WorldWideScience

Sample records for alga corallina pilulifera

  1. [Chemical constituents from red alga Corallina pilulifera].

    Science.gov (United States)

    Yuan, Zhao-Hui; Han, Li-Jun; Fan, Xiao; Li, Shuai; Shi, Da-Yong; Sun, Jie; Ma, Ming; Yang, Yong-Chun; Shi, Jian-Gong

    2006-11-01

    To investigate the chemical constituents of red alga Corallina pilulifera. Compounds were isolated by normal phase silica gel and Sephadex LH - 20 gel column chromatography, reverse phase HPLC and recrystallization. Their structures were elucidated by spectroscopic methods including MS, 1H-NMR, 13C-NMR, HSQC, HMBC. Cytotoxicity of the compounds was screened by using standard MTT method. Seven compounds were isolated from red alga C. pilulifera, their structures were identified as (E) -phytol epoxide (1), phytenal (2), phytol (3), dehydrovomifoliol (4), loliolide (5), 3beta-hydroxy-5alpha, 6alpha-epoxy-7-megastigmene-9-one (6), 4-hydroxybenzaldehyde (7). All of the compounds were obtained from this species for the first time. These compounds were inactive (IC50 > 10 microg x mL(-1)) in the MTT assay.

  2. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Bo Mi [Department of Chemistry, Pukyoung National University, Busan 608-737 (Korea, Republic of); Qian Zhongji [Marine Bioprocess Research Center, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Moon-Moo [Department of Chemistry, Dong-Eui University, Busan 614-714 (Korea, Republic of); Nam, Ki Wan [Department of Marine Biology, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Se-Kwon [Department of Chemistry, Pukyoung National University, Busan 608-737 (Korea, Republic of); Marine Bioprocess Research Center, Pukyong National University, Busan 608-737 (Korea, Republic of)], E-mail: sknkim@pknu.ac.kr

    2009-02-15

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as {alpha}-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  3. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    Science.gov (United States)

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Moon-Moo; Nam, Ki Wan; Kim, Se-Kwon

    2009-02-01

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  4. Expression of the vanadium-dependent bromoperoxidase gene from a marine macro-alga Corallina pilulifera in Saccharomyces cerevisiae and characterization of the recombinant enzyme.

    Science.gov (United States)

    Ohshiro, Takashi; Hemrika, Wieger; Aibara, Toshiaki; Wever, Ron; Izumi, Yoshikazu

    2002-07-01

    The vanadium-dependent bromoperoxidase from the marine macro-alga Corallina pilulifera was heterologously expressed in Saccharomyces cerevisiae. The enzyme was purified and crystals in "tear drop" form were obtained. The catalytic properties of the recombinant enzyme were studied and compared with those of the native enzyme purified from C. pilulifera. Differences in thermal stability and chloroperoxidase activity were observed. The recombinant enzyme retained full activity after preincubation at 65 degrees C for 20 min, but the native enzyme was completely inactivated under the same conditions. The chlorinating activity of the native enzyme was more than ten times higher than that of the recombinant enzyme. Other properties, such as K(m) values for KBr and H(2)O(2), and optimal temperature and pH, were similar for each source of C. pilulifera bromoperoxidase.

  5. Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide.

    Science.gov (United States)

    Ohsawa, N; Ogata, Y; Okada, N; Itoh, N

    2001-11-01

    The physiological function of vanadium-bromoperoxidase (BPO) in the marine red alga, Corallina pilulifera, has been characterized from the viewpoint of allelochemical formation. The algae emit bromoform (CHBr3) depending on the enzyme activity level in vivo (Itoh, N., Shinya, M., 1994. Seasonal evolution of bromomethanes from coralline algae and its effect on atmospheric ozone. Marine Chemistry 45, 95-103). We demonstrated that bromoform produced by C. pilulifera played an important role in eliminating epiphytic organisms, especially microalgae on the surface. Such data suggest a strong relationship between the coralline algae and the coralline flat (deforested area in the marine environment: called isoyake in Japanese). Lithophyllum yessoense, the main inhabitant of coralline flats in Japan, produced a lower level of CHBr3 than C. pilulifera, and showed BPO activity. On the other hand, the seasonal change of BPO activity in C. pilulifera in vivo was in proportion to superoxide dismutase (SOD) activity and in inverse proportion to catalase activity. The phenomenon implies that BPO could be a potential substitute for catalase, because the enzyme catalyzes an efficient Br(-)-dependent catalase reaction.

  6. Allelopathic effects of macroalga Corallina pilulifera on the red-tide forming alga Heterosigma akashiwo under laboratory conditions

    Science.gov (United States)

    Wang, Renjun; Tang, Xuexi

    2016-03-01

    Over the past few years, harmful algal blooms (HABs), such as red tides, have been frequently observed in coastal zones worldwide. The natural allelopathic interactions among macroalgae and red tide microalgae can alter the structure and succession of aquatic ecosystems. We investigated the influence of four environmental factors (temperature, salinity, light, and pH) on the allelopathic effects of the macroalgae Corallina pilulifera on red-tide forming Heterosigma akashiwo under laboratory conditions. Each of the factors had four levels: temperature (15, 20, 25, and 30°C), salinity (10, 20, 30, and 40), light (20, 100, 200 and 400 μmol/(m2•s)), and pH (5.5, 7, 8.5, and 10. Two-factor experiments were designed for each two environmental factors, with six combination treatments (temperature-salinity, temperature-light, temperature-pH, salinity-light, salinity-pH, and light-pH). Results showed that the allelopathic effect was significantly influenced by temperature, salinity, light, and pH. As single factors, the low temperature (15°C), low salinity (10), high-intensity light (400 μmol/(m2•s)), and high pH (10) treatments substantially enhanced the allelopathic effect. The strongest allelopathic effect of C. pilulifera on H. akashiwo was observed under the following treatments: 15°C and salinity of 40, 25°C and pH 10, 25°C with medium- to high-intensity light at 200-400 μmol/(m 2 •s), 400 μmol/(m2•s) and salinity of 10, 400 μmol/(m2•s) and pH 10, and pH 10 with a salinity of 40.

  7. Enhancing effect of calcium and vanadium ions on thermal stability of bromoperoxidase from Corallina pilulifera.

    Science.gov (United States)

    Garcia-Rodriguez, Esther; Ohshiro, Takashi; Aibara, Toshiaki; Izumi, Yoshikazu; Littlechild, Jennifer

    2005-05-01

    Bromoperoxidase from the macro-alga Corallina pilulifera is an enzyme that possesses vanadate in the catalytic center, and shows a significant thermostability and stability toward organic solvents. The structural analysis of the recombinant enzyme overexpressed in yeast revealed that it contains one calcium atom per subunit. This has been confirmed by inductively coupled plasma emission spectrometry experiments. The study of the effect of metal ions on the apo-enzyme stability has shown that the calcium ion significantly increased the enzyme stability. In addition, vanadate also increased the thermostability and strontium and magnesium ions had similar effects as calcium. The holo-enzyme shows high stability in a range of organic solvents. The effect of the different ions and solvents on the structure of the enzyme has been studied by circular dichroism experiments. The high stability of the enzyme in the presence of organic solvents is useful for its application as a biocatalyst.

  8. [Allelopathic effect of Corallina pilulifera on Heterosigma akashiwo and its responses to UV-B irradiation].

    Science.gov (United States)

    Zhao, Yan; Yu, Qing-Yun; Zhou, Bin; Ju, Qing; Tang, Xue-Xi

    2009-10-01

    By the method of co-culture and using cell density as the main indicator, this paper studied the allelopathic effect of Corallina pilulifera on Heterosigma akashiwo and its responses to UV-B irradiation. Under normal condition, the fresh tissue and aqueous extracts of C. pilulifera had significant inhibitory effects on the growth of H. akashiwo (P 0.05). After pre-treated with different dose UV-B radiation and then co-cultured with H. akashiwo, C. pilulifera had some changes in the allelopathic activity of its fresh tissue, dry powder, and aqueous extracts. High-dose UV-B radiation (3.0 J x m(-2)) induced the decrease of the allelopathic effect, whereas low-dose UV-B radiation (0.9 J x m(-2)) was in adverse (P < 0.05).

  9. [Allelopathic effects of Corallina pilulifera on red tide microalgae Heterosigma akashiwo].

    Science.gov (United States)

    Wang, Ren-Jun; Tang, Xue-Xi; Sun, Jun-Hua

    2008-10-01

    Different concentration methanol-, acetone-, ether-, and chloroform extracts of Corallina pilulifera were used to study their growth inhibitory effects on red tide microalgae Heterosigma akashiwo. The results showed that methanol extract at relatively higher concentrations had the highest growth inhibitory activity and killed all H. akashiwo cells, while the other three kinds of organic solvent extracts had no apparent inhibitory effects, suggesting that the growth inhibitory substances in C. pilulifera had relatively high polarity. The methanol extract was partitioned to petroleum ether phase, ethyl acetate phase, butanol phase, and distilled water phase by liquid-liquid fractionation, and the bioassays on the activity of each fraction were carried out on H. akashiwo. It was found that petroleum ether phase and ethyl acetate phase had strong algicidal effects on H. akashiwo, suggesting that the fatty acids in C. pilulifera tissues might be one of the main allelochemicals.

  10. Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense.

    Science.gov (United States)

    Wang, Renjun; Xiao, Hui; Zhang, Peiyu; Qu, Liang; Cai, Hengjiang; Tang, Xuexi

    2007-04-01

    The allelopathic effects of fresh tissue, dry powder and aqueous extracts of three macroalgae, Ulva pertusa, Corallina pilulifera and Sargassum thunbergii, on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense were evaluated using coexistence culture systems in which concentrations of the three macroalga were varied. The results of the coexistence assay showed that the growth of the two microalgae was strongly inhibited by using fresh tissue, dry powder and aqueous extracts of the three macroalga; the allelochemicals were lethal to H. akashiwo at relatively higher concentrations of the three macroalga. The macroalgae showing the most allelopathic effect on H. akashiwo and A. tamarense using fresh tissue were U. pertusa and S. thunbergii, using dry powder were S. thunbergii and U. pertusa, and using aqueous extracts were U. pertusa and C. pilulifera. We also examined the potential allelopathic effect on the two microalgae of culture filtrate of the three macroalga; culture medium filtrate initially exhibited no inhibitory effects when first added but inhibitory effects became apparent under semi-continuous addition, which suggested that continuous release of small quantities of rapidly degradable allelochemicals from the fresh macroalgal tissue were essential to effectively inhibit the growth of the two microalgae.

  11. Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrum donghaiense under laboratory conditions

    Science.gov (United States)

    Wang, Renjun; Xiao, Hui; Wang, You; Zhou, Wenli; Tang, Xuexi

    2007-10-01

    Allelopathic effects of several concentrations of fresh tissue and dry powder of three macroalgae, Ulva linza, Corallina pilulifera and Sargassum thunbergii, on the red tide microalga Prorocentrum donghaiense were evaluated in microcosms. Preliminary studies on the algicidal effects of one aqueous and four organic solvent extracts from the macroalgae on the microalga were carried out to confirm the existence of allelochemicals in the tissues of the macroalgae. The effects of macroalgal culture medium filtrate on P. donghaiense were investigated using initial or semi-continuous filtrate addition. Furthermore, the potential effects of the microalga on these three macroalgae were also tested. The results of the microcosm assay showed that the growth of P. donghaiense was strongly inhibited by using fresh tissues and dry powder of the three macroalgae. Both aqueous and methanol extracts of the macroalgae had strong growth inhibitory effects on P. donghaiense, while the other three organic solvent extracts (acetone, ether and chloroform) had no apparent effect on its growth; this suggested that the allelochemicals from these three macroalga had relatively high polarities. The three macroalgal culture medium filtrates exhibited apparent growth inhibitory effect on the microalgae under initial or semi-continuous addition, which suggested that the cells of P. donghaiense are sensitive to the allelochemicals. In contrast, P. donghaiense had no apparent effect on the growth of the macroalgae in coexistence experiment.

  12. Corallina

    Science.gov (United States)

    Williamson, C J; Brodie, J; Goss, B; Yallop, M; Lee, S; Perkins, R

    2014-01-01

    The photophysiology of three geniculate coralline algal species ( Corallina officinalis , C. caespitosa and Ellisolandia elongata ) was determined in intertidal rock pools in the south-west UK at Combe Martin (51°12'31N 4°2'19W) and Heybrook Bay (50°31'66N 4°11'41W), at the start, middle and end of summer (September 1 and 2) and winter (February 9 and 10) daylight tidal emersion periods, in relation to prevailing irradiance, temperature and carbonate chemistry conditions. Algal photophysiology was assessed from rapid light curves performed using pulse amplitude modulation fluorometry. Corallina and Ellisolandia experienced significant fluctuations in irradiance, temperature and carbonate chemistry over seasonal and tidal cycles. Rock pool carbonate chemistry was predictable ( R 2  = 0.82, P  < 0.0001) by photodose (summed irradiance) plus water temperature, but not significantly related to photophysiology. In contrast, Corallina and Ellisolandia relative maximum electron transfer rate showed a significant negative relationship ( R 2  = 0.65, P  < 0.0001) with irradiance plus water temperature. At a seasonal resolution, photoacclimation to maximize both light harvesting during winter months and photoprotection during summer months was observed for all species. Dynamic photoinhibition was apparent over both summer and winter tidal emersion, in relation to irradiance fluctuations. More effective photoinhibition was apparent during summer months, with greater sensitivity to irradiance and slower recovery in F v / F m , observed during winter. With sustained high irradiance over tidal emersion, the establishment of high pH/low inorganic carbon conditions may impact photochemistry. This study represents the first assessment of C. officinalis , C. caespitosa and E. elongata photophysiology underpinned by clear species concepts and highlights their ability to adapt to the dramatically fluctuating conditions experienced in intertidal rock pools.

  13. Complete mitochondrial genome of the geniculate calcified red alga, Corallina officinalis (Corallinales, Rhodophyta)

    OpenAIRE

    Williamson, Christopher; Yesson, Christopher; Briscoe, Andrew G.; Brodie, Juliet

    2016-01-01

    We present the first mitochondrial genome of the calcified, geniculate coralline red alga Corallina officinalis (Corallinales). The circular genome consists of 26,504 bp and has a gene content consisting of 23 protein-coding genes, 26 transfer RNA genes and two ribosomal RNA genes, with an overall GC content of 30.1%.

  14. BIODIVERSITY OF CORALLINE ALGAE IN THE NORTHEASTERN ATLANTIC INCLUDING CORALLINA CAESPITOSA SP. NOV. (CORALLINOIDEAE, RHODOPHYTA)(1).

    Science.gov (United States)

    Walker, Rachel H; Brodie, Juliet; Russell, Stephen; Irvine, Linda M; Orfanidis, Sotiris

    2009-02-01

    The Corallinoideae (Corallinaceae) is represented in the northeastern Atlantic by Corallina officinalis L.; Corallina elongata J. Ellis et Sol.; Haliptilon squamatum (L.) H. W. Johans., L. M. Irvine et A. M. Webster; and Jania rubens (L.) J. V. Lamour. The delimitation of these geniculate coralline red algae is based primarily on morphological characters. Molecular analysis based on cox1 and 18S rRNA gene phylogenies supported the division of the Corallinoideae into the tribes Janieae and Corallineae. Within the Janieae, a sequence difference of 46-48 bp (8.6%-8.9%) between specimens of H. squamatum and J. rubens in the cox1 phylogeny leads us to conclude that they are congeneric. J. rubens var. rubens and J. rubens var. corniculata (L.) Yendo clustered together in both phylogenies, suggesting that for those genes, there was no genetic basis for the morphological variation. Within the Corallineae, it appears that in some regions, the name C. elongata has been misapplied. C. officinalis samples formed two clusters that differed by 45-54 bp (8.4%-10.0%), indicating species-level divergence, and morphological differences were sufficient to define two species. One of these clusters was consistent with the morphology of the type specimen of C. officinalis (LINN 1293.9). The other species cluster is therefore described here as Corallina caespitosa sp. nov. This study has demonstrated that there is a clear need for a revision of the genus Corallina to determine the extent of "pseudocryptic" diversity in this group of red algae. © 2009 Phycological Society of America.

  15. Extracting and purifying R-phycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander.

    Science.gov (United States)

    Rossano, R; Ungaro, N; D'Ambrosio, A; Liuzzi, G M; Riccio, P

    2003-03-20

    R-Phycoerythrin (R-PE) is a protein acting as a photosynthetic accessory pigment in red algae (Rodophyta). This protein has gained importance in many biotechnological applications in food science, immunodiagnostic, therapy, cosmetics, protein and cell labelling, and analytical processes. In this paper we report on a new, one step procedure for the extraction and purification of R-PE from a new source: the Mediterranean red algae Corallina elongata Ellis & Solander. This red algae contains mainly R-PE and is suitable for the production in culture. No other contaminating phycobiliproteins could be detected in the extracts. The method we propose for the purification is based on the use of hydroxyapatite, a chromatographic resin that can be produced in the laboratory at very low cost and can be used batch-wise with large amounts of extracts, alternative to chromatography, and therefore can be scaled up. Both the yield and the purity of R-PE are very good.

  16. Reactivity of recombinant and mutant vanadium bromoperoxidase from the red alga Corallina officinalis.

    Science.gov (United States)

    Carter, Jayme N; Beatty, Kimberly E; Simpson, Matthew T; Butler, Alison

    2002-07-25

    Vanadium bromoperoxidase (VBPO) from the marine red alga Corallina officinalis has been cloned and heterologously expressed in Esherichia coli. The sequence for the full-length cDNA of VBPO from C. officinalis is reported. Steady state kinetic analyses of monochlorodimedone bromination reveals the recombinant enzyme behaves similarly to native VBPO from the alga. The kinetic parameters (K(m)(Br-)=1.2 mM, K(m)(H(2)O(2))=17.0 microM) at the optimal pH 6.5 for recombinant VBPO are similar to reported values for enzyme purified from the alga. The first site-directed mutagenesis experiment on VBPO is reported. Mutation of a conserved active site histidine residue to alanine (H480A) results in the loss of the ability to efficiently oxidize bromide, but retains the ability to oxidize iodide. Kinetic parameters (K(m)(I-)=33 mM, K(m)(H(2)O(2))=200 microM) for iodoperoxidase activity were determined for mutant H480A. The presence of conserved consensus sequences for the active sites of VBPO from marine sources shows its usefulness in obtaining recombinant forms of VBPO. Furthermore, mutagenesis of the conserved extra-histidine residue shows the importance of this residue in the oxidation of halides by hydrogen peroxide.

  17. Characterising the microbiome of Corallina officinalis, a dominant calcified intertidal red alga.

    Science.gov (United States)

    Brodie, Juliet; Williamson, Christopher; Barker, Gary L; Walker, Rachel H; Briscoe, Andrew; Yallop, Marian

    2016-08-01

    The living prokaryotic microbiome of the calcified geniculate (articulated) red alga, Corallina officinalis from the intertidal seashore is characterised for the first time based on the V6 hypervariable region of 16S rRNA. Results revealed an extraordinary diversity of bacteria associated with the microbiome. Thirty-five prokaryotic phyla were recovered, of which Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Acidobacteria, Verrucomicrobia, Firmicutes and Chloroflexi made up the core microbiome. Unclassified sequences made up 25% of sequences, suggesting insufficient sampling of the world's oceans/macroalgae. The greatest diversity in the microbiome was on the upper shore, followed by the lower shore then the middle shore, although the microbiome community composition did not vary between shore levels. The C. officinalis core microbiome was broadly similar in composition to those reported in the literature for crustose coralline algae (CCAs) and free-living rhodoliths. Differences in relative abundance of the phyla between the different types of calcified macroalgal species may relate to the intertidal versus subtidal habit of the taxa and functionality of the microbiome components. The results indicate that much work is needed to identify prokaryotic taxa, and to determine the nature of the relationship of the bacteria with the calcified host spatially, temporally and functionally. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis.

    Science.gov (United States)

    Isupov, M N; Dalby, A R; Brindley, A A; Izumi, Y; Tanabe, T; Murshudov, G N; Littlechild, J A

    2000-06-16

    The three-dimensional structure of the vanadium bromoperoxidase protein from the marine red macroalgae Corallina officinalis has been determined by single isomorphous replacement at 2.3 A resolution. The enzyme subunit is made up of 595 amino acid residues folded into a single alpha+beta domain. There are 12 bromoperoxidase subunits, arranged with 23-point group symmetry. A cavity is formed by the N terminus of each subunit in the centre of the dodecamer. The subunit fold and dimer organisation of the Cor. officinalis vanadium bromoperoxidase are similar to those of the dimeric enzyme from the brown algae Ascophyllum nodosum, with which it shares 33 % sequence identity. The different oligomeric state of the two algal enzymes seems to reflect separate mechanisms of adaptation to harsh environmental conditions and/or to chemically active substrates and products. The residues involved in the vanadate binding are conserved between the two algal bromoperoxidases and the vanadium chloroperoxidase from the fungus Curvularia inaequalis. However, most of the other residues forming the active-site cavity are different in the three enzymes, which reflects differences in the substrate specificity and stereoselectivity of the reaction. A dimer of the Cor. officinalis enzyme partially superimposes with the two-domain monomer of the fungal enzyme. Copyright 2000 Academic Press.

  19. [Modeling of hysteresis in pH pattern formation along the cell membrane of algae Chara corallina].

    Science.gov (United States)

    Lavrova, A I; Pliusnina, T Iu; Bulychev, A A; Riznichenko, G Iu; Rubin, A B

    2005-01-01

    It is known that illumination of the algae Chara corallina results in the formation along the membrane of regions with inhomogeneous distribution of pH. It was shown that, in a particular range of illumination intensities, two states with different pH distribution are realized at one and the same value of light intensity: an entirely homogeneous state and completely formed structures (pattern). The transition from the homogeneous state to the pattern formation takes place at one value of light intensity, and the back transition, at another light intensity, i.e., the hysteresis is observed. This phenomenon was studied by mathematical modeling. The mechanism of hysteresis is discussed.

  20. Use of serially coupled capillary columns with different polarity of stationary phases for the separation of the natural complex volatile mixture of the marine red alga Corallina elongata.

    Science.gov (United States)

    Dembitsky, V M; Srebnik, M

    2002-09-01

    Separation of a complex of natural volatile compounds using serially coupled capillary columns with different polarity of stationary phases by gas chromatography-mass spectrometry from the medicinal marine red alga Corallina elongata is reported. Nearly 200 hydrocarbons, halogen compounds, fatty acids, and other metabolites were found. Using this gas chromatography procedure we demonstrate the successful separation of different volatile organic compounds.

  1. The distribution of cell wall polymers during antheridium development and spermatogenesis in the Charophycean green alga, Chara corallina.

    Science.gov (United States)

    Domozych, David S; Sørensen, Iben; Willats, William G T

    2009-11-01

    The production of multicellular gametangia in green plants represents an early evolutionary development that is found today in all land plants and advanced clades of the Charophycean green algae. The processing of cell walls is an integral part of this morphogenesis yet very little is known about cell wall dynamics in early-divergent green plants such as the Charophycean green algae. This study represents a comprehensive analysis of antheridium development and spermatogenesis in the green alga, Chara corallina. Microarrays of cell wall components and immunocytochemical methods were employed in order to analyse cell wall macromolecules during antheridium development. Cellulose and pectic homogalacturonan epitopes were detected throughout all cell types of the developing antheridium including the unique cell wall protuberances of the shield cells and the cell walls of sperm cell initials. Arabinogalactan protein epitopes were distributed only in the epidermal shield cell layers and anti-xyloglucan antibody binding was only observed in the capitulum region that initially yields the sperm filaments. During the terminal stage of sperm development, no cell wall polymers recognized by the probes employed were found on the scale-covered sperm cells. Antheridium development in C. corallina is a rapid event that includes the production of cell walls that contain polymers similar to those found in land plants. While pectic and cellulosic epitopes are ubiquitous in the antheridium, the distribution of arabinogalactan protein and xyloglucan epitopes is restricted to specific zones. Spermatogenesis also includes a major switch in the production of extracellular matrix macromolecules from cell walls to scales, the latter being a primitive extracellular matrix characteristic of green plants.

  2. Bacillus cereus can attack the cell membranes of the alga Chara corallina by means of HlyII.

    Science.gov (United States)

    Kataev, Anatoly A; Andreeva-Kovalevskaya, Zhanna I; Solonin, Alexander S; Ternovsky, Vadim I

    2012-05-01

    We studied the influence of Bacillus cereus bacteria on cells of the freshwater alga Chara corallina. These bacteria and recombinant Bacillus subtilis strains are capable of producing the secreted toxin HlyII, which changes the electrophysiological parameters of the algal electrically excitable plasma membrane by forming pores. Cooperative incubation of bacterial cells, which carry active hlyII gene, and Chara corallina cells caused a decrease in the resting potential (V(m)) and plasma membrane resistance (R(m)) of algal cells. The efficiency of each strain was commensurable with its ability to produce HlyII. Purified hemolysin II caused a similar effect on V(m) and R(m) of intact and perfused cells. This protein changed the kinetics and magnitude of transient voltage-dependent calcium and calcium-activated chloride currents owing to the formation of additional Ca(2+)-permeable pores in algal cell membrane. Occurrence of the cellulose cell wall with pores 2.1 to 4.6nm in diameter suggests that HlyII molecules reach the plasma membrane surface strictly as monomers. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Estudio del sistema de polisacáridos del alga roja calcárea Corallina Officinalis

    OpenAIRE

    Cases, Marcelo Roberto

    1995-01-01

    En este trabajo de Tesis se determinó la estructura del sistema de polisacáridos del alga roja calcárea Corallina officinalis. Se desarrollaron además dos técnicas de análisis de azúcares: el método de etilación para el estudio de azúcares naturalmente metilados, y la determinación de azúcares enantioméricos derivatizados como sus 1-amino- 1-desoxialditoles diastereoméricos, mediante una reacción de aminación reductiva con (S)-1-amino-2-propanol y (S)-α-metilbencilamina como aminas quirales. ...

  4. Seasonal variation of the lipoidal matters and hypolipidaemic activity of the red alga Corallina officinalis L.

    Science.gov (United States)

    Awad, N E; Selim, M A; Saleh, M M; Matloub, A A

    2003-01-01

    The lipoidal matters of Corallina officinalis L. showed a seasonal nonsignificant quantitative variation. However, the fatty acids revealed a relative increase in the summer and winter, while unsaponifiable matter exhibited a slight increase in the spring. The GC/MS analysis of saponifiable and unsaponifiable matter of the algal samples collected in different seasons revealed that samples collected in the spring contained a low cholesterol content and high steroidal compounds as well as high polyunsaturated fatty acids. The alcohol extract, hexane extract and fatty acid fraction of this algal sample exhibited a significant hypolipidaemic activity. Also, two biologically active fractions of hydrocarbons were isolated by CC technique from the hexane fraction of C. officinalis L. and identified by GC/MS. Copyright 2003 John Wiley & Sons, Ltd.

  5. The effect of physical and chemical treatment on the mechanical properties of the cell wall of the alga Chara corallina.

    Science.gov (United States)

    Toole, Geraldine A; Smith, Andrew C; Waldron, Keith W

    2002-01-01

    Single large internode cells of the charophyte (giant alga) Chara corallina were dissected to give sheets of cell wall, which were then notched and their mechanical properties in tension determined. The cells were subjected to a thermal treatment in excess water (cf. cooking), which had little effect on strength but increased the stiffness, contrasting with the behaviour of higher-plant tissues. Extraction in CDTA (cyclohexane-trans-1,2-diamine-N,N,N',N'-tetraacetate) or 4 M KOH reduced the strength from 17 MPa to 10 MPa, although sequential extraction in CDTA and 4 M KOH reduced the strength further to 4 MPa. The stiffness decreased from 500 MPa to 300 MPa on extraction in CDTA or 4 M KOH, while falling to 70 MPa after extraction in CDTA followed by 4 M KOH. Conventional sequential extraction in CDTA, Na2CO3 at 1 degrees C and 20 degrees C, and KOH at 0.5 M, 1 M, 2 M and 4 M caused a gradual decrease in stiffness and strength after the CDTA treatment to the same lower values. This result is in keeping with mechanical properties for plant tissues, but in contrast to the removal of pectic polysaccharides from model cell wall systems, which does not reduce the stiffness.

  6. Vanadate activation of bromoperoxidase from Corallina officinalis.

    Science.gov (United States)

    Yu, H; Whittaker, J W

    1989-04-14

    A nonheme bromoperoxidase has been purified to homogeneity from the red seaweed Corallina officinalis. Like the corresponding enzyme previously reported from C. pilulifera, this bromoperoxidase contains a significant amount of nonheme iron. However, it is vanadate ion and not iron that activates the enzyme, and maximal activity is achieved with stoichiometric vanadium incorporation. The absence of competition between vanadium and iron suggests that they occupy distinct binding sites in the protein. A correlation between vanadium content and catalytic activity indicates that less than 12 percent of the maximal activity of the enzyme can be derived from metals other than vanadium.

  7. The dodecameric vanadium-dependent haloperoxidase from the marine algae Corallina officinalis: cloning, expression, and refolding of the recombinant enzyme.

    Science.gov (United States)

    Coupe, E E; Smyth, M G; Fosberry, A P; Hall, R M; Littlechild, J A

    2007-04-01

    The dodecameric vanadium-dependent bromoperoxidase from Corallina officinalis has been cloned and over-expressed in Escherichia coli. However, the enzyme was found to be predominantly in the form of inclusion bodies. This protein presents a challenging target for refolding, both due to the size (768kDa) and quaternary structure (12x64kDa). Successful refolding conditions have been established which result in an increase in the final yield of active bromoperoxidase from 0.5mg to 40mg per litre of culture. The refolded protein has been characterised and compared to the native enzyme and was shown to be stable at temperatures of 80 degrees C, over a pH range 5.5-10 and in organic solvents such as ethanol, acetonitrile, methanol, and acetone. The novel refolding approach reported in this paper opens up the full potential of this versatile enzyme for use in large scale biotransformation studies.

  8. Distribution patterns of the peracarid crustaceans associated with the alga Corallina elongata along the intertidal rocky shores of the Iberian Peninsula

    Science.gov (United States)

    Izquierdo, D.; Guerra-García, J. M.

    2011-06-01

    Spatial patterns of intertidal peracarids, associated with the alga Corallina elongata, were studied along the whole Iberian Peninsula. A total of 28,215 specimens were collected, comprising 78 different species (57 amphipods, 16 isopods, 4 tanaids and 1 cumacean), most of them with Atlantic-Mediterranean distribution (60%) and only 9% of Mediterranean endemics. Gammarids were dominant in abundance and number of species, representing more than 70% of the total peracarids. The most common species collected during the present study were the caprellid Caprella penantis, the gammarids Hyale schmidti, Hyale stebbingi, Jassa cf. falcata and Stenothoe monoculoides, the isopod Ischyromene lacazei and the tanaid Tanais dulongii. Caprellids and tanaidaceans presented their highest populations in the stations of the Strait of Gibraltar, whereas isopods were more abundant in Atlantic stations. Univariate analyses did not reflected differences in number of species, abundance and Shannon-Weaver diversity between Mediterranean and Atlantic. However, cluster analyses and Whittaker index, as measure of ß-diversity, showed a different species composition between Mediterranean and Atlantic and a replacement of species along the coast, especially at the Strait of Gibraltar. The turnover mainly affected species of the same genera, probably related with sympatric speciation. CCA and BIO-ENV analyses showed high correlations between environmental measures (especially conductivity) and peracarid distribution. Mediterranean species tolerated higher values of conductivity and temperature, while Atlantic species were associated with stations characterized by higher oxygen concentrations.

  9. Protein phosphorylation regulates actomyosin-driven vesicle movement in cell extracts isolated from the green algae, Chara corallina.

    Science.gov (United States)

    Morimatsu, Miki; Hasegawa, Satoshi; Higashi-Fujime, Sugie

    2002-09-01

    In Characean cells endoplasmic streaming stops upon membrane depolarization accompanied by Ca(2+) entry. We investigated the mechanism of this cessation of endoplasmic streaming by reconstituting the vesicle movement in vitro. In a living cell of Chara corallina, there are a number of vesicles moving along actin cables. Vesicles in the endoplasm squeezed out of the cell into a medium containing Mg-ATP showed directional movements under a dark field microscope. When the extracted endoplasm was treated with 20 nM okadaic acid, vesicles showed only movements like the Brownian motion. When it was treated with 50 nM staurosporine, directional movements of vesicles were activated. These movements were analyzed by image processing of videomicroscopic records. Vesicle movements along F-actin filaments were also observed by merging both images of the same field by dark field microscopy and fluorescence microscopy, indicating that myosin on the vesicle surface was responsible for vesicle movements. We also examined the effects of okadaic acid and staurosporine on in vitro sliding of F-actin on Chara myosin. When Chara myosin was treated with 20 nM okadaic acid in the cell extract, the number of sliding F-actin filaments was greatly reduced. In contrast, it increased when Chara myosin was treated with 50 nM staurosporine. In addition, Chara myosin treated with protein kinase C greatly diminished its motility. These results suggest that inactivation of Chara myosin via its phosphorylation is responsible for cessation of endoplasmic streaming. Copyright 2002 Wiley-Liss, Inc.

  10. Auxin effects on ion transport in Chara corallina.

    Science.gov (United States)

    Zhang, Suyun; de Boer, Albertus H; van Duijn, Bert

    2016-04-01

    The plant hormone auxin has been widely studied with regard to synthesis, transport, signaling and functions among the land plants while there is still a lack of knowledge about the possible role for auxin regulation mechanisms in algae with "plant-like" structures. Here we use the alga Chara corallina as a model to study aspects of auxin signaling. In this respect we measured auxin on membrane potential changes and different ion fluxes (K(+), H(+)) through the plasma membrane. Results showed that auxin, mainly IAA, could hyperpolarize the membrane potential of C. corallina internodal cells. Ion flux measurements showed that the auxin-induced membrane potential change may be based on the change of K(+) permeability and/or channel activity rather than through the activation of proton pumps as known in land plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Algae

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Giordano, Mario

    2014-01-01

    Roč. 24, č. 13 (2014), s. 590-595 ISSN 0960-9822 Institutional support: RVO:61388971 Keywords : algae * life cycle * evolution Subject RIV: EE - Microbiology, Virology Impact factor: 9.571, year: 2014

  12. Fracture mechanics of the cell wall of Chara corallina.

    Science.gov (United States)

    Toole, G A; Gunning, P A; Parker, M L; Smith, A C; Waldron, K W

    2001-03-01

    Previous mechanical studies using algae have concentrated on cell extension and growth using creep-type experiments, but there appears to be no published study of their failure properties. The mechanical strength of single large internode cell walls (up to 2 mm diameter and 100 mm in length) of the charophyte (giant alga) Chara corallina was determined by dissecting cells to give sheets of cell wall, which were then notched and fractured under tension. Tensile tests, using a range of notch sizes, were conducted on cell walls of varying age and maturity to establish their notch sensitivity and to investigate the propagation of cracks in plant cell walls. The thickness and stiffness of the walls increased with age whereas their strength was little affected. The strength of unnotched walls was estimated as 47+/-13 MPa, comparable to that of some grasses but an order of magnitude higher than that published for model bacterial cellulose composite walls. The strength was notch-sensitive and the critical stress intensity factor K1c was estimated to be 0.63+/-0.19 MNm(-3/2), comparable to published values for grasses.

  13. Proteomic identification of putative plasmodesmatal proteins from Chara corallina.

    Science.gov (United States)

    Faulkner, Christine R; Blackman, Leila M; Cordwell, Stuart J; Overall, Robyn L

    2005-07-01

    Plasmodesmata are channels that bridge the cell walls of plant cells, allowing regulated transport of molecules between neighbouring cells. We have used a proteomic strategy to identify putative plasmodesmata-associated proteins in the giant-celled green alga Chara corallina. Proteins were extracted from the plasmodesmata-rich nodal complexes and the middle of the long internodal cells, which do not contain plasmodesmata. Comparison of protein spot patterns generated by two-dimensional gel electrophoresis of both the soluble and cell wall fractions from the two cell types was done. Fifty-eight spots that were common to the nodal and internodal soluble fractions were analysed by matrix assisted laser desorption/ionisation-time of flight mass spectrometry, and peptide mass fingerprint data were used to search the database. Matches were made to four of these spots, in each case to housekeeping proteins. Further, a number of nodal specific spots were identified, 11 from the soluble fraction and nine from the wall fraction. These spots were excised from the gels and analysed by liquid chromatography tandem mass spectrometry to obtain peptide sequence. Database searches suggest that these spots include homologues to previously identified plasmodesmata-associated proteins cp-wap13 and heat shock cognate 70, as well as RNA-binding proteins, eukaryotic initiation factor 4A and a beta-1,3-glucanase. Several spots remained unidentified providing exciting new candidate plasmodesmata-associated proteins.

  14. Metal concentration and structural changes in Corallina elongata (Corallinales, Rhodophyta) from hydrothermal vents.

    Science.gov (United States)

    Couto, Ruben P; Neto, Ana I; Rodrigues, Armindo S

    2010-04-01

    Shallow-water hydrothermal activity is widely present at Azores archipelago. Organisms in such environments present great potential as sentinels of the effects derived from chronically exposure to increased temperature, metal concentrations and reduced pH. This study aimed to evaluate metal concentration in Corallina elongata collected at locations exposed and not exposed to shallow-water hydrothermal activity and evaluate changes in its calcareous structure. Elemental concentration was determined and morphometric analysis was performed by scanning electron microscopy. Thicker cell walls and a bleached appearance were observed on C. elongata specimens from the hydrothermally active location, as well as increased concentrations of elements associated to volcanic activity. This study reports on metal accumulation and morphometric changes in the calcareous structure of C. elongata from a hydrothermally active location, adding new data for further research on such habitats and communities, providing an insight on how coralline algae might be affected by ocean acidification. (c) 2009 Elsevier Ltd. All rights reserved.

  15. Metal concentration and structural changes in Corallina elongata (Corallinales, Rhodophyta) from hydrothermal vents

    International Nuclear Information System (INIS)

    Couto, Ruben P.; Neto, Ana I.; Rodrigues, Armindo S.

    2010-01-01

    Shallow-water hydrothermal activity is widely present at Azores archipelago. Organisms in such environments present great potential as sentinels of the effects derived from chronically exposure to increased temperature, metal concentrations and reduced pH. This study aimed to evaluate metal concentration in Corallina elongata collected at locations exposed and not exposed to shallow-water hydrothermal activity and evaluate changes in its calcareous structure. Elemental concentration was determined and morphometric analysis was performed by scanning electron microscopy. Thicker cell walls and a bleached appearance were observed on C. elongata specimens from the hydrothermally active location, as well as increased concentrations of elements associated to volcanic activity. This study reports on metal accumulation and morphometric changes in the calcareous structure of C. elongata from a hydrothermally active location, adding new data for further research on such habitats and communities, providing an insight on how coralline algae might be affected by ocean acidification.

  16. Assessment of free-radical scavenging activity of Gypsophila pilulifera: assay-guided isolation of verbascoside as the main active component

    Directory of Open Access Journals (Sweden)

    Navdeep K. Chima

    Full Text Available Gypsophila pilulifera, Boiss & Heldr, Caryophyllaceae, is a perennial medicinal herb that grows in the southwestern region of Turkey. Except for only one report on the isolation of cytotoxic saponins from the underground parts of G. pilulifera, there are no published thorough phytochemical or bioactivity studies on this species. In the present study, the free-radical scavenging activity of extracts and fractions of the stems of G. pilulifera was evaluated, using a slightly modified and more precise version of the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay, reported here for the first time. The DPPH assay-guided HPLC-PDA-purification of the active solid-phase extraction fraction (50% methanol in water of the methanolic extract exhibited verbascoside as the main free-radical scavenger present in this species. The structure of this active compound was resolved by spectroscopy, and the free-radical scavenging potential of verbascoside was determined.

  17. Calcium deprivation disrupts enlargement of Chara corallina cells: further evidence for the calcium pectate cycle.

    Science.gov (United States)

    Proseus, Timothy E; Boyer, John S

    2012-06-01

    Pectin is a normal constituent of cell walls of green plants. When supplied externally to live cells or walls isolated from the large-celled green alga Chara corallina, pectin removes calcium from load-bearing cross-links in the wall, loosening the structure and allowing it to deform more rapidly under the action of turgor pressure. New Ca(2+) enters the vacated positions in the wall and the externally supplied pectin binds to the wall, depositing new wall material that strengthens the wall. A calcium pectate cycle has been proposed for these sub-reactions. In the present work, the cycle was tested in C. corallina by depriving the wall of external Ca(2+) while allowing the cycle to run. The prediction is that growth would eventually be disrupted by a lack of adequate deposition of new wall. The test involved adding pectate or the calcium chelator EGTA to the Ca(2+)-containing culture medium to bind the calcium while the cycle ran in live cells. After growth accelerated, turgor and growth eventually decreased, followed by an abrupt turgor loss and growth cessation. The same experiment with isolated walls suggested the walls of live cells became unable to support the plasma membrane. If instead the pectate or EGTA was replaced with fresh Ca(2+)-containing culture medium during the initial acceleration in live cells, growth was not disrupted and returned to the original rates. The operation of the cycle was thus confirmed, providing further evidence that growth rates and wall biosynthesis are controlled by these sub-reactions in plant cell walls.

  18. Planomonospora corallina sp. nov., isolated from soil.

    Science.gov (United States)

    Suriyachadkun, Chanwit; Ngaemthao, Wipaporn; Chunhametha, Suwanee

    2016-08-01

    A novel actinomycete strain, A-T 11038T, was isolated from bamboo rhizospheric soil collected in Thailand. Based on a polyphasic approach, the novel strain was characterized as a member of the genus Planomonospora, which developed cylindrical to clavate sporangia containing a single motile spore on aerial mycelium. The 16S rRNA gene sequence and phylogenetic analysis indicated that strain A-T 11038T was closely related to Planomonospora sphaerica JCM 9374T (98.82 %), P.lanomonospora parontospora subsp. parontospora NBRC 13880T and P.parontospora subsp. antibiotica JCM 3094T (98.54 %), Planomonospora alba JCM 9373T (98.41 %) and Planomonospora venezuelensis JCM 3167T (97.51 %). The DNA-DNA relatedness values that distinguished strain A-T 11038T from the most closely related species were below 45 %. The novel strain contained meso-diaminopimelic acid in cell-wall hydrolysates, and rhamnose, ribose, madurose and glucose in whole-cell hydrolysates. The predominant menaquinone was MK-9(H2). The diagnostic phospholipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylinositol and aminophosphoglycolipids. The predominant cellular fatty acids were unsaturated fatty acids C17 : 1 and C16 : 1 and saturated fatty acid C16 : 0. The G+C content of the genomic DNA was 73.5 mol%. Following the evidence obtained using a polyphasic approach, the novel strain is proposed as a representative of a novel species to be named Planomonospora corallina sp. nov. The type strain is A-T 11038T (=BCC 67829T=TBRC 4489T=NBRC 110609T).

