WorldWideScience

Sample records for alga chlorella vulgaris

  1. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    International Nuclear Information System (INIS)

    Deng Lin; Wang Hongli; Deng Nansheng

    2006-01-01

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps (λ=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL -1 and initial algae concentration ranged from ABS algae (the absorbency of algae)=0.025 to ABS algae =0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V 0 =kC 0 0.1718 A algae 0.5235 (C 0 was initial concentration of Cr(VI); A algae was initial concentration of algae) under the condition of pH 4

  2. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Deng Lin [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang Hongli [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China)]. E-mail: nsdengwhu@163.com

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps ({lambda}=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL{sup -1} and initial algae concentration ranged from ABS{sub algae} (the absorbency of algae)=0.025 to ABS{sub algae}=0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V{sub 0}=kC{sub 0}{sup 0.1718}A{sub algae}{sup 0.5235} (C{sub 0} was initial concentration of Cr(VI); A{sub algae} was initial concentration of algae) under the condition of pH 4.

  3. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments

    Science.gov (United States)

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤75 mg L−1) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L−1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L−1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health. PMID:25375113

  4. Biochemical activity of di- and polyamines in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae

    Directory of Open Access Journals (Sweden)

    Romuald Czerpak

    2011-01-01

    Full Text Available This study concerns on the influence of diamines (agmatine, putrescine and polyamines (spermine, spermidine upon the growth and the content of chlorophyll a and b, monosaccharides and proteins in the cells of alga Chlorella vulgaris Beijerinck (Chlorophyceae. In the experiments agmatine, putrescine, spermine and spermidine in the range of concentrations 10-6-10-3 M were used. At the concentration 10-3 M and the 1st day of cultivation, they have a toxic effect on growth of the algae. It was found that di- and polyamines used within the range of concentration 10-6-10-4 M stimulate the growth and the contents of analysed biochemical parameters in the cells of C. vulgaris. The most stimulating influence on metabolism of the alga was demonstrated by spermidine and putrescine at concentration of 10-4 M. Agmatine and spermine were characterised by a lower biological activity than spermidine and putrescine demonstrated the most stimulating influence.

  5. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-05-01

    Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. First Report of Pseudobodo sp, a New Pathogen for a Potential Energy-Producing Algae: Chlorella vulgaris Cultures

    Science.gov (United States)

    Zhang, Bangzhou; Yang, Luxi; Zhang, Huajun; Zhang, Jingyan; Li, Yi; Zheng, Wei; Tian, Yun; Liu, Jingwen; Zheng, Tianling

    2014-01-01

    Chlorella vulgaris, is a kind of single-celled green algae, which could serve as a potential source of food and energy because of its photosynthetic efficiency. In our study, a pathogenic organism targeting C. vulgaris was discovered. The algae-lytic activity relates to a fraction from lysates of infected C. vulgaris that was blocked upon filtration through a 3 µm filter. 18S rRNA gene sequence analysis revealed that it shared 99.0% homology with the protist Pseudobodo tremulans. Scanning electron microscope analysis showed that Pseudobodo sp. KD51 cells were approximately 4–5 µm long, biflagellate with an anterior collar around the anterior part of the cell in unstressed feeding cells. Besides the initial host, Pseudobodo sp. KD51 could also kill other algae, indicating its relatively wide predatory spectrum. Heat stability, pH and salinity tolerance experiments were conducted to understand their effects on its predatory activities, and the results showed that Pseudobodo sp. KD51 was heat-sensitive, and pH and salinity tolerant. PMID:24599263

  7. First report of Pseudobodo sp, a new pathogen for a potential energy-producing algae: Chlorella vulgaris cultures.

    Directory of Open Access Journals (Sweden)

    Zhangran Chen

    Full Text Available Chlorella vulgaris, is a kind of single-celled green algae, which could serve as a potential source of food and energy because of its photosynthetic efficiency. In our study, a pathogenic organism targeting C. vulgaris was discovered. The algae-lytic activity relates to a fraction from lysates of infected C. vulgaris that was blocked upon filtration through a 3 µm filter. 18S rRNA gene sequence analysis revealed that it shared 99.0% homology with the protist Pseudobodo tremulans. Scanning electron microscope analysis showed that Pseudobodo sp. KD51 cells were approximately 4-5 µm long, biflagellate with an anterior collar around the anterior part of the cell in unstressed feeding cells. Besides the initial host, Pseudobodo sp. KD51 could also kill other algae, indicating its relatively wide predatory spectrum. Heat stability, pH and salinity tolerance experiments were conducted to understand their effects on its predatory activities, and the results showed that Pseudobodo sp. KD51 was heat-sensitive, and pH and salinity tolerant.

  8. Ecotoxicity tests using the green algae chlorella vulgaris — a useful tool in hazardous effluents management

    OpenAIRE

    Silva, Aurora; Figueiredo, Sónia Adriana; Sales, M. Goreti F.; Delerue-Matos, Cristina

    2009-01-01

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removedby chemical treatments.Areduction of ecotoxicitywas achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high...

  9. Toxicity assessment of Chlorella vulgaris and Chlorella protothecoides following exposure to Pb(II).

    Science.gov (United States)

    Zhang, Wei; Xiong, Bang; Chen, Lin; Lin, Kuangfei; Cui, Xinhong; Bi, Huasong; Guo, Meijin; Wang, Weiliang

    2013-07-01

    The short- and long-term toxic effects of Pb(II) exposure on Chlorella vulgaris (C. vulgaris) and Chlorella protothecoides (C. protothecoides) were not well understood. The lab study was performed to observe the Pb(II) exposure induced changes. Results of the observations show: (1) higher level of Pb(II) (50 or 80mgL(-1)) could significantly inhibit the growth and chlorophyll a synthesis of both algae in almost all the treatments and dose-response relationships could be clearly observed, (2) the range of EC50 values (24-120h, 67.73-172.45mgL(-1)) indicated that Pb(II) had a relatively limited short-term toxicity to the two algae, while long-term tests (7-28d, 50.41-63.91mgL(-1)) displayed higher toxicity and (3) SOD and CAT activities of both algae after exposed to medium level of Pb(II) were significantly promoted, and their response might be more susceptible in short-term exposure. This research provides a basic understanding of Pb(II) toxicity to aquatic organisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    Science.gov (United States)

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  11. On the uptake and binding of uranium (VI) by the green alga Chlorella Vulgaris

    International Nuclear Information System (INIS)

    Vogel, Manja

    2011-01-01

    Uranium could be released into the environment from geogenic deposits and from former mining and milling areas by weathering and anthropogenic activities. The elucidation of uranium behavior in geo- and biosphere is necessary for a reliable risk assessment of radionuclide migration in the environment. Algae are widespread in nature and the most important group of organisms in the aquatic habitat. Because of their ubiquitous occurrence in nature the influence of algae on the migration process of uranium in the environment is of fundamental interest e.g. for the development of effective and economical remediation strategies for contaminated waters. Besides, algae are standing at the beginning of the food chain and play an economically relevant role as food and food additive. Therefore the transfer of algae-bound uranium along the food chain could arise to a serious threat to human health. Aim of this work was the quantitative and structural characterization of the interaction between U(VI) and the green alga Chlorella vulgaris in environmental relevant concentration and pH range with special emphasis on metabolic activity. Therefore a defined medium was created which assures the survival/growth of the algae as well as the possibility to predict the uranium speciation. The speciation of uranium in the mineral medium was calculated and experimentally verified by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results of the sorption experiments showed that both metabolic active and inactive algal cells bind uranium in significant amounts of around 14 mg U/g dry biomass and 28 mg U/g dry biomass, respectively. Another interesting observation was made during the growth of Chlorella cells in mineral medium at the environmental relevant uranium concentration of 5 μM. Under these conditions and during ongoing cultivation a mobilization of the algae-bound uranium occurred. At higher uranium concentrations this effect was not observed due to the die off of

  12. On the uptake and binding of uranium (VI) by the green alga Chlorella Vulgaris; Zur Aufnahme und Bindung von Uran(VI) durch die Gruenalge Chlorella Vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Manja

    2011-07-01

    Uranium could be released into the environment from geogenic deposits and from former mining and milling areas by weathering and anthropogenic activities. The elucidation of uranium behavior in geo- and biosphere is necessary for a reliable risk assessment of radionuclide migration in the environment. Algae are widespread in nature and the most important group of organisms in the aquatic habitat. Because of their ubiquitous occurrence in nature the influence of algae on the migration process of uranium in the environment is of fundamental interest e.g. for the development of effective and economical remediation strategies for contaminated waters. Besides, algae are standing at the beginning of the food chain and play an economically relevant role as food and food additive. Therefore the transfer of algae-bound uranium along the food chain could arise to a serious threat to human health. Aim of this work was the quantitative and structural characterization of the interaction between U(VI) and the green alga Chlorella vulgaris in environmental relevant concentration and pH range with special emphasis on metabolic activity. Therefore a defined medium was created which assures the survival/growth of the algae as well as the possibility to predict the uranium speciation. The speciation of uranium in the mineral medium was calculated and experimentally verified by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results of the sorption experiments showed that both metabolic active and inactive algal cells bind uranium in significant amounts of around 14 mg U/g dry biomass and 28 mg U/g dry biomass, respectively. Another interesting observation was made during the growth of Chlorella cells in mineral medium at the environmental relevant uranium concentration of 5 {mu}M. Under these conditions and during ongoing cultivation a mobilization of the algae-bound uranium occurred. At higher uranium concentrations this effect was not observed due to the die off

  13. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Ferrándiz-Mas, V., E-mail: v.ferrandiz@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Bond, T., E-mail: t.bond@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Zhang, Z., E-mail: zhen.zhang14@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom); Melchiorri, J., E-mail: jpmelchiorri@gmail.com [ARBOREA Research, Bessemer Building, Prince Consort Road, London SW7 2AZ (United Kingdom); Cheeseman, C.R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU (United Kingdom)

    2016-09-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740 °C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700 °C, with chlorophyll-a concentrations reaching up to 11.1 ± 0.4 μg/cm{sup 2} of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure. - Highlights: • Porous tiles made by sintering waste glass at variable temperatures • Bioreceptivity assessed by measuring colonisation by the algae C. vulgaris • Tiles sintered at 700 °C gave

  14. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris

    International Nuclear Information System (INIS)

    Ferrándiz-Mas, V.; Bond, T.; Zhang, Z.; Melchiorri, J.; Cheeseman, C.R.

    2016-01-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740 °C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700 °C, with chlorophyll-a concentrations reaching up to 11.1 ± 0.4 μg/cm"2 of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure. - Highlights: • Porous tiles made by sintering waste glass at variable temperatures • Bioreceptivity assessed by measuring colonisation by the algae C. vulgaris • Tiles sintered at 700 °C gave maximum

  15. Influence of ultraviolet irradiation on nutrient-gleaning capacity of two unicellular algae. [Anacystis nidulans and Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H D; Sharma, V; Bisaria, G P

    1975-01-01

    Two unicellular algae, viz., Anacystis nidulans and Chlorella vulgaris, growing in polluted effluents, were isolated in unialgal and bacteria free culture. They were mutagenically exposed to ultraviolet radiation and variant strains endowed with differing capacities for growth and nutrient-gleaning were successfully isolated as distinct clones on agar plates. One such clone each of the two species was tested further and found stable. While these variant strains grew more slowly than untreated controls, statistically significant differences with respect to phosphate and nitrate uptake were found between treated and control strains of the two species.

  16. Temporal Eukarya, Bacteria, and Archaea biodiversity during cultivation of an alkaliphilic algae, Chlorella vulgaris, in an outdoor raceway pond

    Directory of Open Access Journals (Sweden)

    Tisza Ann Szeremy Bell

    2016-01-01

    Full Text Available Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal crop. In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (approximately 9.8. An outdoor raceway pond (200L was inoculated with C. vulgaris and monitored for ten days and then the culture was transferred to a 2,000L raceway pond and cultivated for an additional six days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences, but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic

  17. The culture of Chlorella vulgaris with human urine in multibiological life support system experiments

    Science.gov (United States)

    Li, Ming; Liu, Hong; Tong, Ling; Fu, Yuming; He, Wenting; Hu, Enzhu; Hu, Dawei

    The Integrative Experimental System (IES) was established as a tool to evaluate the rela-tionship of the subsystems in Bioregenerative Life Support System, and Multibiological Life Support System Experiments (MLSSE) have been conducted in the IES. The IES consists of a higher plant chamber, an animal chamber and a plate photo bioreactor (PPB) which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella vulgaris), respectively. In MLSSE, four volunteers took turns breathing the system air through a tube connected with the animal chamber periodically. According to the CO2 concentration in the IES, the automotive control system of the PPB changed the light intensity regulating the photosynthesis of Chlorella vulgaris to make CO2 /O2 in the system maintain at stable levels. Chlorella vulgaris grew with human urine by carrying certain amount of alga liquid out of the bioreactor every day with synthetic urine replenished into the system, and O2 was regenerated, at the same time human urine was purified. Results showed that this IES worked stably and Chlorella vulgaris grew well; The culture of Chlorella vulgaris could be used to keep the balance of CO2 and O2 , and the change of light intensity could control the gas composition in the IES; Microalgae culture could be used in emergency in the system, the culture of Chlorella vulgaris could recover to original state in 5 days; 15.6 ml of condensation water was obtained every day by the culture of Chlorella vulgaris; The removal efficiencies of N, P in human urine could reach to 98.2% and 99.5%.

  18. Stability and loading properties of curcumin encapsulated in Chlorella vulgaris.

    Science.gov (United States)

    Jafari, Yaser; Sabahi, Hossein; Rahaie, Mahdi

    2016-11-15

    Curcumin (Cur), a polyphenols with pharmacological function, was successfully encapsulated in algae (Alg) cell (Chlorella vulgaris) as confirmed by fluorescence microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform-infrared spectroscopy (FT-IR). Fluorescence micrographs, TGA, DSC and FTIR spectra suggested the hypothesis inclusion Cur in Nano-empty spaces inside cell wall of Alg. The TGA analysis showed that the thermal stability of Alg and Cur at algae/curcumin complex was 3.8% and 33% higher than their free forms at 0-300°C and 300-600°C ranges, respectively. After encapsulation in Alg cells, the photostability of Cur was enhanced by about 2.5-fold. Adsorption isotherm of Cur into Alg was fitted with the Freundlich isotherm. The microcapsules were loaded with Cur up to about 55% w/w which is much higher than other reported bio-carriers. In conclusion, the data proved that Chlorella vulgaris cell can be used as a new stable carrier for Cur. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Removal of Nitrate and Phosphate from Municipal Wastewater Sludge by Chlorella vulgaris, Spirulina platensis and Scenedesmus quadricauda

    Directory of Open Access Journals (Sweden)

    Jalal K.C.A

    2011-12-01

    Full Text Available Nitrate and phosphorus in wastewater contribute to health and environmental threats as they are linked to illnesses as well as ecosystem disruption via algal blooms in contaminated water bodies. Based on above perspectives a comparative study was conducted on three local freshwater microalgae:Chlorella vulgaris, Spirulina platensis and Scenedesmus quadricauda to evaluate their effects on nitrate and phosphorus removal from municipal wastewater sludge (MWS. Algae performance in removing nitrate and phosphorus was evaluated by measuring nitrate and phosphorus content of MWS incubated with the strains for 7 days. Instantaneous readings were taken every 48 hours to determine periodic levels of the nutrients phosphate and nitrate. BOD5 was also evaluated to identify the strain with the most robust growth that would demand for oxygen the most in the dark. Spirulina platensis was shown as the most efficient microalgae to reduce nitrate in MWS and the best-growing among the three strains, while Chlorella vulgaris removed phosphorus the most effectively. Thus Spirulina and Chlorella could be potential candidates by showing their intrinsic merit for the reduction of phosphate and nitrate in wastewater treatment.ABSTRAK: Nitrat dan fosforus dalam air sisa menggugat kesihatan dan mengancam alam sekitar memandangkan ia berkait dengan penyakit-penyakit serta gangguan terhadap ekosistem melalui pembiakan alga dalam air yang tercemar. Berdasarkan perspektif di atas, satu kajian perbandingan telah dijalankan terhadap tiga mikro alga air tawar tempatan : Chlorella vulgaris, Spirulina platensis dan Scenedesmus quadricauda untuk dinilai kesannya terhadap penyingkiran nitrat dan fosforus dari enap cemar air sisa bandaran (municipal wastewater sludge (MWS. Kebolehan alga dalam penyingkiran nitrat dan fosforus dikaji dengan menyukat kandungan nitrat dan fosforus dalam MWS yang dieramkan dengan strain ini selama 7 hari. Bacaan serta-merta diambil setiap 48 jam untuk

  20. Electrical Performance of Distribution Insulators with Chlorella vulgaris Growth on its Surface

    Directory of Open Access Journals (Sweden)

    Herbert Enrique Rojas Cubides

    2015-06-01

    Full Text Available This paper presents a study about electrical performance of ceramic and polymeric insulators bio-contaminated with alga Chlorella vulgaris. The performed tests involve ANSI 55-2 and ANSI 52-1 ceramic insulators and ANSI DS-15 polymeric insulators, all of them used in distribution systems of Colombia. Biological contamination of insulators is realized using a controlled environment chamber that adjusts the temperature, humidity and light radiation. The laboratory tests include measurements of flashover voltages and leakage currents and they were performed to determine how insulators are affected by biological contamination. After a series of laboratory tests, it was concluded that the presence of Chlorella vulgaris on the contaminated ceramic insulators reduces the wet flashover voltage up to 12% and increases their leakage currents up to 80%. On the other hand, for polymeric insulators the effect of algae growth on flashover voltages was not to strong, although the leakage currents increase up to 60%.

  1. Effects of hydrolyzed Chlorella vulgaris by malted barley on the immunomodulatory response in ICR mice and in Molt-4 cells.

    Science.gov (United States)

    Kim, Na-Hyung; Kim, Kyu-Yeob; Jeong, Hyun-Ja; Kim, Hyung-Min; Hong, Seung-Heon; Um, Jae-Young

    2010-07-01

    Chlorella vulgaris is a unicellular and microscopic algae that is currently used in a variety of forms of tablets, capsules and liquid as a biological response modifier. The aim of this study was to investigate the effects of hydrolyzed Chlorella vulgaris by malted barley for its potential reduction of the immobility time in ICR mice and on the cytokine regulation in human T cell line, Molt-4. After a forced swimming test, the changes in aspects of blood biochemical parameters due to the administration of hydrolyzed Chlorella vulgaris by malted barley were examined. The effect of hydrolyzed Chlorella vulgaris by the malted barley-treated group for 14 days on the immobility time was significantly reduced in comparison with that of the control group (P cells. These results indicate that hydrolyzed Chlorella vulgaris by malted barley is useful for immune function improvements, enhanced physical stamina, and as a candidate for an anti-fatigue or antidepressant agent.

  2. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    Science.gov (United States)

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  3. [Effect of magnesium deficiency on photosynthetic physiology and triacylglyceride (TAG) accumulation of Chlorella vulgaris].

    Science.gov (United States)

    Wang, Shan; Zhao, Shu-Xin; Wei, Chang-Long; Yu, Shui-Yan; Shi, Ji-Ping; Zhang, Bao-Guo

    2014-04-01

    As an excellent biological resource, Chlorella has wide applications for production of biofuel, bioactive substances and water environment restoration. Therefore, it is very important to understand the photosynthetic physiology characteristics of Chlorella. Magnesium ions play an important role in the growth of microalgae, not only the central atom of chlorophyll, but also the cofactor of some key enzyme in the metabolic pathway. A laboratory study was conducted to evaluate the effects of magnesium deficiency on several photosynthetic and physiological parameters and the triacylglyceride (TAG) accumulation of the green alga, Chlorella vulgaris, in the photoautotrophic culture process. Chlorella vulgaris biomass, protein, chlorophyll a and chlorophyll b contents decreased by 20%, 43.96%, 27.52% and 28.07% in response to magnesium deficiency, while the total oil content increased by 19.60%. Moreover, magnesium deficiency decreased the maximal photochemical efficiency F(v)/F(m) by 22.54%, but increased the non-photochemical quenching parameters qN. Our results indicated the decline of chlorophyll caused by magnesium, which affected the photosynthesis efficiency, lead to the growth inhibition of Chlorella vulgaris and affected the protein synthesis and increased the triacylglyceride (TAG) accumulation.

  4. Culture of a high-chlorophyll-producing and halotolerant Chlorella vulgaris.

    Science.gov (United States)

    Nakanishi, Koichi; Deuchi, Keiji

    2014-05-01

    In order to increase the value of freshwater algae as raw ingredients for health foods and feed for seawater-based farmed fish, we sought to breed high-chlorophyll halotolerant Chlorella with the objective of generating strains with both high chlorophyll concentrations (≥ 5%) and halotolerance (up to 1% NaCl). We used the Chlorella vulgaris K strain in our research institute culture collection and induced mutations with UV irradiation and acriflavine which is known to effect mutations of mitochondrial DNA that are associated with chlorophyll production. Screenings were conducted on seawater-based "For Chlorella spp." (FC) agar medium, and dark-green-colored colonies were visually selected by macroscopic inspection. We obtained a high-chlorophyll halotolerant strain (designated C. vulgaris M-207A7) that had a chlorophyll concentration of 6.7% (d.m.), a level at least three-fold higher than that of K strain. This isolate also exhibited a greater survival rate in seawater that of K strain. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    Science.gov (United States)

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  6. Photo-induced transformations of mercury(II) species in the presence of algae, Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Deng Lin, E-mail: dlwhu@163.com [Department of Municipal Engineering, Southeast University, Nanjing 210096 (China); Fu Dafang [Department of Municipal Engineering, Southeast University, Nanjing 210096 (China); Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China)

    2009-05-30

    The effects of algae (i.e., Chlorella vulgaris), Fe(III), humic substances, and pH on the photoreduction of Hg(II) under the irradiation of metal halide lamps ({lambda} {>=} 365 nm, 250 W) were investigated in this paper. The photoreduction rate of Hg(II) was found to increase with the increasing concentration of algae, Fe(III), and humic substances. The cooperation action of Fe(III) and humic substances accelerated the photoreduction of Hg(II). When the initial concentration of Hg(II) was in the range of 0.0-200.0 {mu}g L{sup -1} with initial algae concentrations 7.0 x 10{sup 9} cells L{sup -1} at pH 7.0, the initial photoreduction rate of Hg(II) could be expressed by the equation: -dC{sub Hg(II)}/dt = 0.65 x [C{sub Hg(II)}]{sup 0.39} with a correlation coefficient of R = 0.9912. The study on the photochemical process in terms of total mercury mass balance revealed that more than 40.86% of Hg(II) from the algal suspension was reduced to volatile metallic mercury. This paper discussed the photoreduction mechanism of Hg(II) in the presence of algae. This research will provide information for predicting the photoreduction of Hg(II) in the real environment. It will be helpful for understanding the photochemical transformation of Hg(II) and the formation of DGM in natural water in the presence of algae complexes. It will also be helpful for providing new methods to deal with heavy metal pollution.

  7. Photo-induced transformations of mercury(II) species in the presence of algae, Chlorella vulgaris

    International Nuclear Information System (INIS)

    Deng Lin; Fu Dafang; Deng Nansheng

    2009-01-01

    The effects of algae (i.e., Chlorella vulgaris), Fe(III), humic substances, and pH on the photoreduction of Hg(II) under the irradiation of metal halide lamps (λ ≥ 365 nm, 250 W) were investigated in this paper. The photoreduction rate of Hg(II) was found to increase with the increasing concentration of algae, Fe(III), and humic substances. The cooperation action of Fe(III) and humic substances accelerated the photoreduction of Hg(II). When the initial concentration of Hg(II) was in the range of 0.0-200.0 μg L -1 with initial algae concentrations 7.0 x 10 9 cells L -1 at pH 7.0, the initial photoreduction rate of Hg(II) could be expressed by the equation: -dC Hg(II) /dt = 0.65 x [C Hg(II) ] 0.39 with a correlation coefficient of R = 0.9912. The study on the photochemical process in terms of total mercury mass balance revealed that more than 40.86% of Hg(II) from the algal suspension was reduced to volatile metallic mercury. This paper discussed the photoreduction mechanism of Hg(II) in the presence of algae. This research will provide information for predicting the photoreduction of Hg(II) in the real environment. It will be helpful for understanding the photochemical transformation of Hg(II) and the formation of DGM in natural water in the presence of algae complexes. It will also be helpful for providing new methods to deal with heavy metal pollution.

  8. PRODUCTIVITY OF MICROALGAE CHLORELLA VULGARIS IN LABORATORY CONDITION

    Directory of Open Access Journals (Sweden)

    Agnieszka Patyna

    2017-06-01

    Full Text Available Algae biomass is increasingly regarded as a potential resource that could be used to produce biofuels, electricity and heat. Algae contain a lot of nutrients, so they can be used as food for humans and livestock. Because of their valuable composition (many nutrients they are used as supplements of balanced diet, in turn taking into account their biosorption abbility they are used to detoxification of human body. Algae cultivation does not demand large areas of land to expose cells to sunlight, so their production rate is higher than vascular plants. Moreover algae cultivation lets to achieve high biomass concentration. Important cultivation factors are: illumination (light intensity is an important factor because it drives photosynthesis, CO2 supply, culture medium and mixing. The experimental research was conducted using Chlorella vulgaris BA 002 strain. The aim of this study was to determine the effectiveness of biomass growth in laboratory condition.

  9. Effect of the hydrocarbon phenanthrene on Chlorella vulgaris (Chlorellaceae) growth

    International Nuclear Information System (INIS)

    Otero Paternina, Angelica; Cruz Casallas, Pablo E; Velasco Santamaria, Yohana M

    2013-01-01

    The effects of the polycyclic aromatic hydrocarbon phenanthrene on the growth of chlorella vulgaris alga were evaluated under laboratory conditions. The algae were exposed during 72 h to different concentrations of phenanthrene (0, 1, 10, 100, 1000 and 10000 μg/l). The alga density was daily determined by a neubauer chamber. The average growth average, total biomass and inhibition percentage of the biomass were also determined. In addition, the content of chlorophyll a was determined at the beginning and the end of the experiment. the assays were carried out in glass bottles of 0,4 l using the complex NPK (remital m 17-6-18) at 1 g/l as an organic fertilizing. The results showed that phenanthrene inhibited progressively the alga growth being the lowest cellular growth observed in the medium with the highest phenanthrene concentration, reaching an inhibition percentage of 59 %. In the other treatments, the daily growth rate was relatively constant. The chlorophyll a concentration evaluated by spectrophotometry was not affected by the phenanthrene concentration. in conclusion, the growth of the alga c. vulgaris was affected negatively by the exposure to nominal concentrations of the polycyclic aromatic hydrocarbon phenanthrene higher than 1 μg/l.

  10. PEMANFAATAN MIKROALGA LAUT Chlorella vulgaris SUMBER DHA DAN EPA

    OpenAIRE

    Anggraeni, Peni

    2016-01-01

    Penelitian tentang mikroalga laut jenis Chlorella vulgaris telah dilakukan. Chlorella vulgaris dipilih sebagai bahan penambah gizi untuk di fortifikasi kedalam makanan . Penelitian ini bertujuan untuk mengetahui kandungan gizi dengan menganalisis kandungan DHA dan EPA. Penelitian ini dilakukan dengan mengkultur fitoplankton Chlorella vulgaris dan dipanen setelah media kultur mencapai fase Stasioner. Kemudian, dikeringkan dengan menggunakan freeze dryer, biomassa kering dianalisis kandungan DH...

  11. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.

    Science.gov (United States)

    Charuchinda, Pairpilin; Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Yamada, Daisuke; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-01-01

    Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin.

  12. Potential Health Effects of Enzymatic Protein Hydrolysates from Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Mahsa Sedighi

    2016-06-01

    Full Text Available Background and Objective: Chlorella vulgaris is a multi-cellular edible algal species with abundant proteins. Extraction of high value protein fractions for pharmaceutical and nutritional applications can significantly increase the commercial value of microalga biomasses. There is no known report on the anticancer peptides derived from the Chlorella vulgaris abundant protein.Materials and Methods: This study examined the antimicrobial and anticancer effects of peptides from a hydrolyzed Chlorella vulgaris protein with 62 kDa molecular weight. Protein hydrolysis was done by pepsin as a gastrointestinal protease, and was monitored through protein content measurement, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and high performance liquidchromatography measurements. Inhibitory effect of the produced peptides on Escherichia coli cells and breast cancer cell lines was assayed.Results and Conclusion: Hydrolyzed peptides induced a decrease of about 34.1% in the growth of Escherichia coli, and the peptides of 3 to 5 kDa molecular weight had strong impact on the viability of breast cancer cells with IC50 value of 50 μg μl-1. The peptide fractions demonstrating antimicrobial and anti-cancer activities have the potential for use as functional food ingredients for health benefits. These results demonstrate that inexpensive algae proteinscould be a new alternative to produce anticancer peptides.Conflict of interest: The authors declare that there is no conflict of interest.

  13. Ecotoxicity tests using the green algae Chlorella vulgaris--a useful tool in hazardous effluents management.

    Science.gov (United States)

    Silva, Aurora; Figueiredo, Sónia A; Sales, M Goreti; Delerue-Matos, Cristina

    2009-08-15

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removed by chemical treatments. A reduction of ecotoxicity was achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatment was satisfactory concerning chemical parameters, although an increase in ecotoxicity was observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.

  14. Ecotoxicity tests using the green algae Chlorella vulgaris-A useful tool in hazardous effluents management

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aurora [REQUIMTE, Instituto Superior de Engenharia do Instituto Politecnico do Porto, R. Antonio Bernardino de Almeida, 431 4200-072 Porto (Portugal); Figueiredo, Sonia A., E-mail: saf@isep.ipp.pt [REQUIMTE, Instituto Superior de Engenharia do Instituto Politecnico do Porto, R. Antonio Bernardino de Almeida, 431 4200-072 Porto (Portugal); Sales, M. Goreti; Delerue-Matos, Cristina [REQUIMTE, Instituto Superior de Engenharia do Instituto Politecnico do Porto, R. Antonio Bernardino de Almeida, 431 4200-072 Porto (Portugal)

    2009-08-15

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removed by chemical treatments. A reduction of ecotoxicity was achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatment was satisfactory concerning chemical parameters, although an increase in ecotoxicity was observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.

  15. Ecotoxicity tests using the green algae Chlorella vulgaris-A useful tool in hazardous effluents management

    International Nuclear Information System (INIS)

    Silva, Aurora; Figueiredo, Sonia A.; Sales, M. Goreti; Delerue-Matos, Cristina

    2009-01-01

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removed by chemical treatments. A reduction of ecotoxicity was achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatment was satisfactory concerning chemical parameters, although an increase in ecotoxicity was observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.

  16. The Bioconcentration and Degradation of Nonylphenol and Nonylphenol Polyethoxylates by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Hong-Wen Sun

    2014-01-01

    Full Text Available Nonylphenol polyethoxylates (NPnEOs, a major class of nonionic surfactants, can easily enter into aquatic environments through various pathways due to their wide applications, which leads to the extensive existence of their relative stable metabolites, namely nonylphenol (NP and mono- to tri-ethoxylates. This study investigated the bioconcentration and degradation of NP and NPnEO oligomers (n = 1–12 by a green algae, Chlorella vulgaris. Experimental results showed that C. vulgaris can remove NP from water phase efficiently, and bioconcentration and degradation accounted for approximately half of its loss, respectively, with a 48 h BCF (bioconcentration factor of 2.42 × 103. Moreover, C. vulgaris could concentrate and degrade NPnEOs, distribution profiles of the series homologues of the NPnEOs in algae and water phase were quite different from the initial homologue profile. The 48 h BCF of the NPnEO homologues increased with the length of the EO chain. Degradation extent of total NPnEOs by C. vulgaris was 95.7%, and only 1.1% remained in water phase, and the other 3.2% remained in the algal cells. The algae removed the NPnEOs mainly through degradation. Due to rapid degradation, concentrations of the long chain NPnEO homologous in both water (n ≥ 2 and the algal phase (n ≥ 5 was quite low at the end of a 48 h experiment.

  17. Improving oxidative stability of virgin olive oil by addition of microalga Chlorella vulgaris biomass.

    Science.gov (United States)

    Alavi, Nasireh; Golmakani, Mohammad-Taghi

    2017-07-01

    Antioxidant activity of Chlorella ( Chlorella vulgaris ) was evaluated in virgin olive oil (VOO) at different concentrations of 0.5, 1.0, and 1.5% (w/w) under accelerated storage conditions. Antioxidant activity of Chlorella was compared with those of BHT and β-carotene. Chlorella samples significantly retarded the formation of primary, secondary, and total oxidation products in comparison with those of the control. The stability increased as concentrations of Chlorella increased. Samples containing 0.5, 1.0, and 1.5% Chlorella significantly improved VOO stability by 19.99, 28.83, and 33.14%, respectively. Observed effects can be related to the release in the assortment of bioactive compounds from Chlorella algae to the VOO. Among the different antioxidants evaluatedy, BHT exhibited the highest antioxidant activity. On the contrary, β-carotene had no preventive effect against the oxidation of VOO. It also proved incapable of limiting the progress of VOO oxidation and played role as pro-oxidant. In conclusion, Chlorella enhanced VOO oxidative stability. Thus it can be considered as a promising source of natural antioxidants.

  18. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    Science.gov (United States)

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Demography of zooplankton (Anuraeopsis fissa, Brachionus rubens and Moina macrocopa fed Chlorella vulgaris and Scenedesmus acutus cultured on different media

    Directory of Open Access Journals (Sweden)

    Jesús Morales-Ventura

    2012-09-01

    Full Text Available Generally zooplankton growth is often limited by the quality of their algal diet. A cheaper common practice in aquaculture, is to culture algae with fertilizers; however, the demography of zooplankton when fed these algae has not yet been evaluated. We studied the population growth and life table demography of the rotifers Anuraeopsis fissa and Brachionus rubens, and the cladoceran Moina macrocopa. For this, the algae Scenedesmus acutus or Chlorella vulgaris were cultured on defined (Bold’s basal medium or the commercial liquid fertilizer (Bayfolan. Experiments were conducted at one algal concentration 1.0x10(6cells/mL of C. vulgaris or its equivalent dry weight of 0.5x10(6cells/mL of S. acutus. The population dynamics were tested at 23±1ºC in 100mL transparent jars, each with 50mL of the test medium, with an initial density of 0.5indiv/mL, for a total of 48 test jars (3 zooplankton 2 algal species x 2 culture media x 4 replicates. For the life table experiments with M. macrocopa, we introduced 10 neonates (Generalmente el crecimiento del zooplancton está a menudo limitado por la calidad de su dieta de algas. La demografía del zooplancton durante la alimentación con algas no ha sido estudiada, a pesar de que el cultivo de algas con fertilizantes es una práctica económica común en acuacultura. Se analizó la demografía de Anuraeopsis fissa y Brachionus rubens (rotíferos y Moina macrocopa (cladóceros, alimentados con las algas verdes Scenedesmus acutus o Chlorella vulgaris cultivadas en medio Bold o fertilizante líquido comercial (Bayfolan, de Bayer. En los rotíferos no se observaron diferencias significativas en el promedio de vida, sin embargo, este parámetro en M. macrocopa con S. acutus cultivada en Medio Bold, fue significativamente menor que en otras dietas. Las tasas de reproducción bruta y neta de A. fissa fueron significativamente mayores con C. vulgaris cultivada en medio Bold, que con el fertilizante; estas tasas en B

  20. Chlorella vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties.

    Science.gov (United States)

    Panahi, Yunes; Darvishi, Behrad; Jowzi, Narges; Beiraghdar, Fatemeh; Sahebkar, Amirhossein

    2016-01-01

    Chlorella vulgaris is a green unicellular microalgae with biological and pharmacological properties important for human health. C. vulgaris has a long history of use as a food source and contains a unique and diverse composition of functional macro- and micro-nutrients including proteinsChlorella vulgaris is a green unicellular microalgae with biological and pharmacological properties important for human health. C. vulgaris has a long history of use as a food source and contains a unique and diverse composition of functional macro- and micro-nutrients including proteins, omega-3 polyunsaturated fatty acids, polysaccharides, vitamins and minerals. Clinical trials have suggested that supplementation with C. vulgaris can ameliorate amelioration hyperlipidemia and hyperglycemia, and protect against oxidative stress, cancer and chronic obstructive pulmonary disease. In this review, we summarize the findings on the health benefits of Chlorella supplementation and the molecular mechanisms underlying these effects., omega-3 polyunsaturated fatty acids, polysaccharides, vitamins and minerals. Clinical trials have suggested that supplementation with C. vulgaris can ameliorate amelioration hyperlipidemia and hyperglycemia, and protect against oxidative stress, cancer and chronic obstructive pulmonary disease. In this review, we summarize the findings on the health benefits of Chlorella supplementation and the molecular mechanisms underlying these effects.

  1. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis.

    Science.gov (United States)

    Suman, T Y; Radhika Rajasree, S R; Kirubagaran, R

    2015-03-01

    The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnO NPs) was investigated in Marine algae Chlorella vulgaris (C. vulgaris). High zinc dissociation from ZnONPs, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONPs toxicity. To examine the mechanism of toxicity, C. vulgaris were treated with 50mg/L, 100mg/L, 200mg/L and 300 mg/L ZnO NPs for 24h and 72h. The detailed cytotoxicity assay showed a substantial reduction in the viability dependent on dose and exposure. Further, flow cytometry revealed the significant reduction in C. vulgaris viable cells to higher ZnO NPs. Significant reductions in LDH level were noted for ZnO NPs at 300 mg/L concentration. The activity of antioxidant enzyme superoxide dismutase (SOD) significantly increased in the C. vulgaris exposed to 200mg/L and 300 mg/L ZnO NPs. The content of non-enzymatic antioxidant glutathione (GSH) significantly decreased in the groups with a ZnO NPs concentration of higher than 100mg/L. The level of lipid peroxidation (LPO) was found to increase as the ZnO NPs dose increased. The FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (FESEM and CM). Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Effect of isomers of hydroxybenzoic acid on the growth and metabolism of Chlorella vulgaris Beijerinck (Chlorophyceae

    Directory of Open Access Journals (Sweden)

    Andrzej Bajguz

    2014-01-01

    Full Text Available The isomers o-, m-, and p- of hydroxybenzoic acid (HBA in the concentration range 10-1-10-4 M in the unicellular green alga Chlorella vulgaris (Chlorophyceae display marked biological activity. The o-HBA isomer, commonly known as salicylic acid, in a concentration of 10-4 M exerted the most stimulating effect on the parameters analysed (the number of cells, dry mass, the content of chlorophylls a and h, carotenoids, soluble proteins and their secretion, monosaccharides, DNA and RNA whereas p-HBA had weak stimulating properties. On the other hand, m-HBA had a weak inhibitory effect on the growth of C. vulgaris and all the biochemical parameters analysed in comparison with the control culture of algae devoid of HBA isomers.

  3. Demography of zooplankton (Anuraeopsis fissa, Brachionus rubens and Moina macrocopa) fed Chlorella vulgaris and Scenedesmus acutus cultured on different media.

    Science.gov (United States)

    Morales-Ventura, Jesús; Nandini, S; Sarma, S S S; Castellanos-Páez, Maria Elena

    2012-09-01

    Generally zooplankton growth is often limited by the quality of their algal diet. A cheaper common practice in aquaculture, is to culture algae with fertilizers; however, the demography of zooplankton when fed these algae has not yet been evaluated. We studied the population growth and life table demography of the rotifers Anuraeopsis fissa and Brachionus rubens, and the cladoceran Moina macrocopa. For this, the algae Scenedesmus acutus or Chlorella vulgaris were cultured on defined (Bold's basal) medium or the commercial liquid fertilizer (Bayfolan). Experiments were conducted at one algal concentration 1.0 x 10(6) cells/mL of C. vulgaris or its equivalent dry weight of 0.5 x 10(6) cells/mL of S. acutus. The population dynamics were tested at 23 +/- 1 degrees C in 100 mL transparent jars, each with 50mL of the test medium, with an initial density of 0.5indiv/mL, for a total of 48 test jars (3 zooplankton 2 algal species x 2 culture media x 4 replicates). For the life table experiments with M. macrocopa, we introduced 10 neonates (vulgaris cultured in Bold medium. Regardless of the culture medium, Chlorella resulted in significantly higher gross and net reproductive rates for B. rubens than S. acutus diets. The reproductive rates of M. macrocopa were significantly higher in all the tested diets except when fed with S. acutus in Bold medium. The population increase rate, derived from growth experiments of A. fissa and B. rubens, ranged from 0.1-0.25/d and were significantly higher on C vulgaris cultured in liquid fertilizer as compared to the other diets. The growth rates of M. macrocopa ranged from 0.1 to 0.38/d, and were highest with diets of C. vulgaris cultured in Bold medium and S. acutus cultured in fertilizer. Thus, regardless of the culture medium used, the growth rates of the evaluated zooplankton species were higher with Chlorella than with Scenedesmus. The peak population density was highest (2 800ind/mL) for A. fissa fed Chlorella that was cultured on

  4. [Research on characteristic of interrelationship between toxic organic compound BPA and Chlorella vulgaris].

    Science.gov (United States)

    Chen, Shan-Jia; Chen, Xiu-Rong; Yan, Long; Zhao, Jian-Guo; Zhang, Fei; Jiang, Zi-Jian

    2014-04-01

    The effects of different concentrations of bisphenol A (BPA) on Chlorella vulgaris and removal capacity of BPA by Chlorella vulgaris were investigated. Results showed that a low concentration (0-20 mg x L(-1)) of BPA promoted the growth of Chlorella vulgaris, whereas a relative high concentration (20-50 mg x L(-1)) of BPA inhibited the growth of Chlorella vulgaris, and the inhibition effect was positively correlated with the concentration of BPA. Likewise, a high dose of initial BPA (> 20 mg x L(-1)) led to a decline in the content of chlorephyll a. Chlorella vulgaris had BPA removal capacity when initial BPA concentration ranged from 2 mg x L(-1) to 50 mg x L(-1). There was positive correlation between the removal rate of BPA per cell and initial BPA concentration. The removal rate of BPA was the highest when initial BPA was 50 mg x L(-1), which appeared between lag phase and logarithmic phase.

  5. The interactive effects of microcystin-LR and cylindrospermopsin on the growth rate of the freshwater algae Chlorella vulgaris.

    Science.gov (United States)

    Pinheiro, Carlos; Azevedo, Joana; Campos, Alexandre; Vasconcelos, Vítor; Loureiro, Susana

    2016-05-01

    Microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are the most representative cyanobacterial cyanotoxins. They have been simultaneously detected in aquatic systems, but their combined ecotoxicological effects to aquatic organisms, especially microalgae, is unknown. In this study, we examined the effects of these cyanotoxins individually and as a binary mixture on the growth rate of the freshwater algae Chlorella vulgaris. Using the MIXTOX tool, the reference model concentration addition (CA) was selected to evaluate the combined effects of MC-LR and CYN on the growth of the freshwater green algae due to its conservative prediction of mixture effect for putative similar or dissimilar acting chemicals. Deviations from the CA model such as synergism/antagonism, dose-ratio and dose-level dependency were also assessed. In single exposures, our results demonstrated that MC-LR and CYN had different impacts on the growth rates of C. vulgaris at the highest tested concentrations, being CYN the most toxic. In the mixture exposure trial, MC-LR and CYN showed a synergistic deviation from the conceptual model CA as the best descriptive model. MC-LR individually was not toxic even at high concentrations (37 mg L(-1)); however, the presence of MC-LR at much lower concentrations (0.4-16.7 mg L(-1)) increased the CYN toxicity. From these results, the combined exposure of MC-LR and CYN should be considered for risk assessment of mixtures as the toxicity may be underestimated when looking only at the single cyanotoxins and not their combination. This study also represents an important step to understand the interactions among MC-LR and CYN detected previously in aquatic systems.

  6. Effects of Pb(Ⅱ) exposure on Chlorella protothecoides and Chlorella vulgaris growth, malondialdehyde, and photosynthesis-related gene transcription.

    Science.gov (United States)

    Xiong, Bang; Zhang, Wei; Chen, Lin; Lin, Kuang-Fei; Guo, Mei-Jin; Wang, Wei-Liang; Cui, Xin-Hong; Bi, Hua-Song; Wang, Bin

    2014-11-01

    Greater exposure to Pb(Ⅱ) increases the likelihood of harmful effects in the environment. In this study, the aquatic unicellular alga Chlorella protothecoides (C. protothecoides) and Chlorella vulgaris (C. vulgaris) were chosen to assess the acute and chronic toxicity of Pb(Ⅱ) exposure. Results of the observations show dose-response relationships could be clearly observed between Pb(Ⅱ) concentration and percentage inhibition (PI). Exposure to Pb(Ⅱ) increased malondialdehyde (MDA) content by up to 4.22 times compared with the control, suggesting that there was some oxidative damage. ANOVA analysis shows that Pb(Ⅱ) decreased chlorophyll (chl) content, indicating marked concentration-dependent relationships, and the lowest levels of chl a, chl b, and total-chl were 14.53, 18.80, and 17.95% of the controls, respectively. A real-time PCR assay suggests the changes in transcript abundances of three photosynthetic-related genes. After 120 h exposure Pb(Ⅱ) reduced the transcript abundance of rbcL, psaB, and psbC, and the relative abundances of the three genes of C. protothecoides and C. vulgaris in response to Pb(Ⅱ) were 54.66-98.59, 51.68-95.59, 37.89-95.48, 36.04-94.94, 41.19-91.20, and 58.75-96.80% of those of the controls, respectively. As for 28 d treatments, the three genes displayed similar inhibitory trend. This research provides a basic understanding of Pb(Ⅱ) toxicity to aquatic organisms. Copyright © 2013 Wiley Periodicals, Inc.

  7. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    Science.gov (United States)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  8. Elimination of bicarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vulgaris

    International Nuclear Information System (INIS)

    Greene, B.; Henzl, M.T.; Hosea, J.M.; Darnall, D.W.

    1986-01-01

    Freeze-dried preparations of Chlorella vulgaris will accumulate U(Vl) from alkaline, bicarbonate-containing waters collected from uranium mill process streams, provided that the pH is pre-adjusted to between 4.0 and 6.0. Bicarbonate ion complexes the uranyl ion in these waters and seriously interferes with the binding of U(Vl) to the algal cells at pH values above 6.0. No binding of U(Vl) to the algae occurred at the natural pH of 8.0 when Chlorella vulgaris was suspended in untreated mull-waters containing up to 2.5 x 10 -4 M U(Vl). However, when the pH of these waters was lowered from 8.0 to near 5.0, with nitric acid, nearly quantitative binding of U(Vl) to the alga was achieved. Binding is rapid and largely unaffected by ions including Na + , Cl - , NO 3 - , - OAc, and SO 4 2- . Our results indicate that provided steps are taken to eliminate bicarbonate interference, such as adjustment of the pH to near 5.0, dried algal biomass could prove useful for the removal and recovery of U(Vl) from high carbonate-containing waters

  9. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris.

    Science.gov (United States)

    Borecka, Marta; Białk-Bielińska, Anna; Haliński, Łukasz P; Pazdro, Ksenia; Stepnowski, Piotr; Stolte, Stefan

    2016-05-05

    This paper presents the investigation of the influence of salinity variations on the toxicity of sulfapyridine, sulfamethoxazole, sulfadimethoxine and trimethoprim towards the green algae Chlorella vulgaris after exposure times of 48 and 72 h. In freshwater the EC50 values ranged from 0.98 to 123.22 mg L(-1) depending on the compound. The obtained results revealed that sulfamethoxazole and sulfapyridine were the most toxic, while trimethoprim was the least toxic pharmaceutical to the selected organism. Deviations between the nominal and real test concentrations were determined via instrumental analysis to support the interpretation of ecotoxicological data. The toxicity effects were also tested in saline water (3, 6 and 9 PSU). The tendency that the toxicity of selected pharmaceuticals decreases with increasing salinity was observed. Higher salinity implies an elevated concentration of inorganic monovalent cations that are capable of binding with countercharges available on algal surfaces (hydroxyl functional groups). Hence it can reduce the permeability of pharmaceuticals through the algal cell walls, which could be the probable reason for the observed effect. Moreover, for the classification of the mode of toxic action, the toxic ratio concept was applied, which indicated that the effects of the investigated drugs towards algae are caused by the specific mode of toxic action. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Epigenetic modulation of Chlorella (Chlorella vulgaris) on exposure to polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Yang, Mihi; Youn, Je-In; Kim, Seung Joon; Park, Jong Y

    2015-11-01

    DNA methylation in promoter region can be a new chemopreventive marker against polycyclic aromatic hydrocarbons (PAHs). We performed a randomized, double blind and cross-over trial (N=12 healthy females) to evaluate chlorella (Chlorella vulgaris)-induced epigenetic modulation on exposure to PAHs. The subjects consumed 4 tablets of placebo or chlorella supplement (total chlorophyll ≈ 8.3mg/tablet) three times a day before meals for 2 weeks. When the subjects consumed chlorella, status of global hypermethylation (5-methylcytosine) was reduced, compared to placebo (p=0.04). However, DNA methylation at the DNMT1 or NQO1 was not modified by chlorella. We observed the reduced levels of urinary 1-hydroxypyrene (1-OHP), a typical metabolite of PAHs, by chlorella intake (pchlorella-induced changes in global hypermethylation and urinary 1-OHP (pchlorella works for PAH-detoxification through the epigenetic modulation, the interference of ADME of PAHs and the interaction of mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Using Chlorella vulgaris to treat toxic excess sludge extract, and identification of its response mechanism by proteomics approach.

