; Holzinger, Andreas

    2014-01-01

    Green algae are major components of biological soil crusts in alpine habitats. Together with cyanobacteria, fungi and lichens, green algae form a pioneer community important for the organisms that will succeed them. In their high altitudinal habitat these algae are exposed to harsh and strongly fluctuating environmental conditions, mainly intense irradiation, including ultraviolet radiation, and lack of water leading to desiccation. Therefore, green algae surviving in these environments must have evolved with either avoidance or protective strategies, as well as repair mechanisms for damage. In this review we have highlighted these mechanisms, which include photoprotection, photochemical quenching, and high osmotic values to avoid water loss, and in some groups flexibility of secondary cell walls to maintain turgor pressure even in water-limited situations. These highly specialized green algae will serve as good model organisms to study desiccation tolerance or photoprotective mechanisms, due to their natural capacity to withstand unfavorable conditions. We point out the urgent need for modern phylogenetic approaches in characterizing these organisms, and molecular methods for analyzing the metabolic changes involved in their adaptive strategies. PMID:24954980

  17. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    Science.gov (United States)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-01

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. PMID:27318730

  18. A green algae mixture of Scenedesmus and Schroederiella attenuates obesity-linked metabolic syndrome in rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-04-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  19. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-04-01

    Full Text Available This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC containing protein (46.1% of dry algae, insoluble fibre (19.6% of dry algae, minerals (3.7% of dry algae and omega-3 fatty acids (2.8% of dry algae as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68% and fats (saturated and trans fats from beef tallow, total 24%. High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome.

  20. Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts for marine red algae (Rhodophyta) in China

    Institute of Scientific and Technical Information of China (English)

    JIA Shangang; LIU Tao; WU Shuangxiu; WANG Xumin; QIAN Hao; LI Tianyong; SUN Jing; WANG Liang; YU Jun; LI Xingang; YIN Jinlong

    2014-01-01

    The chloroplast and mitochondrion of red algae (Phylum Rhodophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their evolutionary lin-eages by using red algal RNA-seq datasets of the 1 000 Plants (1KP) Project and publicly available complete genomes of mitochondria and chloroplasts of Rhodophyta. We have found that red algae were divided into three clades of orders, Florideophyceae, Bangiophyceae and Cyanidiophyceae. Taxonomy resolution for Class Florideophyceae showed that Order Gigartinales was close to Order Halymeniales, while Order Graci-lariales was in a clade of Order Ceramials. We confirmed Prionitis divaricata (Family Halymeniaceae) was closely related to the clade of Order Gracilariales, rather than to genus Grateloupia of Order Halymeniales as reported before. Furthermore, we found both mitochondrial and chloroplastic genes in Rhodophyta under negative selection (Ka/Ks<1), suggesting that red algae, as one primitive group of eukaryotic algae, might share joint evolutionary history with these two organelles for a long time, although we identified some dif-ferences in their phylogenetic trees. Our analysis provided the basic phylogenetic relationships of red algae, and demonstrated their potential ability to study endosymbiotic events.