  19. Effects of Solar Radiation on the Patagonian Rhodophyte Corallina officinatis (L.).

    Science.gov (United States)

    Häder, Donat-P; Lebert, Michael; Walter Helbling, E

    2003-01-01

    Experiments were conducted in Patagonian waters (Argentina) to assess the impact of solar radiation (PAR, 400-700 nm, and UVR, 280-400 nm) upon two strains of the red alga Corallina officinalis Linnaeus, characteristic of the mid and lower intertidal zone, during March 2000. Fluorescence parameters were determined using a pulse amplitude modulated (PAM) fluorometer. The two strains had different initial optimal quantum yields but similar strong decreases in the quantum yield when the algae were exposed to short-term solar radiation and similar recovery characteristics in dim light. The quantum yield had the lowest values at noon, but it increased in the afternoon / evening hours, when irradiances were lower. PAR (irradiance at noon about 500 W m(-2)) was responsible for most of the decrease in the yield ( approximately 50%) on clear days, with UVR accounting for a significant increment. However, on cloudy days the UVR component caused an even more pronounced decrease. In their natural environment, specimens in the shade had a higher effective quantum yield than in sun-lit areas. Fluence rate response curves indicated that thalli from the mid intertidal had a pronounced nonphotochemical quenching at intermediate and higher irradiances; however, this was not observed in the thalli from the lower intertidal. Fast induction and relaxation kinetics showed obvious differences between the two strains, but also demonstrated a rapid adaptation of the species to the changing light conditions as well as a fast decrease of PS II fluorescence upon exposure to solar radiation. All photosynthetic pigments were bleached during exposure to solar radiation over a full day. Strong absorption in the UV-A range, most likely due to mycosporine like amino acids, was determined in both strains. The study of the differential sensitivity to solar radiation and recovery capacity of these Corallina strains, as well as the presence of protective compounds, suggests that a combination of

  20. Chemical composition of Corallina mediterranea Areschoug and Corallina granifera Ell. et Soland.

    Science.gov (United States)

    De Rosa, Salvatore; Kamenarska, Zornitsa; Stefanov, Kamen; Dimitrova-Konaklieva, Stefka; Najdenski, Chavdar; Tzvetkova, Iva; Ninova, Valeria; Popov, Simeon

    2003-01-01

    The composition of sterols, volatiles and some polar compounds from three Corallina samples (C. granifera and C. mediterranea from the Black Sea and C. mediterranea from the Mediterranean Sea) was established. The sterol composition of the Black Sea samples was similar but it differs from that of the Mediterranean sample. The composition of the volatiles was very complex. The main groups of constituent were hydrocarbons, alcohols, carbonyl compounds, acids and their esters, terpenes. The composition of the polar components, soluble in n-butanol, was also established. There were some differences in the chemical composition of the two Black Sea species, which may be due to the biodiversity between them, while the differences in the composition of the two C. mediterranea samples could be due to the differences in the environment (salinity, temperature, pollution, etc.).

  1. Assessment of Cd-induced genotoxic damage in Urtica pilulifera L. using RAPD-PCR analysis

    Directory of Open Access Journals (Sweden)

    Ilhan Dogan

    2016-03-01

    Full Text Available Plants can be used as biological indicators in assessing the damage done by bioaccumulation of heavy metals and their negative impact on the environment. In the present research, Roman nettle (Urtica pilulifera L. was employed as a bioindicator for cadmium (Cd pollution. The comparisons between unexposed and exposed plant samples revealed inhibition of the root growth (∼25.96% and ∼45.92% after treatment with 100 and 200 µmol/L Cd concentrations, respectively, reduction in the total soluble protein quantities (∼53.92% and ∼66.29% after treatment with 100 and 200 µmol/L Cd concentrations, respectively and a gradual genomic instability when the Cd concentrations were increased. The results indicated that alterations in randomly amplified polymorphic DNA (RAPD profiles, following the Cd treatments, included normal band losses and emergence of new bands, when compared to the controls. Also, the obtained data from F1 plants, utilized for analysis of genotoxicity, revealed that DNA alterations, occurring in parent plants due to Cd pollution, were transmitted to the next generation.

  2. Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): Pachyarthron cretaceum is Corallina officinalis.

    Science.gov (United States)

    Hind, Katharine R; Gabrielson, Paul W; Lindstrom, Sandra C; Martone, Patrick T

    2014-08-01

    Coralline red algae play a key role in the ecology of near shore marine ecosystems and are increasingly being used to study the effects of climate change in the marine environment. Corallines are very difficult to identify to species, and even to genus, using morpho-anatomy, likely complicating studies of their ecology, physiology, and biodiversity. We sequenced a 296 base pair fragment of chloroplast DNA from a 187-year-old isolectotype specimen of Pachyarthron cretaceum, a morphologically distinct geniculate species, to demonstrate that coralline morphology is often misleading and that species names can only be applied unequivocally by comparing DNA sequences from type material with sequences from field-collected specimens. Our results indicate that Pachyarthron cretaceum is synonymous with Corallina officinalis. © 2014 Phycological Society of America.

  3. Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line.

    Science.gov (United States)

    El-Kassas, Hala Yassin; El-Sheekh, Mostafa M

    2014-01-01

    Nano-biotechnology is recognized as offering revolutionary changes in the field of cancer therapy and biologically synthesized gold nanoparticles are known to have a wide range of medical applications. Gold nanoparticles (GNPs) were biosynthesized with an aqueous extract of the red alga Corallina officinalis, used as a reducing and stabilizing agent. GNPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive analysis (EDX) and Fourier transform infra-red (FT-IR) spectroscopy and tested for cytotoxic activity against human breast cancer (MCF-7) cells cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, considering their cytotoxicty and effects on cellular DNA. The biosynthesized GNPs were 14.6 ± 1 nm in diameter. FT-IR analysis showed that the hydroxyl functional group from polyphenols and carbonyl group from proteins could assist in formation and stabilization. The GNPs showed potent cytotoxic activity against MCF-7 cells, causing necrosis at high concentrations while lower concentrations were without effect as indicated by DNA fragmentation assay. The antitumor activity of the biosynthesized GNPs from the red alga Corallina officinalis against human breast cancer cells may be due to the cytotoxic effects of the gold nanoparticles and the polyphenolcontent of the algal extract.

  4. A CARD-FISH protocol for the identification and enumeration of epiphytic bacteria on marine algae.

    Science.gov (United States)

    Tujula, Niina A; Holmström, Carola; Mussmann, Marc; Amann, Rudolf; Kjelleberg, Staffan; Crocetti, Gregory R

    2006-06-01

    A CARD-FISH protocol was developed and applied to analyse surface-associated bacteria on the marine algae Ulva lactuca, Delisea pulchra, Corallina officinalis, Amphiroa anceps, Porphyra sp. and Sargassum linearifolium. The combination of Alexa(546)-labelled tyramide as the reporter molecule with SYBR Green II counterstain allowed for superior detection of the hybridised probe fluorescence against plant tissue from which pigment autofluorescence has been reduced.

  5. Distribution of inorganic elements in single cells of Chara corallina

    International Nuclear Information System (INIS)

    Li Zijie; Zhang Zhiyong; Chai Zhifang; Yu Ming; Zhou Yunlong

    2005-01-01

    There are actually 20 chemical elements necessary or beneficial for plant growth. Carbon, hydrogen, and oxygen are supplied by air and water. The six macronutrients, nitrogen, phosphorus, potassium., calcium, magnesium, and sulfur are required by plants in large amounts. The rest of the elements are required in trace amounts (micronutrients). Essential trace elements include boron, chlorine, copper, iron, manganese, sodium, zinc, molybdenum, and nickel. Beneficial mineral elements include silicon and cobalt. The functions of the inorganic elements closely related to their destinations in plant cells. Plant cells have unique structures, including a central vacuole, plastids, and a thick cell wall that surrounds the cell membrane. Generally, it is very difficult to determine concentrations of inorganic elements in a single plant cell. Chara corallina is a freshwater plant that inhabits temperate zone ponds and lakes. It consists of alternating nodes and internodes. Each internodal segment is a single large cell, up to 10 cm in length, and 1 mm in diameter. With this species it was possible to isolate subcellular fractions with surgical methods with minimal risk of cross contamination. In this study, concentrations of magnesium, calcium, manganese, iron, copper, zinc, and molybdenum in the cell wall, cytoplasm, and vacuole of single cells of Chara corallina were determined by inductively coupled plasma mass spectrometry (ICP-MS). The distribution characteristics of these elements in the cell components were discussed.

  6. Turgor, temperature and the growth of plant cells: using Chara corallina as a model system.

    Science.gov (United States)

    Proseus, T E; Zhu, G L; Boyer, J S

    2000-09-01

    Rapid changes in turgor pressure (P:) and temperature (T:) are giving new information about the mechanisms of plant growth. In the present work, single internode cells of the large-celled alga Chara corallina were used as a model for plant growth. P was changed without altering the chemical environment of the wall while observing growth without elastic changes. When P: was measured before any changes, the original growth rate bore no relationship to the original P. However, if P of growing cells was decreased, growth responded immediately without evidence for rapid changes in wall physical properties. Growth occurred only above a 0.3 MPa threshold, and increasing P caused small increases in growth that became progressively larger as P rose, resulting in a curvilinear response overall. The small changes in growth close to the threshold may explain early failures to detect these responses. When T was lowered, the elastic properties of the cell were unaffected, but growth was immediately inhibited. The lower T caused P to decrease, but returning P to its original value did not return growth to its original rate. The decreased P at low T occurred because of T effects on the osmotic potential of the cell. At above-normal P, growth partially resumed at low T Therefore, growth required a P-sensitive process that was also T-sensitive. Because elastic properties were little affected by T, but growth was markedly affected, the process is likely to involve metabolism. The rapidity of its response to P and T probably excludes the participation of changes in gene expression.

  7. Tension required for pectate chemistry to control growth in Chara corallina.

    Science.gov (United States)

    Proseus, Timothy E; Boyer, John S

    2007-01-01

    Recent work showed that polygalacturonate (pectate) chemistry controlled the growth rate of the large-celled alga Chara corallina when turgor pressure (P) was normal (about 0.5 MPa). The mechanism involved calcium withdrawal from the wall by newly supplied pectate acting as a chelator. But P itself can affect growth rate. Therefore, pectate chemistry was investigated at various P. A pressure probe varied P in isolated walls, varying the tension on the calcium pectate cross-links bearing the load of P. When soluble pectate was newly supplied, the wall grew irreversibly but the pectate was inactive below a P of 0.2 MPa, indicating that tension was required in the existing wall before new pectate acted. It was suggested that the tension distorted some of the wall pectate (the dominant pectin), weakening its calcium cross-links and causing the calcium to be preferentially lost to the new pectate, which was not distorted. The preferential loss provided a molecular mechanism for loosening the wall structure, resulting in faster growth. However, the resulting relaxation of the vacated wall pectate would cause calcium to be exchanged with load-bearing calcium pectate nearby, auto-propagating throughout the wall for long periods. There is evidence for this effect in isolated walls. In live cells, there is also evidence that auto-propagation is controlled by binding the newly supplied pectate (now calcium pectate) to the wall and/or by additional Ca(2+) entering the wall structure. A tension-dependent cycle of pectate chemistry thus appeared to control growth while new wall was deposited as a consequence.

  8. Structure of the 'corallinans'--sulfated xylogalactans from Corallina officinalis.

    Science.gov (United States)

    Cases, M R; Stortz, C A; Cerezo, A S

    1994-04-01

    The structure of the main polysaccharides extracted from the red seaweed Corallina officinalis was characterized by methylation, desulfation-methylation, and ethylation analysis. The backbone has an alternating-->4)-alpha-L-Gal-(1-->3)-beta-D-Gal-(1-->structure. The C6 position of 3-linked units is substituted mainly by beta-D-xylosyl side stubs but also by sulfate ester groups and minor amounts of 4-O-methylgalactosyl side stubs. Positions C2 and C3 of 4-linked units also carry sulfate or methoxyl as substituents, but never both together in the same unit. Minor fractions modulate this structure with other irregularities, such as higher branching or, possibly, unusual (1-->2) or (1-->6) linkages.

  9. soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over emphasized as the world is working ... farms further establishes the role of blue green algae in soil nutrients for plant growth. Key words- Soil Fertility, Soil ... with sunlight will promote the growth of soil algae and their contribution to ...

  10. Ultraviolet irradiation induced oxidative stress and response of antioxidant system in an intertidal macroalgae Corallina officinalis L.

    Science.gov (United States)

    Li, Lixia; Zhao, Jiqiang; Tang, Xuexi

    2010-01-01

    The response of the antioxidant defense system of an intertidal macroalgae Corallina officinalis L. to different dosages of UV-B irradiation was investigated. Results showed that superoxide dimutase (SOD) and peroxidase (POX) increased and then maintained at a relatively stable level when subjected to UV-B irradiation. Catalase (CAT) activity under medium dosage of UV-B irradiation (Muv) and high dosage of UV-B irradiation (Huv) treatments were significantly decreased. Ascorbate peroxidase (APX) activity first remained unaltered and then increased in Huv treatment. In addition, the assay on isozymes was carried out using non-denaturing polyacrylamide gel electrophoresis (PAGE). The activities of some SOD isoforms were altered by UV-B. Two new bands (POX V and POX VII) appeared upon exposure to all three UV-B dosages. CAT III activity was increased by low dosage of UV-B irradiation (Luv), whereas CAT III and CAT IV disappeared when the alga was exposed to Muv and Huv. Two bands of APX (APX VI and APX VII) were increased and a new band (APX X) was observed under Huv exposure. H2O2 and thiobarbituric acid reacting substance (TBARS) increased under Muv and Huv treatments. Overall, UV-B protection mechanisms are partly inducible and to a certain extent sufficient to prevent the accumulation of damage in C. officinalis.

  11. Diarreia em caprinos associada ao consumo de Arrabidaea corallina (Bignoniaceae Diarrhea in goats associated with the ingestion of Arrabidaea corallina (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Clarice R.M. Pessoa

    2010-07-01

    Full Text Available Descreve-se um surto de intoxicação natural por Arrabidaea corallina (Jacq. Sandw. (fam. Bignoniaceae em caprinos no Município de Boqueirão, semiárido da Paraíba, durante a estação seca. De um rebanho de 550 caprinos maiores de um ano foram afetados 56 (10% e morreram 6 (1%, com sinais clínicos de diarreia, aumento dos movimentos ruminais e depressão. Os demais animais se recuperaram após serem retirados da pastagem. O rebanho alimentava-se de pastagem nativa e nesse período dispunham de pouca forragem. Todavia, A. corallina era a única planta invasora que se mantinha verde e existia em grande quantidade. Um caprino afetado foi necropsiado. O intestino delgado apresentava conteúdo liquefeito, fétido e enegrecido e alterações de enterite catarral. Ao exame histológico observou-se enterite aguda, difusa e moderada, ocasionalmente com presença de Eimeria sp. Não foram observadas lesões macroscópicas ou microscópicas significativas em outros órgãos. A doença foi reproduzida experimentalmente em 4 caprinos após administração das folhas frescas de A. corallina em 3-6 doses diárias de 15g por kg de peso animal. Os caprinos apresentaram diarreia 3-4 dias após o início da ingestão e se recuperaram 5-6 dias após o final da administração. Conclui-se que o consumo de A. corallina é responsável pela ocorrência da doença em caprinos a campo. No entanto outras doenças como a infestação parasitária e a desnutrição podem contribuir para causar a morte dos animais. Recomenda-se a retirada de caprinos de áreas invadidas por A. corallina quando, em consequência de estiagem, não houver outra forragem disponível.An outbreak of poisoning by Arrabidaea corallina (Jacq. Sandw. (Fam. Bignoniaceae in goats is reported, which occurred in the municipality of Boqueirão, semiarid of Paraíba, during the dry season. In a flock of 550 goats, older than one year of age, 56 (10% were affected and 6 (1% died. Clinical signs were

  12. Feed-forward regulation of microbisporicin biosynthesis in Microbispora corallina.

    Science.gov (United States)

    Foulston, Lucy; Bibb, Mervyn

    2011-06-01

    Lantibiotics are ribosomally synthesized, posttranslationally modified peptide antibiotics. Microbisporicin is a potent lantibiotic produced by the actinomycete Microbispora corallina and contains unique chlorinated tryptophan and dihydroxyproline residues. The biosynthetic gene cluster for microbisporicin encodes several putative regulatory proteins, including, uniquely, an extracytoplasmic function (ECF) σ factor, σ(MibX), a likely cognate anti-σ factor, MibW, and a potential helix-turn-helix DNA binding protein, MibR. Here we examine the roles of these proteins in regulating microbisporicin biosynthesis. S1 nuclease protection assays were used to determine transcriptional start sites in the microbisporicin gene cluster and confirmed the presence of the likely ECF sigma factor -10 and -35 sequences in five out of six promoters. In contrast, the promoter of mibA, encoding the microbisporicin prepropeptide, has a typical Streptomyces vegetative sigma factor consensus sequence. The ECF sigma factor σ(MibX) was shown to interact with the putative anti-sigma factor MibW in Escherichia coli using bacterial two-hybrid analysis. σ(MibX) autoregulates its own expression but does not directly regulate expression of mibA. On the basis of quantitative reverse transcriptase PCR (qRT-PCR) data, we propose a model for the biosynthesis of microbisporicin in which MibR functions as an essential master regulator and the ECF sigma factor/anti-sigma factor pair, σ(MibX)/MibW, induces feed-forward biosynthesis of microbisporicin and producer immunity.

  13. Through pore diameter in the cell wall of Chara corallina.

    Science.gov (United States)

    Berestovsky, G N; Ternovsky, V I; Kataev, A A

    2001-06-01

    Determination of pore size of the cell wall of Chara corallina has been made by using the polyethylene glycol (PEG) series as the hydrophilic probing molecules. In these experiments, the polydispersity of commercial preparation of PEGs was allowed for. The mass share (gamma(p)) of polyethylene glycol preparation fractions penetrating through the pores was determined using a cellular 'ghost', i.e. fragments of internodal cell walls filled with a 25% solution of non-penetrating PEG 6000 and tied up at the ends. In water, such a 'ghost' developed a hydrostatic pressure close to the cell turgor which persisted for several days. The determination of gamma(p), for polydisperse polyethylene glycols with different average molecular mass (M) was calculated from the degree of pressure restoration after water was replaced by a 5-10% polymer solution. Pressure was recorded using a dynamometer, which measures, in the quasi-isometric mode, the force necessary for the partial compression of the 'ghost' in its small fragment. By utilizing the data on the distribution of PEG 1000, 1450, 2000, and 3350 fractions over molecular mass (M), it was found that gamma(p), for these polyethylene glycols corresponded to the upper limit of ML=800-1100 D (hydrodynamic radius of molecules, r(h)=0.85-1.05 nm). Thus, the effective diameter of the pores in the cell wall of Chara did not exceed 2.1 nm.

  14. The motility of Chara corallina myosin was inhibited reversibly by 2,3-butanedione monoxime (BDM).

    Science.gov (United States)

    Funaki, Keisuke; Nagata, Ayumi; Akimoto, Youka; Shimada, Kiyo; Ito, Kohji; Yamamoto, Keiichi

    2004-09-01

    We studied the effects of 2,3-butanedione monoxime (BDM) on the cytoplasmic streaming of Chara corallina and on the motility of myosin prepared from the same plant to examine whether this reagent really affects the plant class XI myosin. It was found that BDM inhibited both cytoplasmic streaming and the motility of myosin at a very similar concentration range (10-100 mM). BDM introduced directly into tonoplast-free cells also inhibited cytoplasmic streaming. These results suggested that effect of BDM on cytoplasmic streaming was exerted through myosin and not through ion channels at least in Chara corallina, though a very high concentration of BDM was required.

  15. Hydrolysis of ibuprofen nitrile and ibuprofen amide and deracemisation of ibuprofen using Nocardia corallina B-276.

    Science.gov (United States)

    Lievano, Ricardo; Pérez, Herminia Inés; Manjarrez, Norberto; Solís, Aida; Solís-Oba, Myrna

    2012-03-12

    A novel application of whole cells of Nocardia corallina B-276 for the deracemisation of ibuprofen is reported. This microorganism successfully hydrolysed ibuprofen nitrile to ibuprofen amide, and ibuprofen amide to ibuprofen, using a suspension of cells in a potassium phosphate buffer solution (0.1 M, pH = 7.0). These results can be explained by the presence of NHase and amidase enzymes, but the reactions are not enantioselective and low ee values were obtained. However, (R)-ibuprofen was isolated with > 99% ee by a deracemisation process catalysed by N. corallina B-276. This is the first report of this kind of catalysis with this microorganism.

  16. Hydrolysis of Ibuprofen Nitrile and Ibuprofen Amide and Deracemisation of Ibuprofen Using Nocardia corallina B-276

    Directory of Open Access Journals (Sweden)

    Myrna Solís-Oba

    2012-03-01

    Full Text Available A novel application of whole cells of Nocardia corallina B-276 for the deracemisation of ibuprofen is reported. This microorganism successfully hydrolysed ibuprofen nitrile to ibuprofen amide, and ibuprofen amide to ibuprofen, using a suspension of cells in a potassium phosphate buffer solution (0.1 M, pH = 7.0. These results can be explained by the presence of NHase and amidase enzymes, but the reactions are not enantioselective and low ee values were obtained. However, (R-ibuprofen was isolated with >99% ee by a deracemisation process catalysed by N. corallina B-276. This is the first report of this kind of catalysis with this microorganism.

  17. The Study of Algae

    Science.gov (United States)

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  18. The regulation of coralline algal physiology, an in situ study of Corallina officinalis (Corallinales, Rhodophyta)

    Science.gov (United States)

    Williamson, Christopher James; Perkins, Rupert; Voller, Matthew; Yallop, Marian Louise; Brodie, Juliet

    2017-10-01

    Calcified macroalgae are critical components of marine ecosystems worldwide, but face considerable threat both from climate change (increasing water temperatures) and ocean acidification (decreasing ocean pH and carbonate saturation). It is thus fundamental to constrain the relationships between key abiotic stressors and the physiological processes that govern coralline algal growth and survival. Here we characterize the complex relationships between the abiotic environment of rock pool habitats and the physiology of the geniculate red coralline alga, Corallina officinalis (Corallinales, Rhodophyta). Paired assessment of irradiance, water temperature and carbonate chemistry, with C. officinalis net production (NP), respiration (R) and net calcification (NG) was performed in a south-western UK field site, at multiple temporal scales (seasonal, diurnal and tidal). Strong seasonality was observed in NP and night-time R, with a Pmax of 22.35 µmol DIC (g DW)-1 h-1, Ek of 300 µmol photons m-2 s-1 and R of 3.29 µmol DIC (g DW)-1 h-1 determined across the complete annual cycle. NP showed a significant exponential relationship with irradiance (R2 = 0.67), although was temperature dependent given ambient irradiance > Ek for the majority of the annual cycle. Over tidal emersion periods, dynamics in NP highlighted the ability of C. officinalis to acquire inorganic carbon despite significant fluctuations in carbonate chemistry. Across all data, NG was highly predictable (R2 = 0.80) by irradiance, water temperature and carbonate chemistry, providing a NGmax of 3.94 µmol CaCO3 (g DW)-1 h-1 and Ek of 113 µmol photons m-2 s-1. Light NG showed strong seasonality and significant coupling to NP (R2 = 0.65) as opposed to rock pool water carbonate saturation. In contrast, the direction of dark NG (dissolution vs. precipitation) was strongly related to carbonate saturation, mimicking abiotic precipitation dynamics. Data demonstrated that C. officinalis is adapted to both long

  19. Calcium pectate chemistry controls growth rate of Chara corallina.

    Science.gov (United States)

    Proseus, Timothy E; Boyer, John S

    2006-01-01

    Pectin, a normal constituent of cell walls, caused growth rates to accelerate to the rates in living cells when supplied externally to isolated cell walls of Chara corallina. Because this activity was not reported previously, the activity was investigated. Turgor pressure (P) was maintained in isolated walls or living cells using a pressure probe in culture medium. Pectin from various sources was supplied to the medium. Ca and Mg were the dominant inorganic elements in the wall. EGTA or pectin in the culture medium extracted moderate amounts of wall Ca and essentially all the wall Mg, and wall growth accelerated. Removing the external EGTA or pectin and replacing with fresh medium returned growth to the original rate. A high concentration of Ca2+ quenched the accelerating activity of EGTA or pectin and caused gelling of the pectin, physically inhibiting wall growth. Low pH had little effect. After the Mg had been removed, Ca-pectate in the wall bore the longitudinal load imposed by P. Removal of this Ca caused the wall to burst. Live cells and isolated walls reacted similarly. It was concluded that Ca cross-links between neighbouring pectin molecules were strong wall bonds that controlled wall growth rates. The central role of Ca-pectate chemistry was illustrated by removing Ca cross-links with new pectin (wall "loosening"), replacing vacated cross-links with new Ca2+ ("Ca2+-tightening"), or adding new cross-links with new Ca-pectate that gelled ("gel tightening"). These findings establish a molecular model for growth that includes wall deposition and assembly for sustained growth activity.

  20. Nutritional value of the Chilean seaweeds Cryptonemia obovata and Rhodymenia corallina.

    Science.gov (United States)

    Ortiz, Jaime; Vivanco, Juan; Jiménez, Paula; Leiva, Moisés; Ramírez, Leslie; Bustamante, Andrés

    2010-10-01

    Some nutritional components of the edible seaweeds Cryptonemia obovata and Rhodymenia corallina were determined. The amino acid content ranged from 1.0 +/- 0.3 to 4174.2 +/- 14.2 mg 100 g(-1) dry wt in C. obovata and between 0.9 +/- 0.3 and 2657.0 +/- 13.5 mg 100 g(-1) dry wt in R. corallina. The most abundant fatty acid in C. obovata was palmitic acid, reaching a value of 36.5 +/- 0.2%, while in Rhodymenia corallina the main fatty acid was oleic acid, reaching a value of 24.7 +/- 0.07%. Both seaweeds showed an important content of EPA (C20:5omega3). In C. obovata, alpha-tocopherol was the principal tocol (138.5 +/- 4.9 mg kg(-1) lipid), while in R. corallina, it was gamma-tocotrienol (850.3 +/- 9.4 mg kg(-1) lipid). Furthermore, beta-carotene was the main carotenoid pigment found in C. obovata.

  1. Involvement of membrane potential in alkaline band formation by internodal cells of Chara corallina.

    Science.gov (United States)

    Shimmen, Teruo; Wakabayashi, Akiko

    2008-10-01

    Internodal cells of Chara corallina form alkaline bands on their surface upon illumination via photosynthesis. In the present study, the effect of KCl on alkaline band formation was analyzed. When the extracellular KCl concentration was increased, alkaline band formation was extensively inhibited. Electrophysiological analysis unequivocally showed the need for inner negative membrane potential for alkaline band formation.

  2. Anion channels in Chara corallina tonoplast membrane: Calcium dependence and rectification

    NARCIS (Netherlands)

    Berecki, G.; Varga, Z.; Iren, F. van; Duijn, B. van

    1999-01-01

    Tonoplast K+ channels of Chara corallina are well characterized but only a few reports mention anion channels, which are likely to play an important role in the tonoplast action potential and osmoregulation of this plant. For experiments internodal cells were isolated. Cytoplasmic droplets were

  3. Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina.

    Science.gov (United States)

    Lee, Jung-Kul; Koo, Bong-Seong; Kim, Sang-Yong

    2002-09-01

    Torula corallina, a strain presently being used for the industrial production of erythritol, has the highest erythritol yield ever reported for an erythritol-producing microorganism. The increased production of erythritol by Torula corallina with trace elements such as Cu(2+) has been thoroughly reported, but the mechanism by which Cu(2+) increases the production of erythritol has not been studied. This study demonstrated that supplemental Cu(2+) enhanced the production of erythritol, while it significantly decreased the production of a major by-product that accumulates during erythritol fermentation, which was identified as fumarate by instrumental analyses. Erythrose reductase, a key enzyme that converts erythrose to erythritol in T. corallina, was purified to homogeneity by chromatographic methods, including ion-exchange and affinity chromatography. In vitro, purified erythrose reductase was significantly inhibited noncompetitively by increasing the fumarate concentration. In contrast, the enzyme activity remained almost constant regardless of Cu(2+) concentration. This suggests that supplemental Cu(2+) reduced the production of fumarate, a strong inhibitor of erythrose reductase, which led to less inhibition of erythrose reductase and a high yield of erythritol. This is the first report that suggests catabolite repression by a tricarboxylic acid cycle intermediate in T. corallina.

  4. Radionuclides in macro algae at Monaco following the Chernobyl accident

    International Nuclear Information System (INIS)

    Holm, E.; Ballestra, S.; Lopez, J.J.; Bulos, A.; Whitehead, N.E.; Barci-Funel, G.; Ardisson, G.

    1994-01-01

    Samples of macro algae, Codmium tomentosum (green), Corallina mediterranea (red), Sphaerococcus coronopifolius (red) and Dictyota dichotoma (brown), were collected off Monaco during 1984 and 1988 and analysed for gamma-emitting radionuclides and transuranium elements. Due to the Chernobyl accident, increased radioactivity in the atmosphere at Monaco was recorded on 30 April 1986 with maximal activity concentrations on 2-3 May. The maximal activity concentrations in sea water occurred on 5-6 May and in the algae on 11 May. The decrease of activity concentrations can be described after May 11 as a single exponential relationship, where elimination rates for different radionuclides and different species specific to the environment can be calculated. The elimination rates thus observed correspond to mean residence times between 70 and 370 days corrected for physical decay. The concentration factors were also estimated and the highest values were found for 131 I, 129 Te m , and 110 Ag m and lowest for radiocesium and 140 Ba. The red algae Sphaerococcus coronopifoius showed generally higher concentration factors than green and brown algae. Regarding transuranium elements, a theoretical contribution from the Chernobyl accident can be made but only 242 Cm was detected in the algae above previous levels before the accident, due to the relatively small fallout of transuranics. (author) 23 refs.; 9 figs.; 4 tabs

  5. Different speciation for bromine in brown and red algae, revealed by in vivo X-ray absorption spectroscopic studies.

    Science.gov (United States)

    Küpper, Frithjof C; Leblanc, Catherine; Meyer-Klaucke, Wolfram; Potin, Philippe; Feiters, Martin C

    2014-08-01

    Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron-based technique, X-ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores - including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br(-) defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses. © 2014 Phycological Society of America.

  6. Identification and characterization of epoxide carboxylase activity in cell extracts of Nocardia corallina B276.

    Science.gov (United States)

    Allen, J R; Ensign, S A

    1998-04-01

    The metabolism of aliphatic epoxides (epoxyalkanes) by the alkene-utilizing actinomycete Nocardia corallina B276 was investigated. Suspensions of N. corallina cells grown with propylene as the carbon source readily degraded propylene and epoxypropane, while suspensions of glucose-grown cells did not. The addition of propylene and epoxypropane to glucose-grown cells resulted in a time-dependent increase in propylene- and epoxypropane-degrading activities that was prevented by the addition of rifampin and chloramphenicol. The expression of alkene- and epoxide-degrading activities was correlated with the high-level expression of several polypeptides not present in extracts of glucose-grown cells. Epoxypropane and epoxybutane degradation by propylene-grown cell suspensions of N. corallina was stimulated by the addition of CO2 and inhibited by the depletion of CO2. Cell extracts catalyzed the carboxylation of epoxypropane to form acetoacetate in a reaction that was dependent on the addition of CO2, NAD+, and a reductant (NADPH or dithiothreitol). In the absence of CO2, epoxypropane was isomerized by cell extracts to form acetone at a rate approximately 10-fold lower than the rate of epoxypropane carboxylation. Methylepoxypropane was found to be a time-dependent, irreversible inactivator of epoxyalkane-degrading activity. These properties demonstrate that epoxyalkane metabolism in N. corallina occurs by a carboxylation reaction forming beta-keto acids as products and provide evidence for the involvement in this reaction of an epoxide carboxylase with properties and cofactor requirements similar to those of the four-component epoxide carboxylase enzyme system of the gram-negative bacterium Xanthobacter strain Py2 (J. R. Allen and S. A. Ensign, J. Biol. Chem. 272:32121-32128, 1997). The addition of epoxide carboxylase component I from Xanthobacter strain Py2 to methylepoxypropane-inactivated N. corallina extracts restored epoxide carboxylase activity, and the addition of

  7. A Characeae Cells Plasma Membrane as a Model for Selection of Bioactive Compounds and Drugs: Interaction of HAMLET-Like Complexes with Ion Channels of Chara corallina Cells Plasmalemma.

    Science.gov (United States)

    Kataev, Anatoly; Zherelova, Olga; Grishchenko, Valery

    2016-12-01

    Interaction of a HAMLET-like La-OA cytotoxic complex (human α-lactalbumin-oleic acid) and its constituents with the excitable plasmalemma of giant Chara corallina cells was investigated. The voltage-clamp technique was used to study Ca 2+ and Cl - transient currents in the plasmalemma of intact cells. The action of the complex and OA on the target cell membrane has a dose-dependent character. It was found that the La-OA complex has an inhibiting effect on Ca 2+ current across the plasmalemma, while α-lactalbumin alone does not affect the electrophysiological characteristics of the cellular membrane. However, oleic acid blocks Ca 2+ current across the plasmalemma. This is accompanied by the induction of a non-selective conductivity in the cellular membrane, a decrease in the resting potential and plasma membrane resistance of algal cells. We propose that the cytotoxicity of La-OA and other HAMLET-like complexes is determined by oleic acid acting as a blocker of potential-dependent Ca 2+ channels in the plasma membrane of target cells. The presented results show that the study model of green algae C. corallina cells plasmalemma is a convenient tool for the investigation of ion channels in many animal cells.

  8. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis.

    Science.gov (United States)

    Hofmann, Laurie C; Straub, Sandra; Bischof, Kai

    2013-02-01

    The concentration of CO(2) in global surface ocean waters is increasing due to rising atmospheric CO(2) emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO(2) concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO(2) concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO(2) concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO(2) and was highest in algae grown at 665 µatm CO(2). Nitrate and phosphate uptake rates were inversely related to CO(2), while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO(2). The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO(2) due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO(2) are discussed.

  9. Algae Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  10. Algae, macrofaunal assemblages and temperature: a quantitative approach to intertidal ecosystems of Iceland

    Science.gov (United States)

    Espinosa, Free; Guerra-García, José M.

    2005-11-01

    Algae and the associated macrofauna in two Icelandic intertidal ecosystems under cold and warm influence, respectively, were studied with respect to algae-macrofauna relationships and a possible effect of temperature on community structure. Two sites in Iceland were selected, Sandgerdi ligthhouse (64°8'N 22°40'W) on the southwestern coast, and Grimsey Island (66°33'N 18°04'W), in the north, on the Arctic Circle, where sea temperature is considerably lower (5° approximately). The biomass of algae and the number of species of algae and macrofauna were higher in Sandgerdi than in Grimsey, and the patterns of diversity, evenness, biomass and abundance also differed between the sites. In the intertidal zone of Sandgerdi, a total of 28 species of algae and 45 species of macrofauna were identified whereas only 16 algal species and 27 macrofaunal species were found in Grimsey. Canonical correspondence analysis (CCA) using algal biomass as the environmental variable were conducted, and revealed significant relationships between algae composition and the associated macrofauna; some macrofauna taxa showed specific trophic or refuge relationships with algal species. According to the CCA, Corallina officinalis showed the highest correlation with macrofaunal assemblages in both study sites. However, correlations between macrofauna and other algae differed between Grimsey and Sandgerdi. The present study, together with additional observations in Greenland waters, shows a general decrease of species richness and diversity towards the north which may primarily be due to the temperature regime.

  11. Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels

    OpenAIRE

    Hofmann, Laurie C.; Yildiz, Gamze; Hanelt, Dieter; Bischof, Kai

    2012-01-01

    Future atmospheric CO2 levels will most likely have complex consequences for marine organisms, particulary photosynthetic calcifying organisms. Corallina officinalis L. is an erect calcifying macroalga found in the inter- and subtidal regions of temperate rocky coastlines and provides important substrate and refugia for marine meiofauna. The main goal of the current study was to determine the physiological responses of C. officinalis to increased CO2 concentrations expected to occur within th...

  12. Biotransformation of (S)-cis-verbenol with Nocardia corallina B-276

    International Nuclear Information System (INIS)

    Manjarrez, Norberto; Perez, Herminia I.; Solis, Aida; Luna, Hector; Lievano, Ricardo; Ramirez, Mario

    2007-01-01

    The biotransformation of (S)-cis-verbenol with Nocardia corallina was investigated using two methods: Suspension of cells in a phosphate buffer (pH 7) with various substrate:cells ratios; and bioreactor of 3-L with cells in the culture media. Both gave (1S)-(-)-verbenone with excellent yields ranging from >99 to 98%, at scale of 0.7 and 7 mmol respectively. (author)

  13. Purification and properties of a NADPH-dependent erythrose reductase from the newly isolated Torula corallina.

    Science.gov (United States)

    Lee, Jung-Kul; Hong, Kwang-Won; Kim, Sang-Yong

    2003-01-01

    Torula corallina (KCCM-10171) is a yeast strain that is currently used for the industrial production of erythritol and has the highest erythritol yield ever reported for an erythritol-producing microorganism. Production of erythritol in T. corallina is catalyzed by erythrose reductase, an enzyme that converts erythrose to erythritol using NADPH as a cofactor. In this study, NADPH-dependent erythrose reductase was purified to homogeneity from the newly isolated T. corallina. The relative molecular weight of the erythrose reductase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion chromatography was 35.4 and 71.0 kDa, respectively, indicating that the enzyme is dimeric. This enzyme catalyzed both erythrose reduction and erythritol oxidation; both enzyme activities required NADP(H). The pH and temperature optima for erythrose reduction and erythritol oxidation were 6.0, 40 degrees C and 8.0, 45 degrees C, respectively. The sequence of the first 10 amino acids of this enzyme was N-V-K-N-F-Y-Q-P-N-D. The affinity (K(m)( )()= 7.12 mM) of the enzyme for erythrose was comparable to that of other known erythrose reductases, and the specificity for erythrose was very high, resulting in no production of other polyols, which may explain the high erythritol yield observed in this strain.

  14. Antiprotozoal, antimycobacterial and cytotoxic potential of twenty-three British and Irish red algae.

    Science.gov (United States)

    Allmendinger, Andrea; Spavieri, Jasmine; Kaiser, Marcel; Casey, Rosalyn; Hingley-Wilson, Suzie; Lalvani, Ajit; Guiry, Michael; Blunden, Gerald; Tasdemir, Deniz

    2010-07-01

    As part of our continuing research on seaweeds, we have screened the crude extracts of 23 red marine algae collected from England and Ireland. The clinically important blood-stage life forms of Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani and Mycobacterium tuberculosis were used as test organisms in the in vitro assays. The selectivity of the extracts was determined by using mammalian skeletal myoblast (L6) cells. All algal extracts showed activity against T. brucei rhodesiense, with Corallina officinalis and Ceramium virgatum being the most potent (IC(50) values 4.8 and 5.4 microg/ml), whilst none of the algal extracts inhibited the growth of T. cruzi. Except for Porphyra leucosticta, extracts from all seaweeds also showed leishmanicidal activity with IC(50) values ranging from 16.5 to 85.6 microg/ml. Only the crude extract of Calliblepharis jubata showed some weak activity against Mycobacterium tuberculosis (MIC value 256 microg/ml), while the others were inactive at this concentration. Corallina officinalis was the only seaweed that displayed some marginal cytotoxicity (IC(50) value 88.6 microg/ml), and all remaining extracts were non-toxic towards L6 cells at 90 microg/ml concentration. To our knowledge, this is the first study reporting antiprotozoal and antimycobacterial activity of British and Irish red algae.

  15. Application of an optimized electroporation procedure for replacement of the polyhydroxyalkanoate synthase I gene in Nocardia corallina.

    Science.gov (United States)

    Valentin, H E; Dennis, D

    1996-07-01

    To develop a system for gene replacement in Nocardia corallina, a protocol for electroporation was optimized by systematic alterations of growth conditions, field strength, time constant and the electroporation buffer. Transformation efficiencies of 0.5 x 10(6) - 3 x 10(6) transformants/microgram plasmid DNA were obtained routinely. The gene encoding the polyhydroxyalkanoate (PHA) synthase I of N. corallina was cloned and interrupted by insertion of a kanamycin-resistance gene. The resulting plasmid was introduced into N. corallina by electroporation to inactivate the wild-type gene by homologous recombination. Kanamycin-resistant clones were screened by Southern hybridization for the absence of the wild-type gene and analyzed for PHA accumulation.

  16. Estimation of photosynthesis and calcification rates of Corallina elongata Ellis and Solander, 1786, by measurements of dissolved oxygen, pH and total alkalinity

    Directory of Open Access Journals (Sweden)

    Bouazza El Haïkali

    2004-03-01

    Full Text Available Experiments were conducted on the calcareous red alga, Corallina elongata, a species representative of shallow water vegetal cover in Mediterranean areas with biomass ranging from 820 to 2544 gDW.m-2, in order to estimate its productivity and calcification rates. Carbonate and oxygen budgets were estimated on samples incubated in situ under natural light cycles, by measuring initial and final dissolved oxygen, pH and alkalinity levels. In light conditions, oxygen concentrations and pH values increased as a consequence of oxygen production and carbon dioxide consumption due to the productivity process, and were a direct function of sample biomass. Strictly-reverse dynamics were recorded in dark conditions. A comparison of photosynthetic performances was conducted on a non-calcareous green alga, Ulva rigida, which showed higher rates of oxygen production and pH modification than C. elongata, but no significant change in total alkalinity. For C. elongata, a significant decrease in total alkalinity with incubation time was observed under light conditions, which was directly related to the algal sample biomass (R2 = 0.95; n=16. Light to dark calcification ratio (L/D was about 3.6. In these experiments, the photosynthetic quotient of C. elongata was 0.89, its net carbon productivity was 2.5 g C.m-2.d-1, gross production to daily respiration (Pg/R was about 4.9 and its calcification rate was estimated at 13.8 g CaCO3.m-2.d-1.

  17. [Modelling of pattern formation and oscillations in pH and transmembrane potential near the cell membrane of Chara corallina].

    Science.gov (United States)

    Pliusnina, T Iu; Lavrova, A I; Riznichenko, G Iu; Rubin, A B

    2005-01-01

    A mathematical model of potencial-dependent proton transfer across the membrane of Chara corallina cells is considered. To construct the model, partial differential equations describing the system dynamics in time and in space were used. The variables of the model are the proton concentration and membrane potential. The model describes the experimentally observed inhomogeneous distribution of transmembrane potential and pH along the membrane and oscillations of the potential and pH in time. A mechanism of the distribution of pH and membrane potential along the Chara corallina cell is suggested.