    Science.gov (United States)

    Wang, Lu; Wang, Hualin; Chen, Xiurong; Xu, Yan; Zhou, Tianjun; Wang, Xiaoxiao; Lu, Qian; Ruan, Roger

    2018-04-01

    Chlorella vulgaris was cultivated in varying proportions of toxic sludge extracts obtained from a sequencing batch reactor for treating synthetic wastewater containing chlorophenols. C. vulgaris could reduce the ecotoxicity from sludge extracts, and a positive correlation was noted between ecotoxicity removal and total organic carbon removal. In terms of cell density, the optimal proportion of sludge extracts required for the cultivation of C. vulgaris was lower than 50%. The correlation between protein content in per 10 6 algae and inhibition extent of ecotoxicity of the 5 groups on the day of inoculation (0.9182, p vulgaris produced proteins that involved in the stress response/redox system and energy metabolism/biosynthesis to respond to the toxic environment and some other proteins related to mixotrophic metabolism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Potential Of Microalgae Chlorella vulgaris As Bioremediation Agents of Heavy Metal Pb (Lead On Culture Media

    Directory of Open Access Journals (Sweden)

    Rita Sulistya Dewi Endah

    2018-01-01

    Full Text Available The purpose of this study to determine the ability of Chlorella vulgaris in absorbing Pb (lead and the effect of the variation of Pb metal concentration on the growth of Chlorella vulgaris.This study using an experimental study with complete random design with 4 treatments, namely control (without the addition of metal, Pb1 (addition of metal 1 mg / l, Pb3 (3 mg / l and Pb5 (5 mg / l, respectively 3 replications. Exposure Pb ion in Chlorella vulgaris for 7 days. Analysis of the metal content of Pb concentration performed on culture media after exposure it at 3 hours after dispersion Chlorella vulgaris and on day 7 of culture using the AAS method. Do also counting the growth of cells each day. The results of the analysis of the average metal content of Pb in the culture medium at the end of the study was the control (0.1980, Pb1 (0.1453, Pb3 (0.4144 and Pb5 (0.5305. While the average growth of Chlorella vulgaris at the end of the study were control (630.1116 x 104, Pb1 (829.0012 x 104, Pb3 (1069.9446 x 104 and Pb 5 (808.94450 x 104. The results of the analysis of the content of Pb in the F test shown that the difference in concentration of water Pb given real influence on the ability of Chlorella vulgaris in absorbing Pb and growth. The conclusion of this study was Chlorella vulgaris has the ability to absorb metals in the waters, and the provision of various concentrations of Pb can affect the growth of Chlorella vulgaris.

  13. Potential Of Microalgae Chlorella vulgaris As Bioremediation Agents of Heavy Metal Pb (Lead) On Culture Media

    Science.gov (United States)

    Dewi, Endah Rita Sulistya; Nuravivah, Riza

    2018-02-01

    The purpose of this study to determine the ability of Chlorella vulgaris in absorbing Pb (lead) and the effect of the variation of Pb metal concentration on the growth of Chlorella vulgaris.This study using an experimental study with complete random design with 4 treatments, namely control (without the addition of metal), Pb1 (addition of metal 1 mg / l), Pb3 (3 mg / l) and Pb5 (5 mg / l), respectively 3 replications. Exposure Pb ion in Chlorella vulgaris for 7 days. Analysis of the metal content of Pb concentration performed on culture media after exposure it at 3 hours after dispersion Chlorella vulgaris and on day 7 of culture using the AAS method. Do also counting the growth of cells each day. The results of the analysis of the average metal content of Pb in the culture medium at the end of the study was the control (0.1980), Pb1 (0.1453), Pb3 (0.4144) and Pb5 (0.5305). While the average growth of Chlorella vulgaris at the end of the study were control (630.1116 x 104), Pb1 (829.0012 x 104), Pb3 (1069.9446 x 104) and Pb 5 (808.94450 x 104). The results of the analysis of the content of Pb in the F test shown that the difference in concentration of water Pb given real influence on the ability of Chlorella vulgaris in absorbing Pb and growth. The conclusion of this study was Chlorella vulgaris has the ability to absorb metals in the waters, and the provision of various concentrations of Pb can affect the growth of Chlorella vulgaris.

  14. Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris with/without presence of bacteria.

    Science.gov (United States)

    Sun, Jingyi; Simsek, Halis

    2017-07-01

    Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae+bacteria, while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae+bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. Copyright © 2017. Published by Elsevier B.V.

  15. Effects of iron and manganese on the formation of HAAs upon chlorinating Chlorella vulgaris

    International Nuclear Information System (INIS)

    Ge, Fei; Wu, Xiuzhen; Wang, Na; Zhu, Runliang; Wang, Tong; Xu, Yin

    2011-01-01

    The major objective of the present study was to investigate the role of iron and manganese on the formation of haloacetic acids (HAAs) when algae are chlorinated at different pHs. The results showed that both iron and manganese can reduce the yields of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) on chlorinating green alga Chlorella vulgaris (C. vulgaris) at a pH range of 6.0-9.0, and the decline of DCAA and TCAA was shown to be more significant at the low pH range. At pH 6.0, DCAA and TCAA yields decreased by 44.5% and 57.3%, respectively with the addition of 0.5 mg L -1 iron, and decreased 39.5% and 49.4%, respectively with the addition of 0.5 mg L -1 manganese. The main reason for decreasing the yields of HAAs as shown by scanning electron microscope (SEM) is that Fe(OH) 3(am) or MnO 2(am) coat the algal cells , which then improves their agglomeration of algal cells which is also revealed by the laser particle size analysis (LPSA).

  16. Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris.

    Science.gov (United States)

    Cha, Kwang Hyun; Kang, Suk Woo; Kim, Chul Young; Um, Byung Hun; Na, Ye Rim; Pan, Cheol-Ho

    2010-04-28

    Chlorella vulgaris is a green microalga that contains various antioxidants, such as carotenoids and chlorophylls. In this study, antioxidants from C. vulgaris were extracted using pressurized liquid extraction (PLE), which has been recently used for bioactive compound extraction. The antioxidant capacity of individual compounds in chlorella was determined by online HPLC ABTS(*+) analysis. According to the antioxidant analysis of total extracts, the extraction yield, radical scavenging activity, and phenolic compounds using PLE were relatively high compared to those obtained using maceration or ultrasound-assisted extraction. On the basis of online HPLC ABTS(*+) analysis, the 15 major antioxidants from chlorella extracts were identified as hydrophilic compounds, lutein and its isomers, chlorophylls, and chlorophyll derivatives. Using PLE at high temperature (85-160 degrees C) significantly increased antioxidant extraction from chlorella, improving the formation of hydrophilic compounds and yielding more antioxidative chlorophyll derivatives. Online HPLC ABTS(*+) analysis was a useful tool for the separation of main antioxidants from PLE extracts and allowed the simultaneous measurement of their antioxidant capacity, which clearly showed that PLE is an excellent method for extracting antioxidants from C. vulgaris.

  17. The Effect of Aluminium on Antibacterial Properties and the Content of Some Fatty Acids in Microalgae, Chlorella vulgaris Beijernick, under Heterotrophic and Autotrophic Conditions

    Directory of Open Access Journals (Sweden)

    Hossein Abbaspour

    2017-01-01

    Full Text Available Microalgae are a group of organisms, which have a significant potential for industrial applications. These algae contain large amounts of lipids compounds that are beneficial to health, have antibacterial properties, and their extracted oil can be used for biofuel. In this study, microalgae Chlorella vulgaris Beijernick was grown in the culture medium BG-11 containing aluminium (AlCl3 under autotrophic and heterotrophic conditions. In each case, survival and growth, dry weight, internal aluminium content of the sample, antibacterial properties, the content of fatty acids accumulated in the algae and secreted into the culture medium in the logarithmic growth phase were studied. Aluminium significantly increased (P < .05 growth and dry weight in autotrophic treatment compared to the heterotrophic one. Most antibacterial properties were observed in methanol extracts of heterotrophic treatments containing 0.05% glucose. Aluminium also decreased fatty acids accumulation in the algae and increased fatty acids excretion into the culture medium in heterotrophic treatment compared to the autotrophic treatment. Survival of the sample was maintained in heterotrophic conditions and showed growth without lag phase, which is indicative of rapid acclimation of organisms in heterotrophic conditions. It seems that the mentioned characteristics make the single-celled green algae Chlorella vulgaris more efficient in different ways.

  18. Inmovilización de las microalgas Scenedesmus ovalternus (Scenedesmaceae y Chlorella vulgaris (Chlorellaceae en esferas de alginato de calcio.

    Directory of Open Access Journals (Sweden)

    Mario Andres Forero-Cujiño

    2016-05-01

    Full Text Available En este trabajo se describe la técnica de inmovilización de microalgas en esferas de alginato de calcio. Se emplearon las especies Scenedesmus ovalternus y Chlorella vulgaris, se determinó la estabilidad de las esferas, la cinética de crecimiento y la concentración de las microalgas en el interior de las esferas. Chlorella vulgaris alcanzó mayores densidades poblacionales y tasas de crecimiento más altas cuando se inmovilizó en concentraciones del 10 % v/v con el alginato (1,31*106 cél/ml. Para Scenedesmus ovalternus se observó una mayor densidad poblacional y una mayor tasa de crecimiento cuando se inmovilizó en concentraciones del 20 % v/v (7,06*105 cél/ml. Estos resultados son útiles para aplicaciones prácticas de las algas encapsuladas, tales como el biomonitoreo o la biorremediación.

  19. Growth of Chlorella vulgaris and associated bacteria in photobioreactors

    Science.gov (United States)

    Lakaniemi, Aino‐Maija; Intihar, Veera M.; Tuovinen, Olli H.; Puhakka, Jaakko A.

    2012-01-01

    Summary The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non‐axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water‐based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture‐independent molecular tools based on denaturing gradient gel electrophoresis (PCR‐DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l−1 and 2.0 day−1 respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR‐DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non‐photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions. PMID:21936882

  20. Photosynthetic and cellular toxicity of cadmium in Chlorella vulgaris.

    Science.gov (United States)

    Ou-Yang, Hui-Ling; Kong, Xiang-Zhen; Lavoie, Michel; He, Wei; Qin, Ning; He, Qi-Shuang; Yang, Bin; Wang, Rong; Xu, Fu-Liu

    2013-12-01

    The toxic effects of cadmium (Cd) on the green alga Chlorella vulgaris were investigated by following the response to Cd of various toxicity endpoints (cell growth, cell size, photochemical efficiency of PSII in the light or Φ(PSII), maximal photochemical efficiency or Fv/Fm, chlorophyll a fluorescence, esterase activity, and cell viability). These toxicity endpoints were studied in laboratory batch cultures of C. vulgaris over a long-term 96-h exposure to different Cd concentrations using flow cytometry and pulse amplitude modulated fluorometry. The sequence of sensitivity of these toxicity endpoints was: cell yield > Φ(PSII) ≈ esterase activity > Fv/Fm > chlorophyll a fluorescence ≈ cell viability. It is shown that cell apoptosis or cell death only accounted for a minor part of the reduction in cell yield even at very high algistatic free Cd²⁺ concentrations, and other mechanisms such as blocked cell divisions are major contributors to cell yield inhibition. Furthermore, cadmium may affect both the electron donors and acceptors of the electron transport chain at high free Cd²⁺ concentration. Finally, the resistance of cells to cell death was size-dependent; medium-sized cells had the highest toxicity threshold. The present study brings new insights into the toxicity mechanisms of Cd in C. vulgaris and provides a detailed comparison of the sensitivity of various Cd toxicity endpoints. © 2013 SETAC.

  1. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris.

    Science.gov (United States)

    Bhola, Virthie; Desikan, Ramesh; Santosh, Sheena Kumari; Subburamu, Karthikeyan; Sanniyasi, Elumalai; Bux, Faizal

    2011-03-01

    Conventional fossil fuels are facing a global challenge which lead scientists to explore alternative fuel production from biological sources. The algae-based fuels are gaining rapid attention as it has potential to replace petroleum-based fuels. An indigenous high lipid producing microalgae was isolated from a freshwater pond in the KwaZulu-Natal province of South Africa. The isolate was later identified as Chlorella vulgaris, based on partial 28S large subunit ribosomal RNA gene sequence. The growth kinetics, pyrolytic characteristics and photosynthetic efficiency of Chlorella was evaluated in vitro. The optimized conditions for higher biomass yield of the selected strain were at 4% CO(2), 0.5 g l(-1) NO(3) and 0.04 g l(-1) PO(4), respectively. The pulse amplitude modulation results indicated that C. vulgaris could withstand a light intensity ranging from 150 to 350 μmol photons m(-2)s(-1). Further increase in light intensity resulted in a decline of the electron transport rate. Carbon fixation rate, lipid content and calorific value of C. vulgaris was 6.17 mg l(-1)h(-1), 21% and 17.44 kJ g(-1), respectively. The pyrolitic studies under inert atmosphere at different heating rates of 15, 30, 40 and 50°C min(-1) from ambient temperature to 800°C showed that the overall final weight loss recorded for the four different heating rates was in the range of 78.9-81%. These studies could be useful to appraise the biofuel potential of the isolated C. vulgaris strain, which can later be taken for pilot scale production. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Acute toxicity and associated mechanisms of four strobilurins in algae.

    Science.gov (United States)

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-04-03

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Demography of zooplankton (Anuraeopsis fissa, Brachionus rubens and Moina macrocopa fed Chlorella vulgaris and Scenedesmus acutus cultured on different media

    Directory of Open Access Journals (Sweden)

    Jesús Morales-Ventura

    2012-09-01

    Full Text Available Generally zooplankton growth is often limited by the quality of their algal diet. A cheaper common practice in aquaculture, is to culture algae with fertilizers; however, the demography of zooplankton when fed these algae has not yet been evaluated. We studied the population growth and life table demography of the rotifers Anuraeopsis fissa and Brachionus rubens, and the cladoceran Moina macrocopa. For this, the algae Scenedesmus acutus or Chlorella vulgaris were cultured on defined (Bold’s basal medium or the commercial liquid fertilizer (Bayfolan. Experiments were conducted at one algal concentration 1.0x10(6cells/mL of C. vulgaris or its equivalent dry weight of 0.5x10(6cells/mL of S. acutus. The population dynamics were tested at 23±1ºC in 100mL transparent jars, each with 50mL of the test medium, with an initial density of 0.5indiv/mL, for a total of 48 test jars (3 zooplankton 2 algal species x 2 culture media x 4 replicates. For the life table experiments with M. macrocopa, we introduced 10 neonates (<24h old into each test jar containing the specific algal type and concentration. For the rotifer experiments, we set 5mL tubes with one neonate each and 10 replicates for each algal species and culture medium. We found that the average rotifer life span was not influenced by the diet, but for M. macrocopa fed S. acutus cultured in Bold’s medium, the average lifespan was significantly lower than with the other diets. The gross and net reproductive rates of A. fissa (ranging from 18-36 offspring per female were significantly higher for C. vulgaris cultured in Bold medium. Regardless of the culture medium, Chlorella resulted in significantly higher gross and net reproductive rates for B. rubens than S. acutus diets. The reproductive rates of M. macrocopa were significantly higher in all the tested diets except when fed with S. acutus in Bold medium. The population increase rate, derived from growth experiments of A. fissa and B. rubens

  4. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris.

    Science.gov (United States)

    Qian, Haifeng; Chen, Wei; Sheng, G Daniel; Xu, Xiaoyan; Liu, Weiping; Fu, Zhengwei

    2008-07-30

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris.

  5. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris

    International Nuclear Information System (INIS)

    Qian Haifeng; Chen Wei; Sheng, G. Daniel; Xu Xiaoyan; Liu Weiping; Fu Zhengwei

    2008-01-01

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12 h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris

  6. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Chen Wei; Sheng, G. Daniel; Xu Xiaoyan; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)], E-mail: azwfu2003@yahoo.com.cn

    2008-07-30

    Greater exposure to herbicide increases the likelihood of harmful effects in humans and the environment. Glufosinate, a non-selective herbicide, inhibits glutamine synthetase (GS) and thus blocks ammonium assimilation in plants. In the present study, the aquatic unicellular alga Chlorella vulgaris was chosen to assess the effects of acute glufosinate toxicity. We observed physiological changes during 12-96 h of exposure, and gene transcription during 6-48 h of exposure. Exposure to glufosinate increased malondialdehyde content by up to 2.73 times compared with the control, suggesting that there was some oxidative damage. Electron microscopy also showed that there were some chloroplast abnormalities in response to glufosinate. The activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) also increased markedly in the presence of glufosinate. Maximum activities of SOD, POD, and CAT were 2.90, 2.91, and 2.48 times that of the control, respectively. These elevated activities may help alleviate oxidative damage. A real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL. The results showed that glufosinate reduced the transcript abundances of the three genes after 12 h exposure. The lowest abundances of psaB, psbC and rbcL transcripts in response to glufosinate exposure were 38%, 16% and 43% of those of the control, respectively. Our results demonstrate that glufosinate affects the activities of antioxidant enzymes, disrupts chloroplast ultrastructure, and reduces transcription of photosynthesis-related genes in C. vulgaris.

  7. Effects of iron and manganese on the formation of HAAs upon chlorinating Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Fei, E-mail: gefei@xtu.edu.cn [Department of Environmental Science and Engineering, Xiangtan University, Egongtang Road, Xiangtan, Hunan 411105 (China); Wu, Xiuzhen; Wang, Na; Zhu, Runliang; Wang, Tong; Xu, Yin [Department of Environmental Science and Engineering, Xiangtan University, Egongtang Road, Xiangtan, Hunan 411105 (China)

    2011-05-15

    The major objective of the present study was to investigate the role of iron and manganese on the formation of haloacetic acids (HAAs) when algae are chlorinated at different pHs. The results showed that both iron and manganese can reduce the yields of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) on chlorinating green alga Chlorella vulgaris (C. vulgaris) at a pH range of 6.0-9.0, and the decline of DCAA and TCAA was shown to be more significant at the low pH range. At pH 6.0, DCAA and TCAA yields decreased by 44.5% and 57.3%, respectively with the addition of 0.5 mg L{sup -1} iron, and decreased 39.5% and 49.4%, respectively with the addition of 0.5 mg L{sup -1} manganese. The main reason for decreasing the yields of HAAs as shown by scanning electron microscope (SEM) is that Fe(OH){sub 3(am)} or MnO{sub 2(am)} coat the algal cells{sub ,} which then improves their agglomeration of algal cells which is also revealed by the laser particle size analysis (LPSA).

  8. Protein hydrolysates from the alga Chlorella vulgaris 87/1 with potentialities in immuno nutrition

    International Nuclear Information System (INIS)

    Morris, Humberto J; Carrillo, Olimpia; Almarales, Angel; Bermudez, Rosa C; Alonso, Maria E; Borges, Leonardo; Quintana, Maria M; Fontaine, Roberto; Llaurado, Gabriel; Hernandez, Martha

    2009-01-01

    Chlorella vulgaris (Chlorophyta, Chlorophyceae) has received a particular attention in the programmes of microalgae utilisation in biotechnology. Enzymatic hydrolysis of cell proteins represents a very promising method to increase protein digestibility and thus, for obtaining hydrolysates with improved nutritional and functional properties. However, this technology has been little approached and the biological evaluation of hydrolysates has had a strictly nutritional nature. The design of hydrolysis conditions that combined for the first time, the use of C.vulgaris 87/1 treated with ethanol and pancreatin at pH values of 7.5-8.0, led to a product with a degree of hydrolysis of 20-22% and yields of 50-55%, characterised by a high digestibility (97.2%) and nitrogen solubility over a wide pH range (2.0-10.0). Hydrolysis curves were fitted to an exponential model, common to many food proteins. The bulk of the product dry matter consists of soluble peptides and free amino acids (47.7%) with three main peptides of molecular masses between 2 and 5 kDa. The oral administration of Chlorella hydrolysate (500 mg/kg) to undernourished Balb/c mice provided benefits in terms of liver protein metabolism and the induction of anabolic processes in gut mucosa. The hydrolysate also enhanced the immunological recovery, as judged by the stimulation of haemopoiesis, monocyte macrophage system activation, as well as humoral and cell mediated immune functions, like T-dependent antibody response and the reconstitution of delayed-type hypersensitivity (DTH) response. These results represent the first findings in the world concerning the immunomodulating effects of a microalgae protein hydrolysate. (author)

  9. Biosynthesis of lipids in Chlorella vulgaris Beijer. under the action of Mn2+, Zn2+, Cu2+, and Pb2+

    International Nuclear Information System (INIS)

    Gorda, A.Yi.; Grubyinko, V.V.

    2011-01-01

    We study the influence of Mn 2+ , Zn 2+ , Cu 2+ , and Pb 2+ on the intensity of biosynthesis of lipids in unicellular algae Chlorella vulgaris Beijer. In all cases, there is a general tendency to the accumulation of triacylglycerols, dyacylglycerols, and nonesterified fatty acids, which participate in protecting the cages of algae from an unfavorable action, and to a decrease of the content of phospholipids. For the actions of Zn 2+ , Cu 2+ , and Pb 2+ , 14 C-acetate is maximally included in phospholipids, for the actions of Mn 2+ - in dyacylglycerols, and the synthesis of other classes of lipids is inhibited. The content of chlorophylls a and b grows substantially for the actions of ions of zinc and lead and diminishes for the actions of ions of copper and manganese. We discuss the regulatory role and the toxic influence of ions of metals on the lipid metabolism in chlorella.

  10. Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris.

    Science.gov (United States)

    Schwab, Fabienne; Bucheli, Thomas D; Camenzuli, Louise; Magrez, Arnaud; Knauer, Katja; Sigg, Laura; Nowack, Bernd

    2013-07-02

    Carbon nanotubes (CNT) are more and more likely to be present in the environment, where they will associate with organic micropollutants due to strong sorption. The toxic effects of these CNT-micropollutant mixtures on aquatic organisms are poorly characterized. Here, we systematically quantified the effects of the herbicide diuron on the photosynthetic activity of the green alga Chlorella vulgaris in presence of different multiwalled CNT (industrial, purified, pristine, and oxidized) or soot. The presence of carbonaceous nanoparticles reduced the adverse effect of diuron maximally by diuron concentrations in the range 0.73-2990 μg/L. However, taking into account the measured dissolved instead of the nominal diuron concentration, the toxic effect of diuron was equal to or stronger in the presence of CNT by a factor of up to 5. Sorbed diuron consequently remained partially bioavailable. The most pronounced increase in toxicity occurred after a 24 h exposure of algae and CNT. All results point to locally elevated exposure concentration (LEEC) in the proximity of algal cells associated with CNT as the cause for the increase in diuron toxicity.

  11. Effects of sodium pentaborate pentahydrate exposure on Chlorella vulgaris growth, chlorophyll content, and enzyme activities.

    Science.gov (United States)

    Chen, Xueqing; Pei, Yuansheng

    2016-10-01

    Sodium pentaborate pentahydrate (SPP) is a rare mineral. In this study, SPP was synthesized from boric acid and borax through low-temperature crystallization, and its effects on the growth of the alga, Chlorella vulgaris (C. vulgaris) were assessed. The newly synthesized SPP was characterized by chemical analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and differential thermal analysis. The changes in C. vulgaris growth, chlorophyll content, and enzyme activities upon exposure to SPP for 168h were evaluated. Results showed that SPP treatment was detrimental to C. vulgaris growth during the first 24-120h of exposure. The harmful effects, however, diminished over time (168h), even at an effective medium concentration of 226.37mg BL(-1) (the concentration of boron applied per liter of culture medium). A similar trend was observed for chlorophyll content (chlorophyll a and b) and indicated that the photosynthesis of C. vulgaris was not affected and that high levels of SPP may even promote chlorophyll synthesis. Superoxide dismutase and catalase activities of C. vulgaris increased during 24-120h exposure to SPP, but these activities gradually decreased as culture time progressed. In other words, the initial detrimental effects of synthetic SPP on C. vulgaris were temporary and reversible. This research provides a scientific basis for applications of SPP in the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera

    Directory of Open Access Journals (Sweden)

    E. Lucía-Pavón

    2001-12-01

    Full Text Available In order to maintain rotifer populations during periods of low algal production, it is necessary to offer alternate diets, some of which include forms of preserved algae. The present work is based on the effect of live and dead Chlorella vulgaris on the population growth of Brachionus calyciflorus and Brachionus patulus. The experimental design consisted of 3 algal levels (0.5x10(6, 1.5x10(6 and 4.5x10(6 cells ml-1 offered in 3 forms (living, frozen and heat-killed. The maximal population density values for B. calyciflorus ranged from 55±1 ind. ml-1 (at 0.5x10(6 cells ml-1 to 471±72 ind. ml-1 (at 4.5x10(6 cells ml-1 with live Chlorella, but was much lower (6±1 to 26±6 ind. ml-1 with frozen or heat-killed alga under comparable food levels. However, the maximum population density of B. patulus under live or or heat-killed Chlorella was similar at comparable algal levels but when offered frozen algae it was four times less. The highest mean peak population density was 1227±83 ind. ml-1 under 4.5x10(6 cells ml-1. The rate of population increase for B. calyciflorus varied from 0.50 to 0.79 using live Chlorella, but under comparable conditions, this range was lower (0.21 to 0.31 for B. patulus. Results have been discussed in light of possible application for aquaculturePara mantener poblaciones de rotíferos durante periodos con escasez de microalgas, es necesario ofrecer dietas alternativas, incluyendo algunas formas de microalgas preservadas. El presente trabajo analiza el efecto de Chlorella vulgaris viva y muerta sobre el crecimiento poblacional de Brachionus calyciflorus y Brachonus patulus. El diseño experimental consistió en tres niveles de algas (0.5x10(6, 1.5x10(6 y 4.5x10(6 células ml-1 ofrecidas en tres formas (viva, congelada y muerta con agua caliente. Las abundancias máximas de población de B. calyciflorus variaron desde 55±1 ind. ml-1 (en 0.5x10(6 células ml-1 a 471±72 ind. ml-1 (en 4.5x10(6 células ml-1 con Chlorella viva

  13. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    Science.gov (United States)

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Influence of cysteine and selenodicysteine on the uptake of zinc by Chlorella vulgaris Beijerinck

    International Nuclear Information System (INIS)

    Czauderna, M.; Samochocka, K.

    1982-01-01

    The uptake of zinc labelled with radioactive 65 Zn in the presence of cysteine and selenodicysteine by Chlorella vulgaris was examined. The concentration of zinc ions in the medium was 20 mg per 1. The uptake yield was found to be enhanced by selenodicysteine. At concentration of 10 - 7 -10 - 6 M the growth rate of Chlorella vulgaris was accelerated by the latter, provided that the specific activity of 65 Zn was 3.7 MBq/1. At this specific zinc activity cysteine increased the uptake yield during the initial 50 h of the incubation process. At specific 65 Zn-activity of 55.5 MBq/1 selenodicysteine and cysteine only slightly influenced the zinc uptake by Chlorella vulgaris. No increment in the biomass was observed at this specific zinc radioactivity. (author)

  15. Bioremediation of the textile waste effluent by Chlorella vulgaris

    OpenAIRE

    El-Kassas, Hala Yassin; Mohamed, Laila Abdelfattah

    2014-01-01

    The microalgae biomass production from textile waste effluent is a possible solution for the environmental impact generated by the effluent discharge into water sources. The potential application of Chlorella vulgaris for bioremediation of textile waste effluent (WE) was investigated using 22 Central Composite Design (CCD). This work addresses the adaptation of the microalgae C. vulgaris in textile waste effluent (WE) and the study of the best dilution of the WE for maximum biomass production...

  16. Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris

    Science.gov (United States)

    Mayhead, Elyssia; Llewellyn, Carole A.; Fuentes-Grünewald, Claudio

    2018-01-01

    The nutrient removal efficiency of Chlorella vulgaris cultivated in domestic wastewater was investigated, along with the potential to use membrane filtration as a pre-treatment tool during the wastewater treatment process. Chlorella vulgaris was batch cultivated for 12 days in a bubble column system with two different wastewater treatments. Maximum uptake of 94.18% ammonium (NH4-N) and 97.69% ortho-phosphate (PO4-P) occurred in 0.2 μm membrane filtered primary wastewater. Membrane filtration enhanced the nutrient uptake performance of C. vulgaris by removing bacteria, protozoa, colloidal particles and suspended solids, thereby improving light availability for photosynthesis. The results of this study suggest that growing C. vulgaris in nutrient rich membrane filtered wastewater provides an option for domestic wastewater treatment to improve the quality of the final effluent. PMID:29351200

  17. Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4

    International Nuclear Information System (INIS)

    Kim, Young-Hoo; Park, Saerom; Kim, Min Hoo; Choi, Yong-Keun; Yang, Yung-Hun; Kim, Hyung Joo; Kim, Hyungsup; Kim, Han-Soo; Song, Kyung-Guen; Lee, Sang Hyun

    2013-01-01

    Lipids from Chlorella vulgaris were successfully extracted using an ionic liquid, [Bmim][MeSO 4 ]. [Bmim][MeSO 4 ] dissolved C. vulgaris, leaving the lipids insoluble. The undissolved lipids could easily be recovered due to the lower density of the lipid phase. Furthermore, ultrasound irradiation highly enhanced the extraction rate and yield with [Bmim][MeSO 4 ]. The total amounts of lipid extracted from C. vulgaris by the Soxhlet method and the Bligh and Dyer's method were 21 and 29 mg/g dry cell weight (DCW), respectively, whereas it was 47 mg/g DCW with [Bmim][MeSO 4 ]. Additionally, the amount of lipid extracted using [Bmim][MeSO 4 ] was 1.6 times greater with ultrasound irradiation. The rate of extraction of lipids from C. vulgaris with [Bmim][MeSO 4 ] was also 2.7 times greater with ultrasound irradiation. The fatty acid profiles of the lipids extracted using [Bmim][MeSO 4 ] were very similar to those of the lipids obtained by Bligh and Dyer's method. -- Highlights: •[Bmim][MeSO 4 ] efficiently extracted lipids from algae without pretreatment. •Ultrasound irradiation highly enhanced the extraction rate and yield of the extraction system using IL. •Fatty acid profiles of lipids extracted using [Bmim][MeSO 4 ] were similar to those of the lipids obtained by conventional methods

  18. Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using High Performance Thin Layer Chromatography.

    Science.gov (United States)

    Hynstova, Veronika; Sterbova, Dagmar; Klejdus, Borivoj; Hedbavny, Josef; Huska, Dalibor; Adam, Vojtech

    2018-01-30

    In this study, 14 commercial products (dietary supplements) containing alga Chlorella vulgaris and cyanobacteria Spirulina platensis, originated from China and Japan, were analysed. UV-vis spectrophotometric method was applied for rapid determination of chlorophylls, carotenoids and pheophytins; as degradation products of chlorophylls. High Performance Thin-Layer Chromatography (HPTLC) was used for effective separation of these compounds, and also Atomic Absorption Spectrometry for determination of heavy metals as indicator of environmental pollution. Based on the results obtained from UV-vis spectrophotometric determination of photosynthetic pigments (chlorophylls and carotenoids), it was confirmed that Chlorella vulgaris contains more of all these pigments compared to the cyanobacteria Spirulina platensis. The fastest mobility compound identified in Chlorella vulgaris and Spirulina platensis using HPTLC method was β-carotene. Spectral analysis and standard calibration curve method were used for identification and quantification of separated substances on Thin-Layer Chromatographic plate. Quantification of copper (Cu 2+ , at 324.7 nm) and zinc (Zn 2+ , at 213.9nm) was performed using Flame Atomic Absorption Spectrometry with air-acetylene flame atomization. Quantification of cadmium (Cd 2+ , at 228.8 nm), nickel (Ni 2+ , at 232.0nm) and lead (Pb 2+ , at 283.3nm) by Electrothermal Graphite Furnace Atomic Absorption Spectrometry; and quantification of mercury (Hg 2+ , at 254nm) by Cold Vapour Atomic Absorption Spectrometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor.

    Science.gov (United States)

    Sadeghizadeh, Aziz; Farhad Dad, Farid; Moghaddasi, Leila; Rahimi, Rahbar

    2017-11-01

    In this work, hydrodynamics and CO 2 biofixation study was conducted in an airlift bioreactor at the temperature of 30±2°C. The main objective of this work was to investigate the effect of high gas superficial velocity on CO 2 biofixation using Chlorella vulgaris microalgae and its growth. The study showed that Chlorella vulgaris in high input gas superficial velocity also had the ability to grow and remove the CO 2 by less than 80% efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Growth-inhibitory and metal-binding proteins in Chlorella vulgaris exposed to cadmium or zinc

    International Nuclear Information System (INIS)

    Huang Zhiyong; Li Lianping; Huang Gaoling; Yan Qingpi; Shi Bing; Xu Xiaoqin

    2009-01-01

    Phytochelatins, with the general structure of (γ-Glu-Cys)n-Gly (n = 2-11), are usually recognized as being strongly induced by metals in microalgae and play an important role in the detoxification of heavy metals in environment. However, there have been few studies on metallothionein (MT) synthesis in Chlorella vulgaris (C. vulgaris) exposed to heavy metals. The present study describes the growth inhibition of C. vulgaris exposed to different concentrations of cadmium and zinc, and the induction of metal-binding MT-like proteins in the cells. The amounts of metal-binding proteins, induced in the alga exposed to different concentrations of Cd and Zn, were analyzed with a size-exclusion HPLC coupled to ICP-MS. After being purified with a gel filtration column (Sephadex G-75, 3.5 cm x 80 cm) and a desalting column (G-25, 1.5 cm x 30 cm), the isoforms and sub-isoforms of Zn-binding protein were characterized by a reverse phase-HPLC coupled to electrospray ionization and a triple quadrupole mass spectrometer (HPLC-ESI-MS/MS). In addition, the ultraviolet spectra of purified Zn-binding proteins were analyzed in media with different pH values. The results showed that the significant inhibitory effects (at p -1 of Cd, and 60 and 80 μmol l -1 of Zn were added. The Cd/Zn-binding proteins induced in C. vulgaris exposed to Cd and Zn were referred to as Cd/Zn-MT-like proteins in which the mean molecular mass of the apo-MT-like was 6152 Da. The induced Cd/Zn-MT-like proteins might be involved in the detoxification of heavy metals, such as cadmium and zinc, by the alga

  1. Growth-inhibitory and metal-binding proteins in Chlorella vulgaris exposed to cadmium or zinc

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhiyong [College of Bioengineering, Jimei University, Xiamen, 361021 (China)], E-mail: zhyhuang@jmu.edu.cn; Li Lianping; Huang Gaoling [College of Bioengineering, Jimei University, Xiamen, 361021 (China); Yan Qingpi [College of fisheries, Jimei University, Xiamen, 361021 (China); Shi Bing; Xu Xiaoqin [Xiamen Products Quality Inspection Institute, Xiamen, 361004 (China)

    2009-01-18

    Phytochelatins, with the general structure of ({gamma}-Glu-Cys)n-Gly (n = 2-11), are usually recognized as being strongly induced by metals in microalgae and play an important role in the detoxification of heavy metals in environment. However, there have been few studies on metallothionein (MT) synthesis in Chlorella vulgaris (C. vulgaris) exposed to heavy metals. The present study describes the growth inhibition of C. vulgaris exposed to different concentrations of cadmium and zinc, and the induction of metal-binding MT-like proteins in the cells. The amounts of metal-binding proteins, induced in the alga exposed to different concentrations of Cd and Zn, were analyzed with a size-exclusion HPLC coupled to ICP-MS. After being purified with a gel filtration column (Sephadex G-75, 3.5 cm x 80 cm) and a desalting column (G-25, 1.5 cm x 30 cm), the isoforms and sub-isoforms of Zn-binding protein were characterized by a reverse phase-HPLC coupled to electrospray ionization and a triple quadrupole mass spectrometer (HPLC-ESI-MS/MS). In addition, the ultraviolet spectra of purified Zn-binding proteins were analyzed in media with different pH values. The results showed that the significant inhibitory effects (at p < 0.05) on the cell growth were observed when excessive metals such as 80 {mu}mol l{sup -1} of Cd, and 60 and 80 {mu}mol l{sup -1} of Zn were added. The Cd/Zn-binding proteins induced in C. vulgaris exposed to Cd and Zn were referred to as Cd/Zn-MT-like proteins in which the mean molecular mass of the apo-MT-like was 6152 Da. The induced Cd/Zn-MT-like proteins might be involved in the detoxification of heavy metals, such as cadmium and zinc, by the alga.

  2. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    Science.gov (United States)

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.

  3. Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production.

    Science.gov (United States)

    Deng, Xiang-Yuan; Gao, Kun; Zhang, Ren-Chuan; Addy, Min; Lu, Qian; Ren, Hong-Yan; Chen, Paul; Liu, Yu-Huan; Ruan, Roger

    2017-11-01

    Liquid swine manure was subjected to thermophilic anaerobic digestion, ammonia stripping and centrifugation in order to increase the available carbon sources and decrease the ammonia concentration and turbidity. Chlorella vulgaris (UTEX 2714) was grown on minimally diluted (2×, 3× and 4×) autoclaved and non-autoclaved pretreated anaerobic digestion swine manure (PADSM) in a batch-culture system for 7days. Results showed that C. vulgaris (UTEX 2714) grew best on 3× PADSM media, and effectively removed NH 4 + -N, TN, TP and COD by 98.5-99.8%, 49.2-55.4%, 20.0-29.7%, 31.2-34.0% and 99.8-99.9%, 67.4-70.8%, 49.3-54.4%, 73.6-78.7% in differently diluted autoclaved and non-autoclaved PADSM, respectively. Results of chemical compositions indicated that contents of pigment, carbohydrate, protein and lipid in C. vulgaris (UTEX 2714) changed with the culture conditions. Moreover, its fatty acid profiles suggested that this alga could be used as animal feed if cultivated in autoclaved PADSM or as good-quality biodiesel feedstock if cultivated in non-autoclaved PADSM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dyes adsorption on magnetically modified Chlorella vulgaris cells

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Pona, B. M. R.; Mosiniewicz-Szablewska, E.; Weyda, František; Šafařík, Ivo

    2008-01-01

    Roč. 17, č. 4 (2008), s. 486-492 ISSN 1018-4619 R&D Projects: GA MŠk OC 108; GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z50070508 Keywords : Chlorella vulgaris * magnetically modified cells * dyes Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.463, year: 2008

  5. LIPID ACCUMULATION OF CHLORELLA VULGARIS UNDER DIFFERENT PHOSPHATE CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    Magdalena Karolina Rokicka

    2017-04-01

    Full Text Available The cultivation and utilization of microalgae is now a intensively developing area of research. Some species of microalgae, under appropriate conditions, accumulate large amounts of lipids in the cells. This lipids have a suitable profile of fatty acids for biodiesel production. The culture of microalgae for lipids accumulation should be performed in certain physicochemical conditions. The aim of the study was to determine the effect of variable ortophophates concentrations in the culture medium for lipids accumulation of microalgae Chlorella vulgaris and to determine of parameters of the phosphoric shock in the medium. The study confirmed the possibility of the use of the phosphoric shock in the medium to maximize lipids accumulation by the microalgae Chlorella vulgaris. In the study, 45.23% of the oil was obtained from the biomass from the culture with phosphoric shock in the medium and 18% less of the oil was obtained from the biomass from the standard culture.

  6. Modeling and Control of Algae Harvesting, Dewatering and Drying (HDD) Systems

    Science.gov (United States)

    2012-05-01

    concentration to 5% water based on latent heat of vaporization Algae Botryococcus braunii Chlorella vulgaris Euglena gracilis Nannochlorops is...microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507, 2006 [9] Acièn Fernández F-G, Garcìa Camacho F

  7. Oral administration of hot water extracts of Chlorella vulgaris increases physical stamina in mice.

    Science.gov (United States)

    An, Hyo-Jin; Choi, Hyun-Myung; Park, Hyeung-Suk; Han, Jae-Gab; Lee, Eun-Hee; Park, Young-Sig; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min

    2006-01-01

    A unicellular algae, Chlorella vulgaris, was used as a biological response modifier. Although hot water extracts of C. vulgaris (CVE) are thought to augment immune responses, the effect of CVE on fatigue and physical stamina has not been studied. In the present study, we investigated the effect of CVE on forced swimming test and blood biochemical parameters related to fatigue, blood urea nitrogen (BUN), creatine kinase (CK), lactic dehydrogenase (LDH), glucose (Glc), and total protein (TP). CVE (0.05-0.15 g/kg/day) was orally administered to mice. After 7 days, the immobility time was decreased in the 0.1- and 0.15-g/kg CVE-treated groups (179 +/- 8.3 and 175 +/- 2.1 s) in comparison with the control group (223 +/- 5.4 s). In addition, the contents of BUN, CK, and LDH in the blood serum were decreased in the CVE-fed group. However, they had no effect on the elevation of Glc and TP level. The results predict a potential benefit of CVE for enhancing immune function and improving physical stamina. Copyright 2006 S. Karger AG, Basel.

  8. Chlorella vulgaris Induces Apoptosis of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells.

    Science.gov (United States)

    Zhang, Zhi-Dong; Liang, Kai; Li, Kun; Wang, Guo-Quan; Zhang, Ke-Wei; Cai, Lei; Zhai, Shui-Ting; Chou, Kuo-Chen

    2017-01-01

    Chlorella vulgaris (C. vulgaris), a unicellular green microalga, has been widely used as a food supplement and reported to have antioxidant and anticancer properties. The current study was designed to assess the cytotoxic, apoptotic, and DNA-damaging effects of C. vulgaris growth factor (CGF), hot water C. vulgaris extracts, inlung tumor A549 and NCI-H460 cell lines. A549 cells, NCI-H460 cells, and normal human fibroblasts were treated with CGF at various concentrations (0-300 μg/ml) for 24 hr. The comet assay and γH2AX assay showed DNA damage in A549 and NCI-H460 cells upon CGF exposure. Evaluation of apoptosis by the TUNEL assay and DNA fragmentation analysis by agarose gel electrophoresis showed that CGF induced apoptosis in A549 and NCI-H460 cells. Chlorella vulgaris hot water extract induced apoptosis and DNA damage in human lung carcinoma cells. CGF can thus be considered a potential cytotoxic or genotoxic drug for treatment of lung carcinoma. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. The effect of dietary Chlorella vulgaris inclusion on goat's milk chemical composition, fatty acids profile and enzymes activities related to oxidation.

    Science.gov (United States)

    Tsiplakou, E; Abdullah, M A M; Mavrommatis, A; Chatzikonstantinou, M; Skliros, D; Sotirakoglou, K; Flemetakis, E; Labrou, N E; Zervas, G

    2018-02-01

    The impact of dietary supplementation with microalgae on goat's milk chemical composition, fatty acids (FA) profile and enzymes activities related to antioxidant mechanism has not been well documented. Thus, this study aimed to investigate the effects of dietary inclusion of Chlorella vulgaris on the following: (i) milk yield, chemical composition and FA profile, (ii) the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GSH-Px) in blood plasma and (iii) the activities of SOD, GR and lactoperoxidase (LPO) in milk of goats. Furthermore, the oxidative stress indicators for measuring total antioxidant and free radical scavenging activity [ferric reducing ability of plasma (FRAP) and 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays] and oxidative stress biomarkers [malondialdehyde (MDA) and protein carbonyls (PC)] were also determined in blood plasma and milk of the animals. For this purpose, 16 cross-bred goats were divided into two homogenous groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group (Control) had no microalgae, while those of the Chlorella group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrates (Chlorella). Thus, the average intake was 5.15 g Chlorella vulgaris/kg DM. The results showed that the dietary inclusion of Chlorella vulgaris had not noticeable impact on goat's milk yield, chemical composition and FA profile. Significantly higher SOD (by 10.31%) and CAT (by 18.66%) activities in the blood plasma of goats fed with Chlorella vulgaris compared with the control were found. Moreover, the dietary supplementation with Chlorella vulgaris caused a significant increase in SOD (by 68.84%) activity and a reduction in PC (by 24.07%) content in goat's milk. In conclusion, the Chlorella vulgaris inclusion in goat's diets improved the

  10. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    Science.gov (United States)

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  11. Chlorella vulgaris Attenuates Dermatophagoides Farinae-Induced Atopic Dermatitis-Like Symptoms in NC/Nga Mice

    Science.gov (United States)

    Kang, Heerim; Lee, Chang Hyung; Kim, Jong Rhan; Kwon, Jung Yeon; Seo, Sang Gwon; Han, Jae Gab; Kim, Byung Gon; Kim, Jong-Eun; Lee, Ki Won

    2015-01-01

    Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD. PMID:26404252

  12. Chlorella vulgaris Attenuates Dermatophagoides Farinae-Induced Atopic Dermatitis-Like Symptoms in NC/Nga Mice

    Directory of Open Access Journals (Sweden)

    Heerim Kang

    2015-09-01

    Full Text Available Atopic dermatitis (AD is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE. CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC and macrophage-derived chemokine (MDC levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD.

  13. Effect of gene transfer of Chlorella vulgaris n-3 fatty acid desaturase ...

    African Journals Online (AJOL)

    Chlorella vulgaris had the gene of n-3 fatty acid desaturase (CvFad3) which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or to convert n-6 to n-3 PUFAs. The objective of this study was to examine whether the CvFad3 gene from C. vulgaris can be functionally expressed in mammalian cells and ...

  14. Investigation of high pressure steaming (HPS) as a thermal treatment for lipid extraction from Chlorella vulgaris.

    Science.gov (United States)

    Aguirre, Ana-Maria; Bassi, Amarjeet

    2014-07-01

    Biofuels from algae are considered a technically viable energy source that overcomes several of the problems present in previous generations of biofuels. In this research high pressure steaming (HPS) was studied as a hydrothermal pre-treatment for extraction of lipids from Chlorella vulgaris, and analysis by response surface methodology allowed finding operational points in terms of target temperature and algae concentration for high lipid and glucose yields. Within the range covered by these experiments the best conditions for high bio-crude yield are temperatures higher than 174°C and low biomass concentrations (<5 g/L). For high glucose yield there are two suitable operational ranges, either low temperatures (<105°C) and low biomass concentrations (<4 g/L); or low temperatures (<105°C) and high biomass concentrations (<110 g/L). High pressure steaming is a good hydrothermal treatment for lipid recovery and does not significantly change the fatty acids profile for the range of temperatures studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fatty acids composition of microalgae Chlorella vulgaris can be ...

    African Journals Online (AJOL)

    Varying culture methods of Chlorella vulgaris (CV) has been associated with different nutrient composition. The aim of this study was to investigate the fatty acid contents and other nutrients of CV subjected to various culturing conditions. We found that CV cultured under 24 h light and 10% CO2 showed the best growth rates ...

  16. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Pribyl, Pavel; Cepak, Vladislav [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Algological Centre and Centre for Bioindication and Revitalization; Zachleder, Vilem [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Lab. of the Cell Cycles of Algae

    2012-04-15

    We tested 10 different Chlorella and Parachlorella strains under lipid induction growth conditions in autotrophic laboratory cultures. Between tested strains, substantial differences in both biomass and lipid productivity as well as in the final content of lipids were found. The most productive strain (Chlorella vulgaris CCALA 256) was subsequently studied in detail. The availability of nitrates and/or phosphates strongly influenced growth and accumulation of lipids in cells by affecting cell division. Nutrient limitation substantially enhanced lipid productivity up to a maximal value of 1.5 g l{sup -1} day{sup -1}. We also demonstrated the production of lipids through large-scale cultivation of C. vulgaris in a thin layer photobioreactor, even under suboptimal conditions. After 8 days of cultivation, maximal lipid productivity was 0.33 g l{sup -1} day{sup -1}, biomass density was 5.7 g l{sup -1} dry weight and total lipid content was more than 30% dry weight. C. vulgaris lipids comprise fatty acids with a relatively high degree of saturation compared with canola oil offering a possible alternative to the use of higher plant oils. (orig.)

  17. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A.

    Directory of Open Access Journals (Sweden)

    Sangwoo Kim

    Full Text Available Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA, a chemical inducer of ER stress, rapidly triggers lipid droplet (LD formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs. The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS, a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.

  18. Accelerated effects of nano-ZnO on phosphorus removal by Chlorella vulgaris: Formation of zinc phosphate crystallites.

    Science.gov (United States)

    Xiao, Huaixian; Liu, Na; Tian, Ke; Liu, Shixiang; Ge, Fei

    2018-09-01

    Nanoparticles have been reported to induce toxicity to aquatic organisms, however, their potential impacts on phosphorus removal from wastewater by algae are unclear. In this study, the effects of nanoparticle ZnO (nano-ZnO) on phosphate (PO 4 3- ) removal by a green alga Chlorella vulgaris were investigated. We found that PO 4 3- removal efficiency was accelerated with high concentrations of nano-ZnO (0.04-0.15mM) but reduced with low concentrations of nano-ZnO (0.005-0.04mM) compared to the control (without nano-ZnO), suggesting that PO 4 3- removal efficiency by C. vulgaris was related to nano-ZnO concentrations. Moreover, we observed changes of nano-ZnO morphology and detected element P on the surface of nano-ZnO by using transmission electronic microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDX), indicating that PO 4 3- was interacted with nano-ZnO or the dissolved Zn 2+ from nano-ZnO. Furthermore, we confirmed this interaction induced the formation of Zn 3 (PO 4 ) 2 crystallites sedimentation by employing X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS), which finally accelerates the removal of PO 4 3- . Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Metal distributions in complexes with Chlorella vulgaris in seawater and wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, P.R.; Kowalak, A.D.

    1999-10-01

    Divalent cadmium (Cd), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn) simultaneous complexes with an algal biomass Chlorella vulgaris were studied for bioremediation purposes in various aqueous media: distilled-deionized water (DDIW), seawater, nuclear-reactor pool water, and process wastewater. Reactions were monitored using various dry masses of algae at constant temperature and constant metal concentrations for reaction times ranging from 0 to 150 minutes. Complexes occurred within 30 minutes and reached a steady state after 80 to 120 minutes. Distribution constants (K{prime}{sub d}) were calculated for the complexes and relative orders of K{prime}{sub d} were reported. The K{prime}{sub d} are used to evaluate relative efficiency of metal remediation from waters. Lead, Cu, and Ni complexes had the greatest K{prime}{sub d} values and those metals were most efficiently removed from these waters. Zinc and Fe formed the most labile complexes. The order of K{prime}{sub d} values for complexes in DDIW was Pb > Cu > Cd > Zn, then Cu > Cd > Zn in seawater, Cd > Cu > Zn in reactor pool water, and Ni > Cd > Cu > Zn > Fe in wastewater. C. vulgaris biomass may potentially be used as an alternative to traditional water treatment methods for simultaneous extraction of metals from seawater, process wastewater, or drinking water.

  20. Nitrous Oxide (N2O production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts

    Directory of Open Access Journals (Sweden)

    B. Guieysse

    2013-10-01

    Full Text Available Using antibiotic assays and genomic analysis, this study demonstrates nitrous oxide (N2O is generated from axenic Chlorella vulgaris cultures. In batch assays, this production is magnified under conditions favouring intracellular nitrite accumulation, but repressed when nitrate reductase (NR activity is inhibited. These observations suggest N2O formation in C. vulgaris might proceed via NR-mediated nitrite reduction into nitric oxide (NO acting as N2O precursor via a pathway similar to N2O formation in bacterial denitrifiers, although NO reduction to N2O under oxia remains unproven in plant cells. Alternatively, NR may reduce nitrite to nitroxyl (HNO, the latter being known to dimerize to N2O under oxia. Regardless of the precursor considered, an NR-mediated nitrite reduction pathway provides a unifying explanation for correlations reported between N2O emissions from algae-based ecosystems and NR activity, nitrate concentration, nitrite concentration, and photosynthesis repression. Moreover, these results indicate microalgae-mediated N2O formation might significantly contribute to N2O emissions in algae-based ecosystems (e.g. 1.38–10.1 kg N2O-N ha−1 yr−1 in a 0.25 m deep raceway pond operated under Mediterranean climatic conditions. These findings have profound implications for the life cycle analysis of algae biotechnologies and our understanding of the global biogeochemical nitrogen cycle.

  1. Reduction of Cr (VI) into Cr (III) by organelles of Chlorella vulgaris in aqueous solution: An organelle-level attempt.

    Science.gov (United States)

    Chen, Zunwei; Song, Shufang; Wen, Yuezhong

    2016-12-01

    The priority pollutant chromium (Cr) was ubiquitous and great efforts have been made to reduce Cr (VI) into less-toxic Cr (III) by alga for the convenient availability and low expense. However, the functional role of organelle inside the algal cell in Cr (VI) reduction was poorly understood. In this study, organelles in green algae Chlorella vulgaris were extracted and further decorated for Cr (VI) reduction tests. Results showed that the chloroplast exhibited not only adsorption ability of total Cr (21.18% comparing to control) but also reduction potential of Cr (VI) (almost 70% comparing to control), whose most suitable working concentration was at 17μg/mL. Furtherly, the isolated thylakoid membrane (ITM) showed better Cr (VI) reduction potential with the presence of sodium alginate (SA), even though the Hill reaction activity (HRA) was inhibited. As for photosystem II (PSII), the addition of mesoporous silica SBA-15 enhanced the reduction ability through improving the light-harvesting complex (LHC) II efficiency and electron transport rate. On the whole, the reduction ability order of the three kinds of materials based on chloroplast in C. vulgaris was PSII@SBA-15>Chloroplast>ITM@SA. The attempt made in this study to reduce the Cr (VI) with C. vulgaris organelles might not only offer basement to detect the potential action mechanism of Cr (VI) reduction by C. vulgaris but also provide a new sight for the scavenge of heavy metal with biological materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    Science.gov (United States)

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.

  3. Teor de clorofila e perfil de sais minerais de Chlorella vulgaris cultivada em solução hidropônica residual Chlorophyll content and minerals profile in the microalgae Chlorella vulgaris cultivated in hydroponic wastewater

    Directory of Open Access Journals (Sweden)

    Fabiano Cleber Bertoldi

    2008-02-01

    Full Text Available O cultivo de microalgas representa uma potencial fonte de biomassa rica em clorofila e sais minerais como: fósforo, ferro, manganês, cobre, zinco, magnésio e cálcio. Este experimento teve como objetivo avaliar a composição de minerais, bem como determinar o teor de clorofila a e b da microalga Chlorella vulgaris cultivada em solução hidropônica residual em três diferentes concentrações comparadas com um cultivo controle. Os resultados mostraram que os teores de clorofila a e b da microalga não apresentaram diferença significativa entre os cultivos. Com relação à composição dos sais minerais, a Chlorella cultivada na solução residual mais concentrada apresentou valores superiores quando comparada com a cultivada nos demais cultivos. Dessa forma, a biomassa da Chlorella vulgaris demonstrou ser uma potencial fonte de clorofila e de sais minerais, quando cultivada em solução hidropônica residual, possibilitando a utilização desse resíduo de forma sustentável.The microalgaes cultive represents a potential source of biomass rich in chlorophyll and minerals as: P, Fe, Mn, Cu, Zn, Mg and Ca. This research was aimed at evaluating the composition of minerals, as well as, determining the content of chlorophyll a and b from the microalgae Chlorella vulgaris cultivated in hydroponic wastewater in three different concentrations compared with the control cultive. The results showed that the contents of chlorophyll a and b of the microalgae did not show significant difference between the cultives. In relation to the composition of the minerals, the Chlorella cultivated in the most concentrated wastewater, showed higher values when compared with the one cultivated in the others cultures. In this manner, the Chlorella vulgaris biomass demonstrated to be a potential source of chlorophyll and minerals, when cultivated in hydroponic wastewater, allowing the use of this residue in a sustainable way.

  4. Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition

    International Nuclear Information System (INIS)

    Mahdy, Ahmed; Mendez, Lara; Ballesteros, Mercedes; González-Fernández, Cristina

    2014-01-01

    Highlights: • Methane production of microalgae biomass is hampered by their cell wall. • Pretreatment should be designed in accordance to the microalgae specie. • Fresh Chlamydomonas reinhardtii exhibited high anaerobic biodegradability. • Chlorella vulgaris anaerobic biodegradability was enhanced by 50% using protease pretreatment. - Abstract: The effect of enzymatic hydrolysis on microalgae organic matter solubilisation and methane production was investigated in this study. Even though both biomasses, Chlamydomonas reinhardtii and Chlorella vulgaris, exhibited similar macromolecular distribution, their cell wall composition provided different behaviors. The addition of carbohydrolase (Viscozyme) and protease (Alcalase) resulted in high carbohydrates and protein solubilisation on both biomasses (86–96%). Despite the high carbohydrate solubilisation with the carbohydrolase, methane production was enhanced by 14% for C. vulgaris, while hydrolyzed C. reinhardtii did not show any improvement. The addition of protease to C. reinhardtii increased methane production by 1.17-fold. The low enhancement achieved together with the inherent high biodegradability of this biomass would not justify the cost associated to the enzyme addition. On the other hand, C. vulgaris hydrolyzed with the protease resulted in 86% anaerobic biodegradability compared to 54% of the raw biomass. Therefore, the application of protease prior anaerobic digestion of C. vulgaris could be a promising approach to decrease the energetic input required for cell wall disruption

  5. Chlorella vulgaris cultivation in sludge extracts from 2,4,6-TCP wastewater treatment for toxicity removal and utilization.

    Science.gov (United States)

    Wang, Lu; Chen, Xiurong; Wang, Hualin; Zhang, Yuying; Tang, Qingjie; Li, Jiahui

    2017-02-01

    Chlorella vulgaris was cultivated in different proportions of activated sludge extracts, which was from the treatment of the synthetic wastewater containing 2,4,6-trichlorophenol (2,4,6-TCP). The nutrients, total nitrogen (TN) and total phosphorus (TP), were removed over 45% and 90%, respectively. The maximum reduction amount of ecotoxicity and total organic carbon (TOC) occurred in the 100% sludge group on the 8th day (68%; 86.2 mg L -1 ). The variations of Excitation-emission matrix spectra (EEMs) and TOC indicated that extracellular organic matters (EOM) produced by algae led to TOC increase in the medium. The cell density was close to each other for groups with sludge extract proportion below 50%; sludge extracts (below 75% addition) had a stimulating effect on the accumulation of chlorophyll-a in per unit algal cell. Superoxide dismutase (SOD) variation demonstrated that C. vulgaris response positively to sludge extracts addition. Lipid content in C. vulgaris was up to its maximum value on the 8th day. Considering the performance on nutrients removal, toxicity reduction and algal growth, the optimal cultivation period for C. vulgaris before harvesting was around 8 days with sludge extracts proportion below 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris

    Science.gov (United States)

    2014-01-01

    Background MWCNT and CNF are interesting NPs that possess great potential for applications in various fields such as water treatment, reinforcement materials and medical devices. However, the rapid dissemination of NPs can impact the environment and in the human health. Thus, the aim of this study was to evaluate the MWCNT and cotton CNF toxicological effects on freshwater green microalgae Chlorella vulgaris. Results Exposure to MWCNT and cotton CNF led to reductions on algal growth and cell viability. NP exposure induced reactive oxygen species (ROS) production and a decreased of intracellular ATP levels. Addition of NPs further induced ultrastructural cell damage. MWCNTs penetrate the cell membrane and individual MWCNTs are seen in the cytoplasm while no evidence of cotton CNFs was found inside the cells. Cellular uptake of MWCNT was observed in algae cells cultured in BB medium, but cells cultured in Seine river water did not internalize MWCNTs. Conclusions Under the conditions tested, such results confirmed that exposure to MWCNTs and to cotton CNFs affects cell viability and algal growth. PMID:24750641

  7. Growth and biochemical composition of Chlorella vulgaris in different growth media

    Directory of Open Access Journals (Sweden)

    MATHIAS A. CHIA

    2013-10-01

    Full Text Available The need for clean and low-cost algae production demands for investigations on algal physiological response under different growth conditions. In this research, we investigated the growth, biomass production and biochemical composition of Chlorella vulgaris using semi-continuous cultures employing three growth media (LC Oligo, Chu 10 and WC media. The highest cell density was obtained in LC Oligo, while the lowest in Chu medium. Chlorophyll a, carbohydrate and protein concentrations and yield were highest in Chu and LC Oligo media. Lipid class analysis showed that hydrocarbons (HC, sterol esthers (SE, free fatty acids (FFA, aliphatic alcohols (ALC, acetone mobile polar lipids (AMPL and phospholipids (PL concentrations and yields were highest in the Chu medium. Triglyceride (TAG and sterol (ST concentrations were highest in the LC Oligo medium. The results suggested that for cost effective cultivation, LC Oligo medium is the best choice among those studied, as it saved the cost of buying vitamins and EDTA associated with the other growth media, while at the same time resulted in the best growth performance and biomass production.

  8. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling

    NARCIS (Netherlands)

    Postma, P.R.; Miron, T.L.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M.

    2015-01-01

    In this work, the mild disintegration of the microalgae Chlorella vulgaris for the release of intracellular products has been studied. By means of bead milling the microalgae suspensions were successfully disintegrated at different biomass concentrations (25–145 gDW kg-1) over a range of agitator

  9. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses.

    Science.gov (United States)

    Qian, Haifeng; Zhu, Kun; Lu, Haiping; Lavoie, Michel; Chen, Si; Zhou, Zhongjing; Deng, Zhiping; Chen, Jun; Fu, Zhengwei

    2016-12-01

    Several studies have shown that AgNPs can be toxic to phytoplankton, but the underlying cellular mechanisms still remain largely unknown. Here we studied the toxicity and detoxification of AgNPs (and ionic silver released by the AgNPs) in a prokaryotic (Microcystis aeruginosa) and a eukaryotic (Chlorella vulgaris) freshwater phytoplankton species using a combination of proteomic, gene transcription, and physiological analyses. We show that AgNPs were more toxic to the growth, photosynthesis, antioxidant systems, and carbohydrate metabolism of M. aeruginosa than of C. vulgaris. C. vulgaris could detoxify efficiently AgNPs-induced ROS species via induction of antioxidant enzymes (superoxide dismutase or SOD, peroxidase or POD, catalase or CAT, and glutamine synthetase), allowing photosynthesis to continue unabated at growth-inhibitory AgNPs concentration. By contrast, the transcription and expression of SOD and POD in M. aeruginosa was inhibited by the same AgNPs exposure. The present study shed new lights on the AgNPs toxicity mechanisms and detoxification strategies in two freshwater algae of contrasting AgNPs sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chlorella vulgaris as Protein Source in the Diets of African Catfish Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    Uchechukwu D. Enyidi

    2017-10-01

    Full Text Available Plant proteins substitutes of fishmeal in aquafeed are usually lacking in some essential amino acids and fatty acids. The microalgae Chlorella vulgaris has good-quality protein with amino acids rich in methionine, lysine and alanine. Four novel diets having C. vulgaris as the main source of protein were produced for African catfish Clarias gariepinus with an initial average weight of 1.09 ± 0.05 g. The diets were labeled Feed 1 (F1 to feed 4 (F4. The treatment diets were included 25% (F1, 15% (F2, 5% (F3 and 0% (F4 green algae meal. The basal ingredients of the feed were corn (maize included as F1, 40%, F2, 43%, F3, 53% and F4, 43%; and millet meal, which varied in F1 as 23%, F2, 30%, F3, 30% and F4, 30%. The ingredients were preconditioned at 110 °C and pelleted. Post-fingerling African catfish were stocked at 10 fish per aquarium. There were three replicate aquariums for each feed type and the fish were fed for 60 d. The specific growth rate was best for the catfish fed with 25% C. vulgaris diet 7.86 ± 0% day−1, and worst at 6.77 ± 0.07% day−1 for the control group F4, 0% algal meal. The food conversion ratio (FCR was lowest (1.88 ± 0.02 for 25% algal meal diet (F1 and highest (2.98 ± 0.01 for the 0% algal meal diet F4. Similarly, catfish had average weight gain of 121.02 ± 0.04 g for those fed with F1 compared to 62.50 ± 0.0 g for those fed with 0% algae F4. Protein efficiency ratio was highest for the F1-fed fish (2.46 ± 0.22 and lowest for those fed with F4 (2.02 ± 0.09. The hepatosomatic index was lowest for F1-fed fish (1.48 ± 0.01 and highest for catfish fed with F4 (2.50 ± 0.59. Based on the results, C. vulgaris is a good protein source for African catfish and can also substitute fishmeal in the catfish diets.

  11. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.

    Science.gov (United States)

    Discart, V; Bilad, M R; Marbelia, L; Vankelecom, I F J

    2014-01-01

    A membrane photobioreactor (MPBR) is a proven and very useful concept in which microalgae can be simultaneously cultivated and pre-harvested. However, the behavior with respect to accumulation of algogenic organic matter, including transparent exopolymeric particles (TEPs), counter ions and unassimilated nutrients due to the recycling of the medium is still unclear, even though the understanding of this behavior is essential for the optimization of microalgae processing. Therefore, the dynamics of these compounds, especially TEPs, during coupled cultivation and harvesting of Chlorella vulgaris in an MPBR with permeate recycle are addressed in this study. Results show that TEPs are secreted during algae cell growth, and that their presence is thus inevitable. In the system with permeate recycle, substances such as counter ions and unassimilated nutrients get accumulated in the system. This was proven to limit the algae growth, together with the occurrence of bioflocculation due to an increasing broth pH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

    Science.gov (United States)

    Zhang, Zhiping; Ji, Hairui; Gong, Guiping; Zhang, Xu; Tan, Tianwei

    2014-07-01

    The optimal mixed culture model of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was confirmed to enhance lipid production. A double system bubble column photo-bioreactor was designed and used for demonstrating the relationship of yeast and alga in mixed culture. The results showed that using the log-phase cultures of yeast and alga as seeds for mixed culture, the improvements of biomass and lipid yields reached 17.3% and 70.9%, respectively, compared with those of monocultures. Growth curves of two species were confirmed in the double system bubble column photo-bioreactor, and the second growth of yeast was observed during 36-48 h of mixed culture. Synergistic effects of two species for cell growth and lipid accumulation were demonstrated on O2/CO2 balance, substance exchange, dissolved oxygen and pH adjustment in mixed culture. This study provided a theoretical basis and culture model for producing lipids by mixed culture in place of monoculture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Enhancement of Chlorella vulgaris growth and bioremediation ability of aquarium wastewater using diazotrophs.

    Science.gov (United States)

    Ali, Sayeda Mohammed; Nasr, Hoda Shafeek; Abbas, Wafaa Tawfik

    2012-08-15

    Treatment of aquarium wastewater represents an important process to clean and recycle wastewater to be safely returned to the environment, used for cultivation or to minimize the multiple renewal of water. Chlorella vulgaris was an important freshwater microalgae which used in wastewater treatment, and increasing its potential of treatment can be achieved with existence of N2-fixing bacteria. Co-culturing of Chlorella vulgaris with the diazotrophs, Azospirillum brasilense or Azotobacter chroococcum in three different media; aquarium wastewater (AWW), sterile enriched natural aquarium wastewater (GPM) and synthetic wastewater media (SWW) were studied. Biomass yield of the microalgae was estimated by determination of chlorophylls (a and b), total carotenoid and the dry weight of C. vulgaris. Also determination of ammonia, nitrite, phosphate and nitrate in the culture were done. The presence of diazotrophs significantly increased the biomass of C. vulgaris by increasing its microalgae pigments (chlorophylls a and b, and total carotenoids). The highest pigments percentage was reported due to addition of A. brasilense to C. vulgaris (18.3-133.5%) compared to A. chroococcum (23.9-56.9%). As well as increased dry weight from 12 to 50%. There was also improved removal of nitrate, nitrite, ammonia and phosphate; where, the highest removal percentage was reported due to addition of A. chroococcum to C. vulgaris (0.0-52%) compared to A. brasilense (0.6-16.4%). A. brasilense and A. chroococcum can support C. vulgaris biomass production and bioremediation activity in the aquarium to minimize the periodical water renewal.

  14. OPTIMIZATION OF CELL DISRUPTION IN RAPHIDOCELIS SUBCAPITATA AND CHLORELLA VULGARIS FOR BIOMARKER EVALUATION

    Directory of Open Access Journals (Sweden)

    Adeolu Aderemi

    2015-06-01

    Full Text Available Raphidocelis subcapitata and Chlorella vulgaris are bioassay microalgae with rigid cellulosic cell wall which can hinder the release of intracellular proteins often studied as toxicity biomarkers. Since cell disruption is necessary for recovering intracellular biomolecules in these organisms, this study investigated the efficiency of ultrasonication bath; ultrasonication probe; vortexer; and bead mill in disintegrating the microalgae for anti-oxidative enzyme extraction. The extent of cell disruption was evaluated and quantified using bright field microscopy. Disrupted algae appeared as ghosts. The greatest disintegration of the microalgae (83-99.6 % was achieved using bead mill with 0.42-0.6 mm glass beads while the other methods induced little or no disruption. The degree of cell disruption using bead mill increased with exposure time, beads-solution ratio and agitation speed while larger beads caused less disruption. Findings revealed that bead milling, with specific parameters optimized, is one of the most effective methods of disintegrating the robust algal cells.

  15. Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, M., E-mail: M.Vogel@fzd.de; Guenther, A.; Rossberg, A.; Li, B.; Bernhard, G.; Raff, J.

    2010-12-15

    Biosorption of uranium(VI) by the green alga Chlorella vulgaris was studied at varying uranium concentrations from 5 {mu}M to 1 mM, and in the environmentally relevant pH range of 4.4 to 7.0. Living cells bind in a 0.1 mM uranium solution at pH 4.4 within 5 min 14.3 {+-} 5.5 mg U/g dry biomass and dead cells 28.3 {+-} 0.6 mg U/g dry biomass which corresponds to 45% and 90% of total uranium in solution, respectively. During 96 h of incubation with uranium initially living cells died off and with 26.6 {+-} 2.1 mg U/g dry biomass bound similar amounts of uranium compared to dead cells, binding 27.0 {+-} 0.7 mg U/g dry biomass. In both cases, these amounts correspond to around 85% of the initially applied uranium. Interestingly, at a lower and more environmentally relevant uranium concentration of 5 {mu}M, living cells firstly bind with 1.3 {+-} 0.2 mg U/g dry biomass to 1.4 {+-} 0.1 mg U/g dry biomass almost all uranium within the first 5 min of incubation. But then algal cells again mobilize up to 80% of the bound uranium during ongoing incubation in the time from 48 h to 96 h. The release of metabolism related substances is suggested to cause this mobilization of uranium. As potential leachates for algal-bound uranium oxalate, citrate and ATP were tested and found to be able to mobilize more than 50% of the algal-bound uranium within 24 h. Differences in complexation of uranium by active and inactive algae cells were investigated with a combination of time-resolved laser-induced fluorescence spectroscopy (TRLFS), extended X-ray absorption fine structure (EXAFS) spectroscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Obtained results demonstrated an involvement of carboxylic and organic/inorganic phosphate groups in the uranium complexation with varying contributions dependent on cell status, uranium concentration and pH.

  16. Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity

    International Nuclear Information System (INIS)

    Vogel, M.; Guenther, A.; Rossberg, A.; Li, B.; Bernhard, G.; Raff, J.

    2010-01-01

    Biosorption of uranium(VI) by the green alga Chlorella vulgaris was studied at varying uranium concentrations from 5 μM to 1 mM, and in the environmentally relevant pH range of 4.4 to 7.0. Living cells bind in a 0.1 mM uranium solution at pH 4.4 within 5 min 14.3 ± 5.5 mg U/g dry biomass and dead cells 28.3 ± 0.6 mg U/g dry biomass which corresponds to 45% and 90% of total uranium in solution, respectively. During 96 h of incubation with uranium initially living cells died off and with 26.6 ± 2.1 mg U/g dry biomass bound similar amounts of uranium compared to dead cells, binding 27.0 ± 0.7 mg U/g dry biomass. In both cases, these amounts correspond to around 85% of the initially applied uranium. Interestingly, at a lower and more environmentally relevant uranium concentration of 5 μM, living cells firstly bind with 1.3 ± 0.2 mg U/g dry biomass to 1.4 ± 0.1 mg U/g dry biomass almost all uranium within the first 5 min of incubation. But then algal cells again mobilize up to 80% of the bound uranium during ongoing incubation in the time from 48 h to 96 h. The release of metabolism related substances is suggested to cause this mobilization of uranium. As potential leachates for algal-bound uranium oxalate, citrate and ATP were tested and found to be able to mobilize more than 50% of the algal-bound uranium within 24 h. Differences in complexation of uranium by active and inactive algae cells were investigated with a combination of time-resolved laser-induced fluorescence spectroscopy (TRLFS), extended X-ray absorption fine structure (EXAFS) spectroscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Obtained results demonstrated an involvement of carboxylic and organic/inorganic phosphate groups in the uranium complexation with varying contributions dependent on cell status, uranium concentration and pH.

  17. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    Science.gov (United States)

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.

  18. Adjusting irradiance to enhance growth and lipid production of Chlorella vulgaris cultivated with monosodium glutamate wastewater.

    Science.gov (United States)

    Jiang, Liqun; Ji, Yan; Hu, Wenrong; Pei, Haiyan; Nie, Changliang; Ma, Guixia; Song, Mingming

    2016-09-01

    Light is one of the most important factors affecting microalgae growth and biochemical composition. The influence of illumination on Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater (MSGW) was investigated. Six progressive illumination intensities (0, 30, 90, 150, 200 and 300μmol·m(-2)s(-1)), were used for C. vulgaris cultivation at 25°C. Under 150μmol·m(-2)s(-1), the corresponding specific light intensity of 750×10(-6)μmol·m(-2)s(-1) per cell, algae obtained the maximum biomass concentration (1.46g·L(-1)) on the 7th day, which was 3.5 times of that under 0μmol·m(-2)s(-1), and the greatest average specific growth rate (0.79 d(-1)) in the first 7days. The results showed the importance role of light in mixotrophic growth of C. vulgaris. High light intensities of 200 and 300μmol·m(-2)s(-1) would inhibit microalgae growth to a certain degree. The algal lipid content was the greatest (30.5%) at 150μmol·m(-2)s(-1) light intensity, which was 2.42 times as high as that cultured in dark. The protein content of C. vulgaris decreased at high light intensities of 200 and 300μmol·m(-2)s(-1). The effect of irradiance on carbohydrate content was inversely correlated with that on protein. The available light at an appropriate intensity, not higher than 200μmol·m(-2)s(-1), was feasible for economical cultivation of C. vulgaris in MSGW. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Bioremediation of the textile waste effluent by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Hala Yassin El-Kassas

    2014-01-01

    Full Text Available The microalgae biomass production from textile waste effluent is a possible solution for the environmental impact generated by the effluent discharge into water sources. The potential application of Chlorella vulgaris for bioremediation of textile waste effluent (WE was investigated using 22 Central Composite Design (CCD. This work addresses the adaptation of the microalgae C. vulgaris in textile waste effluent (WE and the study of the best dilution of the WE for maximum biomass production and for the removal of colour and Chemical Oxygen Demand (COD by this microalga. The cultivation of C. vulgaris, presented maximum cellular concentrations Cmax and maximum specific growth rates μmax in the wastewater concentration of 5.0% and 17.5%, respectively. The highest colour and COD removals occurred with 17.5% of textile waste effluent. The results of C. vulgaris culture in the textile waste effluent demonstrated the possibility of using this microalga for the colour and COD removal and for biomass production. There was a significant negative relationship between textile waste effluent concentration and Cmax at 0.05 level of significance. However, sodium bicarbonate concentration did not significantly influence the responses of Cmax and the removal of colour and COD.

  20. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.

    Science.gov (United States)

    Adamczyk, Michał; Lasek, Janusz; Skawińska, Agnieszka

    2016-08-01

    CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 × 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 × 10(7) cells/ml, respectively.

  1. Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater

    Directory of Open Access Journals (Sweden)

    Barcelos Oliveira, Jorge Luiz

    2006-09-01

    Full Text Available Alternative culture media have been evaluated for the cultivation of microalgae, among them are, industrial and agriculture wastewaters, that make residue recycling possible by bioconverting it into a rich, nourishing biomass that can be used as a feeding complement in aquaculture and in diverse areas. The objective of this research is to determine the lipid, fatty acid profile and carotenoid produced by the microalgae Chlorella vulgaris cultivated in a hydroponic wastewater, with different dilutions. The results showed that lipid contents did not present significant differences. Fatty acids were predominantly 16:0, 18:0, 18:1 and 18:3n-6. For total carotenoids, the dilution of hydroponic wastewater did not stimulate the production of these pigments. From this study, it was determined that, the use of hydroponic wastewater as an alternative culture medium for  the cultivation of Chlorella vulgaris generates good perspectives for lipid, fatty acid and carotenoid production.Medios de cultivo alternativos vienen siendo evaluados para el cultivo de microalgas, entre ellos, están los afluentes industriales y agrícolas, que posibilitan la reciclaje del residuo, bioconvirtiéndose en una biomasa enriquecida bajo el punto de vista nutricional, que puede ser utilizada como complemento alimenticio, para la acuacultura y en varias otras áreas de actuación. El presente trabajo tuvo como objetivo determinar los contenidos de lípidos, composición de ácidos grasos y carotenoides producidos por la microalga Chlorella vulgaris cultivada en solución hidropónica residual, con diferentes diluciones. Los resultados de los contenidos de lípidos totales no presentaron diferencia significativa. Los ácidos grasos predominantes fueron los 16:0, 18:0, 18:1 e 18:3n-6. Para los carotenoides totales, la dilución de la solución hidropónica residual no estimuló la producción de estos pigmentos por la microalga. La utilización de la solución hidrop

  2. Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris

    Czech Academy of Sciences Publication Activity Database

    Přibyl, Pavel; Cepák, Vladislav; Zachleder, Vilém

    2013-01-01

    Roč. 25, č. 2 (2013), 545-553 ISSN 0921-8971 R&D Projects: GA MŠk 1M0571 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : Chlorella vulgaris * lipid body * ultrastructure Subject RIV: EF - Botanics Impact factor: 2.492, year: 2013

  3. The effect of algae species on biodiesel and biogas production observed by using a data model combines algae cultivation with an anaerobic digestion (ACAD) and a biodiesel process

    International Nuclear Information System (INIS)

    Sapci, Zehra; Morken, John

    2014-01-01

    Highlights: • A combined ACAD-biorefinery based model was investigated. • The model was implemented in the data analysis program MathCad. • Three different scenarios were modeled. • Chlorella vulgaris, Nannochloropsis sp. and Haematococcus pluvialis were evaluated. - Abstract: The influence of an algae species based on the biodiesel yield was investigated by using a combined plant model from the literature. The model has six different processes: algal cultivation, the flocculation and separation process, biodiesel production, anaerobic digestion, scrubbing, and combined heat and power (CHP). The data model in the literature was operated with the values for Chlorella vulgaris. To investigate the roles of the algae species on the biodiesel yield in the model, two different algae species, Nannochloropsis sp. and Haematococcus pluvialis, were selected. Depending on the data from these algae in the literature, three different scenarios were modeled in the study. The model shows that all of the scenarios for biodiesel production can be totally independent of an external energy supply. Energy estimations for all of the applications scenarios show that the system produces more energy than the amount that is required for the processing operation

  4. Energetic response of Chlorella vulgaris to alpha radiation and PCB stress

    International Nuclear Information System (INIS)

    Schaffer, S.A.

    1982-01-01

    This research project has evaluated the bioenergetic response of the green alga Chlorella vulgaris following acute exposure to either the physical stress of radiation or the chemical stress of PCBs. After exposure, changes in survival or growth, adenylate pools (ATP, ADP, and AMP), CO 2 fixation and oxygen evolution and uptake were measured. By employing anaerobic conditions, or the electron transport inhibitor DCMU or dark conditions separately and in specific combinations, this study evaluated the response of three separate algal ATP producing mechanisms (respiration, total and cyclic photophosphorylation) to alpha radiation or PCB. The use of the adenylate energy charge ratio as an indicator of stress was also evaluated. The results of the radiation experiments indicated that alpha particle exposure between 25 to 275 rads caused a one-hour latent demand for ATP due to radioinduced DNA repair. In order to compensate for this ATP demand, nonessential utilization of ATP was decreased by slowing the rate of carbon fixation. The results also suggest that use of radiation as a tool to study algal physiology. The data obtained from the PCB experiments again showed each phosphorylation mechanism to be insensitive to 10, 100 and 200 ppm Aroclor 1254 exposures. Data suggest, however, that PCBs caused an increased photosynthetic rate, and total adenylate pool with decreased growth. The use of the adenylate energy charge ratio as a stress indicator was assessed. Because this ratio did not fluctuate at doses of radiation or PCBs that caused reduced survival and growth rates, this study concluded that for Chlorella the adenylate energy charge ration was a poor indicator of sublethal stress

  5. Mechanistically harvesting of Chlorella vulgaris and Rhodotorula glutinis via modified montmorillonoid.

    Science.gov (United States)

    Liu, Jing; Zhang, Xu; Tan, Tianwei

    2016-10-01

    In this study, the flocculation process of Chlorella vulgaris and Rhodotorula glutinis induced by inorganic salts modified montmorillonoid was conducted. The maximum flocculation efficiency (FE) of 98.50% for C. vulgaris and 11.83% for R. glutinis were obtained with 4g/L and 5g/L flocculant within the dosage scope of 1-5g/L. The difference of FE was then thermodynamically explained by the extended DLVO theory and the FE of R. glutinis was mechanically enhanced to 90.66% with 0.06g/L cationic polyacrylamide (CPAM) at an optimum pH of 9. After that, aimed to utilize the remainder flocculant capacity, C. vulgaris culture was added to the aggregation of R. glutinis. Fortunately, the coagulation of R. glutinis and C. Vulgaris was achieved with 0.05g/L CPAM and 5g/L flocculant at pH 9 and the FE reached 90.15% and 91.24%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Subcellular Localization of Cadmium in Chlorella vulgaris Beijerinck Strain Bt-09

    Directory of Open Access Journals (Sweden)

    P.B. Lintongan

    2004-06-01

    Full Text Available Growth response curves of Chlorella vulgaris Beijerinck strain Bt-09 to sublethal concentrations of cadmium were evaluated. The growth responses of this microalgal isolate was determined through analysis of chlorophyll a levels. Cadmium was effectively taken up by the cells as determined by Flame Atomic Absorption Spectrophotometry (F-AAS. Subcellular fractionation was undertaken to locate sites that accumulate cadmium.

  7. Potential toxic effect of trifloxystrobin on cellular microstructure, mRNA expression and antioxidant enzymes in Chlorella vulgaris.

    Science.gov (United States)

    Shen, Yu-Feng; Liu, Lei; Gong, Yu-Xin; Zhu, Bin; Liu, Guang-Lu; Wang, Gao-Xue

    2014-05-01

    This study investigated the effects of trifloxystrobin that one strobilurin used widely in the world as an effective fungicidal agent to control Asian soybean rust on aquatic unicellular algae Chlorella vulgaris. We determined the potential toxic effect of trifloxystrobin on C. vulgaris, and found median inhibition concentration (IC(50)) value 255.58 (95% confidence interval, 207.81-330.29)μgL(-1). In addition, the algal cells were obviously depressed or shrunk at different concentrations by electron microscopy. In the study, a real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL, and one energy gene, ATPs. The results showed that trifloxystrobin reduced the transcript abundances of the three genes and enhanced expression of ATPs after 48 and 96 h. The lowest abundances of psaB, psbC and rbcL transcripts in response to trifloxystrobin exposure were 58%, 79% and 60% of those of the control, respectively. For the potential toxic influences, trifloxystrobin could decrease the soluble protein and total antioxidant contents (T-AOC), and increase superoxide dismutase (SOD) and peroxidase (POD) activity with a gradual concentration-response relationship. Overall, the present study demonstrated that trifloxystrobin could affect the activities of antioxidant enzymes, disrupts photosynthesis in C. vulgaris, and damage cellular structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Investigation into feed utilisation by fore-aged silver carp (Hypophthalmichthys molitrix) using double-marked algae (14C and 51Cr)

    International Nuclear Information System (INIS)

    Wessel, B.; Spittler, P.; Heerkloss, R.

    1982-01-01

    The blue-green alga Microcystis firma and two green algae, Dunaliella viridis and Chlorella vulgaris, were double-marked with 14 C and 51 Cr. The 51 Cr was used as an indicator to measure the assimilation efficiency of fore-aged silver carp for radiocarbon. The assimilation efficiency values obtained were 89.0 +- 5.43% for M. firma, 61.3 +- 15.28% for D. viridis and 91.3 +- 2.22% for C. vulgaris. (author)

  9. Analytical evaluation of different carbon sources and growth stimulators on the biomass and lipid production of Chlorella vulgaris – Implications for biofuels

    International Nuclear Information System (INIS)

    Josephine, A.; Niveditha, C.; Radhika, A.; Shali, A. Brindha; Kumar, T.S.; Dharani, G.; Kirubagaran, R.

    2015-01-01

    The key challenges in lipid production from marine microalgae include the selection of appropriate strain, optimization of the culture conditions and enhancement of biolipid yield. This study is aimed at evaluating the optimal harvest time and effect of chlorella growth factor (CGF) extract, carbon sources and phytohormones on the biomass and lipid production in Chlorella vulgaris. CGF, extracted using hot water from Chlorella has been reported to possess various medicinal properties. However, in the present study, for the first time in C. vulgaris, CGF was found as a best growth stimulator by enhancing the biomass level (1.208 kg m −3 ) significantly on day 5. Gibberellin and citrate augmented the biomass by 0.935 kg m −3 and 1.025 kg m −3 . Combination of CGF and phytohormones were more effective than CGF and carbon sources. Analysis of fatty acid methyl esters indicated that the ratio of saturated to unsaturated fatty acids is higher in cytokinin, abscisic acid and CGF, and are also rich in short chain carbon atoms, ideal criteria for biodiesel. Nitrogen starvation favoured synthesis of more unsaturated fatty acids than saturated. This study shows that CGF enhances the biomass and lipid significantly and thus can be used for large scale biomass production. - Highlights: • Optimization studies revealed 7th day to be the ideal period for harvesting Chlorella vulgaris. • Chlorella growth factor extract acted as a chief growth promoting factor of C. vulgaris. • Chlorella growth factor with carbon sources or phytohormones was not effective than chlorella growth factor extract alone. • Cytokinin treatment increased saturated fatty acids level, although the biomass production was not significant

  10. Chloroplast NADPH-Dependent Thioredoxin Reductase from Chlorella vulgaris Alleviates Environmental Stresses in Yeast Together with 2-Cys Peroxiredoxin

    Science.gov (United States)

    Machida, Takeshi; Ishibashi, Akiko; Kirino, Ai; Sato, Jun-ichi; Kawasaki, Shinji; Niimura, Youichi; Honjoh, Ken-ichi; Miyamoto, Takahisa

    2012-01-01

    Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances. PMID:23029353

  11. The Use of Chlorella Vulgaris in a Simple Demonstration of Heavy Metal Toxicity.

    Science.gov (United States)

    Gipps, J. F.; Biro, P.

    1978-01-01

    An experimental system, suitable for secondary schools, uses Chlorella vulgaris to demonstrate the effects of mercury and cadmium. Very low concentrations of mercury or cadmium decrease growth, whereas lead or arsenic have little effect. Further experiments show additive interactions between mercury and cadmium and antagonistic interactions…

  12. Toxicity of Nickel Oxide Nanoparticles on a Freshwater Green Algal Strain of Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Abdallah Oukarroum

    2017-01-01

    Full Text Available A freshwater microalga strain of Chlorella vulgaris was used to investigate toxic effects induced by nickel oxide nanoparticles (NiO-NPs in suspension. Algal cells were exposed during 96 h to 0–100 mg L−1 of NiO-NPs and analyzed by flow cytometry. Physicochemical characterization of nanoparticles in tested media showed a soluble fraction (free Ni2+ of only 6.42% for 100 mg L−1 of NiO-NPs, indicating the low solubility capacity of these NPs. Toxicity analysis showed cellular alterations which were related to NiO-NPs concentration, such as inhibition in cell division (relative cell size and granularity, deterioration of the photosynthetic apparatus (chlorophyll synthesis and photochemical reactions of photosynthesis, and oxidative stress (ROS production. The change in cellular viability demonstrated to be a very sensitive biomarker of NiO-NPs toxicity with EC50 of 13.7 mg L−1. Analysis by TEM and X-ray confirmed that NiO-NPs were able to cross biological membranes and to accumulate inside algal cells. Therefore, this study provides a characterization of both physicochemical and toxicological properties of NiO-NPs suspensions in tested media. The use of the freshwater strain of C. vulgaris demonstrated to be a sensitive bioindicator of NiO-NPs toxicity on the viability of green algae.

  13. DNA barcode of coastal alga ( Chlorella sorokiniana ) from Ago ...

    African Journals Online (AJOL)

    Five different loci 18S, UPA, rbcl, ITS and tufA were tested for their use as deoxyribonucleic acid (DNA) barcode in this study. Although the UPA primers were designed to amplify all phototrophic algae and cyanobacteria, UPA and 18S did not amplified at all for the genus Chlorella while ITS1, ITS2 rDNA and rbcL markers ...

  14. Mapping the Fundamental Niches of Two Freshwater Microalgae, Chlorella vulgaris (Trebouxiophyceae and Peridinium cinctum (Dinophyceae, in 5-Dimensional Ion Space

    Directory of Open Access Journals (Sweden)

    Terence J. Evens

    2011-01-01

    Full Text Available The fundamental niche defined by five ions, NO3 −, PO4 3−, K+, Na+, and Cl−, was mapped for Chlorella vulgaris (Trebouxiophyceae and Peridinium cinctum (Dinophyceae growth rates and maximum cell densities in batch cultures. A five dimensional ion-mixture experimental design was projected across a total ion concentration gradient of 1 to 30 mM to delineate the ion-based, “potential” niche space, defined as the entire n-dimensional hypervolume demarcated by the feasible ranges of the independent factors under consideration. The growth rate-based, fundamental niche volumes overlapped for ca. 94% of the ion mixtures, although the regions of maximal growth rates and cell densities were different for each alga. Both C. vulgaris and P. cinctum exhibited similar positive responses to cations and negative responses to anions. It was determined that total ion concentration for these five ions, from 1 to 30 mM, did not directly affect either growth rate or maximal cell density for either alga, although it did play an interactive role with several ions. This study is the first that we are aware of to attempt the mapping of a multivariate, ion-based, fundamental niche volume. The implications of the experimental design utilized and the potential utility of this type of approach are discussed.

  15. Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans

    NARCIS (Netherlands)

    Lam, 't Gerard; Postma, P.R.; Fernandes, D.A.; Timmermans, R.A.H.; Vermuë, M.H.; Barbosa, M.J.; Eppink, M.H.; Wijffels, R.H.; Olivieri, G.

    2017-01-01

    Pulsed Electric Field (PEF) is currently discussed as promising technology for mild and scalable cell disintegration of microalgae. In this study Chlorella vulgaris and Neochloris oleoabundans have been subjected to batch and continuous PEF treatments under a wide range of operating conditions

  16. Lipid accumulation from pinewood pyrolysates by rhodosporidium diobovatum and chlorella vulgaris for biodiesel production

    NARCIS (Netherlands)

    Luque, L.; Orr, V.C.A.; Chen, S.; Westerhof, Roel Johannes Maria; Oudenhoven, Stijn; van Rossum, G.; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2016-01-01

    This study evaluated the suitability of pinewood pyrolysates as a carbon source for lipid production and cultivation of the oleaginous yeast Rhodosporidium diobovatum and the microalgae Chlorella vulgaris. Thermal decomposition of pinewood and fractional condensation were used to obtain an oil rich

  17. Improved lipid and biomass productivities in Chlorella vulgaris by differing the inoculation medium from the production medium

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Hamedi

    2016-06-01

    Full Text Available Improvement of biomass and lipid productivities is now one of the main concerns in commercialization of microalgae cultivation as a feedstock for algal biofuel production. Conventional photoautotrophic processes using well-studied and rich in oil strain of Chlorella vulgaris are not able to meet such demands. A new strategy of inoculating algae production medium with cells grown in a different medium from the production medium was proposed herein. More specifically, when SH4 was used as production medium and N8 was used as inoculation medium, biomass and lipid productivities increased by 2.33 folds and 1.44 fold, respectively, compared with when the production and inoculation media were the same, such as SH4. The findings of the present investigation showed that this cultivation scheme resulted in 52% increase in cell number and 54% increase in dry weight leading to improved productivities. Although by even considering this improvement, photoautotrophic cultivation of algae can hardly compete with the heterotrophic cultivation, the high cost of hydrocarbon supply required in large-scale heterotrophic processes marks the technique proposed in the present study as a promising approach for commercialization of algal biofuel production.

  18. Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis.

    Science.gov (United States)

    Razzak, Shaikh A; Ali, Saad Aldin M; Hossain, Mohammad M; Mouanda, Alexis Nzila

    2016-11-01

    The present research is focused on cultivation of microalgae strain Chlorella vulgaris for bio-fixation of CO2 coupled with biomass production. In this regard, a single semi-batch vertical tubular photobioreactor and four similar photobioreactors in series have been employed. The concentration of CO2 in the feed stream was varied from 2 to 12 % (v/v) by adjusting CO2 to air ratio. The amount of CO2 capture and algae growth were monitored by measuring decrease of CO2 concentration in the gas phase, microalgal cell density, and algal biomass production rate. The results show that 4 % CO2 gives maximum amount of biomass (0.9 g L(-1)) and productivity (0.118 g L(-1) day(-1)) of C. vulgaris in a single reactor. In series reactors, average productivity per reactor found to be 0.078 g L(-1) day(-1). The maximum CO2 uptake for single reactor also found with 4 % CO2, and it is around 0.2 g L(-1) day(-1). In series reactors, average CO2 uptake is 0.13 g L(-1) day(-1) per reactor. TOC analysis shows that the carbon content of the produced biomass is around 40.67 % of total weight. The thermochemical characteristics of the cultivated C. vulgaris samples were analyzed in the presence of air. All samples burn above 200 °C and the combustion rate become faster at around 600 °C. Almost 98 wt% of the produced biomass is combustible in this range.

  19. Accumulated lipids rather than the rigid cell walls impede the extraction of genetic materials for effective colony PCRs in Chlorella vulgaris

    Science.gov (United States)

    2013-01-01

    Background Failure of colony PCRs in green microalga Chlorella vulgaris is typically attributed to the difficulty in disrupting its notoriously rigid cell walls for releasing the genetic materials and therefore the development of an effective colony PCR procedure in C. vulgaris presents a challenge. Results Here we identified that colony PCR results were significantly affected by the accumulated lipids rather than the rigid cell walls of C. vulgaris. The higher lipids accumulated in C. vulgaris negatively affects the effective amplification by DNA polymerase. Based on these findings, we established a simple and extremely effective colony PCR procedure in C. vulgaris. By simply pipetting/votexing the pellets of C. vulgaris in 10 ul of either TE (10 mM Tris/1 mM EDTA) or 0.2% SDS buffer at room temperature, followed by the addition of 10 ul of either hexane or Phenol:Chloroform:Isoamyl Alcohol in the same PCR tube for extraction. The resulting aqueous phase was readily PCR-amplified as genomic DNA templates as demonstrated by successful amplification of the nuclear 18S rRNA and the chloroplast rbcL gene. This colony PCR protocol is effective and robust in C. vulgaris and also demonstrates its effectiveness in other Chlorella species. Conclusions The accumulated lipids rather than the rigid cell walls of C. vulgaris significantly impede the extraction of genetic materials and subsequently the effective colony PCRs. The finding has the potential to aid the isolation of high-quality total RNAs and mRNAs for transcriptomic studies in addition to the genomic DNA isolation in Chlorella. PMID:24219401

  20. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water

    Science.gov (United States)

    Ardila, Liliana; Godoy, Rubén; Montenegro, Luis

    2017-08-01

    Tanning process is a polluting activity due to the release of toxic agents into the environment. One of the most important of those toxic chemicals is chromium. Different alternatives have been proposed for the removal of this metal from tanning waste water which include the optimization of the productive processes, physicochemical and biochemical waste water treatment. In this study, the biological adsorption process of trivalent chromium was carried out in synthetic water and tannery waste water through two types of native green microalgae, called Chlorella vulgaris and Scenedesmus acutus in Free State and immobilized in PVA state. This, considering that cellular wall of microalgae has functional groups like amines and carboxyl that might bind with trivalent chromium. Statistical significance of variables as pH temperature, chromium and algae concentrations was evaluated just like bio sorption capacity of different types of water and kind of bioadsorbent was calculated to determine if this process is a competitive solution comparing to other heavy metal removal processes.