  18. The regulation of coralline algal physiology, an in situ study of Corallina officinalis (Corallinales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    C. J. Williamson

    2017-10-01

    Full Text Available Calcified macroalgae are critical components of marine ecosystems worldwide, but face considerable threat both from climate change (increasing water temperatures and ocean acidification (decreasing ocean pH and carbonate saturation. It is thus fundamental to constrain the relationships between key abiotic stressors and the physiological processes that govern coralline algal growth and survival. Here we characterize the complex relationships between the abiotic environment of rock pool habitats and the physiology of the geniculate red coralline alga, Corallina officinalis (Corallinales, Rhodophyta. Paired assessment of irradiance, water temperature and carbonate chemistry, with C. officinalis net production (NP, respiration (R and net calcification (NG was performed in a south-western UK field site, at multiple temporal scales (seasonal, diurnal and tidal. Strong seasonality was observed in NP and night-time R, with a Pmax of 22.35 µmol DIC (g DW−1 h−1, Ek of 300 µmol photons m−2 s−1 and R of 3.29 µmol DIC (g DW−1 h−1 determined across the complete annual cycle. NP showed a significant exponential relationship with irradiance (R2 = 0.67, although was temperature dependent given ambient irradiance  > Ek for the majority of the annual cycle. Over tidal emersion periods, dynamics in NP highlighted the ability of C. officinalis to acquire inorganic carbon despite significant fluctuations in carbonate chemistry. Across all data, NG was highly predictable (R2 = 0.80 by irradiance, water temperature and carbonate chemistry, providing a NGmax of 3.94 µmol CaCO3 (g DW−1 h−1 and Ek of 113 µmol photons m−2 s−1. Light NG showed strong seasonality and significant coupling to NP (R2 = 0.65 as opposed to rock pool water carbonate saturation. In contrast, the direction of dark NG (dissolution vs. precipitation was strongly related to carbonate saturation, mimicking

  19. Efficient purification with high recovery of vanadium bromoperoxidase from Corallina officinalis.

    Science.gov (United States)

    Zhang, Biaoming; Cao, Xupeng; Cheng, Xiaofei; Wu, Peichun; Xiao, Tonghu; Zhang, Wei

    2011-03-01

    A novel, simple and highly efficient process for purifying vanadium bromoperoxidase from Corallina officinalis is reported. The key innovation is adding 0.5 mM sodium orthovanadate to the crude cell extract followed by heating at 70°C for 2 h, by which a 5.4-fold purification with a 100% activity recovery was achieved. Combining the heat treatment with ammonium sulfate precipitation and DEAE-52 column chromatography, the overall yield was 84%, 3.8 times greater than the highest yield previously reported. Finally, a specific activity of 310 U/mg, a 27-fold purification of the crude enzyme solution was produced.

  20. Hydrolysis of Ibuprofen Nitrile and Ibuprofen Amide and Deracemisation of Ibuprofen Using Nocardia corallina B-276

    OpenAIRE

    Myrna Solís-Oba; Norberto Manjarrez; Aida Solís; Ricardo Lievano; Herminia Inés Pérez

    2012-01-01

    A novel application of whole cells of Nocardia corallina B-276 for the deracemisation of ibuprofen is reported. This microorganism successfully hydrolysed ibuprofen nitrile to ibuprofen amide, and ibuprofen amide to ibuprofen, using a suspension of cells in a potassium phosphate buffer solution (0.1 M, pH = 7.0). These results can be explained by the presence of NHase and amidase enzymes, but the reactions are not enantioselective and low ee values were obtained. However, (R)-ibuprofen was is...

  1. Effect of avermectins on Ca2+-dependent Cl- currents in plasmalemma of Chara corallina cells.

    Science.gov (United States)

    Drinyaev, V A; Mosin, V A; Kruglyak, E B; Sterlina, T S; Kataev, A A; Berestovsky, G N; Kokoz, Y M

    2001-07-01

    A natural complex of avermectins, aversectin C, and a component of this complex, avermectin A1, were shown to change the conductivity of Ca2+-dependent Cl- channels of plasmalemma of Chara corallina cells by acting from the outer side of the cellular membrane. Low concentrations of aversectin C and avermectin A1 increased the Cl- current: K1/2 = 35 ng/ml for the whole complex and K1/2 = 21 pg/ml for A1. Relatively high concentrations of the compounds suppressed the Cl- current: K1/2 = 2.2 microg/ml for aversectin C and K1/2 = 4.2 ng/ml for A1. The Hill coefficient for the interaction of avermectin A1 with the corresponding targets was identical for stimulation and suppression of the Cl- current: 2.8 and 2.5, respectively. Bicuculline, a nonspecific inhibitor of the GABAa receptors, did not influence stimulation of Cl- currents caused by low concentrations of avermectins, but at the same time blocked suppression of the Cl- currents by high concentrations of avermectins. Avermectins A2, B1, B2, abamectin and 22,23-dihydroavermectin B1 (ivermectin) did not affect the Cl- currents of Chara corallina cells.

  2. [Effect of avermectns on Ca(2+)-dependent chloride currents in plasmalemma of Chara corallina cells].

    Science.gov (United States)

    Driniaev, V A; Mosin, V A; Krugliak, E B; Sterlina, T S; Viktorov, A V; Kataev, A A; Berestovskiĭ, G N; Kataev, T S; Kokoz, Iu M

    2001-01-01

    A natural complex of avermectins, aversectin C, and a component of this complex, avermectin A1, were shown to change the conductivity of Ca(2+)-dependent chloride channels of plasmalemma of Chara corallina cells by acting only from the outer side of the cellular membrane. Low concentrations of aversectin C and avermectin A1 increased the chloride current: K1/2 = 3.5 x 10(-5) mg/ml for the whole complex and K1/2 = 2.1 x 10(-3) mg/ml for A1. Relatively high concentrations of the compounds suppressed the chloride current: K1/2 = 2.2 x 10(-3) mg/ml for aversectin C and K1/2 = 4.2 x 10(-6) mg/ml for A1. The Hill coefficients for the interaction of avermectin A1 with the corresponding targets for stimulation and suppression of the chloride current were 2.8 and 2.5 respectively. Bicuculine, a non-specific inhibitor of the GABA alpha-receptors, did not influence stimulation of chloride currents caused by action of low concentrations of avermectins, but at the same time blocked suppression of the chloride currents associated with the action of high doses of avermectins. Avermectins A2, B1 (abamectin), B2 and 22,23-dihydroavermectin B1 (vermectin) in the concentration range studied, did not affect the chloride currents of Chara corallina cells.

  3. Crescimento inicial de Eucalyptus tereticornis em plantios puro e consorciado com Mimosa caesalpiniifolia E Mimosa pilulifera, em Campos dos Goytacazes-RJ Initial growth of Eucalyptus tereticornis in pure and mixed Mimosa caesalpiniifolia-Mimosa pilulifera stands outplanted in a low fertile soil in Campos dos Goytacazes-RJ

    Directory of Open Access Journals (Sweden)

    Ernando Balbinot

    2010-02-01

    Full Text Available Este trabalho objetivou avaliar o crescimento inicial de Eucalyptus tereticornis, em plantios puro e consorciado com Mimosa caesalpiniifolia e Mimosa pilulifera, e seus efeitos sobre as características químicas do solo, em Campos dos Goytacazes, RJ. Foram avaliadas, ao longo de 30 meses, a sobrevivência, a altura, o diâmetro da base e o DAP. A caracterização do solo, nas profundidades de 0-5 e 5-10 cm, foi realizada aos seis e 30 meses. O delineamento experimental foi em blocos casualizados com quatro repetições e 14 plantas úteis por parcela. O plantio de E. tereticornis consorciado com M. caesalpiniifolia apresentou, aos 30 meses, sobrevivência superior (87% e melhor desempenho em crescimento dendrométrico. Nos plantios consorciados, o teor de C do solo mostrou menores valores, na profundidade de 5-10 cm. Os teores de P e Ca e saturação de bases (% do solo decresceram, enquanto os valores de pH, N, Na, Al e H+Al aumentaram em todos os sistemas de plantio. No plantio puro e no consórcio com M. caesalpiniifolia, os teores de K foram menores na profundidade de 0-5 cm. O consórcio entre E. tereticornis e M. caesalpiniifolia causou redução da CTC efetiva, da soma de bases e do teor de MgThe objective of this work was to evaluate the initial growth of outplanted Eucalyptus tereticornis in pure and mixed Mimosa caesalpiniifolia-Mimosa pilulifera stands and their effects on soil characteristics in Campos dos Goytacazes-RJ. Survival rates, height, ground level diameter and diameter at breast height were evaluated over 30 months. Soil characterization at 0-5 and 5-10 cm depths was carried out at 6 and 30 months after outplantings. The experiment was set up in a randomized block design with 4 replications, with 14 measurable plants per plot. Thirty months after outplantings, the mixed E. tereticornis-M. caesalpiniifolia stand showed higher survival (87% and better performance for dendrometric measurements. In the mixed ouplantings, the

  4. Complexity and idiosyncrasy in the responses of algae to disturbance in mono- and multi-species assemblages.

    Science.gov (United States)

    Goodsell, P J; Underwood, A J

    2008-09-01

    There is considerable debate about whether stability (e.g. inertia) of an assemblage, or of individuals in an assemblage, is positively associated with the number of species or whether there are idiosyncratic effects of particular species. We assessed the general model that the loss of an individual alga, caused by trampling, is greater in monospecific than in multi-species stands but that the responses of algae are idiosyncratic, depending on the morphology of the species. The experiment was done on conspicuous and dominant algae with different morphology on temperate Australian rocky shores: the fucalean algae Hormosira banksii and Sargassum sp. and the coralline alga Corallina officinalis. We assessed the relative and interactive effects of the extent of trampling (number of paths) and the localised intensity of trampling (number of travels per path) on the three algae. The number of paths trampled (the extent of disturbance) had more impact on each alga than the number of times paths were travelled (the intensity of disturbance). As predicted, H. banksii was most susceptible to trampling at each level than were the coarser algae Sargassum sp. and C. officinalis. There was a consistent trend for each alga to be more inert to trampling when in the presence of the other two species than when in monospecific stands, but this was only statistically significant (P < 0.05) for the softer alga H. banksii. The responses of H. banksii and Sargassum sp. to disturbance seemed, in many cases, to be due to the presence of C. officinalis rather than to "diversity" per se. The relationship between the number of species and stability is complex in intertidal habitats, depending on the species and the combinations of species with which it grows.

  5. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  6. Induction of a new alkaline band at a target position in internodal cells of Chara corallina.

    Science.gov (United States)

    Shimmen, Teruo; Yamamoto, Ako

    2002-09-01

    Characean cells develop alternating alkaline and acid bands on their surface upon illumination. However, the mechanism of band formation is not fully understood. In the present study, we succeeded in inducing a new alkaline band at an original acid band in internodal cells of Chara corallina. Chloroplasts in an acid band were locally removed by wounding the cell in the absence of the cell turgor pressure. The chloroplast-removed area was observed as a white belt in a green cylindrical internodal cell. This internodal cell developed a new alkaline band on the surface at the chloroplast-removed area. The narrower the chloroplast-removed area, the less significant the extent of OH(-) extrusion. This is the first success in inducing a new alkaline band at a target position in Characeae.

  7. Electrophysiological characterization of the node in Chara corallina: functional differentiation for wounding response.

    Science.gov (United States)

    Shimmen, Teruo

    2008-02-01

    Electrical characteristics of the node were analyzed in comparison with those of the flank of the internodal cell in Chara corallina. The dependence of the membrane potential of the node on pH and K+ concentration was almost the same as that of the flank. In the flank, the increase in the Ca2+ concentration stopped the depolarization in the presence of 100 mM KCl. In the node, however, Ca2+ could not stop the depolarization induced by 100 mM KCl. It has been reported that the node has a function to tranduce the signal of osmotic shock into a transient depolarization. In combination with osmotic shock, 10 mM K+ could induce a long-lasting depolarization of the node. These electrical characteristics of the node were suggested to be responsible for the electrical response to wounding in Characeae.

  8. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil.

    Science.gov (United States)

    Nakajima, Y; Kitpreechavanich, V; Suzuki, K; Kudo, T

    1999-10-01

    Two actinomycete strains, DF-28 and DF-32T, were isolated from soil samples collected in a deciduous dipterocarp forest in Thailand. They produced longitudinally paired spores on the tips of short sporophores alternately branched from aerial hyphae, and the chemotaxonomic properties of the isolates were the same as those of members of the family Streptosporangiaceae. These phenotypic properties, together with the results of a phylogenetic analysis based on 16S rRNA gene sequences, indicated that these isolates should be assigned to the genus Microbispora. The two isolates showed more than 93% DNA relatedness to each other, but their relatedness to any previously described species of the genus Microbispora was only 45% or less. They were distinguishable from previously described Microbispora spp. by a combination of physiological and biochemical properties. Therefore, a new species is proposed for these strains, under the name Microbispora corallina sp. nov. The type strain is strain DF-32T (= JCM 10267T).

  9. Transduction of pressure signal to electrical signal upon sudden increase in turgor pressure in Chara corallina.

    Science.gov (United States)

    Shimmen, Teruo; Ogata, Koreaki

    2013-05-01

    By taking advantage of large cell size of Chara corallina, we analyzed the membrane depolarization induced by decreased turgor pressure (Shimmen in J Plant Res 124:639-644, 2011). In the present study, the response to increased turgor pressure was analyzed. When internodes were incubated in media containing 200 mM dimethyl sulfoxide, their intracellular osmolality gradually increased and reached a steady level after about 3 h. Upon removal of dimethyl sulfoxide, turgor pressure quickly increased. In response to the increase in turgor pressure, the internodes generated a transient membrane depolarization at its nodal end. The refractory period was very long and it took about 2 h for full recovery after the depolarizing response. Involvement of protein synthesis in recovery from refractoriness was suggested, based on experiments using inhibitors.

  10. In vitro antioxidant activities of sulfated polysaccharide fractions extracted from Corallina officinalis.

    Science.gov (United States)

    Yang, Yuling; Liu, Dan; Wu, Jun; Chen, Yan; Wang, Shusheng

    2011-12-01

    Sulfated polysaccharides (F1, F2) from seaweed Corallina officinalis were isolated through anion-exchange column chromatography. Their chemical characteristics were determined by GC, HPLC, FT-IR and UV spectra. F1 and F2 contained only two monosaccharides, namely galactose and xylose. The antioxidant activities of F1, F2 and the de-sulfated polysaccharides (DF-1, DF-2) in vitro were investigated, including hydroxyl radicals scavenging effect, superoxide radical scavenging capacity, DPPH radical activity and reducing power. As expected, antioxidant assay showed that the two sulfated polysaccharide fractions (F1, F2) possessed considerable antioxidant properties and had more excellent abilities than de-sulfated polysaccharides (DF-1, DF-2). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Induction of Metamorphosis of Larvae of the Green Sea Urchin, Strongylocentrotus droebachiensis, by Coralline Red Algae.

    Science.gov (United States)

    Pearce, C M; Scheibling, R E

    1990-12-01

    The coralline red algae, Lithothamnion glaciale, Phymatolithon laevigatum, P. rugulosum, and Corallina officinalis, induced >85% of laboratory-reared larvae of Strongylocentrotus droebachiensis to metamorphose. Larvae must contact live L. glaciale or its spores for metamorphosis to occur; the inducer is not sensed in the water column. However, aqueous extracts of L. glaciale can induce metamorphosis, suggesting that the inducing factor is chemical. Neither ashed nor boiled L. glaciale induces metamorphosis, indicating that the factor is heat-labile and that thigmotaxis, per se, is not important in the response. The amino-acid, γ-aminobutyric acid (GABA), which induces settlement of other marine invertebrate larvae, also induces significant rates of metamorphosis of S. droebachiensis at concentrations ≥ 10-4 M. A reduction (with antibiotics) in the number of live bacteria on the surface of L. glaciale does not affect the rate of metamorphosis of larvae.

  12. 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitors increase erythritol production in Torula corallina, and DHN-melanin inhibits erythrose reductase.

    Science.gov (United States)

    Lee, Jung-Kul; Jung, Hyung-Moo; Kim, Sang-Yong

    2003-06-01

    The yeast Torula corallina is a strong erythritol producer that is used in the industrial production of erythritol. However, melanin accumulation during culture represents a serious problem for the purification of erythritol from the fermentation broth. Melanin biosynthesis inhibitors such as 3,4-dihydroxyphenylalanine and 1,8-dihydroxynaphthalene (DHN)-melanin inhibitors were added to the T. corallina cultures. Only the DHN-melanin inhibitors showed an effect on melanin production, which suggests that the melanin formed during the culturing of T. corallina is derived from DHN. This finding was confirmed by the detection of a shunt product of the pentaketide pathway, flaviolin, and elemental analysis. Among the DHN-melanin inhibitors, tricyclazole was the most effective. Supplementation with tricyclazole enhanced the production of erythritol while significantly inhibiting the production of DHN-melanin and DHN-melanin biosynthetic enzymes, such as trihydroxynaphthalene reductase. The erythrose reductase from T. corallina was purified to homogeneity by ion-exchange and affinity chromatography. Purified erythrose reductase was significantly inhibited in vitro in a noncompetitive manner by elevated levels of DHN-melanin. In contrast, the level of erythrose reductase activity was unaffected by increasing concentrations of tricyclazole. These results suggest that supplemental tricyclazole reduces the production of DHN-melanin, which may lead to a reduction in the inhibition of erythrose reductase and a higher yield of erythritol. This is the first report to demonstrate that melanin biosynthesis inhibitors increase the production of a sugar alcohol in T. corallina.

  13. Plasmodesmata of brown algae

    OpenAIRE

    Terauchi, Makoto; Nagasato, Chikako; Motomura, Taizo

    2014-01-01

    Plasmodesmata (PD) are intercellular connections in plants which play roles in various developmental processes. They are also found in brown algae, a group of eukaryotes possessing complex multicellularity, as well as green plants. Recently, we conducted an ultrastructural study of PD in several species of brown algae. PD in brown algae are commonly straight plasma membrane-lined channels with a diameter of 10?20?nm and they lack desmotubule in contrast to green plants. Moreover, branched PD ...

  14. Control of Cl- efflux in chara corallina by cytosolic pH, free ca2+, and phosphorylation indicates a role of plasma membrane anion channels in cytosolic pH regulation

    Science.gov (United States)

    Johannes; Crofts; Sanders

    1998-09-01

    Enhanced Cl- efflux during acidosis in plants is thought to play a role in cytosolic pH (pHc) homeostasis by short-circuiting the current produced by the electrogenic H+ pump, thereby facilitating enhanced H+ efflux from the cytosol. Using an intracellular perfusion technique, which enables experimental control of medium composition at the cytosolic surface of the plasma membrane of charophyte algae (Chara corallina), we show that lowered pHc activates Cl- efflux via two mechanisms. The first is a direct effect of pHc on Cl- efflux; the second mechanism comprises a pHc-induced increase in affinity for cytosolic free Ca2+ ([Ca2+]c), which also activates Cl- efflux. Cl- efflux was controlled by phosphorylation/dephosphorylation events, which override the responses to both pHc and [Ca2+]c. Whereas phosphorylation (perfusion with the catalytic subunit of protein kinase A in the presence of ATP) resulted in a complete inhibition of Cl- efflux, dephosphorylation (perfusion with alkaline phosphatase) arrested Cl- efflux at 60% of the maximal level in a manner that was both pHc and [Ca2+]c independent. These findings imply that plasma membrane anion channels play a central role in pHc regulation in plants, in addition to their established roles in turgor/volume regulation and signal transduction.

  15. [Harmful algae and health].

    Science.gov (United States)

    Kankaanpää, Harri T

    2011-01-01

    Harmful algae are a worldwide problem. Phycotoxins is a general term for toxic compounds produced by harmful species of the phytoplankton. This review deals with the occurrence of harmful algae and phycotoxins in the Baltic Sea and other domestic waters, the ways of getting exposed to them, and their effects. Advice on how to avoid the exposure is provided.

  16. Recombinant motor domain constructs of Chara corallina myosin display fast motility and high ATPase activity.

    Science.gov (United States)

    Ito, Kohji; Kashiyama, Taku; Shimada, Kiyo; Yamaguchi, Akira; Awata, Jun ya; Hachikubo, You; Manstein, Dietmar J; Yamamoto, Keiichi

    2003-12-26

    The mechanism and structural features that are responsible for the fast motility of Chara corallina myosin (CCM) have not been elucidated, so far. The low yields of native CCM that can be purified to homogeneity were the major reason for this. Here, we describe the expression of recombinant CCM motor domains, which support the fast movement of actin filaments in an in vitro motility assay. A CCM motor domain without light chain binding site moved actin filaments at a velocity of 8.8 microm/s at 30 degrees C and a CCM motor domain with an artificial lever arm consisting of two alpha-actinin repeats moved actin filaments at 16.2 microm/s. Both constructs displayed high actin-activated ATPase activities ( approximately 500 Pi/s/head), which is indicative of a very fast hydrolysis step. Our results provide an excellent system to dissect the specific structural and functional features that distinguish the myosin responsible for fast cytoplasmic streaming.

  17. Regulation of the H+ pump activity in the plasma membrane of internally perfused Chara corallina.

    Science.gov (United States)

    Tsutsui, I; Ohkawa, T

    2001-05-01

    The role of cytoplasm for the maintenance of the H+ pump activity in Chara corallina internodal cells was examined by the intracellular perfusion technique. Cytoplasm-rich and -poor states were obtained by changing the perfusion time, short-term (less than 2 min) and long-term (more than 5 min), respectively. A large portion of cytoplasm was left by short-term perfusion but most of the cytoplasm was removed by long-term perfusion. The activities of the H+ pump of these two different conditions were examined by measuring current-voltage relation (I-V curve) and conductance-voltage relation (G-V curve) under voltage clamp conditions. The H+ pump conductance decreased to 37%, 9% and zero by short-term, long-term and hexokinase perfusion, respectively, whereas the passive channel conductance decreased to 71%, 39% and 73% by short-term, long-term and hexokinase perfusion, respectively. On the other hand, the electromotive-force of the H+ pump (approximately -260 mV) and the passive channel (approximately -130 mV) were not affected by either short- or long-term perfusion. It is indicated that the cytoplasm plays an essential role to regulate the activity of both the H+ pump and the passive channel together with ATP.

  18. Electron transfer reactions in the alkene mono-oxygenase complex from Nocardia corallina B-276.

    Science.gov (United States)

    Gallagher, S C; Cammack, R; Dalton, H

    1999-04-01

    Nocardia corallina B-276 possesses a multi-component enzyme, alkene mono-oxygenase (AMO), that catalyses the stereoselective epoxygenation of alkenes. The reductase component of this system has been shown by EPR and fluorescence spectroscopy to contain two prosthetic groups, an FAD centre and a [2Fe-2S] cluster. The role of these centres in the epoxygenation reaction was determined by midpoint potential measurements and electron transfer kinetics. The order of potentials of the prosthetic groups of the reductase were FAD/FAD.=-216 mV, [2Fe-2S]/[2Fe-2S].=-160 mV and FAD./FAD.=-134 mV. Combined, these data implied that the reductase component supplied the energy required for the epoxygenation reaction and allowed a prediction of the mechanism of electron transfer within the AMO complex. The FAD moiety was reduced by bound NADH in a two-electron reaction. The electrons were then transported to the [2Fe-2S] centre one at a time, which in turn reduced the di-iron centre of the epoxygenase. Reduction of the di-iron centre is required for oxygen binding and substrate oxidation.

  19. FT-IR study of the Chara corallina cell wall under deformation.

    Science.gov (United States)

    Toole, Geraldine A; Kacuráková, Marta; Smith, Andrew C; Waldron, Keith W; Wilson, Reginald H

    2004-02-25

    Fourier-transform infrared (FT-IR) microspectroscopy was used to investigate both the chemical composition of, and the effects of an applied strain on, the structure of the Chara corallina cell wall. The inner layers of the cell wall are known to have a transverse cellulose orientation with a gradient through the thickness to longitudinal orientation in the older layers. In both the native state and following the removal of various biopolymers by a sequential extraction infrared dichroism was used to examine the orientation of different biopolymers in cell-wall samples subjected to longitudinal strain. In the Chara system, cellulose microfibrils were found to be aligned predominantly transverse to the long axis of the cell and became orientated increasingly transversely as longitudinal strain increased. Simultaneously, the pectic polysaccharide matrix underwent molecular orientation parallel to the direction of strain. Following extraction in CDTA, microfibrils were orientated transversely to the strain direction, and again the degree of transverse orientation increased with increasing strain. However, the pectic polysaccharides of the matrix were not detected in the dichroic difference spectra. After a full sequential extraction, the cellulose microfibrils, now with greatly reduced crystallinity, were detected in a longitudinal direction and they became orientated increasingly parallel to the direction of strain as it increased.

  20. Identifying cytoplasmic input to the cell wall of growing Chara corallina.

    Science.gov (United States)

    Proseus, Timothy E; Boyer, John S

    2006-01-01

    Plants enlarge mostly because the walls of certain cells enlarge, with accompanying input of wall constituents and other factors from the cytoplasm. However, the enlargement can occur without input, suggesting an uncertain relationship between cytoplasmic input and plant growth. Therefore, the role of the input was investigated by quantitatively comparing growth in isolated walls (no input) with that in living cells (input occurring). Cell walls were isolated from growing internodes of Chara corallina and filled with pressurized oil to control turgor pressure while elongation was monitored. Turgor pressure in living cells was similarly controlled and monitored by adding/removing cell solution. Temperature was varied in some experiments. At all pressures and temperatures, isolated walls displayed turgor-driven growth indistinguishable in every respect from that in living cells, except the rate decelerated in the isolated walls while the living cells grew rapidly. The growth in the isolated walls was highly responsive to temperature, in contrast to the elastic extension that has been shown to be insensitive to similar temperatures. Consequently, strong intermolecular bonds were responsible for growth and weak bonds for elastic extension. Boiling the walls gave the same results, indicating that enzyme activities were not controlling these bonds. However, pectin added to isolated walls reversed their growth deceleration and returned the rate to that in the living cells. The pectin was similar to that normally produced by the cytoplasm and deposited in the wall, suggesting that continued cytoplasmic input of pectin may play a role in sustaining turgor-driven growth in Chara.

  1. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea

    Directory of Open Access Journals (Sweden)

    Soad M. Mohy El-Din

    2016-07-01

    Full Text Available Seaweeds are potential renewable resources in the marine environment. The antibacterial activity of Jania rubens, Corallina mediterranea and Pterocladia capillacea were analyzed against human pathogenic bacteria. The present study was performed to investigate the phytochemical constituents of seaweeds, such as alkaloids, flavonoids, steroids, terpenoids and phlobatannins. In this study, we estimated phenols, flavonoids, tannins, pigments and mineral contents and determined the hydrogen peroxide scavenging activity, reducing power and total antioxidant activity of various extracts of selected seaweeds. Phytochemicals were extracted from the three seaweeds using various solvents, such as methanol, ethanol, acetone and chloroform. Among the various extracts, the methanolic extract was found to have the highest reducing power and total antioxidant capacity. We evaluated the seaweeds against Vibrio fluvialis, and Pterocladia capillacea was the most effective at controlling its growth. The highest zone of inhibition was recorded in the methanol extract. The chemical constituents of the seaweeds were characterized by GC–MS, which showed that they contain organic compounds, such as 1,2-benzenedicarboxylic acid.

  2. Algae Derived Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Kauser [Rowan Univ., Glassboro, NJ (United States)

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  3. Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta).

    Science.gov (United States)

    Robba, Lavinia; Russell, Stephen J; Barker, Gary L; Brodie, Juliet

    2006-08-01

    The red algae, a remarkably diverse group of organisms, are difficult to identify using morphology alone. Following the proposal to use the mitochondrial cytochrome c oxidase subunit I (cox1) for DNA barcoding animals, we assessed the use of this gene in the identification of red algae using 48 samples plus 31 sequences obtained from GenBank. The data set spanned six orders of red algae: the Bangiales, Ceramiales, Corallinales, Gigartinales, Gracilariales and Rhodymeniales. The results indicated that species could be discriminated. Intraspecific variation was between 0 and 4 bp over 539 bp analyzed except in Mastocarpus stellatus (0-14 bp) and Gracilaria gracilis (0-11 bp). Cryptic diversity was found in Bangia fuscopurpurea, Corallina officinalis, G. gracilis, M. stellatus, Porphyra leucosticta and P. umbilicalis. Interspecific variation across all taxa was between 28 and 148 bp, except for G. gracilis and M. stellatus. A comparison of cox1 with the plastid Rubisco spacer for Porphyra species revealed that it was a more sensitive marker in revealing incipient speciation and cryptic diversity. The cox1 gene has the potential to be used for DNA barcoding of red algae, although a good taxonomic foundation coupled with extensive sampling of taxa is essential for the development of an effective identification system.

  4. Effects of Tidally Driven Variation on the Response of Coralline Algae to Ocean Acidification

    Science.gov (United States)

    Ets-Hokin, J. M.; Fachon, E.; Donham, E. M.; Price, N.

    2016-02-01

    As atmospheric CO2 levels continue to rise, our oceans are becoming more acidic, making it difficult for calcareous organisms like coralline algae to calcify. Coralline algae are early colonizers after disturbances and foundational species that initiate succession by inducing larval settlement of many invertebrate species. However, coralline algae tend to be more susceptible to experimentally elevated pCO2 than other calcifiers, likely due to the higher magnesium content in their calcite skeleton, which can render them more soluble. Magnesium content varies between individuals and is context dependent, thus could be a mechanism of acclimation for algae recruiting to harsh environments. To test this hypothesis, we collected Corallina officinalis from tide pools that experience extreme daily variation and from a well-flushed site that experiences lower daily variation in seawater pH. Samples were placed for 22 days in 1L microcosms bubbled with air enriched with pCO2, with values ranging from preindustrial lows (280 uatm) to predicted highs over the next century (1120 uatm) over 6 treatment levels. C. officinalis collected in the isolated tide pools showed decreased growth ( 50%) both in net calcification (measured via buoyant weight method) and linear extension (visualized with fluorescent stain) in low and high pCO2 levels, with growth peaking at an optimal pCO2 value of approximatly 300 uatm similar to present-day conditions. In contrast C. officinalis collected from the flushed site had no response to pCO2 treatments but had significantly lower growth overall. Tide pool two showed higher inclusion of magnesium in its carbonate skeleton which could explain its more pronounced response to the pCO2 treatments. While living in harsh environments can acclimate coralline algae to high pCO2, overall growth rates are substantially lower and will likely be insufficient to alleviate effects of ocean acidification.

  5. Corallina and Ellisolandia (Corallinales, Rhodophyta) photophysiology over daylight tidal emersion: interactions with irradiance, temperature and carbonate chemistry

    OpenAIRE

    Williamson, C. J.; Brodie, J.; Goss, B.; Yallop, M.; Lee, S.; Perkins, R.

    2014-01-01

    The photophysiology of three geniculate coralline algal species (Corallina officinalis, C. caespitosa and Ellisolandia elongata) was determined in intertidal rock pools in the south-west UK at Combe Martin (51°12′31N 4°2′19W) and Heybrook Bay (50°31′66N 4°11′41W), at the start, middle and end of summer (September 1 and 2) and winter (February 9 and 10) daylight tidal emersion periods, in relation to prevailing irradiance, temperature and carbonate chemistry conditions. Algal photophysiology w...

  6. Purification, crystallisation and preliminary X-ray analysis of the vanadium-dependent haloperoxidase from Corallina officinalis.

    Science.gov (United States)

    Rush, C; Willetts, A; Davies, G; Dauter, Z; Watson, H; Littlechild, J

    1995-02-13

    The vanadium-dependent haloperoxidase from the seaweed Corallina officinalis has been purified to homogeneity and crystallised. The protein is reported to be a hexamer of 12 x 64,000 Da, contains no haem, and is dependent on vanadium for activity. The crystals are grown from polyethylene glycol (PEG) 6,000 and 0.4 M potassium chloride. They are stable and diffract to better than 2 A resolution. They are of a cubic space group I23 (or 12(1)3) with cell dimensions a = b = c = 310 A.

  7. Blue-Green Algae

    Science.gov (United States)

    ... people with hepatitis C or hepatitis B. HIV/AIDS. Research on the effects of blue-green algae in people with HIV/AIDS has been inconsistent. Some early research shows that taking 5 grams of blue-green ...

  8. Anion channels in chara corallina tonoplast membrane: calcium dependence and rectification.

    Science.gov (United States)

    Berecki, G; Varga, Z; Van Iren, F; Van Duijn, B

    1999-11-15

    Tonoplast K(+) channels of Chara corallina are well characterized but only a few reports mention anion channels, which are likely to play an important role in the tonoplast action potential and osmoregulation of this plant. For experiments internodal cells were isolated. Cytoplasmic droplets were formed in an iso-osmotic bath solution according to a modified procedure. Ion channels with conductances of 48 pS and 170 pS were detected by the patch-clamp technique. In the absence of K(+) in the bath solution the 170 pS channel was not observed at negative pipette potential values. When Cl(-) on either the vacuolar side or the cytoplasmic side was partly replaced with F(-), the reversal potential of the 48 pS channel shifted conform to the Cl(-) equilibrium potential with similar behavior in droplet-attached and excised patch mode. These results showed that the 48 pS channel was a Cl(-) channel. In droplet-attached mode the channel rectified outward current flow, and the slope conductance was smaller. When Chara droplets were formed in a bath solution containing low (10(-8) m) Ca(2+), then no Cl(-) channels could be detected either in droplet-attached or in inside-out patch mode. Channel activity was restored if Ca(2+) was applied to the cytoplasmic side of inside-out patches. Rectification properties in the inside-out patch configuration could be controlled by the holding pipette potential. Holding potential values negative or positive to the calculated reversal potential for Cl(-) ions induced opposite rectification properties. Our results show Ca(2+)-activated Cl(-) channels in the tonoplast of Chara with holding potential dependent rectification.

  9. Turgor pressure moves polysaccharides into growing cell walls of Chara corallina.

    Science.gov (United States)

    Proseus, Timothy E; Boyer, John S

    2005-05-01

    Plant growth involves pressure-driven cell enlargement generally accompanied by deposition of new cell wall. New polysaccharides are secreted by the plasma membrane but their subsequent entry into the wall is obscure. Therefore, polysaccharides and gold colloids of various sizes were presented to the inner wall face as though they were secreted by the plasma membrane. Primary cell walls were isolated from growing internodes of Chara corallina and one end was attached to a glass capillary. Solutions of dextran or suspensions of gold colloids were pushed into the lumen by oil in the capillary. The oil did not enter the wall, and the solution or suspension was pressed against the inner wall face, pressurized at various 'artificial' P (turgor pressure), and polymer or colloid movement through the wall was monitored. Interstices in the wall matrix had a diameter of about 4.6 nm measured at high P with gold colloids. Small solute (0.8 nm) readily moved through these interstices unaffected by P. Dextrans of 3.5 nm diameter moved faster at higher P while dextran of 9 nm scarcely entered unless high P was present. Dextran of 11 nm did not enter unless P was above a threshold, and dextran of 27 nm did not enter at P as high as 0.5 MPa. The walls filtered the dextrans, which became concentrated against the inner wall face, and most polymer movement occurred after P stabilized and bulk flow ended. P created a steep gradient in concentration and mechanical force at the inner wall face that moved large polymers into small wall openings apparently by starting a polymer end or deforming the polymer mechanically at the inner wall face. This movement occurred at P generally accepted to extend the walls for growth.

  10. Periplasm turgor pressure controls wall deposition and assembly in growing Chara corallina cells.

    Science.gov (United States)

    Proseus, Timothy E; Boyer, John S

    2006-07-01

    New wall deposition usually accompanies plant growth. External osmotica inhibit both processes but wall precursors continue to be synthesized, and exocytosis follows. Consequently, the osmotica appear to act outside of the plasma membrane. Because this implies an action of turgor pressure (P) on the periplasm by unknown mechanisms, the following study was undertaken to determine whether P could act in a way that altered wall deposition and assembly in the periplasm while the cells grow. Cells of Chara corallina were exposed to P slightly below normal by using a pressure probe while supplying inorganic carbon in light. After labelling, the walls were isolated and the amount of new wall was determined. Similar measurements were made after treatment with osmotica. Chlortetracycline-stimulated exocytosis was determined microscopically. Polysaccharide properties were determined by confocal microscopy and vapour pressure osmometry in an 'artificial periplasm' in isolated Chara cell walls, using labelled dextran as an analogue of hemicellulose, and polygalacturonate as pectin. Rapid growth and wall deposition occurred at normal P of 0.5 MPa but both processes decreased when P was lowered 0.1 MPa. Inorganic carbon uptake and exocytosis were unaffected. In the artificial periplasm, normal P caused high polysaccharide concentrations and rapid polysaccharide entry into the wall, and gel formation in the pectin. Lowering P decreased entry and gel formation. This is the first indication that normal P of 0.5 MPa can concentrate periplasmic polysaccharides sufficiently to cause cross-linking and gel formation in pectins while simultaneously fostering the entry of large polysaccharides into small interstices in the existing wall. This P-action would thicken the primary wall and form a smooth transition between the new and old structure, suggesting a molecular mechanism of wall deposition and assembly while the wall extends.

  11. Direct measurement of aluminum uptake and distribution in single cells of Chara corallina.

    Science.gov (United States)

    Taylor, G J; McDonald-Stephens, J L; Hunter, D B; Bertsch, P M; Elmore, D; Rengel, Z; Reid, R J

    2000-07-01

    Quantitative information on the uptake and distribution of Al at the cellular level is required to understand mechanisms of Al toxicity, but direct measurement of uptake across the plasma membrane has remained elusive. We measured rates of Al transport across membranes in single cells of Chara corallina using the rare (26)Al isotope, an emerging technology (accelerator mass spectrometry), and a surgical technique for isolating subcellular compartments. Accumulation of Al in the cell wall dominated total uptake (71-318 microgram m(-2) min(-1)), although transport across the plasma membrane was detectable (71-540 ng m(-2) min(-1)) within 30 min of exposure. Transport across the tonoplast was initially negligible, but accelerated to rates approximating uptake across the plasma membrane. The avacuolate protoplasm showed signs of saturation after 60 min, but continued movement across the plasma membrane was supported by sequestration in the vacuole. Saturation of all compartments was observed after 12 to 24 h. Accumulation of Al in the cell wall reflected variation in [Al(3+)] induced by changes in Al supply or complexing ligands, but was unaffected by pH. In contrast, transport across the plasma membrane peaked at pH 4.3 and increased when [Al(3+)] was reduced by complexing ligands. Cold temperature (4 degrees C) reduced accumulation in the cell wall and protoplasm, whereas 2,4-dinitrophenol and m-chlorocarbonylcyanidephenyl hydrazone increased membrane transport by 12- to 13-fold. Our data suggest that the cell wall is the major site of Al accumulation. Nonetheless, membrane transport occurs within minutes of exposure and is supported by subsequent sequestration in the vacuole. The rapid delivery of Al to the protoplasm suggests that intracellular lesions may be possible.

  12. Actinophytocola timorensis sp. nov. and Actinophytocola corallina sp. nov., isolated from soil.

    Science.gov (United States)

    Otoguro, Misa; Yamamura, Hideki; Tamura, Tomohiko; Irzaldi, Rohmatussolihat; Ratnakomala, Shanti; Ridwan, Roni; Kartina, Gina; Triana, Evi; Nurkanto, Arif; Lestari, Yulin; Lisdiyanti, Puspita; Widyastuti, Yantyati; Ando, Katsuhiko

    2011-04-01

    Two actinomycete strains, ID05-A0653(T) and ID06-A0464(T), were isolated from soils of West Timor and Lombok island, respectively, in Indonesia. 16S rRNA gene sequence analysis clearly demonstrated that the isolates belonged to the family Pseudonocardiaceae and were closely related to the genus Actinophytocola. Strains ID05-A0653(T) and ID06-A0464(T) exhibited 98.1 and 98.2 % 16S rRNA gene sequence similarity, respectively, with Actinophytocola oryzae GMKU 367(T). The isolates grew well on ISP media and produced white aerial mycelium. Short spore chains were formed directly on the substrate mycelium. The isolates contained meso-diaminopimelic acid, arabinose and galactose as cell-wall components, MK-9(H(4)) as the sole isoprenoid quinone, iso-C(16 : 0) as the major cellular fatty acid and phosphatidylethanolamine as the diagnostic polar lipid. The DNA G+C contents of strains ID05-A0653(T) and ID06-A0464(T) were 69.7 and 71.2 mol%, respectively. On the basis of phenotypic characteristics, DNA-DNA relatedness and 16S rRNA gene sequence comparisons, strains ID05-A0653(T) and ID06-A0464(T) each represent a novel species of the genus Actinophytocola, for which the names Actinophytocola timorensis sp. nov. (type strain ID05-A0653(T)  = BTCC B-673(T)  = NBRC 105524(T)) and Actinophytocola corallina sp. nov. (type strain ID06-A0464(T)  = BTCC B-674(T)  = NBRC 105525(T)) are proposed.

  13. Spatio-temporal patterns of photosystem II activity and plasma-membrane proton flows in Chara corallina cells exposed to overall and local illumination

    NARCIS (Netherlands)

    Bulychev, A.A.; Vredenberg, W.J.

    2003-01-01

    Pulse-amplitude modulated microfluorometry and an extracellular pH microprobe were used to examine light-induced spatial heterogeneity of photosynthetic and H+-transporting activities in cells of Chara corallina Klein ex Willd. Subcellular domains featuring different PSII photochemical activities

  14. Metabolic pathway for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) formation in Nocardia corallina: inactivation of mutB by chromosomal integration of a kanamycin resistance gene.

    Science.gov (United States)

    Valentin, H F; Dennis, D

    1996-02-01

    The gene encoding the large subunit of the methylmalonyl-coenzyme A (CoA) mutase in Nocardia corallina (mutBNc) was cloned. A 4.3-kbp BamHI fragment containing almost the entire mutBNc was identified by Southern hybridization experiments employing a digoxigenin-labeled probe deduced from mutB of Streptomyces cinnamonensis, mutBNc was interrupted by insertion of a kanamycin resistance gene block (mutB::kan or mutB::neo) and introduced into N. corallina to obtain mutB-negative strains by homologous recombination. Four of sixteen kanamycin-resistant clones occurred via double-crossover events and harbored only the interrupted mutBNc. These exhibited no growth on odd-chain fatty acids in the presence of kanamycin but exhibited wild-type growth on even-chain fatty acids, glucose, and succinate. Whereas the wild type of N. corallina accumulates a copolyester of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) containing more than 60 mol% 3HV from most carbon sources, mutB-negative strains accumulated poly(3HB-co-3HV) containing only 2 to 6 mol% 3HV. Methylmalonyl-CoA mutase activity was not found in these clones. Therefore, this study provides strong evidence that the majority of 3HV units in poly(3HB-co-3HV) accumulated by N. corallina are synthesized via the methylmalonyl-CoA pathway.

  15. Genetic diversity and phylogenetic analysis of two Tunisian bivalves (Mactridae) Mactra corallina (Linnaeus, 1758) and Eastonia rugosa (Helbling, 1799) based on COI gene sequences.