  1. Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions.

    Science.gov (United States)

    Dauda, Suleiman; Chia, Mathias Ahii; Bako, Sunday Paul

    2017-06-01

    The broad application of titanium dioxide nanoparticles (n-TiO 2 ) in many consumer products has resulted in the release of substantial quantities into aquatic systems. While n-TiO 2 have been shown to induce some unexpected toxic effects on aquatic organisms such as microalgae, the influence of changing nutrient conditions on the toxicity of the metal has not been investigated. We evaluated the toxicity of n-TiO 2 to Chlorella vulgaris under varying nitrogen conditions. Limited nitrogen (2.2μM) decreased growth and biomass (dry weight and pigment content), while lipid peroxidation (malondialdehyde content), glutathione S-transferase activity (GST) and peroxidase (POD) activity were increased. Similarly, exposure to n-TiO 2 under replete nitrogen condition resulted in a general decrease in growth and biomass, while GST and POD activities were significantly increased. The combination of limited nitrogen with n-TiO 2 exposure further decreased growth and biomass, and increased GST and POD activities of the microalga. These results suggest that in addition to the individual effects of each investigated condition, nitrogen limitation makes C. vulgaris more susceptible to the effects of n-TiO 2 with regard to some physiological parameters. This implies that the exposure of C. vulgaris and possibly other green algae to this nanoparticle under limited or low nitrogen conditions may negatively affect their contribution to primary production in oligotrophic aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    Science.gov (United States)

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  3. PERFIL DE ÁCIDOS GRAXOS DAS MICROALGAS Chlorella vulgaris E Chlorella minutissima CULTIVADAS EM DIFERENTES CONDIÇÕES

    Directory of Open Access Journals (Sweden)

    J. A. V. COSTA

    2009-01-01

    Full Text Available

    Estudos recentes têm explorado o uso de microalgas para obtenção de lipídios, principalmente os de maior valor comercial como o ácido -linolênico. A microalga Chlorella possui ácidos graxos poliinsaturados, vitaminas e alto conteúdo protéico, e, além disso, possui o certificado GRAS (Generally Recognized As Safe. O objetivo deste trabalho foi estudar o cultivo das microalgas Chlorella vulgaris e Chlorella minutissima, a fim de verificar o perfil de ácidos graxos frente à variação de diferentes fatores físicoquímicos e nutricionais. Foi utilizado um Planejamento Fatorial Fracionário 24-1 IV para cada cepa estudada, onde foram variados os fatores temperatura, iluminância, fonte de carbono e concentração de nitrato no meio de cultivo. C. vulgaris cultivada a 35ºC, 2500 Lux, 16,8 g.L-1 de NaHCO3 e 1,0 g.L-1 de NO3 - apresentou biomassa máxima de 5,06 g.L-1 em 22 dias de cultivo. Para C. minutissima foi obtida biomassa máxima de 1,5g.L-1 em 22 dias quando cultivada a 35ºC, 1250 Lux, 16,8 g.L-1 de NaHCO3 e 0,5 g.L-1 de NO3 -. Os maiores teores de lipídios obtidos para C. vulgaris e C. minutissima foram 6,96% e 7,98%, respectivamente. A 35ºC e 2500 Lux foi obtido 7,66% de ácido linolênico.

  4. Lethal action of ionizing radiation on the chlorella vulgaris cells containing varying dmounts of intracellular cysteine

    International Nuclear Information System (INIS)

    Kamchatova, I.E.; Zakharov, I.A.; Korolev, V.G.; Gracheva, L.M.; Zheleznyakova, N.Yu.; AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

    1975-01-01

    In experiments on related strains of Chlorella vulgaris it has been shown that the content of sulfhydryl groups in ''feeder'' mutant cells exceeds the content of the latter in the cells of initial wild strain. Radiosensitivity of chlorella mutant forms does not differ from that of the initial wild strain and revertant isolated from the mutant strain culture. The presence of a high level of sulfhydryl groups, maybe, does not determine its resistance to ionizing radiation

  5. The acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ionic liquids on Chlorella vulgaris and Daphnia magna.

    Science.gov (United States)

    Zhang, Cheng; Zhang, Shuai; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Zhou, Tongtong

    2017-10-01

    Given their increasingly widespread application, the toxic effects of ionic liquids (ILs) have become the subject of significant attention in recent years. Therefore, the present study assessed the acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ([C n mim]NO 3 (n = 2, 4, 6, 8, 10, 12)) on Chlorella vulgaris and Daphnia magna. The sensitivity of the tested organism Daphnia magna and the investigated IL concentrations in water using high-performance liquid chromatography (HPLC) were also evaluated to demonstrate the reliability of the present study. The results illustrated that Daphnia magna is indeed sensitive to the reference toxicant and the investigated ILs were stable in the aquatic environment. The 50% effect concentration (EC 50 ) was used to represent the acute toxic effects on Chlorella vulgaris and Daphnia magna. With the increasing alkyl-chain lengths, the toxicity of the investigated ILs increased in both the test organisms. Accordingly, the alkyl-chain lengths can cause significantly toxic effects on aquatic organisms, and Daphnia magna are much more sensitive than Chlorella vulgaris to the imidazolium-based ILs used in the present study. Furthermore, the present study provides more information on the acute toxic effects of 1-alkyl-3-methylimidazolium nitrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biomass Production Chlorella Vulgaris Buitenzorg Using Series of Bubble Column Photo Bioreactor with a Periodic Illumination

    Directory of Open Access Journals (Sweden)

    Anondho Wijanarko

    2010-10-01

    Full Text Available Chlorella vulgaris Buitenzorg cultivation using three bubble column photo bioreactors arranged in series with a volume of 200 mL for 130 hours shows an increase of biomass production of Chlorella vulgaris Buitenzorg up to 1.20 times and a decrease of the ability of CO2 fixation compared to single reactor at a periodic sun illumination cycle. The operation conditions on cultivation are as following: T, 29.0oC; P,1 atm.; UG, 2.40 m/h; CO2, 10%; Benneck medium; and illumination source by Phillip Halogen Lamp 20W /12V/ 50Hz. Other research parameters such as microbial carbon dioxide transferred rate (qco2, CO2 transferred rate (CTR, energy consumption for cellular formation (Ex, and cultural bicarbonate species concentration [HCO3] also give better results on series of reactor.

  7. Dietary Chlorella vulgaris Ameliorates Altered Immunomodulatory Functions in Cyclophosphamide-Induced Immunosuppressive Mice

    Science.gov (United States)

    Cheng, Dai; Wan, Zhaodong; Zhang, Xinyu; Li, Jian; Li, He; Wang, Chunling

    2017-01-01

    Based on the well-known toxicity of cyclophosphamide (CYP) on the immune system, this research investigated the modulating effects of the long-term dietary Chlorella vulgaris (CV) supplementation on the immunosuppression induced by CYP in mice, in order to provide a novel dietary design to mitigate the side effects of CYP therapy. Control, CYP-treated, CYP + CV (6%), CYP + CV (12%) and CYP + CV (24%) were used for 6 weeks, CV supplement in diet recovered the significantly reduced immunological function in CYP treated mice. As CV may have a modulating function through the inducible expression of cytokines, we assayed the expressions of interleukin-2 (IL-2), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Our results suggested that CYP significantly reduced the lymphocytes proliferation and phagocytic activities of macrophages, and stimulated the production of IL-2, IL-12, TNF-α and IFN-γ and that this impairment has been successfully adjusted by CV supplementation. Treatment with the algae also enhanced the natural killer (NK) cells cytotoxicity, and ameliorate histological changes of the spleen in CYP-treated mice. Therefore, as we found in this study, a diet supplemented with whole CV has beneficial effects on CVP-induced immunosuppression, through its immunomodulatory potential. PMID:28684674

  8. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.

    Science.gov (United States)

    Bayat Tork, Mahya; Khalilzadeh, Rasoul; Kouchakzadeh, Hasan

    2017-11-01

    Harvesting involves nearly thirty percent of total production cost of microalgae that needs to be done efficiently. Utilizing inexpensive and highly available biopolymer-based flocculants can be a solution for reducing the harvest costs. Herein, flocculation process of Chlorella vulgaris microalgae using cationic starch nanoparticles (CSNPs) was evaluated and optimized through the response surface methodology (RSM). pH, microalgae and CSNPs concentrations were considered as the main independent variables. Under the optimum conditions of microalgae concentration 0.75gdry weight/L, CSNPs concentration 7.1mgdry weight/L and pH 11.8, the maximum flocculation efficiency (90%) achieved. Twenty percent increase in flocculation efficiency observed with the use of CSNPs instead of the non-particulate starch which can be due to the more electrostatic interactions between the cationic nanoparticles and the microalgae. Therefore, the synthesized CSNPs can be employed as a convenient and economical flocculants for efficient harvest of Chlorella vulgaris microalgae at large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Magnesium Uptake by the Green Microalga Chlorella vulgaris in Batch Cultures.

    Science.gov (United States)

    Ben Amor-Ben Ayed, Hela; Taidi, Behnam; Ayadi, Habib; Pareau, Dominique; Stambouli, Moncef

    2016-03-01

    The accumulation (internal and superficial distribution) of magnesium ions (Mg(2+)) by the green freshwater microalga Chlorella vulgaris (C. vulgaris) was investigated under autotrophic culture in a stirred photobioreactor. The concentrations of the three forms of Mg(2+) (dissolved, extracellular, and intracellular) were determined with atomic absorption spectroscopy during the course of C. vulgaris growth. The proportions of adsorbed (extracellular) and absorbed (intracellular) Mg(2+) were quantified. The concentration of the most important pigment in algal cells, chlorophyll a, increased over time in proportion to the increase in the biomass concentration, indicating a constant chlorophyll/biomass ratio during the linear growth phase. The mean-average rate of Mg(2+) uptake by C. vulgaris grown in a culture medium starting with 16 mg/l of Mg(2+) concentration was measured. A clear relationship between the biomass concentration and the proportion of the Mg(2+) removal from the medium was observed. Of the total Mg(2+) present in the culture medium, 18% was adsorbed on the cell wall and 51% was absorbed by the biomass by the end of the experiment (765 h). Overall, 69% of the initial Mg(2+) were found to be removed from the medium. This study supported the kinetic model based on a reversible first-order reaction for Mg(2+) bioaccumulation in C. vulgaris, which was consistent with the experimental data.

  10. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    G. Sibi

    2016-07-01

    Full Text Available Hexavalent chromium [Cr(VI] is a toxic oxidized form and an important metal pollutant in the water bodies. Biosorption of chromium(VI offers a potential alternative to conventional metal removal methods. Dried biomass of Chlorella vulgaris was used as biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents as a function of biosorbent dosage, contact time, pH, salinity and initial metal ion concentration. Batch experiments were conducted for biosorption and the optimum conditions were 1 g/L biomass, 4 h contact time, pH 2 and 2.893 mS/cm of electrical conductivity. The chromium biosorption was strictly pH dependent with a maximum Cr removal of 63.2 mg/L at pH 2. Highest Cr removal at a concentration of 81.3 mg/L was observed at Electrical conductivity (EC value of 2.893 mS/cm. A comparison of Langmuir and Freundlich isotherm models revealed that Freundlich isotherm model fitted the experimental data based on R2, qmax and standard error values. The results suggest that C. vulgaris biomass could be considered a promising low-cost biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents. Keywords: Biosorption, Chlorella vulgaris, Microalgae, Hexavalent chromium

  11. Evaluation of lipid extractability after flash hydrolysis of algae

    Energy Technology Data Exchange (ETDEWEB)

    Teymouri, Ali; Adams, Kameron J.; Dong, Tao; Kumar, Sandeep

    2018-07-01

    Microalgae is identified as a promising feedstock for producing renewable liquid transportation fuels; however, lipids extraction from microalgae for downstream processing to biofuels is one of the important challenges for algal based biorefineries. This work aims at evaluating the potential of applying flash hydrolysis (FH) as a chemical-free technique to increase the lipids extractability of algal biomass as well as its integration with the hydrothermal liquefaction (HTL) of microalgae to enhance the biocrude yields and characteristics for fuel production. To this aim, the FH process was performed on three different algal species (Scenedesmus sp., Nannochloropsis sp., and Chlorella vulgaris) at 280 degrees C and 10 s of residence time. Following FH, in addition to the nutrients rich hydrolysate, approximately, 40 wt% of solids containing almost all (>90 wt%) the lipids termed as biofuels intermediates (BI), were recovered. Kinetics study on lipids extractability from the BI and their lipid profile analyses were conducted for each algal species. The results showed that the FH process had significantly enhanced the lipids extractability. For all three algae species, lipid yields from BI were higher than that of the raw algae. Lipid yields of Chlorella vulgaris in the first 15 min were more than five times higher (52.3 +/- 0.8 vs. 10.7 +/- 0.9 wt%) than that of raw algae during n-hexane based solvent extraction. The kinetics of lipids extractability followed a zero-order reaction rate for all wet raw microalgae and the BI of Scenedesmus sp., while the BI recovered from the other two algal species were determined as a second-order reaction. Comparison of fatty acids profiles indicated the contribution of the FH process in saturating fatty acids. Subsequent to lipids extraction, a conventional hydrothermal liquefaction was performed at 350 degrees C and 1 h to compare the biocrude yields from raw versus BI of Chlorella vulgaris microalgae. The results showed that the

  12. Effect of Organic Selenium from Se-enriched Alga (Chlorella spp. on Selenium Transfer from Sows to Their Progeny

    Directory of Open Access Journals (Sweden)

    Martin Svoboda

    2009-01-01

    Full Text Available The study was conducted to determine the efficacy of organic Se from Se-enriched alga Chlorella spp. in placental transfer to piglets. In group A (n = 8 the sows were fed during the gestation a diet supplemented with inorganic Se (sodium selenite, 0.3 mg/kg. In group B (n = 8 the diet of the sows was supplemented with organic Se from Se-enriched alga (0.3 mg/kg. The Se concentrations in the whole blood (P P Chlorella spp. in sows resulted in greater transfer of Se to their progeny.

  13. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.

    Science.gov (United States)

    Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid

    2017-09-01

    Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

  14. Cultivation of Chlorella Vulgaris Using Airlift Photobioreactor Sparged with 5%CO 2 -Air as a Biofixing Process

    Directory of Open Access Journals (Sweden)

    Mahmood Khazzal Hummadi AL-Mashhadani

    2017-04-01

    Full Text Available The present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO 2 /air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l -1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l -1 in the unsparged bioreactor. They showed also that aerated ioreactor.with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for ultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant growth rate, since the bioreactors become more thermodynamically favorable and provide impetus for a higher level of production. biofixing process

  15. Biodeuterated Materials: High-Temperature Lubricants from Algae.

    Science.gov (United States)

    1986-01-06

    to obtain significant growth in D20 media. 1. Chlorella vulgaris (UTEX 397) 2. Chlorella vulgaris (Arg) 3. Scenedesmus obliquus (Arg) 4. Scenedesmus...the other two strains, and almost half of the total fatty acids of strain 1237 was 18:1. Effect of Nitrogen-Deficient Media Chlorella vulgaris (Arg...2.3 36 18 4.5 strain 1237 D20 31 2.9 -- 46 14 5.7 Chlorella vulgaris strain 397 H20 53 9.3 -- 1.6 5.6 19 12 strain 397 D20 28 2.3 -- 6.4 30 23 9.5

  16. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater.

    Science.gov (United States)

    Ji, Yan; Hu, Wenrong; Li, Xiuqing; Ma, Guixia; Song, Mingming; Pei, Haiyan

    2014-01-01

    Monosodium glutamate wastewater (MSGW) is a potential medium for microbial cultivation because of containing abundant organic nutrient. This paper seeks to evaluate the feasibility of growing Chlorella vulgaris with MSGW and assess the influence of MSGW concentration on the biomass productivity and biochemical compositions. The MSGW diluted in different concentrations was prepared for microalga cultivation. C. vulgaris growth was greatly promoted with MSGW compared with the inorganic BG11 medium. C. vulgaris obtained the maximum biomass concentration (1.02 g/L) and biomass productivity (61.47 mg/Ld) with 100-time diluted MSGW. The harvested biomass was rich in protein (36.01-50.64%) and low in lipid (13.47-25.4%) and carbohydrate (8.94-20.1%). The protein nutritional quality and unsaturated fatty acids content of algal increased significantly with diluted MSGW. These results indicated that the MSGW is a feasible alternative for mass cultivation of C. vulgaris. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice.

    Science.gov (United States)

    Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd

    2012-12-01

    The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging.

  18. Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Nor Syahida Aliahmat

    2012-12-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old, middle-aged (12 months old, and old (18 months old. Each age group consisted of two control groups (distilled water and olive oil and three treatment groups: Piper betle (50 mg/kg body weight, tocotrienol-rich fraction (30 mg/kg, and Chlorella vulgaris (50 mg/kg. The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes

  19. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris.

    Science.gov (United States)

    Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang

    2017-01-01

    Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The effect of light:dark cycles of medium frequency on photosynthesis by Chlorella vulgaris and the implications for waste stabilisation pond design and performance.

    Science.gov (United States)

    Ratchford, I A J; Fallowfield, H J

    2003-01-01

    The effect of light/dark (L:D) cycle times on the recovery from photoinhibition of green micro-alga Chlorella vulgaris (CCAP211/11c) and the cyanobacterium Synechococcus (CCAP1479/5) was investigated using an irradiated, temperature controlled oxygen electrode. The onset of photoinhibition in both organisms occurred at irradiances > 300 micromol m(-2)s(-1) at temperatures >15 degrees C. Light/dark cycle times were controlled independently using a relay timer and shutter placed between the quartz iodide light source and the oxygen electrode chamber. Oxygen evolution decreased rapidly when cells were continuously irradiated at 300, 500 and 750 micromol m(-2)s(-1). However, Chlorella cells irradiated at 300, 500 and 750 micromol m(-2)s(-1)on a L:D cycle of 60s:20s, 30s:60s and 60s: 120s respectively, maintained a constant rate of oxygen evolution over a 24 h incubation period. Exposure time to a given incident irradiance rather than the total light dose received appeared to determine the effect of light/dark cycle times on photosynthesis. A relationship was established between L:D ratio required to maintain constant oxygen production and incident photon flux density. The results suggest that the adverse effects of high irradiances on algae near the surface of a stratified waste stabilisation pond might be ameliorated by controlled mixing of algal cells through the depth of the pond.

  1. Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants.

    Science.gov (United States)

    Ma, Xiaochen; Zheng, Hongli; Zhou, Wenguang; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-10-01

    In this study, a novel flocculation strategy for harvesting Chlorella vulgaris with combined flocculants, poly (γ-glutamic acid) (γ-PGA) and calcium oxide (CaO), has been developed. The effect of flocculant dosage, the order of flocculant addition, mixing speed, and growth stage on the harvesting efficiency was evaluated. Results showed that the flocculation using combined flocculants significantly decreases the flocculant dosage and settling time compared with control. It was also found that CaO and γ-PGA influenced microalgal flocculation by changing the zeta potential of cells and pH of microalgal suspension. The most suitable order of flocculant addition was CaO first and then γ-PGA. The optimal mixing speed was 200 rpm for 0.5 min, followed by 50 rpm for another 4.5 min for CaO and γ-PGA with the highest flocculation efficiency of 95 % and a concentration factor of 35.5. The biomass concentration and lipid yield of the culture reusing the flocculated medium were similar to those when a fresh medium was used. Overall, the proposed method requires low energy input, alleviates biomass and water contamination, and reduces utilization of water resources and is feasible for harvesting C. vulgaris for biofuel and other bio-based chemical production.

  2. Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement

    Science.gov (United States)

    Low, Y. J.; Lau, S. W.

    2017-06-01

    Microalgae are considered as one promising source of third-generation biofuels due to their fast growth rates, potentially higher yield rates and wide ranges of growth conditions. However, the extremely low biomass concentration in microalgae cultures presents a great challenge to the harvesting of microalgae because a large volume of water needs to be removed to obtain dry microalgal cells for the subsequent oil extraction process. In this study, the fresh water microalgae Chlorella vulgaris (C. vulgaris) was effectively harvested using both low molecular weight (MW) and high MW chitosan flocculants. The flocculation efficiency was evaluated by physical appearance, supernatant absorbance, zeta potential and solids content after centrifugal dewatering. High flocculation efficiency of 98.0-99.0% was achieved at the optimal dosage of 30-40 mg/g with formation of large microalgae flocs. This study suggests that the polymer bridging mechanism was governing the flocculation behaviour of C. vulgaris using high MW chitosan. Besides, charge patch neutralisation mechanism prevailed at low MW chitosan where lower dosage was sufficient to reach near-zero zeta potential compared with the high MW chitosan. The amount of chitosan polymer present in the culture may also affect the mechanism of flocculation.

  3. PIGMENT CONTENT OF Chlorella vulgaris BEIJ. UNDER INFLUENCE OF THE SODIUM SELENITE AND METALS IONS

    Directory of Open Access Journals (Sweden)

    O. I.

    2016-02-01

    Full Text Available The aim of the research was to determine the conditions obtaining in the aquaculture of Chlorella vulgaris Beij. algosubstantion enriched with selenium and bioactive metals. For this purpose, the content of seaweed pigments studied by the action of sodium selenite in a concentration based on Se4+: 0.5, 5.0, 10.0 and 20.0 mg / dm3 for 1, 3 and 7 days and while exposed 10.0 mg Se4 +/dm3 and Zn2+, Mn2 +, Co2 +, Cu2 +, Fe3 + in concentrations of 5.0 mg/dm 3, 0.25, 0.002, 0.008 and 0.05 mg/dm3, respectively, within 7 days of culturing. The content of pigments was determined spectrophotometrically, the cellular walls were given off in the percoll gradient and investigated microscopically. The pigments content in Ch. vulgaris increase by 1,5–2,5 times in comparison with control sample under the influence of 10 mg Se(IV/dm3 with and without metal ions. In the same condition a ratio of chlorophylls a/b increased, that accompanied by the formation in cells of the second cell wall as the sign of successful adaptation process in the Chlorella cells under the influence of these factors. Thus, the cultivation of chlorella, enriched with selenium and bioactive metals, is possible within 7 days under the influence of 10 mg Se (IV/dm3 and mentioned concentration of these metal ions.

  4. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris].

    Science.gov (United States)

    Kong, Weibao; Wang, Yang; Yang, Hong; Xi, Yuqin; Han, Rui; Niu, Shiquan

    2015-03-04

    We studied the effects of trophic modes related to glucose and light (photoautotrophy, mixotrophy and heterotrophy) on growth, cellular components and carbon metabolic pathway of Chlorella vulgaris. The parameters about growth of algal cells were investigated by using spectroscopy and chromatography techniques. When trophic mode changed from photoautotrophy to mixotrophy and to heterotrophy successively, the concentrations of soluble sugar, lipid and saturated C16/C18 fatty acids in C. vulgaris increased, whereas the concentrations of unsaturated C16, C18 fatty acids, proteins, photosynthetic pigments and 18 relative amino acids decreased. Light and glucose affect the growth, metabolism and the biochemical components biosynthesis of C. vulgaris. Addition of glucose can promote algal biomass accumulation, stimulate the synthesis of carbonaceous components, but inhibit nitrogenous components. Under illumination cultivation, concentration and consumption level of glucose decided the main trophic modes of C. vulgaris. Mixotrophic and heterotrophic cultivation could promote the growth of algal cells.

  5. Effect of Ethephon as an Ethylene-Releasing Compound on the Metabolic Profile of Chlorella vulgaris.

    Science.gov (United States)

    Kim, So-Hyun; Lim, Sa Rang; Hong, Seong-Joo; Cho, Byung-Kwan; Lee, Hookeun; Lee, Choul-Gyun; Choi, Hyung-Kyoon

    2016-06-15

    In this study, Chlorella vulgaris (C. vulgaris) was treated with ethephon at low (50 μM) and high (200 μM) concentrations in medium and harvested at 0, 7, and 14 days, respectively. The presence of ethephon led to significant metabolic changes in C. vulgaris, with significantly higher levels of α-tocopherol, γ-aminobutyric acid (GABA), asparagine, and proline, but lower levels of glycine, citrate, and galactose relative to control. Ethephon induced increases in saturated fatty acids but decreases in unsaturated fatty acids. The levels of highly saturated sulfoquinovosyldiacylglycerol species and palmitic acid bound phospholipids were increased on day 7 of ethephon treatment. Among the metabolites, the productivities of α-tocopherol (0.70 μg/L/day) and GABA (1.90 μg/L/day) were highest for 50 and 200 μM ethephon on day 7, respectively. We propose that ethephon treatment involves various metabolic processes in C. vulgaris and can be an efficient way to enrich the contents of α-tocopherol and GABA.

  6. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties

    Science.gov (United States)

    Annamalai, Jayshree; Nallamuthu, Thangaraju

    2015-06-01

    In this study, biosynthesis of self-assembled gold nanoparticles (GNPs) was accomplished using an aqueous extract of green microalga, Chlorella vulgaris. The optical, physical, chemical and bactericidal properties of the GNPs were investigated to identify their average shape and size, crystal nature, surface chemistry and toxicity, via UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and antimicrobial activity. The sizes of the spherical self-assembled cores of the synthesized GNPs ranged from 2 to 10 nm. The XRD patterns showed a (111) preferential orientation and the crystalline nature of the GNPs. The results of the FTIR analysis suggested that the peptides, proteins, phenol and flavonoid carried out the dual function of effective Au III reduction and successful capping of the GNPs. Human pathogen Candida albicans and Staphylococcus aureus were susceptible to synthesized aqueous GNPs. Thus, biosynthesis, stabilization and self-assembly of the GNPs by Chlorella vulgaris extract can be an example of green chemistry and effective drug in the medicinal field.

  7. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    Science.gov (United States)

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  8. Amino acids in cell wall of Gram-positive bacterium Micrococcus sp. hsn08 with flocculation activity on Chlorella vulgaris biomass.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2018-02-01

    The aim of this work was to investigate the flocculation mechanism by Gram-positive bacterium, Micrococcus sp. hsn08 as a means for harvesting Chlorella vulgaris biomass. Bacterial cells of Micrococcus sp. hsn08 were added into algal culture to harvest algal cells through direct contacting with algae to form flocs. Viability dependence test confirmed that flocculation activity does not depend on live bacteria, but on part of the peptidoglycan. The further investigation has determined that amino acids in cell wall play an important role to flocculate algal cells. Positively charged calcium can combine bacterial and algal cells together, and form a bridge between them, thereby forming the flocs, suggesting that ions bridging is the main flocculation mechanism. These results suggest that bacterial cells of Micrococcus sp. hsn08 can be applied to harvest microalgae biomass with the help of amino acids in cell wall. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production.

    Science.gov (United States)

    Mendez, Lara; Sialve, Bruno; Tomás-Pejó, Elia; Ballesteros, Mercedes; Steyer, Jean Philippe; González-Fernández, Cristina

    2016-05-01

    Anaerobic digestion of microalgae is hampered by its complex cell wall. Against this background, cyanobacteria cell walls render this biomass as an ideal substrate for overcoming this drawback. The aim of the present study was to compare the growth of two cyanobacteria (Aphanizomenon ovalisporum and Anabaena planctonica) and a microalga (Chlorella vulgaris) in urban wastewater when varying the temperature (22, 27 and 32 °C). Cyanobacterial optimal growth for both strains was attained at 22 °C, while C. vulgaris did not show remarkable differences among temperatures. For all the microorganisms, ammonium removal was higher than phosphate. Biomass collected was subjected to anaerobic digestion. Methane yield of C. vulgaris was 184.8 mL CH4 g COD in(-1) while with A. ovalisporum and A. planctonica the methane production was 1.2- and 1.4-fold higher. This study showed that cyanobacteria growth rates could be comparable to microalgae while presenting the additional benefit of an increased anaerobic digestibility.

  10. Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production.

    Science.gov (United States)

    Luque, Luis; Orr, Valerie C A; Chen, Sean; Westerhof, Roel; Oudenhoven, Stijn; Rossum, Guus van; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2016-08-01

    This study evaluated the suitability of pinewood pyrolysates as a carbon source for lipid production and cultivation of the oleaginous yeast Rhodosporidium diobovatum and the microalgae Chlorella vulgaris. Thermal decomposition of pinewood and fractional condensation were used to obtain an oil rich in levoglucosan which was upgraded to glucose by acid hydrolysis. Blending of pyrolytic sugars with pure glucose in both nitrogen rich and nitrogen limited conditions was studied for R. diobovatum, and under nitrogen limited conditions for C. vulgaris. Glucose consumption rate decreased with increasing proportions of pyrolytic sugars increasing cultivation time. While R. diobovatum was capable of growth in 100% (v/v) pyrolytic sugars, C. vulgaris growth declined rapidly in blends greater than 20% (v/v) until no growth was detected in blends >40%. Finally, the effects of pyrolysis sugars on lipid composition was evaluated and biodiesel fuel properties were estimated based on the lipid profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield

    International Nuclear Information System (INIS)

    Mendez, Lara; Mahdy, Ahmed; Ballesteros, Mercedes; González-Fernández, Cristina

    2015-01-01

    Highlights: • Cyanobacteria and C. vulgaris were compared in terms of growth and methane production. • Biomasses were subjected to anaerobic digestion without applying any disruption method. • Cyanobacteria showed an increased methane yield in comparison with C. vulgaris. - Abstract: The aim of the present study was to compare cyanobacteria strains (Aphanizomenon ovalisporum, Anabaena planctonica, Borzia trilocularis and Synechocystis sp.) and microalgae (Chlorella vulgaris) in terms of growth rate, biochemical profile and methane production. Cyanobacteria growth rate ranged 0.5–0.6 day −1 for A. planctonica, A. ovalisporum and Synecochystis sp. and 0.4 day −1 for B. tricularis. Opposite, C. vulgaris maximum growth rate was double (1.2 day −1 ) than that of cyanobacteria. Regarding the methane yield, microalgae C. vulgaris averaged 120 mL CH 4 g COD in −1 due to the presence of a strong cell wall. On the other hand, anaerobic digestion of cyanobacteria supported higher methane yields. B. trilocularis and A. planctonica presented 1.42-fold higher methane yield than microalgae while this value was raised to approximately 1.85-fold for A. ovalisporum and Synechochystis sp. In the biogas production context, this study showed that the low growth rates of cyanobacteria can be overcome by their increased anaerobic digestibility when compared to their microalgae counterpartners, such is the case of C. vulgaris

  12. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment

    NARCIS (Netherlands)

    Postma, P.R.; Pataro, G.; Capitoli, M.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M.; Olivieri, G.; Ferrari, G.

    2016-01-01

    The synergistic effect of temperature (25-65°C) and total specific energy input (0.55-1.11kWhkgDW -1) by pulsed electric field (PEF) on the release of intracellular components from the microalgae Chlorella vulgaris was studied. The combination of PEF with temperatures from

  13. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.

    Science.gov (United States)

    Chen, Chunxiang; Lu, Ziguang; Ma, Xiaoqian; Long, Jun; Peng, Yuning; Hu, Likun; Lu, Quan

    2013-09-01

    Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (β) increases, TI, Tf and Rp increase, while Mr decreases. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Bioaccumulation study of acrylate monomers in algae (Chlorella Kessleri) by PY-GC and PY-GC/MS

    International Nuclear Information System (INIS)

    Halas, L.; Orinak, A.; Adamova, M.; Ladomersky, J.

    2004-01-01

    Acrylate monomers methylmethacrylate (MMA) and cyclohexylmethacrylate (CHMA) bioaccumulation has been determined in aquatic organism, algae (Chlorella kessleri). Algae were collected in amount of 0.4 mg and directly injected to the paralytic cell. In algae bodies accumulated monomers were analysed by pyrolysis gas chromatography (Py-GC) and pyrolysis gas chromatography coupled with mass spectrometry (Py-GC/MS). Traces of the accumulated monomers in algae body can be determined after 1-, 2 -, 3-weeks of incubation. Maximum content of MMA was determined after 3-week of experiment, contrariwise in the case of CHMA after 2-week exposition. Relationship with pyrolysis temperature has also been studied. (authors)

  15. Preliminary development and evaluation of an algae-based air regeneration system

    Science.gov (United States)

    Nienow, J. A.

    2000-01-01

    The potential of air regeneration system based on the growth of microalgae on the surface of porous ceramic tubes is evaluated. The algae have been maintained in the system for extended periods, up to 360 days. Preliminary measurements of the photosynthetic capacity have been made for Chlorella vulgaris (UTEX 259), Neospongiococcum punctatum (UTEX 786), Stichococcus sp., and Gloeocapsa sp. Under standard test conditions (photosynthetic photon flux approximately 66 micromoles m-2 s-1, initial CO2 concentration approximately 450 micromoles mol-1), mature tubes remove up to 0.2 micromoles of CO2 per tube per minute. The rate of removal increases with photon flux up to at least 225 micromoles m-2 s-1 (PPF); peak rates of 0.35 micromoles of CO2 per tube per minute have been achieved with Chlorella vulgaris. These rates correspond to between 120 and 210 micromoles of CO2 removed per square meter of projected area per minute.

  16. Increased lipids production of Nannochloropsis oculata and Chlorella vulgaris for biodiesel synthesis through the optimization of growth medium composition arrangement by using bicarbonate addition

    Directory of Open Access Journals (Sweden)

    Dianursanti

    2018-01-01

    Full Text Available Chlorella vulgaris and Nannochloropsis oculata are a highly potential microalgae to be used in pilot-scale of biodiesel synthesis. The essential content from these microalgae is the fatty acid of lipid which is the main target for the feed and biodiesel industries. One of the key factor in improving lipid microalgae are the arrangemment of nutrients in the growth medium. Research on the regulation of nutrients using bicarbonate (HCO3- as an additional inorganic carbon source has been done by many studies, but the yield of lipids obtained has not been much. The aim of the study was to improve the lipid yield of Chlorella vulgaris and Nannochloropsis oculata. Variation of [HCO3-] which added to Walne medium were 25 ppm and 75 ppm, while the Walne medium without the addition of bicarbonate acts as control. The results showed that [HCO3-] 75 ppm could increase Chlorella vulgaris biomass by 0.9162 g/l with 17.0% wt, while Nannochloropsis oculata produced the greatest lipid content in [HCO3-] 25 ppm of 20.3% wt and the largest biomass on [HCO3-] 75 ppm of 1.7233 g/l.

  17. Tolerance and nutrients consumption of Chlorella vulgaris growing in mineral medium and real wastewater under laboratory conditions

    Directory of Open Access Journals (Sweden)

    María de Lourdes Franco Martínez

    2017-02-01

    Full Text Available Microalgae have the potential of consuming high amounts of nitrogen and phosphorus from wastewater; thus, avoiding the risk of eutrophication of the water bodies. Nevertheless, ammonium can usually inhibit the growth of microalgae. Tolerance to ammonium is specific of each strain; so, the development of tertiary wastewater treatment proposals, employing microalgae, has as a first step the study of its tolerance to N-NH3. In this work, the tolerance of Chlorella vulgaris to N-NH3, using mineral medium, was studied. Afterward, C. vulgaris was used to remove nitrogen and phosphorus from a real wastewater. The maximal biomass concentration was reached at 66 ppm N-NH3 (0.49 gL-1 with the complete depletion of the ammonium and a phosphorus consumption of 2 mgPi L-1d-1 in all the experiments. When C. vulgaris was grown in real wastewater, the final biomass concentration was 0.267 g L-1 and the nutrients (N and P were totally consumed after 3 days. According with these results, this strain of Chlorella has the potential for the removal of nitrogen and phosphorus from tertiary wastewater and the biomass produced in the process can be used for the production of high value products, such as pigments, proteins, carbohydrate or used for animal feed.

  18. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture

    OpenAIRE

    Hong Yang; Yun-Tao Cao; Hao Song; Shao-Feng Hua; Chun-Gu Xia; Wei-Bao Kong

    2013-01-01

    Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as ...

  19. Učinak glicerola i glukoze na povećanje biomase, udjela lipida i topljivih ugljikohidrata u miksotrofnoj kulturi alge Chlorella vulgaris

    OpenAIRE

    Kong, Wei-Bao; Yang, Hong; Cao, Yun-Tao; Song, Hao; Hua, Shao-Feng; Xia, Chun-Gu

    2013-01-01

    Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as ...

  20. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions1

    Science.gov (United States)

    Zuñiga, Cristal; Li, Chien-Ting; Zielinski, Daniel C.; Guarnieri, Michael T.; Antoniewicz, Maciek R.; Zengler, Karsten

    2016-01-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. PMID:27372244

  1. Modulation of Cell Cycle Profile by Chlorella vulgaris Prevents Replicative Senescence of Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Tayyebeh Saberbaghi

    2013-01-01

    Full Text Available In this study, the effects of Chlorella vulgaris (CV on replicative senescence of human diploid fibroblasts (HDFs were investigated. Hot water extract of CV was used to treat HDFs at passages 6, 15, and 30 which represent young, presenescence, and senescence ages, respectively. The level of DNA damage was determined by comet assay while apoptosis and cell cycle profile were determined using FACSCalibur flow cytometer. Our results showed direct correlation between increased levels of damaged DNA and apoptosis with senescence in untreated HDFs (P<0.05. Cell cycle profile showed increased population of untreated senescent cells that enter G0/G1 phase while the cell population in S phase decreased significantly (P<0.05. Treatment with CV however caused a significant reduction in the level of damaged DNA and apoptosis in all age groups of HDFs (P<0.05. Cell cycle analysis showed that treatment with CV increased significantly the percentage of senescent HDFs in S phase and G2/M phases but decreased the population of cells in G0/G1 phase (P<0.05. In conclusion, hot water extract of Chlorella vulgaris effectively decreased the biomarkers of ageing, indicating its potential as an antiageing compound.

  2. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions.

    Science.gov (United States)

    Zuñiga, Cristal; Li, Chien-Ting; Huelsman, Tyler; Levering, Jennifer; Zielinski, Daniel C; McConnell, Brian O; Long, Christopher P; Knoshaug, Eric P; Guarnieri, Michael T; Antoniewicz, Maciek R; Betenbaugh, Michael J; Zengler, Karsten

    2016-09-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. © 2016 American Society of Plant Biologists. All rights reserved.

  3. DRY BIOMASS OF FRESH WATER ALGAE OF CHLORELLA GENUS IN THE COMBINED FORAGES FOR LAYING HENS

    Directory of Open Access Journals (Sweden)

    SVETLANA GRIGOROVA

    2006-07-01

    Full Text Available Dry biomass of algae is a good source of nutrients and biologically active substances, which in the last years attracted the interest of the specialists in their search for natural, ecologically and healthy sound foods for the animals. The aim of the present study was to characterize the chemical composition and the nutritive value of the dry biomass of fresh water algae of Chlorella genus cultivated in Bulgaria and to establish its effect on the laying hen productivity and the morphological characteristics of the table eggs. The tested product was analyzed for its crude protein content – 55 % to available wet, crude fats – 9,6 %, crude fi bres – 6,4 %, xanthophylls – 0,6 g/kg, essential amino acids: lysine – 5,5 %, methionine – 1,2 %, triptophan – 1,2 %. Adding 2 % and 10 % of dry biomass of fresh water algae of Chlorella genus to the combined forages for laying hens led to the improvement of the bird productivity and the morphological characteristics of the eggs and the egg yolk pigmentation was more intensive by 2,5 units by the Roche’s scale.

  4. Culture of the microalga chlorella vulgaris on different proportions of sugar mill effluents

    International Nuclear Information System (INIS)

    Khan, A.N.M.A.I.; Islam, M.R.; Habib, M.A.B.; Hossain, M.S.; Miah, M.I.

    2006-01-01

    Chlarella vulgaris was cultured in four different dilutions of sugar mill effluent media (SMEM). Bold's basal medium (BBM) was used as the control under laboratory conditions. Maximum cell growth and chlorophyll-a content were obtained on 10th day of the culture in 50% diluted SMEM, followed by those grown in BBM, and 75, 25 and 100% SMEM at stationary phase. The specific growth rate (mu g/day) of cells and chlorophyll-a of C. vulgaris grown in 50% SMEM varied significantly (p < 0.0 I) from those of C. vulgaris cultured in BBM, followed by other SMEM concentrations. Total biomass of C. vulgaris. cultured in 50% SMEM, was found to be significantly higher (p < 0.0 I) than that of C. vulgaris cultured in BBM, and 25, 75 and 100% SMEM concentrations. Similar trend was also observed in the case of optical density. Cell number and chlorophyll-a of C. vulgaris were highly (p < 0.01) and directly correlated with chlorophyll-a (r2 = 0.991) of C. vulgaris and optical density (r2 = 0.989) for the culture media containing C. vulgaris, respectively. Crude proteins and crude lipids of C. vulgaris. grown in 50% SMEM, were significantly (p < 0.01) higher than those of C. vulgaris cultured in other SMEM concentrations. Due to good growth performance exhibited in the 50% SMEM dilution, the sugar mill effluent may be used for efficient cultivation of C. vulgaris and possibly other micro algae. (author)

  5. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.; Curtis, Tom P.; Logan, Bruce E.

    2009-01-01

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  6. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.

    2009-08-15

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  7. Eco-physiological studies on the uptake of the pollutants, copper, zinc and phosphate, by certain algae

    Energy Technology Data Exchange (ETDEWEB)

    Rana, B C; Kumar, H D

    1974-01-01

    Certain algae isolated from polluted and nonpolluted habitats were studied for their capacity to absorb copper, zinc, and phosphate from the ambient medium. They were found to possess a high gleaning capacity for these pollutants. The uptake of copper does not seem to require much metabolic energy and is independent of the growth of the alga, but the uptake of zinc seems to depend directly on its growth. Anacystis nidulans and Chlorella vulgaris are fast growing algae; they can absorb high amounts of phosphate and can be gainfully employed for retrieving the phosphate from the medium. However, the algae must be harvested before they excrete some of the phosphates back into the medium.

  8. The influence of a selenium-chromium-lipid complex obtained from Chlorella vulgaris on the energy metabolism in rats with experimental diabetes

    Directory of Open Access Journals (Sweden)

    O. Y. Lukashiv

    2017-07-01

    Full Text Available One of the leading roles in treating diabetes mellitus belongs to chrome ions therapy (III, especially in the complex with selenium (IV. Currently selenium is obtained from unicellular algae, which contain biologically active substances and which are capable of accumulating exogenous microelements. By incubating unicellular algae Chlorella vulgaris Biej. in the conditions of aquaculture with sodium selenite (IV and chromium (III chloride, we obtained a biologically active lipid substance which contains selenium and chromium. The substance was tested for the impact on energy metabolism of animals exposed to experimentally induced diabetes mellitus. The diabetes was caused by modeling obesity of the animals with further injection of streptozotocin in the amount of 65 mg/kg and nicotinamide at the dose of 230 mg/kg. The rats were intragastrically injected with 1 ml of 1% starch solution which contained a selenium-chrome-lipid complex extracted from the Chlorella containing 0.6 µg of selenium, 1.05 µg of chrome and 0.5 mg of lipids for prophylactic, therapeutic and prophylactic-therapeutic purposes; the other group of rats for therapeutic purposes was injected with starch solution with the same composition of microelements in inorganic form – sodium selenite (IV and chromium chloride (III. This paper presents the results of our study of the impact of organic and inorganic compounds of chrome and selenium on the energetic metabolism of rats exposed to experimental diabetes mellitus. The analysis determined that in the rats’ organism, the selenium-chrome-lipid complex from the Chlorella improved the indicators of the energetic metabolism – in the group of rats which received it for therapeutic purposes, we observed an up to 7.5 fold increase in the activity of succinate dehydrogenase compared to the rats which did not receive therapeutic treatment. The increase in the activity of succinate dehydrogenase corresponded to the increase in the

  9. Effects of DDT and BHC on amino acid content and its varieties in Chlorella vulgaris Beij. and Cladophora sp.

    Science.gov (United States)

    Lin, Yixiong

    1991-03-01

    In Chlorella vulgaris Beij. and Cladophora sp. treated with different concentrations of r-BHC and p, p-DDT, the protein and free amino acid content in both were higher than those in the controls, and the free amino acid content was even higher than the protein amino acid content.

  10. The Mechanisms of Adhesion of Enteromorpha Clathrata.

    Science.gov (United States)

    1982-08-24

    extracellular polymer was responsible for adhesion to a substrate (21,23,26,39,40,42,59,62,63,74,78, 86,91). The adhesion of Chlorella vulgaris may also depend...marine Chlorella vulgaris to glass. Can. J. Microbiol. 21:1025-1031. 88. Van Baalen, C., 1962. Studies on marine blue-green .4 algae. Bot. Mar. 4:129...also been observed with the unicellular green alga, Chlorella (68). Other negatively charged groups that could be present are phosphatidic groups (46

  11. Fast algal eco-toxicity assessment: Influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU.

    Science.gov (United States)

    Camuel, Alexandre; Guieysse, Benoit; Alcántara, Cynthia; Béchet, Quentin

    2017-06-01

    In order to develop a rapid assay suitable for algal eco-toxicity assessments under conditions representative of natural ecosystems, this study evaluated the short-term (Chlorella vulgaris was exposed to these herbicides under 'standard' low light intensity (as prescribed by OECD201 guideline), the 20min-EC 50 values recorded via oxygen productivity (atrazine: 1.32±0.07μM; DCMU: 0.31±0.005μM) were similar the 96-h EC 50 recorded via algal growth (atrazine: 0.56μM; DCMU: 0.41μM), and within the range of values reported in the literature. 20min-EC50 values increased by factors of 3.0 and 2.1 for atrazine and DCMU, respectively, when light intensity increased from 60 to 1400μmolm -2 s -1 of photosynthetically active radiation, or PAR. Further investigation showed that exposure time significantly also impacted the sensitivity of C. vulgaris under high light intensity (>840μmolm -2 s -1 as PAR) as the EC 50 for atrazine and DCMU decreased by up to 6.2 and 2.1 folds, respectively, after 50min of exposure at a light irradiance of 1400μmolm -2 s -1 as PAR. This decrease was particularly marked at high light intensities and low algae concentrations and is explained by the herbicide disruption of the electron transfer chain triggering photo-inhibition at high light intensities. Eco-toxicity assessments aiming to understand the potential impact of toxic compounds on natural ecosystems should therefore be performed over sufficient exposure times (>20min for C. vulgaris) and under light intensities relevant to these ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Characterization of iron uptake from hydroxamate siderophores by Chlorella vulgaris

    International Nuclear Information System (INIS)

    Allnutt, F.C.T.

    1985-01-01

    Iron uptake by Chlorella vulgaris from ferric-hydroxamate siderophores and the possible production of siderophores by these algae was investigated. No production of siderophores or organic acids was observed. Iron from the two hydroxamate siderophores tested, ferrioximine B (Fe 3+ -DFOB) and ferric-rhodotorulate (Fe 3+ -RA), was taken up at the same rate as iron chelated by citrate or caffeate. Two synthetic chelates, Fe 3+ -EDTA and Fe 3+ -EDDHA, provided iron at a slower rate. Iron uptake was inhibited by 50 μM CCCP or 1 mM vanadate. Cyanide (100 μM KCN) or 25 μM antimycin A failed to demonstrate a link between uptake and respiration. Labeled iron ( 55 Fe) was taken up while labeled ligands ([ 14 C] citrate or RA) were not accumulated. Cation competition from Ni 2+ and Co 2+ observed using Fe 3+ -DFOB and Fe 3+ -RA while iron uptake from Fe 3+ -citrate was stimulated. Iron-stress induced iron uptake from the hydroxamate siderophores. Ferric reduction from the ferric-siderophores was investigated with electron paramagnetic resonance (EPR) and bathophenathroline disulfonate (BPDS). Ferric reduction was induced by iron-stress and inhibited by CCCP. A close correlation between iron uptake and ferric reduction was measured by the EPR method. Ferric reduction measured by the BPDS method was greater than that measure by EPR. BPDS reduction was interpreted to indicate a potential for reduction while EPR measures the physiological rate of reduction. BPDS inhibition of iron uptake and ferricyanide interference with reduction indicate that reduction and uptake occur exposed to the external medium. Presumptive evidence using a binding dose response curve for Fe 3+ -DFOB indicated that a receptor may be involved in this mechanism

  13. Mutual facilitations of food waste treatment, microbial fuel cell bioelectricity generation and Chlorella vulgaris lipid production.

    Science.gov (United States)

    Hou, Qingjie; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Yu, Ze

    2016-03-01

    Food waste contains large amount of organic matter that may be troublesome for handing, storage and transportation. A microbial fuel cell (MFC) was successfully constructed with different inoculum densities of Chlorella vulgaris for promoting food waste treatment. Maximum COD removal efficiency was registered with 44% and 25 g CODL(-1)d(-1) of substrate degradation rate when inoculated with the optimal initial density (150 mg L(-1)) of C. vulgaris, which were 2.9 times and 3.1 times higher than that of the abiotic cathode. With the optimum inoculum density of C. vulgaris, the highest open circuit voltage, working voltage and power density of MFC were 260 mV, 170 mV and 19151 mW m(-3), respectively. Besides the high biodiesel quality, promoted by MFC stimulation the biomass productivity and highest total lipid content of C. vulgaris were 207 mg L(-1)d(-1) and 31%, which were roughly 2.7 times and 1.2 times higher than the control group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Oxidative damage to chloroplasts from Chlorella vulgaris exposed to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Malanga, G.; Calmanovici, G.; Puntarulo, S.

    1997-01-01

    Upon UV-B irradiation, Chlorella vulgaris cells and isolated chloroplasts increased in size and starch accumulation. Photosynthetic capacity and chlorophyll content of chloroplasts isolated from irradiated algae decreased by 72 and 66%, as compared to chloroplasts isolated from control cells. Dihydrorhodamine 123 conversion to rhodamine 123 was used as a sensitive method for detection of peroxide (presumably hydrogen peroxide) formation in isolated chloroplasts. The accumulation of rhodamine 123 is higher in irradiated than in nonirradiated chloroplasts and the increased accumulation of rhodamine 123 depended on the UV-B dose. Quantitation of alkyl radical-EPR signals in chloroplasts indicated that UV-B exposure significantly increased radical content in the membranes. The content of an oxidized DNA base (8-hydroxy-2′-deoxyguanosine) in chloroplasts was increased by 72 and 175% after irradiation of the algal culture with 17.3 and 42.6 kJ m −2 , respectively. The chloroplastic activity of superoxide dismutase decreased by 50% as compared with control values after irradiation with 42.6 kJ m −2 and no changes in ascorbate peroxidase activity and ascorbic acid content were detected at the irradiation doses tested. The β-carotene content in chloroplasts was not affected by the irradiation, but the α-tocopherol content increased approximately 4-fold after UV-B irradiation. The results suggest that oxidative damage related to UV-B exposure is responsible for alterations in chloroplasts function and integrity, and that an antioxidant response is triggered in chloroplasts through an increase in α-tocopherol content. (author)

  15. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    OpenAIRE

    Qiao Hu; Sen-Xiang Zhang; Zhong-Hua Yang; Hao Huang; Rong Zeng

    2014-01-01

    The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accum...

  16. Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor.

    Science.gov (United States)

    Xu, Meng; Bernards, Matthew; Hu, Zhiqiang

    2014-02-01

    An algae-based membrane bioreactor (A-MBR) was evaluated for high-density algae cultivation and phosphorus (P) removal. The A-MBR was seeded with Chlorella emersonii and operated at a hydraulic retention time of 1day with minimal biomass wastage for about 150days. The algae concentration increased from initially 385mg/L (or 315mg biomass COD/L) to a final of 4840mg/L (or 1664mg COD/L), yielding an average solids (algae biomass+minerals) production rate of 32.5gm(-3)d(-1) or 6.2gm(-2)d(-1). The A-MBR was able to remove 66±9% of the total P from the water while the algal biomass had an average of 7.5±0.2% extracellular P and 0.4% of intracellular P. The results suggest that algae-induced phosphate precipitation by algae is key to P removal and high-density algae cultivation produces P-rich algal biomass with excellent settling properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel

    International Nuclear Information System (INIS)

    Ishak, Nur Izzati; Muniandy, S V; Periasamy, Vengadesh; Ng, Fong-Lee; Phang, Siew-Moi

    2017-01-01

    In this work, we study the regional dependence of transport behavior of microalgae Chlorella vulgaris inside microfluidic channel on applied fluid flow rate. The microalgae are treated as spherical naturally buoyant particles. Deviation from the normal diffusion or Brownian transport is characterized based on the scaling behavior of the mean square displacement (MSD) of the particle trajectories by resolving the displacements in the streamwise (flow) and perpendicular directions. The channel is divided into three different flow regions, namely center region of the channel and two near-wall boundaries and the particle motions are analyzed at different flow rates. We use the scaled Brownian motion to model the transitional characteristics in the scaling behavior of the MSDs. We find that there exist anisotropic anomalous transports in all the three flow regions with mixed sub-diffusive, normal and super-diffusive behavior in both longitudinal and transverse directions. (paper)

  18. Cultivation of Chlorella vulgaris and Arthrospira platensis with Recovered Phosphorus from Wastewater by Means of Zeolite Sorption

    Science.gov (United States)

    Markou, Giorgos; Depraetere, Orily; Vandamme, Dries; Muylaert, Koenraad

    2015-01-01

    In this study, zeolite was employed for the separation and recovery of P from synthetic wastewater and its use as phosphorus (P) source for the cultivation of the green microalga Chlorella vulgaris and the cyanobacterium Arthrospira (Spirulina) platensis. At P-loaded zeolite concentration of 0.15–1 g/L, in which P was limited, the two species displayed quite different behavior regarding their growth and biomass composition. C. vulgaris preferred to increase the intracellular P and did not synthesize biomass, while A. platensis synthesized biomass keeping the intracellular P as low as possible. In addition under P limitation, C. vulgaris did display some little alteration of the biomass composition, while A. platensis did it significantly, accumulating carbohydrates around 70% from about 15%–20% (control). Both species could desorb P from zeolite biologically. A. platensis could recover over 65% and C. vulgaris 25% of the P bounded onto zeolite. When P-loaded zeolite concentration increased to 5 g/L, P was adequate to support growth for both species. Especially in the case of C. vulgaris, growth was stimulated from the presence of P-loaded zeolite and produced more biomass compared to the control. PMID:25690037

  19. Cultivation of Chlorella vulgaris and Arthrospira platensis with Recovered Phosphorus from Wastewater by Means of Zeolite Sorption

    Directory of Open Access Journals (Sweden)

    Giorgos Markou

    2015-02-01

    Full Text Available In this study, zeolite was employed for the separation and recovery of P from synthetic wastewater and its use as phosphorus (P source for the cultivation of the green microalga Chlorella vulgaris and the cyanobacterium Arthrospira (Spirulina platensis. At P-loaded zeolite concentration of 0.15–1 g/L, in which P was limited, the two species displayed quite different behavior regarding their growth and biomass composition. C. vulgaris preferred to increase the intracellular P and did not synthesize biomass, while A. platensis synthesized biomass keeping the intracellular P as low as possible. In addition under P limitation, C. vulgaris did display some little alteration of the biomass composition, while A. platensis did it significantly, accumulating carbohydrates around 70% from about 15%–20% (control. Both species could desorb P from zeolite biologically. A. platensis could recover over 65% and C. vulgaris 25% of the P bounded onto zeolite. When P-loaded zeolite concentration increased to 5 g/L, P was adequate to support growth for both species. Especially in the case of C. vulgaris, growth was stimulated from the presence of P-loaded zeolite and produced more biomass compared to the control.

  20. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris.

    Science.gov (United States)

    Choix, Francisco J; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-05-10

    ADP-glucose pyrophosphorylase (AGPase) regulates starch biosynthesis in higher plants and microalgae. This study measured the effect of the bacterium Azospirillum brasilense on AGPase activity in the freshwater microalga Chlorella vulgaris and formation of starch. This was done by immobilizing both microorganisms in alginate beads, either replete with or deprived of nitrogen or phosphorus and all under heterotrophic conditions, using d-glucose or Na-acetate as the carbon source. AGPase activity during the first 72h of incubation was higher in C. vulgaris when immobilized with A. brasilense. This happened simultaneously with higher starch accumulation and higher carbon uptake by the microalgae. Either carbon source had similar effects on enzyme activity and starch accumulation. Starvation either by N or P had the same pattern on AGPase activity and starch accumulation. Under replete conditions, the population of C. vulgaris immobilized alone was higher than when immobilized together, but under starvation conditions A. brasilense induced a larger population of C. vulgaris. In summary, adding A. brasilense enhanced AGPase activity, starch formation, and mitigation of stress in C. vulgaris. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Cloning and Expression of a Cytosolic HSP90 Gene in Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Zhengyi Liu

    2014-01-01

    Full Text Available Heat shock protein 90 (HSP90, a highly conserved molecular chaperone, plays essential roles in folding, keeping structural integrity, and regulating the subset of cytosolic proteins. We cloned the cDNA of Chlorella vulgaris HSP90 (named CvHSP90 by combining homology cloning with rapid amplification of cDNA ends (RACE. Sequence analysis indicated that CvHSP90 is a cytosolic member of the HSP90 family. Quantitative RT-PCR was applied to determine the expression level of messenger RNA (mRNA in CvHSP90 under different stress conditions. C. vulgaris was kept in different temperatures (5–45°C for 1 h. The mRNA expression level of CvHSP90 increased with temperature from 5 to 10°C, went further from 35 to 40°C, and reached the maximum at 40°C. On the other hand, for C. vulgaris kept at 35°C for different durations, the mRNA expression level of CvHSP90 increased gradually and reached the peak at 7 h and then declined progressively. In addition, the expression level of CvHSP90 at 40 or 45 in salinity (‰ was almost fourfold of that at 25 in salinity (‰ for 2 h. Therefore, CvHSP90 may be a potential biomarker to monitor environment changes.

  2. Antioxidant Potential of Extracts Obtained from Macro- (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata and Micro-Algae (Chlorella vulgaris and Spirulina platensis Assisted by Ultrasound

    Directory of Open Access Journals (Sweden)

    Rubén Agregán

    2018-04-01

    Full Text Available Background: Natural antioxidants, which can replace synthetic ones due to their potential implications for health problems in children, have gained significant popularity. Therefore, the antioxidant potential of extracts obtained from three brown macroalgae (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata and two microalgae (Chlorella vulgaris and Spirulina platensis using ultrasound-extraction as an innovative and green approach was evaluated. Methods: Algal extracts were obtained by ultrasound-assisted extraction using water/ethanol (50:50, v:v as the extraction solvent. The different extracts were compared based on their antioxidant potential, measuring the extraction yield, the total phenolic content (TPC and the antioxidant activity. Results: Extracts from Ascophyllum nodosum (AN and Bifurcaria bifurcata (BB showed the highest antioxidant potential compared to the rest of the samples. In particular, BB extract presented the highest extraction (35.85 g extract/100 g dry weight (DW and total phenolic compounds (TPC (5.74 g phloroglucinol equivalents (PGE/100 g DW yields. Regarding the antioxidant activity, macroalgae showed again higher values than microalgae. BB extract had the highest antioxidant activity in the ORAC, DPPH and FRAP assays, with 556.20, 144.65 and 66.50 µmol Trolox equivalents (TE/g DW, respectively. In addition, a correlation among the antioxidant activity and the TPC was noted. Conclusions: Within the obtained extracts, macroalgae, and in particular BB, are more suitable to be used as sources of phenolic antioxidants to be included in products for human consumption. The relatively low antioxidant potential, in terms of polyphenols, of the microalgae extracts studied in the present work makes them useless for possible industrial applications compared to macroalgae, although further in vivo studies evaluating the real impact of antioxidants from both macro- and micro-algae at the cellular level should be

  3. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  4. Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris.

    Science.gov (United States)

    Figueira, Camila Emilia; Moreira, Paulo Firmino; Giudici, Reinaldo

    2015-12-01

    The gasification of microalgae Chlorella vulgaris under an atmosphere of argon and water vapor was investigated by thermogravimetric analysis. The data were interpreted by using conventional isoconversional methods and also by the independent parallel reaction (IPR) model, in which the degradation is considered to happen individually to each pseudo-component of biomass (lipid, carbohydrate and protein). The IPR model allows obtaining the kinetic parameters of the degradation reaction of each component. Three main stages were observed during the gasification process and the differential thermogravimetric curve was satisfactorily fitted by the IPR model considering three pseudocomponents. The comparison of the activation energy values obtained by the methods and those found in the literature for other microalgae was satisfactory. Quantification of reaction products was performed using online gas chromatography. The major products detected were H2, CO and CH4, indicating the potential for producing fuel gas and syngas from microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations.

    Science.gov (United States)

    Mehta, S K; Singh, Alpana; Gaur, J P

    2002-03-01

    Adsorption and uptake of Cu2+ by Chlorella vulgaris were distinguished by extracting the surface-bound Cu2+ with EDTA. The uptake of Cu2+ followed Michaelis Menten kinetics. The maximum rate of Cu2+ uptake (0.362fmolcell(-1) h(-1)) was obtained at pH 6.0. The rate of Cu2+ uptake was greater for cultures in the exponential phase of growth, and increased with a rise in temperature from 6 to 25 degrees C, thus pointing towards an active mechanism. The maximum number of Cu2+ binding sites was 3.245 fmol cell(-1) at pH 4.5. Adsorption of Cu2+ was strongly pH-dependent thereby indicating that the number and nature of metal binding sites on the cell surface change with changing chemistry of the solution. Unlike uptake, the adsorption remained unaffected by small changes in temperature. Older cultures displayed a higher Cu2+ adsorption capacity than the exponentially growing ones thus suggesting generation of new and/or additional Cu2+ binding sites on older cells of C. vulgaris. By pH titration, the cation-exchange capacity of Chlorella, measured in terms of H+/ Na+ exchange, was about 17 fmol cell(-1) at pH 10.5. Negligible cation exchange capacity at and below pH 5.0 indicated that ion exchange was not the sole mechanism of Cu2+ adsorption by Chlorella. The uptake and adsorption of Cu2+ were inhibited by 100 microM of various cations including other heavy metal ions. The general concept that cations competitively inhibit accumulation of metals in living organisms does not hold for C. vulgaris. Non-competitive, uncompetitive and mixed inhibition of Cu2+ uptake and adsorption by various cations were more common than competitive inhibition.

  6. Potential Alleviation of Chlorella vulgaris and Zingiber officinale on Lead-Induced Testicular Toxicity: an Ultrastructural Study.

    Science.gov (United States)

    Mustafa, Hesham Noaman

    2015-01-01

    Natural, products were studied to combat reproductive alterations of lead. The current work aimed to disclose the efficacy of Chlorella vulgaris and Zingiber officinale to alleviate lead acetate induced toxicity. Sixty adult male Wistar rats were distributed into four groups. Group 1 was considered control, group 2 received 200 mg/l PbAc water, group 3 received 50 mg/kg/rat of C. vulgaris extract and 200 mg/l PbAc water, and group 4 received 100 mg/kg/rat of Z. officinale and 200 mg/l PbAc water for 90 days. Testis samples were subjected to ultrastructural examination. It was observed that PbAc caused degenerative alterations in the spermatogenic series in many tubules, with a loss of germ cells and vacuoles inside the cytoplasm and between the germ cells. Mitochondria exhibited ballooning, with lost cristae and widening of the interstitial tissue, while nuclear envelopes of primary spermatocytes were broken up, and axonemes of the mid-pieces of the sperms were distorted. With the treatment with C. vulgaris or Z. officinale, there were noticeable improvements in these modifications. It was concluded that both C. vulgaris and Z. officinale represent convincing medicinal components that may be used to ameliorate testicular toxicity in those exposed to lead in daily life with superior potentials revealed by C. vulgaris due to its chelating action.

  7. Investigation of Chlorella vulgaris UTEX 265 Cultivation under Light and Low Temperature Stressed Conditions for Lutein Production in Flasks and the Coiled Tree Photo-Bioreactor (CTPBR).

    Science.gov (United States)

    Gong, Mengyue; Bassi, Amarjeet

    2017-10-01

    Lutein has an increasing share in the pharmaceutical and nutraceutical market due to its benefits to eye health. Microalgae may be a potential source for lutein production while the expense limits the commercialization. In this study, a coiled tubular tree photobioreactor (CTPBR) design was investigated for cultivating the cold tolerant microalgae Chlorella vulgaris UTEX 265 under various conditions for lutein production. The influence and interaction of light irradiance strength, lighting cycle, and temperature on microalgae and lutein production efficiency at low temperature range were also studied in flasks via response surface method (RSM). The results demonstrated that 14 h day-light, 120 μmol photons m -2  s -1 , and 10 °C was the optimal condition for algae growth and lutein production at low temperature experimental ranges. C. vulgaris UTEX 265 showed good potential to produce lutein in cold weather, and the optimum lutein production was contrary to the specific lutein content but corresponds to the trend of optimum growth. Additionally, fast growth (μ = 1.50 day -1 ) and good lutein recovery (11.98 mg g -1  day -1 ) in CTPBR were also achieved at the low irradiance stress condition and the low temperature photo-inhibition conditions.

  8. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Form of inorganic carbon utilized for photosynthesis in Chlorella vulgaris 11h cells

    International Nuclear Information System (INIS)

    Miyachi, Shigetoh; Shiraiwa, Yoshihiro

    1979-01-01

    The rate of photosynthetic 14 CO 2 fixation in Chlorella vulgaris 11h cells in the presence of 0.55 mM NaH 14 CO 3 at pH 8.0 (20 0 C) was greatly enhanced by the addition of carbonic anhydrase (CA). However, when air containing 400 ppm 14 CO 2 was bubbled through the algal suspension, the rate of 14 CO 2 fixation immediately after the start of the bubbling was suppressed by CA. These effects of CA were observed in cells which had been grown in air containing 2% CO 2 (high-CO 2 cells) as well as those grown in ordinary air (containing 0.04% CO 2 , low-CO 2 cells). We therefore concluded that, irrespective of the CO 2 concentration given to the algal cells during growth, the active species of inorganic carbon absorbed by Chlorella cells is free CO 2 and they cannot utilize bicarbonate. The effects observed in the high-CO 2 cells were much more pronounced than those in the low-CO 2 cells. This difference was accounted for by the difference in the affinity for CO 2 in photosynthesis between the high- and low-CO 2 cells. (author)

  10. Study of optimizing the process of Cadmium adsorption by synthesized silver nanoparticles using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Faezeh Sajadi

    2016-05-01

    Full Text Available Background and Aim: Cadmium (Cd is one of the most toxic heavy metals in water that mostly enters the water cycle through industrial waste water. Silver nanoparticles have the capacity to remove heavy metals from the water resources through the mechanism of adsorption. The present study aimed at producing  silver bio-nanoparticles and optimizing . Cd removal from aquatic solutions. Materials and Methods: Silver bio-nanoparticles were extracted via a micro-algae Chlorella vulgaris extract and silver nitrate synthesis. Then, the characteristics of the particles were  determined using FT-IR, XRD, SEM devices. In order to optimize Cadmium adsorption by means of silver nanoparticles, parameters including pH, reaction time, initial concentration of Cd and concentrations of nanoparticles were studied under different conditions. Results: The resulting nanoparticles were spherical, single and crystalline, whose sizes were 10-45 nm.  Under the condition of PH = 8, the initial concentration of cadmium 0.5 mg/L, adsorbent dosage of 0.5 mg, reaction time of 10 min, temperature of 300C and mixing speed of 200 rpm, 99% of cadmium was removed. Isotherm of Cadmium-ion adsorption followed Langmuir (R2> 0/96 (and Freundlich (R2> 0/94 models. Conclusion: Under optimal conditions, silver bio-nanoparticles had the capacity of quick and effective adsorption of cadmium. Thus, with a cheap, non-toxic and environmentally friendly method  can remove heavy metals in a short time.

  11. A study of the growth for the microalga Chlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques

    NARCIS (Netherlands)

    Patino, R.; Janssen, M.G.J.; Stockar, von U.

    2007-01-01

    Calorimetry and other on-line techniques are used for the first time as complement to the traditional off-line methods in order to follow the growth of the green Chlorella vulgaris microalgae. A 2-L photo-bio-reactor was adapted from a commercial calorimeter used previously to study heterotrophic

  12. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts.

    Science.gov (United States)

    Sibi, G; Rabina, Santa

    2016-01-01

    The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. C. vulgaris extracts have potential anti-inflammatory activitySolvent extraction using methanol

  13. Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats*

    Science.gov (United States)

    Mohd Azamai, Emey Suhana; Sulaiman, Suhaniza; Mohd Habib, Shafina Hanim; Looi, Mee Lee; Das, Srijit; Abdul Hamid, Nor Aini; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2009-01-01

    Chlorella vulgaris (CV) has been reported to have antioxidant and anticancer properties. We evaluated the effect of CV on apoptotic regulator protein expression in liver cancer-induced rats. Male Wistar rats (200~250 g) were divided into eight groups: control group (normal diet), CDE group (choline deficient diet supplemented with ethionine in drinking water to induce hepatocarcinogenesis), CV groups with three different doses of CV (50, 150, and 300 mg/kg body weight), and CDE groups treated with different doses of CV (50, 150, and 300 mg/kg body weight). Rats were sacrificed at various weeks and liver tissues were embedded in paraffin blocks for immunohistochemistry studies. CV, at increasing doses, decreased the expression of anti-apoptotic protein, Bcl-2, but increased the expression of pro-apoptotic protein, caspase 8, in CDE rats, which was correlated with decreased hepatoctyes proliferation and increased apoptosis as determined by bromodeoxy-uridine (BrdU) labeling and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, respectively. Our study shows that CV has definite chemopreventive effect by inducing apoptosis via decreasing the expression of Bcl-2 and increasing the expression of caspase 8 in hepatocarcinogenesis-induced rats. PMID:19198018

  14. Evaluation of nutrients removal (NO3-N, NH3-N and PO4-P) with Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and a consortium of these microorganisms in the treatment of wastewater effluents.

    Science.gov (United States)

    Gómez-Guzmán, Abril; Jiménez-Magaña, Sergio; Guerra-Rentería, A Suggey; Gómez-Hermosillo, César; Parra-Rodríguez, F Javier; Velázquez, Sergio; Aguilar-Uscanga, Blanca Rosa; Solis-Pacheco, Josue; González-Reynoso, Orfil

    2017-07-01

    In this research removal of NH 3 -N, NO 3 -N and PO 4 -P nutrients from municipal wastewater was studied, using Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and an artificial consortium of them. The objective is to analyze the performance of these microorganisms and their consortium, which has not been previously studied for nutrient removal in municipal wastewater. A model wastewater was prepared simulating the physicochemical characteristics found at the wastewater plant in Chapala, Mexico. Experiments were carried out without adding an external carbon source. Results indicate that nutrient removal with Chlorella vulgaris was the most efficient with a removal of 24.03% of NO 3 -N, 80.62% of NH 3 -N and 4.30% of PO 4 -P. With Bacillus cereus the results were 8.40% of NO 3 -N, 28.80% of NH 3 -N and 3.80% of PO 4 -P. The removals with Pseudomonas putida were 2.50% of NO 3 -N, 41.80 of NH 3 -N and 4.30% of PO 4 -P. The consortium of Chlorella vulgaris-Bacillus cereus-Pseudomonas putida removed 29.40% of NO 3 -N, 4.2% of NH 3 -N and 8.4% of PO 4 -P. The highest biomass production was with Bacillus cereus (450 mg/l) followed by Pseudomonas putida (444 mg/l), the consortium (205 mg/l) and Chlorella vulgaris (88.9 mg/l). This study highlights the utility of these microorganisms for nutrient removal in wastewater treatments.

  15. Setting the conditions for phycoremediation of radionuclide microalgae Dunaliella salina and Chlorella vulgaris

    International Nuclear Information System (INIS)

    Tatarova, D.; Galanda, D.; Kuruc, J.

    2016-01-01

    This presentation deals with bioremediation using microalgae - by phycoremediation. Microalgae are economically low profile compared to the plants, their cultivation can be carried out in laboratory conditions. They can survive in extreme conditions, they occur in all habitats and have faster growth. Halophilous green D. salina can accumulate heavy metals such as Zn, Cu and Cd. It occurs in hypersaline environment with tolerance (0.2 to 35) % NaCl. It contains high amounts of carotenoids, which protect it against formation of free radicals from UV radiation. Chlorella vulgaris is a representative of eukaryotic green microalgae with the highest chlorophyll content with the appearance in fresh water. Its phycoremediant ability are found in N and P elements, which are used as its nutritional components as well as for Cu, Cr, Cd, Pb, Au. The experiments were carried out using a peristaltic pump ISMATEC Model: ISM851 (flow rate 2 cm"3 min"-"1) followed by monitoring of time dependence of decrease of activity of the microalgae solutions. For evaluation of the samples was used HPGe gamma spectrometer (measurement time of the samples: 600 sec) from ORTEC Company and measured spectra were evaluated with software GammaVision from ORTEC. The measured results showed that the most effective phycoremediation of microalgae Dunaliella salina toke place in an environment of pH 3, and even more at pH 8. The fact that the D. salina is able of phycoremediation at so acidic pH can contribute to its applications in extreme conditions or in the coastal areas in view of that it is halophilic. At freshwater microalgae Chlorella vulgaris was found the best phytoremediation potential in its natural environment at pH of 6. Because this microalgae is freshwater, it may find application in inland or in liquid radioactive waste from nuclear facilities.(authors)

  16. Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases.

    Science.gov (United States)

    Zhang, Xin; Chen, Hui; Chen, Weixian; Qiao, Yaqin; He, Chenliu; Wang, Qiang

    2014-09-02

    NOx, a significant portion of fossil fuel flue gases, are among the most serious environmental issues in the world and must be removed in an additional costly gas treatment step. This study evaluated the growth of the green alga Chlorella sp. C2 under a nitrite-simulated NOx environment and the removal rates of actual flue gas fixed salts (FGFSs) from Sinopec's Shijiazhuang refinery along with lipid production. The results showed that nitrite levels lower than 176.5 mM had no significant adverse effects on the cell growth and photosynthesis of Chlorella sp. C2, demonstrating that this green alga could utilize nitrite and NOx as a nitrogen source. High concentrations of nitrite (88.25-176.5 mM) also resulted in the accumulation of neutral lipids. A 60% nitrite removal efficiency was obtained together with the production of 33% algae lipids when cultured with FGFS. Notably, the presence of nitrate in the FGFS medium significantly enhanced the nitrite removal capability, biomass and lipid production. Thus, this study may provide a new insight into the economically viable application of microalgae in the synergistic combination of biological DeNOx of industrial flue gases and biodiesel production.

  17. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    International Nuclear Information System (INIS)

    Peng Zhang'e; Wu Feng; Deng Nansheng

    2006-01-01

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe 3+ ions was investigated. Algae, humic acid and Fe 3+ ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 10 9 cells L -1 raw Chlorella vulgaris, 4 mg L -1 humic acid and 20 μmol L -1 Fe 3+ . The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment

  18. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    Energy Technology Data Exchange (ETDEWEB)

    Peng Zhang' e [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: zhepeng@126.com; Wu Feng [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: fengwu@whu.edu.cn; Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430079 (China)]. E-mail: nsdengwhu@163.com

    2006-12-15

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe{sup 3+} ions was investigated. Algae, humic acid and Fe{sup 3+} ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 10{sup 9} cells L{sup -1} raw Chlorella vulgaris, 4 mg L{sup -1} humic acid and 20 {mu}mol L{sup -1} Fe{sup 3+}. The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment.

  19. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge.

    Science.gov (United States)

    Mujtaba, Ghulam; Lee, Kisay

    2017-09-01

    The use of algal-bacterial symbiotic association establishes a sustainable and cost-effective strategy in wastewater treatment. Using municipal wastewater, the removal performances of inorganic nutrients (nitrogen and phosphorus) and organic pollutants were investigated by the co-culture system having different inoculum ratios (R) of suspended activated sludge to alginate-immobilized microalgae Chlorella vulgaris. The co-culture reactors with lower R ratios obtained more removal of nitrogen than in pure culture of C. vulgaris. The reactor with R = 0.5 (sludge/microalgae) showed the highest performance representing 66% removal after 24 h and 95% removal after 84 h. Phosphorus was completely eliminated (100%) in the co-culture system with inoculum ratios of 0.5 and 1.0 after 24 h and in the pure C. vulgaris culture after 36 h. The COD level was greatly reduced in the activated sludge reactor, while, it was increasing in pure C. vulgaris culture after 24 h of incubation. However, COD was almost stabilized after 24 h in the reactors with high R ratios such as 2.0, 5.0, and 10 due to the higher concentration of activated sludge. The growth of C. vulgaris was promoted from 0.03 g/L/d to 0.05 g/L/d in the co-culture of low inoculum ratios such as R = 0.5, implying that there exist an optimum inoculum ratio in the co-culture system in order to achieve efficient removal of nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cultivo de Chlorella vulgaris sobre residual de soja con la aplicación de un campo magnético

    Directory of Open Access Journals (Sweden)

    Liliana Gómez Luna

    2011-07-01

    Chlorella ha ocupado la atención de los biotecnólogos al ser una importante fuente de biomasa para la producción de metabolitos de interés químico farmacéutico e industrial; sin embargo, el manejo de cultivos a gran escala sigue siendo un proceso que necesita economizarse, a partir de alternativas viables. Este trabajo presenta un estudio exploratorio en el que se evaluó la viabilidad del uso del residual de la línea de ablandamiento del grano de soya, como medio de cultivo para la microalga Chlorella vulgaris, obteniéndose excelentes valores de densidad celular máxima (Kmáx: 360 x 106 cél.mL-1. Posteriormente se evalúan los efectos de la aplicación de un campo magnético (CM de 0.03T, obteniéndose densidades celulares máximas en un menor tiempo de cultivo, lo que puede constituir un fundamento esencial para una nueva metodología de cultivo. La calidad de la biomasa de C. vulgaris se evalúa desde el punto de vista bioquímico, lo que permite determinar la concentración de proteínas, carbohidratos y lípidos en la fase exponencial, cuya acumulación se ve favorecida dependiendo del protocolo de aplicación del CM, mientras que la concentración de lípidos es máxima si el CM es aplicado en la fase estacionaria, variando desde 1.70 ±0.02 hasta 3.48 ±0.03 pg cél; lo que constituiría una ventaja para el manejo de cultivos comerciales de esta microalga que depende de su destino. Palabras clave: imán de neodimio, pigmentos, nitrógeno, biomasa, microalga.  ABSTRACT Chlorella has occupied the attention of biotechnologists to be an important source of biomass for the production of metabolites with a pharmaceutical, industrial and chemical interest; however, managing large-scale cultures, remains a process that needs to find alternatives become cheaper and viable. This paper presents an exploratory study that evaluated the feasibility of using the residual of soybeans softening, as a culture medium for the microalgae Chlorella vulgaris, yielding

  1. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.

    Science.gov (United States)

    Luangpipat, Tiyaporn; Chisti, Yusuf

    2017-09-10

    Five nominally freshwater microalgae (Chlorella vulgaris, Choricystis minor, Neochloris sp., Pseudococcomyxa simplex, Scenedesmus sp.) with a known ability to produce high-levels of lipids for possible use as fuel oils were evaluated for their ability to thrive and produce lipids in seawater and brackish water. Only C. vulgaris was found to thrive and produce lipids in full strength seawater. Seawater tolerant strains of C. vulgaris are unusual. Lipid productivity in nutrient sufficient seawater exceeded 37mgL -1 d -1 and was nearly 2-fold greater than in freshwater. Although other microalgae such as C. minor had higher lipid productivities (e.g. 45mgL -1 d -1 ), they did not thrive in seawater. The lipid content of the C. vulgaris biomass was nearly 16% by dry weight. The calorific value of the seawater-grown C. vulgaris biomass exceeded 25kJg -1 . Compared to continuously illuminated cultures, a 12/12h light-dark cycle reduced lipid productivity of C. vulgaris by ∼30%, but did not affect the lipid content of the biomass. Biomass yield on phosphate was nearly 27% higher in seawater compared to in freshwater. While C. vulgaris has been extensively studied in freshwater, it has not been examined to any detail in full strength seawater. Studies in seawater are essential for any future large scale production of algal oils for biofuels: seawater is available cheaply and in large amounts whereas there is a global shortage of freshwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Enhancement of Chlorella vulgaris Biomass Cultivated in POME Medium as Biofuel Feedstock under Mixotrophic Conditions

    Directory of Open Access Journals (Sweden)

    M.M. Azimatun Nur

    2015-10-01

    Full Text Available Microalgae cultivated in mixotrophic conditions have received significant attention as a suitable source of biofuel feedstock, based on their high biomass and lipid productivity. POME is one of the wastewaters generated from palm oil mills, containing important nutrients that could be suitable for mixotrophic microalgae growth. The aim of this research was to identify the growth of Chlorella vulgaris cultured in POME medium under mixotrophic conditions in relation to a variety of organic carbon sources added to the POME mixture. The research was conducted with 3 different carbon sources (D-glucose, crude glycerol and NaHCO3 in 40% POME, monitored over 6 days, under an illumination of 3000 lux, and with pH = 7. The biomass was harvested using an autoflocculation method and dry biomass was extracted using an ultrasound method in order to obtain the lipid content. The results show that C. vulgaris using D-glucose as carbon source gained a lipid productivity of 195 mg/l/d.

  3. Combined effect of concentrations of algal food (Chlorella vulgaris and salt (sodium chloride on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera

    Directory of Open Access Journals (Sweden)

    Víctor M. Peredo-Álvarez

    2003-06-01

    Full Text Available Salinity is an important variable influencing the density and diversity of rotifers. Studies on salt tolerance of rotifers have so far concentrated on euryhaline species while very little information is available on noneuryhaline taxa. In the present work, we have evaluated the combined effects of Chlorella vulgaris and sodium chloride on the population growth of two freshwater rotifers B. calyciflorus and B. patulus. A 24 hr acute tolerance test using NaCl revealed that B. calyciflorus was more resistant (LC50 = 3.75 ± 0.04 g l-1 than B. patulus (2.14 ± 0.09 g l-1 . The maximal population density (mean±standard error for B. calyciflorus in the control at 4.5 X10 6 cells ml-1 (algal level was 80 ±5 ind. ml-1 , which was nearly a fifth of the one for B. patulus (397 ± 7 ind. ml-1 under comparable conditions. Data on population growth revealed that regardless of salt concentration, the density of B. calyciflorus increased with increasing food levels, while for B. patulus, this trend was evident only in the controls. Regardless of salt concentration and algal food level, the day of maximal population density was lower (4 ± 0.5 days for B. calyciflorus than for B. patulus (11 ±1 day. The highest rates of population increase (r values for B. calyciflorus and B. patulus were 0.429 ± 0.012 and 0.367 ± 0.004, respectively, recorded at 4.5 X10(6 cells ml-1 of Chlorella in the controls. The protective role of algae in reducing the effect of salt stress was more evident in B. calyciflorus than B. patulus.La salinidad es una variable importante que tiene influencia sobre la densidad y la diversidad de los rotíferos. Los estudios de rotíferos sobre tolerancia a la sal que se tienen hasta ahora se han concentrado en especies eurihalinas, sin embargo, hay muy poca información sobre taxas no eurihalinos. En el presente trabajo, se evaluaron los efectos combinados de las concentraciones de Chlorella vulgaris y cloruro de sodio sobre el crecimiento

  4. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating

    International Nuclear Information System (INIS)

    Bach, Quang-Vu; Chen, Wei-Hsin; Lin, Shih-Cheng; Sheen, Herng-Kuang; Chang, Jo-Shu

    2017-01-01

    Highlights: • A microwave-assisted heating system is used for wet torrefaction (WT) of microalga. • Microalga Chlorella vulgaris ESP-31 is adopted as the feedstock. • The ash content in the microalga is reduced after WT. • The calorific value of the microalga can be intensified up to 21% after WT. • At least 61.5% of energy in the biomass is retained after WT. - Abstract: Microalgae are a prime source of third generation biofuels. Many thermochemical processes can be applied to convert them into fuels and other valuable products. However, some types of microalgae are characterized by very high moisture and ash contents, thereby causing several problems in further conversion processes. This study presents wet torrefaction (WT) as a promising pretreatment method to overcome the aforementioned drawbacks coupled with microalgal biomass. For this purpose, a microwave-assisted heating system was used for WT of microalga Chlorella vulgaris ESP-31 at different reaction temperatures (160, 170, and 180 °C) and durations (5, 10, and 30 min). The results show several improvements in the fuel properties of the microalga after WT such as increased calorific value and hydrophobicity as well as reduced ash content. A correlation in terms of elemental analysis can be adopted to predict the higher heating value of the torrefied microalga. The structure analysis by Fourier transform infrared (FT-IR) spectroscopy reveals that the carbohydrate content in the torrefied microalgae is lowered, whereas their protein and lipid contents are increased if the WT extent is not severe. However, the protein and lipid contents are reduced significantly at more severe WT conditions. The thermogravimetric analysis shows that the torrefied microalgae have lower ignition temperatures but higher burnout temperatures than the raw microalga, revealing significant impact of WT on the combustion reactivity of the microalga. Overall, the calorific value of the microalga can be intensified up to

  5. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    Science.gov (United States)

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Marine Analysis Using a Rapid Scanning Multichannel Fluorometer.

    Science.gov (United States)

    1985-04-30

    investigated is provided in Table I. Listings Table I. Laboratory algae collection. Class Species Source Media Chlorophyceae Chlorella vulgaris 1 ASP 6...of spectral matching. Hit # Specie A B C Chlorella vulgaris 1 1 1 Dunaliela salina 1 1 1 Tetraselmis sp. 1 1 1 Spirulina major 1 1 1 Skeletonema

  7. Phytochemical analysis and antimicrobial activity of Chorella vulgaris isolated from Unkal Lake

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmed Adhoni

    2016-05-01

    Full Text Available Objective: To determine the presence of bioactive molecules and to check their antimicrobial activity from green algae Chlorella vulgaris (AS-3 (C. vulgaris isolated from Unkal Lake in Dharwad District, Karnataka, India. Methods: Based on the polarity, benzene, chloroform, ethyl acetate, ethanol, hexane, methanol, petroleum ether and distilled water were the solvents used for the preparation of algal extracts using Soxhlet apparatus, which were further subjected to phytochemical analysis and screening of antimicrobial activity. Human pathogens such as Staphylococcus aureus, Corynebacterium, Bacillus subtilis, Streptococcus, Escherichia coli, Salmonella Paratyphi B, Klebsiella pneumoniae, Aerobacter aerogenes, Candida albicans and Aspergillus niger were used for antimicrobial assay. Standard methods were followed for qualitative estimation of phytochemicals. Results: Phytochemical determination of bioactive molecules showed the presence of alkaloids, flavonoids, glycosides, carotenoids, phenols, lignins, saponins, sterols, tannins, reducing sugars, volatile oil, fats, amino acids and carbohydrates. In vitro analysis of organic solvent extracts of C. vulgaris, a green microalgae, showed an activity by suppressing the proliferation of bacterial, fungal and human pathogens. Four extracts (chloroform, ethyl acetate, hexane and methanol showed effective inhibitory activity against the tested pathogens. Depending on the percentage of bioactive molecules present in each of the organic extracts, different extracts showed different inhibition zone diameters against the pathogens. Among the eight organic extracts used for the study, excellent inhibitory effects were shown by chloroform and methanol extracts. Conclusions: The present study indicates that green algae C. vulgaris is rich in natural compounds which are highly important in pharmacology and nutraceuticals. Although the presence of bioactive molecules is very less in the algae, excellent effect

  8. Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2017-09-01

    In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Use of Chlorella vulgaris for CO{sub 2} mitigation in a photobioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Keffer, J.E.; Kleinheinz, G.T.

    2002-07-01

    One of the most understudied methods for CO{sub 2} mitigation is the use of biological processes in engineered systems such as photobioreactors. This research project describes the effectiveness of Chlorella vulgaris, used in a photobioreactor with a very short gas residence time, in sequestering CO{sub 2} from an elevated CO{sub 2} airstream. We evaluated a flow-through photobioreactor's operational parameters, as well as the growth characteristics of the C. vulgaris inoculum when exposed to an airstream with over 1850 ppm CO{sub 2}. When using dry weight, chlorophyll, and direct microscopic measurements, it was apparent that the photobioreactor's algal inoculum responded well to the elevated CO{sub 2} levels and there was no build-up of CO{sub 2} or carbonic acid in the photobioreactor. The photobioreactor, with a gas residence time of approximately 2 s, was able to remove up to 74% of the CO{sub 2} in the airstream to ambient levels. This corresponded to a 63.9-g/m(3)/h bulk removal for the experimental photobioreactor. Consequently, this photobioreactor shows that biological processes may have some promise for treating point source emissions of CO{sub 2} and deserve further study.

  10. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water.

    Science.gov (United States)

    Baglieri, Andrea; Sidella, Sarah; Barone, Valeria; Fragalà, Ferdinando; Silkina, Alla; Nègre, Michèle; Gennari, Mara

    2016-09-01

    This work evaluates the possibility of cultivating Scenedesmus quadricauda and Chlorella vulgaris microalgae in wastewater from the hydroponic cultivation of tomatoes with the aim of purifying the water. S. quadricauda and C. vulgaris were also used in purification tests carried out on water contaminated by the following active ingredients: metalaxyl, pyrimethanil, fenhexamid, iprodione, and triclopyr. Fifty-six days after the inoculum was placed, a reduction was found in the concentration of nitric nitrogen, ammonia nitrogen, and soluble and total phosphorus. The decrease was 99, 83, 94, and 94 %, respectively, for C. vulgaris and 99, 5, 88, and 89 %, respectively, for S. quadricauda. When the microalgae were present, all the agrochemicals tested were removed more quickly from the water than from the sterile control (BG11). The increase in the rate of degradation was in the order metalaxyl > fenhexamid > iprodione > triclopyr > pyrimethanil. It was demonstrated that there was a real degradation of fenhexamid, metalaxyl, triclopyr, and iprodione, while in the case of pyrimethanil, the active ingredient removed from the substrate was absorbed onto the cells of the microalgae. It was also found that the agrochemicals used in the tests had no significant effect on the growth of the two microalgae. The experiment highlighted the possibility of using cultivations of C. vulgaris and S. quadricauda as purification systems for agricultural wastewater which contains eutrophic inorganic compounds such as nitrates and phosphates and also different types of pesticides.

  11. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling.

    Science.gov (United States)

    Postma, P R; Miron, T L; Olivieri, G; Barbosa, M J; Wijffels, R H; Eppink, M H M

    2015-05-01

    In this work, the mild disintegration of the microalgae Chlorella vulgaris for the release of intracellular products has been studied. By means of bead milling the microalgae suspensions were successfully disintegrated at different biomass concentrations (25-145 gDW kg(-1)) over a range of agitator speeds (6-12 m s(-1)). In all cases over 97% of cell disintegration was achieved resulting in a release of water soluble proteins. A clear optimum rate of disintegration and protein release was observed at an agitator speed of 9-10 m s(-1) regardless of the biomass concentration. Selective extraction of water soluble proteins was observed as proteins released sooner than cell disintegration took place. Proteins could be released at 85% lower energy input than for cell disintegration resulting in specific energy consumptions well below 2.5 kWh kgDW(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Characterization of Gasolines, Diesel Fuels and Their Water Soluble Fractions

    Science.gov (United States)

    1983-09-01

    Hutchinson, et al.,1979 ) with the marine algae, Chlorella vulgaris and Chlamydomonas angulosa, suggests that the toxicity of hydrocarbons is a...water-soluble petroleum components on the growth of Chlorella vulgaris Beijernck. Environ. Poll. 9: 157. Morrow, J.E., et al. 1975. Effects of some...P.B., and T.C. Hutchison. 1975. The effects of water-soluble petroleum components on the growth of Chlorella vulqaris Beijerinck. Environ. Poll. 9

  13. THE EFFECT OF BIOMASS FROM GREEN ALGAE OF CHLORELLA GENUS ON THE BIOCHEMICAL CHARACTERISTICS OF TABLE EGGS

    Directory of Open Access Journals (Sweden)

    SVETLANA GRIGOROVA

    2006-10-01

    Full Text Available An analysis was made of the fatty-acid content of the dry biomass from green algae of Chlorella genus cultivated in Bulgaria, with the aim of establishing its effect on the content of total lipids, cholesterol, phospholipids and the fattyacid content of the table eggs. The fatty-acid composition of the dry biomass from green microalgae of Chlorella genus was characterized by its high content of α linolenic acid – 36,5 %, palmitic acid – 20,4 %, linoleic acid – 15 % and oleic acid – 10,3 % of the total amount of fatty acids in the product. Omega-3/Omega-6 fatty acids ratio in the biomass was 0,4. When adding 2 % and 10 % of alga biomass to the forage for the laying hens the total cholesterol content in 100 g of yolk decreased in the experimental groups compared to the control one, however, the differences were statistically insignifi cant. The supplement of 2 % and 10 % of the studied product exerted an effect on the fatty-acid content of the egg yolk and it led to the increase of the amount of palmitic and linoleic acids and to the decrease of the docosatetraenic acid.

  14. The Effect of Chlorella vulgaris Supplementation on Liver Enzymes, Serum Glucose and Lipid Profile in Patients with Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Mehrangiz Ebrahimi-Mameghani

    2014-07-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is becoming a public health problem worldwide and using microalgae is a new approach on its treatment. The aim of this study was to investigate the effect of Chlorella vulgaris supplementation on liver enzymes, serum glucose and lipid profile in patients with NAFLD. Methods: This double-blind randomized placebo-controlled clinical trial was conducted on 60 NAFLD patients from specialized clinics of Tabriz University of Medical Sciences from December 2011 to July 2012. The subjects were randomly allocated into 2 groups: 1 “intervention” (n=30 received 400 mg/day vitamin E plus four 300 mg tablets of Chlorella vulgaris and, 2 “placebo” (n=30 received 400 mg/day vitamin E and four placebo tablets per day for 8 weeks. Weight, liver enzymes and metabolic factors were assessed in fasting serum and dietary data was collected at baseline and end of the study. Results: Weight, liver enzymes, fasting blood sugar (FBS and lipid profile decreased significantly in both groups (P<0.05. The differences in weight, ALP and FBS between the two groups were statistically significant (P=0.01, P=0.04 and P=0.02, respectively. Conclusion: C. vulgaris seems to improve FBS and lipid profile and therefore could be considered as an effective complementary treatment in NAFLD.

  15. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  16. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  17. Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods.

    Science.gov (United States)

    Cao, Weixing; Wang, Xue; Sun, Shiqing; Hu, Changwei; Zhao, Yongjun

    2017-10-01

    In order to purify biogas slurry and biogas simultaneously, three different fungi, Pleurotus geesteranus (P. geesteranus), Ganoderma lucidum (G. lucidum), and Pleurotus ostreatus (P. ostreatus) were pelletized with Chlorella vulgaris (C. vulgaris). The results showed that the optimal light wavelength ratio for red:blue was 5:5 for these three different fungi-assisted C. vulgaris, resulting in higher specific growth rate as well as nutrient and CO 2 removal efficiency compared with other ratios. G. lucidum/C. vulgaris was screened as the best fungi-mialgae for biogas slurry purification and biogas upgrading with light/dark ratio of 14h:10h, which was also confirmed by the economic efficiency analysis of the energy consumptions. These results will provide a theoretical foundation for large-scale biogas slurry purifying and biogas upgrading using microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Growing Chlorella vulgaris in Photobioreactor by Continuous Process Using Concentrated Desalination: Effect of Dilution Rate on Biochemical Composition

    Directory of Open Access Journals (Sweden)

    Ângelo Paggi Matos

    2014-01-01

    Full Text Available Desalination wastewater, which contains large amount of salt waste, might lead to severely environmental pollution. This study evaluated the effect of dilution rate (0.1≤D≤0.3 day−1 on microalgal biomass productivity, lipid content, and fatty acid profile under steady-state condition of Chlorella vulgaris supplemented with concentrated desalination. Continuous culture was conducted for 55 days. Results show that the biomass productivity (Px varied from 57 to 126 mg L−1 d−1 (dry mass when the dilution rate ranged from 0.1 to 0.3 day−1. At lowest dilution rate (D=0.1 day−1, the continuous culture regime ensured the highest values of maximum biomass concentration (Xm=570±20 mL−1 and protein content (52%. Biomass lipid content was an increasing function of D. The most abundant fatty acids were the palmitic (25.3±0.6% at D=0.1 day−1 and the gamma-linolenic acid (23.5±0.1% at D=0.3 day−1 ones. These fatty acids present 14 to 18 carbons in the carbon chain, being mainly saturated and polyunsaturated, respectively. Overall, the results show that continuous culture is a powerful tool to investigate the cell growth kinetics and physiological behaviors of the algae growing on desalination wastewater.