    Science.gov (United States)

    Chetoui, Imene; Denis, Françoise; Boussaid, Mohamed; Telahigue, Khoula; El Cafsi, M'Hamed

    2016-01-01

    A partial sequence of mitochondrial cytochrome c oxidase subunit I (COI) was used as a genetic marker for a genetic diversity and phylogenetic analysis (DNA barcoding) of two Mactridae species, Mactra corallina and Eastonia rugosa, collected from the Tunisian coast. These Mactridae species could be distinguished by DNA barcoding techniques and they will be considered as monophyletic clades with the Neighbor-Joining (NJ) tree. The genetic structure detected that E. rugosa presents three haplotypes with a high frequency of HER1 (0.89). However, M. corralina shared 14 haplotypes. The haplotypic diversity (H) was equal to 0.205 and 0.954, respectively, for E. rugosa and M. corallina. While the nucleotide diversity (π) was higher for M. corallina (π=0.0818), the mismatch distribution showed a unimodal curve for E. rugosa (a recent sudden demographic expansion) and a multimodal distribution for M. corallina (size stability). Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  17. Phytotoxic effects of seaweed mediated copper nanoparticles against the harmful alga: Lyngbya majuscula

    Directory of Open Access Journals (Sweden)

    Hala Yassin El-Kassas

    2017-06-01

    Full Text Available In this study, copper nanoparticles (Cu-NPs were synthesized using Corallina officinalis Linnaeus and Corallina mediterranea Areschoug aqueous extracts. Transmission Electron microscope indicated that the biosynthesized Cu-NPs averaged 12.7 nm and 13.6 nm for C. Officinalis and C. mediterranea, respectively. As reported by the FT-IR analyses, the algal extracts contain phyto-chemicals such as proteins, carboxylic acids, complex carbohydrates; these compounds will act as encapsulating agents and be reduced from copper sulphate to Cu-NPs. Energy-dispersive analyses X-ray (EDX confirmed the copper composition in the synthesized Cu-NPs. The biosynthesized Cu-NPs arrested the growth of Lyngbya majuscula and presented in time and concentration dependent trends. At a concentration of 2 μg/mL, Cu-NPs, synthesized by C. officinalis exerted 85 ± 4% reduction of the algae dry weight. Increasing Cu-NPs concentration led to excellent reduction, which is a very promising result. Cupper-NPs synthesized by C. mediterranea produced moderate effects on L. majuscula. The results also indicated that there were sharp decreases in chlorophyll a content in L. majuscula with the increase in Cu-NPs concentrations. Using 4 μg/mL of Cu-NPs derived from C. officinalis, chlorophyll a decreased by 48 ± 5%. On the other hand, lower reductions in chlorophyll a were recorded upon using Cu-NPs synthesized using C. mediterranea (36 ± 3% and 41 ± 5% reductions at concentrations of 2 μg/mL and 4 μg/mL, respectively. The results of this study suggested that the bioactive and allelopathic compounds derived from the two algal extracts coating the (Cu2+ together with (Cu2+ are responsible for the inhibitive impacts of Cu-NPs on L. majuscula.

  18. A rel A‐dependent regulatory cascade for auto‐induction of microbisporicin production in M icrobispora corallina

    Science.gov (United States)

    Fernández‐Martínez, Lorena T.; Gomez‐Escribano, Juan P.

    2015-01-01

    Summary Microbisporicin is a potent type I lantibiotic produced by the rare actinomycete M icrobispora corallina that is in preclinical trials for the treatment of infections caused by methicillin‐resistant isolates of S taphylococcus aureus (MRSA). Analysis of the gene cluster for the biosynthesis of microbisporicin, which contains two unique post‐translationally modified residues (5‐chlorotryptophan and 3, 4‐dihydroxyproline), has revealed an unusual regulatory mechanism that involves a pathway‐specific extracytoplasmic function sigma factor (MibX)/anti‐sigma factor (MibW) complex and an additional transcriptional regulator MibR. A model for the regulation of microbisporicin biosynthesis derived from transcriptional, mutational and quantitative reverse transcription polymerase chain reaction analyses suggests that MibR, which contains a C‐terminal DNA‐binding domain found in the LuxR family of transcriptional activators, functions as an essential master regulator to trigger microbisporicin production while MibX and MibW induce feed‐forward biosynthesis and producer immunity. Moreover, we demonstrate that initial expression of mib R, and thus microbisporicin production, is dependent on the ppGpp synthetase gene (relA) of M . corallina. In addition, we show that constitutive expression of either of the two positively acting regulatory genes, mib R or mib X, leads to precocious and enhanced microbisporicin production. PMID:25939852

  19. A relA-dependent regulatory cascade for auto-induction of microbisporicin production in Microbispora corallina.

    Science.gov (United States)

    Fernández-Martínez, Lorena T; Gomez-Escribano, Juan P; Bibb, Mervyn J

    2015-08-01

    Microbisporicin is a potent type I lantibiotic produced by the rare actinomycete Microbispora corallina that is in preclinical trials for the treatment of infections caused by methicillin-resistant isolates of Staphylococcus aureus (MRSA). Analysis of the gene cluster for the biosynthesis of microbisporicin, which contains two unique post-translationally modified residues (5-chlorotryptophan and 3, 4-dihydroxyproline), has revealed an unusual regulatory mechanism that involves a pathway-specific extracytoplasmic function sigma factor (MibX)/anti-sigma factor (MibW) complex and an additional transcriptional regulator MibR. A model for the regulation of microbisporicin biosynthesis derived from transcriptional, mutational and quantitative reverse transcription polymerase chain reaction analyses suggests that MibR, which contains a C-terminal DNA-binding domain found in the LuxR family of transcriptional activators, functions as an essential master regulator to trigger microbisporicin production while MibX and MibW induce feed-forward biosynthesis and producer immunity. Moreover, we demonstrate that initial expression of mibR, and thus microbisporicin production, is dependent on the ppGpp synthetase gene (relA) of M. corallina. In addition, we show that constitutive expression of either of the two positively acting regulatory genes, mibR or mibX, leads to precocious and enhanced microbisporicin production. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  20. Karakteristik Makro Algae Berzat Kapur di Perairan Tanjung Sira Lombok-Barat

    Directory of Open Access Journals (Sweden)

    Achmad Kadi

    2015-01-01

    Full Text Available Coastal waters of Tanjung Sira has calcareousalgae of the genus Halimeda limestone, Padina, Amphiroa, Galaxaura, Corallina, Hydrolithon, Mesophyllum, Peysonallia, Porolithon and Sporolithon. The substrate that used as habitat are  sand, coarse sand, rocks and dead coral rubble. Calcium carbonate contained on calcareous algae fungsioning as adhesive and encrusting dead coral, shells of mollusks that have decayed and massive objects in the waters of the sea. The research aims was to determine the growth characteristics of calcareousalgae in the reef flats, local distribution, calcium carbonate contain and its contribution as a frame work coastal reef waters. The research method using transect (Buckland et al., 1993. Identification of the type of aragonite and calcite according to Cordero (1977. Analysis of calcium carbonate according to Hillis (1980. The results showed that the green and brown calcareousalgae found in the reef flats, has thallus and tubers. Red calcareousalgae grew as encrusting on dead reefs and massif substrate. There are 16 species of calcareous algae that found in reseach area, 10 species containing aragonite mineral and 6 species containing calcite mineral. The content of calcium carbonate on each species obtained 100-450 g/m² consists of aragonite and calcite minerals. Calcareousalgae contribute in the new formation of  coral reef ecosystems. The other benefit of calcareaousalgae in the coastal waters is an additional food for herbivorous fish. The content of calcium carbonate on calcareousalgae species is used in pharmaceutical field as drug ingredients and supplements for humans.

  1. Colonisation processes and the role of coralline algae in rocky shore community dynamics

    Science.gov (United States)

    Asnaghi, Valentina; Thrush, Simon F.; Hewitt, Judi E.; Mangialajo, Luisa; Cattaneo-Vietti, Riccardo; Chiantore, Mariachiara

    2015-01-01

    Recovery from disturbance is an important attribute of community dynamics. Temperate rocky shores will experience increases in both the type and intensity of impacts under future expected global change. To gauge the community response to these potential changes in the disturbance regime it is important to assess space occupancy and the temporal dynamics of key species over the recovery process. We experimentally disturbed replicated 1 m2 plots in the lower intertidal at 5 sites along the Ligurian rocky coast (North-western Mediterranean) and assessed early succession processes over 18 months. To identify colonisation processes and role of key species in affecting species richness on recovery trajectories, we monitored species composition at the cm-scale along fixed transects within the plots. Our results highlighted the role of a limited number of taxa in driving the recovery of species richness across sites, despite site variation in community composition. Settlement of new propagules and overgrowth were the principal pathway of space occupancy. We detected an important role for coralline algae, particularly the articulated Corallina elongata, in promoting the colonisation of a diverse range of colonists. The present study highlights the important role played by calcifying coralline macroalgae as substrate providers for later colonists, favouring recovery of biodiversity after disturbance. This pivotal role may be compromised in a future scenario of elevated cumulative disturbance, where ocean acidification will likely depress the role of coralline algae in recovery, leading to a general loss in biodiversity and community complexity.

  2. Anticoagulant effect of marine algae.

    Science.gov (United States)

    Kim, Se-Kwon; Wijesekara, Isuru

    2011-01-01

    Recently, a great deal of interest has been developed in the nutraceutical and pharmaceutical industries to isolate natural anticoagulant compounds from marine resources. Among marine resources, marine algae are valuable sources of novel bioactive compounds with anticoagulant effect. Phlorotannins and sulfated polysaccharides such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae have been recognized as potential anticoagulant agents. Therefore, marine algae-derived phlorotannins and SPs have great potential for developing as anticoagulant drugs in nutraceutical and pharmaceutical areas. This chapter focuses on the potential anticoagulant agents in marine algae and presents an overview of their anticoagulant effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Plasmodesmata of brown algae.

    Science.gov (United States)

    Terauchi, Makoto; Nagasato, Chikako; Motomura, Taizo

    2015-01-01

    Plasmodesmata (PD) are intercellular connections in plants which play roles in various developmental processes. They are also found in brown algae, a group of eukaryotes possessing complex multicellularity, as well as green plants. Recently, we conducted an ultrastructural study of PD in several species of brown algae. PD in brown algae are commonly straight plasma membrane-lined channels with a diameter of 10-20 nm and they lack desmotubule in contrast to green plants. Moreover, branched PD could not be observed in brown algae. In the brown alga, Dictyota dichotoma, PD are produced during cytokinesis through the formation of their precursor structures (pre-plasmodesmata, PPD). Clustering of PD in a structure termed "pit field" was recognized in several species having a complex multicellular thallus structure but not in those having uniseriate filamentous or multiseriate one. The pit fields might control cell-to-cell communication and contribute to the establishment of the complex multicellular thallus. In this review, we discuss fundamental morphological aspects of brown algal PD and present questions that remain open.

  4. Tonoplast anion channel activity modulation by pH in Chara corallina.

    Science.gov (United States)

    Berecki, G; Eijken, M; Van Iren, F; Van Duijn, B

    2001-11-15

    The patch-clamp technique was used to investigate regulation of anion channel activity in the tonoplast of Chara corallina in response to changing proton and calcium concentrations on both sides of the membrane. These channels are known to be Ca2+-dependent, with conductances in the range of 37 to 48 pS at pH 7.4. By using low pH at the vacuolar side (either pH(vac) 5.3 or 6.0) and a cytosolic pH (pH(cyt)) varying in a range of 4.3 to 9.0, anion channel activity and single-channel conductance could be reversibly modulated. In addition, Ca2+-sensitivity of the channels was markedly influenced by pH changes. At pH(cyt) values of 7.2 and 7.4 the half-maximal concentration (EC50) for calcium activation was 100-200 microm, whereas an EC(50) of about 5 microm was found at a pH(cyt) of 6.0. This suggests an improved binding of Ca2+ ions to the channel protein at more acidic cytoplasm. At low pH(cyt), anion channel activity and mean open times were voltage-dependent. At pipette potentials (V(p)) of +100 mV, channel activity was approximately 15-fold higher than activity at negative pipette potentials and the mean open time of the channel increased. In contrast, at pH(cyt) 7.2, anion channel activity and the opening behavior seemed to be independent of the applied V(p). The kinetics of the channel could be further controlled by the Ca2+ concentration at the cytosolic membrane side: the mean open time significantly increased in the presence of a high cytosolic Ca2+ concentration. These results show that tonoplast anion channels are maintained in a highly active state in a narrow pH range, below the resting pH(cyt). A putative physiological role of the pH-dependent modulation of these anion channels is discussed.

  5. Dynamic aspects of spermiogenic chromatin condensation patterning by phase separation during the histone-to-protamine transition in charalean algae and relation to bryophytes.

    Science.gov (United States)

    Kasinsky, H E; Ellis, S; Martens, G; Ausió, J

    2014-12-01

    During early-to-middle spermiogenesis in multicellular, internally fertilizing charalean green algae (Chara fibrosa, Chara vulgaris, Chara tomentosa, Nitella missouriensis), patterning of chromatin/nucleoplasm in developing spermatid nuclei changes from granules → fibers → contorted lamellae → condensed chromatin. Cytochemical, immunocytochemical, electrophoretic studies on C. vulgaris and C. tomentosa spermatids (Kwiatkowska, Poplonska) and amino acid analysis of protamines in Chara corallina sperm (Reynolds, Wolfe), indicate that more positively charged protamines replace histones directly during spermiogenesis, not indirectly through other intermediate transitional proteins as in internally fertilizing neogastropods and sharks with more ordered spermatid lamellae. We hypothesize that such lamellar-mediated patterning is due to liquid-liquid phase separation by spinodal decomposition. This is a spontaneous thermodynamic process that involves diffusive instability of a lamellar chromatin network, a dominant pattern repeat distance and bicontinuity of chromatin/nucleoplasm phases. C. vulgaris sperm show contorted lamellae in the posterior region, whereas C. corallina sperm display contorted peripheral lamellae and interior fibrils. Among internally fertilizing liverworts, which may have evolved from Zygnematales, mid-spermatid nuclei lack lamellae. Instead they display self-coiled chromatin rods in Blasia pusilla, contain short chromatin tubules in Haplomitrium hookeri resembling those in internally fertilizing mosses and a hornwort and indirectly replace histones with protamines in Marchantia polymorpha. Copyright © 2014. Published by Elsevier Ltd.

  6. Effects of lanthanum on calcium and magnesium contents and cytoplasmic streaming of internodal cells of Chara corallina.

    Science.gov (United States)

    Li, Zijie; Zhang, Zhiyong; Yu, Ming; Zhou, Yunlong; Zhao, Yuliang

    2011-10-01

    Biological and environmental effects of lanthanide series of elements have received much attention recently due to their wide applications. In this study, effects of La(3+) treatments on calcium and magnesium concentrations as well as cytoplasmic streaming of internodal cells of Chara corallina were investigated. At all treatment concentrations (10, 100, and 1,000 μM), La(3+) significantly decreased calcium concentrations in the cell-wall fractions after 5-h treatments. Calcium concentrations in the cell contents and magnesium concentrations in the cell-wall fractions were reduced by 100 and 1,000 μM La(3+) treatments. However, cytoplasmic streaming as an indicator of [Ca(2+)](cyt) was only inhibited at the highest La(3+) concentration (1,000 μM). The results suggest that La(3+) may affect cellular calcium homeostasis by actions other than as a simple Ca(2+) antagonist. La(3+) could partially compensate for calcium deficiency at certain concentrations.

  7. Studies on alkaline band formation in Chara corallina: ameliorating effect of Ca2+ on inhibition induced by osmotic shock.

    Science.gov (United States)

    Shimmen, Teruo; Yonemura, Satoko; Negoro, Mio; Lucas, William J

    2003-09-01

    Although the decrease in cell turgor by application of sorbitol to the external medium did not inhibit the alkaline band formation in Chara corallina, recovery of normal turgor severely inhibited it. Alkaline-loading analysis suggested that the inhibition of alkaline band formation was caused by inhibition of HCO(3)(-) influx but not that of OH(-) efflux. In the presence of 10 mM CaCl(2), the capacity of alkaline band formation was maintained during osmotic treatment. Cells could not form alkaline bands, when plasmolysis was induced by application of sorbitol at a higher concentration. Addition of 10 mM CaCl(2) could ameliorate the inhibition caused by plasmolyis.

  8. Involvement of protein synthesis in recovery from refractory period of electrical depolarization induced by osmotic stimulation in Chara corallina.

    Science.gov (United States)

    Shimmen, Teruo

    2011-09-01

    Upon addition of sorbitol to the external medium of an internodal cell of Chara corallina, a transient depolarization is induced at its nodal end (Shimmen in Plant Cell Physiol 44:1215-1224, 2003). In the present study, refractory period was found to be very long, 2-4 h. Recovery from refractoriness was completely inhibited by inhibitors of eukaryote-type protein synthesis, cycloheximide or anisomysin, but not by inhibitors of prokaryote-type protein synthesis. This suggested that proteinous factor(s) responsible for generation of the depolarization is lost or inactivated upon depolarization and synthesized during the resting state. Low temperature, which is supposed to inhibit protein synthesis, also inhibited recovery from refractoriness. When unstimulated internodal cells were incubated in the medium containing an inhibitor of eukaryote-type protein synthesis, generation of the depolarization was almost completely inhibited. This result suggested that the factor is slowly turning over even in the absence of osmotic stimulation.

  9. Preliminary X-ray analysis of a new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis.

    Science.gov (United States)

    Brindley, A A; Dalby, A R; Isupov, M N; Littlechild, J A

    1998-05-01

    A new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis has been obtained. The crystals exhibit a 'teardrop' morphology and are grown from 2 M ammonium dihydrogen phosphate pH and diffract to beyond 1.7 A resolution. They are in tetragonal space group P4222 with unit-cell dimensions of a = b = 201.9, c = 178.19 A, alpha = beta = gamma = 90 degrees. A 2.3 A resolution native data set has been collected at the Hamburg Synchrotron. A mercury derivative data set has also been collected, and the heavy-atom positions have been determined. The self-rotation function and the positions of the heavy atoms are consistent with the molecule being a dodecamer with local 23 symmetry.

  10. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  11. Transcriptomics in brown algae

    OpenAIRE

    Heinrich, Sandra

    2015-01-01

    Brown algae are distributed worldwide on rocky shores. They are importenet components of ecosystems, they provide habitat, shelter and serve as nurseries for various marine organisms. The geographic as well as depth distribution of macroalgae is constrained by abiotic factors, especially light and temperature. It is therefore likely that due to the global change, distribution patterns of these organisms will change. In this work the molecular acclimation of two prominent brown macroalgae, Sac...

  12. Calcium pectate chemistry causes growth to be stored in Chara corallina: a test of the pectate cycle.

    Science.gov (United States)

    Proseus, Timothy E; Boyer, John S

    2008-08-01

    Calcium pectate chemistry was reported to control the growth rate of cells of Chara corallina, and required turgor pressure (P) to do so. Accordingly, this chemistry should account for other aspects of growth, particularly the ability of plants to compensate for brief exposure to low P, that is, to 'store' growth. Live Chara cells or isolated walls were attached to a pressure probe, and P was varied. Low P caused growth to be inhibited in live cells, but when P returned to normal (0.5 MPa), a flush of growth completely compensated for that lost at low P for as long as 23-53 min. This growth storage was absent in isolated walls, mature cells and live cells exposed to cold, indicating that the cytoplasm delivered a metabolically derived growth factor needing P for its action. Because the cytoplasm delivered pectate needing P for its action, pectate was supplied to isolated walls at low P as though the cytoplasm had done so. Growth was stored while otherwise none occurred. It was concluded that a P-dependent cycle of calcium pectate chemistry not only controlled growth rate and new wall deposition, but also accounted for stored growth.

  13. The defense substance allicin from garlic permeabilizes membranes of Beta vulgaris, Rhoeo discolor, Chara corallina and artificial lipid bilayers.

    Science.gov (United States)

    Gruhlke, Martin C H; Hemmis, Birgit; Noll, Ulrike; Wagner, Richard; Lühring, Hinrich; Slusarenko, Alan J

    2015-04-01

    Allicin (diallylthiosulfinate) is the major volatile- and antimicrobial substance produced by garlic cells upon wounding. We tested the hypothesis that allicin affects membrane function and investigated 1) betanine pigment leakage from beetroot (Beta vulgaris) tissue, 2) the semipermeability of the vacuolar membrane of Rhoeo discolor cells, 3) the electrophysiology of plasmalemma and tonoplast of Chara corallina and 4) electrical conductivity of artificial lipid bilayers. Garlic juice and chemically synthesized allicin were used and betanine loss into the medium was monitored spectrophotometrically. Rhoeo cells were studied microscopically and Chara- and artificial membranes were patch clamped. Beet cell membranes were approximately 200-fold more sensitive to allicin on a mol-for-mol basis than to dimethyl sulfoxide (DMSO) and approximately 400-fold more sensitive to allicin than to ethanol. Allicin-treated Rhoeo discolor cells lost the ability to plasmolyse in an osmoticum, confirming that their membranes had lost semipermeability after allicin treatment. Furthermore, allicin and garlic juice diluted in artificial pond water caused an immediate strong depolarization, and a decrease in membrane resistance at the plasmalemma of Chara, and caused pore formation in the tonoplast and artificial lipid bilayers. Allicin increases the permeability of membranes. Since garlic is a common foodstuff the physiological effects of its constituents are important. Allicin's ability to permeabilize cell membranes may contribute to its antimicrobial activity independently of its activity as a thiol reagent. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Sequence-alignment modelling and molecular docking studies of the epoxygenase component of alkene monooxygenase from Nocardia corallina B-276.

    Science.gov (United States)

    Gallagher, S C; George, A; Dalton, H

    1998-06-15

    Whole cells of Nocardia corallina B-276 catalyse the stereoselective epoxygenation of alkenes to chiral epoxides. The bacterium expresses an enzyme, alkene monooxygenase, which catalyses the epoxygenation reaction stereoselectively. The enzyme consists of a terminal oxygenase (epoxygenase), an NADH-dependent reductase (reductase) and a regulatory component (coupling protein). The epoxygenase component contains a bridged diiron centre similar to that found in the hydroxylase component of soluble methane monooxygenase. Sequence-alignment modelling, supported by chemical modification and fluorescence probing, identified a hydrophobic oxygen/substrate binding site within the epoxygenase. The diiron centre was coordinated by the two His and two Glu residues from two conserved Glu-Xaa-Xaa-His sequences and by two further Glu residues. Molecular docking of substrates and products into the proposed active-site model of the epoxygenase suggested that Ala91 and Ala185 were responsible for the stereoselectivity exerted by AMO. It is proposed that these residues clamped the intermediate and/or product of the reaction, thereby controlling the configuration of the epoxide produced. In soluble methane monooxygenase these residues are replaced by two Gly residues which do not provide sufficient steric hindrance to prevent rotation of the intermediate in the active site and, therefore, the product of the reaction catalysed by this enzyme is achiral.

  15. A study of the relationship between process conditions and mechanical strength of mineralized red algae in the preparation of a marine-derived bone void filler.

    Science.gov (United States)

    Walsh, P J; Walker, G M; Maggs, C A; Buchanan, F J

    2011-06-01

    Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 microm) marine-derived calcium phosphate bioceramic granule. It was prepared from Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furnace at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.

  16. A re-examination of the minor role of unstirred layers during the measurement of transport coefficients of Chara corallina internodes with the cell pressure probe.

    Science.gov (United States)

    Ye, Qing; Kim, Yangmin; Steudle, Ernst

    2006-05-01

    The impact of unstirred layers (USLs) during cell pressure probe experiments with Chara corallina internodes has been quantified. The results show that the hydraulic conductivity (Lp) measured in hydrostatic relaxations was not significantly affected by USLs even in the presence of high water flow intensities ('sweep-away effect'). During pressure clamp, there was a reversible reduction in Lp by 20%, which was explained by the constriction of water to aquaporins (AQPs) in the C. corallina membrane and a rapid diffusional equilibration of solutes in arrays where water protruded across AQPs. In osmotic experiments, Lp, and permeability (Ps) and reflection (sigma s) coefficients increased as external flow rate of medium increased, indicating some effects of external USLs. However, the effect was levelling off at 'usual' flow rates of 0.20-0.30 m s(-1) and in the presence of vigorous stirring by air bubbles, suggesting a maximum thickness of external USLs of around 30 microm including the cell wall. Because the diameters of internodes were around 1 mm, internal USLs could have played a significant or even a dominating role, at least in the presence of the rapidly permeating solutes used [acetone, 2-propanol and dimethylformamide (DMF)]. A comparison of calculated (diffusion kinetics) and of measured permeabilities indicated an upper limit of the contribution of USLs for the rapidly moving solute acetone of 29%, and of 15% for the less rapidly permeating DME The results throw some doubt on recent claims that in C. corallina, USLs rather than the cell membrane dominate solute uptake, at least for the most rapidly moving solute acetone.

  17. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  18. Shewanella algae in acute gastroenteritis

    Directory of Open Access Journals (Sweden)

    S Dey

    2015-01-01

    Full Text Available Shewanella algae is an emerging bacteria rarely implicated as a human pathogen. Previously reported cases of S. algae have mainly been associated with direct contact with seawater. Here we report the isolation of S. algae as the sole etiological agent from a patient suffering from acute gastroenteritis with bloody diarrhoea. The bacterium was identified by automated identification system and 16S rRNA gene sequence analysis. Our report highlights the importance of looking for the relatively rare aetiological agents in clinical samples that does not yield common pathogens. It also underscores the usefulness of automated systems in identification of rare pathogens.

  19. Transgenic algae engineered for higher performance

    Science.gov (United States)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  20. Algae biotechnology: products and processes

    National Research Council Canada - National Science Library

    Bux, F; Chisti, Yusuf

    2016-01-01

    This book examines the utilization of algae for the development of useful products and processes with the emphasis towards green technologies and processes, and the requirements to make these viable...

  1. Algae: America's Pathway to Independence

    National Research Council Canada - National Science Library

    Custer, James

    2007-01-01

    .... Oil dependency is an unacceptable risk to U.S. national strategy. This paper advocates independence from foreign oil by converting the national transportation fleet to biodiesel derived from algae...

  2. Biological importance of marine algae.

    Science.gov (United States)

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  3. Cyclosis-related asymmetry of chloroplast-plasma membrane interactions at the margins of illuminated area in Chara corallina cells.

    Science.gov (United States)

    Dodonova, Svetlana O; Bulychev, Alexander A

    2011-10-01

    Cytoplasmic streaming in plant cells is an effective means of intracellular transport. The cycling of ions and metabolites between the cytosol and chloroplasts in illuminated cell regions may alter the cytoplasm composition, while directional flow of this modified cytoplasm may affect the plasma membrane and chloroplast activities in cell regions residing downstream of the illumination area. The impact of local illumination is predicted to be asymmetric because the cell regions located downstream and upstream in the cytoplasmic flow with respect to illumination area would be exposed to flowing cytoplasm whose solute composition was influenced by photosynthetic or dark metabolism. This hypothesis was checked by measuring H(+)-transporting activity of plasmalemma and chlorophyll fluorescence of chloroplasts in shaded regions of Chara corallina internodal cells near opposite borders of illuminated region (white light, beam width 2 mm). Both the apoplastic pH and chlorophyll fluorescence, recorded in shade regions at equal distances from illuminated area, exhibited asymmetric light-on responses depending on orientation of cytoplasmic streaming at the light-shade boundary. In the region where the cytoplasm flowed from illuminated area to the measurement area, the alkaline zone (a zone with high plasma membrane conductance) was formed within 4-min illumination, whereas no alkaline zone was observed in the area where cytoplasm approached the boundary from darkened regions. The results emphasize significance of cyclosis in lateral distribution of a functionally active intermediate capable of affecting the membrane transport across the plasmalemma, the functional activity of chloroplasts, and pattern formation in the plant cell.

  4. Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276.

    Science.gov (United States)

    Saeki, H; Akira, M; Furuhashi, K; Averhoff, B; Gottschalk, G

    1999-07-01

    Rhodococcus corallinus (formerly Nocardia corallina) B-276, isolated with propene as sole carbon and energy source, is able to oxidize trichloroethene (TCE). Glucose- or propene-grown R. corallinus B-276 cells exhibited no difference in TCE degradation efficiency. TCE degradation was found to be growth-phase-dependent and maximum rates were monitored with stationary-phase cells. K(m) and Vmax values for TCE degradation of R. corallinus B-276 grown in nutrient broth medium in the presence of glucose were 187 microM and 2.4 nmol min-1 (mg protein)-1, respectively. Escherichia coli recombinants harbouring and expressing the alkene monooxygenase genes of R. corallinus B-276 exhibited the ability to degrade TCE. This result provides clear evidence that the alkene monooxygenase of R. corallinus B-276 catalyses TCE oxidation. R. corallinus B-276 was shown to contain four linear plasmids, pNC10 (70 kb), pNC20 (85 kb), pNC30 (185 kb) and pNC40 (235 kb). The observation that pNC30-deficient strains had lost the ability to grow on propene suggested that the genes of the propene degradation pathway are encoded by the linear plasmid pNC30. Southern blot analysis with cloned alkene monooxygenase genes from R. corallinus B-276 revealed a positive hybridization signal with the linear plasmid pNC30. This result clearly shows that the alkene monooxygenase is encoded by the linear plasmid pNC30. Eleven short-chain-alkene-oxidizing strains were screened for the presence of linear plasmids. Among these, four propene-oxidizing Rhodococcus strains and one ethene-oxidizing Mycobacterium strain were found to contain linear megaplasmids. Southern blot analysis with the alkene monooxygenase revealed positive signals with linear plasmids of two propene-oxidizing Rhodococcus ruber strains. These results indicate that homologous alkene monooxygenases are encoded by linear plasmids in R. ruber strains.

  5. Cloning of the Nocardia corallina polyhydroxyalkanoate synthase gene and production of poly-(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly-(3-hydroxyvalerate-co-3-hydroxyheptanoate).

    Science.gov (United States)

    Hall, B; Baldwin, J; Rhie, H G; Dennis, D

    1998-07-01

    The polyhydroxyalkanoate (PHA) synthase gene (phaCNc) from Nocardia corallina was identified in a lambda library on a 6-kb BamHI fragment. A 2.8-kb XhoII subfragment was found to contain the intact PHA synthase. This 2.8-kb fragment was subjected to DNA sequencing and was found to contain the coding region for the PHA synthase and a small downstream open reading frame of unknown function. On the basis of DNA sequence, phaCNc is closest in homology to the PHA synthases (phaCPaI and phaCPaII) of Pseudomonas aeruginosa (approximately 41% identity and 55% similarity). The 2.8-kb XhoII fragment containing phaCNc was subcloned into broad host range mobilizable plasmids and transferred into Escherichia coli, Klebsiella aerogenes (both containing a plasmid bearing phaA and phaB from Ralstonia eutropha), and PHA-negative strains of R. eutropha and Pseudomonas putida. The recombinant strains were grown on various carbon sources and the resulting polymers were analyzed. In these strains, the PHA synthase from N. corallina was able to mediate the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) containing high levels of 3-hydroxyhexanoate when grown on hexanoate and larger even-chain fatty acids and poly(3-hydroxyvalerate-co-3-hydroxyheptanoate) containing high levels of 3-hydroxyheptanoate when grown on heptanoate or larger odd-chain fatty acids.

  6. Algae-Based Carbon Sequestration

    Science.gov (United States)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  7. JOHNSON & KASKA 1965 FOSSIL CORALLINE ALGAE FROM GUATEMALA (REVISION OF THE JESSE HARLAN JOHNSON COLLECTION, PART 4

    Directory of Open Access Journals (Sweden)

    DANIELA BASSO

    2018-01-01

    Full Text Available The original collections of eight species described by Johnson & Kaska (1965 from several Guatemalan localities and ages, have been examined, re-documented and critically revised. The generic placement of Aethesolithon guatemalaensum, Lithothamnium? primitiva, Lithothamnium diagramaticum, Lithothamnium guatemalense, Lithothamnium toltecensum, and Jania occidentalis resulted incorrect under modern taxonomic criteria, and changed accordingly, while a lectotype specimen was selected for Amphiroa guatemalense and Amphiroa kaskaella. We place tentatively L. diagramaticum in the new combination Sporolithon? diagramaticum on the base of the occurrence of secondary pit-connections and vegetative and reproductive anatomy corresponding to some extant species of the genus Sporolithon. L. toltecensum was based on few Miocene sterile thalli occurring with some fertile specimens of the same age - the latter incorrectly identified under the name L. florea brassica (Millet Lemoine - both corresponding to the extant, long-lasting species Lithothamnion crispatum Hauck. The occurrence of large cell fusions and trichocytes, the shape and structure of the uniporate conceptacles and the dimerous construction collectively indicate that Aethesolithon guatemalaensum belongs to the genus Hydrolithon, with the new combination H. guatemalaensum (Johnson & Kaska Basso & Granier. The vegetative anatomy of Jania occidentalis corresponds to that of a co-occurring Corallina, already identified as C. matansa Johnson. Lithothamnium? primitiva is not a coralline alga, since it is conspecific with Marinella lugeoni Pfender. The vegetative features of the sterile “Lithothamnium guatemalense” exclude it from the genus Lithothamnion, but the absence of important diagnostic characters suggests leaving it incertae sedis under the original binomial.

  8. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  9. Microscopic Gardens: A Close Look at Algae.

    Science.gov (United States)

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  10. Formation of algae growth constitutive relations for improved algae modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  11. 21 CFR 184.1120 - Brown algae.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  12. 21 CFR 184.1121 - Red algae.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis...

  13. Scenario studies for algae production

    NARCIS (Netherlands)

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass

  14. Algae. LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  15. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  16. Synthetic polyester from algae oil.

    Science.gov (United States)

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Growing swimming algae for bioenergy

    Science.gov (United States)

    Croze, Ottavio

    Biofuel production from photosynthetic microalgae is not commercially viable due to high processing costs. New engineering and biological solutions are being sought to reduce these costs by increasing processing efficiency (productivity per energy input). Important physics, however, is ignored. For example, the fluid dynamics of algal suspensions in photobioreactors (ponds or tube arrays) is non-trivial, particularly if the algae swim. Cell reorientation by passive viscous and gravitational torques (gyrotaxis) or active reorientation by light (phototaxis) cause swimming algae in suspension to structure in flows, even turbulent ones. This impacts the distribution and dispersion of swimmers, with significant consequences for photobioreactor operation and design. In this talk, I will describe a theory that predicts swimmer dispersion in laminar pipe flows. I will then then present experimental tests of the theory, as well as new results on the circadian suspension dynamics of the algaChlamydomonas reinhardtii in lab-scale photobioreactors. Finally, I will briefly consider the implications of our work, and related active matter research, for improving algal bioprocessing efficiency. Winton Programme for the Physics of Sustainability.

  18. Parasites in algae mass culture

    Directory of Open Access Journals (Sweden)

    Todd William Lane

    2014-06-01

    Full Text Available Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry.

  19. Bioethanol Production from Indigenous Algae

    Directory of Open Access Journals (Sweden)

    Madhuka Roy

    2015-02-01

    Full Text Available Enhanced rate of fossil fuel extraction is likely to deplete limited natural resources over short period of time. So search for alternative fuel is only the way to overcome this problem of upcoming energy crisis. In this aspect biofuel is a sustainable option. Agricultural lands cannot be compromised for biofuel production due to the requirement of food for the increasing population. Certain species of algae can produce ethanol during anaerobic fermentation and thus serve as a direct source for bioethanol production. The high content of complex carbohydrates entrapped in the cell wall of the microalgae makes it essential to incorporate a pre-treatment stage to release and convert these complex carbohydrates into simple sugars prior to the fermentation process. There have been researches on production of bioethanol from a particular species of algae, but this work was an attempt to produce bioethanol from easily available indigenous algae. Acid hydrolysis was carried out as pre-treatment. Gas Chromatographic analysis showed that 5 days’ fermentation by baker’s yeast had yielded 93% pure bioethanol. The fuel characterization of the bioethanol with respect to gasoline showed comparable and quite satisfactory results for its use as an alternative fuel.DOI: http://dx.doi.org/10.3126/ije.v4i1.12182International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 112-120  

  20. Calcareous algae bioclast contribution to sediment enrichment by arsenic on the Brazilian subtropical coast

    Science.gov (United States)

    Mirlean, Nicolai; Baisch, Paulo; Travassos, Marcelo P.; Nassar, Cristina

    2011-02-01

    Arsenic levels (up to 130 mg kg-1) substantially exceeding the official threshold have recently been documented in beach and nearshore sediments along more than 50 km of coastline in the Brazilian state of Espírito Santo between 19°50' and 20°12'S. In an attempt to assess the sources of this enrichment, we performed a study on arsenic distribution in the main mineral substances and living organisms in the beach environment. Laboratory tests on arsenic retention by beach carbonate debris have also been carried out. The data suggest that sedimentary arsenic occurs largely bound to particles of the calcareous red alga Corallina panizzoi, whereby live specimens contained much smaller amounts of this metalloid than was the case for nonliving material (2.4 and 20.3 mg kg-1, respectively). Experimental tests confirmed the ability of C. panizzoi detritus to retain arsenic at pH intervals and ionic strength characteristic of seawater. There are two potential sources of that metalloid for calcareous debris in sediments: brown macroalgae, which were found to contain high levels of As (up to 66.3 mg kg-1), and ferruginized sandstones (up to 23.0 mg kg-1). We argue that any contribution of brown algae to beach sediment enrichment by As would be minor, and consider the ferrous sandstones from coastal sedimentary rocks of the Barreiras Group as the principal large-scale source of arsenic in the marine environment of Espírito Santo. The experimental data, together with field studies, corroborate the interpretation that arsenic anomalies in sediments with calcareous debris can form when weathered continental rocks even only slightly enriched in As are leached by marine waters, and the As is at least partially retained by biogenic calcareous detritus in nearshore sediments. Considering that rocks of the Barreiras Group are exposed to marine erosion far to the north of Espírito Santo, we estimate that marine sediments containing calcareous material are "anomalously" enriched in

  1. Bacterial Enhancement of Vinyl Fouling by Algae

    OpenAIRE

    Holmes, Paul E.

    1986-01-01

    The role of bacteria in the development of algae on low-density vinyl was investigated. Unidentified bacterial contaminants in unialgal stock cultures of Phormidium faveolarum and Pleurochloris pyrenoidosa enhanced, by 1 to 2 orders of magnitude, colonization of vinyl by these algae, as determined by epifluorescence microscopy counts and chlorophyll a in extracts of colonized vinyl. Colonization by bacteria always preceded that by algae. Scanning electron microscopy of the colonized Phormidiu...

  2. Antioxidant Activity of Hawaiian Marine Algae

    OpenAIRE

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that cou...

  3. Stochastic Forecasting of Algae Blooms in Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  4. Two short-chain dehydrogenases confer stereoselectivity for enantiomers of epoxypropane in the multiprotein epoxide carboxylating systems of Xanthobacter strain Py2 and Nocardia corallina B276.

    Science.gov (United States)

    Allen, J R; Ensign, S A

    1999-01-05

    Epoxide carboxylase from the bacterium Xanthobacter strain Py2 is a multicomponent enzyme system which catalyzes the pyridine nucleotide-dependent carboxylation of aliphatic epoxides to beta-ketoacids as illustrated by the reaction epoxypropane + CO2 + NADPH + NAD+ --> acetoacetate + H+ + NADP+ + NADH. The combination of four distinct proteins, designated components I-IV, are required for the reconstitution of epoxide carboxylase activity with racemic mixtures of short-chain (C3-C5) terminal epoxyalkanes. In this work, components III and IV of the epoxide carboxylase system are shown to confer specificity for epoxyalkane enantiomers. Components I-III supported the carboxylation of (R)-epoxypropane, while components I, II, and IV supported the carboxylation of (S)-epoxypropane. At fixed concentrations of components I and II, the rates of (R)- and (S)-epoxypropane carboxylation saturated with increasing concentrations of component III or IV to give identical maximal rates for the two epoxide substrates. (S)-Epoxypropane was an inactivator of (R)-epoxypropane carboxylation by components I- III, while (R)-epoxypropane was an inactivator of (S)-epoxypropane carboxylation by components I, II, and IV. These inactivating effects were fully reversed upon the addition of the correct complementing dehydrogenase component. Amino acid sequence analysis of components III and IV demonstrates that they belong to the short-chain dehydrogenase/reductase (SDR) family of enzymes. Both components contain highly conserved residues within the coenzyme binding fold and catalytic regions found in SDR enzymes. Components III and IV are proposed to catalyze the NAD+-dependent abstraction of a hydride from a chiral secondary alcohol-like intermediate bound to the active site component of the enzyme system to form the corresponding beta-ketone intermediate. A multicomponent epoxide carboxylase system was purified to homogeneity from Nocardia corallina B276, a bacterium phylogenetically

  5. Cultivation of macroscopic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  6. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savceno, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits; Frank, J.; van der Mei, R.; den Boer, A.; Bosman, J.; Bouman, N.; van Dam, S.; Verhoef, C.

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runo water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  7. SSMILes: Measuring the Nutrient Tolerance of Algae.

    Science.gov (United States)

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  8. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savcenco, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  9. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  10. Advances in genetic engineering of marine algae.

    Science.gov (United States)

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Cars will be fed on algae

    International Nuclear Information System (INIS)

    Peltier, G.

    2012-01-01

    The development of the first and second generations of bio-fuels has led to a rise in food prices and the carbon balance sheet is less good than expected. Great hopes have been put on unicellular algae for they can synthesize oils, sugar and even hydrogen and the competition with food production is far less harsh than with actual bio-fuels. Moreover, when you grow micro-algae, the loss of water through evaporation is less important than in the case of intensive farm cultures. In 2009 10.000 tonnes of micro-algae were produced worldwide, they were mainly used for the production of fish food and of complements for humane food (fat acids and antioxidants). Different research programs concern unicellular algae: they aim at modifying micro-algae genetically in order to give them a higher productivity or to make them produce an oil more adapted for motor fuel or more easily recoverable. (A.C.)

  12. Potential biomedical applications of marine algae.

    Science.gov (United States)

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Streptophyte algae and the origin of embryophytes.

    Science.gov (United States)

    Becker, Burkhard; Marin, Birger

    2009-05-01

    Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae. Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants. The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater adaptation of streptophyte algae was a major

  14. Excitation-induced dynamics of external pH pattern in Chara corallina cells and its dependence on external calcium concentration.

    Science.gov (United States)

    Eremin, Alexey; Bulychev, Alexander; Krupenina, Natalia A; Mair, Thomas; Hauser, Marcus J B; Stannarius, Ralf; Müller, Stefan C; Rubin, Andrei B

    2007-01-01

    The influence of cell excitation and external calcium level on the dynamics of light-induced pH bands along the length of Chara corallina cells is studied in the present paper. Generation of an action potential (AP) transiently quenched these pH patterns, which was more pronounced at 0.05-0.1 mM Ca2+ than at higher concentrations of Ca2+ (0.6-2 mM) in the medium. After transient smoothing of the pH bands, some alkaline peaks reemerged at slightly shifted positions in media with low Ca2+ concentrations, while at high Ca2+ concentrations, the alkaline spots reappeared exactly at their initial positions. This Ca2+ dependency has been revealed by both digital imaging and pH microelectrodes. The stabilizing effect of external Ca2+ on the locations of recovering alkaline peaks is supposedly due to formation of a physically heterogeneous environment around the cell owing to precipitation of CaCO3 in the alkaline zones at high Ca2+ during illumination. The elevation of local pH by dissolving CaCO3 facilitates the reappearance of alkaline spots at their initial locations after temporal suppression caused by cell excitation. At low Ca2+ concentrations, when the solubility product of CaCO3 is not attained, the alkaline peaks are not stabilized by CaCO3 dissolution and may appear at random locations.

  15. Spatio-temporal patterns of photosystem II activity and plasma-membrane proton flows in Chara corallina cells exposed to overall and local illumination.

    Science.gov (United States)

    Bulychev, Alexander; Vredenberg, Wim

    2003-11-01

    Pulse-amplitude modulated microfluorometry and an extracellular pH microprobe were used to examine light-induced spatial heterogeneity of photosynthetic and H(+)-transporting activities in cells of Chara corallina Klein ex Willd. Subcellular domains featuring different PSII photochemical activities were found to conform to alternate alkaline and acid zones produced near the cell surface, with peaks of PSII activity correlating with the position of acid zones. Buffers eliminated pH variations near the cell surface but did not destroy the variations in PSII photochemical yield (deltaF/Fm'). When a dark-adapted cell was exposed to actinic light, the PSII effective yield decreased within 5-15 min in the alkaline regions but rose after the initial decline in the acid regions. The light-induced decrease in deltaF/Fm' in the alkaline regions occurred prior to or synchronously with the steep rise in local pH. The kinetics of deltaF/Fm', Fm', and F observed in alkaline regions under overall illumination of Chara cells were replaced by those typical of acid regions, when the illumination area size was restricted to 1.5-2 mm. The data show that photoinduced patterns in photosynthetic activity are not predetermined by the particular structural organization of alkaline and acid cell regions but are subject to dynamic changes.

  16. Algae biodiesel - a feasibility report

    Directory of Open Access Journals (Sweden)

    Gao Yihe

    2012-04-01

    Full Text Available Abstract Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model.

  17. Algae biodiesel - a feasibility report

    Science.gov (United States)

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  18. Method and apparatus for processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  19. Errors When Extracting Oil from Algae

    Science.gov (United States)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  20. 21 CFR 73.275 - Dried algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  1. 21 CFR 73.185 - Haematococcus algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the alga...

  2. Algae: putting carbon dioxide in a bind

    Energy Technology Data Exchange (ETDEWEB)

    Ewers, J.; Wiechers, G. [RWE Power (Germany)

    2009-03-15

    German utility RWE Power has initiated a cutting edge project that is investigating the use of marine microalgae to capture carbon dioxide produced during lignite combustion. At its Niederaussem power plant, a pilot plant has been erected for the production of microalgae. Flue gas is withdrawn from the lignite-based power plant and transported through polyethylene pipes to the microalgae production plant. The CO{sub 2} in the flue gas is dissolved in the algae suspension and adsorbed by the algae for growth in photobioreactors, developed by Noragreen Projektmanagement GmbH. The photobioreactors which consist of clear plastic hoses, fixed in V shape to supports. The study is aiming to optimise the entire algae production process and subsequent conversion and use of the algae biomass produced. Uses being investigated include hydrothermal carbonization to obtain hydrocarbon products. 1 figs., 1 photo.

  3. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... Their important environmental roles, their part in nitrogen fixation and the biochemistry of phototrophic metabolism are some of the attractions of blue-geen algae to an increasing number of biologists...

  4. Collection, Isolation and Culture of Marine Algae.

    Science.gov (United States)

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  5. 2011 Biomass Program Platform Peer Review: Algae

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joyce [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  6. Dipeptides from the red alga Acanthopora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S; De; Kamat, S

    An investigation of red alga Acanthophora spicifera afforded the known peptide, aurantiamide acetate and a new diastereoisomer of this dipeptide (dia-aurantiamide acetate). This is a first report of aurantiamide acetate from a marine source...

  7. Stochastic Forecasting of Algae Blooms in Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  8. Biogas production experimental research using algae.

    Science.gov (United States)

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production.

  9. Antioxidant Activity of Hawaiian Marine Algae

    Directory of Open Access Journals (Sweden)

    Anthony D. Wright

    2012-02-01

    Full Text Available Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  10. Antioxidant activity of Hawaiian marine algae.

    Science.gov (United States)

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J; Tabandera, Nicole K; Wright, Patrick R; Wright, Anthony D

    2012-02-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  11. Fluorescence Properties of Chlorella sp. Algae

    Directory of Open Access Journals (Sweden)

    Tibor Teplicky

    2017-01-01

    Full Text Available Water quality and its fast and reliable monitoring is the challenge of the future. Design of appropriate biosensors that would be capable of non-invasive identification of water pollution is an important prerequisite for such challenge. Chlorophylls are pigments, naturally presented in all plants that absorb light. The main forms of chlorophyll in algae are chlorophyll a and chlorophyll b, other pigments include xantophylls and beta-carotenes. Our aim was to characterize endogenous fluorescence of the Chlorella sp. algae, present naturally in drinking water. We recorded spatial, spectral and lifetime fluorescence distribution in the native algae. We noted that the fluorescence was evenly distributed in the algae cytosol, but lacked in the nucleus and reached maximum at 680-690 nm. Fluorescence decay of chlorella sp. was double-exponential, and clearly shorter than that of its isolated pigments. For the first time, fluorescence lifetime image of the algae is presented. Study of the fluorescence properties of algae is aimed at the improvement of water supply contamination detection and cleaning.

  12. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H(2)O(2) across water channels.

    Science.gov (United States)

    Henzler, T; Steudle, E

    2000-12-01

    A mathematical model is presented that describes permeation of hydrogen peroxide across a cell membrane and the implications of solute decomposition by catalase inside the cell. The model was checked and analysed by means of a numerical calculation that raised predictions for measured osmotic pressure relaxation curves. Predictions were tested with isolated internodal cells of CHARA: corallina, a model system for investigating interactions between water and solute transport in plant cells. Series of biphasic osmotic pressure relaxation curves with different concentrations of H(2)O(2) of up to 350 mol m(-3) are presented. A detailed description of determination of permeability (P(s)) and reflection coefficients (sigma(s)) for H(2)O(2) is given in the presence of the chemical reaction in the cell. Mean values were P(s)=(3.6+/-1.0) 10(-6) m s(-1) and sigma(s)=(0.33+/-0.12) (+/-SD, N=6 cells). Besides transport properties, coefficients for the catalase reaction following a Michaelis-Menten type of kinetics were determined. Mean values of the Michaelis constant (k(M)) and the maximum rate of decompositon (v(max)) were k(M)=(85+/-55) mol m(-3) and v(max)=(49+/-40) nmol (s cell)(-1), respectively. The absolute values of P:(s) and sigma(s) of H(2)O(2) indicated that hydrogen peroxide, a molecule with chemical properties close to that of water, uses water channels (aquaporins) to cross the cell membrane rapidly. When water channels were inhibited with the blocker mercuric chloride (HgCl(2)), the permeabilities of both water and H(2)O(2) were substantially reduced. In fact, for the latter, it was not measurable. It is suggested that some of the water channels in CHARA: (and, perhaps, in other species) serve as 'peroxoporins' rather than as 'aquaporins'.

  13. Marine ecosystem analysis for wolsung nuclear power plant

    International Nuclear Information System (INIS)

    Lee, J.H.; Kim, Y.H.; Cho, T.J.

    1982-01-01

    Environmental surveys to provide base-line data for assessing the potential impact of the operation of Wolseong NPP on marine ecosystems were performed at 3-month intervals in 1981. Physico-chemical properties of seawater and gross beta activities in seawater and marine organisms were examined. The result shows that the ecosystems are non-polluted, typical of near-shore waters. The results of ecological surveys are summarized as follows: A total of 84 taxa of phytoplankton diatom were identified. Of the species, about 70 % are described as neritic species, and the major bloom occurred in September. The analysis of diversity indices shows that the community is very stable. The dominant species of zooplankton were protozoan Noctiluca scintillans and copepods. A total of 83 species of marine algae were identified. The algal community was more diverse in September-December than in March-July, and the dominant species were Chondria crassicaulis and Corallina pilulifera. Total algal production per unit area (0.25 m 2 ) was, on the average, 20 g-dry. The biomass of bacterial population was highest in December, and the result of multiple regression analysis indicates that the important environmental factors are nutrients, salinity and temperature. Primary productivities measured by Carbon-14 method were 1.11 mg C/m 3 /hr at 1 m depth, and 1.45 mg C/m 3 /hr at 6 m depth. As a whole the marine ecosystems adjacent Wolseong NPP site are thought to be stable. (author)

  14. Modification of halogen specificity of a vanadium-dependent bromoperoxidase

    Science.gov (United States)

    Ohshiro, Takashi; Littlechild, Jennifer; Garcia-Rodriguez, Esther; Isupov, Michail N.; Iida, Yasuaki; Kobayashi, Takushi; Izumi, Yoshikazu

    2004-01-01

    The halide specificity of vanadium-dependent bromoperoxidase (BPO) from the marine algae, Corallina pilulifera, has been changed by a single amino acid substitution. The residue R397 has been substituted by the other 19 amino acids. The mutant enzymes R397W and R397F showed significant chloroperoxidase (CPO) activity as well as BPO activity. These mutant enzymes were purified and their properties were investigated. The maximal velocities of CPO activities of the R397W and R397F enzymes were 31.2 and 39.2 units/mg, and the Km values for Cl− were 780 mM and 670 mM, respectively. Unlike the native enzyme, both mutant enzymes were inhibited by NaN3. In the case of the R397W enzyme, the incorporation rate of vanadate into the active site was low, compared with the R397F and the wild-type enzyme. These results supported the existence of a specific halogen binding site within the catalytic cleft of vanadium haloperoxidases. PMID:15133166

  15. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms

    Science.gov (United States)

    Pallela, Ramjee; Na-Young, Yoon; Kim, Se-Kwon

    2010-01-01

    Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B) leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS), generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM). These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF) cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries. PMID:20479974

  16. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Ramjee Pallela

    2010-04-01

    Full Text Available Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS, generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM. These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs, a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries.

  17. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  18. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Radiation sterilization of harmful algae in water

    International Nuclear Information System (INIS)

    Byung Chull An; Jae-Sung Kim; Seung Sik Lee; Shyamkumar Barampuram; Eun Mi Lee; Byung Yeoup Chung

    2007-01-01

    Complete text of publication follows. Objective: Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of harmful micro-organisms. The human and animal harmful algae is a waterborne risk to public health and economy because the algae are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Gamma and electron beam radiation technology is of growing in the water industry since it was demonstrated that gamma and electron beam radiation is very effective against harmful algae. Materials and Methods: Harmful algae (Scenedesmus quadricauda(Turpin) Brebisson 1835 (AG10003), Chlorella vulgaris Beijerinck 1896 (AG30007) and Chlamydomonas sp. (AG10061)) were distributed from Korean collection for type cultures (KCTC). Strains were cultured aerobically in Allen's medium at 25□ and 300 umol/m2s for 1 week using bioreactor. We investigated the disinfection efficiency of harmful algae irradiated with gamma (0.05 to 10 kGy for 30 min) and electron beam (1 to 19 kGy for 5 sec) rays. Results and Conclusion: We investigated the disinfection efficiency of harmful algae irradiated with gamma and electron beam rays of 50 to 19000 Gy. We established the optimum sterilization condition which use the gamma and electron beam radiation. Gamma ray disinfected harmful algae at 400 Gy for 30 min. Also, electron beam disinfected at 1000 Gy for 5 sec. This alternative disinfection practice had powerful disinfection efficiency. Hence, the multi-barrier approach for drinking water treatment in which a combination of various disinfectants and filtration technologies are applied for removal and inactivation of different microbial pathogens will guarantee a lower risk of microbial contamination.

  20. Algae Biofuel in the Nigerian Energy Context

    Directory of Open Access Journals (Sweden)

    Elegbede Isa

    2016-05-01

    Full Text Available The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author’s deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  1. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  2. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Phospholipids of New Zealand Edible Brown Algae.

    Science.gov (United States)

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of 31 P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  4. Effect of ferrate on green algae removal.

    Science.gov (United States)

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  5. Radiation effects on algae and its application

    International Nuclear Information System (INIS)

    Dwivedi, Rakesh Kumar

    2013-01-01

    The effects of radiation on algae have been summarized in this article. Today, algae are being considered to have the great potential to fulfill the demand of food, fodder, fuel and various pharmaceutical products. Red algae are particularly rich in the content of polysaccharides present in their cell wall. For isolation of these polysaccharides, separation of cells cemented together by middle lamella is essential. The gamma rays are known to bring about biochemical changes in the cell wall and cause the breakdown of the middle lamella. These rays ate also known to speed up the starch sugar inter-conversion in the cells which is very useful for the tapping the potential of algae to be used as biofuel as well as in pharmaceutical industries. Cyanobacteria, among algae and other plants are more resistant to the radiation. In some cyanobacteria the radiation treatment is known to enhance the resistance against the antibiotics. Radiation treatment is also known to enhance the diameter of cell and size of the nitrogen fixing heterocyst. (author)

  6. Controlled regular locomotion of algae cell microrobots.

    Science.gov (United States)

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.

  7. Physiological performance of intertidal coralline algae during a simulated tidal cycle.

    Science.gov (United States)

    Guenther, Rebecca J; Martone, Patrick T

    2014-04-01

    Intertidal macroalgae endure light, desiccation, and temperature variation associated with sub-merged and emerged conditions on a daily basis. Physiological stresses exist over the course of the entire tidal cycle, and physiological differences in response to these stresses likely contribute to spatial separation of species along the shore. For example, marine species that have a high stress tolerance can live higher on the shore and are able to recover when the tide returns, whereas species with a lower stress tolerance may be relegated to living lower on the shore or in tidepools, where low tide stresses are buffered. In this study, we monitored the physiological responses of the tidepool coralline Calliarthron tuberculosum (Postels and Ruprecht) E.Y. Dawson and the nontidepool coralline Corallina vancouveriensis Yendo during simulated tidal conditions to identify differences in physiology that might underlie differences in habitat. During high tide, Corallina was more photosynthetically active than Calliarthron as light levels increased. During low tide, Corallina continued to out-perform Calliarthron when submerged in warming tidepools, but photosynthesis abruptly halted for both species when emerged in air. Surprisingly, pigment composition did not differ, suggesting that light harvesting does not account for this difference. Additionally, Corallina was more effective at resisting desiccation by retaining water in its branches. When the tide returned, only Corallina recovered from combined temperature and desiccation stresses associated with emergence. This study broadens our understanding of intertidal algal physiology and provides a new perspective on the physiological and morphological underpinnings of habitat partitioning. © 2013 Phycological Society of America.

  8. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  9. Freshwater algae of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs.

  10. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Van Baelen, J.; Hurtger, C.; Cogneau, M.; Van der Ben, D.; Verthe, C.; Bouquegneau, J.M.

    1985-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95m-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography

  11. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Baelen, J. van; Hurtgen, C.; Cogneau, M.; Ben, D. van der; Verthe, C.; Bouquegneau, J.M.

    1986-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography. (author)

  12. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    International Nuclear Information System (INIS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-01-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation

  13. Modeling and optimization of algae growth

    OpenAIRE

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savceno, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runo water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a variety of applications including production of bio-diesel, animal feed, products for pharmaceutical and cosmetic purposes, or it can even be used as a source of heating or electricity. The aim of t...

  14. Modeling and optimization of algae growth

    OpenAIRE

    Thornton, A; Weinhart, T; Bokhove, O; Zhang, B; Sar, van der, DM; Kumar, K Kundan; Pisarenco, M Maxim; Rudnaya, M Maria; Savcenco, V Valeriu; Rademacher, JDM; Zijlstra, J; Szabelska, A; Zyprych, J; Schans, van der, M Martin; Timperio, V

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a variety of applications including production of bio-diesel, animal feed, products for pharmaceutical and cosmetic purposes, or it can even be used as a source of heating or electricity . The aim o...

  15. Serpins in plants and green algae

    DEFF Research Database (Denmark)

    Roberts, Thomas Hugh; Hejgaard, Jørn

    2008-01-01

    . Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors...... of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting...

  16. [Comparative chemical composition of the Barents Sea brown algae].

    Science.gov (United States)

    Obluchinskaia, E D

    2008-01-01

    Comparative study of phytochemical compositions of the most widespread brown algae species (one laminarian and four fucoid algae) from Barents Sea has been performed. A modified technique for mannitol determination in brown algae is proposed. It was revealed that fucus algae (fam. Fucaceae) contain 3% (of total dry weight) less mannitol than laminaria (Laminaria saccharina). The contents of alginic acid and laminaran in the Barents Sea fucoids are more than 10% less compared to laminaria. The alga L. saccharina contains almost two times more iodine than the species of fam. Fucaceae. The amounts of fucoidan and sum lipids in the Barents Sea fucoid algae is higher than in Laminaria saccharina (4-7% and 1-3%, respectively). In terms of contents of main biologically active compounds, fucus and laminarian algae from Barents Sea are inferior to none of the Far-Eastern species. The Barents Sea algae may become an important source of biologically active compounds.

  17. Use of Brown Algae to Demonstrate Natural Products Techniques.

    Science.gov (United States)

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  18. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    Science.gov (United States)

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  19. Association of thraustochytrids and fungi with living marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Nagarkar, S.; Raghukumar, S.

    only in C. clavulatum, Sargassum cinereum and Padina tetrastromatica whilst mycelial fungi occurred in all. Growth experiments in the laboratory indicated that the growth of thraustochytrids was inhibited on live algae, whereas killed algae supported...

  20. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  1. Harmful impact of filamentous algae (Spirogyra sp.) on juvenile crayfish

    OpenAIRE

    Ulikowski Dariusz; Chybowski Łucjan; Traczuk Piotr

    2015-01-01

    The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch.), in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 ...

  2. KAROTENOID PADA ALGAE: KAJIAN TENTANG BIOSINTESIS, DISTRIBUSI SERTA FUNGSI KAROTENOID

    OpenAIRE

    Merdekawati, Windu; Karwur, Ferry F.; Susanto, A. B.

    2017-01-01

    ABSTRAK   Karotenoid terdistribusi pada archaea, bakteri, jamur, tumbuhan, hewan serta algae. Karotenoid dihasilkan dari komponen isopentenyl pyrophosphate (IPP) yang mengalami proses secara bertahap untuk membentuk beragam jenis karotenoid. Terdapat dua kelompok karotenoid yaitu karoten dan xantofil dengan berbagai jenis turunannya. Struktur kimia pada karotenoid algae yaitu allene, acetylene serta acetylated carotenoids. Algae mempunyai karotenoid spesifik yang menarik untuk dipe...

  3. Relationships between algae taxa and physico-chemical ...

    African Journals Online (AJOL)

    A study of algae flora was performed on 16 samples collected in different aquatic environments in Bamenda (Cameroon) in order to evidence the relationships between algae assemblages and physico-chemical parameters of the milieu. A total of 22 algae species were identified, the most represented class being ...

  4. Composition of phytoplankton algae in Gubi Reservoir, Bauchi ...

    African Journals Online (AJOL)

    Studies on the distribution, abundance and taxonomic composition of phytoplankton algae in Gubi reservoir were carried out for 12 months (from January to December 1995). Of the 26 algal taxa identified, 14 taxa belonged to the diatoms, 8 taxa were green algae while 4 taxa belonged to the blue-green algae. Higher cell ...

  5. Can the primary algae production be measured precisely?

    International Nuclear Information System (INIS)

    Olesen, M.; Lundsgaard, C.

    1996-01-01

    Algae production in seawater is extremely important as a basic link in marine food chains. Evaluation of the algae quantity is based on 14CO 2 tracer techniques while natural circulation and light absorption in seawater is taken insufficiently into account. Algae production can vary by 500% in similar nourishment conditions, but varying water mixing conditions. (EG)

  6. Inventory of North-West European algae initiatives

    NARCIS (Netherlands)

    Spruijt, J.

    2015-01-01

    In 2012 an inventory of North-West European (NWE) algae initiatives was carried out to get an impression of the market and research activities on algae production and refinery, especially for bioenergy purposes. A questionnaire was developed that would provide the EnAlgae project with information on

  7. How to Identify and Control Water Weeds and Algae.

    Science.gov (United States)

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  8. New methodologies for integrating algae with CO2 capture

    NARCIS (Netherlands)

    Hernandez Mireles, I.; Stel, R.W. van der; Goetheer, E.L.V.

    2014-01-01

    It is generally recognized, that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient

  9. Agricultural importance of algae | Abdel-Raouf | African Journal of ...

    African Journals Online (AJOL)

    Algae are a large and diverse group of microorganisms that can carry out photosynthesis since they capture energy from sunlight. Algae play an important role in agriculture where they are used as biofertilizer and soil stabilizers. Algae, particularly the seaweeds, are used as fertilizers, resulting in less nitrogen and ...

  10. The algae of Gaborone wastewater stabilization ponds: Implications ...

    African Journals Online (AJOL)

    The types of algae found in the wastewater stabilization ponds in Gaborone were studied. Being the base of the food chain in any aquatic habitat, algae contribute significantly to the functioning and value of the ponds. The (liversit)' and abundance of the algae in the two pond systems at Broadhurst and Phakalane were ...

  11. Research and development for algae-based technologies in Korea: a review of algae biofuel production.

    Science.gov (United States)

    Hong, Ji Won; Jo, Seung-Woo; Yoon, Ho-Sung

    2015-03-01

    This review covers recent research and development (R&D) activities in the field of algae-based biofuels in Korea. As South Korea's energy policy paradigm has focused on the development of green energies, the government has funded several algae biofuel R&D consortia and pilot projects. Three major programs have been launched since 2009, and significant efforts are now being made to ensure a sustainable supply of algae-based biofuels. If these R&D projects are executed as planned for the next 10 years, they will enable us to overcome many technical barriers in algae biofuel technologies and help Korea to become one of the leading countries in green energy by 2020.

  12. Photoprotection strategies of the alga Nannochloropsis gaditana

    NARCIS (Netherlands)

    Chukhutsina, Volha U.; Fristedt, Rikard; Morosinotto, Tomas; Croce, Roberta

    2017-01-01

    Nannochloropsis spp. are algae with high potential for biotechnological applications due to their capacity to accumulate lipids. However, little is known about their photosynthetic apparatus and acclimation/photoprotective strategies. In this work, we studied the mechanisms of non-photochemical

  13. Selenium accumulation and metabolism in algae.

    Science.gov (United States)

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Isolation of glycoproteins from brown algae.

    OpenAIRE

    Surendraraj, Alagarsamy; Farvin Koduvayur Habeebullah , Sabeena; Jacobsen, Charlotte

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme and Termamyl and the glycoproteins were isolated from these enzyme extracts.

  15. Fucoidans — sulfated polysaccharides of brown algae

    Science.gov (United States)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  16. The ice nucleation activity of extremophilic algae

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana; Hájek, J.; Worland, M. R.

    2013-01-01

    Roč. 34, č. 2 (2013), s. 137-148 ISSN 0143-2044 R&D Projects: GA AV ČR KJB601630808; GA AV ČR KJB600050708 Institutional support: RVO:67985939 Keywords : Ice nucleation * snow algae * lichen photobionts Subject RIV: EF - Botanics Impact factor: 0.640, year: 2013

  17. Washington State University Algae Biofuels Research

    Energy Technology Data Exchange (ETDEWEB)

    chen, Shulin [Washington State Univ., Pullman, WA (United States). Dept. of Biological Systems Engineering; McCormick, Margaret [Targeted Growth, Inc., Seattle, WA (United States); Sutterlin, Rusty [Inventure Renewables, Inc., Gig Harbor, WA (United States)

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  18. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  19. Bromophenols in Marine Algae and Their Bioactivities

    DEFF Research Database (Denmark)

    Ming, Liu; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect...

  20. Taxonomic Challenges and Distribution of Gracilarioid Algae ...

    African Journals Online (AJOL)

    This paper reviews the taxonomical literature of the gracilarioid algae from Tanzania, and provides information about their ecology and distribution based on an intensive regime of local collection. Its aim was to provide names, even if on a preliminary basis, for local gracilarioid taxa. Our revision shows that species ...

  1. Research for Developing Renewable Biofuels from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Black, Paul N. [Univ. of Nebraska, Lincoln, NE (United States)

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  2. Usos industriales de las algas diatomeas.

    OpenAIRE

    Illana Esteban, Carlos

    2007-01-01

    Las diatomeas son algas microscópicas que habitan tanto en aguas dulces como marinas. Aparte de su destacado papel en la cadena trófica de los ecosistemas acuáticos, con el tiempo forman depósitos a los que el hombre ha encontrado abundantes aplicaciones prácticas.

  3. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... This book, extensively illustrated and thoroughly referenced, will provide the source material for students, and experienced as well as new research workers should find it of great value. A series of short appendices summarize details of culture collections, media and some specialized aspects of growing blue-green algae.

  4. Spirulina: The Alga That Can End Malnutrition.

    Science.gov (United States)

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  5. Sterol chemotaxonomy of marine pelagophyte algae.

    Science.gov (United States)

    Giner, José-Luis; Zhao, Hui; Boyer, Gregory L; Satchwell, Michael F; Andersen, Robert A

    2009-07-01

    Several marine algae of the class Pelagophyceae produce the unusual marine sterol 24-propylidenecholesterol, mainly as the (24E)-isomer. The (24Z)-isomer had previously been considered as a specific biomarker for Aureococcus anophagefferens, the 'brown tide' alga of the Northeast coast of the USA. To test this hypothesis and to generate chemotaxonomic information, the sterol compositions of 42 strains of pelagophyte algae including 17 strains of Aureococcus anophagefferens were determined by GC analysis. A more comprehensive sterol analysis by HPLC and (1)H-NMR was obtained for 17 selected pelagophyte strains. All strains analyzed contained 24-propylidenecholesterol. In all strains belonging to the order Sarcinochrysidales, this sterol was found only as the (E)-isomer, while all strains in the order Pelagomonadales contained the (Z)-isomer, either alone or together with the (E)-isomer. The occurrence of Delta(22) and 24alpha-sterols was limited to the Sarcinochrysidales. The first occurrence of Delta(22)-24-propylcholesterol in an alga, CCMP 1410, was reported. Traces of the rare sterol 26,26-dimethyl-24-methylenecholesterol were detected in Aureococcus anophagefferens, and the (25R)-configuration was proposed, based on biosynthetic considerations. Traces of a novel sterol, 24-propylidenecholesta-5,25-dien-3beta-ol, were detected in several species.

  6. Sulfated polysaccharides as bioactive agents from marine algae.

    Science.gov (United States)

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Biofuels from algae for sustainable development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih

    2011-01-01

    Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and useful chemicals. Two algae samples (Cladophora fracta and Chlorella protothecoid) were studied for biofuel production. Microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Microalgae can be converted to biodiesel, bioethanol, bio-oil, biohydrogen and biomethane via thermochemical and biochemical methods. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 liters per acre, per year; this is 7-31 times greater than the next best crop, palm oil. Algal oil can be used to make biodiesel for cars, trucks, and airplanes. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. The effect of temperature on the yield of hydrogen from two algae (C. fracta and C. protothecoid) by pyrolysis and steam gasification were investigated in this study. In each run, the main components of the gas phase were CO 2 , CO, H 2 , and CH 4 .The yields of hydrogen by pyrolysis and steam gasification processes of the samples increased with temperature. The yields of gaseous products from the samples of C. fracta and C. protothecoides increased from 8.2% to 39.2% and 9.5% to 40.6% by volume, respectively, while the final pyrolysis temperature was increased from 575 to 925 K. The percent of hydrogen in gaseous products from the samples of C. fracta and C. protothecoides increased from 25.8% to 44.4% and 27.6% to 48.7% by volume

  8. Bioconcentration of tetrachlorobenzene in marine algae

    Science.gov (United States)

    Wang, Xiu-Lin; Ma, Yan-Jun; Cheng, Gang; Yu, Wei-Jun; Zhang, Li-Jun

    1997-09-01

    Bioconcentration of tetrachlorobenzene (TeCB) in Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis, and Phaeodactylum tricornutum; and toxicity of TeCB to the marine algae were tested. Values of bioconcentration potential parameters, including uptake rate constant k 1, elimination rate constant k 2 and bioconcentration factor BCF, were obtained not only from the time course of TeCB uptake by the marine algae by using a bioconcentration model, but also from the acute toxicity test data for percent inhibition PI(%)˜exposure concentration of TeCB-time by using a combined bioconcentration and probability model. The results showed good relationship between k 1(TOXIC) and k 1(UPTAKE) and k 2(TOXIC), k 2(UPTAKE), and BCF D(IOXIC) and BCF D(UPTAKE). Especially, the values of BCF D(TOXIC) were well consistent with those of BCF D(UPTAKE).

  9. Radiokinetic study in betony marine algae

    International Nuclear Information System (INIS)

    Azevedo Gouvea, V. de.

    1981-01-01

    The influx and outflux kinetics of some radionuclides in algae of the Rio de Janeiro coastline, were studied in order to select bioindicators for radioactive contamination in aquatic media, due to the presence of Nuclear Power Stations. Bioassays of the concentration and loss of radionuclides such as 137 Cs, 51 Cr, 60 Co and 131 I were performed in 1000cm 3 aquarium under controlled laboratory conditions, using a single channel gamma counting system, to study the species of algae most frequently found in the region. The concentration and loss parameters for all the species and radionuclides studied were obtained from the normalized results. The loss parameters were computerwise adjusted using Powell's multiparametric method. (author)

  10. Hyperaccumulation of radioactive isotopes by marine algae

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Hirano, Shigeki; Watabe, Teruhisa

    2003-01-01

    Hyperaccumlators are effective indicator organisms for monitoring marine pollution by heavy metals and artificial radionuclides. We found a green algae, Bryopsis maxima that hyperaccumulate a stable and radioactive isotopes such as Sr-90, Tc-99, Ba-138, Re-187, and Ra-226. B. maxima showed high concentration factors for heavy alkali earth metals like Ba and Ra, compared with other marine algae in Japan. Furthermore, this species had the highest concentrations for Tc-99 and Re-187. The accumulation and excretion patterns of Sr-85 and Tc-95m were examined by tracer experiments. The chemical states of Sr and Re in living B. maxima were analyzed by HPLC-ICP/MS, LC/MS, and X-ray absorption fine structure analysis using synchrotron radiation. (author)

  11. Multiplicity of viral infection in brown algae

    OpenAIRE

    Stevens, Kim

    2014-01-01

    Brown algae are important primary producers and habitat formers in coastal environments and are believed to have evolved multicellularity independently of the other eukaryotes. The phaeoviruses that infect them form a stable lysogenic relationship with their host via genome integration, but have only been extensively studied in two genera: Ectocarpus and Feldmannia. In this study I aim to improve our understanding of the genetic diversity, host range and distribution of phaeoviruses. Seq...

  12. Algae-Derived Dietary Ingredients Nourish Animals

    Science.gov (United States)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  13. Electro-coagulation-flotation process for algae removal

    International Nuclear Information System (INIS)

    Gao Shanshan; Yang Jixian; Tian Jiayu; Ma Fang; Tu Gang; Du Maoan

    2010-01-01

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm 2 , pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 10 9 -1.55 x 10 9 cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m 3 . The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  14. Regulating cellular trace metal economy in algae.

    Science.gov (United States)

    Blaby-Haas, Crysten E; Merchant, Sabeeha S

    2017-10-01

    As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. Starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. In this review, we focus on recent progress made toward understanding the pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. New experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. New records of marine algae in Vietnam

    Science.gov (United States)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  16. Functional properties of carotenoids originating from algae.

    Science.gov (United States)

    Christaki, Efterpi; Bonos, Eleftherios; Giannenas, Ilias; Florou-Paneri, Panagiota

    2013-01-15

    Carotenoids are isoprenoid molecules which are synthesised de novo by photosynthetic plants, fungi and algae and are responsible for the orange, yellow and some red colours of various fruits and vegetables. Carotenoids are lipophilic compounds, some of which act as provitamins A. These compounds can be divided into xanthophylls and carotenes. Many macroalgae and microalgae are rich in carotenoids, where these compounds aid in the absorption of sunlight. Industrially, these carotenoids are used as food pigments (in dairy products, beverages, etc.), as feed additives, in cosmetics and in pharmaceuticals, especially nowadays when there is an increasing demand by consumers for natural products. Production of carotenoids from algae has many advantages compared to other sources; for example, their production is cheap, easy and environmentally friendly; their extraction is easier, with higher yields, and there is no lack of raw materials or limited seasonal variation. Recently, there has been considerable interest in dietary carotenoids with respect to their antioxidant properties and their ability to reduce the incidence of some chronic diseases where free radicals are involved. Possibly, carotenoids protect cells from oxidative stress by quenching singlet oxygen damage with various mechanisms. Therefore, carotenoids derived from algae could be a leading natural resource in the research for potential functional ingredients. Copyright © 2012 Society of Chemical Industry.

  17. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  18. Algae to Economically Viable Low-Carbon-Footprint Oil.

    Science.gov (United States)

    Bhujade, Ramesh; Chidambaram, Mandan; Kumar, Avnish; Sapre, Ajit

    2017-06-07

    Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30-$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.

  19. Production and characterization of algae extract from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Weston Kightlinger

    2014-01-01

    Conclusions: This study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.

  20. Antimicrobial Activity of Extracts from Six Green Algae from Tanzania

    OpenAIRE

    Mtolera, M.S.P.; Semesi, A.

    1996-01-01

    Many algae species have been shown to have bactericidal or bacteriostatic substances (Glombitza, I979;Michaneck, 1979; Caccamese et al., 1980; Fenical & Paul, 1984; Niang& Hung, 1984). The antibacterialagents found in the algae include amino acids, terpenoids, phlorotannins, acrylic acid, phenoliccompounds, steroids, halogenated ketones and alkanes, cyclic polysulphides and fatty acids. In a large numberof marine algae antimicrobial activities are attributed to the presence of acrylic acid.

  1. Method and apparatus for iterative lysis and extraction of algae

    Science.gov (United States)

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  2. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  3. Accumulation of 210Po by benthic marine algae

    International Nuclear Information System (INIS)

    Gouvea, R.C.; Branco, M.E.C.; Santos, P.L.

    1988-01-01

    The accumulation of polonium 210 Po by various species of benthic marine seaweeds collected from 4 different points on the coast of Rio de Janeiro, showed variations by species and algal groups. The highest value found was in red alga, Plocamium brasiliensis followed by other organisms of the same group. In the group of the brown alga, the specie Sargassum stenophylum was outstanding. The Chlorophyta presented the lowest content of 210 Po. The algae collected in open sea, revealed greater concentration factors of 210 Po than the same species living in bays. The siliceous residue remaining after mineralization of the algae did not interfere with the detection of polonium. (author)

  4. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    Science.gov (United States)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  5. Importance of algae oil as a source of biodiesel

    International Nuclear Information System (INIS)

    Demirbas, Ayhan; Fatih Demirbas, M.

    2011-01-01

    Algae are the fastest-growing plants in the world. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae are very important as a biomass source. Algae will some day be competitive as a source for biofuel. Different species of algae may be better suited for different types of fuel. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Algae can be a replacement for oil based fuels, one that is more effective and has no disadvantages. Algae are among the fastest-growing plants in the world, and about 50% of their weight is oil. This lipid oil can be used to make biodiesel for cars, trucks, and airplanes. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 l per acre, per year; this is 7-31 times greater than the next best crop, palm oil. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. Most current research on oil extraction is focused on microalgae to produce biodiesel from algal oil. Algal-oil processes into biodiesel as easily as oil derived from land-based crops.

  6. Method and apparatus for lysing and processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  7. Chloroplast division checkpoint in eukaryotic algae

    Science.gov (United States)

    Sumiya, Nobuko; Fujiwara, Takayuki; Era, Atsuko; Miyagishima, Shin-ya

    2016-01-01

    Chloroplasts evolved from a cyanobacterial endosymbiont. It is believed that the synchronization of endosymbiotic and host cell division, as is commonly seen in existing algae, was a critical step in establishing the permanent organelle. Algal cells typically contain one or only a small number of chloroplasts that divide once per host cell cycle. This division is based partly on the S-phase–specific expression of nucleus-encoded proteins that constitute the chloroplast-division machinery. In this study, using the red alga Cyanidioschyzon merolae, we show that cell-cycle progression is arrested at the prophase when chloroplast division is blocked before the formation of the chloroplast-division machinery by the overexpression of Filamenting temperature-sensitive (Fts) Z2-1 (Fts72-1), but the cell cycle progresses when chloroplast division is blocked during division-site constriction by the overexpression of either FtsZ2-1 or a dominant-negative form of dynamin-related protein 5B (DRP5B). In the cells arrested in the prophase, the increase in the cyclin B level and the migration of cyclin-dependent kinase B (CDKB) were blocked. These results suggest that chloroplast division restricts host cell-cycle progression so that the cell cycle progresses to the metaphase only when chloroplast division has commenced. Thus, chloroplast division and host cell-cycle progression are synchronized by an interactive restriction that takes place between the nucleus and the chloroplast. In addition, we observed a similar pattern of cell-cycle arrest upon the blockage of chloroplast division in the glaucophyte alga Cyanophora paradoxa, raising the possibility that the chloroplast division checkpoint contributed to the establishment of the permanent organelle. PMID:27837024

  8. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  9. Snow algae and lichen algae differ in their resistance to freezing temperature: An ice nucleation study

    Czech Academy of Sciences Publication Activity Database

    Hajek, J.; Kvíderová, Jana; Worland, R.; Barták, M.; Elster, Josef; Vaczi, P.

    2009-01-01

    Roč. 48, č. 4 (2009), s. 37-38 ISSN 0031-8884. [International Phycological Congress /9./. 02.08.2009-08.08.2009, Tokyo] R&D Projects: GA AV ČR IAA600050702; GA AV ČR KJB601630808 Institutional research plan: CEZ:AV0Z60050516 Keywords : ice nucleation * algae * freezing Subject RIV: EF - Botanics

  10. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    Science.gov (United States)

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  11. Toxicity of chlorinated benzenes to marine algae

    Science.gov (United States)

    Ma, Yan-Jun; Wang, Xiu-Lin; Yu, Wei-Jun; Zhang, Li-Jun; Sun, Han-Zhang

    1997-12-01

    Growth of Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to monochlorobenzene (MCB), 1,2-dichlorobenzene (1,2-DCB), 1, 2, 3, 4-tetrachlorobenzene (1, 2, 3, 4-TeCB) and pentachlorobenzene (PeCB) was tested. Tests of 72 h- EC 50 values showed that the toxicity ranged in the order: MCBNannochloropsis oculata < Chlorella marine < Phaeodactylum tricomutum. Study of the QSAR (Quantitative Structure-Activity Relationship) between K OW and toxicity of CBs to marine algae showed good relationships between -log EC 50 and log K OW.

  12. Diterpenes from the Brown Alga Dictyota crenulata

    Directory of Open Access Journals (Sweden)

    Valéria Laneuville Teixeira

    2008-06-01

    Full Text Available The crude extract of the Brazilian brown alga Dictyota crenulata was analyzed by NMR spectroscopy and HRGC-MS techniques. Seven diterpenes were identified: pachydictyol A, dictyodial, 4β-hydroxydictyodial A, 4β-acetoxydictyodial A, isopachydictyol A, dictyol C and dictyotadiol. Xeniane diterpenes have previously been found in D. crenulata from the Pacific Ocean. The results characterize D. crenulata as a species that provides prenylated guaiane (group I and xeniane diterpenes (group III, thus making it a new source of potential antiviral products.

  13. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  14. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.

    2009-08-15

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  15. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  16. Isolation and Characterization of Blue Green Algae from Egyptian ...

    African Journals Online (AJOL)

    meldemellawy

    2014-02-20

    Feb 20, 2014 ... aminotransferase (AMT) domains of the mycE and ndaF genes (Jungblut et al., 2006) allowing detection of microcystin and nodularin-producing cyanobacteria. MATERIALS AND METHODS. Isolation and cultivation of blue green algae. Blue green algae had been isolated from soil of Rice field in river.

  17. Monetary value of the impacts of filamentous green algae on ...

    African Journals Online (AJOL)

    This paper presents estimates of the monetary value of the impact of eutrophication (algae) on commercial agriculture in two different catchments in South Africa. A production function approach is applied to estimate the monetary value of the impact of filamentous green algae on commercial agriculture in the Dwars River, ...

  18. Dissolved Air Flotation Process for Algae Removal | Mulaku ...

    African Journals Online (AJOL)

    This study investigated the performance of the Dissolved Air Flotation (DAF) process as an alternative to sedimentation for algae removal in surface water treatment in Kenya. Batch DAF experiments were carried out in the laboratory using algae laden surface water samples collected from the river and laboratory cultured ...

  19. Persistence and proliferation of some unicellular algae in drinking ...

    African Journals Online (AJOL)

    Drinking water systems have a complex structure and are characterised by the absence of light, the presence of disinfectants and by low levels of nutrients. Several kinds of bacteria, protozoa, algae and fungi can be found in tap water. Little is known about the ecology of algae in drinking water systems, although their ...

  20. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  1. Study on the effect of irradiation on algae by proteomics

    International Nuclear Information System (INIS)

    Choi, Jong Il; Yoon, Yo Han; Kim, Jae Hun

    2010-06-01

    Algae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the algae is just beginning and the study on protein expression and growth by the change of condition was not reported. In this study, the effect of radiation on the protein expression was investigated for the protection mechanisms and new genome source and furthermore, isolation of new mutant strains. To monitor the growth of algae, absorbance and FDA staining methods were developed and the content of lipid of algae species were measured. With these methods, the radiation sensitivity of algae species was determined. To investigate the proteome of algae, 2D-electrophoresis methods was applied. From the comparison of proteomes, the radiation specific expressed protein was identified as thioredoxin-h and its nucleotide sequences was defined. The expression of thioredoxin-h was further defined on the mRNA level. Also, the extract of algae species was analyzed for its antioxidant activity and polyphenolic content. The changes in antioxidant activity of extract by radiation was investigated. From the radiation experiments, mutant Spirogyra species having higher resistant against radical stress was obtained. The mutant strain has higher antioxidant activity. This results can provide the proteome date and mutation technology of algae and further contribute in the activation of fishery industry and national health enhancement

  2. EnAlgae Decision Support Toolset: model validation

    NARCIS (Netherlands)

    Kenny, Philip; Visser, de Chris; Skarka, Johannes; Sternberg, Kirstin; Schipperus, Roelof; Silkina, Alla; Ginnever, Naomi

    2015-01-01

    One of the drivers behind the EnAlgae project is recognising and addressing the need for increased availability of information about developments in applications of algae biotechnology for energy, particularly in the NW Europe area, where activity has been less intense than in other areas of the

  3. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. ... African Journal of Biotechnology ... This study shows the benefit of using activated carbon from marine red algae as a low cost sorbent for the removal of copper from aqueous solution wastewater.

  4. Potential of wastewater grown algae for biodiesel production and CO

    African Journals Online (AJOL)

    Potential of wastewater grown algae for biodiesel production and CO 2 sequestration. ... African Journal of Biotechnology ... Mixed algae sample showed the highest CO2 fixation rate, followed by Chlorella sp., Scenedesmus incrassatulus, Scenedesmus dimorphus and Chroococcus cohaerens (2.807, 1.627, 1.501, 1.270 ...

  5. Rare species of fungi parasiting on algae. III.

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995 parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  6. Rare species of fungi parasiting on algae. III.