  19. Changes of the delayed fluorescence characteristics in Spirulina, Anabaena and Chlorella in response to chromatic adaptation and irradiance

    International Nuclear Information System (INIS)

    Znak, N.Y.; Morgun, V.N.

    1995-01-01

    Efficiency of the energy transformation for CO2 fixation (E), and kinetics of the initial O-2-mediated electron transport of Spirulina platensis (Gem. ) Geitl, and Chlorella vulgaris Beijerinck cells were measured after adaptation to various growth irradiances (I) by means of the delayed fluorescence (DF) induction curves. Maxima of the membrane potential expenses during induction period were observed at I half saturating oxygen evolution; they were shifted according to growth I remaining higher in Spirulina than in Chlorella. The alterations of absorbance and fluorescence spectra at 25 degrees C after adaptation to I demonstrated changes in composition of pigments of algae, created to compensate for the imbalance in radiation absorption between the two photosystems. For Spirulina cells, the value of E was higher after growing under low I, or under blue radiation absorbed mainly by photosystem (PS) 1 (400-500 nm) with excitation by yellow (570 nm) radiation. For Chlorella cells, it was also higher after growing under low I. Under such conditions the half-rise time for DP-phase of DF induction curve decreased, which reflected an acceleration of kinetics of the initial electron transport between photosystems. An opposite situation was observed with Spirulina cells grown under high I or yellow radiation, and Chlorella cells from high I. Enhancement of effective PS2/PS1 ratio associated with decrease of reaction centre (RC) 2/RC1 stoichiometry may because of the increase of E and high membrane energization under saturating I in algae adapted to low I

  20. Improving the optimum yield and growth of Chlamydomonas ...

    African Journals Online (AJOL)

    N.T

    2016-06-08

    Jun 8, 2016 ... genomes such as Chlamydomonas reinhardtii, Chlorella vulgaris, Volvox ..... The potential of micro algae as laboratory tool in cosmetic industries ..... lutein by Chlorella protothecoides at various glucose concentrations in.

  1. Unstable pigment mutants of Chlorella vulgaris B. as induced by UV irradiation

    International Nuclear Information System (INIS)

    Chankova, S.; Vinarova, K.

    1987-01-01

    The dynamics of arising of unstable 'segregating' pigment mutants of Chlorella vulgaris B. has been investigated in dependence on the dose of UV-rays applied and the macro- and microstructural changes taking place. The mutants are found to occur with a low frequency, irrespective of the dose applied and the presence or absence of photo-reactivation. A constantly recurring process of decomposition into two subclones is observed: light green (unstable) and yellow-green (stable). The existence of two cellular populations - structurally damaged and structurally undamaged - in the light-green unstable subclone has been demonstrated. There exists a qualitative and a quantitative correlation between the structural deformations in the cell and the dose with which the unstable pigment mutants are induced. Disturbances in the cell division are observed,resulting in delayed growth rate and the formation of small colonies

  2. The culture of Chlorella vulgaris in a recycled supernatant: Effects on biomass production and medium quality

    KAUST Repository

    Hadj-Romdhane, F.; Zheng, Xing; Jaouen, Pascal; Pruvost, Jé ré my; Grizeau, Dominique; Croue, Jean-Philippe; Bourseau, Patrick

    2013-01-01

    Reusing supernatant of microalgae culture medium can have inhibitory or toxic effects on the biomass production because of the release of organic metabolites by cells in the culture medium during their growth. This work investigated the impact of Chlorella vulgaris medium recycling on culture productivity, cells quality and accumulation of excreted metabolites in the culture medium. No significant impact on the C. vulgaris growth was observed after 63days of recycling, the productivity remained stable at around 0.55kgm-3day-1. Organic matters accumulated in supernatant were identified as biopolymers (BP) poor in nitrogen and with a size above 40kDa (probably polysaccharides), and small organic molecules (SOM) richer in nitrogen with a molecular size ranging from 1 to 3kDa. The concentration of biopolymers in the supernatant increased till to a maximum and then decreased, possibly consumed by bacteria, whereas small organic compounds accumulated in the medium. © 2013 Elsevier Ltd.

  3. The culture of Chlorella vulgaris in a recycled supernatant: Effects on biomass production and medium quality

    KAUST Repository

    Hadj-Romdhane, F.

    2013-03-01

    Reusing supernatant of microalgae culture medium can have inhibitory or toxic effects on the biomass production because of the release of organic metabolites by cells in the culture medium during their growth. This work investigated the impact of Chlorella vulgaris medium recycling on culture productivity, cells quality and accumulation of excreted metabolites in the culture medium. No significant impact on the C. vulgaris growth was observed after 63days of recycling, the productivity remained stable at around 0.55kgm-3day-1. Organic matters accumulated in supernatant were identified as biopolymers (BP) poor in nitrogen and with a size above 40kDa (probably polysaccharides), and small organic molecules (SOM) richer in nitrogen with a molecular size ranging from 1 to 3kDa. The concentration of biopolymers in the supernatant increased till to a maximum and then decreased, possibly consumed by bacteria, whereas small organic compounds accumulated in the medium. © 2013 Elsevier Ltd.

  4. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.

    Science.gov (United States)

    Ren, Hongyan; Tuo, Jinhua; Addy, Min M; Zhang, Renchuan; Lu, Qian; Anderson, Erik; Chen, Paul; Ruan, Roger

    2017-12-01

    To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL -1 with the maximum biomass productivity of 460mgL -1 d -1 TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL -1 waste glycerol addition, the average biomass production of 16.7gm -2 d -1 , lipid content of 23.6%, and the removal of 2.4gm -2 d -1 NH 4 + -N, 2.7gm -2 d -1 total nitrogen, 3.0gm -2 d -1 total phosphorous, and 103.0gm -2 d -1 of COD were attained for 34days semi-continuous mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Comparative phycoremediation of sewage water by various species of algae

    International Nuclear Information System (INIS)

    Ahmad, F.; Khan, A.U.; Yasar, A.

    2013-01-01

    In this study sewage water treatment efficiency of Chlorella vulgaris, Rhizoclonium hieroglyphicum And mixed algae culture (Microspora sp., Navicula sp., Lyngbya sp.,Cladophora sp.,Spirogyra sp. and Rhizoclonium sp.) was compared. Sampled wastewater was analyzed for various parameters (i.e., COD, BOD, TS, TSS, TDS, TC, FC, TKN, TP, NO/sub 3/-N, PO/sub 4/,SO/sub 4/and Cl-) and concentrations of all these parameters in the untreated water were above the permissible limits of National Environmental Quality Standards of Pakistan (2000). Various algal species were used to treat sewage water by varying pond size, treatment duration, seasonal variation and growth rate of algae to arrive at the optimum outcome. Maximum percent reductions of various parameters, attained with C. vulgaris, were: chemical oxygen demand (98.3%), biochemical oxygen demand (98.7%), total Kjeldahl nitrogen (93.1%), total phosphorus (98.0%), nitrate (98.3%), phosphate (98.6%), chloride (94.2%), total coliforms (99.0%), faecal coliforms (99.0%) and total dissolved solids (98.2%) while maximum reduction in total suspended solids (92.0%) was obtained with a mixed algae culture and maximum increase in biomass by R. hieroglyphicum (0.75 g L/sup -1/day/sup -1/). Reduction in the concentration of pollutants in sewage water was to such a low level that it can be thrown in water bodies without any further treatment. (author)

  6. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production.

    Science.gov (United States)

    Wong, Y K; Ho, Y H; Ho, K C; Leung, H M; Yung, K K L

    2017-04-01

    Chlorella vulgaris was cultivated under limitation and starvation and under controlled conditions using different concentrations of nitrate (NaNO 3 ) and phosphate (K 2 HPO 4 and KH 2 PO 4 ) chemicals in modified Bold basal medium (BBM). The biomass and lipid production responses to different media were examined in terms of optical density, cell density, dry biomass, and lipid productivity. In the 12-day batch culture period, the highest biomass productivity obtained was 72.083 mg L -1  day -1 under BBM - N control P limited condition. The highest lipid content, lipid concentration, and lipid productivity obtained were 53.202 %, 287.291 mg/L, and 23.449 mg L -1  day -1 under BBM - N Control P Deprivation condition, respectively. Nitrogen had a major effect in the biomass concentration of C. vulgaris, while no significant effect was found for phosphorus. Nitrogen and phosphorus starvation was found to be the strategy affecting the lipid accumulation and affected the lipid composition of C. vulgaris cultures.

  7. Photosystem II excitation pressure and photosynthetic carbon metabolism in Chlorella vulgaris

    International Nuclear Information System (INIS)

    Savitch, L.V.; Maxwell, D.P.; Huner, N.P.A.

    1996-01-01

    Chlorella vulgaris grown at 5 degrees C/150 micromoles m -2 s -1 mimics cells grown under high irradiance (27 degrees C/2200 micromoles m -2 s -1 ). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694). To assess the possible role(s) of feedback mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6 phosphate and sucrose/starch indicated that cells grown at 27 degrees C/2200 micromoles m -2 s -1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5 degrees C/150 micromoles-1 m -2 s -1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feedback on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed

  8. Physiological and biochemical responses of Chlorella vulgaris to Congo red.

    Science.gov (United States)

    Hernández-Zamora, Miriam; Perales-Vela, Hugo Virgilio; Flores-Ortíz, César Mateo; Cañizares-Villanueva, Rosa Olivia

    2014-10-01

    Extensive use of synthetic dyes in many industrial applications releases large volumes of wastewater. Wastewaters from dying industries are considered hazardous and require careful treatment prior to discharge into receiving water bodies. Dyes can affect photosynthetic activities of aquatic flora and decrease dissolved oxygen in water. The aim of this study was to evaluate the effect of Congo red on growth and metabolic activity of Chlorella vulgaris after 96h exposure. Exposure of the microalga to Congo red reduced growth rate, photosynthesis and respiration. Analysis of chlorophyll a fluorescence emission showed that the donor side of photosystem II was affected at high concentrations of Congo red. The quantum yield for electron transport (φEo), the electron transport rate (ETR) and the performance index (PI) also decreased. The reduction in the ability to absorb and use the quantum energy increased non-photochemical (NPQ) mechanisms for thermal dissipation. Overall, Congo red affects growth and metabolic activity in photosynthetic organisms in aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide.

    Science.gov (United States)

    Liu, Xiaoning; Ying, Kezhen; Chen, Guangyao; Zhou, Canwei; Zhang, Wen; Zhang, Xihui; Cai, Zhonghua; Holmes, Thomas; Tao, Yi

    2017-11-01

    In this study, Chlorella vulgaris (C. vulgaris) were cultured in cell culture flask supplied with intermittent CO 2 enriched gas. The impact of CO 2 concentration (from 1% to 20% v/v) on the growth of C. vulgaris cultured in domestic wastewater was exploited in various perspectives which include biomass, specific growth rate, culture pH, carbon consumption, and the removal of nitrogen and phosphorus compounds. The results showed that the maximum microalgal biomass concentration, 1.12 g L -1 , was achieved with 10% CO 2 as a feed gas. At 20% CO 2 the growth of C. vulgaris suffered from inhibition during initial 1.5 d, but acclimated to low pH (6.3 in average) with relatively higher specific growth rate (0.3-0.5 d -1 ) during subsequent culture period. After the rapid consumption of ammonium in the wastewater, an obvious decline in the nitrate concentration was observed, indicating that C. vulgaris prefer ammonium as a primary nitrogen source. The total nitrogen and phosphorus decreased from 44.0 mg L -1 to 2.1-5.4 mg L -1 and from 5.2 mg L -1 to 0-0.6 mg L -1 within 6.5 d under the aeration of 1-20% CO 2 , respectively, but no significant difference in consumed nitrogen versus phosphorus ratio was observed among different CO 2 concentration. The kinetics of nutrients removal were also determined through the application of pseudo first order kinetic model. 5-10% CO 2 aeration was optimal for the growth of C. vulgaris in the domestic wastewater, based on the coupling of carbon consumption, microalgal biomass, the nutrients removal and kinetics constants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium.

    Science.gov (United States)

    Fernández-Linares, Luis C; Guerrero Barajas, Claudia; Durán Páramo, Enrique; Badillo Corona, Jesús A

    2017-11-01

    The aim of the present work was to evaluate the feasibility of microalgae cultivation using secondary treated domestic wastewater. Two Chlorella vulgaris strains (CICESE and UTEX) and an indigenous consortium, were cultivated on treated wastewater enriched with and without the fertilizer Bayfolan®. Biomass production for C. vulgaris UTEX, CICESE and the indigenous consortium grown in treated wastewater was 1.167±0.057, 1.575±0.434 and 1.125±0.250g/L, with a total lipid content of 25.70±1.24, 23.35±3.01and 20.54±1.23% dw, respectively. The fatty acids profiles were mainly composed of C16 and C18. Regardless of the media used, in all three strains unsaturated fatty acids were the main FAME (fatty acids methyl esters) accumulated in a range of 45-62%. An enrichment of treated wastewater with Bayfolan® significantly increased the production of biomass along with an increase in pigments and proteins of ten and threefold, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Control of cytokinin and auxin homeostasis in cyanobacteria and algae

    Czech Academy of Sciences Publication Activity Database

    Žižková, Eva; Kubeš, Martin; Dobrev, Petre; Přibyl, Pavel; Šimura, J.; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav

    2017-01-01

    Roč. 119, č. 1 (2017), s. 151-166 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA16-14649S; GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 ; RVO:67985939 Keywords : solid-phase extraction * performance liquid-chromatography * yucca flavin monooxygenases * tandem mass-spectrometry * abscisic-acid * arabidopsis-thaliana * indole-3-acetic-acid iaa * endogenous cytokinins * chlorella-vulgaris * phenylacetic acid * Cytokinin * auxin * cyanobacteria * algae * metabolism * cytokinin oxidase/dehydrogenase * cytokinin 2-methylthioderivatives * trans-zeatin * indole-3-acetic acid * tRNA Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  12. Influence of Speciation of Thorium on Toxic Effects to Green Algae Chlorella pyrenoidosa

    Directory of Open Access Journals (Sweden)

    Can Peng

    2017-04-01

    Full Text Available Thorium (Th is a natural radioactive element present in the environment and has the potential to be used as a nuclear fuel. Relatively little is known about the influence and toxicity of Th in the environment. In the present study, the toxicity of Th to the green algae Chlorella pyrenoidosa (C. pyrenoidosa was evaluated by algal growth inhibition, biochemical assays and morphologic observations. In the cultural medium (OECD TG 201, Th(NO34 was transformed to amorphous precipitation of Th(OH4 due to hydrolysis. Th was toxic to C. pyrenoidosa, with a 96 h half maximum effective concentration (EC50 of 10.4 μM. Scanning electron microscopy shows that Th-containing aggregates were attached onto the surface of the algal cells, and transmission electron microscopy indicates the internalization of nano-sized Th precipitates and ultrastructural alterations of the algal cells. The heteroagglomeration between Th(OH4 precipitation and alga cells and enhanced oxidative stress might play important roles in the toxicity of Th. To our knowledge, this is the first report of the toxicity of Th to algae with its chemical species in the exposure medium. This finding provides useful information on understanding the fate and toxicity of Th in the aquatic environment.

  13. Enhancement of Protein and Pigment Content in Two Chlorella Species Cultivated on Industrial Process Water

    DEFF Research Database (Denmark)

    Safafar, Hamed; Uldall Nørregaard, Patrick; Ljubic, Anita

    2016-01-01

    Chlorella pyrenoidosa and Chlorella vulgaris were cultivated in pre-gasified industrial process water with high concentration of ammonia representing effluent from a local biogas plant. The study aimed to investigate the effects of growth media and cultivation duration on the nutritional...... pyrenoidosa produced the highest concentrations of protein (65.2% ± 1.30% DW) while Chlorella vulgaris accumulated extremely high concentrations of lutein and chlorophylls (7.14 ± 0.66 mg/g DW and 32.4 ± 1.77 mg/g DW, respectively). Cultivation of Chlorella species in industrial process water...... composition of biomass. Variations in proteins, lipid, fatty acid composition, amino acids, tocopherols, and pigments were studied. Both species grew well in industrial process water. The contents of proteins were affected significantly by the growth media and cultivation duration. Microalga Chlorella...

  14. Algae production for energy and foddering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Attila; Jobbagy, Peter; Durko, Emilia [University of Debrecen, Faculty of Applied Economics and Rural Development (UD-FAERD), Centre for Agricultural and Applied Economic Sciences, Debrecen (Hungary)

    2011-09-15

    This study not only presents the results of our own experiments in alga production, but also shows the expected economic results of the various uses of algae (animal feed, direct burning, pelleting, bio-diesel production), the technical characteristics of a new pelleting method based on literature, and also our own recommended alga production technology. In our opinion, the most promising alternative could be the production of alga species with high levels of oil content, which are suitable for utilization as by-products for animal feed and in the production of bio-diesel, as well as for use in waste water management and as a flue gas additive. Based on the data from our laboratory experiments, of the four species we analyzed, Chlorella vulgaris should be considered the most promising species for use in large-scale experiments. Taking expenses into account, our results demonstrate that the use of algae for burning technology purposes results in a significant loss under the current economic conditions; however, the utilization of algae for feeding and bio-diesel purposes - in spite of their innovative nature - is nearing the level needed for competitiveness. By using the alga production technology recommended by us and described in the present study in detail, with an investment of 545 to 727 thousand EUR/ha, this technology should be able to achieve approximately 0-29 thousand EUR/ha net income, depending on size. More favorable values emerge in the case of the 1-ha (larger) size, thanks to the significant savings on fixed costs (depreciation and personnel costs). (orig.)

  15. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures.

    Science.gov (United States)

    Rajendran, Aravindan; Hu, Bo

    2016-01-01

    Microalgae is considered a promising source for biofuel and bioenergy production, bio-remediation and production of high-value bioactive compounds, but harvesting microalgae is a major bottleneck in the algae based processes. The objective of this research is to mimic the growth of natural lichen and develop a novel biofilm platform technology using filamentous fungi and microalgae to form a lichen type of biofilm "mycoalgae" in a supporting polymer matrix. The possibility of co-existence of Chlorella vulgaris with various fungal cultures was tested to identify the best strain combination for high algae harvest efficiency. The effect of different matrices for cell attachment and biofilm formation, cell surface characterization of mycoalgae biofilm, kinetics of the process with respect to the algae-fungi cell distribution and total biomass production was studied. Mycoalgae biofilm with algae attachment efficiency of 99.0 % and above was achieved in a polymer-cotton composite matrix with glucose concentration of 2 g/L in the growth medium and agitation intensity of 150 rpm at 27 °C. The total biomass in the co-culture with the selected strain combination (Mucor sp. and Chlorella sp.) was higher than the axenic cultures of fungi and algae at the conditions tested. The results show that algae can be grown with complete attachment to a bio-augmenting fungal surface and can be harvested readily as a biofilm for product extraction from biomass. Even though, interaction between heterotrophic fungi and phototrophic algae was investigated in solid media after prolonged contact in a report, this research is the first of its kind in developing an artificial lichen type biofilm called "mycoalgae" biofilm completely attached on a matrix in liquid cultures. The mycoalgae biofilm based processes, propounds the scope for exploring new avenues in the bio-production industry and bioremediation.

  16. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.

    Science.gov (United States)

    Kim, Kyoung Hyoun; Choi, In Seong; Kim, Ho Myeong; Wi, Seung Gon; Bae, Hyeun-Jong

    2014-02-01

    The microalga Chlorella vulgaris is a potential feedstock for bioenergy due to its rapid growth, carbon dioxide fixation efficiency, and high accumulation of lipids and carbohydrates. In particular, the carbohydrates in microalgae make them a candidate for bioethanol feedstock. In this study, nutrient stress cultivation was employed to enhance the carbohydrate content of C. vulgaris. Nitrogen limitation increased the carbohydrate content to 22.4% from the normal content of 16.0% on dry weight basis. In addition, several pretreatment methods and enzymes were investigated to increase saccharification yields. Bead-beating pretreatment increased hydrolysis by 25% compared with the processes lacking pretreatment. In the enzymatic hydrolysis process, the pectinase enzyme group was superior for releasing fermentable sugars from carbohydrates in microalgae. In particular, pectinase from Aspergillus aculeatus displayed a 79% saccharification yield after 72h at 50°C. Using continuous immobilized yeast fermentation, microalgal hydrolysate was converted into ethanol at a yield of 89%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair

    Science.gov (United States)

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  18. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    Directory of Open Access Journals (Sweden)

    Chiew-Yen Wong

    Full Text Available Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR, have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237, temperate (Chlorella vulgaris UMACC 248 and tropical (Chlorella vulgaris UMACC 001 environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm, PAR plus ultraviolet-A (320-400 nm radiation (PAR + UV-A and PAR plus UV-A and ultraviolet-B (280-320 nm radiation (PAR + UV-A + UV-B for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek and light harvesting efficiency (α were determined from rapid light curves. The damage (k and repair (r rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  19. The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources.

    Science.gov (United States)

    Birungi, Z S; Chirwa, E M N

    2015-12-15

    Thallium (Tl) is a highly volatile and toxic heavy metal regarded to cause pollution even at very low concentrations of several parts per million. Despite the extremely high risk of Tl in the environment, limited information on removal/recovery exists. The study focussed on the use of green algae to determine the sorption potential and recovery of Tl. From the study, removal efficiency was achieved at 100% for lower concentrations of ≥150 mg/L of Tl. At higher concentrations in a range of 250-500 mg/L, the performance of algae was still higher with sorption capacity (qmax) between 830 and 1000 mg/g. Generally, Chlorella vulgaris was the best adsorbent with a high qmax and lower affinity of 1000 mg/g and 1.11 L/g, respectively. When compared to other studies on Tl adsorption, the tested algae showed a better qmax than most adsorbents. The kinetic studies showed better correlation co-efficient of ≤0.99 for Pseudo-second order model than the first order model. Recovery was achieved highest for C. vulgaris using nitric acid at 93.3%. The strongest functional groups responsible for Tl binding on the algal cell wall were carboxyl and phenols. Green algae from freshwater bodies showed significant potential for Tl removal/recovery from industrial wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Potencialidades de Chlorella vulgaris cultivada em meio à base de concentrado de dessalinização

    OpenAIRE

    Matos, Ângelo Paggi

    2012-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias. Programa de Pós-Graduação em Ciência dos Alimentos. O objetivo deste trabalho foi avaliar as propriedades físicoquímicas da biomassa de Chlorella vulgaris em um meio à base de concentrado de dessalinização proveniente do processo de dessalinização de águas subterrâneas na comunidade de Uruçu, no município de São João do Cariri # Paraíba. O concentrado de dessalinização possui alta concentração de ...

  1. Nutrient removal by Chlorella vulgaris F1068 under cetyltrimethyl ammonium bromide induced hormesis.

    Science.gov (United States)

    Zhou, Qiongzhi; Li, Feng; Ge, Fei; Liu, Na; Kuang, Yangduo

    2016-10-01

    Toxicants are generally harmful to biotechnology in wastewater treatment. However, trace toxicant can induce microbial hormesis, but to date, it is still unknown how this phenomenon affects nutrient removal during municipal wastewater treatment process. Therefore, this study focused on the effects of hormesis induced by cetyltrimethyl ammonium bromide (CTAB), a representative quaternary ammonium cationic surfactant, on nutrient removal by Chlorella vulgaris F1068. Results showed that when the concentration of CTAB was less than 10 ng/L, the cellular components chlorophyll a, proteins, polysaccharides, and total lipids increased by 10.11, 58.17, 38.78, and 11.87 %, respectively, and some enzymes in nutrient metabolism of algal cells, such as glutamine synthetase (GS), acid phosphatase (ACP), H(+)-ATPase, and esterase, were also enhanced. As a result, the removal efficiencies of ammonia nitrogen (NH4 (+)) and total phosphorus (TP) increased by 14.66 and 8.51 %, respectively, compared to the control during a 7-day test period. The underlying mechanism was mainly due to an enhanced photosynthetic activity of C. vulgaris F1068 indicated by the increase in chlorophyll fluorescence parameters (the value of Fv/Fm, ΦII, Fv/Fo, and rETR increased by 12.99, 7.56, 25.59, and 8.11 %, respectively) and adenylate energy charge (AEC) (from 0.68 to 0.72). These results suggest that hormesis induced by trace toxicants could enhance the nutrient removal, which would be further considered in the design of municipal wastewater treatment processes. Graphical abstract The schematic mechanism of C. vulgaris F1068 under CTAB induced hormesis. Green arrows ( ) represent the increase and the red arrow ( ) represents the decrease.

  2. Use of diluted urine for cultivation of Chlorella vulgaris.

    Science.gov (United States)

    Jaatinen, Sanna; Lakaniemi, Aino-Maija; Rintala, Jukka

    2016-01-01

    Our aim was to study the biomass growth of microalga Chlorella vulgaris using diluted human urine as a sole nutrient source. Batch cultivations (21 days) were conducted in five different urine dilutions (1:25-1:300), in 1:100-diluted urine as such and with added trace elements, and as a reference, in artificial growth medium. The highest biomass density was obtained in 1:100-diluted urine with and without additional trace elements (0.73 and 0.60 g L(-1), respectively). Similar biomass growth trends and densities were obtained with 1:25- and 1:300-diluted urine (0.52 vs. 0.48 gVSS L(-1)) indicating that urine at dilution 1:25 can be used to cultivate microalgal based biomass. Interestingly, even 1:300-diluted urine contained sufficiently nutrients and trace elements to support biomass growth. Biomass production was similar despite pH-variation from < 5 to 9 in different incubations indicating robustness of the biomass growth. Ammonium formation did not inhibit overall biomass growth. At the beginning of cultivation, the majority of the biomass consisted of living algal cells, while towards the end, their share decreased and the estimated share of bacteria and cell debris increased.

  3. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Guo, Suo-Lian; Zhao, Xin-Qing; Huang, Zih-You; Yang, Yu-Liang; Chang, Jo-Shu; Bai, Feng-Wu

    2014-07-01

    High cost of biomass recovery is one of the bottlenecks for developing cost-effective processes with microalgae, particularly for the production of biofuels and bio-based chemicals through biorefinery, and microalgal biomass recovery through cell flocculation is a promising strategy. Some microalgae are naturally flocculated whose cells can be harvested by simple sedimentation. However, studies on the flocculating agents synthesized by microalgae cells are still very limited. In this work, the cell flocculation of a spontaneously flocculating microalga Chlorella vulgaris JSC-7 was studied, and the flocculating agent was identified to be cell wall polysaccharides whose crude extract supplemented at low dosage of 0.5 mg/L initiated the more than 80% flocculating rate of freely suspended microalgae C. vulgaris CNW11 and Scenedesmus obliquus FSP. Fourier transform infrared (FTIR) analysis revealed a characteristic absorption band at 1238 cm(-1), which might arise from PO asymmetric stretching vibration of [Formula: see text] phosphodiester. The unique cell wall-associated polysaccharide with molecular weight of 9.86×10(3) g/mol, and the monomers consist of glucose, mannose and galactose with a molecular ratio of 5:5:2. This is the first time to our knowledge that the flocculating agent from C. vulgaris has been characterized, which could provide basis for understanding the cell flocculation of microalgae and breeding of novel flocculating microalgae for cost-effective biomass harvest. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris.

    Science.gov (United States)

    Pandit, Priti Raj; Fulekar, Madhusudan H; Karuna, Mallampalli Sri Lakshmi

    2017-05-01

    Two microalgae strains including Chlorella vulgaris and Acutodesmus obliquus were grown on BG11 medium with salinity stress ranging from 0.06 to 0.4 M NaCl. Highest lipid content in C. vulgaris and A. obliquus was 49 and 43% in BG11 amended with 0.4 M NaCl. The microalgal strains C. vulgaris and A. obliquus grow better at 0.06 M NaCl concentration than control condition. At 0.06 M NaCl, improved dry biomass content in C. vulgaris and A. obliquus was 0.92 and 0.68 gL -1 , respectively. Stress biomarkers like reactive oxygen species, antioxidant enzyme catalase, and ascorbate peroxidase were also lowest at 0.06 M NaCl concentration revealing that both the microalgal strains are well acclimatized at 0.06 M NaCl concentration. The fatty acid composition of the investigated microalgal strains was also improved by increased NaCl concentration. At 0.4 M NaCl, palmitic acid (37%), oleic acid (15.5%), and linoleic acid (20%) were the dominant fatty acids in C. vulgaris while palmitic acid (54%) and stearic acid (26.6%) were major fatty acids found in A. obliquus. Fatty acid profiling of C. vulgaris and A. obliquus significantly varied with salinity concentration. Therefore, the study showed that salt stress is an effective stress that could increase not only the lipid content but also improved the fatty acid composition which could make C. vulgaris and A. obliquus potential strains for biodiesel production.

  5. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric; Depraetere, Orily; Noppe, Wim; Dutta, Abhishek; Foubert, Imogen; Laurens, Lieve; Muylaert, Koenraad

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and this fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L-1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.

  6. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    Science.gov (United States)

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa.

    Science.gov (United States)

    Kumari, Rima; Barsainya, Manjari; Singh, Devendra Pratap

    2017-02-01

    Biogenic synthesis of silver nanoparticles (AgNPs) using extracellular metabolites from the bacterium Pseudomonas aeruginosa DM1 offers an eco-friendly and sustainable way of metal nanoparticle synthesis. The present work highlights the biotransformation of silver nitrate solution into AgNP, mediated by extracellular secondary metabolite pyoverdine, a siderophore produced by P. aeruginosa. The bioreduction of silver ions into AgNPs by using pyoverdine was recorded in terms of Fourier transform infrared spectroscopy (FTIR) analysis and color change in the reaction mixture (AgNO 3 + pyoverdine) from pale yellow to dark brown with absorption maxima at 415 nm. The results of X-ray diffraction (XRD) analysis of AgNPs showed its crystalline face-centered cubic structure. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures of AgNPs showed spherical morphology of AgNP in the range of 45-100 nm, with tendency of agglomerations. The energy-dispersive X-ray (EDX) analysis of particles provided strong signal of elemental silver with few minor peaks of other impurities. The present approach offers a unique in vitro method of metal nanoparticle synthesis by exogenously produced bacterial secondary metabolites, where direct contact between the toxic metal and biological resource material can be avoided. The biologically synthesized AgNPs are found to have anti-algal effects against two species of Chlorella (Chlorella vulgaris and Chlorella pyenoidosa), as indicated by zone of growth inhibition on algal culture plates. Further results exhibit concentration-dependent progressive inhibition of chlorophyll content in the algal cells by AgNPs, confirming the algicidal effect of AgNPs.

  8. Evaluation of radioprotective action of a mutant (E-25) form of Chlorella vulgaris in mice

    International Nuclear Information System (INIS)

    Sarma, L.; Tiku, A.B.; Kesavan, P.C.; Ogaki, M.

    1993-01-01

    The possible role of orally fed Chlorella vulgaris (E-25) in modulating the gamma-ray induced chromosomal damage in whole-body irradiated mice was evaluated using a micronucleus test. Different doses of E-25 were administered either chronically (once, twice or thrice a day for 28 days) or as single acute doses before/after irradiation. A significant radioprotective effect was observed in both acute and chronic pretreatments, but only at doses above 400 mg/kg body weight. However, in mice that received E-25 (500 mg/kg) three times a day for 28 days, there was no protective effect, and a significant loss in their body weight was observed. Interestingly, E-25 afforded significant radioprotection even when it was administered within 0.4 hr after irradiation. (author)

  9. A MULTISTAGE GRADUAL NITROGENREDUCTION STRATEGY FOR INCREASED LIPID PRODUCTIVITY AND NITROGEN REMOVAL IN WASTEWATER USING Chlorella vulgaris AND Scenedesmus obliquus

    Directory of Open Access Journals (Sweden)

    J. C. Robles-Heredia

    2015-06-01

    Full Text Available AbstractChlorella vulgaris and Scenedesmus obliquuswere grown in artificial-wastewater using a new nitrogen-limitation strategy aimed at increasing lipid productivity. This strategy consisted in a multi-stage process with sequential reduction of N-NH4 concentration (from 90 to 60, 40, and 20 mg.L-1 to promote a balance between cell growth and lipid accumulation. Lipid productivity was compared against a reference process consisting of nitrogen reduction in two stages, where the nitrogen concentration was suddenly reduced from 90 mg.L-1 to three different concentrations (10, 20, and 30 mg.L-1. In the multi-stage mode, only C. vulgaris exhibited a net lipid-productivity increase. Lipid content of S. obliquus did not present a significant increase, thus decreasing lipid productivity. The highest lipid productivities were observed in the two-stage mode for both S. obliquus and C. vulgaris (194.9 and 133.5 mg.L-1.d-1, respectively, and these values are among the highest reported in the literature to date.

  10. Antihypertensive Effects, Molecular Docking Study, and Isothermal Titration Calorimetry Assay of Angiotensin I-Converting Enzyme Inhibitory Peptides from Chlorella vulgaris.

    Science.gov (United States)

    Xie, Jingli; Chen, Xujun; Wu, Junjie; Zhang, Yanyan; Zhou, Yan; Zhang, Lujia; Tang, Ya-Jie; Wei, Dongzhi

    2018-02-14

    The aim of this work is to explore angiotensin I-converting enzyme (ACE) inhibitory peptides from Chlorella vulgaris (C. vulgaris) and discover the inhibitory mechanism of the peptides. After C. vulgaris proteins were gastrointestinal digested in silico, several ACE inhibitory peptides with C-terminal tryptophan were screened. Among them, two novel noncompetitive ACE inhibitors, Thr-Thr-Trp (TTW) and Val-His-Trp (VHW), exhibited the highest inhibitory activity indicated by IC 50 values 0.61 ± 0.12 and 0.91 ± 0.31 μM, respectively. Both the peptides were demonstrated stable against gastrointestinal digestion and ACE hydrolysis. The peptides were administrated to spontaneously hypertensive rats (SHRs) in the dose 5 mg/kg body weight, and VHW could decrease 50 mmHg systolic blood pressure of SHRs (p < 0.05). Molecular docking displayed that both TTW and VHW formed six hydrogen bonds with active site pockets of ACE. Besides, isothermal titration calorimetry assay discovered that VHW could form more stable complex with ACE than TTW. Therefore, VHW was an excellent ACE inhibitor.

  11. Combined used of natural zeolites and microalgaes for the denitrification of wastewater from fertilizer plants; Uso combinado de zeolitas naturales y microalgas en la denitrificacion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Soca Olazabal, N.; Blanco Toledo, F.; Pizarro Camacho, D.

    1997-06-01

    In our work we investigated the process of denitrification of waster-water with high percentage of nitrate and ammonia using natural zeolites that can be used later in agricultures fertilizer, because of the nitrogen load received. This effluents was used for micro algae growth reducing the nitrate concentration, the micro algae was Chlorella Vulgaris. The zeolite reduced the NH``+{sub 4} concentration up to 5 mg/l. and the NH``+{sub 4} concentration in the zeolite, it si very important in the agriculture. The chlorella Vulgaris reduces 30 mg/l of nitrate in six hours in the steady state. (Author) 9 refs.

  12. Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris.

    Science.gov (United States)

    Luengo, Elisa; Condón-Abanto, Santiago; Álvarez, Ignacio; Raso, Javier

    2014-12-01

    The effect of pulsed electric field (PEF) treatments of different intensities on the electroporation of the cytoplasmatic membrane of Chlorella vulgaris, and on the extraction of carotenoids and chlorophylls were investigated. Staining the cells with propidium iodide before and after the PEF treatment revealed the existence of reversible and irreversible electroporation. Application of PEF treatments in the range of 20-25 kV cm(-1) caused most of the population of C. vulgaris to be irreversibly electroporated even at short treatment times (5 pulses of 3 µs). However, at lower electric field strengths (10 kV cm(-1)), cells that were reversibly electroporated were observed even after 50 pulses of 3 µs. The electroporation of C. vulgaris cells by PEF higher than 15 kV cm(-1) and duration is higher than 15 µs increased significantly the extraction yield of intracellular components of C. vulgaris. The application of a 20 kV cm(-1) for 75 μs increased the extraction yield just after the PEF treatment of the carotenoids, and chlorophylls a and b 0.5, 0.7, and 0.8 times, respectively. However, further increments in electric field strength and treatment time did not cause significant increments in the extraction yield. The extraction of carotenoids from PEF-treated C. vulgaris cells after 1 h of the application of the treatment significantly increased the extraction yield in comparison to the yield obtained from the cells extracted just after the PEF treatment. After PEF treatment at 20 kV cm(-1) for 75 µs, extraction yield for carotenoids, and chlorophylls a and b increased 1.2, 1.6, and 2.1 times, respectively. A high correlation was observed between irreversible electroporation and percentage of yield increase when the extraction was conducted after 1 h of the application of PEF treatment (R: 0.93), but not when the extraction was conducted just after PEF treatment (R: 0.67).

  13. Effects of Dietary Fermented Chlorella vulgaris (CBT®) on Growth Performance, Relative Organ Weights, Cecal Microflora, Tibia Bone Characteristics, and Meat Qualities in Pekin Ducks

    Science.gov (United States)

    Oh, S T.; Zheng, L.; Kwon, H. J.; Choo, Y. K.; Lee, K. W.; Kang, C. W.; An, B. K.

    2015-01-01

    Fermented Chlorella vulgaris was examined for its effects on growth performance, cecal microflora, tibia bone strength, and meat qualities in commercial Pekin ducks. A total of three hundred, day-old male Pekin ducks were divided into three groups with five replicates (n = 20 ducklings per replicate) and offered diets supplemented with commercial fermented C. vulgaris (CBT®) at the level of 0, 1,000 or 2,000 mg/kg, respectively for 6 wks. The final body weight was linearly (p = 0.001) increased as the addition of fermented C. vulgaris into diets increased. Similarly, dietary C. vulgaris linearly increased body weight gain (p = 0.001) and feed intake (p = 0.001) especially at the later days of the feeding trial. However, there was no C. vulgaris effect on feed efficiency. Relative weights of liver were significantly lowered by dietary fermented C. vulgaris (linear effect at p = 0.044). Dietary fermented C. vulgaris did not affect total microbes, lactic acid bacteria, and coliforms in cecal contents. Finally, meat quality parameters such as meat color (i.e., yellowness), shear force, pH, or water holding capacity were altered by adding fermented C. vulgaris into the diet. In our knowledge, this is the first report to show that dietary fermented C. vulgaris enhanced meat qualities of duck meats. In conclusion, our study indicates that dietary fermented C. vulgaris exerted benefits on productivity and can be employed as a novel, nutrition-based strategy to produce value-added duck meats. PMID:25557680

  14. Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth

    NARCIS (Netherlands)

    Stockar, von U.; Marison, I.; Janssen, M.G.J.; Patino, R.

    2011-01-01

    A simple stoichiometric model is proposed linking the biomass yield to the enthalpy and Gibbs energy changes in chemo-heterotrophic, mixotrophic, and photo-autotrophic microbial growth. A comparison with calorimetric experiments on the algae Chlorella vulgaris and Chlorella sorokiniana confirmed the

  15. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production.

    Science.gov (United States)

    Church, Jared; Hwang, Jae-Hoon; Kim, Keug-Tae; McLean, Rebecca; Oh, You-Kwan; Nam, Bora; Joo, Jin Chul; Lee, Woo Hyoung

    2017-11-01

    Microalgae can offer several benefits for wastewater treatment with their ability to produce large amounts of lipids for biofuel production and the high economic value of harvested biomass for biogas and fertilizer. This study found that salt concentration (∼45gL -1 ) had more of an effect than salt type on metabolisms of Chlorella vulgaris for wastewater treatment and biofuel production. Salinity stress decreased the algal growth rate in wastewater by 0.003day -1 permScm -1 and slightly reduced nutrient removal rates. However, salinity stress was shown to increase total lipid content from 11.5% to 16.1% while also increasing the saturated portions of fatty acids in C. vulgaris. In addition, salinity increased the algal settling rate from 0.06 to 0.11mday -1 which could potentially reduce the cost of harvesting for algal biofuel production. Overall, C. vulgaris makes a suitable candidate for high salinity wastewater cultivation and biofuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Toxic Effects of Ethyl Cinnamate on the Photosynthesis and Physiological Characteristics of Chlorella vulgaris Based on Chlorophyll Fluorescence and Flow Cytometry Analysis

    Science.gov (United States)

    Jiao, Yang; Ouyang, Hui-Ling; Jiang, Yu-Jiao; Kong, Xiang-Zhen; He, Wei; Liu, Wen-Xiu; Yang, Bin; Xu, Fu-Liu

    2015-01-01

    The toxic effects of ethyl cinnamate on the photosynthetic and physiological characteristics of Chlorella vulgaris were studied based on chlorophyll fluorescence and flow cytometry analysis. Parameters, including biomass, F v/F m (maximal photochemical efficiency of PSII), ФPSII (actual photochemical efficiency of PSII in the light), FDA, and PI staining fluorescence, were measured. The results showed the following: (1) The inhibition on biomass increased as the exposure concentration increased. 1 mg/L ethyl cinnamate was sufficient to reduce the total biomass of C. vulgaris. The 48-h and 72-h EC50 values were 2.07 mg/L (1.94–2.20) and 1.89 mg/L (1.82–1.97). (2) After 24 h of exposure to 2–4 mg/L ethyl cinnamate, the photosynthesis of C. vulgaris almost ceased, manifesting in ФPSII being close to zero. After 72 h of exposure to 4 mg/L ethyl cinnamate, the F v/F m of C. vulgaris dropped to zero. (3) Ethyl cinnamate also affected the cellular physiology of C. vulgaris, but these effects resulted in the inhibition of cell yield rather than cell death. Exposure to ethyl cinnamate resulted in decreased esterase activities in C. vulgaris, increased average cell size, and altered intensities of chlorophyll a fluorescence. Overall, esterase activity was the most sensitive variable. PMID:26101784

  17. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification.

    Science.gov (United States)

    Li, Hua-Bin; Jiang, Yue; Chen, Feng

    2002-02-27

    A simple and efficient method for the isolation and purification of lutein from the microalga Chlorella vulgaris was developed. Crude lutein was obtained by extraction with dichloromethane from the microalga after saponification. Partition values of lutein in the two-phase system of ethanol-water-dichloromethane at different ratios were measured by HPLC so as to assist the determination of an appropriate condition for washing water-soluble impurities in the crude lutein. Partition values of lutein in another two-phase system of ethanol-water-hexane at different ratios were also measured by HPLC for determining the condition for removing fat-soluble impurities. The water-soluble impurities in the crude lutein were removed by washing with 30% aqueous ethanol, and the fat-soluble impurities were removed by extraction with hexane. The final purity of lutein obtained was 90-98%, and the yield was 85-91%.

  18. Laboratory culture for 14C-labeling of Chlorella and Oedogonium

    International Nuclear Information System (INIS)

    Krzywicka, A.M.; Wagner, G.H.

    1975-01-01

    Algae were cultured in experiments that attained efficient CO 2 utilization permitting 14 C=labeling of cells and that compared growth characteristics of unicellular Chlorella sp. and filamentous Oedogonium sp. Culture vessels were 500ml glass tubes through which air enriched to 5% CO 2 was slowly metered. The tubes, used in a vertical position for growing Chlorella, were filled with culture medium and the cells kept in suspension using a mganetic stirrer. Tubes placed horizontally and half filled with medium were used for Oedogonium permitting the 3g/l. in 5 days for Chlorella and 1 g/0.5 1. in 10 days for 3g/l. in 2 days for Chlorella and 1 g/0.5 l. in 10 days for Oedogonium. Efficiency and rate of CO 2 fixation, cell size and cell weight for the two algae are evaluated. (author)

  19. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris

    Science.gov (United States)

    Chioccioli, Maurizio; Hankamer, Ben; Ross, Ian L.

    2014-01-01

    Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth. PMID

  20. Effect of electromagnetic fields on duckweed (lemna minor) and alga (chlorella kessleri)

    International Nuclear Information System (INIS)

    Tkalec, M.; Malaric, K.; Malaric, R.; Vidakovic-Cifrek, Z.; Pevalek-Kozlina, B.

    2005-01-01

    Electricity produces extremely low frequency fields (50-60 Hz) while various kinds of radiofrequency fields (10 MHz-300 GHz) are used to transmit information (TV, radio, mobile phones and satellite communications). Duckweed (Lemna minor) and green algae (Chlorella kessleri) were exposed to the magnetic field of 50 Hz in a Helmholtz coil, to an electric field of 50 Hz between two parallel circle electrodes, and to electromagnetic fields of 400 and 900 MHz in a Gigahertz Transversal Electromagnetic Mode cell. The relative growth of Lemna minor exposed to extremely low frequency alternating magnetic field of 50 Hz (1 mT) for 24 hours was slightly reduced at the beginning of the experiment while a 50 Hz electric field (25 kV/m) slightly reduced its growth during the second week of the experiment. Radio frequencies of 400 and 900 MHz (23 V/m) applied for two hours decreased the duckweed growth after the third day, but only 900 MHz affected it significantly. The rate of photosynthesis in green algae increased after exposure to the magnetic field of 50 Hz, but decreased after exposure to the electric field of 50 Hz. Radio frequencies of 400 and 900 MHz generally increased its rate of photosynthesis.(author)

  1. Statistical optimization of harvesting Chlorella vulgaris using a novel bio-source, Strychnos potatorum

    Directory of Open Access Journals (Sweden)

    Sirajunnisa Abdul Razack

    2015-09-01

    Full Text Available The present study was aimed at harvesting microalga, Chlorella vulgaris, by bioflocculation using seed powder of clearing nut, Strychnos potatorum. The research was essentially the prime step to yield a large biomass for utilising the cells in biodiesel production. Optimization of the parameters influencing bioflocculation was carried out statistically using RSM. The optimized conditions were 100 mg L−1 bioflocculant concentration, 35 °C temperature, 150 rpm agitation speed and 30 min incubation time and resulted in a maximum efficiency of 99.68%. Through cell viability test, using Trypan blue stain, it was found that cells were completely intact when treated with bioflocculant, but destroyed when exposed to chemical flocculant, alum. The overall study represented that S. potatorum could potentially be a bioflocculant of microalgal cells and a promising substitute for expensive and hazardous chemical flocculants. Moreover, this bioflocculant demonstrated their utility to harvest microalgal cells by economically, effectively and in an ecofriendly way.

  2. Microalgae Harvest through Fungal Pelletization—Co-Culture of Chlorella vulgaris and Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sarman Oktovianus Gultom

    2014-07-01

    Full Text Available Microalgae harvesting is a labor- and energy-intensive process and new approaches to harvesting microalgae need to be developed in order to decrease the costs. In this study; co-cultivatation of filamentous fungus (Aspergillus niger and microalgae (Chlorella vulgaris to form cell pellets was evaluated under different conditions, including organic carbon source (glucose; glycerol; and sodium acetate concentration; initial concentration of fungal spores and microalgal cells and light. Results showed that 2 g/L of glucose with a 1:300 ratio of fungi to microalgae provided the best culturing conditions for the process to reach >90% of cell harvest efficiency. The results also showed that an organic carbon source was required to sustain the growth of fungi and form the cell pellets. The microalgae/fungi co-cultures at mixotrophic conditions obtained much higher total biomass than pure cultures of each individual strains; indicating the symbiotic relationship between two strains. This can benefit the microbial biofuel production in terms of cell harvest and biomass production.

  3. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Kang, Nam Kyu; Lee, Bongsoo; Choi, Gang-Guk; Moon, Myounghoon; Park, Min S.; Yang, Ji-Won; Lim, JitKang

    2014-01-01

    Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO 2 nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO 2 ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO 2 concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO 2 (5 g/L TiO 2 ) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO 2 (0.1 g/L) and a short induction time (two days). The controlled condition of TiO 2 /UV-A inducing oxidative stress (0.1 g/L TiO 2 and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO 2 /UV-A

  4. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity

    KAUST Repository

    Cheng, Tuoyuan; Wei, Chunhai; Leiknes, TorOve

    2017-01-01

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14 μmol/m2/s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50 mg/L, initial phosphate phosphorus 2-10 mg/L and microalgal seed 40 mg/L. Maximum microalgal biomass and minimum generation time were 370.9 mg/L and 2.5 d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2 mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5 mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5 L/m2/h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent.

  5. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity

    KAUST Repository

    Cheng, Tuoyuan

    2017-05-29

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14 μmol/m2/s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50 mg/L, initial phosphate phosphorus 2-10 mg/L and microalgal seed 40 mg/L. Maximum microalgal biomass and minimum generation time were 370.9 mg/L and 2.5 d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2 mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5 mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5 L/m2/h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent.