    OpenAIRE

    Joanna Z. Kadłubowska

    2014-01-01

    The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995) parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  7. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  8. Investigation about Role of Algae in Kazeroon Sasan Spring Odor

    Directory of Open Access Journals (Sweden)

    A Hamzeian

    2016-05-01

    Full Text Available Introduction: As odor for potable water is unpleasant for costumers, it needs to do researches for finding the reasons of odorous water. Sasan spring that is located in, near kazeroon city, Fars, Iran, is potable water resource for Kazeroon and Booshehr city and many other villages. Water in Sasan spring has the odor problem. With regards to important   role of algae on ado r problems in this study the role of algae on   odor was investigated. Methods: After regular sampling, the TON (threshold odor number was indicated and algae species was distinguished and the number of total algae and any species  of algae was numbers by microscopic direct numbering method .as the algae mass  is related to nitrogen and phosphor concentration, results of concentration Of nitrogen and phosphor in this spring that was examined regularity by water company was investigated and compared to concentration of these component that are need for algae growing.   Results: results shows that TON was in range  of 4.477 to 6.2 that indicated  oderous limit . Regression and diagram between TON and number of total algae showed the linear relationship. The concentration of nitrogen and phosphor, showed adequate condition for algal grow. Result of determination of algae species showed high population of Oscilatoria and Microcystis species, which are known as essential case of mold odor in water resources. Investigation on geological maps in the region around the Sasan spring, show alluvium source and is effected by surface part of it’s around land. Conclusion: because of the algae was determined as the essential cause of odor   in the spring, and algal growth is related to nutrients, and because of the surface pollution can penetrate in the alluvium lands around the spring, and effect the water in spring, so nutrient control and management is the essential way for odor control in the spring.

  9. Urtica urens L., Urtica membranacea Poiret et Urtica pilulifera L.

    African Journals Online (AJOL)

    SARAH

    31 mars 2015 ... 1 et 2, Staphylococcus aureus, Pseudomonas putida et Klebsiella pneumoniae. Les résultats montrent que les trois espèces recèlent une diversité de métabolites secondaires aussi bien des tanins galliques et des flavonoïdes que des stérols, des triterpènes et des leucanthocyanes ; aussi, seule U.urens ...

  10. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    Science.gov (United States)

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  11. Antileishmanial properties of tropical marine algae extracts.

    Science.gov (United States)

    Freile-Pelegrin, Y; Robledo, D; Chan-Bacab, M J; Ortega-Morales, B O

    2008-07-01

    Aqueous and organic extracts of twenty-seven species of marine algae (14 species of Rhodophyta, 5 species of Phaeophyta and 8 species of Chlorophyta) collected from the Gulf of Mexico and Caribbean coast of the Yucatan Peninsula (Mexico) were evaluated for their antileishmanial in vitro activity against Leishmania mexicana promastigote forms. The cytotoxicity of these extracts was also assessed using brine shrimp. Organic extracts from Laurencia microcladia (Rhodophyta), Dictyota caribaea, Turbinaria turbinata and Lobophora variegata (Phaeophyta) possessed promising in vitro activity against L. mexicana promastigotes (LC(50) values ranging from 10.9 to 49.9 microg/ml). No toxicity of algal extracts against Artemia salina was observed with LC50 ranging from 119 to >or=1000 microg/ml. Further studies on bio-guided fractionation, isolation and characterization of pure compounds from these species as well as in vivo experiments are needed and are already in progress.

  12. An algae-covered alligator rests warily

    Science.gov (United States)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  13. Harmful impact of filamentous algae (Spirogyra sp. on juvenile crayfish

    Directory of Open Access Journals (Sweden)

    Ulikowski Dariusz

    2015-12-01

    Full Text Available The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch., in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 under natural thermal conditions and fed a commercial feed. The results indicated that the presence of the filamentous algae did not have a statistically significant impact on the growth of the juvenile crayfish (P > 0.05. The presence of the filamentous algae had a strong negative impact on juvenile crayfish survival and stock biomass (P < 0.05. The layer of gravel and small stones that imitated the mineral substrate of natural aquatic basins somewhat neutralized the disadvantageous impact the filamentous algae had on the crayfish.

  14. A screening method for cardiovascular active compounds in marine algae.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Photophysiology and cellular composition of sea ice algae

    International Nuclear Information System (INIS)

    Lizotte, M.P.

    1989-01-01

    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 μg C · μg chl -1 · h -1 higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and 14 C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and 14 C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities

  16. Uptake of technetium by marine algae: autoradiographic localization

    Energy Technology Data Exchange (ETDEWEB)

    Bonotto, S.; Nuyts, G.; Robbrecht, V.; Cogneau, M.; Ben, D. van der

    1988-02-01

    The uptake of technetium (sup(95m)Tc) by marine algae was localized by autoradiography. In the brown (Ascophyllum nodosum, Fucus spiralis and F. vesiculosus) as well as in the red (Porphyra umbilicalis) species, the distribution of technetium was heterogeneous, this radioelement being mostly accumulated in the parts of the plant which bear reproductive cells or which contain young tissues. Since brown algae have high concentration factors, they could constitute an important link in the transfer of technetium through the food chain. On the contrary, the edible alga Porphyra umbilicalis shows a very low incorporation of technetium.

  17. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Thomas, Joseph

    1977-01-01

    Recent work using radioactive nitrogen on the blue-green algae of paddy fields has been reviewed. These algae fix dinitrogen and photoassimilate carbon evolving oxygen, thereby augmenting nitrogen and carbon status of the soil and also providing oxygen to the water-logged rice paddies. Further studies using radioactive isotopes 13 N, 24 Na and 22 Na on their nitrogen fixation, nitrogen assimilation pathways; regulation of nitrogenase, heterocysts production and sporulation and sodium transport and metabolism have been carried out and reported. The field application of blue green algae for N 2 fixation was found to increase the status of soil nitrogen and yield of paddy. (M.G.B.)

  18. Photobiological hydrogen production with switchable photosystem-II designer algae

    Science.gov (United States)

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  19. The biotechnological ways of blue-green algae complex processing

    OpenAIRE

    Nykyforov, Volodymyr; Malovanyy, Myroslav; Kozlovskaya, Tatyana; Novokhatko, Olha; Digtiar, Sergii

    2016-01-01

    The results of long­term research of various ways and methods of collection and processing of blue­green algae that cause “bloom” of the Dnieper reservoirs were presented. The possibility and feasibility of the blue­green algae biomass processing to biogas by methanogenesis were substantiated. It was found experimentally that preliminary mechanical cavitation of the blue­green algae biomass increases the biogas yield by 21.5 %. It was determined that the biogas produced contains up to 72 % of...

  20. Detection of green algae (Chlorophyceae) for the diagnosis of drowning.

    Science.gov (United States)

    Yoshimura, S; Yoshida, M; Okii, Y; Tokiyasu, T; Watabiki, T; Akane, A

    1995-01-01

    The plankton test (generally, diatom test) is one of the methods available to diagnose the cause of death of submerged bodies. The solubilization method using tissue solubilizer Soluene-350 was used in this study to detect not only diatoms but also green algae, based on the fact that the solubilizer does not digest the cell walls of green algae which are made from cellulose. Detection of green algae from organs of submerged cadavers is very informative to determine drowning in fresh water, and also in cases where only few diatoms are detected in the organs.

  1. DNA barcoding of a new record of epi-endophytic green algae ...

    Indian Academy of Sciences (India)

    Epi-endophytic green algae comprise one of the most diverse and phylogenetically primitive groups of green algae and are considered to be ubiquitous in the world's oceans; however, no reports of these algae exist from India. Here we report the serendipitous discovery of Ulvella growing on intertidal green algae ...

  2. Sterol composition of the Adriatic Sea algae Ulva lactuca, Codium dichotomum, Cystoseira adriatica and Fucus virsoides

    Directory of Open Access Journals (Sweden)

    RADOMIR KAPETANOVIC

    2005-12-01

    Full Text Available The sterol composition of two green algae and two brown algae from the South Adriatic was determined. In the green alga Ulva lactuca, the principal sterols were cholesterol and isofucosterol. In the brown alga Cystoseira adriatica, the main sterols were cholesterol and stigmast-5-en-3ß-ol, while the characteristic sterol of the brown algae, fucosterol, was found only in low concentration. The sterol fractions of the green alga Codium dichotomum and the brown alga Fucus virsoides contained practically only one sterol each, comprising more than 90 % of the total sterols (clerosterol in the former and fucosterol in the latter.

  3. Bicarbonate produced from carbon capture for algae culture.

    Science.gov (United States)

    Chi, Zhanyou; O'Fallon, James V; Chen, Shulin

    2011-11-01

    Using captured CO(2) to grow microalgae is limited by the high cost of CO(2) capture and transportation, as well as significant CO(2) loss during algae culture. Moreover, algae grow poorly at night, but CO(2) cannot be temporarily stored until sunrise. To address these challenges, we discuss a process where CO(2) is captured as bicarbonate and used as feedstock for algae culture, and the carbonate regenerated by the culture process is used as an absorbent to capture more CO(2). This process would significantly reduce carbon capture costs because it does not require additional energy for carbonate regeneration. Furthermore, not only would transport of the aqueous bicarbonate solution cost less than for that of compressed CO(2), but using bicarbonate would also provide a superior alternative for CO(2) delivery to an algae culture system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice

    DEFF Research Database (Denmark)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.

    2018-01-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light......, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties...... for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with approximate to 1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (...

  5. Kalaärimeeste kohus algas venitamisega / Hindrek Riikoja

    Index Scriptorium Estoniae

    Riikoja, Hindrek

    2007-01-01

    Harju maakohtus algas kohtuprotsess veterinaar- ja toiduameti endise asejuhi Vladimir Razumovski väidetava altkäemaksuvõtmise üle, kus on süüdistavaid eraisikuid ja ettevõtjaid. Lisa: Kes on kohtu all?

  6. Ectocarpus: a model organism for the brown algae.

    Science.gov (United States)

    Coelho, Susana M; Scornet, Delphine; Rousvoal, Sylvie; Peters, Nick T; Dartevelle, Laurence; Peters, Akira F; Cock, J Mark

    2012-02-01

    The brown algae are an interesting group of organisms from several points of view. They are the dominant organisms in many coastal ecosystems, where they often form large, underwater forests. They also have an unusual evolutionary history, being members of the stramenopiles, which are very distantly related to well-studied animal and green plant models. As a consequence of this history, brown algae have evolved many novel features, for example in terms of their cell biology and metabolic pathways. They are also one of only a small number of eukaryotic groups to have independently evolved complex multicellularity. Despite these interesting features, the brown algae have remained a relatively poorly studied group. This situation has started to change over the last few years, however, with the emergence of the filamentous brown alga Ectocarpus as a model system that is amenable to the genomic and genetic approaches that have proved to be so powerful in more classical model organisms such as Drosophila and Arabidopsis.

  7. Potential pharmacological applications of polyphenolic derivatives from marine brown algae.

    Science.gov (United States)

    Thomas, Noel Vinay; Kim, Se-Kwon

    2011-11-01

    Recently, the isolation and characterization of the biologically active components from seaweeds have gained much attention from various research groups across the world. The marine algae have been studied for biologically active components and phlorotannins are one among them. Among marine algae, brown algal species such as Ecklonia cava, Eisenia arborea, Ecklonia stolinifera and Eisenia bicyclis have been studied for their potential biological activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their potentiality as antioxidant, anti-inflammatory, antidiabetic, antitumor, antihypertensive, anti-allergic, hyaluronidase enzyme inhibition and in matrix metalloproteinases (MMPs) inhibition activity. In this review, we have made an attempt to discuss the potential biological activities of phlorotannins from marine brown algae and their possible candidature in the pharmaceutical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Exploring the potential of using algae in cosmetics.

    Science.gov (United States)

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Chemical examination of the Red alga Acanthophora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Kamat, S.Y.

    Analyses of petroleum ether and chloroform extracts of the marine alga Acanthophora spicifera exhibiting antifertility activity led to the isolation of sterols and fatty acids as well as the rare dipeptides aurantiamides. All the compounds were...

  10. Chemical examination of the brown alga Stoechospermum marginatum (C. Agardh)

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    The crude methalonic extract of marine algae Stoechospermum marginatum from west coast of India was found to have spasmolytic activity. Search for the pharmacologically active compounds led to the isolation of steroids, fatty acids and an ester...

  11. The role of algae in agriculture: a mathematical study.

    Science.gov (United States)

    Tiwari, P K; Misra, A K; Venturino, Ezio

    2017-06-01

    Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.

  12. Modelization of tritium transfer into the organic compartments of algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Arapis, G.; Kirchmann, R.

    1982-01-01

    Uptake of tritium oxide and its conversion into organic tritium was studied in four different types of algae with widely varying size and growth characteristics (Acetabularia acetabulum, Boergesenia forbesii, two strains of Chlamydomonas and Dunaliella bioculata). Water in the cell and the vacuales equilibrates rapidly with external tritium water. Tritium is actively incorporated into organically bound form as the organisms grow. During the stationary phase, incorporation of tritium is slow. There exists a discrimination against the incorporation of tritium into organically bound form. A model has been elaborated taking in account these different factors. It appears that transfer of organic tritium by algae growing near the sites of release would be significant only for actively growing algae. Algae growing slowly may, however, be useful as cumulative indicators of discontinuous tritium release. (author)

  13. Scenario analysis of large scale algae production in tubular photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Beveren, van P.J.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2013-01-01

    Microalgae productivity in tubular photobioreactors depends on algae species, location, tube diameter, biomass concentration, distance between tubes and for vertically stacked systems, the number of horizontal tubes per stack. A simulation model for horizontal and vertically stacked horizontal

  14. Studies on allergenic algae of Delhi area: botanical aspects.

    Science.gov (United States)

    Mittal, A; Agarwal, M K; Shivpuri, D N

    1979-04-01

    To study distribution of algae in and around Delhi aerobiological surveys were undertaken for two consecutive years (September, 1972, to August, 1974). The surveys were accomplished by (a) slide exposure method and (b) culture plate exposure method. A total of 850 slides were exposed using Durham's gravity sampling device. Of these, 560 slides were exposed during 1973 (272 slides at two meter and 288 at ten meter height) and the rest (290 slides) were exposed during 1974 at ten meter height. A total of 858 culture plates were exposed (276 for one hour and 282 for two hours) during 1973 and the rest (300 culture plates) were exposed during 1974 at ten meter height for two hours duration only. Air was found to be rich in algae flora during the months of September to November. The dominant forms of algae present were all blue greens. This might be due to the relative greater resistance of blue green algae to unfavorable conditions.

  15. Lab on a chip technologies for algae detection: a review.

    Science.gov (United States)

    Schaap, Allison; Rohrlack, Thomas; Bellouard, Yves

    2012-08-01

    Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae detection and monitoring. We start with an overview of the detection methods currently used for algae monitoring, followed by a review of lab on a chip devices for algae detection and classification, and then discuss a case study based on our own research activities. We conclude with a discussion on future challenges and motivations for algae-oriented lab on a chip technologies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diversity and ecology of filamentous green conjugate algae

    OpenAIRE

    Strouhalová, Pavla

    2016-01-01

    Filamentous conjugating algae have a cosmopolitan distribution. They often inhabit fragile freshwater habitats such as temporary hydrated ditches or puddles of melting snow. Occurrence in this environment entails having to deal with extreme conditions. That helps them to variously adaptation and also the formation of resistant stages. Algae belonging to this group have an important role in nature, because they are often the first species that inhabit newly created habitats and consequently al...

  17. Cytotoxicity of Algae Extracts on Normal and Malignant Cells

    OpenAIRE

    Bechelli, Jeremy; Coppage, Myra; Rosell, Karen; Liesveld, Jane

    2011-01-01

    Algae preparations are commonly used in alternative medicine. We examined the effects of algae extracts on normal hematopoietic cells and leukemia cells. Ethanol extracts were prepared of Dunaliella salina (Dun), Astaxanthin (Ast), Spirulina platensis (Spir), and Aphanizomenon flos-aquae (AFA). Cell viability effects were completed by Annexin staining. Ast and AFA inhibited HL-60 and MV-4-11 whereas Dun and Spir had no effect. Primary AML blasts demonstrated increased apoptosis in AFA. ...

  18. Algae Reefs in Shark Bay, Western Australia, Australia

    Science.gov (United States)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  19. Thermal algae in certain radioactive springs in Japan, (3)

    International Nuclear Information System (INIS)

    Mifune, Masaaki; Hirose, Hiroyuki.

    1982-01-01

    Shikano Hot Springs are located at five km to the south of Hamamura Station on the Sanin Line in Tottori Prefecture. The water temperature and the pH of the springs are 40.2 - 61.2 0 C, and 7.5 - 7.8, respectively. They belong to simple thermals. Hamamura Hot Springs are located in the neighbourhood of Hamamura Station. The highest radon content of the hot springs is 175.1 x 10 -10 Ci/l, and the great part of the springs belong to radioactive ones. From the viewpoint of the major ionic constituents, they are also classified under weak salt springs, sulfated salt springs, and simple thermals. Regarding the habitates of the algal flora, the water temperature and the pH of the springs are 28.0 - 68.0 0 C, and 6.8 - 7.4, respectively. The thermal algae found by Ikoma and Doi at Hamamura Hot Springs were two species of Cyanophyceae. By the authors, nine species and one variety of Cyanophyceae including Ikoma and Doi's two species were newly found at Shikano and Hamamura Hot Springs. Chlorophyceous alga was not found. The dominant thermal algae of these hot springs were Mastigocladus laminosus, and the other algae which mainly consist of Oscillatoriaceous algae. From these points, it seems that the thermal algae of Shikano and Hamamura Hot Springs belong to the normal type of thermal algae, and they are different from the thermal algae of Ikeda Mineral Springs and Masutomi Hot Springs which belong to strongly radioactive springs. (author)

  20. Using the marine unicellular algae in biological monitoring

    OpenAIRE

    Kapkov V. I.; Shoshina E. V.; Belenikina O. A.

    2017-01-01

    The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb) in the form of chloride salts on the growth...

  1. Biodiesel Production From Algae to Overcome the Energy Crisis

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2017-10-01

    Full Text Available The use of energy sources has reached at the level that whole world is relying on it. Being the major source of energy, fuels are considered the most important. The fear of diminishing the available sources thirst towards biofuel production has increased during last decades. Considering the food problems, algae gain the most attention to be used as biofuel producers. The use of crop and food-producing plants will never be a best fit into the priorities for biofuel production as they will disturb the food needs. Different types of algae having the different production abilities. Normally algae have 20%–80% oil contents that could be converted into different types of fuels such as kerosene oil and biodiesel. The diesel production from algae is economical and easy. Different species such as tribonema, ulothrix and euglena have good potential for biodiesel production. Gene technology can be used to enhance the production of oil and biodiesel contents and stability of algae. By increasing the genetic expressions, we can find the ways to achieve the required biofuel amounts easily and continuously to overcome the fuels deficiency. The present review article focusses on the role of algae as a possible substitute for fossil fuel as an ideal biofuel reactant.

  2. Algae as a Biofuel: Renewable Source for Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Vijay Kant Pandey

    2016-09-01

    Full Text Available Biofuels produced by algae may provide a feasible alternative to fossil fuels like petroleum sourced fuels. However, looking to limited fossil fuel associated with problems, intensive efforts have been given to search for alternative biofuels like biodiesel. Algae are ubiquitous on earth, have potential to produce biofuel. However, technology of biofuel from algae facing a number of hurdles before it can compete in the fuel market and be broadly organized. Different challenges include strain identification and improvement of algal biomass, both in terms of biofuel productivity and the production of other products to improve the economics of the entire system. Algal biofuels could be made more cost effective by extracting other valuable products from algae and algal strains. Algal oil can be prepared by culture of algae on municipal and industrial wastewaters. Photobioreactors methods provide a controlled environment that can be tailored to the specific demands of high production of algae to attain a consistently good yield of biofuel. The algal biomass has been reported to yield high oil contents and have good amount of the biodiesel production capacity. In this article, it has been attempted to review to elucidate the approaches for making algal biodiesel economically competitive with respect to petrodiesel. Consequently, R & D work has been carried out for the growth, harvesting, oil extraction and conversion to biodiesel from algal sources.

  3. Radionuclides and trace metals in eastern Mediterranean Sea algae

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M.S. E-mail: msmasri@aec.org.sy; Mamish, S.; Budier, Y

    2003-07-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that {sup 137}Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg{sup -1} dry weight) while the levels of naturally occurring radionuclides, such as {sup 210}Po and {sup 210}Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg{sup -1} dry weight) for {sup 210}Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate {sup 210}Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br.

  4. Development of Green Fuels From Algae - The University of Tulsa

    Energy Technology Data Exchange (ETDEWEB)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  5. Micro-algae: French players discuss the matter

    International Nuclear Information System (INIS)

    Bouveret, T.

    2013-01-01

    About 75000 species of algae have been reported so far, the domains of application are huge and investment are increasing all around the world. One of the difficulties is to find the most appropriate algae to a specific application. Some development programs have failed scientifically or economically for instance the production of protein for animal food from the chlorella algae or the production of bio-fuel from C14-C18 chains, from zeaxanthine and from phycoerytrine. On the other side some research programs have led to promising industrial applications such as the production of food for fish and farm animals. Some research fields are completely innovative such as the use of micro-algae for the construction of bio-walls for buildings. Micro-algae are diverse and fragile. Photo-bioreactors have been designed to breed fragile algae like some types of chlorophycees used in bio-fuel and in cosmetics, a prototype has been tested for 15 months and its production is about 2 kg of dry matter a day. (A.C.)

  6. Biofuels and algae; Biocarburants, la promesse des algues

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-07-15

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  7. Radionuclides and trace metals in eastern Mediterranean Sea algae

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mamish, S.; Budier, Y.

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that 137 Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg -1 dry weight) while the levels of naturally occurring radionuclides, such as 210 Po and 210 Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg -1 dry weight) for 210 Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate 210 Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br

  8. Photoprotection strategies of the alga Nannochloropsis gaditana.

    Science.gov (United States)

    Chukhutsina, Volha U; Fristedt, Rikard; Morosinotto, Tomas; Croce, Roberta

    2017-07-01

    Nannochloropsis spp. are algae with high potential for biotechnological applications due to their capacity to accumulate lipids. However, little is known about their photosynthetic apparatus and acclimation/photoprotective strategies. In this work, we studied the mechanisms of non-photochemical quenching (NPQ), the fast response to high light stress, in Nannochloropsis gaditana by "locking" the cells in six different states during quenching activation and relaxation. Combining biochemical analysis with time-resolved fluorescence spectroscopy, we correlated each NPQ state with the presence of two well-known NPQ components: de-epoxidized xanthophylls and stress-related antenna proteins (LHCXs). We demonstrated that after exposure to strong light, the rapid quenching that takes place in the antennas of both photosystems was associated with the presence of LHCXs. At later stages, quenching occurs mainly in the antennas of PSII and correlates with the amount of de-epoxidised xanthophylls. We also observed changes in the distribution of excitation energy between photosystems, which suggests redistribution of excitation between photosystems as part of the photo-protective strategy. A multistep model for NPQ induction and relaxation in N. gaditana is discussed. Copyright © 2017. Published by Elsevier B.V.

  9. Coccolithophorid algae culture in closed photobioreactors.

    Science.gov (United States)

    Moheimani, Navid R; Isdepsky, Andreas; Lisec, Jan; Raes, Eric; Borowitzka, Michael A

    2011-09-01

    The feasibility of growth, calcium carbonate and lipid production of the coccolithophorid algae (Prymnesiophyceae), Pleurochrysis carterae, Emiliania huxleyi, and Gephyrocapsa oceanica, was investigated in plate, carboy, airlift, and tubular photobioreactors. The plate photobioreactor was the most promising closed cultivation system. All species could be grown in the carboy photobioreactor. However, P. carterae was the only species which grew in an airlift photobioreactor. Despite several attempts to grow these coccolithophorid species in the tubular photobioreactor (Biocoil), including modification of the airlift and sparger design, no net growth could be achieved. The shear produced by turbulence and bubble effects are the most likely reasons for this failure to grow in the Biocoil. The highest total dry weight, lipid and calcium carbonate productivities achieved by P. carterae in the plate photobioreactors were 0.54, 0.12, and 0.06 g L(-1) day(-1) respectively. Irrespective of the type of photobioreactor, the productivities were P. carterae > E. huxleyi > G. oceanica. Pleurochrysis carterae lipid (20-25% of dry weight) and calcium carbonate (11-12% of dry weight) contents were also the highest of all species tested. Copyright © 2011 Wiley Periodicals, Inc.

  10. Is the Future Really in Algae?

    Science.gov (United States)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  11. Detection of Cyanotoxins in Algae Dietary Supplements

    Directory of Open Access Journals (Sweden)

    Audrey Roy-Lachapelle

    2017-02-01

    Full Text Available Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF, anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae. Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD and ultra-high performance liquid chromatography (UHPLC both coupled to high resolution mass spectrometry (HRMS enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer’s awareness on the potential risks associated with the consumption of these supplements.

  12. Interactions of Radiofrequency Radiation with NITELLA: Electrical Excitation and Perturbation of the Control of Cytoplasmic Streaming.

    Science.gov (United States)

    1982-03-01

    electrical state of the membrane in response to microwave exposure. Liu, et. al. (1982) exposed Chara corallina to 2.5-3.0 GHz microwaves, 36 w/kg for up to...of the effects of continuous wave, pulse- and amplitude modulated microwaves on single excitable cells of Chara corallina . Bioelectromagnetics (In...cells. J. of Ultrastructure Res. 71:321-330. Williamson, R.E. 1974. Actin in the alga Chara corallina . Nature. 241:801-802. -. 1975. Cytoplasmic

  13. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    Science.gov (United States)

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. SOIL ALGAE OF BLADE OF COIL IN DONETSK REGION

    Directory of Open Access Journals (Sweden)

    Maltseva I.A.

    2011-12-01

    Full Text Available On territory of Donbass for more than 200 years the underground coal mining has produced, accompanied by the formation of the mine dumps. Finding ways to reduce their negative impact on the environment should be based on their comprehensive study. The soil algae are active participants in the syngenetic processes in industrial dumps of different origin. The purpose of this paper is to identify the species composition and dominant algae groups in dump mine SH/U5 “Western” in the western part of Donetsk.The test blade is covered with vegetation to the middle from all sides, and on the north side of 20-25 m to the top. The vegetation cover of the lower and middle tiers of all the exposures range in 70-80%. Projective vegetation cover of upper tiers of the northern, north-eastern and north-western exposures are in the range of 20-40%, other – 5-10%. We revealed some 38 algae species as a result of our research in southern, northern, western, and eastern slopes of the blade “Western”. The highest species diversity has Chlorophyta - 14 species (36.8% of the total number of species, then Cyanophyta - 9 (23,7%, Bacillariophyta - 7 (18,4%, Xantophyta - 5 (13.2%, and Eustigmatophyta - 3 (7.9%. The dominants are represented by Hantzschia amphyoxys (Ehrenberg Grunow in Cleve et Grunow, Bracteacoccus aerius, Klebsormidium flaccidum (Kützing Silva et al., Phormidium autumnale, Pinnularia borealis Ehrenberg, Planothidium lanceolatum (Brebisson in Kützing Bukhtiyarova, Xanthonema exile (Klebs Silva.It should be noted that the species composition of algae groups in different slopes of the blade was significantly different. Jacquard coefficient was calculated for algae communities varied in the range of 15,4-39,1%. The smallest number of algae species was observed on the southern slope of the blade (14 species, maximum was registered in the areas of north and west slopes. Differences in the species composition of algae were also observed in three

  15. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu

    2016-07-09

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians.

  16. [Toxicity of Coptis chinensis Rhizome Extracts to Green Algae].

    Science.gov (United States)

    Chen, Ya-nan; Yuan, Ling

    2015-05-01

    Coptis chinensis contains antiseptic alkaloids and thus its rhizomes and preparations are widely used for the treatment of.fish diseases. In order to realize the risk of water ecosystems produced by this medical herb and preparations used in aquaculture, the present experiment was carried out to study the toxicity of Coptis chinensis rhizome extract (CRE) to Scenedesmus oblique and Chlorella pyrenoidosa grown in culture solution with 0.00 (CK), 0.088 (Tl), 0.44 (T2) and 1.76 mg · L(-1) (T3) of CRE, respectively. The results show that low concentration of CRE (T1) inhibited the growth rate of the alga and high CRE (T2 and T3) ceased growth and reproductions. CRE also decreased the chlorophyll and proteins in alga cells, indicating the inhibition of photosynthesis and protein biosynthesis, which could be direct reasons for the low growth rate and death of green alga. The efflux of protons and substances from alga cells led to pH reduction and conductivity increment in culture solution with CRE. Furthermore, the activity of superoxide dismutase in alga increased at the beginning of CRE in T1 and T2 treatments but decreased as time prolonged which was in contrast to high CRE treatment. And the long exposure to low CRE treatment behaved otherwise. This suggests that the low concentration of CRE could induce the resistant reactions in alga at initial time but high CRE concentration or long exposure even at low CRE concentration could inhibit the enzyme synthesis. Similarly, malondialdehyde in alga increased as CRE concentrations increased in culture solutions, implying the damage and high permeability of cell membrane. In general, Chlorella pyrenoidosa was more sensitive to CRE. The abuse of rhizomes and preparations in aquaculture and intensive cultivation of Coptis chinensis plants in a large scale might produce ecological risks to primary productivity of water ecosystems.

  17. Two-step evolution of endosymbiosis between hydra and algae.

    Science.gov (United States)

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Optimal control of algae growth by controlling CO 2 and nutrition flow using Pontryagin Maximum Principle

    Science.gov (United States)

    Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi

    2017-09-01

    There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.

  19. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  20. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    Science.gov (United States)

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Overcoming Microalgae Harvesting Barrier by Activated Algae Granules.

    Science.gov (United States)

    Tiron, Olga; Bumbac, Costel; Manea, Elena; Stefanescu, Mihai; Nita Lazar, Mihai

    2017-07-05

    The economic factor of the microalgae harvesting step acts as a barrier to scaling up microalgae-based technology designed for wastewater treatment. In view of that, this study presents an alternative microalgae-bacteria system, which is proposed for eliminating the economic obstacle. Instead of the microalgae-bacteria (activated algae) flocs, the study aimed to develop activated algae granules comprising the microalgae Chlorella sp. as a target species. The presence of the filamentous microalgae (Phormidium sp.) was necessary for the occurrence of the granulation processes. A progressive decrease in frequency of the free Chlorella sp. cells was achieved once with the development of the activated algae granules as a result of the target microalgae being captured in the dense and tangled network of filaments. The mature activated algae granules ranged between 600 and 2,000 µm, and were characterized by a compact structure and significant settling ability (21.6 ± 0.9 m/h). In relation to the main aim of this study, a microalgae recovery efficiency of higher than 99% was achieved only by fast sedimentation of the granules; this performance highlighted the viability of the granular activated algae system for sustaining a microalgae harvesting procedure with neither cost nor energy inputs.

  2. Development and characteristics of an adhesion bioassay for ectocarpoid algae.

    Science.gov (United States)

    Evariste, Emmanuelle; Gachon, Claire M M; Callow, Maureen E; Callow, James A

    2012-01-01

    Species of filamentous brown algae in the family Ectocarpaceae are significant members of fouling communities. However, there are few systematic studies on the influence of surface physico-chemical properties on their adhesion. In the present paper the development of a novel, laboratory-based adhesion bioassay for ectocarpoid algae, at an appropriate scale for the screening of sets of experimental samples in well-replicated and controlled experiments is described. The assays are based on the colonization of surfaces from a starting inoculum consisting of multicellular filaments obtained by blending the cultured alga Ectocarpus crouaniorum. The adhesion strength of the biomass after 14 days growth was assessed by applying a hydrodynamic shear stress. Results from adhesion tests on a set of standard surfaces showed that E. crouaniorum adhered more weakly to the amphiphilic Intersleek® 900 than to the more hydrophobic Intersleek® 700 and Silastic® T2 coatings. Adhesion to hydrophilic glass was also weak. Similar results were obtained for other cultivated species of Ectocarpus but differed from those obtained with the related ectocarpoid species Hincksia secunda. The response of the ectocarpoid algae to the surfaces was also compared to that for the green alga, Ulva.

  3. Algae Production from Wastewater Resources: An Engineering and Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan [Longitude 122 West, Inc.; Efroymson, Rebecca Ann [ORNL

    2018-03-01

    Co-locating algae cultivation ponds near municipal wastewater (MWW) facilities provides the opportunity to make use of the nitrogen and phosphorus compounds in the wastewater as nutrient sources for the algae. This use benefits MWW facilities, the algae biomass and biofuel or bioproduct industry, and the users of streams where treated or untreated waste would be discharged. Nutrient compounds can lead to eutrophication, hypoxia, and adverse effects to some organisms if released downstream. This analysis presents an estimate of the cost savings made possible to cultivation facilities by using the nutrients from wastewater for algae growth rather than purchase of the nutrients. The analysis takes into consideration the cost of pipe transport from the wastewater facility to the algae ponds, a cost factor that has not been publicly documented in the past. The results show that the savings in nutrient costs can support a wastewater transport distance up to 10 miles for a 1000-acre-pond facility, with potential adjustments for different operating assumptions.

  4. Anti-phytopathogenic activities of macro-algae extracts.

    Science.gov (United States)

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens.

  5. Boron uptake, localization, and speciation in marine brown algae.

    Science.gov (United States)

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.

  6. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    Directory of Open Access Journals (Sweden)

    Ingrid Ramírez

    2011-05-01

    Full Text Available Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens.

  7. Evolution of reproductive development in the volvocine algae.

    Science.gov (United States)

    Hallmann, Armin

    2011-06-01

    The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male-female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ-soma division of labor and male-female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed. © The Author(s) 2010. This article is published with open access at Springerlink.com

  8. Acute toxicity and associated mechanisms of four strobilurins in algae.

    Science.gov (United States)

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-04-03

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Sustainability of algae derived biodiesel: a mass balance approach.

    Science.gov (United States)

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Visualization of oxygen distribution patterns caused by coral and algae.

    Science.gov (United States)

    Haas, Andreas F; Gregg, Allison K; Smith, Jennifer E; Abieri, Maria L; Hatay, Mark; Rohwer, Forest

    2013-01-01

    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L(- 1)) and daylight (97.9 ± 27.5 µmol O2 L(- 1)) conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones.

  11. Visualization of oxygen distribution patterns caused by coral and algae

    Directory of Open Access Journals (Sweden)

    Andreas F. Haas

    2013-07-01

    Full Text Available Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp. and a hermatypic coral (Favia sp. separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L- 1 and daylight (97.9 ± 27.5 µmol O2 L- 1 conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones.

  12. Algae from the arid southwestern United States: an annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  13. Effects of Harmful Algae on the Physiology of Fishes

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo Søndergaard

    Blooms of harmful planktonic algae causing adverse effects in aquatic environments are a global problem, causing both human morbidity and killing aquatic lifeforms worldwide. Focusing on fish kills, it is largely unknown what mechanisms of the fish’s physiology are affected during exposure......-waters having enough oxygen to sustain life, but not too warm like the surface water layer. The proposed adverse pathway, being gill destruction, for fish exposed to Alexandrium monilatum suggests that co-occurring events of Alexandrium monilatum and oxygen squeeze events will tighten the oxygen limitation...... is largely caused by the fish and to a lesser extent the experimental setup. Before this thesis, systematic studies of fish physiology under the influence of harmful algae consisted of one algae species, Chattonella marina. Now there are a total of 4 species studied. Lastly, during the Ph...

  14. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  15. Sex pheromone of marine algae; Kaiso no sei pheromone

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, T. [Yamaguchi University, Yamaguchi (Japan). Faculty of Agriculture

    1997-10-20

    The marine ecosystem skillfully uses various `odor materials` as chemical signals. In particular, this `odor materials` are indispensable for various organisms with no motor function or poor underdeveloped visual sensation in order to maintain or expand their species. German algae scholars found a male gamete induction active material secreted from a female gamete of primitive brown algae in 1971. Eleven kinds of sex pheromones have been found from brown algae up to the present since 1971. All of these found sex pheromones are hydrophobic `odor materials` composed of hydrocarbons containing 8 or 11 carbon atoms or epoxide (oxirane), and are compounds with singular chemical structures as physiological active material in the hydrosphere. Some sex pheromones govern not only inducement of spermatozoons but also discharge of spermatozoons from an antheridium. The sex pheromone with both functions of discharge and inducement was found from the culture solution of a certain tangle weed. 2 refs., 2 figs.

  16. Characteristics of Red Algae Bioplastics/Latex Blends under Tension

    Directory of Open Access Journals (Sweden)

    M. Nizar Machmud

    2013-10-01

    Full Text Available Cassava, corn, sago and the other food crops have been commonly used as raw materials to produce green plastics. However, plastics produced from such crops cannot be tailored to fit a particular requirement due to their poor water resistance and mechanical properties. Nowadays, researchers are hence looking to get alternative raw materials from the other sustainable resources to produce plastics. Their recent published studies have reported that marine red algae, that has been already widely used as a raw material for producing biofuels, is one of the potential algae crops that can be turned into plastics. In this work, Eucheuma Cottonii, that is one of the red alga crops, was used as raw material to produce plastics by using a filtration technique. Selected latex of Artocarpus altilis and Calostropis gigantea was separately then blended with bioplastics derived from the red algae, to replace use of glycerol as plasticizer. Role of the glycerol and the selected latex on physical and mechanical properties of the red algae bioplastics obtained under a tensile test performed at room temperature are discussed. Tensile strength of some starch-based plastics collected from some recent references is also presented in this paperDoi: 10.12777/ijse.5.2.81-88 [How to cite this article: Machmud, M.N., Fahmi, R.,  Abdullah, R., and Kokarkin, C.  (2013. Characteristics of Red Algae Bioplastics/Latex Blends under Tension. International Journal of Science and Engineering, 5(2,81-88. Doi: 10.12777/ijse.5.2.81-88

  17. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  18. Using the marine unicellular algae in biological monitoring

    Directory of Open Access Journals (Sweden)

    Kapkov V. I.

    2017-06-01

    Full Text Available The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb in the form of chloride salts on the growth of axenic algae culture has been studied in the modelling experiments. The unicellular marine algae have a very short life cycle, therefore it is possible to use them in the experiments of studying the effect of anthropogenic factors at cellular and population levels on the test-object. With biomonitoring pollution of marine environment by heavy metals and others dangerous toxicants, the major indicators of algae community condition are the cellular cycle and the condition of the photosynthetic apparatus of the cell. The subsequent lysis of cells under the influence of heavy metals leads to the excretion of secondary metabolites which can essentially affect the metal toxicity. The established scales of threshold and lethal concentration of heavy metals for algae of different taxon make it possible to use the ratio of sensitive and resistant species to heavy metals as biological markers when forecasting ecological consequences of pollution of the marine environment by heavy metals. Distinctions in the resistance of different taxon to heavy metals can result in implementing the strategy of selection of test-objects depending on the purposes of the research.

  19. Floating Algae Blooms in the East China Sea

    Science.gov (United States)

    Qi, Lin; Hu, Chuanmin; Wang, Mengqiu; Shang, Shaoling; Wilson, Cara

    2017-11-01

    A floating algae bloom in the East China Sea was observed in Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in May 2017. Using satellite imagery from MODIS, Visible Infrared Imaging Radiometer Suite, Geostationary Ocean Color Imager, and Ocean Land Imager, and combined with numerical particle tracing experiments and laboratory experiments, we examined the history of this bloom as well as similar blooms in previous years and attempted to trace the bloom source and identify the algae type. Results suggest that one bloom origin is offshore Zhejiang coast where algae slicks have appeared in satellite imagery almost every February-March since 2012. Following the Kuroshio Current and Taiwan Warm Current, these "initial" algae slicks are first transported to the northeast to reach South Korea (Jeju Island) and Japan coastal waters (up to 135°E) by early April 2017, and then transported to the northwest to enter the Yellow Sea by the end of April. The transport pathway covers an area known to be rich in Sargassum horneri, and spectral analysis suggests that most of the algae slicks may contain large amount of S. horneri. The bloom covers a water area of 160,000 km2 with pure algae coverage of 530 km2, which exceeds the size of most Ulva blooms that occur every May-July in the Yellow Sea. While blooms of smaller size also occurred in previous years and especially in 2015, the 2017 bloom is hypothesized to be a result of record-high water temperature, increased light availability, and continuous expansion of Porphyra aquaculture along the East China Sea coast.

  20. Homogeneity of Danish environmental and clinical isolates of Shewanella algae

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Holt, H.M.; Gerner-Smidt, P.

    2000-01-01

    Danish isolates of Shewanella algae constituted by whole-cell protein profiling a very homogeneous group, and no clear distinction was seen between strains from the marine environment and strains of clinical origin. Although variation between all strains was observed by ribotyping and random...... amplified polymorphic DNA analysis, no clonal relationship between infective strains was found. From several patients, clonally identical strains of S. algae were reisolated up to 8 months after the primary isolation, indicating that the same strain may be able to maintain the infection....

  1. [Effects of aniline and phenol on freshwater algae growth].

    Science.gov (United States)

    Chen, Chuan-ping; Zhang, Ting-ting; He, Mei; Wu, An-ping; Nie, Liu-wang

    2007-01-01

    By the methods of bioassay, this paper studied the effects of aniline or phenol on the growth of Chlorella pyrenoidosa and Scenedesmus obiquus. The results showed that these two compounds had evident effects on the growth of test algae species. For the same species, aniline was more toxic. Under the same concentration of the compounds, S. obiquus was more sensitive than C. pyrenoidosa. These two algae species could degrade or absorb parts of the compounds, and phenol in particular, when their concentrations were lower.

  2. Chemical composition of the green alga Codium Divaricatum Holmes.

    Science.gov (United States)

    He, Zhizhou; Zhang, Anjiang; Ding, Lisheng; Lei, Xinxiang; Sun, Jianzhang; Zhang, Lixue

    2010-12-01

    A new sterol, 24-R-stigmasta-4,25-diene-3β,6β-diol (1), along with three known compounds (2-3), was isolated from the green alga Codium divaricatum Holmes, a traditional Chinese medicine, which is efficacious against cancer. All structures were determined by spectroscopic methods and comparison with related known compounds. Single-crystal X-ray crystallography allowed us to confirm the structure of 1. To our knowledge, the compound 1 is reported as the first from natural source, and compounds 2, 4 have not been isolated from green algae before. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. The attached algae community near Pickering GS: III

    International Nuclear Information System (INIS)

    McKinley, S.R.

    1982-01-01

    The relationship between attached algae and macro-invertebrates in the nearshore zone of Lake Ontario was investigated in the vicinity of the Pickering 'A' NGS. Measures of faunal density, richness, evenness, and biomass were generally higher from areas which supported attached algae. Gammarus fasciatus, Cricotopus bicinctus, Dicrotendipes spp., Orthocladius obumbratus, Cladotanytarsus spp., Orthocladius spp., and Parakiefferiella spp., were significantly correlated with algal standing crop. All of the above dominant invertebrates ingested epiphytes associated with Cladophora glomerata. Attempts to explain the distribution of the zoobenthic assemblages using the physical/biological characteristics of the study area indicated algal cover, substrate size, wind velocity and water temperature were most important

  4. Distribution and biomass estimation of shell-boring algae in the intertidal area at Goa India

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Sharma, S.; Lande, V.

    and particulate organic carbon (POC) values in cultures of the green alga Gomontia sp. and the blue-green alga Plectonema terebrans, in biomass and POC contribution of these two types of microalgae in shells were calculated....

  5. Distribution of algae, seagrasses, and coral communities from Lakshadweep islands, eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.

    Marine algae, seagrasses and coral from the intertidal, lagoon, reef and subtidal regions (up to 22 m depth) at Kavaratti, Agatti, Bangaram and Suheli islands, of Lakshadweep were studied Marine algae and seagrasses were mainly confined...

  6. Value of crops: Quantity, quality and cost price. [algae as a nutritional supplement

    Science.gov (United States)

    Meyer, C.

    1979-01-01

    Possibilities of using algae as a nutritional supplement are examined. The nutritional value and protein content of spirulines of blue algae are discussed. A cost analysis of growing them artificially is presented.

  7. Synthetic algae and cyanobacteria: Great potential but what is the exposure risk?

    Science.gov (United States)

    Green algae and cyanobacteria (hereafter, algae) have the attractive properties of relatively simple genomes, rapid growth rates, and an ability to synthesize useful compounds using solar energy and carbon dioxide. They are attractive targets for applications of synthetic biology...

  8. Beberapa Marga Alga Benang dan Hubungannya dengan Keberadaan Vektor Malaria di Bali Utara

    OpenAIRE

    Seregeg, I. G

    1988-01-01

    A study of filamentous algae and its relation to malaria vector control was conducted during the dry season in several lagoons at the north coast of Bali. Floating masses of these algae under the sunshine barricated the spread of solar-triton larvicide, reducing tremendously the effectiveness of the larvicide. Identification of the genera of these algae under the subphyllum of CYANOPHYTA (Blue Algae) in the family of Cyanophyceae were Oscillatoria, Spirulina, Phormidium, Rivularia, Nostoc, an...

  9. Algae of economic importance that accumulate cadmium and lead: a review

    OpenAIRE

    Souza, Priscila O.; Ferreira, Lizângela R.; Pires, Natanael R. X.; S. Filho, Pedro J.; Duarte, Fabio A.; Pereira, Claudio M. P.; Mesko, Márcia F.

    2012-01-01

    Currently, algae and algae products are extensively applied in the pharmaceutical, cosmetic and food industries. Algae are the main organisms that take up and store heavy metals. Therefore, the use of compounds derived from algae by the pharmaceutical industry should be closely monitored for possible contamination. The pollution generated by heavy metals released by industrial and domestic sources causes serious changes in the aquatic ecosystem, resulting in a loss of biological diversity and...

  10. A review of the taxonomical and ecological studies on Netherlands’ Algae

    NARCIS (Netherlands)

    Koster, Joséphine Th.

    1939-01-01

    The earliest account of the Netherlands’ Algae appeared in 1781 in D. de Gorter, Flora VII Prov. Belgii foederati indigen. Here, however, in the Algae lichens and liverworts have been incorporated. The true Algae, of which 35 are enumerated, are principally marine, though also aërophytical and

  11. New methodologies for the integration of power plants with algae ponds

    NARCIS (Netherlands)

    Schipper, K.; Gijp, S. van der; Stel, R.W van der; Goetheer, E.L.V.

    2013-01-01

    It is generally recognized that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient

  12. Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques

    OpenAIRE

    Holzinger, Andreas; Pichrtov?, Martina

    2016-01-01

    Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important...

  13. Sexual reproduction and sex determination in green algae.

    Science.gov (United States)

    Sekimoto, Hiroyuki

    2017-05-01

    The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt + ) and mating type minus (mt - ), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt + and mt - mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.

  14. On the pigment system of the red alga Porphyra Lacineata

    NARCIS (Netherlands)

    Thomas, J.B.; Marsman, J.W.

    1959-01-01

    Absorption and fluorescence around 725 mμ of suspensions of the red alga Porphyra lacineata were studied both with and without the phycobilins attached to the pigment system. The in vivo occurrence of 2 chlorophyll a types was confirmed spectroscopically. Their red absorption maxima are located at

  15. Algas vene kirjanduse nädal / Raimu Hanson

    Index Scriptorium Estoniae

    Hanson, Raimu, 1957-

    2008-01-01

    22. septembril algas Tartu Linnaraamatukogus vene kirjanduse nädal Inga Ivanova raamatu "Kadunud koerte saladus" esitlusega; 24. sept. toimub Igor Kotjuhi autoriõhtu; 26.-28. toimub Tartu Ülikoolis vene kirjandusele pühendatud rahvusvaheline teaduskonverents. Raamatukogust saab osta ka venekeelseid raamatuid

  16. Diversity of the Symbiotic Alga Symbiodinium in Tanzanian ...

    African Journals Online (AJOL)

    Abstract—With the current increase in frequency of coral bleaching events, knowledge on the genetic diversity of symbiotic algae in the genus Symbiodinium harboured by reef-building corals is important to understand how coral reefs will respond to global climate change. This study was undertaken as very little is known.

  17. Epiphytic Algae study from pool of Ammiq (Bekaa, Lebanon)

    International Nuclear Information System (INIS)

    SLIM, K.

    1984-01-01

    In this particular place which constitutes the pool of Ammiq, 104 species and varieties have been collected. The diatoms constitute in themselves 85% of the algae population. This is an epiphytic microflora which is attached to the immerged macrophytics on this above mentioned place . (author)

  18. Cytotoxic hydroazulene diterpenes from the brown alga Cystoseira myrica.

    Science.gov (United States)

    Ayyad, Seif-Eldin N; Abdel-Halim, Osama B; Shier, W Thomas; Hoye, Thomas R

    2003-01-01

    Cytotoxicity-guided fractionation of the alcohol extract of the brown alga, Cystoseira myrica, afforded four new cytotoxic hydroazulene diterpenes, dictyone acetate (2), dictyol F monoacetate (4), isodictytriol monoacetate (6), and cystoseirol monoacetate (8), together with two known cytotoxic hydroazulene diterpenes, pachydictyol A (1) and dictyone (3). The constitution of each isolated compound has been determined on the basis of spectroscopic and chemical evidence.

  19. Potential use of Algae Microcystis aeruginosa (Chroococaceae) in ...

    African Journals Online (AJOL)

    The test alga was subjected to growth medium with varying concentrations of petrol and kerosene. Algal growth was determined by measuring optical density of inoculated medium at three days' interval using a spectrophotometer at 750nm wavelength. The effect of the hydrocarbons on algal growth was either stimulatory or ...

  20. New records of brown algae (Phaeophyta) from the Azores.

    OpenAIRE

    Parente, Manuela I.; Fletcher, Robert L.; Neto, Ana I.

    2000-01-01

    Copyright © 2000 Kluwer Academic Publishers. Printed in the Netherlands. The following five species of microscopic tuft-forming/encrusting brown algae (Phaeophyta) are newly recorded for the Island of São Miguel (Azores): Nemoderma tingitana Schousboe ex Bornet. Pseudolithoderma roscoffense Loiseaux (Lithodermataceae), Hecatonema terminalis (Kutzing) Kylin (Punctariaceae), Compsonema saxicolum (Kuckuck) Kuckuck, and Microspongium gelatinosum Reinke (Scytosiphonaceae). The species are descr...

  1. FINE STRUCTURE AND ORGANELLE ASSOCIATIONS IN BROWN ALGAE

    Science.gov (United States)

    Bouck, G. Benjamin

    1965-01-01

    The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells. PMID:5865936

  2. Algae of the Bohemian Forest. 1. Specieses richness

    Czech Academy of Sciences Publication Activity Database

    Lederer, F.; Lukavský, Jaromír

    2001-01-01

    Roč. 6, - (2001), s. 97-104 ISSN 1211-7420 R&D Projects: GA AV ČR IA60504; GA ČR GA206/99/1411 Institutional research plan: CEZ:AV0Z6005908 Keywords : Bohemian Forest * species richness * biodiversity * algae * cyanobacteria * lakes * brooks * rivers * bogs Subject RIV: EH - Ecology, Behaviour

  3. Efficiency of using green algae as biological controllers against toxic ...

    African Journals Online (AJOL)

    Treatment I (untreated) served as a control, Treatment II was seeded with Microcystis aeruginosa, Treatment III was seeded with green algae Chlorella ellipsoidea and Scenedesmus bijuga, and Treatment IV was seeded with a mixture of M. aeruginosa and C. ellipsoidea and S. bijuga. After 10 days, Treatment IV showed ...

  4. Planktonic algae and cyanoprokaryotes as indicators of ecosystem ...

    African Journals Online (AJOL)

    To whom all correspondence should be addressed. ☎ +27 18 299-2517; fax: +27 18 299-2370; e-mail: 10066551@nwu.ac.za. Received 14 November 2012; accepted in revised form 7 October 2013. Planktonic algae and cyanoprokaryotes as indicators of ecosystem quality in the Mooi River system in the. North-West ...

  5. Symbiotic Blue Green Algae (Azolla): A Potential Bio fertilizer for ...

    African Journals Online (AJOL)

    Symbiotic Blue Green Algae (Azolla): A Potential Bio fertilizer for Paddy Rice Production in Fogera Plain, Northwestern Ethiopia. ... They were maintained and multiplied in plastic containers at Adet in a greenhouse and then inoculated into concrete tanks for testing their adaptability. Both strains were well adapted to Adet ...

  6. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    Science.gov (United States)

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  7. Micro-algae: the Rise of Next Generation Biofuels

    CSIR Research Space (South Africa)

    Moodley, G

    2015-03-01

    Full Text Available stream_source_info Moodley_2015.pdf.txt stream_content_type text/plain stream_size 1163 Content-Encoding UTF-8 stream_name Moodley_2015.pdf.txt Content-Type text/plain; charset=UTF-8 Chapter 5 Micro-algae: the Rise...

  8. Seasonal abundance of epipelic algae and sediment parameters of ...

    African Journals Online (AJOL)

    Amadi-Ama creek is located close to sources of wastes which are introduced into the creek thus altering the physico-chemical parameters and the aquatic biota of the creek due to variation in nutrient load of the water. The seasonal abundance of epipelic algae and sediment parameters of Amadi-Ama Creek were ...

  9. Evaluation of Algae from the effluent of Dandot cement company ...

    African Journals Online (AJOL)

    Twenty genera and fifty species of algae have been reported from the effluent water of Dandot Cement Company. They include thirteen genera and thirty five species from Chlorophyceae; three genera and six species from Cyanophyceae and four genera and nine species from Bacillariophyceae. Camera Lucida drawings ...

  10. Preliminary Studies on the Occurrence of Freshwater Epipelic Algae ...

    African Journals Online (AJOL)

    The occurrence and composition of the freshwater algae in the epipelon were determined at three sites, namely Machigeni, Manhean and Weija, located in the coastal savanna thicket and grassland vegetation zone of the River Densu basin in southern Ghana. Samples of sediments from the water-substratum interface ...

  11. Prospective effect of red algae, Actinotrichia fragilis, against some ...

    African Journals Online (AJOL)

    Most of the current treatment strategies for OA are effective for symptoms relief but are accompanied with adverse side effect. Thus, the present investigation aims to evaluate the potential influence of red algae, Actinotrichia fragilis, in the dry powder form (AFP) or gel form (AFG) on some relevant factors of OA progression as ...

  12. Switchable photosystem-II designer algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  13. Experimental analysis of the competition between algae and duckweed

    NARCIS (Netherlands)

    Roijackers, R.M.M.; Szabo, S.; Scheffer, M.

    2004-01-01

    We performed indoor competition experiments between algae and Lemna gibba L. in order to unravel mechanisms of competition. To separate effects of shading and physical interference from nutrient competition we grew the two groups physically separated while sharing the same water. A multifactorial

  14. Bioremediation of acid mine drainage using algae strains: A review

    Directory of Open Access Journals (Sweden)

    J.K. Bwapwa

    2017-12-01

    Full Text Available Acid mine drainage (AMD causes massive environmental concerns worldwide. It is highly acidic and contains high levels of heavy metals causing environmental damage. Conventional treatment methods may not be effective for AMD. The need for environmental remediation requires cost effective technologies for efficient removal of heavy metals. In this study, algae based systems were reviewed and analyzed to point out the potentials and gaps for future studies. Algae strains such as Spirulina sp., Chlorella, Scenedesmus, Cladophora, Oscillatoria, Anabaena, Phaeodactylum tricornutum have showed the capacity to remove a considerable volume of heavy metals from AMD. They act as “hyper-accumulators” and “hyper-adsorbents” with a high selectivity for different elements. In addition, they generate high alkalinity which is essential for precipitation of heavy metals during treatment. However, algae based methods of abating AMD are not the ultimate solution to the problem and there is room for more studies. : The bioremediation of acid mine drainage is achievable with the use of microalgae. Keywords: Acid mine drainage, Algae strains, Contamination, Heavy metals, Bioremediation

  15. The alga Trachydiscus minutus (Pseudostaurastrum minutum): growth and composition

    Czech Academy of Sciences Publication Activity Database

    Iliev, I.; Petkov, G.; Lukavský, Jaromír; Furnadzhieva, S.; Andreeva, R.; Bankova, V.

    2011-01-01

    Roč. 36, 3-4 (2011), 222-231 ISSN 1312-8183 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : algae, * fatty acids * pilot plant cultivation Subject RIV: EF - Botanics

  16. Removal of Algae in Stabilization Ponds Effluent using Moringa ...

    African Journals Online (AJOL)

    A number of studies have proved natural coagulants achieve high turbidity removal in water treatment. A pilot scale study was conducted to evaluate the effectiveness of natural coagulant (moringa oleifera) with respect to algae removal. Required effluent from stabilization ponds was diverted into the horizontal baffle ...

  17. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  18. The Belmont Valley integrated algae pond system in retrospect ...

    African Journals Online (AJOL)

    Integrated Algae Pond Systems (IAPS) are a derivation of the Oswald-designed Algal Integrated Wastewater Pond Systems (AIWPS®) and combine the use of anaerobic and aerobic bioprocesses to effect sewage treatment. IAPS technology was introduced to South Africa in 1996 and a pilot plant designed and ...

  19. Transesterification of oil extracted from different species of algae for ...

    African Journals Online (AJOL)

    In the current study, biodiesel production efficiency of Chlorella vulgaris, Rhizoclonium hieroglyphicum and mixed algae culture was measured by transesterification process. Growth rate of algal species was measured on the basis of increase in their dry matter in various media. Protein, carbohydrates and lipids in all ...

  20. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Biological removal of algae in an integrated pond system

    CSIR Research Space (South Africa)

    Meiring, PGJ

    1995-01-01

    Full Text Available A system of oxidation ponds in series with a biological trickling filter is described. It was known that this arrangement was incapable of reducing effectively the levels of algae present in the pond liquid even though nitrification was effected...

  2. Carbon Partitioning in Green Algae (Chlorophyta and the Enolase Enzyme

    Directory of Open Access Journals (Sweden)

    Jürgen E. W. Polle

    2014-08-01

    Full Text Available The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.

  3. Biogas Production from Food Wastes and Algae | Jeetah | University ...

    African Journals Online (AJOL)

    University of Mauritius Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 22 (2016) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Biogas Production from Food Wastes and Algae.

  4. Effect of blue-green algae on soil nitrogen

    African Journals Online (AJOL)

    Yagya Prasad Paudel

    2012-07-31

    Jul 31, 2012 ... Nitrogen fixed by cyanobacteria is released either through exudation or through microbial decomposition after the alga dies. In paddy fields, the death of algal biomass is most frequently associated with soil dessication at the end of the cultivation cycle and algal growth has frequently resulted in a gradual ...

  5. Free Sterols of the red alga Chondria armata (Kutz.) Okamura

    Digital Repository Service at National Institute of Oceanography (India)

    Govenkar, M.B.; Wahidullah, S.

    The free sterols of the red alga, Chondria armata have been identified by means of NMR, EIMS and GCMS analyses. The mixture contained besides cholesterol, C sub(28) and C sub(29) saturated as well as unsaturated components. The major component...

  6. Oxytocic principle of red alga @iAmphiroa fragilissima@@

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Das, B.; Patnaik, G.K.

    The crude aqueous methanolic extract of the marine red alga @iAmphiroa fragilissima@@ has been reported as exhibiting oxytocic and spasmogenic activity at a dose of 50 ~kg/ml. The activity is located in the water soluble fraction and has been found...

  7. Chemical constituents of the red alga @iAcanthophora spicifera@@

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    Analysis of the petroleum-wither and chloroform extracts of the marine red alga @iAcanthophora spicifera@@ led to the isolation of a sterol, cholesterol, fatty acids, stearic, palmitic, behenic (C@d22@@) and arachidic acids (C@d20@@) and a fatty...

  8. Cadmium uptake by the green alga Chlorella emersonii | Arikpo ...

    African Journals Online (AJOL)

    Investigations were carried out on the uptake of the heavy metal cadmium (Cd) by the green alga Chlorella emersonii with the aid of an ion selective electrode. Cadmium uptake by Chlorella was very rapid with 70% of total uptake occurring during the first 10 seconds. Uptake of cadmium by Chlorella showed a direct ...

  9. MORPHOLOGICAL ANATOMICAL AND PHITOCHEMICAL CHARACTERISTICS OF SOME ALGAE

    Directory of Open Access Journals (Sweden)

    N. S. Kaysheva

    2014-01-01

    Full Text Available Morphological and anatomical features of thalluses of brown (Laminaria saccharina, Fucus vesiculosus and red (Ahnfeltia plicata algae, procured at a coastal strip of the Northern basin in gulfs of Ura-Guba and Palkina-Guba at different depths. Compliance of Fucus and Ahnfeltia with pharmacopoeial norms and merchandising indices for Laminaria was established, except for high concentration of sand in Ahnfeltia thalluses. The identity of algae between each other was shown based on the results of qualitative analysis on polysaccharides, alginic acids, reducing sugars, iodine, mannitol, amino acids presence. Quantitative content of polysaccharides, alginic acids, reducing sugars, pentosans, iodine, cellulose, mannitol, proteins, lipids, agar was determined. In comparison with Fucus and Ahnfeltia higher concentration of the following content was noted in Laminaria: alginic acids (1.4 and 5.75 times higher, polysaccharides (1.3 and 1.4 times, iodine (4.5 and 1.8 times, mannatol (1.5 and 2.5 times (data received is statistically reliable. Impropriety of storm algae for processing was shown as law quality raw material. The highest concentration of active substances was revealed in Laminaria thalluses which were procured at the depth of 10 m in a period from September to October. Active accumulation of sodium, potassium, calcium, iron, magnesium, manganese corresponding to similar sea water composition was established in algae. Mathematical equations of regression between protein and manganese, protein and iron content in algae were deduced. Under proper conditions of drying and storage high quality of the materials can be preserved during 3 years. Based on the findings of photochemical researches, taking into account squares of plantations and possible exploitation stocks, the possibility and prospectivity of industrial processing of Fucus vesiculosus and Ahnfeltia plicata together with Laminaria saccharina as plant sources of polysaccharides (mainly

  10. Algae viability over time in a ballast water sample

    Science.gov (United States)

    Gollasch, Stephan; David, Matej

    2018-03-01

    The biology of vessels' ballast water needs to be analysed for several reasons, one of these being performance tests of ballast water management systems. This analysis includes a viability assessment of phytoplankton. To overcome logistical problems to get algae sample processing gear on board of a vessel to document algae viability, samples may be transported to land-based laboratories. Concerns were raised how the storage conditions of the sample may impact algae viability over time and what the most appropriate storage conditions were. Here we answer these questions with a long-term algae viability study with daily sample analysis using Pulse-Amplitude Modulated (PAM) fluorometry. The sample was analysed over 79 days. We tested different storage conditions: fridge and room temperature with and without light. It seems that during the first two weeks of the experiment the viability remains almost unchanged with a slight downwards trend. In the continuing period, before the sample was split, a slightly stronger downwards viability trend was observed, which occurred at a similar rate towards the end of the experiment. After the sample was split, the strongest viability reduction was measured for the sample stored without light at room temperature. We concluded that the storage conditions, especially regarding temperature and light exposure, have a stronger impact on algae viability compared to the storage duration and that inappropriate storage conditions reduce algal viability. A sample storage time of up to two weeks in a dark and cool environment has little influence on the organism viability. This indicates that a two week time duration between sample taking on board a vessel and the viability measurement in a land-based laboratory may not be very critical.

  11. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Yan, X.J.

    1998-01-01

    The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than...... those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae...

  12. An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom

    Directory of Open Access Journals (Sweden)

    Yao Junyang

    2014-06-01

    Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.

  13. Influence of Algae Age and Population on the Response to TiO₂ Nanoparticles.

    Science.gov (United States)

    Metzler, David M; Erdem, Ayca; Huang, Chin Pao

    2018-03-25

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO₂ NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3-4.2 × 10⁶ cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO₂ NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae.

  14. The effects of ProAlgaZyme novel algae infusion on metabolic syndrome and markers of cardiovascular health

    Directory of Open Access Journals (Sweden)

    Hildreth DeWall J

    2007-09-01

    Full Text Available Abstract Background Metabolic Syndrome, or Syndrome X, is characterized by a set of metabolic and lipid imbalances that greatly increases the risk of developing diabetes and cardiovascular disease. The syndrome is highly prevalent in the United States and worldwide, and treatments are in high demand. ProAlgaZyme, a novel and proprietary freshwater algae infusion in purified water, has been the subject of several animal studies and has demonstrated low toxicity even with chronic administration at elevated doses. The infusion has been used historically for the treatment of several inflammatory and immune disorders in humans and is considered well-tolerated. Here, the infusion is evaluated for its effects on the cardiovascular risk factors present in metabolic syndrome in a randomized double-blind placebo-controlled study involving 60 overweight and obese persons, ages 25–60. All participants received four daily oral doses (1 fl oz of ProAlgaZyme (N = 22 or water placebo (N = 30 for a total of 10 weeks, and were encouraged to maintain their normal levels of physical activity. Blood sampling and anthropometric measurements were taken at the beginning of the study period and after 4, 8 and 10 weeks of treatment. Eight participants did not complete the study. Results ProAlgaZyme brought about statistically significant (p Conclusion ProAlgaZyme (4 fl oz daily consumption resulted in significant reductions in weight and blood glucose levels, while significantly improving serum lipid profiles and reducing markers of inflammation, thus improving cardiovascular risk factors in overweight and obese subjects over a course of 10 weeks with an absence of adverse side effects. Trial Registration US ClinicalTrials.gov NCT00489333

  15. [Treatment of polluted urban river water using filamentous green algae].

    Science.gov (United States)

    Liang, Xia; Li, Xiao-Ping

    2008-01-01

    Filamentous green algae dominated treatment system was set up to remove contaminants from polluted urban river water under lab conditions. Experiments show that TP is decreased up to 50%, associated with 72% removal of TSS. The removal efficiencies of soluble species, PO4(3-) and NH4(+)-N, are up to 90% and 85% respectively. Under heavily polluted conditions (TP > 3.0 mg x L(-1), TN > 22.0 mg x L(-1)), the average removal efficiencies of TP and TN are 89% and 45% respectively, while under light polluted conditions (TP filamentous green algae is increased significantly (38.78%), and at the same time a large number of unicellular Chlorophytes and Cyanophytes species are occurred on the interior wall surface of experimental fertility. The maximum biomass occurs at the highest concentration of DO.

  16. Inorganic carbon addition stimulates snow algae primary productivity.

    Science.gov (United States)

    Hamilton, Trinity L; Havig, Jeff R

    2018-01-29

    Earth has experienced glacial/interglacial oscillations accompanied by changes in atmospheric CO 2 throughout much of its history. Today over 15 million square kilometers of Earth's land surface is covered in ice including glaciers, ice caps, and ice sheets. Glaciers are teeming with life and supraglacial snow and ice surfaces are often darkened by the presence of photoautotrophic snow algae, resulting in accelerated melt due to lowered albedo. Few studies report the productivity of snow algal communities and the parameters which constrain their growth on supraglacial surfaces-key factors for quantifying biologically induced albedo effects (bio-albedo). We demonstrate that snow algae primary productivity is stimulated by the addition of inorganic carbon. Our results indicate a positive feedback between increasing CO 2 and snow algal primary productivity, underscoring the need for robust climate models of past and present glacial/interglacial oscillations to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO 2 .

  17. Marine Polysaccharides from Algae with Potential Biomedical Applications

    Science.gov (United States)

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  18. Marine polysaccharides from algae with potential biomedical applications.

    Science.gov (United States)

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-05-15

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  19. Marine Polysaccharides from Algae with Potential Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-05-01

    Full Text Available There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  20. Sodium, potassium-atpases in algae and oomycetes.

    Science.gov (United States)

    Barrero-Gil, Javier; Garciadeblás, Blanca; Benito, Begoña

    2005-08-01

    We have investigated the presence of K(+)-transporting ATPases that belong to the phylogenetic group of animal Na(+),K(+)-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H(+)- and Na(+),K(+)-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells.

  1. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms

    Science.gov (United States)

    Teeling, Hanno; Fuchs, Bernhard M; Bennke, Christin M; Krüger, Karen; Chafee, Meghan; Kappelmann, Lennart; Reintjes, Greta; Waldmann, Jost; Quast, Christian; Glöckner, Frank Oliver; Lucas, Judith; Wichels, Antje; Gerdts, Gunnar; Wiltshire, Karen H; Amann, Rudolf I

    2016-01-01

    A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. DOI: http://dx.doi.org/10.7554/eLife.11888.001 PMID:27054497

  2. Accumulation and loss of technetium by macrophytic algae

    International Nuclear Information System (INIS)

    Benco, C.; Cannarsa, S.; Ceppodomo, I.; Zattera, A.

    1986-01-01

    Preliminary results are presented of a study of the accumulation of Tc by four species of brown algae (Sargassum vulgare, Cystoseira complexa, Dictyopteris membranacea, Dictyota dichotama implexa) and one species of green algae (Chlorophyta, Ulva rigida). With the exception of Cystoseira complexa, the accumulation was very rapid, and concentration factors decreased from Sargassum vulgare to Ulva rigida. Young stipes of Cystoseira complexa concentrated twice as much more Tc than cylindrical main axes. Attempts were made to understand the mechanism of Tc accumulation by brown seaweed. Fucoidan, a pool of high molecular weight polysaccharides extracted from Fucus sp. was put with sup(95m)Tc in seawater for 48 h and then dialysed, but no activity was retained by Fucoidan. (UK)

  3. Ecological assessments with algae: a review and synthesis.

    Science.gov (United States)

    Stevenson, Jan

    2014-06-01

    Algae have been used for a century in environmental assessments of water bodies and are now used in countries around the world. This review synthesizes recent advances in the field around a framework for environmental assessment and management that can guide design of assessments, applications of phycology in assessments, and refinements of those applications to better support management decisions. Algae are critical parts of aquatic ecosystems that power food webs and biogeochemical cycling. Algae are also major sources of problems that threaten many ecosystems goods and services when abundances of nuisance and toxic taxa are high. Thus, algae can be used to indicate ecosystem goods and services, which complements how algal indicators are also used to assess levels of contaminants and habitat alterations (stressors). Understanding environmental managers' use of algal ecology, taxonomy, and physiology can guide our research and improve its application. Environmental assessments involve characterizing ecological condition and diagnosing causes and threats to ecosystems goods and services. Recent advances in characterizing condition include site-specific models that account for natural variability among habitats to better estimate effects of humans. Relationships between algal assemblages and stressors caused by humans help diagnose stressors and establish targets for protection and restoration. Many algal responses to stressors have thresholds that are particularly important for developing stakeholder consensus for stressor management targets. Future research on the regional-scale resilience of algal assemblages, the ecosystem goods and services they provide, and methods for monitoring and forecasting change will improve water resource management. © 2014 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.

  4. Evidence of ancient genome reduction in red algae (Rhodophyta).

    Science.gov (United States)

    Qiu, Huan; Price, Dana C; Yang, Eun Chan; Yoon, Hwan Su; Bhattacharya, Debashish

    2015-08-01

    Red algae (Rhodophyta) comprise a monophyletic eukaryotic lineage of ~6,500 species with a fossil record that extends back 1.2 billion years. A surprising aspect of red algal evolution is that sequenced genomes encode a relatively limited gene inventory (~5-10 thousand genes) when compared with other free-living algae or to other eukaryotes. This suggests that the common ancestor of red algae may have undergone extensive genome reduction, which can result from lineage specialization to a symbiotic or parasitic lifestyle or adaptation to an extreme or oligotrophic environment. We gathered genome and transcriptome data from a total of 14 red algal genera that represent the major branches of this phylum to study genome evolution in Rhodophyta. Analysis of orthologous gene gains and losses identifies two putative major phases of genome reduction: (i) in the stem lineage leading to all red algae resulting in the loss of major functions such as flagellae and basal bodies, the glycosyl-phosphatidylinositol anchor biosynthesis pathway, and the autophagy regulation pathway; and (ii) in the common ancestor of the extremophilic Cyanidiophytina. Red algal genomes are also characterized by the recruitment of hundreds of bacterial genes through horizontal gene transfer that have taken on multiple functions in shared pathways and have replaced eukaryotic gene homologs. Our results suggest that Rhodophyta may trace their origin to a gene depauperate ancestor. Unlike plants, it appears that a limited gene inventory is sufficient to support the diversification of a major eukaryote lineage that possesses sophisticated multicellular reproductive structures and an elaborate triphasic sexual cycle. © 2015 Phycological Society of America.

  5. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    OpenAIRE

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal myceli...

  6. Novel meroditerpenes from the brown alga Cystoseira sp.

    Science.gov (United States)

    Navarro, Guillermo; Fernández, José J; Norte, Manuel

    2004-03-01

    Five new meroditerpenes have been isolated from a brown alga of the genus Cystoseira collected around the Canary Islands. One, cystoseirone diacetate (3), possesses a new rearranged structure with an unusual ether linkage in the diterpene side chain. Its biogenetic origin was explained as derived from the oxidation of amentol chromane diacetate (2) and subsequent cyclization. Structures were determined through the interpretation of the spectral data and by means of chemical transformations. The relative stereochemistry was proposed on the basis of ROESY correlations.

  7. DNA barcode of coastal alga ( Chlorella sorokiniana ) from Ago ...

    African Journals Online (AJOL)

    Five different loci 18S, UPA, rbcl, ITS and tufA were tested for their use as deoxyribonucleic acid (DNA) barcode in this study. Although the UPA primers were designed to amplify all phototrophic algae and cyanobacteria, UPA and 18S did not amplified at all for the genus Chlorella while ITS1, ITS2 rDNA and rbcL markers ...

  8. Monoclonal Antibodies Directed to Fucoidan Preparations from Brown Algae

    OpenAIRE

    Torode, Thomas A.; Marcus, Susan E.; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S.; Herv?, C?cile; Knox, J. Paul

    2015-01-01

    International audience; Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and...

  9. Algal omics: unlocking bioproduct diversity in algae cell factories.

    Science.gov (United States)

    Guarnieri, Michael T; Pienkos, Philip T

    2015-03-01

    Rapid advances in "omic" technologies are helping to unlock the full potential of microalgae as multi-use feedstocks, with utility in an array of industrial biotechnology, biofuel, and biomedical applications. In turn, algae are emerging as highly attractive candidates for development as microbial cell factories. In this review, we examine the wide array of potential algal bioproducts, with a focus upon the role of omic technologies in driving bioproduct discovery and optimization in microalgal systems.

  10. Adsorption of copper onto char derived macro alga, Undaria pinnatifida

    International Nuclear Information System (INIS)

    Cho, Hye Jung; Ko, Jeong Huy; Heo, Hyeon Su; Park, Hye Jin; BAe, Yoon Ju; Kim, Jung Hwan; Park, Young-Kwon

    2010-01-01

    Full text: A release of heavy metals into the environment by industrial activities raises much environmental problems because they tend to remain indefinitely, circulating and eventually accumulating throughout the food chain. Copper is essential to human life and health but, like all heavy metals, is potentially toxic as well. The excessive intakes of copper result in its accumulation in the liver and produce gastrointestinal problems, kidney damage, anemia, and continued inhalation of copper-containing sprays is linked with an increase in lung cancer among exposed people. Consequently, we need to eliminate the copper in drinking water. Also, growth rates of marine macro algae far exceed those of terrestrial biomass, without water limitations, so annual primary production rates are higher for the major marine macro algae than for most terrestrial biomass. According to these reasons, we try to use the macro alga, Undaria pinnatifida. Adsorption of heavy metals is one of the possible technologies involved in the removal of toxic metals from industrial waste streams and mining waste water using low-cost adsorbents. In recent years, many low-cost adsorbents such as seaweeds, activated carbon, etc. have been investigated, but the char by macro alga, Undaria pinnatifida, have not proven to be the most effective and promising substrates. The aim of this study is to remove copper from its aqueous solution by Undaria pinnatifida char for various parameters like pH, contact time, and Cu(II) concentration. The adsorption capacity of Cu(II) by Undaria pinnatifida char was investigated as a function of pH, contact time, and Cu(II) concentration at room temperature. And it was verified using equilibrium studies. (author)

  11. The problems of Prochloron. [evolution of green algae

    Science.gov (United States)

    Lewin, R. A.

    1983-01-01

    Prokaryotic green algae (prochlorophytes), which contain chlorophylls a and b but no bilin pigments, may be phylogenetically related to ancestral chloroplasts if symbiogenesis occurred. They may be otherwise related to eukaryotic chlorophytes. They could have evolved from cyanophytes by loss of phycobilin and gain of chlorophyll b synthesis. These possibilities are briefly discussed. Relevant evidence from biochemical studies in many collaborative laboratories is now becoming available for the resolution of such questions.

  12. Nitrogen and sulfur assimilation in plants and algae

    Czech Academy of Sciences Publication Activity Database

    Giordano, Mario; Raven, John A.

    2014-01-01

    Roč. 118, č. 2 (2014), s. 45-61 ISSN 0304-3770 Grant - others:University of Dundee(GB) SC 015096; Italian Ministry for Agriculture(IT) MIPAF, Bioforme project; Italian Ministry of Foreign Affairs(IT) MAE. Joint Italian-Israel Cooperation Program Institutional support: RVO:61388971 Keywords : nitrogen * sulfur * assimilation * algae Subject RIV: EE - Microbiology, Virology Impact factor: 1.608, year: 2014

  13. Cytotoxic bicyclic diterpene from the brown alga Sargassum crispum.

    Science.gov (United States)

    Ayyad, S E; Slama, M O; MoKhtar, A H; Anter, A F

    2001-01-01

    Study of the brown alga Sargassum crispum collected from Red Sea resulted in the isolation of new diterpene with hydroazulene skeleton, Sargassinone (6), some fatty acids ethyl ester andsome fatty acids. The identification of the isolated metabolites was established mainly by spectral methods and chemical transformation of sargassinone (6) to its acetate (7). The two diterpens (6, 7) exhibited substantial cytotoxic activities, as indicated by their IC50 values at the dose of 10 micrograms/ml or less.

  14. Rare species of fungi parasitizing on algae. IV

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The following parasites of the genera Spirogyra Link, Mougeotia Agardh and Oedogonium Link are desribed: Myzocyutium irregulare, Woroninu glomerata, Harpochytrium tenuissimum, Woronina polycystis, Chytridium acuminatu, Myzocytium irregulare and Chytridumm acuminatum are new to Poland. Also, the first information on Woronina polycystis as a parasite on algae is presented. The figure of cystosori in a cell of Mougeotia mysorensis is the first graphic documentation of this species.

  15. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing.

    Science.gov (United States)

    Limayem, Alya; Micciche, Andrew; Nayak, Bina; Mohapatra, Shyam

    2018-01-01

    Algae biomass-fed wastewaters are a promising source of lipid and bioenergy manufacture, revealing substantial end-product investment returns. However, wastewaters would contain lytic pathogens carrying drug resistance detrimental to algae yield and environmental safety. This study was conducted to simultaneously decipher through high-throughput advanced Illumina 16S ribosomal RNA (rRNA) gene sequencing, the cultivable and uncultivable bacterial community profile found in a single sample that was directly recovered from the local wastewater systems. Samples were collected from two previously documented sources including anaerobically digested (AD) municipal wastewater and swine wastewater with algae namely Chlorella spp. in addition to control samples, swine wastewater, and municipal wastewater without algae. Results indicated the presence of a significant level of Bacteria in all samples with an average of approximately 95.49% followed by Archaea 2.34%, in local wastewaters designed for algae cultivation. Taxonomic genus identification indicated the presence of Calothrix, Pseudomonas, and Clostridium as the most prevalent strains in both local municipal and swine wastewater samples containing algae with an average of 17.37, 12.19, and 7.84%, respectively. Interestingly, swine wastewater without algae displayed the lowest level of Pseudomonas strains algae indicates potential coexistence between these strains and algae microenvironment, suggesting further investigations. This finding was particularly relevant for the earlier documented adverse effects of some nosocomial Pseudomonas strains on algae growth and their multidrug resistance potential, requiring the development of targeted bioremediation with regard to the beneficial flora.

  16. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  17. Origins of multicellular complexity: Volvox and the volvocine algae.

    Science.gov (United States)

    Herron, Matthew D

    2016-03-01

    The collection of evolutionary transformations known as the 'major transitions' or 'transitions in individuality' resulted in changes in the units of evolution and in the hierarchical structure of cellular life. Volvox and related algae have become an important model system for the major transition from unicellular to multicellular life, which touches on several fundamental questions in evolutionary biology. The Third International Volvox Conference was held at the University of Cambridge in August 2015 to discuss recent advances in the biology and evolution of this group of algae. Here, I highlight the benefits of integrating phylogenetic comparative methods and experimental evolution with detailed studies of developmental genetics in a model system with substantial genetic and genomic resources. I summarize recent research on Volvox and its relatives and comment on its implications for the genomic changes underlying major evolutionary transitions, evolution and development of complex traits, evolution of sex and sexes, evolution of cellular differentiation and the biophysics of motility. Finally, I outline challenges and suggest future directions for research into the biology and evolution of the volvocine algae. © 2016 John Wiley & Sons Ltd.

  18. Study of algae's adsorption to uranium ion in water solution

    International Nuclear Information System (INIS)

    Du Yang; Qiu Yongmei; Dan Guiping; Zhang Dong; Lei Jiarong

    2007-01-01

    The adsorption efficiencies of the algae to uranium ion were determined at various pH, uranium ion concentrations, adsorption temperatures and the species of coexisted metal ions, and the effect of coexisted metal ion on the adsorption efficiency was researched. The experimental results at pH= 5-8 are as follows. 1) the adsorption capacity is a constant to be about 1.40 μg/g for the Yantai red alga and the sea spinach, and is changeable in the range of 1.03-2.23 μg/g with pH for the sea edible fungus; 2) for the algae the adsorption efficiency and adsorption capacity are related to uranium ion concentration, and the maximum adsorption efficiency and capacity is 95.8% and 65.4 μg/g, respectively; 3) the adsorption process for 24 h is not dependent on the temperature; 4) the effect of the species of coexisted metal ions on the adsorption capacity of uranium ion is various with the time during adsorption process. (authors)

  19. Phycobilisome Heterogeneity in the Red Alga Porphyra umbilicalis1

    Science.gov (United States)

    Algarra, Patricia; Thomas, Jean-Claude; Mousseau, Anne

    1990-01-01

    Phycobilisomes were isolated from Rhodophyceae brought from the field (Porphyra umbilicalis) or grown in culture under laboratory conditions (Antithamnion glanduliferum). In P. umbilicalis two kinds of well-coupled (ellipsoidal and hemidiscoidal) phycobilisomes were detected, in contrast to A. glanduliferum cultured algae in which only one kind of well-coupled, ellipsoidaltype phycobilisome appeared. The new phycobilisome-type particle detected in P. umbilicalis is characterized by an impoverishment in R-phycoerythrin and by sedimentation at lower density. The comparison between both phycobilisomes of P. umbilicalis allows determination of the presence of one colorless linker polypeptide (30 kilodaltons) associated with R-phycocyanin and allophycocyanin and two (40 and 38 kilodaltons) associated to R-phycoerythrin. The percentage of linker polypeptides associated with this pigment is low in the new phycobilisome-like particle detected. This suggests that part of the R-phycoerythrin is less strongly bound to the phycobilisome than the other pigments. This feature could probably explain the existence of two kinds of phycobilisomes as intermediary steps of phycobilisome organization in algae exposed to rapid changes in environmental factors. In contrast, algae growing in culture and adapted to specific conditions do not present intermediary organization steps. Polypeptide composition and identification are given for this phycobilisome-like particle. Images Figure 4 Figure 5 PMID:16667317

  20. Multicellularity in green algae: Upsizing in a walled complex.

    Directory of Open Access Journals (Sweden)

    David S. Domozych

    2014-11-01

    Full Text Available Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix, most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In ulvophytes, uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell-adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell’s signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the extracellular matrix. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity.

  1. Multicellularity in green algae: upsizing in a walled complex.

    Science.gov (United States)

    Domozych, David S; Domozych, Catherine E

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In "ulvophytes," uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell's signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity.

  2. Enzyme-Enhanced Extraction of Antioxidant Ingredients from Algae.

    Science.gov (United States)

    Adalbjörnsson, Björn V; Jónsdóttir, Rósa

    2015-01-01

    Marine algae are not only a rich source of dietary fibre, proteins, vitamins, and minerals, but also contain a great variety of secondary metabolites with diverse biological activities. Marine macroalgae are a rich source of various natural antioxidants such as polyphenols, especially phlorotannins (made of polyphloroglucinol units) derived from brown algae, which play an important role in preventing lipid peroxidation. In recent years, a number of potent antioxidant compounds have been isolated and identified from different types of edible seaweeds. Extraction methods commonly used for the isolation of antioxidants are based on conventional water or organic solvent extractions. However, recent advances have shown that enzymatic hydrolysis can achieve higher yield of bioactive compounds from algae. Here we describe a method based on enzymatic hydrolysis which both increases yield and decreases cost associated with organic solvents. This method achieves cell wall disruption and breakdown of internal storage components for more effective release of intracellular bioactive compounds. In addition, hydrolysis of proteins produces peptides which may have antioxidant properties, thus enhancing the bioactivity of the algal extract. The method described can be used for production of extracts from red and brown macroalgal species.

  3. Cytotoxicity of algae extracts on normal and malignant cells.

    Science.gov (United States)

    Bechelli, Jeremy; Coppage, Myra; Rosell, Karen; Liesveld, Jane

    2011-01-01

    Algae preparations are commonly used in alternative medicine. We examined the effects of algae extracts on normal hematopoietic cells and leukemia cells. Ethanol extracts were prepared of Dunaliella salina (Dun), Astaxanthin (Ast), Spirulina platensis (Spir), and Aphanizomenon flos-aquae (AFA). Cell viability effects were completed by Annexin staining. Ast and AFA inhibited HL-60 and MV-4-11 whereas Dun and Spir had no effect. Primary AML blasts demonstrated increased apoptosis in AFA. Primary CLL cells showed apoptosis at 24 hours after exposure to Dun, Ast, Spir, and AFA. High AFA concentrations decreased viability of normal marrow cells. Normal CD34+ viability was inhibited by Dun. Dun and AFA inhibited BFU-E, but all extracts inhibited CFU-GM. Cell-cycle analysis of AML cell lines showed G0/G1 arrest in the presence of AFA. These data suggest that algae extracts may inhibit AML cell lines and leukemia blasts, but they may also have potential inhibitory effects on normal hematopoiesis.