  6. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    Science.gov (United States)

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  7. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    Science.gov (United States)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  8. Bioassessment of the Standard Elutriate Test

    Science.gov (United States)

    1976-09-01

    that the growth of the green algal, Chlorella vulgaris , was reduced approximately 50 percent in the presence of 2.0 ppm zinc. Payne (12) reported that...Environmental Protection Agency, Washington, DC, Oct., 1973. 14. Rachlin, Y. W., and Farran, M., "Growth Response of the Green Algae Chlorella ... vulgaris to Selective Concentrations of Zinc," Water Research, Vol. 8, 1974, pp. 575-577. 1:). Standard Methods for the Examination of Water and Wastewater

  9. Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor

    Directory of Open Access Journals (Sweden)

    Mohsen Mansouri

    2017-04-01

    Full Text Available The objective of this study was to investigate the growth rate of Chlorella vulgaris for CO2 biofixation and biomass production. Six mathematical growth models (Logistic, Gompertz, modified Gompertz, Baranyi, Morgan and Richards were used to evaluate the biomass productivity in continuous processes and to predict the following parameters of cell growth: lag phase duration (λ, maximum specific growth rate (μmax, and maximum cell concentration (Xmax. The low root-mean-square error (RMSE and high regression coefficients (R2 indicated that the models employed were well fitted to the experiment data and it could be regarded as enough to describe biomass production. Using statistical and physiological significance criteria, the Baranyi model was considered the most appropriate for quantifying biomass growth. The biological variables of this model are as follows: μmax=0.0309 h−1, λ=100 h, and Xmax=1.82 g/L.

  10. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    Science.gov (United States)

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Observations on aerophytic cyanobacteria and algae from ten caves in the Ojców National Park

    Directory of Open Access Journals (Sweden)

    Joanna Czerwik-Marcinkowska

    2013-04-01

    Full Text Available This study, carried out in 2010–11, focuses on species composition and distribution of cyanobacterial and algal communities colonizing ten caves (Biała, Ciemna, Koziarnia, Krakowska, Łokietka, Okopy Wielka Dolna, Sąspowska, Sypialnia, Zbójecka and Złodziejska Caves in the Ojców National Park (South Poland. A total of 85 taxa were identified, 35 of them belonging to cyanobacteria, 30 chlorophytes, and 20 belonging to other groups of algae. Aerophytic cyanobacteria dominated in these calcareous habitats. Nine species, Gloeocapsa alpina, Nostoc commune, Chlorella vulgaris, Dilabifilum arthopyreniae, Klebsormidium flaccidum, Muriella decolor, Neocystis subglobosa, and Orthoseira roseana, were the most abundant taxa in all the caves. The investigated microhabitats offer relatively stable microclimatic conditions and are likely to be responsible for the observed vertical distribution of aerophytic cyanobacteria and algae.

  12. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jing [MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275 (China); Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Yang Lihua [MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275 (China); Chan, Sidney M.N. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Luan Tiangang, E-mail: cesltg@mail.sysu.edu.cn [MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275 (China); Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Li Yan [MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275 (China); Tam, Nora F.Y., E-mail: bhntam@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong)

    2011-01-30

    The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency.

  13. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water.

    Science.gov (United States)

    Jin, Jing; Yang, Lihua; Chan, Sidney M N; Luan, Tiangang; Li, Yan; Tam, Nora F Y

    2011-01-30

    The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water

    International Nuclear Information System (INIS)

    Jin Jing; Yang Lihua; Chan, Sidney M.N.; Luan Tiangang; Li Yan; Tam, Nora F.Y.

    2011-01-01

    The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency.

  15. Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, Cep 13565905 (Brazil); Department of Biological Sciences, Ahmadu Bello University, Zaria, Nigeria -PMB 1013, Postal Code 810001 (Nigeria); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, Cep 13565905 (Brazil); Melão, Maria da Graça G. [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, Cep 13565905 (Brazil); Parrish, Christopher C. [Ocean Sciences Centre, Memorial University of Newfoundland, St. John' s, Newfoundland A1C 5S7 (Canada)

    2013-03-15

    Highlights: ► We studied the effect of Cd and phosphorus (P) on lipids of Chlorella vulgaris. ► Triacylglycerol (TAG) concentration increased under P limitation and Cd stress. ► Fatty acids (FA) saturation increased with P limitation and Cd exposure. ► Lower PUFA were obtained under P limitation and Cd stress. ► Combined P limitation/Cd stress increased total lipid production of the microalga. -- Abstract: Fatty acids are the fundamental structural components of membrane lipids, and the degree of saturation of the long hydrocarbon chains in microalgae contributes to regulation of growth, biomass production and reproduction of aquatic consumers. This research aimed at evaluating the effects of cadmium (2 × 10{sup −8}; 10{sup −7} mol L{sup −1} Cd) on lipid class and fatty acid composition of the microalga Chlorella vulgaris under varying phosphate (PO{sub 4}{sup 3−}) concentrations (6.0 × 10{sup −7} to 2.3 × 10{sup −4} mol L{sup −1}). Under PO{sub 4}{sup 3−} limitation and Cd stress, the storage lipid class triacylglycerol (TAG) was the most accumulated among the lipid classes. Fatty acid composition revealed that the degree of saturation increased with increasing Cd stress and PO{sub 4}{sup 3−} limitation. Decreasing PO{sub 4}{sup 3−} and increasing Cd concentrations resulted in higher saturated fatty acid (SAFA) and monounsaturated FA (MUFA) concentrations. Total polyunsaturated FA (PUFA) and ω3 PUFA, and PUFA:SAFA ratios were higher in the control (2.3 × 10{sup −4} mol L{sup −1} PO{sub 4}{sup 3−}) cells than in either PO{sub 4}{sup 3−} limitation or Cd stress, or in the combination of both stresses. Contrasting with all the other PUFAs, 18:2n – 6 increased as PO{sub 4}{sup 3−} limitation increased. A significant positive relationship of PUFAs, acetone mobile polar lipids (AMPL) and phospholipids (PL) with phosphate concentration in the culture media was obtained, while TAG concentrations had a positive association

  16. Enhancement of Protein and Pigment Content in Two Chlorella Species Cultivated on Industrial Process Water

    Directory of Open Access Journals (Sweden)

    Hamed Safafar

    2016-12-01

    Full Text Available Chlorella pyrenoidosa and Chlorella vulgaris were cultivated in pre-gasified industrial process water with high concentration of ammonia representing effluent from a local biogas plant. The study aimed to investigate the effects of growth media and cultivation duration on the nutritional composition of biomass. Variations in proteins, lipid, fatty acid composition, amino acids, tocopherols, and pigments were studied. Both species grew well in industrial process water. The contents of proteins were affected significantly by the growth media and cultivation duration. Microalga Chlorella pyrenoidosa produced the highest concentrations of protein (65.2% ± 1.30% DW while Chlorella vulgaris accumulated extremely high concentrations of lutein and chlorophylls (7.14 ± 0.66 mg/g DW and 32.4 ± 1.77 mg/g DW, respectively. Cultivation of Chlorella species in industrial process water is an environmentally friendly, sustainable bioremediation method with added value biomass production and resource valorization, since the resulting biomass also presented a good source of proteins, amino acids, and carotenoids for potential use in aquaculture feed industry.

  17. The mechanisms of detoxification of As(III), dimethylarsinic acid (DMA) and As(V) in the microalga Chlorella vulgaris.

    Science.gov (United States)

    Pantoja Munoz, L; Purchase, D; Jones, H; Raab, A; Urgast, D; Feldmann, J; Garelick, H

    2016-06-01

    The response of Chlorella vulgaris when challenged by As(III), As(V) and dimethylarsinic acid (DMA) was assessed through experiments on adsorption, efflux and speciation of arsenic (reduction, oxidation, methylation and chelation with glutathione/phytochelatin [GSH/PC]). Our study indicates that at high concentrations of phosphate (1.62mM of HPO4(2-)), upon exposure to As(V), cells are able to shift towards methylation of As(V) rather than PC formation. Treatment with As(V) caused a moderate decrease in intracellular pH and a strong increase in the concentration of free thiols (GSH). Passive surface adsorption was found to be negligible for living cells exposed to DMA and As(V). However, adsorption of As(III) was observed to be an active process in C. vulgaris, because it did not show saturation at any of the exposure periods. Chelation of As(III) with GS/PC and to a lesser extent hGS/hPC is a major detoxification mechanism employed by C. vulgaris cells when exposed to As(III). The increase of bound As-GS/PC complexes was found to be strongly related to an increase in concentration of As(III) in media. C. vulgaris cells did not produce any As-GS/PC complex when exposed to As(V). This may indicate that a reduction step is needed for As(V) complexation with GSH/PC. C. vulgaris cells formed DMAS(V)-GS upon exposure to DMA independent of the exposure period. As(III) triggers the formation of arsenic complexes with PC and homophytochelatins (hPC) and their compartmentalisation to vacuoles. A conceptual model was devised to explain the mechanisms involving ABCC1/2 transport. The potential of C. vulgaris to bio-remediate arsenic from water appeared to be highly selective and effective without the potential hazard of reducing As(V) to As(III), which is more toxic to humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.

    Science.gov (United States)

    Kim, Dae Geun; Lee, Changsu; Park, Seung-Moon; Choi, Yoon-E

    2014-05-01

    LEDs light offer several advantages over the conventional lamps, thereby being considered as the optimal light sources for microalgal cultivation. In this study, various light-emitting diodes (LEDs) especially red and blue color with different light wavelengths were employed to explore the effects of light source on phototrophic cultivation of Chlorella vulgaris. Blue light illumination led to significantly increased cell size, whereas red light resulted in small-sized cell with active divisions. Based on the discovery of the effect of light wavelengths on microalgal biology, we then applied appropriate wavelength at different growth stages; blue light was illuminated first and then shifted to red light. By doing so, biomass and lipid productivity of C. vulgaris could be significantly increased, compared to that in the control. These results will shed light on a novel approach using LED light for microalgal biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production

    International Nuclear Information System (INIS)

    Lam, Man Kee; Lee, Keat Teong

    2014-01-01

    Highlights: • A new sequential baffled photobioreactor was developed to cultivate microalgae. • Organic fertilizer was used as the main nutrients source. • Negative energy balance was observed in producing microalgae biodiesel. - Abstract: Pilot-scale cultivation of Chlorella vulgaris in a 100 L sequential baffled photobioreactor was carried out in the present study. The highest biomass yield attained under indoor and outdoor environment was 0.52 g/L and 0.28 g/L, respectively. Although low microalgae biomass yield was attained under outdoor cultivation, however, the overall life cycle energy efficiency ratio was 3.3 times higher than the indoor cultivation. In addition, negative energy balance was observed in producing microalgae biodiesel under both indoor and outdoor cultivation. The minimum production cost of microalgae biodiesel was about RM 237/L (or USD 73.5/L), which was exceptionally high compared to the current petrol diesel price in Malaysia (RM 3.6/L or USD 1.1/L). On the other hand, the estimated production cost of dried microalgae biomass cultivated under outdoor environment was RM 46/kg (or USD 14.3/kg), which was lower than cultivation using chemical fertilizer (RM 111/kg or USD 34.4/kg) and current market price of Chlorella biomass (RM 145/kg or USD 45/kg)

  20. Evidence and analysis of radioresistance induced by protracted gamma irradiation of Chlorella pyrenoidosa chick, green unicellular alga

    International Nuclear Information System (INIS)

    Santier-Riviere, S.

    1984-06-01

    Chlorella cells, unicellular green algae, are a suitable living material to study radiosensitivity of eucaryotic cells after acute or protracted gamma irradiations. Cell survival and survival curves are taken as end-points. Methods of irradiation were defined taking in account interferences of the different factors which can intervene during the experimentation. Survival curves after protracted irradiation of Chlorella cell cultures in plateau-phase have a shape that can be explained by radioresistance. The population of surviving cells becomes radioresistant in front of protracted and acute irradiations, acute irradiation allowing us to analyze radioresistance. Radioresistance increases with the total dose of protracted irradiation. The decrease of radiosensitivity with aging of cells is not able to explain the phenomenon. It is not due to selection of radioresistance cells by protracted irradiation. All the cells get radioresistance. Radioresistance decreases with the time when protracted irradiation is suppressed. It is not found in offspring. It is not a mutation but perhaps the effect of a stimulation of repair processes, but not potentially lethal damage repair [fr

  1. The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in Emiliania huxleyi and Chlorella vulgaris.

    Science.gov (United States)

    Beddow, Jessica; Johnson, Richard J; Lawson, Tracy; Breckels, Mark N; Webster, Richard J; Smith, Ben E; Rowland, Steven J; Whitby, Corinne

    2016-02-01

    Naphthenic acids (NAs) are among the most toxic organic pollutants present in oil sands process waters (OSPW) and enter marine and freshwater environments through natural and anthropogenic sources. We investigated the effects of the acid extractable organic (AEO) fraction of OSPW and individual surrogate NAs, on maximum photosynthetic efficiency of photosystem II (PSII) (FV/FM) and cell growth in Emiliania huxleyi and Chlorella vulgaris as representative marine and freshwater phytoplankton. Whilst FV/FM in E. huxleyi and C. vulgaris was not inhibited by AEO, exposure to two surrogate NAs: (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and (4'-tert-butylphenyl)-4-butanoic acid (tert-BPBA), caused complete inhibition of FV/FM in E. huxleyi (≥10 mg L(-1)n-BPBA; ≥50 mg L(-1)tert-BPBA) but not in C. vulgaris. Growth rates and cell abundances in E. huxleyi were also reduced when exposed to ≥10 mg L(-1)n- and tert-BPBA; however, higher concentrations of n- and tert-BPBA (100 mg L(-1)) were required to reduce cell growth in C. vulgaris. AEO at ≥10 mg L(-1) stimulated E. huxleyi growth rate (p ≤ 0.002), yet had no apparent effect on C. vulgaris. In conclusion, E. huxleyi was generally more sensitive to NAs than C. vulgaris. This report provides a better understanding of the physiological responses of phytoplankton to NAs which will enable improved monitoring of NA pollution in aquatic ecosystems in the future. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris.

    Science.gov (United States)

    Nezammahalleh, Hassan; Ghanati, Faezeh; Adams, Thomas A; Nosrati, Mohsen; Shojaosadati, Seyed Abbas

    2016-10-01

    An electric field (EF) generator device was fabricated and applied to the treatment of Chlorella vulgaris ISC33 at three distinct concentrations before cultivation. The EF of moderate intensity (2.7kVcm(-1)) has a hormetic effect on algal growth. The highest growth stimulation of 51% was observed after 50min treatment of 0.4gL(-1) algal suspension. The influence of EF on the system was then studied from both theoretical and experimental perspectives. The growth rate increased with treatment time up to a maximum because of improved membrane permeability, and then declined afterwards due to peroxide accumulation in the medium. The contents of chlorophylls, carotenoids, soluble carbohydrates, lipids, and proteins were also measured to understand possible changes on algal metabolism. The EF treatment of algal suspension has no observable effect on the cell metabolism while both algal growth and metabolism was significantly affected by the inoculum size. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Nam Kyu; Lee, Bongsoo; Choi, Gang-Guk; Moon, Myounghoon; Park, Min S.; Yang, Ji-Won [Daejeon, Daejeon (Korea, Republic of); Lim, JitKang [Universiti Sains Malaysia, Penang (Malaysia)

    2014-05-15

    Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO{sub 2} nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO{sub 2} ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO{sub 2} concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO{sub 2} (5 g/L TiO{sub 2}) by oxidative stress. The fatty acid methyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO{sub 2} (0.1 g/L) and a short induction time (two days). The controlled condition of TiO{sub 2}/UV-A inducing oxidative stress (0.1 g/L TiO{sub 2} and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO{sub 2}/UV-A.

  4. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Qiao Hu

    2014-01-01

    Full Text Available The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accumulation in C. vulgaris. With 5 % CO2, 0.75 g/L of NaNO3 and 18:6 h of light/dark cycle, the lipid content and overall lipid productivity reached 14.5 % and 33.2 mg/(L·day, respectively. Furthermore, we proposed a technique to enhance the microalgal lipid productivity by activating acetyl-CoA carboxylase (ACCase with an enzyme activator. Citric acid and Mg2+ were found to be efficient enzyme activators of ACCase. With the addition of 150 mg/L of citric acid or 1.5 mmol/L of MgCl2, the lipid productivity reached 39.1 and 38.0 mg/(L·day, respectively, which was almost twofold of the control. This work shows that it is practicable to produce lipids by freshwater microalgae that can fixate CO2, and provides a potential route to solving the global warming and energy shortage problems.

  5. Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Zhao, Xin-Qing; Chen, Li-Jie; Chang, Jo-Shu; Bai, Feng-Wu

    2015-05-30

    Microalgae are attracting attention due to their potentials in mitigating CO2 emissions and removing environmental pollutants. However, harvesting microalgal biomass from diluted cultures is one of the bottlenecks for developing economically viable processes for this purpose. Microalgal cells can be harvested by cost-effective sedimentation when flocculating strains are used. In this study, the removal of Zn(2+) and Cd(2+) by the flocculating Chlorella vulgaris JSC-7 was studied. The experimental results indicated that more than 80% Zn(2+) and 60% Cd(2+) were removed by the microalgal culture within 3 days in the presence up to 20.0mg/L Zn(2+) and 4.0mg/L Cd(2+), respectively, which were much higher than that observed with the culture of the non-flocculating C. vulgaris CNW11. Furthermore, the mechanism underlying this phenomenon was explored by investigating the effect of Zn(2+) and Cd(2+) on the growth and metabolic activities of the microalgal strains. It was found that the flocculation of the microalga improved its growth, synthesis of photosynthetic pigments and antioxidation activity under the stressful conditions, indicating a better tolerance to the heavy metal ions for a potential in removing them more efficiently from contaminated wastewaters, together with a bioremediation of other nutritional components contributed to the eutrophication of aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The comparative study of the effect of some radionuclides on chlorella populations

    International Nuclear Information System (INIS)

    Shvobene, R.Ya.; Marchyulenene, D.P.; Shuliene, R.I.

    1984-01-01

    In this report the data are presented of the comparative study of physiological and genetic effects on chlorella populations (Chlorella vUlgaris Beijer, strain LARG-1) of 90 Sr, 137 Cs and 144 Ce (equal concentrations) distinguished by the radiation dose produced, the physico-chemical properties, and the levels of accumulation and deposition thereof in plant cells. The effects of the radionuclides on chlorella populations were estimated with a reference to the rate of photosynthesis, cell density, and the number of mutant and lethally affected cells

  7. Radiation sterilization of harmful algae in water

    International Nuclear Information System (INIS)

    Byung Chull An; Jae-Sung Kim; Seung Sik Lee; Shyamkumar Barampuram; Eun Mi Lee; Byung Yeoup Chung

    2007-01-01

    Complete text of publication follows. Objective: Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of harmful micro-organisms. The human and animal harmful algae is a waterborne risk to public health and economy because the algae are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Gamma and electron beam radiation technology is of growing in the water industry since it was demonstrated that gamma and electron beam radiation is very effective against harmful algae. Materials and Methods: Harmful algae (Scenedesmus quadricauda(Turpin) Brebisson 1835 (AG10003), Chlorella vulgaris Beijerinck 1896 (AG30007) and Chlamydomonas sp. (AG10061)) were distributed from Korean collection for type cultures (KCTC). Strains were cultured aerobically in Allen's medium at 25□ and 300 umol/m2s for 1 week using bioreactor. We investigated the disinfection efficiency of harmful algae irradiated with gamma (0.05 to 10 kGy for 30 min) and electron beam (1 to 19 kGy for 5 sec) rays. Results and Conclusion: We investigated the disinfection efficiency of harmful algae irradiated with gamma and electron beam rays of 50 to 19000 Gy. We established the optimum sterilization condition which use the gamma and electron beam radiation. Gamma ray disinfected harmful algae at 400 Gy for 30 min. Also, electron beam disinfected at 1000 Gy for 5 sec. This alternative disinfection practice had powerful disinfection efficiency. Hence, the multi-barrier approach for drinking water treatment in which a combination of various disinfectants and filtration technologies are applied for removal and inactivation of different microbial pathogens will guarantee a lower risk of microbial contamination.

  8. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment.

    Science.gov (United States)

    Sibi, G

    2015-01-01

    Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS) production, cytokine production using P. acnes (Microbial Type Culture Collection 1951). Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5'- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC) values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME) were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31%) and Chlorella protothecoides (58.9%). Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml). FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused by the

  9. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment

    Directory of Open Access Journals (Sweden)

    G Sibi

    2015-01-01

    Full Text Available Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS production, cytokine production using P. acnes (Microbial Type Culture Collection 1951. Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5′- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31% and Chlorella protothecoides (58.9%. Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml. FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused

  10. Sorption kinetics and equilibrium of the herbicide diuron to carbon nanotubes or soot in absence and presence of algae.

    Science.gov (United States)

    Schwab, Fabienne; Camenzuli, Louise; Knauer, Katja; Nowack, Bernd; Magrez, Arnaud; Sigg, Laura; Bucheli, Thomas D

    2014-09-01

    Carbon nanotubes (CNT) are strong sorbents for organic micropollutants, but changing environmental conditions may alter the distribution and bioavailability of the sorbed substances. Therefore, we investigated the effect of green algae (Chlorella vulgaris) on sorption of a model pollutant (diuron, synonyms: 3-(3,4-Dichlorophenyl)-1,1-dimethylurea, DCMU) to CNT (multi-walled purified, industrial grade, pristine, and oxidized; reference material: Diesel soot). In absence of algae, diuron sorption to CNT was fast, strong, and nonlinear (Freundlich coefficients: 10(5.79)-10(6.24) μg/kgCNT·(μg/L)(-n) and 0.62-0.70 for KF and n, respectively). Adding algae to equilibrated diuron-CNT mixtures led to 15-20% (median) diuron re-dissolution. The relatively high amorphous carbon content slowed down ad-/desorption to/from the high energy sorption sites for both industrial grade CNT and soot. The results suggest that diuron binds readily, but - particularly in presence of algae - partially reversibly to CNT, which is of relevance for environmental exposure and risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts.

    Science.gov (United States)

    Makpol, Suzana; Yeoh, Thong Wei; Ruslam, Farah Adilah Che; Arifin, Khaizurin Tajul; Yusof, Yasmin Anum Mohd

    2013-08-16

    Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs.

  12. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts

    Science.gov (United States)

    2013-01-01

    Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056

  13. Effects Of Heavy Metals On Growing Cultures Of Chlorella emersonii ...

    African Journals Online (AJOL)

    This work evaluates the effect of some metals on a green alga Chlorella emersonii, under continuous and batch culture conditions with added metal and another, batch culture with no added metal but where organism had been exposed to metal for 18 hours prior to growth. It was found that Chlorella growth under ...

  14. The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris.

    Science.gov (United States)

    Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong

    2018-08-01

    The transformation of nitrogen in microalgae during entrained-flow pyrolysis of Chlorella vulgaris was systematically investigated at the temperatures of 600-900 °C and pressures of 0.1-4.0 MPa. It was found that pressure had a profound impact on the transformation of nitrogen during pyrolysis. The nitrogen retention in bio-char and its content in bio-oil reached a maximum value at 1.0 MPa. The highest conversion of nitrogen (50.25 wt%) into bio-oil was achieved at 1.0 MPa and 800 °C, which was about 7 wt% higher than that at atmospheric pressure. Higher pressures promoted the formation of pyrrolic-N (N-5) and quaternary-N (N-Q) compounds in bio-oil at the expense of nitrile-N and pyridinic-N (N-6) compounds. The X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results on bio-chars clearly evidenced the transformation of N-5 structures into N-6 and N-Q structures at elevated pressures. The nitrogen transformation pathways during pyrolysis of microalgae were proposed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity.

    Science.gov (United States)

    Cheng, Tuoyuan; Wei, Chun-Hai; Leiknes, TorOve

    2017-10-01

    To investigate anaerobic secondary effluent polishing by microalgae (Chlorella vulgaris) under low light intensity (14μmol/m 2 /s), bubbling column reactors were operated in batches of 8 d with initial ammonium nitrogen 10-50mg/L, initial phosphate phosphorus 2-10mg/L and microalgal seed 40mg/L. Maximum microalgal biomass and minimum generation time were 370.9mg/L and 2.5d, respectively. Nitrogen removal (maximum 99.6%) was mainly attributed to microalgal growth rate, while phosphorus removal (maximum 49.8%) was related to microalgal growth rate, cell phosphorus content (maximum 1.5%) and initial nutrients ratio. Dissolved microalgal organics release in terms of chemical oxygen demand (maximum 63.2mg/L) and hexane extractable material (i.e., oil and grease, maximum 8.5mg/L) was firstly reported and mainly affected by nitrogen deficiency and deteriorated effluent quality. Ultrafiltration critical flux (16.6-39.5L/m 2 /h) showed negative linear correlation to microalgal biomass. Anaerobic membrane bioreactor effluent polishing showed similar results with slight inhibition to synthetic effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-02-01

    An Environmental Control and Life Support System (ECLSS) is necessary for humans to survive in the hostile environment of space. As future missions move beyond Earth orbit for extended durations, reclaiming human metabolic waste streams for recycled use becomes increasingly important. Historically, these functions have been accomplished using a variety of physical and chemical processes with limited recycling capabilities. In contrast, biological systems can also be incorporated into a spacecraft to essentially mimic the balance of photosynthesis and respiration that occurs in Earth's ecosystem, along with increasing the reuse of biomass throughout the food chain. In particular, algal photobioreactors that use Chlorella vulgaris have been identified as potential multifunctional components for use as part of such a bioregenerative life support system (BLSS). However, a connection between the biological research examining C. vulgaris behavior and the engineered spacecraft cabin environmental conditions has not yet been thoroughly established. This review article characterizes the ranges of prior and expected cabin parameters (e.g. temperature, lighting, carbon dioxide, pH, oxygen, pressure, growth media, contamination, gravity, and radiation) and reviews algal metabolic response (e.g. growth rate, composition, carbon dioxide fixation rates, and oxygen evolution rates) to changes in those parameters that have been reported in prior space research and from related Earth-based experimental observations. Based on our findings, it appears that C. vulgaris offers many promising advantages for use in a BLSS. Typical atmospheric conditions found in spacecraft such as elevated carbon dioxide levels are, in fact, beneficial for algal cultivation. Other spacecraft cabin parameters, however, introduce unique environmental factors, such as reduced total pressure with elevated oxygen concentration, increased radiation, and altered gravity, whose effects on the biological responses

  17. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste

    International Nuclear Information System (INIS)

    Sarma, Saurabh Jyoti; Das, Ratul Kumar; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo; 2 Solutions Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9 (Canada))" data-affiliation=" (CO2 Solutions Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9 (Canada))" >Verma, Mausam; Soccol, Carlos Ricardo

    2014-01-01

    CG (Crude glycerol) is one of the major wastes of biodiesel production process. It can be used as a substrate for lipid production by algae and the produced lipid can be recycled as a feedstock for biodiesel production. In order to avoid substrate inhibition, lipid production media are prepared by diluting the CG with distilled water. However, CG contains only a small amount of Mg (57.41 ± 18 ppm) and its concentration is further decreased to around 0.57 ppm during the dilution process. Apart from having a number of roles in algal physiology, Mg is the central atom of chlorophyll. Therefore, MgSO 4 was evaluated as a Mg source to supplement the CG based media used for lipid production by Chlorella vulgaris. By supplementing the process with 1 g/L of MgSO 4 , nearly 185.29 ± 4.53% improvement in lipid production has been achieved. Further, application of MgSO 4 nanoparticles was found to improve the lipid production by 118.23 ± 5.67%. Interestingly, unlike MgSO 4 , its nanoparticles were found to enhance the lipid production at the expense of only a small amount of glycerol. Thus, application of MgSO 4 nanoparticles could be a potential strategy for enhanced lipid yield. - Highlights: • MgSO 4 supplementation can improve the biomass production by 125.58 ± 7.2%. • 185.29 ± 4.53% increase in lipid production by Chlorella vulgaris. • Enhanced lipid production in spite of negligible glycerol consumption. • MgSO 4 nanoparticle induced enhanced photosynthesis by micro algae

  19. Purifying Synthetic High-Strength Wastewater by Microalgae Chlorella Vulgaris Under Various Light Emitting Diode Wavelengths and Intensities

    Directory of Open Access Journals (Sweden)

    Zhigang Ge

    2013-06-01

    Full Text Available The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity.

  20. Production of high-density Chlorella culture grown in fermenters

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2012-01-01

    Roč. 24, č. 1 (2012), s. 35-43 ISSN 0921-8971 R&D Projects: GA MŠk OE09025 Institutional support: RVO:61388971 Keywords : Chlorella vulgaris * Heterotrophic culture * Fed-batch Subject RIV: EE - Microbiology, Virology Impact factor: 2.326, year: 2012

  1. Improving protein production of indigenous microalga Chlorella vulgaris FSP-E by photobioreactor design and cultivation strategies.

    Science.gov (United States)

    Chen, Chun-Yen; Lee, Po-Jen; Tan, Chung Hong; Lo, Yung-Chung; Huang, Chieh-Chen; Show, Pau Loke; Lin, Chih-Hung; Chang, Jo-Shu

    2015-06-01

    Fish meal is currently the major protein source for commercial aquaculture feed. Due to its unstable supply and increasing price, fish meal is becoming more expensive and its availability is expected to face significant challenges in the near future. Therefore, feasible alternatives to fish meal are urgently required. Microalgae have been recognized as the most promising candidates to replace fish meal because the protein composition of microalgae is similar to fish meal and the supply of microalgae-based proteins is sustainable. In this study, an indigenous microalga (Chlorella vulgaris FSP-E) with high protein content was selected, and its feasibility as an aquaculture protein source was explored. An innovative photobioreactor (PBR) utilizing cold cathode fluorescent lamps as an internal light source was designed to cultivate the FSP-E strain for protein production. This PBR could achieve a maximum biomass and protein productivity of 699 and 365 mg/L/day, respectively, under an optimum urea and iron concentration of 12.4 mM and 90 μM, respectively. In addition, amino acid analysis of the microalgal protein showed that up to 70% of the proteins in this microalgal strain consist of indispensable amino acids. Thus, C. vulgaris FSP-E appears to be a viable alternative protein source for the aquaculture industry. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A New Treatment Strategy for Inactivating Algae in Ballast Water Based on Multi-Trial Injections of Chlorine.

    Science.gov (United States)

    Sun, Jinyang; Wang, Junsheng; Pan, Xinxiang; Yuan, Haichao

    2015-06-09

    Ships' ballast water can carry aquatic organisms into foreign ecosystems. In our previous studies, a concept using ion exchange membrane electrolysis to treat ballast water has been proven. In addition to other substantial approaches, a new strategy for inactivating algae is proposed based on the developed ballast water treatment system. In the new strategy, the means of multi-trial injection with small doses of electrolytic products is applied for inactivating algae. To demonstrate the performance of the new strategy, contrast experiments between new strategies and routine processes were conducted. Four algae species including Chlorella vulgaris, Platymonas subcordiformis, Prorocentrum micans and Karenia mikimotoi were chosen as samples. The different experimental parameters are studied including the injection times and doses of electrolytic products. Compared with the conventional one trial injection method, mortality rate time (MRT) and available chlorine concentration can be saved up to about 84% and 40%, respectively, under the application of the new strategy. The proposed new approach has great potential in practical ballast water treatment. Furthermore, the strategy is also helpful for deep insight of mechanism of algal tolerance.

  3. A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26.

    Science.gov (United States)

    Ramírez-López, Citlally; Chairez, Isaac; Fernández-Linares, Luis

    2016-07-01

    A novel culture medium to enhance the biomass and lipid production simultaneously by Chlorella vulgaris UTEX 26 was designed in three stages of optimization. Initially, a culture medium was inferred applying the response surface method to adjust six factors [NaNO3, NH4HCO3, MgSO4·7H2O, KH2PO4, K2HPO4 and (NH4)2HPO4], which were selected on the basement of BBM (Bold's Basal Medium) and HAMGM (Highly Assimilable Minimal Growth Medium) culture media. Afterwards, the nitrogen source compound was optimized to reduce both, ammonium and nitrate concentrations. As result of the optimization process, the proposed culture medium improved 40% the biomass (0.73gL(-1)) compared with the BBM medium and 85% the lipid concentration (281mgL(-1)), with respect to HAMGM medium. Some culture media components concentrations were reduced up to 50%. Gas chromatography analysis revealed that C16:0, C18:0, C18:1, C18:2 and C18:3 were the major fatty acids produced by C. vulgaris UTEX 26. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. EVALUATION OF THE FLOCCULATION EFFICIENCY OF Chlorella vulgaris MEDIATED BY Moringa oleifera SEED UNDER DIFFERENT FORMS: FLOUR, SEED CAKE AND EXTRACTS OF FLOUR AND CAKE

    Directory of Open Access Journals (Sweden)

    C. M. L. Lapa Teixeira

    Full Text Available Abstract Flocculation as a pre-separation method can help make production of biodiesel from microalgae economically feasible. In a previous study, Moringa oleifera seed flour (1 g.L-1 was shown to be a very efficient flocculant for Chlorella vulgaris, a microalga with high potential for biodiesel production. In this study, several aspects of C vulgaris flocculation mediated by Moringa were investigated in order to optimize the separation of this biomass. Flocculation efficiency was the same with seeds from different origins and lots. The stationary growth stage was best for harvesting C vulgaris cells to carry out flocculation efficiently (93%. The use of flour extracts and cake extracts generated the best cost-benefit ratio (flocculation efficiency from 78 to 97% with a saving in mass of seed of 75%. The highest efficiency was reached with extracts prepared with seawater and NaCl solutions which have high salt concentration. Reasonable stability of the extract allows its use for up to two weeks, provided it is kept at low temperature (4 ºC.

  5. Fluoranthene induced changes in photosynthetic pigments, biochemical compounds and enzymatic activities in two microalgal species: Chlorella vulgaris Beijerinck and Desmodesmus subspicatus Chodat

    Directory of Open Access Journals (Sweden)

    Miral Patel

    2014-02-01

    Full Text Available The photosynthetic pigments, biochemical and enzymatic activities in two freshwater microalgal species, Chlorella vulgaris and Desmodesmus subspicatus at different fluoranthene concentrations were compared with the control conditions. During 16-days of incubation period when treated with fluoranthene, both microalgal species exhibited variable amount of photosynthetic pigment, biochemical compounds and enzymatic activities. The addition of fluoranthene at concentrations ranged from 1.5 mg l-1; to 10 mg l-1; to microalgal cultures led to changes in all different metabolites but the patterns varied from species to species. Among the two species tested, pigment, biochemical and enzymatic contents were remarkably declined from 7 % to 95% in C. vulgaris. Moreover, all metabolites in D. subspicatus also diminishing significantly by 3% to 88% of fluoranthene doses (10ppm. These results suggest that fluoranthene-induced changes of pigments, biochemical and enzymatic variations in test microalgae, D. subspicatus and C. vulgaris, might reveal its resistance and ability to metabolize PAHs. At the same time, the PAH impact changes on different metabolic activities were higher at 12 and 16 days than at 4 and 8 days in treated microalgae. DOI: http://dx.doi.org/10.3126/ije.v3i1.9941 International Journal of Environment Vol.3(1 2014: 41-55

  6. EVALUACIÓN DEL EFECTO DEL HIDROCARBURO FENANTRENO SOBRE EL CRECIMIENTO DE Chlorella vulgaris (CHLORELLACEAE

    Directory of Open Access Journals (Sweden)

    Angélica María Otero-Paternina

    2013-01-01

    Full Text Available Se evaluó el efecto del hidrocarburo policíclico aromático fenantreno sobre el crecimiento de la microalga Chlorella vulgaris  bajo condiciones de laboratorio. Las microalgas fueron expuestas a diferentes concentraciones de fenantreno (0, 1, 10, 100, 1000 y 10000 μg/l. El tiempo de exposición fue de 72 h, determinándose diariamente la densidad algal mediante recuento en cámara de Neubauer. Se determinó la tasa promedio de crecimiento, la biomasa total y el porcentaje de inhibición de la biomasa. También se evaluó el contenido de clorofila a, al inicio y final del experimento. Los ensayos fueron realizados en recipientes de vidrio de 0,4 l, utilizando como medio de cultivo fertilizante inorgánico del complejo NPK (REMITAL® m – 17-6-18 a razón de 1 g/l. Los resultados mostraron que el fenantreno inhibió progresivamente el crecimiento de la microalga, observándose el menor crecimiento celular en el medio con la mayor concentración de fenantreno, el cual alcanzó un porcentaje de inhibición del crecimiento del 59 %. Las tasas de crecimiento diario se mantuvieron relativamente constantes en los demás tratamientos. La concentración de clorofila a, medida mediante espectrofotometría, no se afectó por las diferentes concentraciones del hidrocarburo. En conclusión, el crecimiento de la microalga C. vulgaris  puede afectarse negativamente por la exposición a concentraciones nominales superiores a 1 μg/l de fenantreno.

  7. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  8. First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Liu, Lei; Jiang, Xiaobing; Zhang, Kun; Zheng, Tianling; Wang, Hailei

    2016-10-01

    Bioflocculant from Shinella albus xn-1 could be used to harvest energy-producing microalga Chlorella vulgaris biomass for the first time. In this study, we investigated the flocculation activity and mode of strain xn-1, the characteristics of bioflocculant, the effect of flocculation conditions and optimized the flocculation efficiency. The results indicated that strain xn-1 exhibited flocculation activity through secreting bioflocculant; the bioflocculant with high thermal stability, pH stability and low molecular weight was proved to be not protein and polysaccharide, and flocculation active component was confirmed to contain triple bond and cumulated double bonds; algal pH, temperature and metal ions showed great impacts on the flocculation efficiency of bioflocculant; the maximum flocculation activity of bioflocculant reached 85.65% after the response surface optimization. According to the results, the bioflocculant from S. albus xn-1 could be a good potential in applications for high-efficiency harvesting of microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Research for Developing Renewable Biofuels from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Black, Paul N. [Univ. of Nebraska, Lincoln, NE (United States)

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  10. Quantum chemistry based quantitative structure-activity relationships for modeling the (sub)acute toxicity of substituted mononitrobenzenes in aquatic systems

    NARCIS (Netherlands)

    Zvinavashe, E.; Murk, A.J.; Vervoort, J.; Soffers, A.E.M.F.; Freidig, A.; Rietjens, I.M.C.M.

    2006-01-01

    Fifteen experimental literature data sets on the acute toxicity of substituted nitrobenzenes to algae (Scenedesmus obliquus, Chlorella pyrenoidosa, C. vulgaris), daphnids (Daphnia magna, D. carinata), fish (Cyprinus carpio, Poecilia reticulata), protozoa (Tetrahymena pyriformis), bacteria

  11. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids.

    Science.gov (United States)

    Cho, Hyun Uk; Kim, Young Mo; Choi, Yun-Nam; Xu, Xu; Shin, Dong Yun; Park, Jong Moon

    2015-05-01

    The objective of this study was to investigate the feasibility of applying volatile fatty acids (VFAs) produced from low-cost organic waste to the major carbon sources of microalgae cultivation for highly efficient biofuel production. An integrated process that consists of a sewage sludge fermentation system producing VFAs (SSFV) and mixotrophic cultivation of Chlorella vulgaris (C. vulgaris) was operated to produce microbial lipids economically. The effluents from the SSFV diluted to different concentrations at the level of 100%, 50%, and 15% were prepared for the C. vulgaris cultivation and the highest biomass productivity (433±11.9 mg/L/d) was achieved in the 100% culture controlling pH at 7.0. The harvested biomass included lipid contents ranging from 12.87% to 20.01% under the three different effluent concentrations with and without pH control. The composition of fatty acids from C. vulgaris grown on the effluents from the SSFV complied with the requirements of high-quality biodiesel. These results demonstrated that VFAs produced from the SSFV are favorable carbon sources for cultivating C. vulgaris. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment.

    Science.gov (United States)

    Postma, P R; Pataro, G; Capitoli, M; Barbosa, M J; Wijffels, R H; Eppink, M H M; Olivieri, G; Ferrari, G

    2016-03-01

    The synergistic effect of temperature (25-65 °C) and total specific energy input (0.55-1.11 kWh kgDW(-1)) by pulsed electric field (PEF) on the release of intracellular components from the microalgae Chlorella vulgaris was studied. The combination of PEF with temperatures from 25 to 55 °C resulted in a conductivity increase of 75% as a result of cell membrane permeabilization. In this range of temperatures, 25-39% carbohydrates and 3-5% proteins release occurred and only for carbohydrate release a synergistic effect was observed at 55 °C. Above 55 °C spontaneous cell lysis occurred without PEF. Combined PEF-temperature treatment does not sufficiently disintegrate the algal cells to release both carbohydrates and proteins at yields comparable to the benchmark bead milling (40-45% protein, 48-58% carbohydrates). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Rioboo, Carmen; O'Connor, Jose Enrique; Prado, Raquel; Herrero, Concepcion; Cid, Angeles

    2009-01-01

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  14. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  15. UVA-induced reset of hydroxyl radical ultradian rhythm improves temporal lipid production in Chlorella vulgaris.

    Science.gov (United States)

    Balan, Ranjini; Suraishkumar, G K

    2014-01-01

    We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers.

  16. Stereocontrolled reduction of alpha- and beta-keto esters with micro green algae, Chlorella strains.

    Science.gov (United States)

    Ishihara, K; Yamaguchi, H; Adachi, N; Hamada, H; Nakajima, N

    2000-10-01

    The stereocontrolled reduction of alpha- and beta-keto esters using micro green algae was accomplished by a combination of the cultivation method and the introduction of an additive. The reduction of ethyl pyruvate and ethyl benzoylformate by the photoautotrophically cultivated Chlorella sorokiniana gave the corresponding alcohol in high e.e. (>99% e.e. (S) and >99% e.e. (R), respectively). In the presence of glucose as an additive, the reduction of ethyl 3-methyl-2-oxobutanoate by the heterotrophically cultivated C. sorokiniana afforded the corresponding (R)-alcohol. On the other hand, the reduction in the presence of ethyl propionate gave the (S)-alcohol. Ethyl 2-methyl-3-oxobutanoate was reduced in the presence of glycerol by the photoautotrophically cultivated C. sorokiniana or the heterotrophically cultivated C. sorokiniana to the corresponding syn-(2R,3S)-hydroxy ester with high diastereo- and enantiomeric excess (e.e.). Some additives altered the stereochemical course in the reduction of alpha- and beta-keto esters.

  17. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris.

    Science.gov (United States)

    Lohman, Egan J; Gardner, Robert D; Pedersen, Todd; Peyton, Brent M; Cooksey, Keith E; Gerlach, Robin

    2015-01-01

    Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. Life cycle analyses have concluded that costs associated with supplying CO2 to algal cultures are significant contributors to the overall energy consumption. A two-phase optimal growth and lipid accumulation scenario is presented, which (1) enhances the growth rate and (2) the triacylglyceride (TAG) accumulation rate in the oleaginous Chlorophyte Chlorella vulgaris strain UTEX 395, by growing the organism in the presence of low concentrations of NaHCO3 (5 mM) and controlling the pH of the system with a periodic gas sparge of 5 % CO2 (v/v). Once cultures reached the desired cell densities, which can be "fine-tuned" based on initial nutrient concentrations, cultures were switched to a lipid accumulation metabolism through the addition of 50 mM NaHCO3. This two-phase approach increased the specific growth rate of C. vulgaris by 69 % compared to cultures sparged continuously with 5 % CO2 (v/v); further, biomass productivity (g L(-1) day(-1)) was increased by 27 %. Total biodiesel potential [assessed as total fatty acid methyl ester (FAME) produced] was increased from 53.3 to 61 % (FAME biomass(-1)) under the optimized conditions; biodiesel productivity (g FAME L(-1) day(-1)) was increased by 7.7 %. A bicarbonate salt screen revealed that American Chemical Society (ACS) and industrial grade NaHCO3 induced the highest TAG accumulation (% w/w), whereas Na2CO3 did not induce significant TAG accumulation. NH4HCO3 had a negative effect on cell health presumably due to ammonia toxicity. The raw, unrefined form of trona, NaHCO3∙Na2CO3 (sodium sesquicarbonate) induced TAG accumulation, albeit to a slightly lower extent than the more refined forms of sodium bicarbonate. The strategic addition of sodium bicarbonate was found to enhance growth and lipid accumulation rates in

  18. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.

    Science.gov (United States)

    Chang, Hai-Xing; Huang, Yun; Fu, Qian; Liao, Qiang; Zhu, Xun

    2016-04-01

    Understanding and optimizing the microalgae growth process is an essential prerequisite for effective CO2 capture using microalgae in photobioreactors. In this study, the kinetic characteristics of microalgae Chlorella vulgaris growth in response to light intensity and dissolved inorganic carbon (DIC) concentration were investigated. The greatest values of maximum biomass concentration (Xmax) and maximum specific growth rate (μmax) were obtained as 2.303 g L(-1) and 0.078 h(-1), respectively, at a light intensity of 120 μmol m(-2) s(-1) and DIC concentration of 17 mM. Based on the results, mathematical models describing the coupled effects of light intensity and DIC concentration on microalgae growth and CO2 biofixation are proposed. The models are able to predict the temporal evolution of C. vulgaris growth and CO2 biofixation rates from lag to stationary phases. Verification experiments confirmed that the model predictions agreed well with the experimental results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Unlocking nature’s treasure-chest: screening for oleaginous algae

    Science.gov (United States)

    Slocombe, Stephen P.; Zhang, QianYi; Ross, Michael; Anderson, Avril; Thomas, Naomi J.; Lapresa, Ángela; Rad-Menéndez, Cecilia; Campbell, Christine N.; Black, Kenneth D.; Stanley, Michele S.; Day, John G.

    2015-01-01

    Micro-algae synthesize high levels of lipids, carbohydrates and proteins photoautotrophically, thus attracting considerable interest for the biotechnological production of fuels, environmental remediation, functional foods and nutraceuticals. Currently, only a few micro-algae species are grown commercially at large-scale, primarily for “health-foods” and pigments. For a range of potential products (fuel to pharma), high lipid productivity strains are required to mitigate the economic costs of mass culture. Here we present a screen concentrating on marine micro-algal strains, which if suitable for scale-up would minimise competition with agriculture for water. Mass-Spectrophotometric analysis (MS) of nitrogen (N) and carbon (C) was subsequently validated by measurement of total fatty acids (TFA) by Gas-Chromatography (GC). This identified a rapid and accurate screening strategy based on elemental analysis. The screen identified Nannochloropsis oceanica CCAP 849/10 and a marine isolate of Chlorella vulgaris CCAP 211/21A as the best lipid producers. Analysis of C, N, protein, carbohydrate and Fatty Acid (FA) composition identified a suite of strains for further biotechnological applications e.g. Dunaliella polymorpha CCAP 19/14, significantly the most productive for carbohydrates, and Cyclotella cryptica CCAP 1070/2, with utility for EPA production and N-assimilation. PMID:26202369

  20. The chlorococcalean alga Chlorella in animal nutrition: a review

    Czech Academy of Sciences Publication Activity Database

    Kotrbáček, V.; Doubek, J.; Doucha, Jiří

    2015-01-01

    Roč. 27, č. 6 (2015), s. 2173-2180 ISSN 0921-8971 Institutional support: RVO:61388971 Keywords : Chlorella * Chlorophyta * Feed supplement Subject RIV: EE - Microbiology, Virology Impact factor: 2.372, year: 2015

  1. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase.

    Science.gov (United States)

    Tran, Dang-Thuan; Yeh, Kuei-Ling; Chen, Ching-Lung; Chang, Jo-Shu

    2012-03-01

    An indigenous microalga Chlorella vulgaris ESP-31 grown in an outdoor tubular photobioreactor with CO(2) aeration obtained a high oil content of up to 63.2%. The microalgal oil was then converted to biodiesel by enzymatic transesterification using an immobilized lipase originating from Burkholderia sp. C20. The conversion of the microalgae oil to biodiesel was conducted by transesterification of the extracted microalgal oil (M-I) and by transesterification directly using disrupted microalgal biomass (M-II). The results show that M-II achieved higher biodiesel conversion (97.3 wt% oil) than M-I (72.1 wt% oil). The immobilized lipase worked well when using wet microalgal biomass (up to 71% water content) as the oil substrate. The immobilized lipase also tolerated a high methanol to oil molar ratio (>67.93) when using the M-II approach, and can be repeatedly used for six cycles (or 288 h) without significant loss of its original activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. MICRO ALGAE CULTURE FROM RAWA GAMBUT: INTRODUCTION STUDY OF MICRO ALGAE POTENTIAL AS BIO DIESEL RAW MATERIAL

    Directory of Open Access Journals (Sweden)

    Dewi Jumiarni

    2018-01-01

    Full Text Available Sustainable production of renewable energy is being a crucial problem, since fuel demand in Indonesia rises annually while the production decreases. Microalgae have been suggested as a potential feedstock for biofuel production. This research was a preliminary study to identified microalgal culture from water of peat swamp, and probe its potential as biodiesel feedstock.  Microalgal identification was conducted by morphological observation using microscope, while potential as biodiesel was probed by detection using Nile Red staining and supported by literature study. This research has identified 19 species of microalgae from culture, which were consisting of 16 species were Chlorophyceae and 3 species were Bacillariophyceae. Microalgae that  potentially to be developed biodiesel feedstock were Cyclotella atomus, Cyclotella sp, Nitzschia sp, Chlorella sp, Desmodesmus sp, Chlorella ellipsoida and Chlorella vulgaris.