  4. Uptake and distribution of technetium in several marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO/sup -//sub 4/ and the remainder is bound to small molecules. 8 references, 5 figures, 1 table.

  5. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp in size; it contains a large single-copy (LSC, 76,598 bp and a small single-copy region (SSC, 42,977 bp, separated by two inverted repeats (IRa and IRb: 5,404 bp. The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.

  6. Extraction, Purification, and NMR Analysis of Terpenes from Brown Algae.

    Science.gov (United States)

    Gaysinski, Marc; Ortalo-Magné, Annick; Thomas, Olivier P; Culioli, Gérald

    2015-01-01

    Algal terpenes constitute a wide and well-documented group of marine natural products with structures differing from their terrestrial plant biosynthetic analogues. Amongst macroalgae, brown seaweeds are considered as one of the richest source of biologically and ecologically relevant terpenoids. These metabolites, mostly encountered in algae of the class Phaeophyceae, are mainly diterpenes and meroditerpenes (metabolites of mixed biogenesis characterized by a toluquinol or a toluquinone nucleus linked to a diterpene moiety).In this chapter, we describe analytical processes commonly employed for the isolation and structural characterization of the main terpenoid constituents obtained from organic extracts of brown algae. The successive steps include (1) extraction of lipidic content from algal samples; (2) purification of terpenes by column chromatography and semi-preparative high-performance liquid chromatography; and (3) structure elucidation of the isolated terpenes by means of 1D and 2D nuclear magnetic resonance (NMR). More precisely, we propose a representative methodology which allows the isolation and structural determination of the monocyclic meroditerpene methoxybifurcarenone (MBFC) from the Mediterranean brown alga Cystoseira amentacea var. stricta. This methodology has a large field of applications and can then be extended to terpenes isolated from other species of the family Sargassaceae.

  7. Metabolic engineering of higher plants and algae for isoprenoid production.

    Science.gov (United States)

    Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe

    2015-01-01

    Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.

  8. Towards tradable permits for filamentous green algae pollution.

    Science.gov (United States)

    de Lange, W J; Botha, A M; Oberholster, P J

    2016-09-01

    Water pollution permit systems are challenging to design and implement. Operational systems that has maintained functionality remains few and far between, particularly in developing countries. We present current progress towards developing such a system for nutrient enrichment based water pollution, mainly from commercial agriculture. We applied a production function approach to first estimate the monetary value of the impact of the pollution, which is then used as reference point for establishing a reserve price for pollution permits. The subsequent market making process is explained according to five steps including permit design, terms, conditions and transactional protocol, the monitoring system, piloting and implementation. The monetary value of the impact of pollution was estimated at R1887 per hectare per year, which not only provide a "management budget" for filamentous green algae mitigation strategies in the study area, but also enabled the calculation of a reserve price for filamentous green algae pollution permits, which was estimated between R2.25 and R111 per gram filamentous algae and R8.99 per gram at the preferred state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Controlling harmful algae blooms using aluminum-modified clay.

    Science.gov (United States)

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparative phycoremediation of sewage water by various species of algae

    International Nuclear Information System (INIS)

    Ahmad, F.; Khan, A.U.; Yasar, A.

    2013-01-01

    In this study sewage water treatment efficiency of Chlorella vulgaris, Rhizoclonium hieroglyphicum And mixed algae culture (Microspora sp., Navicula sp., Lyngbya sp.,Cladophora sp.,Spirogyra sp. and Rhizoclonium sp.) was compared. Sampled wastewater was analyzed for various parameters (i.e., COD, BOD, TS, TSS, TDS, TC, FC, TKN, TP, NO/sub 3/-N, PO/sub 4/,SO/sub 4/and Cl-) and concentrations of all these parameters in the untreated water were above the permissible limits of National Environmental Quality Standards of Pakistan (2000). Various algal species were used to treat sewage water by varying pond size, treatment duration, seasonal variation and growth rate of algae to arrive at the optimum outcome. Maximum percent reductions of various parameters, attained with C. vulgaris, were: chemical oxygen demand (98.3%), biochemical oxygen demand (98.7%), total Kjeldahl nitrogen (93.1%), total phosphorus (98.0%), nitrate (98.3%), phosphate (98.6%), chloride (94.2%), total coliforms (99.0%), faecal coliforms (99.0%) and total dissolved solids (98.2%) while maximum reduction in total suspended solids (92.0%) was obtained with a mixed algae culture and maximum increase in biomass by R. hieroglyphicum (0.75 g L/sup -1/day/sup -1/). Reduction in the concentration of pollutants in sewage water was to such a low level that it can be thrown in water bodies without any further treatment. (author)

  11. Ecology of planktonic foraminifera and their symbiotic algae

    International Nuclear Information System (INIS)

    Gastrich, M.D.

    1986-01-01

    Two types of symbiotic algae occurred abundantly and persistently in the cytoplasm of several species of planktonic Foraminifera over a ten year period in different tropical and subtropical areas of the North Atlantic Ocean. These planktonic Foraminifera host species consistently harbored either dinoflagellates or a newly described minute coccoid algal type. There appeared to be a specific host-symbiont relationship in these species regardless of year, season or geographic locality. The larger ovoid dinoflagellates (Pyrrhophycophyta) occur in the spinose species Globigerinoides ruber, Globigerinoides sacculifer, G. conglobatus and Orbulina universa. The smaller alga, from 1.5 to 3.5 um in diameter, occurs in one spinose species Globigerinella aequilateralis and also in the non-spinose species Globigerinita glutinata, Globoquadrina dutertrei, Globorotalia menardii, Globorotalia cristata, Globorotalia inflata, Candeina nitida, in various juvenile specimens and at all seasons except the winter months in Pulleniatina obliquiloculata and Globorotalial hirsuta. Controlled laboratory studies indicated a significant C incorporation into the host cytoplasm and inorganic calcium carbonate test of Globigerinoides ruber. During incubation for up to two hours, the 14 C uptake into the cytoplasm and test in the light was significantly greater than uptake in the dark by living specimens or by dead foraminifers. There appears to be light-enhanced uptake of 14 C into the test with dinoflagellate photosynthesis contributing to host calcification. In culture, symbiotic algae were observed to survive for the duration of the lifespan of their hosts

  12. Uptake and distribution of technetium in several marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO - 4 and the remainder is bound to small molecules. 8 references, 5 figures, 1 table

  13. Extremophilic micro-algae and their potential contribution in biotechnology.

    Science.gov (United States)

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. An updated comprehensive techno-economic analysis of algae biodiesel.

    Science.gov (United States)

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Toxic effects of decomposing red algae on littoral organisms

    Science.gov (United States)

    Eklund, Britta; Svensson, Andreas P.; Jonsson, Conny; Malm, Torleif

    2005-03-01

    Large masses of filamentous red algae of the genera Polysiphonia, Rhodomela, and Ceramium are regularly washed up on beaches of the central Baltic Sea. As the algal masses start to decay, red coloured effluents leak into the water, and this tinge may be traced several hundred meters off shore. In this study, possible toxic effects of these effluents were tested on littoral organisms from different trophic levels. Effects on fertilisation, germination and juvenile survival of the brown seaweed Fucus vesiculosus were investigated, and mortality tests were performed on the crustaceans Artemia salina and Idotea baltica, as well as on larvae and adults of the fish Pomatoschistus microps. Fucus vesiculosus was the most sensitive species of the tested organisms to the red algal extract. The survival of F. vesiculosus recruits was reduced with 50% (LC50) when exposed to a concentration corresponding to 1.7 g l -1 dw red algae. The lethal concentration for I. baltica, A. salina and P. microps were approximately ten times higher. The toxicity to A. salina was reduced if the algal extract was left to decompose during two weeks but the decline in toxicity was not affected by different light or temperature conditions. This study indicates that the filamentous red algae in the central Baltic Sea may produce and release compounds with negative effects on the littoral ecosystem. The effects may be particularly serious for the key species F. vesiculosus, which reproduce in autumn when filamentous red algal blooms are most severe.

  16. Fluorescence spectroscopy of algae commonly found on stone

    Science.gov (United States)

    Brechet, Eric; McStay, Daniel; Wakefield, Rachael D.; Sweet, M. A. S.

    1997-05-01

    Algal growth on stones, together with the deposition of other soiling layers, cause major conservation problems for buildings and monuments, as it not only covers the surface with a green layer, but also accelerates stone decay. In recent years laser ablation techniques have been used to clean masonry as they are potentially less destructive than chemical or physical techniques due to the high selectivity in removing the coating covering the stone and the absence of secondary products as with conventional techniques such as use of chemicals or of sandblasting. Whilst laser ablation cleaning is finding favor in removal of surface layers from stones there has been little or no reported work relating to the effect of the laser radiation on the algae found on stones. In order to optimize any cleaning or preservation technique for algae covered stones it is necessary to have a detailed knowledge of such effects. In this paper we report some initial results from the analysis of several algae commonly found on masonry before and after irradiation at different wavelengths using two lasers, a nitrogen laser and a Nd:YAG laser.

  17. Influence of thermal loading on the ecology of intertidal algae

    International Nuclear Information System (INIS)

    Vadas, R.L.; Keser, M.; Rusanowski, P.c.

    1976-01-01

    Thermal effluents from the Maine Yankee Atomic Power Company (operating intermittently from October 1972 to December 1974) increased water temperatures in the discharge area by 7 to 15 0 C. Plant operation and the removal of a causeway increased mixing and salinities in Montsweag Bay. Four small red algae immigrated into the area, but no species were lost from the system. Distribution and abundance patterns of the dominant algae, Ascophyllum nodosum and Fucus vesiculosus, were altered by the thermal discharge. The cover of F. vesiculosus decreased, whereas that of A. nodosum increased in 1973 but declined significantly in 1974. Reductions in biomass and percent cover were accompanied by changes in the growth dynamics of A. nodosum. Growth and survival in the discharge area were enhanced in 1973 but reduced in 1974. Growth was initiated earlier at all sites affected by the warm water. Plants at experimental sites not directly in the discharge channel grew at accelerated rates during the two years, but stressed plants in the discharge produced few or no viable apexes in 1974. The net effect has been a compression and reduction of intertidal algae into a narrower and less dense band

  18. Bio sorption of copper ions with biomass of algae and dehydrated waste of olives; Biosorcion de iones cobre con biomasa de algas y orujos deshidratados

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, P.; Santander, M.; Pavez, O.; Valderrama, L.; Guzman, D.; Romero, L.

    2011-07-01

    They were carried out experiments of biosorption batch and in continuous to remove copper from aqueous solutions using as adsorbents green algae and olive residues under virgins conditions and chemically activated. The results of batch bio sorption indicate that the algae present mayor elimination capacities than the waste of olives, with uptakes of copper of the order of 96 % using activated algae with dissolution of Na{sub 2}SO{sub 4} under the optimum conditions. The results of the columns tests show that the virgin algae permits the removal of more copper ions than the activate algae, with removal efficiency of 98 % during the firth 20 min, a breakthrough time of 240 min and a saturation at time of 600 min. In the second cycle the regenerated biomass showed a best performance indicating that they can be used for another bio sorption cycle. (Author) 42 refs.

  19. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  20. Biosorption of heavy metals by marine algae Ulva rigida, Cystoseira barbata and C. crinita

    Directory of Open Access Journals (Sweden)

    A. Simeonova

    2007-06-01

    Full Text Available Adsorption properties of three different marine algae (Ulva rigida (green algae; Cystoseira barbata (brown algae and Cystoseira crinita (brown algae were investigated. They were collected from the Black Sea coastal area in Varna region, Bulgaria. Kinetics were studied to evaluate the ability of the three algae to sequester Cu (II, Zn (II, Pb (II, Ni (II, Cd (II from aqueous solution. The maximum biosorption capacity obtained was 2.84 mgeq Ni2+/g for Cystoseira crinita and 2.28 mgeq Cu2+/g for Cystoseira barbata at a solution pH of 5 ± 0.5. The influence of pH of the solution and algae mass on the heavy metal sorption was investigated either. Desorption using 0.05 M HNO3 was carried out and was determined that regeneration of biomass for use in multiple cycles of Cd (II biosorption –desorption should be feasible.

  1. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    Science.gov (United States)

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  2. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    International Nuclear Information System (INIS)

    Peng Zhang'e; Wu Feng; Deng Nansheng

    2006-01-01

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe 3+ ions was investigated. Algae, humic acid and Fe 3+ ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 10 9 cells L -1 raw Chlorella vulgaris, 4 mg L -1 humic acid and 20 μmol L -1 Fe 3+ . The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment

  3. Chemical and radioactivity study of sea alga distribution along the Syrian coast

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Mamish, S.; Budeir, Y.

    2001-11-01

    Three types of sea alga distributed along the Syrian coast have been studied from the chemical and radioactivity point of view. Results have shown the metals that red alga contains the highest levels of Ca and Mg while brown alga were found to contain relatively high concentrations of other elements and non metals such as Cl, I and Br. In addition, 137 Cs concentrations in all the analyzed sample were low while the levels of naturally occurring radionuclides such as 210 Po, 210 Pb and radium isotopes were found to be high in red alga which indicates their selectivity to these isotopes. On the other hand, brown alga and especially Cysteseira has shown a clear selectivity for some trace elements such as As, Cr, Cd, Cu and Co, this selectivity may encourage the use of brown alga as biological indicator for trace elements pollution. (author)

  4. Soil algae and mesofauna communities in biotopes of forest rehabilitation in zhovti vody (Dnipropetrovsk region

    Directory of Open Access Journals (Sweden)

    A. V. Posrednikova

    2009-03-01

    Full Text Available The variety of soil algae was studied on areas of revegetation and without it in the Zhovti Vody. The systematic and ecological structure of algal flora and algae dominant species were indicated. We counted 28 species of soil algae on the dumps of uranium mining: Chlorophyta – 11 species (39.5 %, Cyanophyta – 11 (39.5 %, Xanthophyta – 2 (7 %, Bacillariophyta – 2 (7 %, Eustigmatohyta – 2 (7 %.

  5. Interaction between the macrophyte Stratiotes aloides and filamentous algae: does it indicate allelopathy?

    OpenAIRE

    Mulderij, G.; Mau, B.; De Senerpont Domis, L.N.; Smolders, A.J.P.; Van Donk, E.

    2009-01-01

    The aquatic macrophyte Stratiotes aloides Linnaeus, which has recently received attention in studies on allelopathy, has been shown to suppress phytoplankton growth. In the Netherlands, S. aloides often co-occurs with floating filamentous algae. However, filamentous algae are generally absent in close proximity to S. aloides, resulting in gaps in filamentous algae mats. We analyzed whether those gaps may be caused by allelopathic substances excreted by S. aloides or by nutrient depletion. We ...

  6. Antibacterial activities of bioactive compounds extracted from Marine algae Gracilaria salicornia against Aeromonas hydrophila

    OpenAIRE

    Somayeh Rasooli; Masoud Sattari; Zohreh Ramezanpour; Javid Imanpour Namin

    2015-01-01

    Herbal medicinal products have attracted significant research interest in recent years. Considering the efficiency of algae products in controlling pathogenic bacteria and also easy access to large resources of algae, this study was conducted to evaluate the effects of methanolic, chloroformic and aqueous extracts of Gracilaria salicornia against Aeromonas hydrophila, a heterotrophic, Gram-negative, rod-shaped bacterium found mainly in warm climate. Algae samples were collected from Qeshm Isl...

  7. Biosorption of Heavy Metal Ions to Brown Algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    OpenAIRE

    Seki, Hideshi; Suzuki, Akira

    1998-01-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to ...

  8. LIPIDS OF BLACK SEA ALGAE: UNVEILING THEIR POTENTIAL FOR PHARMACEUTICAL AND COSMETIC APPLICATIONS

    OpenAIRE

    Veselina Panayotova; Albena Merzdhanova; Diana A. Dobreva; Magdalen Zlatanov; Lubomir Makedonski

    2017-01-01

    Background: Bulgarian Black Sea coast is rich in algae, regarding biomass and algal biodiversity. The red algae Gelidium crinale (Rhodophyta) and brown algae Cystoseira barbata (Phaeophytes) are among the most abundant species along the Bulgarian Black Sea shore. Yet information about their lipid composition is limited. Purpose: Present study was conducted to investigate biologically active substances in two underexplored seaweed lipids. Total lipids, total phospholipids, fat soluble vita...

  9. Gain and loss of polyadenylation signals during evolution of green algae

    OpenAIRE

    Wodniok, Sabina; Simon, Andreas; Glöckner, Gernot; Becker, Burkhard

    2007-01-01

    Abstract Background The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related seq...

  10. The Cell Walls of Green Algae: A Journey through Evolution and Diversity

    OpenAIRE

    Domozych, David S.; Ciancia, Marina; Fangel, Jonatan U.; Mikkelsen, Maria Dalgaard; Ulvskov, Peter; Willats, William G. T.

    2012-01-01

    The green algae represent a large group of morphologically diverse photosynthetic eukaryotes that occupy virtually every photic habitat on the planet. The extracellular coverings of green algae including cell walls are also diverse. A recent surge of research in green algal cell walls fueled by new emerging technologies has revealed new and critical insight concerning these coverings. For example, the late divergent taxa of the Charophycean Green Algae possess cell walls containing assemblag...

  11. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds

    OpenAIRE

    Mikami, Koji; Hosokawa, Masashi

    2013-01-01

    Fucoxanthin is the main carotenoid produced in brown algae as a component of the light-harvesting complex for photosynthesis and photoprotection. In contrast to the complete elucidation of the carotenoid biosynthetic pathways in red and green algae, the biosynthetic pathway of fucoxanthin in brown algae is not fully understood. Recently, two models for the fucoxanthin biosynthetic pathway have been proposed in unicellular diatoms; however, there is no such information for the pathway in brown...

  12. A comparative study on the sterol composition of some brown algae from the Black Sea

    Directory of Open Access Journals (Sweden)

    SIMEON SIMEONOV POPOV

    2003-05-01

    Full Text Available The sterol composition of the brown algae Stilophora rhizodes (Turner J. Agardh, Punctaria latifolia Grev. and Punctaria plantaginea (Roth. Grev. from the Black Sea was investigated. Fifteen sterols were identified in the sterol fractions. The main ones were cholesterol and 24-methylenecholesterol. Characteristic for brown algae, fucosterol was present in low concentrations. The results obtained were compared with recent data for the sterol composition of other Black Sea brown algae. Some conclusions concerning the evolutionary position of brown algae are made.

  13. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  14. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.

    Science.gov (United States)

    Marchand, Justine; Heydarizadeh, Parisa; Schoefs, Benoît; Spetea, Cornelia

    2018-03-14

    Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.

  15. Application of Algae as Cosubstrate To Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Pedersen, Thomas Helmer; Zhao, Xueli

    2017-01-01

    This work proposes a novel strategy to improve the continuous processing of wood slurries in hydrothermal liquefaction systems by coprocessing with algae. Of all algae tested, brown seaweeds and microalgae perform best in preventing slurries dewatering, the main reason for pumpability issues...... with wood slurries. Rheological tests (viscosity–shear rate profile) indicate that the addition of these two algae to the wood slurry causes the highest increase in viscosity, which coincides with improved wood slurries stability and pumpability. Hydrothermal liquefaction of wood-algae slurries at 400 °C...

  16. Biogas performance from co-digestion of Taihu algae and kitchen wastes

    International Nuclear Information System (INIS)

    Zhao, Ming-Xing; Ruan, Wen-Quan

    2013-01-01

    Highlights: • Co-digestion mode improves the biogas yield of Taihu algae and kitchen wastes. • Neutral protease enzyme reached maximum in algae only group. • The activity of dehydrogenase enzyme in mixed substrate groups was higher than that of algae and kitchen wastes only group. - Abstract: Co-digestion of Taihu algae with high carbon content substrate can balance the nutrients in the fermentation process. In this study, optimal mixing ratio for co-digestion of Taihu algae and kitchen wastes were investigated in order to improve biogas production potential. The results indicated that the biogas yield reached 388.6 mL/gTS at C/N15:1 group, which was 1.29 and 1.18 times of algae and kitchen wastes only. The maximum concentration of VFA reached 4239 mg/L on 8th day in kitchen wastes group, which was 1.21 times of algae group. Neutral protease enzyme activity in algae group reached maximum of 904.2 μg/(gTS h), while dehydrogenase enzyme at C/N 15:1 group reached maximum of 3402.2 μgTF/(gTS h). The feasibility of adjusting the C/N with co-digestion of Taihu algae and kitchen wastes to increase biogas production was demonstrated. Remarkably, the C/N of 15:1 was found to be the most appropriate ratio

  17. Role of algae in water quality regulation in NPP water reservoirs

    International Nuclear Information System (INIS)

    Klenus, V.G.; Kuz'menko, M.I.; Nasvit, O.I.

    1985-01-01

    Investigations, carried out in Chernobyl NPP water reservoir, show that sewage water inflow, being not sufficiently purified, enriched by mineral and organic substances, is accompanied by a considerable increase of algae productivity. The algae play a determining role in accumulation of radionuclides and their transformation into bottom depositions. Comparative investigation of accumulation intensity in alga cells 12 C and 14 C gives evidence that the rate of radioactive nuclide inclusions is practically adequate to the rate of inclusions of their stable analogues. Bacterial destruction of organic contaminations occurs more intensively under aerobic conditions, which are mainly provided due to photosynthetizing activity of algae

  18. How-to-Do-It: Diatoms: The Ignored Alga in High School Biology.

    Science.gov (United States)

    Hungerford, James J.

    1988-01-01

    Provides historical background, descriptions, uses and basis for identification of diatoms. Explains collection, dry-mount cleaning, and preparation procedures of the algae. Cites additional resources. (RT)

  19. Biodiesel production from algae grown on food industry wastewater.

    Science.gov (United States)

    Mureed, Khadija; Kanwal, Shamsa; Hussain, Azhar; Noureen, Shamaila; Hussain, Sabir; Ahmad, Shakeel; Ahmad, Maqshoof; Waqas, Rashid

    2018-04-10

    Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater. This study was conducted to optimize the growth of microalgal strains and to assess biodiesel production potential of algae using untreated food industry wastewater as a source of nutrients. The food industry wastewater was collected and analyzed for its physicochemical characteristics. Different dilutions (10, 20, 40, 80, and 100%) of this wastewater were made with distilled water, and growth of two microalgal strains (Cladophora sp. and Spyrogyra sp.) was recorded. Each type of wastewater was inoculated with microalgae, and biomass was harvested after 7 days. The growth of both strains was also evaluated at varying temperatures, pH and light periods to optimize the algal growth for enhanced biodiesel production. After optimization, biodiesel production by Spyrogyra sp. was recorded in real food industry wastewater. The algal biomass increased with increasing level of food industry wastewater and was at maximum with 100% wastewater. Moreover, statistically similar results were found with algal growth on 100% wastewater and also on Bristol's media. The Cladophora sp. produced higher biomass than Spyrogyra sp. while growing on food industry wastewater. The optimal growth of both microalgal strains was observed at temperature 30 °C, pH: 8, light 24 h. Cladophora sp. was further evaluated for biodiesel production while growing on 100% wastewater and found that this strain produced high level of oil and biodiesel. Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater.

  20. Multispectral sorter for rapid, nondestructive optical bioprospecting for algae biofuels

    Science.gov (United States)

    Davis, Ryan W.; Wu, Hauwen; Singh, Seema

    2014-03-01

    Microalgal biotechnology is a nascent yet burgeoning field for developing the next generation of sustainable feeds, fuels, and specialty chemicals. Among the issues facing the algae bioproducts industry, the lack of efficient means of cultivar screening and phenotype selection represents a critical hurdle for rapid development and diversification. To address this challenge, we have developed a multi-modal and label-free optical tool which simultaneously assesses the photosynthetic productivity and biochemical composition of single microalgal cells, and provides a means for actively sorting attractive specimen (bioprospecting) based on the spectral readout. The device integrates laser-trapping micro-Raman spectroscopy and pulse amplitude modulated (PAM) fluorometry of microalgal cells in a flow cell. Specifically, the instrument employs a dual-purpose epi-configured IR laser for single-cell trapping and Raman spectroscopy, and a high-intensity VISNIR trans-illumination LED bank for detection of variable photosystem II (PSII) fluorescence. Micro-Raman scatter of single algae cells revealed vibrational modes corresponding to the speciation and total lipid content, as well as other major biochemical pools, including total protein, carbohydrates, and carotenoids. PSII fluorescence dynamics provide a quantitative estimate of maximum photosynthetic efficiency and regulated and non-regulated non-photochemical quenching processes. The combined spectroscopic readouts provide a set of metrics for subsequent optical sorting of the cells by the laser trap for desirable biomass properties, e.g. the combination of high lipid productivity and high photosynthetic yield. Thus the device provides means for rapid evaluation and sorting of algae cultures and environmental samples for biofuels development.

  1. Fitoremediasi limbah budidaya sidat menggunakan filamentous algae (Spirogyra sp.

    Directory of Open Access Journals (Sweden)

    Tri Apriadi

    2014-09-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui potensi dari filamentous algae (Spirogyra sp. sebagai agen bioremediasi dalam mereduksi kandungan bahan organik limbah budidaya sidat. Penelitian menggunakan rancangan acak lengkap dengan perlakuan perbedaan dosis limbah (25 %, 50 %, 75 %, 100%. Wadah penelitian berupa akuarium resirkulasi menggunakan sistem carrousel. Dilakukan pengukuran secara rutin terhadap beberapa parameter kualitas air serta perubahan bobot Spirogyra sp. selama dua minggu retensi. Diperoleh hasil bahwa penurunan konsentrasi bahan organik menggunakan Spirogyra sp. berlangsung efektif hingga hari keenam. Spirogyra sp. mampu mentolelir limbah budidaya sidat pada dosis limbah 25% dan 50%. Spirogyra sp. pada perlakuan dosis limbah 50% memiliki kemampuan yang lebih baik dalam menurunkan bahan organik limbah budidaya sidat.

  2. [Epiphytic algae from Bajo Pepito, Isla Mujeres, Quintana Roo, Mexico].

    Science.gov (United States)

    Quan-Young, L I; Díaz-Martín, M A; Espinoza-Avalos, J

    2006-06-01

    A total of 96 epiphytic algae species were identified from Bajo Pepito, Quintana Roo, México. 60.4% (58) belonged to the Rhodophyta, 19.79% (19) to the Phaeophyta, 16.6% (16) to the Chlorophyta and 3.1% (3) to the Cyanophyta; 49 species (50.5%) were found only in one month, while Heterosiphonia crispella was found in all of the sampled months. That species provided the largest contribution to the biomass of epiphytes. During January we registered the greater biommass and richness of epiphytes species, coincidently with high values of host species cover and rainfall.

  3. A Fluorescence Based Miniaturized Detection Module for Toxin Producing Algae

    Science.gov (United States)

    Zieger, S. E.; Mistlberger, G.; Troi, L.; Lang, A.; Holly, C.; Klimant, I.

    2016-12-01

    Algal blooms are sensitive to external environmental conditions and may pose a serious threat to marine and human life having an adverse effect on the ecosystem. Harmful algal blooms can produce different toxins, which can lead to massive fish kills or to human disorders. Facing these problems, miniaturized and low-cost instrumentation for an early detection and identification of harmful algae classes has become more important over the last years. 1,2Based on the characteristic pigment pattern of different algae classes, we developed a miniaturized detection module, which is able to detect and identify algae classes after analyzing their spectral behavior. Our device combines features of a flow-cytometer and fluorimeter and is build up as a miniaturized and low-cost device of modular design. Similar to a fluorimeter, it excites cells in the capillary with up to 8 different excitation wavelengths recording the emitted fluorescence at 4 different emission channels. Furthermore, the device operates in a flow-through mode similar to a flow-cytometer, however, using only low-cost elements such as LEDs and photodiodes. Due to its miniaturized design, the sensitivity and selectivity increase, whereas background effects are reduced. With a sampling frequency of 140 Hz, we try to detect and count particular cell events even at a concentration of 2 cells / 7.3 µL illuminated volume. Using a self-learning multivariate algorithm, the data are evaluated autonomously on the device enabling an in-situ analysis. The flexibility in choosing excitation and emission wavelengths as well as the high sampling rate enables laboratory applications such as measuring induction kinetics. However, in its first application, the device is part of an open and modular monitoring system enabling the sensing of chemical compounds such as toxic and essential Hg, Cd, Pb, As and Cu trace metal species, nutrients and species related to the carbon cycle, VOCs and potentially toxic algae classes (FP7

  4. Bioactivities from Marine Algae of the Genus Gracilaria

    Directory of Open Access Journals (Sweden)

    José M. Barbosa-Filho

    2011-07-01

    Full Text Available Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS, inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted.

  5. Microsatellite Primers in the Lichen Symbiotic Alga Trebouxia decolorans (Trebouxiophyceae

    Directory of Open Access Journals (Sweden)

    Francesco Dal Grande

    2013-03-01

    Full Text Available Premise of the study: Polymorphic microsatellite markers were developed for the symbiotic green alga Trebouxia decolorans to study fine-scale population structure and clonal diversity. Methods and Results: Using Illumina pyrosequencing, 20 microsatellite primer sets were developed for T. decolorans. The primer sets were tested on 43 individuals sampled from four subpopulations in Germany. The primers amplified di-, tri-, and tetranucleotide repeats with three to 15 alleles per locus, and the unbiased haploid diversity per locus ranged from 0.636 to 0.821. Conclusions: The identified microsatellite markers will be useful to study the genetic diversity, dispersal, and reproductive mode of this common lichen photobiont.

  6. Micro-algae as a source of protein.

    Science.gov (United States)

    Becker, E W

    2007-01-01

    About five decades ago, the mass production of certain protein-rich micro-algae was considered as a possibility to close the predicted so called "protein gap". Comprehensive analyses and nutritional studies have demonstrated that these algal proteins are of high quality and comparable to conventional vegetable proteins. However, due to high production costs as well as technical difficulties to incorporate the algal material into palatable food preparations, the propagation of algal protein is still in its infancy. To date, the majority of micro-algal preparations are marketed as health food, as cosmetics or as animal feed.

  7. Management of autotrophic mass cultures of micro-algae

    CSIR Research Space (South Africa)

    Toerien, DF

    1987-01-01

    Full Text Available . Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 217?227. Bassham, J.A., 1977. Synthesis of organic compounds from carbon dioxide in land plants. In: A. Mitsui, S. Miyachi, S. San Pietro and S. Tumura (Editors), Biological Solar Energy.../North Holland Biomedical Press, Amsterdam, pp. 35?50. Ben Amotz, A. and Avron, M., 1980. Glycerol, carotene and dry algal meal production by commercial cultivation of Dunaliella. In: G. Shelef and C.J. Soeder (Editors), Algae Biowass: Production and Use...

  8. Surface gas-exchange processes of snow algae

    OpenAIRE

    Williams, William E.; Gorton, Holly L.; Vogelmann, Thomas C.

    2003-01-01

    The red-colored chlorophyte Chlamydomonas nivalis is commonly found in summer snowfields. We used a modified Li-Cor gas-exchange system to investigate surface gas-exchange characteristics of snow colonized by this alga, finding rates of CO2 uptake up to 0.3 μmol m−2⋅s−1 in dense algal blooms. Experiments varying the irradiance resulted in light curves that resembled those of the leaves of higher plants. Red light was more effective than white and much more effective than green or blue, becaus...

  9. Antioxidative meroterpenoids from the brown alga Cystoseira crinita.

    Science.gov (United States)

    Fisch, Katja M; Böhm, Volker; Wright, Anthony D; König, Gabriele M

    2003-07-01

    Six new tetraprenyltoluquinol derivatives (1-6), two new triprenyltoluquinol derivatives (7 and 8), and two new tetraprenyltoluquinone derivatives (9 and 10) were isolated from the brown alga Cystoseira crinita Duby together with four known tetraprenyltoluquinol derivatives (11-14). All structures were elucidated by employing spectroscopic techniques (NMR, MS, UV, and IR). Each compound was evaluated for its antioxidative properties in the TBARS and DPPH assay, and compounds 1, 2, 6, and 10-14 were additionally assessed in the TEAC and PCL assay. Hydroquinones were found to have powerful antioxidant activity.

  10. Multi-scale Characterization of Improved Algae Strains

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Taraka T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This report relays the important role biofuels such as algae could have in the energy market. The report cites that problem of crude oil becoming less abundant while the demand for energy continues to rise. There are many benefits of producing energy with biofuels such as fewer carbon emissions as well as less land area to produce the same amount of energy compared to other sources of renewable fuels. One challenge that faces biofuels right now is the cost to produce it is high.

  11. Green algae as a platform to express therapeutic proteins.

    Science.gov (United States)

    Lu, Yang; Oyler, George A

    2009-06-01

    Proteins produced by DNA recombinant technology have been playing important roles in modern medicine ever since the first such protein drug was approved by the U.S. Food and Drug Administration about three decades ago. However the inherent high cost of producing recombinant proteins, particularly those produced from mammalian cells, has hampered their broad application. Other protein expression systems that can reduce the cost yet still maintain the high-level therapeutic activities of the recombinant proteins are a top R&D priority. Eukaryotic unicellular green algae cells may provide a good solution to this long-standing challenge.

  12. Cadmium accumulation by the marine red alga Porphyra umbilicalis

    Energy Technology Data Exchange (ETDEWEB)

    McLean, M.W.; Williamson, F.B.

    1977-01-01

    The characteristics of cadmium accumulation by the marine red alga Porphyra umbilicalis L. in culture are reported. The time course of uptake under various light conditions shows that cadmium is concentrated as the result of an on-going anabolic process and not as a consequence of a pH gradient as provided by photosynthesis. The effect of cycloheximide is in agreement with de novo protein synthesis being a prerequisite for cadmium accumulation. Autoradiography suggests a specific intracellular location for bound cadmium--apparently the nucleus.

  13. Evaluation of lipid extractability after flash hydrolysis of algae

    Energy Technology Data Exchange (ETDEWEB)

    Teymouri, Ali; Adams, Kameron J.; Dong, Tao; Kumar, Sandeep

    2018-07-01

    Microalgae is identified as a promising feedstock for producing renewable liquid transportation fuels; however, lipids extraction from microalgae for downstream processing to biofuels is one of the important challenges for algal based biorefineries. This work aims at evaluating the potential of applying flash hydrolysis (FH) as a chemical-free technique to increase the lipids extractability of algal biomass as well as its integration with the hydrothermal liquefaction (HTL) of microalgae to enhance the biocrude yields and characteristics for fuel production. To this aim, the FH process was performed on three different algal species (Scenedesmus sp., Nannochloropsis sp., and Chlorella vulgaris) at 280 degrees C and 10 s of residence time. Following FH, in addition to the nutrients rich hydrolysate, approximately, 40 wt% of solids containing almost all (>90 wt%) the lipids termed as biofuels intermediates (BI), were recovered. Kinetics study on lipids extractability from the BI and their lipid profile analyses were conducted for each algal species. The results showed that the FH process had significantly enhanced the lipids extractability. For all three algae species, lipid yields from BI were higher than that of the raw algae. Lipid yields of Chlorella vulgaris in the first 15 min were more than five times higher (52.3 +/- 0.8 vs. 10.7 +/- 0.9 wt%) than that of raw algae during n-hexane based solvent extraction. The kinetics of lipids extractability followed a zero-order reaction rate for all wet raw microalgae and the BI of Scenedesmus sp., while the BI recovered from the other two algal species were determined as a second-order reaction. Comparison of fatty acids profiles indicated the contribution of the FH process in saturating fatty acids. Subsequent to lipids extraction, a conventional hydrothermal liquefaction was performed at 350 degrees C and 1 h to compare the biocrude yields from raw versus BI of Chlorella vulgaris microalgae. The results showed that the

  14. Production of Biodiesel from Marine Algae to Mitigate Environmental Pollution

    International Nuclear Information System (INIS)

    Khan, A.M.; Obaid, M.; Sultana, R.

    2015-01-01

    This research article demonstrates the conversion of oily contents of marine macroalgae, namely Cystoseira indica and Scinia hatei to fatty acid methyl ester (FAME) through alkaline transesterification. The algae were dried, crushed and grinded into the powder form, which were analyzed for physical appearance, water content and particle size profile. The oily contents from these powdered algae were extracted by using different non-polar solvents like n-hexane, n-heptane, dichloromethane, diethyl ether and n-hexane: diethyl ether (1:1) mixture at small scale. The efficiency index of the solvent was developed based on the yield of the oily content and boiling point of these solvents, which showed that n-hexane: diethyl ether (1:1) mixture is the best solvent system for the extraction of oils. The yield of oily contents with respect to the dried algal weight was found to be 2.81 ± 0.43 percentage w/w and 3.10 ± 0.27 percentage w/w for C. indica and S. hatei respectively. These oily contents were subjected to physical and chemical analysis. The oily contents were converted into biodiesel by alkaline transesterification using potassium methoxide as catalyst which is prepared by dissolving KOH in methanol (0.5g/12 ml, 4.2 percentage w/v) in a separate flask. All the reactions were carried out under completely anhydrous conditions using silica as desiccant and with continuous stirring so that the reactants in two immiscible phases of oily contents and methanol were remain in contact. The yield of biodiesel was found to be 89.0 ± 0.51 percentage w/w (2.50 percentage w/w of dried alga) and 90.6 ± 0.36 percentage w/w (2.81 percentage w/w of dried alga) of biodiesel from C. indica and S. hatei respectively. Finally, biodiesel was characterized by gas chromatography and American Society for Testing and Materials (ASTM) as well as by European (EN) standards which were found to be in agreement with the standard values of biodiesel. (author)

  15. Ecotoxicological effects of carbon nanomaterials on algae, fungi and plants.

    Science.gov (United States)

    Basiuk, Elena V; Ochoa-Olmos, Omar E; De la Mora-Estrada, León F

    2011-04-01

    The ecotoxicological effects of carbon nanomateriales (CNMs), namely fullerenes and carbon nanotubes, on algae, fungi and plants are analyzed. In different toxicity tests, both direct and indirect effects were found. The direct effects are determined by nanomaterial chemical composition and surface reactivity, which might catalyze redox reactions in contact with organic molecules and affect respiratory processes. Some indirect effects of carbon nanoparticles (CNPs) are physical restraints or release of toxic ions. Accumulation of CNPs in photosynthetic organs provokes obstruction in stomata, foliar heating and alteration in physiological processes. The phytotoxicity studies of CNMs should be focused on determining phytotoxicity mechanisms, size distribution of CNPs in solution, uptake and translocation of nanoparticles by plants, on characterization of their physical and chemical properties in rhizosphere and on root surfaces. More studies on plants and algae, as a part of food chain, are needed to understand profoundly the toxicity and health risks of CNMs as ecotoxicological stressors. Correct and detailed physical and chemical characterization of CNMs is very important to establish the exposure conditions matching the realistic ones. Ecotoxicity experiments should include examinations of both short and long-term effects. One must take into account that real carbon nanomaterials are complex mixtures of carbon forms and metal residues of variable chemistry and particle size, and the toxicity reported may reflect these byproducts/residues/impurities rather than the primary material structure. One more recommendation is not only to focus on the inherent toxicity of nanoparticles, but also consider their possible interactions with existing environmental contaminants.

  16. ALGAE PROLIFERATION ON SUBSTRATES IMMERSED IN BIOLOGICALLY TREATED SEWAGE

    Directory of Open Access Journals (Sweden)

    Tomasz Garbowski

    2017-01-01

    Full Text Available Due fast biomass production, high affinity for N and P and possibilities to CO2 sequestration microalgae are currently in the spotlight, especially in renewable energy technologies sector. The majority of studies focus their attention on microalgae cultivation with respect to biomass production. Fuel produced from algal biomass can contribute to reducing consumption of conventional fossil fuels and be a remedy for a rising energy crisis and global warming induced by air pollution. Some authors opt for possibilities of using sewage as a nutrient medium in algae cultivation. Other scientists go one step further and present concepts to introduce microalgal systems as an integral part of wastewater treatment plants. High costs of different microalgal harvesting methods caused introduction of the idea of algae immobilization in a form of periphyton on artificial substrates. In the present study the attention has focused on possibilities of using waste materials as substrates to proliferation of periphyton in biologically treated sewage that contained certain amounts of nitrogen and phosphorus.

  17. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  18. Antiprotozoal, antimycobacterial and cytotoxic potential of some british green algae.

    Science.gov (United States)

    Spavieri, Jasmine; Kaiser, Marcel; Casey, Rosalyn; Hingley-Wilson, Suzie; Lalvani, Ajit; Blunden, Gerald; Tasdemir, Deniz

    2010-07-01

    In the continuation of our search for natural sources for antiprotozoal and antitubercular molecules, we have screened the crude extracts of four green marine algae (Cladophora rupestris, Codium fragile ssp. tomentosoides, Ulva intestinalis and Ulva lactuca) collected from the Dorset area of England. Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Mycobacterium tuberculosis were used as test organisms in the in vitro assays. The selective toxicity of the extracts was also determined toward mammalian skeletal myoblast (L6) cells. The crude seaweed extracts had no activity against M. tuberculosis, but showed antiprotozoal activity against at least two protozoan species. All algal extracts were active against T. brucei rhodesiense, with C. rupestris being the most potent one (IC(50) value 3.7 microg/ml), whilst only C. rupestris and U. lactuca had moderate trypanocidal activity against T. cruzi (IC(50) values 80.8 and 34.9 microg/ml). Again, all four extracts showed leishmanicidal activity with IC(50) values ranging between 12.0 and 20.2 microg/ml. None of the extracts showed cytotoxicity toward L6 cells, indicating that their antiprotozoal activity is specific. This is the first study reporting antiprotozoal and antimycobacterial activity of British marine algae.

  19. Monoclonal antibodies directed to fucoidan preparations from brown algae.

    Science.gov (United States)

    Torode, Thomas A; Marcus, Susan E; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S; Hervé, Cécile; Knox, J Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance.

  20. Brown algae as a model for plant organogenesis.

    Science.gov (United States)

    Bogaert, Kenny A; Arun, Alok; Coelho, Susana M; De Clerck, Olivier

    2013-01-01

    Brown algae are an extremely interesting, but surprisingly poorly explored, group of organisms. They are one of only five eukaryotic lineages to have independently evolved complex multicellularity, which they express through a wide variety of morphologies ranging from uniseriate branched filaments to complex parenchymatous thalli with multiple cell types. Despite their very distinct evolutionary history, brown algae and land plants share a striking amount of developmental features. This has led to an interest in several aspects of brown algal development, including embryogenesis, polarity, cell cycle, asymmetric cell division and a putative role for plant hormone signalling. This review describes how investigations using brown algal models have helped to increase our understanding of the processes controlling early embryo development, in particular polarization, axis formation and asymmetric cell division. Additionally, the diversity of life cycles in the brown lineage and the emergence of Ectocarpus as a powerful model organism, are affording interesting insights on the molecular mechanisms underlying haploid-diploid life cycles. The use of these and other emerging brown algal models will undoubtedly add to our knowledge on the mechanisms that regulate development in multicellular photosynthetic organisms.