  3. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains.

    Science.gov (United States)

    Wu, Guanxun; Gao, Zhengquan; Du, Huanmin; Lin, Bin; Yan, Yuchen; Li, Guoqiang; Guo, Yanyun; Fu, Shenggui; Wei, Gongxiang; Wang, Miaomiao; Cui, Meng; Meng, Chunxiao

    2018-03-27

    Sustainable renewable energy is being hotly debated globally because the continued use of finite fossil fuels is now widely recognized as being unsustainable. Microalgae potentially offer great opportunities for resolving this challenge. Abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) are involved in regulating many physiological properties and have been widely used in higher plants. To test if phytohormones have an impact on accumulating lipid for microalgae, ABA, JA and SA were used to induce two Chlorella strains in the present study. The results showed 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L JA, led strain C. vulgaris ZF strain to produce a 45%, 42% and 49% lipid content that was 1.8-, 1.7- and 2.0-fold that of controls, respectively. For FACHB 31 (number 31 of the Freshwater Algae Culture Collection at the Institute of Hydrobiology, Chinese Academy of Sciences), the addition of 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L, JA produced 33%, 30% and 38% lipid content, which was 1.8-, 1.6- and 2.1-fold that of controls, respectively. As for lipid productivity, 1.0 mg/L ABA increased the lipid productivity of C. vulgaris ZF strain and FACHB-31 by 123% and 44%; 10 mg/L SA enhanced lipid productivity by 100% and 33%; the best elicitor, 0.5 mg/L JA, augmented lipid productivity by 127% and 75% compared to that of controls, respectively. The results above suggest that the three phytohormones at physiological concentrations play crucial roles in inducing lipid accumulation in Chlorella.

  4. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    Directory of Open Access Journals (Sweden)

    David Barrie Johnson

    2012-09-01

    Full Text Available Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC. Glycolic acid was identified as a significant component (12- 14% of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within three days. Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella, and mannitol and glucose (Euglena. These were rapidly metabolised by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp. though only fructose was utilised by the more fastidious heterotroph Acidocella aromatica. The significance of algae in promoting the growth of iron- (and sulfate- reducing heterotrophic acidophiles that are important in remediating mine-impacted waters is discussed.

  5. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients.

    Science.gov (United States)

    Liao, Qiang; Chang, Hai-Xing; Fu, Qian; Huang, Yun; Xia, Ao; Zhu, Xun; Zhong, Nianbing

    2018-02-01

    To comprehensively understand kinetic characteristics of microalgae growth and lipid synthesis in different phases, a phase-feeding strategy was proposed to simultaneously regulate light, carbon and nutrients in adaption, growth and stationary phases of microalgae cultivation. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis under synergistic effects of light, carbon and nutrients were investigated, and supply-demand relationships of electrons and energy between light and dark reactions of photosynthesis process were discussed. Finally, the optimized cultivation strategy for microalgae in various phases were obtained, under which the lipid productivity was significantly improved from 130.11 mg/L/d to 163.42 mg/L/d. The study provided some important guidance for the large-scale production of biofuels from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Data-directed modelling of Daphnia dynamics in a long-term micro-ecosystem experiment

    NARCIS (Netherlands)

    Grasman, J.; Nes, van E.H.; Kersting, K.

    2009-01-01

    The micro-ecosystem under consideration consists of three compartments forming a closed chain in which water circulates. Three trophic levels are represented in different compartments: autotrophs (algae, mainly Chlorella vulgaris), herbivores (Daphnia magna) and microbial decomposers. From a 20

  7. Lysine acetylsalicylate increases the safety of a paraquat formulation to freshwater primary producers: A case study with the microalga Chlorella vulgaris

    International Nuclear Information System (INIS)

    Baltazar, Maria Teresa; Dinis-Oliveira, Ricardo Jorge; Martins, Alexandra; Bastos, Maria de Lourdes; Duarte, José Alberto

    2014-01-01

    Highlights: •The formulation has a reduced toxicity to C. vulgaris when compared to Gramoxone ® . •The highest protection was achieved at the proportion of 1:8 (PQ/LAS). •LAS conferred a protection of approximately 1.8 fold (% of inhibition of growth). •Salicylic acid is biotransformed by C. vulgaris after 48 h, and not detectable at 96 h. -- Abstract: Large amounts of herbicides are presently used in the industrialized nations worldwide, with an inexorable burden to the environment, especially to aquatic ecosystems. Primary producers such as microalgae are of especial concern because they are vital for the input of energy into the ecosystem and for the maintenance of oxygen in water on which most of other marine life forms depend on. The herbicide paraquat (PQ) is known to cause inhibition of photosynthesis and irreversible damage to photosynthetic organisms through generation of reactive oxygen species in a light-dependent manner. Previous studies have led to the development of a new formulation of PQ containing lysine acetylsalicylate (LAS) as an antidote, which was shown to prevent the mammalian toxicity of PQ, while maintaining the herbicidal effect. However, the safety of this formulation to primary producers in relation to commercially available PQ formulations has hitherto not been established. Therefore, the aim of this study was to evaluate the toxicity of the PQ + LAS formulation in comparison with the PQ, using Chlorella vulgaris as a test organism. Effect criterion was the inhibition of microalgal population growth. Following a 96 h exposure to increasing concentrations of PQ, C. vulgaris growth was almost completely inhibited, an effect that was significantly prevented by LAS at the proportion used in the formulation (PQ + LAS) 1:2 (mol/mol), while the highest protection was achieved at the proportion of 1:8. In conclusion, the present work demonstrated that the new formulation with PQ + LAS has a reduced toxicity to C. vulgaris when compared

  8. Lysine acetylsalicylate increases the safety of a paraquat formulation to freshwater primary producers: A case study with the microalga Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar, Maria Teresa, E-mail: mteresabaltazar@gmail.com [REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences-North, CESPU, CRL, Rua Central de Gandra, 1317, 4585-116 Gandra (Portugal); Dinis-Oliveira, Ricardo Jorge [REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences-North, CESPU, CRL, Rua Central de Gandra, 1317, 4585-116 Gandra (Portugal); Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto (Portugal); CENCIFOR-Forensic Sciences Center, Largo da Sé Nova, 3000-213, Coimbra (Portugal); Martins, Alexandra [CIIMAR Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Ecotoxicology and Ecology, Rua dos Bragas, 289, 4050-123 Porto (Portugal); ICBAS-Institute of Biomedical Sciences of Abel Salazar, University of Porto, Department of Populations Studies, Laboratory of Ecotoxicology, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Bastos, Maria de Lourdes [REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Duarte, José Alberto [CIAFEL, Faculty of Sports, University of Porto, Rua Dr. Plácido Costa, 91-4200-450 Porto (Portugal); and others

    2014-01-15

    Highlights: •The formulation has a reduced toxicity to C. vulgaris when compared to Gramoxone{sup ®}. •The highest protection was achieved at the proportion of 1:8 (PQ/LAS). •LAS conferred a protection of approximately 1.8 fold (% of inhibition of growth). •Salicylic acid is biotransformed by C. vulgaris after 48 h, and not detectable at 96 h. -- Abstract: Large amounts of herbicides are presently used in the industrialized nations worldwide, with an inexorable burden to the environment, especially to aquatic ecosystems. Primary producers such as microalgae are of especial concern because they are vital for the input of energy into the ecosystem and for the maintenance of oxygen in water on which most of other marine life forms depend on. The herbicide paraquat (PQ) is known to cause inhibition of photosynthesis and irreversible damage to photosynthetic organisms through generation of reactive oxygen species in a light-dependent manner. Previous studies have led to the development of a new formulation of PQ containing lysine acetylsalicylate (LAS) as an antidote, which was shown to prevent the mammalian toxicity of PQ, while maintaining the herbicidal effect. However, the safety of this formulation to primary producers in relation to commercially available PQ formulations has hitherto not been established. Therefore, the aim of this study was to evaluate the toxicity of the PQ + LAS formulation in comparison with the PQ, using Chlorella vulgaris as a test organism. Effect criterion was the inhibition of microalgal population growth. Following a 96 h exposure to increasing concentrations of PQ, C. vulgaris growth was almost completely inhibited, an effect that was significantly prevented by LAS at the proportion used in the formulation (PQ + LAS) 1:2 (mol/mol), while the highest protection was achieved at the proportion of 1:8. In conclusion, the present work demonstrated that the new formulation with PQ + LAS has a reduced toxicity to C. vulgaris when

  9. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris.

    Science.gov (United States)

    Sharma, Amit Kumar; Sahoo, Pradeepta Kumar; Singhal, Shailey; Joshi, Girdhar

    2016-09-01

    The present study explores the integrated approach for the sustainable production of biodiesel from Chlorella vulgaris microalgae. The microalgae were cultivated in 10m(2) open raceway pond at semi-continuous mode with optimum volumetric and areal production of 28.105kg/L/y and 71.51t/h/y, respectively. Alum was used as flocculent for harvesting the microalgae and optimized at different pH. Lipid was extracted using chloroform: methanol (2:1) and having 12.39% of FFA. Effect of various reaction conditions such as effect of catalyst, methanol:lipid ratio, reaction temperature and time on biodiesel yields were studied under microwave irradiation; and 84.01% of biodiesel yield was obtained under optimized reaction conditions. A comparison was also made between the biodiesel productions under conventional heating and microwave irradiation. The synthesized biodiesel was characterized by (1)H NMR, (13)C NMR, FTIR and GC; however, fuel properties of biodiesel were also studied using specified test methods as per ASTM and EN standards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    Science.gov (United States)

    Dejoye, Céline; Vian, Maryline Abert; Lumia, Guy; Bouscarle, Christian; Charton, Frederic; Chemat, Farid

    2011-01-01

    Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2) extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2). Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight) at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73%) compared to SCCO2 extraction alone (1.81%). Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM). SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged. PMID:22272135

  11. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Farid Chemat

    2011-12-01

    Full Text Available Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2 extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2. Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73% compared to SCCO2 extraction alone (1.81%. Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM. SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged.

  12. The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats.

    Science.gov (United States)

    Tsiplakou, E; Abdullah, M A M; Skliros, D; Chatzikonstantinou, M; Flemetakis, E; Labrou, N; Zervas, G

    2017-04-01

    Microalgae might be considered as an alternative source of fat and/or protein for ruminant's diets. However, changes in populations of ruminal micro-organisms associated with biohydrogenation process, methane and ammonia production in response to microalgae dietary supplementation have not been well characterized. Thus, 16 cross-bred goats were divided into two groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group had no microalgae while those of the treated group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrate (chlor). On the 30th experimental day, samples of rumen fluid were collected for microbial DNA extraction, fatty acid profile and enzyme activity analyses. The results showed that the chlor diet compared with the control increased significantly the populations of Methanosphaera stadtmanae, Methanobrevibacter ruminantium and Methanogens bacteria and protozoa in the rumen of goats. A significant reduction in the cellulase activity and in the abundance of Ruminococcus albus, and a significant increase in the protease activity and in the abundance of Clostridium sticklandii in the rumen liquid of goats fed with the chlor diet, compared with the control, were found. Chlorella vulgaris supplementation promoted the formation of trans C 18:1 , trans-11 C 18:1 and monounsaturated fatty acids (MUFA), while the proportions of C 18:0 and long-chain fatty acids (LCFA) reduced significantly in the rumen liquid of goats. This shift in ruminal biohydrogenation pathway was accompanied by a significant increase in Butyrivibrio fibrisolvens trans C 18:1 -producing bacteria. In conclusion, the supplementation of diets with microalgae needs further investigation because it enhances the populations of methane-producing bacteria and protozoa. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  13. Glucose homeostasis, insulin resistance and inflammatory biomarkers in patients with non-alcoholic fatty liver disease: Beneficial effects of supplementation with microalgae Chlorella vulgaris: A double-blind placebo-controlled randomized clinical trial.

    Science.gov (United States)

    Ebrahimi-Mameghani, Mehrangiz; Sadeghi, Zahra; Abbasalizad Farhangi, Mahdieh; Vaghef-Mehrabany, Elnaz; Aliashrafi, Soodabeh

    2017-08-01

    Chlorella vulgaris (C. vulgaris) is reported to improve dyslipidemia and hypertension; however, its effect on inflammatory biomarkers and insulin resistance has not been noticed thus far. Non-alcoholic fatty liver disease (NAFLD) as a hepatic symptom of metabolic syndrome is strongly associated with insulin resistance and inflammation. In the current interventional trial, we aimed to study the effects of C. vulgaris supplementation on glucose homeostasis, insulin resistance and inflammatory biomarkers in patients with NAFLD. Seventy NAFLD patients confirmed by ultra-sonographic findings were randomly assigned into intervention group (four 300 mg tablets of C. vulgaris) or placebo group (four 300 mg tablets of placebos) for 8 weeks. Anthropometric measurements, liver enzymes, fasting serum glucose (FSG), insulin, high sensitive C-reactive protein (hs-CRP) and tumor necrosis factor-alpha (TNF-α) were assessed and homeostatic model assessment (HOMA) score for insulin resistance was estimated before and after the intervention. Anthropometric measurements decreased significantly in both group (p vulgaris - treated group compared to placebo group. Serum concentrations of liver enzymes, FSG and hs-CRP also significantly decreased and serum insulin concentration and HOMA score increased significantly only in C. vulgaris-treated group (P vulgaris supplementation could be considered as an adjunctive therapy to decrease weight and improve glycemic status and reducing hs-CRP as well as improving liver function in patients with NAFLD. 201202233320N7. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs.

    Science.gov (United States)

    Liu, Tingting; Liu, Fei; Wang, Chao; Wang, Zhenyao; Li, Yuqin

    2017-05-01

    This study attempted at maximizing biomass and lipid accumulation in Chlorella vulgaris by supplementation of natural abscisic acid (ABA) or synthetic 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) hormone analogs. Amongst three tested additives, NAA-treatment performed remarkable promoting effect on cell growth and lipid biosynthesis. The favorable lipid productivity (418.6mg/L/d) of NAA-treated cells showed 1.48 and 2.24 times more than that of 2,4-D and ABA. NAA-treatment also positively modified the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acids (C18:1) which were prone to high-quality biofuels-making. Further, NAA-treatment manipulated endogenous phytohormones metabolism leading to the elevated levels of indole-3-acetic acid, jasmonic acid, and salicylic acid and such hormone accumulation might be indispensable for signal transduction in regulating cell growth and lipid biosynthesis in microalgae. In addition, the economic-feasibility and eco-friendly estimation of NAA additive indicated the higher possibilities in developing affordable and scalable microalgal lipids for biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modulatory role of dietary Chlorella vulgaris powder against arsenic-induced immunotoxicity and oxidative stress in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Zahran, Eman; Risha, Engy

    2014-12-01

    Arsenic intoxicant have long been regarded as an impending carcinogenic, genotoxic, and immunotoxic heavy metal to human and animals as well. In this respect, we evaluated biomarkers of the innate immune response and oxidative stress metabolism in gills and liver of Nile tilapia (Oreochromis niloticus) after arsenic exposure, and the protective role of Chlorella vulgaris (Ch) dietary supplementation were elucidated. Protective role of C. vulgaris (Ch), as supplementary feeds (5% and 10% of the diet) was studied in Nile tilapia (O. niloticus) against arsenic induced toxicity (NaAsO2 at 7 ppm) for 21 days exposure period. A significant down-regulation in innate immune response; including, respiratory burst, lysozyme, and bactericidal activity followed due to deliberately As(+3) exposure. Similarly, oxidative stress response; like nitric oxide (NO), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels were significantly decreased. Combined treatment of Ch and As(+3) significantly enhanced the innate immune response and antioxidant activity. Strikingly, Ch supplementation at 10% has been considered the optimum for Nile tilapia since it exhibited enhancement of innate immune response and antioxidant activity over the level 5%, and even better than that of control level. Thus, our results concluded that dietary Ch supplementation could protect Nile tilapia against arsenic induced immunosuppression and oxidative stresses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    Directory of Open Access Journals (Sweden)

    Michael S Bono

    Full Text Available In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  17. Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State ¹H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol

    Science.gov (United States)

    Bono Jr., Michael S.; Garcia, Ravi D.; Sri-Jayantha, Dylan V.; Ahner, Beth A.; Kirby, Brian J.

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r 2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  18. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    Science.gov (United States)

    Bono, Michael S; Garcia, Ravi D; Sri-Jayantha, Dylan V; Ahner, Beth A; Kirby, Brian J

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  19. Two-step evolution of endosymbiosis between hydra and algae.

    Science.gov (United States)

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu

    2016-07-09

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians.

  1. Harvesting Chlorella vulgaris by natural increase in pH: effect of medium composition.

    Science.gov (United States)

    Nguyen, Thi Dong Phuong; Frappart, Matthieu; Jaouen, Pascal; Pruvost, Jérémy; Bourseau, Patrick

    2014-01-01

    The freshwater microalga Chlorella vulgaris was harvested by autoflocculation resulting from the precipitation of magnesium or calcium compounds induced by a slow increase in pH in the absence of CO2 input. Autoflocculation was tested in two culture media with, respectively, ammonium (NH4+) and nitrate (NO3-) ions as nitrogen source. The culture pH increased because of photosynthesis and CO2 stripping. pH rose to 11 after 8 h in the NO3- medium, but did not exceed 9 in the NH4+ medium. No flocculation took place in any of the media. Autoflocculation tests were repeated in the NO(3-)-based culture medium by progressively increasing the concentrations of Ca2+ and Mg2+ until inorganic compounds precipitated and flocculated microalgae. The minimal concentrations for flocculation were found to be 120 mg Ca2 L(-1) and 1000 mg Mg2+ L(-1). These values were, respectively, 3.5 times and 20 times higher than those allowing flocculation by NaOH addition. Energy-dispersive X-ray spectroscopy, zeta potential measurement, and ionic chromatography suggest that the mechanisms involved are different. The rate of cell removal was close to 90% in both cases, but cells were more concentrated in the aggregates obtained by magnesium compound precipitation, with an estimated concentration close to 33 g (dry matter) L(-1), against 19 g L(-1) for calcium phosphates.

  2. GROWTH KINETIC STUDY OF CHLORELLA VULGARIS USING LAB-SCALE AND PILOT-SCALE PHOTOBIOREACTOR: EFFECT OF CO2 CONCENTRATION

    Directory of Open Access Journals (Sweden)

    MAN KEE LAM

    2016-07-01

    Full Text Available In the present study, growth kinetic of Chlorella vulgaris was performed when the microalgae was cultivated with different concentrations of CO2 . The experiments were carried out using lab-scale and pilot-scale photobioreactors, and the growth results were analyzed using POLYMATH 6.0 with different growth kinetic models. The growth of the microalgae was found fitted well to the Richards growth model with attainable high R2 values as demonstrated in all studied cases, in concert with low values of root mean squares deviation (RMSD and variance. In addition, the output from the plots of experimental values versus predicted values and residual plots further confirmed the good fit of Richards model. The predicted specific growth rate from Richards model was similar to the experimental specific growth rate with deviation lesser than 5%. The attained results paved a preliminary prediction of microalgae growth characteristic when the cultivation is scaled-up to commercial scale.

  3. The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models

    Science.gov (United States)

    Indhumathi, Ponnuswamy; Sathiyaraj, Subbaiyan; Koelmel, Jeremy P.; Shoba, Srinivasan U.; Jayabalakrishnan, Chinnasamy; Saravanabhavan, Munusamy

    2018-05-01

    The ability of green micro algae Chlorella vulgaris for biosorption of Cu(II) ions from an aqueous solution was studied. The biosorption process was affected by the solution pH, contact time, temperature and initial Cu(II) concentration. Experimental data were analyzed in terms of pseudo-first order, pseudo-second order and intra particle diffusion models. Results showed that the sorption process of Cu(II) ions followed pseudo-second order kinetics. The sorption data of Cu(II) ions are fitted to Langmuir, Freundlich, and Redlich-Peterson isotherms, and the Temkin isotherm. The thermodynamic study shows the Cu(II) biosorption was exothermic in nature. The Cu(II) ions were recovered effectively from Chlorella vulgaris biomass using 0.1 M H2SO4 with up to 90.3% recovery, allowing for recycling of the Cu. Green algae from freshwater bodies showed significant potential for Cu(II) removal and recovery from industrial wastewater.

  4. Effect of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris in Mixotrophic Culture

    Directory of Open Access Journals (Sweden)

    Hong Yang

    2013-01-01

    Full Text Available Biodiesel-derived glycerol is a promising substrate for mixotrophic cultivation of oleaginous microalgae, which can also reduce the cost of microalgal biodiesel. The objective of this study is to investigate the potential of using glycerol and glucose as a complex carbon substrate to produce microalgal biomass and biochemical components, such as photosynthetic pigments, lipids, soluble carbohydrates and proteins by Chlorella vulgaris. The results show that C. vulgaris can utilize glycerol as a sole carbon substrate, but its effect is inferior to that of the mixture of glycerol and glucose. The effect of glycerol and glucose could enhance the algal cell growth rate, biomass content and volumetric productivity, and overcome the lower biomass production on glycerol as the sole organic carbon source in mixotrophic culture medium. The utilization of complex organic carbon substrate can stimulate the biosynthesis of lipids and soluble carbohydrates as the raw materials for biodiesel and bioethanol production, and reduce the anabolism of photosynthetic pigments and proteins. This study provides a promising niche for reducing the overall cost of biodiesel and bioethanol production from microalgae as it investigates the by-products of algal biodiesel production and algal cell hydrolysis as possible raw materials (lipids and carbohydrates and organic carbon substrates (soluble carbohydrates and glycerol for mixotrophic cultivation of microalgae.

  5. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production.

    Science.gov (United States)

    Wang, Yue; Guo, Wanqian; Yen, Hong-Wei; Ho, Shih-Hsin; Lo, Yung-Chung; Cheng, Chieh-Lun; Ren, Nanqi; Chang, Jo-Shu

    2015-12-01

    Swine wastewater, containing a high concentration of COD and ammonia nitrogen, is suitable for the growth of microalgae, leading to simultaneous COD/nutrients removal from the wastewater. In this study, an isolated carbohydrate-rich microalga Chlorella vulgaris JSC-6 was adopted to perform swine wastewater treatment. Nearly 60-70% COD removal and 40-90% NH3-N removal was achieved in the mixotrophic and heterotrophic culture, depending on the dilution ratio of the wastewater, while the highest removal percentage was obtained with 20-fold diluted wastewater. Mixotrophic cultivation by using fivefold diluted wastewater resulted in the highest biomass concentration of 3.96 g/L. The carbohydrate content of the microalga grown on the wastewater can reach up to 58% (per dry weight). The results indicated that the microalgae-based wastewater treatment can efficiently reduce the nutrients and COD level, and the resulting microalgal biomass had high carbohydrate content, thereby having potential applications for the fermentative production of biofuels or chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Chlorella vulgaris reduces the impact of stress on hypothalamic-pituitary-adrenal axis and brain c-fos expression.

    Science.gov (United States)

    Souza Queiroz, Julia; Marín Blasco, Ignacio; Gagliano, Humberto; Daviu, Nuria; Gómez Román, Almudena; Belda, Xavier; Carrasco, Javier; Rocha, Michelle C; Palermo Neto, João; Armario, Antonio

    2016-03-01

    Predominantly emotional stressors activate a wide range of brain areas, as revealed by the expression of immediate early genes, such as c-fos. Chlorella vulgaris (CV) is considered a biological response modifier, as demonstrated by its protective activities against infections, tumors and stress. We evaluated the effect of acute pretreatment with CV on the peripheral and central responses to forced swimming stress in adult male rats. Pretreatment with CV produced a significant reduction of stress-related hypothalamic-pituitary-adrenal activation, demonstrated by decreased corticotrophin releasing factor gene expression in the hypothalamic paraventricular nucleus (PVN) and lower ACTH response. Hyperglycemia induced by the stressor was similarly reduced. This attenuated neuroendocrine response to stress occurred in parallel with a diminished c-fos expression in most evaluated areas, including the PVN. The data presented in this study reinforce the usefulness of CV to diminish the impact of stressors, by reducing the HPA response. Although our results suggest a central effect of CV, further studies are necessary to understand the precise mechanisms underpinning this effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microalgae growth-promoting bacteria: A novel approach in wastewater treatment

    Directory of Open Access Journals (Sweden)

    Luz E. de-Bashan

    2003-07-01

    Full Text Available Plant growth-promoting bacteria (PGPB from the genus Azospirillum are known to enhance the growth of numerous agricultural crops. The use of these bacteria is proposed as "micro-algae-growth promoting bacteria" (MGPB for enhancing freshwater micro-algae Chlorella vulgaris and C. sorokiniana capadty to clean polluted water. The deliberate inoculation of Chlorella sp. with a terrestrial PGPB has not been reported prior to these studies, perhaps because of the different origin of the two micro-organisms. Chlorella spp. is not known to harbour any plant growth-promoting bacteria and Azospirillum sp. is rarely used for inoculation in aquatic environments. Co-immobilisation of C. vulgaris and A. brasilense Cd in small alginate beads resulted in significant increases in numerous micro-algae growth parameters. Dry and fresh weight, total number of cells, micro-algal cluster (colonies size within the bead, number of micro-algal cells per cluster and micro-algal pigments levels significantly increased. Lipids and the variety of fatty adds also significantly increased, as did the combination of micro-algae. MGPB had superior capacity for removing ammonium and phosphorus from polluted synthetic and municipal wastewaters than the micro-algae by itself. Other PGPB (i.e. Flavobacterium sp. Azospirillum sp. and Azotobacter sp. are currently being tested in aquaculture; carp farming using enhanced phytoplankton growth and stabilising mass marine micro-algae culture for use as feed for marine organisms are both retuming promising results. This aspect of PGPB effect on water micro-organisms is currently in its infancy. We pro pose that co-immobilising micro-algae and plant growth-promoting bacteria represent an effective means of increasing micro-algal populations and also their capacity for cleaning polluted water. Key words: PGPB; micro-algae; wastewater treatment; co-immobilised

  8. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    Science.gov (United States)

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  9. Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B

    Science.gov (United States)

    2014-01-01

    Background Chorella is the representative taxon of Chlorellales in Trebouxiophyceae, and its chloroplast (cp) genomic information has been thought to depend only on studies concerning Chlorella vulgaris and GenBank information of C. variablis. Mitochondrial (mt) genomic information regarding Chlorella is currently unavailable. To elucidate the evolution of organelle genomes and genetic information of Chlorella, we have sequenced and characterized the cp and mt genomes of Arctic Chlorella sp. ArM0029B. Results The 119,989-bp cp genome lacking inverted repeats and 65,049-bp mt genome were sequenced. The ArM0029B cp genome contains 114 conserved genes, including 32 tRNA genes, 3 rRNA genes, and 79 genes encoding proteins. Chlorella cp genomes are highly rearranged except for a Chlorella-specific six-gene cluster, and the ArM0029B plastid resembles that of Chlorella variabilis except for a 15-kb gene cluster inversion. In the mt genome, 62 conserved genes, including 27 tRNA genes, 3 rRNA genes, and 32 genes encoding proteins were determined. The mt genome of ArM0029B is similar to that of the non-photosynthetic species Prototheca and Heicosporidium. The ArM0029B mt genome contains a group I intron, with an ORF containing two LAGLIDADG motifs, in cox1. The intronic ORF is shared by C. vulgaris and Prototheca. The phylogeny of the plastid genome reveals that ArM0029B showed a close relationship of Chlorella to Parachlorella and Oocystis within Chlorellales. The distribution of the cox1 intron at 721 support membership in the order Chlorellales. Mitochondrial phylogenomic analyses, however, indicated that ArM0029B shows a greater affinity to MX-AZ01 and Coccomyxa than to the Helicosporidium-Prototheca clade, although the detailed phylogenetic relationships among the three taxa remain to be resolved. Conclusions The plastid genome of ArM0029B is similar to that of C. variabilis. The mt sequence of ArM0029B is the first genome to be reported for Chlorella. Chloroplast

  10. Uptake of uranium from underground drinking water by chlorella (Chlorella pyrendoidosa)

    International Nuclear Information System (INIS)

    Singhal, R.K.; Joshi, Shobha; Gurg, R.P.; Shenoy, N.S.; Ferandes, Neychelle; Gopale, Rajesh S.; Jhaveri, A.S.

    2002-01-01

    Naturally occurring uranium has found at elevated levels i.e. 300-1200 ppb in underground water, especially in the areas located around uranium mines and granite rocks sites. The U.S. Environmental Protection Agency (EPA) recently adopted drinking water standards requiring a maximum uranium concentration of 20 μgl. This limit is based on nephro-toxicity, rather than on radiological hazards. The concentration of uranium is to be monitored along with other parameters in well and other sources of drinking water in these areas. During this work a low cost kit was developed for removing uranium from under-ground water used for drinking purposes. This unit is capable of reducing uranium from 1000 ppb to 15-20 ppb. Chlorella (Chlorella pyrendoidosa), a fresh water algae, was immobilised in sodium alginate in the form of beads by using 0.2 M calcium chloride. These beads were put in container and the water is stirred occasionally. 99-100 % uranium adsorbed was recovered from the beads by using 0.1 M HNO 3 . These results suggest that the uptake of uranium by Chlorella depended upon the physico-chemical adsorption on the cell surface, but not upon the biological activity and that uranium in the algal cells was coupled with the ligands, which can be easily substituted with NO 3 -1 . (author)

  11. Antibacterial activities of the extracts of cyanobacteria and green ...

    African Journals Online (AJOL)

    In compliance to the recent surveys on algal species and their potentials to produce biologically active compounds, seven algal species belonging to cyanobacteria such as Spirulina platensis, Nostoc linckia, Phormidium autumnale, Tolypothrix distorta and Microcystis aeruginosa and green algae such as Chlorella vulgaris, ...

  12. Harvesting of freshwater microalgae Scenedesmus obliquus and Chlorella vulgaris using acid mine drainage as a cost effective flocculant for biofuel production

    International Nuclear Information System (INIS)

    Salama, El-Sayed; Jeon, Byong-Hun; Kurade, Mayur B.; Abou-Shanab, Reda A.I.; Govindwar, Sanjay P.; Lee, Sang-hun; Yang, Il-Seung; Lee, Dae Sung

    2016-01-01

    Graphical abstract: Schematic presentation of coagulation/flocculation of microalgal biomass using AMD. - Highlights: • AMDs containing high Fe"2"+/Al"3"+ improved the settling kinetics of microalgal biomass. • The highest k_2 value was 40 × 10"−"2 L mg"−"1 min"−"1 for C. vulgaris with AMD (1). • With AMD (2), k_2 was 4.0 × 10"−"2 L mg"−"1 min"−"1 for both C. vulgaris and S. obliquus. • The highest FE (93%) and CF (29) for C. vulgaris was achieved with AMD (1). • AMD (1) removed 99.80% of Fe"3"+ and 99.99% of Al"3"+ from the supernatant. - Abstract: Development of a low-cost harvesting technology could be an effective approach for making microalgal biofuel commercially feasible. The use of acid mine drainage (AMD) to coagulate/flocculate biomass is a cost-effective strategy for addressing this challenge. Here, settling kinetics, flocculation efficiency (FE), and concentration factor (CF) of two morphologically different microalgae species, Scenedesmus obliquus and Chlorella vulgaris, were investigated with respect to AMD dosage (5% and 10%) and medium pH (7 and 9). AMD was collected from two different sites, AMD (1) and AMD (2), and increasing its dosage to 10% improved the settling rate, FE, and CF of the floc. At 10% AMD (1) dosage and pH 9, the highest rate constants (k_2) for the second order equations were 6.65 × 10"−"2 and 40 × 10"−"2 L mg"−"1⋅min"−"1 for S. obliquus and C. vulgaris, respectively; at 10% AMD (2), k_2 values were 4.22 × 10"−"2 and 4.76 × 10"−"2 L mg"−"1 min"−"1, respectively. Similarly, FE/CF values were 89%/25 for S. obliquus and 93%/29 for C. vulgaris with 10% AMD (1); and 81%/17 and 79%/17, respectively, with 10% AMD (2). AMD effectively removed 99.80% of Fe"3"+, 99.99% of Al"3"+, 94% of Ca"2"+, 84% of Mg"2"+ and all of Na"+ and K"+ ions from the supernatant. The results of kinetics, EF, and CF measurements indicate that AMDs, naturally rich in iron and aluminum ions, could provide a feasible

  13. Pertumbuhan Chlorella sp. pada beberapa konsentrasi limbah batubara (The growth rate of the Chlorella sp. at different concentrations of coal waste water

    Directory of Open Access Journals (Sweden)

    Zerli Selvika

    2016-12-01

    Full Text Available Chlorella sp. is a single-celled microalga that mostly grows in marine waters. Chlorella sp. can grow in heavy polluted waters and therefore it has potency as a bioremediation agent. This study aimed was to analyze the effect of coal on the growth of Chlorella sp. in plant isolation media and the quality of water in plant isolation media for Chlorella sp. The complete randomized design with 4 treatments of coal concentration was used in this study. Four concentration concentrations were tested namely, 0 ppt, 1 ppt, 3 ppt and 5 ppt. The results revealed that coal with different concentrations gave no significant effect on the growth of Chlorella sp. (p> 0.05. The density among the concentrations of 0 ppt, 1 ppt, 3 ppt and 5 ppt were not significantly different. In addition, the coal concentration gave no significant effect on temperature, salinity and potential hydrogen (pH (p>0.05. The Chlorella sp. can grow in the polluted water by coal, and therefore this alga can be used as potential organisms for bioremediation of coal waste. Chlorella sp. merupakan mikroalga bersel satu yang banyak tumbuh di perairan laut. Chlorella sp. dapat tumbuh di perairan yang tercemar berat sehingga berpotensi sebagai bioremediator. Penelitian ini bertujuan untuk menganalisis pengaruh konsentrasi batubara terhadap pertumbuhan Chlorella sp. dan kualitas air pada media kultur Chlorella sp. Metode yang digunakan dalam penelitian ini adalah metode eksperimen skala laboratorium. Rancangan percobaan yang digunakan adalah rancangan acak lengkap dengan 4 perlakuan konsentrasi batubara 0 ppt, 1 ppt, 3 ppt dan 5 ppt. Hasil penelitian menunjukkan bahwa batubara dengan konsentrasi yang berbeda tidak berpengaruh nyata terhadap laju pertumbuhan Chlorella sp (P>0,05. Kepadatan antara konsentrasi 0 ppt, 1 ppt, 3 ppt dan 5 ppt tidak terlalu jauh berbeda. Konsentrasi batubara juga tidak berpengaruh nyata terhadap parameter suhu, salinitas dan derajat keasaman (pH (p>0,05. Chlorella sp

  14. Acute and chronic toxic effects of chloramphenicol on Scenedesmus obliquus and Chlorella pyrenoidosa.

    Science.gov (United States)

    Zhang, Wei; Sun, Wenfang; An, Shuai; Xiong, Bang; Lin, Kuangfei; Cui, Xinhong; Guo, Meijin

    2013-08-01

    The acute and chronic toxicological effects of Chloramphenicol (CAP) on Scenedesmus obliquus and Chlorella pyrenoidosa are not well understood. The indoor experiments were carried to observe and analyze the CAP induced changes. Results of the observations have showed that CAP exposure could significantly inhibit the growth of Scenedesmus obliquus in almost all the treated groups, while Chlorella pyrenoidosa exhibited less sensitivity. Chlorophyll-a syntheses of Scenedesmus obliquus were all inhibited by CAP exposure, while Chlorella pyrenoidosa displayed obvious stimulation effect. Catalase (CAT) and Superoxide dismutase (SOD) activities of both algae were promoted in all the treatments. The experimental results indicated that the growth and Chlorophyll-a syntheses of Scenedesmus obliquus were more sensitive in response to CAP exposure than that of Chlorella pyrenoidosa. While for CAT and SOD activities, Chlorella pyrenoidosa showed more susceptible. This research provides a basic understanding of CAP toxicity to aquatic organisms.

  15. Evaluation of antiangiogenic and antiproliferative potential of the organic extract of green algae chlorella pyrenoidosa

    Science.gov (United States)

    Kyadari, Mahender; Fatma, Tasneem; Azad, Rajvardhan; Velpandian, Thirumurthy

    2013-01-01

    Objective: algae isolates obtained from fresh and marine resources could be one of the richest sources of novel bioactive secondary metabolites expected to have pharmaceutical significance for new drug development. This study was conducted to evaluate the antiangiogenic and antiproliferative activity of Chlorella pyrenoidosa in experimental models of angiogenesis and by MTT assay. Materials and Methods: lyophilized extract of C. pyrenoidosa was extracted using dichloromethane/methanol (2:1), concentrated and vacuum evaporated to obtain the dried extract. The crude extract was evaluated in the vascular endothelial growth factor (VEGF)-induced angiogenesis in in ovo chick chorioallantoic membrane assay (CAM) at various concentrations (n = 8) using thalidomide and normal saline as positive and untreated control groups, respectively. The crude extract was also subjected to the antiangiogenic activity in the silver nitrate/potassium nitrate cautery model of corneal neovascularization (CN) in rats where topical bevacizumab was used as a positive control. The vasculature was photographed and blood vessel density was quantified using Aphelion imaging software. The extract was also evaluated for its anti proliferative activity by microculture tetrazolium test (MTT) assay using HeLa cancer cell line (ATCC). Results: VEGF increased the blood vessel density by 220% as compared to normal and thalidomide treatment decreased it to 67.2% in in ovo assay. In the in-vivo CN model, the mean neovascular density in the control group, the C. pyrenoidosa extract and bevacizumab group were found to be 100%, 59.02%, and 32.20%, respectively. The Chlorella pyrenoidosa extract negatively affected the viability of HeLa cells. An IC50 value of the extract was 570 μg/ml, respectively. Conclusion: a significant antiangiogenic activity was observed against VEGF-induced neovascularization and antiproliferative activity by MTT assay. In this study, it could be attributed that the activity may be

  16. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    International Nuclear Information System (INIS)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping; Fu Zhengwei

    2009-01-01

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 μM Cu or 1.0 and 2.0 μM Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO 2 assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  17. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Li Jingjing; Sun Liwei; Chen Wei; Sheng, G. Daniel; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Fu Zhengwei, E-mail: azwfu2003@yahoo.com.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2009-08-13

    Chlorella vulgaris was tested to assess their toxicities in freshwater contaminated by the metal compounds of copper (Cu) and cadmium (Cd), both singly and combined. Exposure to 0.5 and 1.5 {mu}M Cu or 1.0 and 2.0 {mu}M Cd alone significantly decreased algal growth and chlorophyll content and increased reactive oxygen species (ROS) content. Two-way ANOVA analysis shows that the combination of these two metal compounds decreased cell growth, chlorophyll content and increased ROS content synergistically. The highest algal cell inhibition was 78.55%, the lowest levels of chl a, chl b and total-chl were 10.59%, 33.33% and 17.94% of the control, respectively. The highest increase in ROS was 9.15-fold greater than that of the control when exposed to Cu(1.5) + Cd(2.0). Real-time PCR shows that Cu and Cd reduced the transcript abundance of psbA and rbcL, but without a synergistic interaction, whereas Cu and Cd increased the transcript abundance of psaB synergistically. These results demonstrate that Cu and Cd independently inhibit PSII activity and CO{sub 2} assimilation, but synergistically increase ROS content to disrupt chlorophyll synthesis and inhibit cell growth.

  18. Studies on the growth behavior of Chlorella, Haematococcus and ...

    African Journals Online (AJOL)

    Growth studies were conducted on green algae Chlorella, Scenedesmus and Haematococcus strains in batch mode cultures. In this study, the effect of sodium bicarbonate salt (NaHCO3) and carbon dioxide (CO2) gas as carbon source on microalgal cultures were investigated. For this purpose, growth response of the ...

  19. Cultivation of Microalgae Chlorella sp on Fresh Water and Waste Water of Tofu Industry

    Science.gov (United States)

    Widayat; Philia, John; Wibisono, Jessica

    2018-02-01

    Chlorella sp. is a microalgae that potential for food supplement, pharmaceuticals, animal feed, aqua culture and cosmetics. Chlorella sp. commonly growth in sea water. Indonesia as a producer of tofu generated more liquid waste. Nutrient that contained in the tofu wastewater are very useful for the production of microalgae. Cultivation carried out for 7 days at different percent volume of tofu liquid waste showed that the more volume of tofu liquid waste make them longer process decipherment of polymer compounds in the waste, that's make the growth rate of Chlorella sp. are slowness. Variable of10%V has the fastest growth rate. While, 90% v/v variable has the highest concentration of algae. It shows that Chlorella sp. better to grows in tofu wastewater than seawater.

  20. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis.

    Science.gov (United States)

    Almeida, Hanna N; Calixto, Guilherme Q; Chagas, Bruna M E; Melo, Dulce M A; Resende, Fabio M; Melo, Marcus A F; Braga, Renata Martins

    2017-06-01

    Biofuels have been seen as potential sources to meet future energy demand as a renewable and sustainable energy source. Despite the fact that the production technology of first-generation biofuels is consolidated, these biofuels are produced from foods crops such as grains, sugar cane, and vegetable oils competing with food for crop use and agricultural land. In recent years, it was found that microalgae have the potential to provide a viable alternative to fossil fuels as source of biofuels without compromising food supplies or arable land. On this scenario, this paper aims to demonstrate the energetic potential to produce bio-oil and chemicals from microalgae Chlorella vulgaris and Arthrospira platensis. The potential of these biomasses was evaluated in terms of physical-chemical characterization, thermogravimetric analysis, and analytical pyrolysis interfaced with gas chromatograph (Py-GC/MS). The results show that C. vulgaris and A. platensis are biomasses with a high heating value (24.60 and 22.43 MJ/kg) and low ash content, showing a high percentage of volatile matter (72.49 and 79.42%). These characteristics confirm their energetic potential for conversion process through pyrolysis, whereby some important aromatic compounds such as toluene, styrene, and phenol were identified as pyrolysis products, which could turn these microalgae a potential for biofuels and bioproduct production through the pyrolysis.

  1. Comparative metabolism of 54Mn, 59Fe, 60Co and 65Zn incorporated into Chlorella and in inorganic form in rats

    International Nuclear Information System (INIS)

    Inaba, J.; Nishimura, Y.; Ichikawa, R.

    1980-01-01

    The objective of this study was to compare the whole-body retention and tissue distribution in rats of 54 Mn, 59 Fe, 60 Co and 65 Zn incorporated into chlorella with those in inorganic form. Chlorella vulgaris was cultured in a nutrient solution with one of the radionuclides for 10 days. The chlorella was separated from the solution by centrifuge and was given to rats using a stomach tube. Control groups of rats were given the radionuclide alone or together with nonradioactive chlorella. The whole-body retention and tissue distribution of the radionuclide was determined with an Armac counter. The result revealed that rats dosed with 60 Co incorporated into chlorella absorbed and retained much more 60 Co than those given 60 Cl 2 mixed with nonradioactive chlorella or 60 Cl 2 alone. In the cases of 54 Mn, 59 Fe and 65 Zn, however, the difference in whole-body retention and tissue distribution between the chlorella radionuclides and the control radionuclides was not significant. (author)

  2. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material.

    Science.gov (United States)

    Mohd-Sahib, Ainur-Assyakirin; Lim, Jun-Wei; Lam, Man-Kee; Uemura, Yoshimitsu; Isa, Mohamed Hasnain; Ho, Chii-Dong; Kutty, Shamsul Rahman Mohamed; Wong, Chung-Yiin; Rosli, Siti-Suhailah

    2017-09-01

    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Increased Growth of the Microalga Chlorella vulgaris when Coimmobilized and Cocultured in Alginate Beads with the Plant-Growth-Promoting Bacterium Azospirillum brasilense†

    Science.gov (United States)

    Gonzalez, Luz E.; Bashan, Yoav

    2000-01-01

    Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments. PMID:10742237

  4. Chlorella vulgaris as a lipid source: Cultivation on air and seawater-simulating medium in a helicoidal photobioreactor.

    Science.gov (United States)

    Frumento, Davide; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Converti, Attilio; Al Arni, Saleh; da Silva, Milena Fernandes

    2016-03-01

    The freshwater microalga Chlorella vulgaris was cultured batchwise on the seawater-simulating Schlösser medium either in a 1.1-L-working volume helicoidal photobioreactor (HeP) or Erlenmeyer flask (EF) as control and continuously supplying air as CO2 source. In these systems, maximum biomass concentration reached 1.65 ± 0.17 g L(-1) and 1.25 ± 0.06 g L(-1) , and maximum cell productivity 197.6 ± 20.4 mg L(-1)  day(-1) and 160.8 ± 12.2 mg L(-1)  day(-1) , respectively. Compared to the Bold's Basal medium, commonly employed to cultivate this microorganism on a bench-scale, the Schlösser medium ensured significant increases in all the growth parameters, namely maximum cell concentration (268% in EF and 126% in HeP), maximum biomass productivity (554% in EF and 72% in HeP), average specific growth rate (67% in EF and 42% in HeP), and maximum specific growth rate (233% in EF and 22% in HeP). The lipid fraction of biomass collected at the end of runs was analyzed in terms of both lipid content and fatty acid profile. It was found that the seawater-simulating medium, despite of a 56-63% reduction of the overall biomass lipid content compared to the Bold's Basal one, led in HeP to significant increases in both the glycerides-to-total lipid ratio and polyunsaturated fatty acid content compared to the other conditions taken as an average. These results as a whole suggest that the HeP configuration could be a successful alternative to the present means to cultivate C. vulgaris as a lipid source. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:279-284, 2016. © 2016 American Institute of Chemical Engineers.

  5. Taxonomic identification and lipid production of two Chilean Chlorella-like strains isolated from a marine and an estuarine coastal environment

    Science.gov (United States)

    González, Mariela A.; Pröschold, Thomas; Palacios, Yussi; Aguayo, Paula; Inostroza, Ingrid; Gómez, Patricia I.

    2013-01-01

    The genus Chlorella was the first microalga to be massively cultured as food, feed and as a source of nutraceuticals. More recently, some species have been suggested as candidates for biodiesel production. One of the most difficult tasks in studying the systematics of green coccoids is the identification of species assigned to the genus Chlorella. In the context of several projects carried out by our research group we isolated two Chlorella-like strains from a marine and an estuarine coastal environment in Chile (Coliumo strain and Baker strain, respectively). The main objectives of this research were to identify these Chilean strains—at the species level—and determine and compare their lipid production when cultured under identical conditions. Cell size and shape, autospore number and sizes, and chloroplast and pyrenoid ultrastructure were considered as taxonomic descriptors, and 18S rDNA sequences and internal transcribed spacer ITS-1 + ITS-2 sequences and secondary structure were adopted as phylogenetic tools. The combined use of these morphological, ultrastructural and molecular attributes revealed that only the Baker strain belongs to the genus Chlorella (C. vulgaris), while the Coliumo strain corresponds to the recently amended genus Chloroidium (C. saccharophilum). Lipid characterization of the biomass obtained from these strains showed that Chlorella vulgaris (Baker strain) appears to be suitable as a raw material for biodiesel production, while Chloroidium saccharophilum (Coliumo strain) would be more appropriate for animal nutrition.

  6. Biofuels from the Fresh Water Microalgae Chlorella vulgaris (FWM-CV for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Saddam H. Al-lwayzy

    2014-03-01

    Full Text Available This work aims to investigate biofuels for diesel engines produced on a lab-scale from the fresh water microalgae Chlorella vulgaris (FWM-CV. The impact of growing conditions on the properties of biodiesel produced from FWM-CV was evaluated. The properties of FWM-CV biodiesel were found to be within the ASTM standards for biodiesel. Due to the limited amount of biodiesel produced on the lab-scale, the biomass of dry cells of FWM-CV was used to yield emulsified water fuel. The preparation of emulsion fuel with and without FWM-CV cells was conducted using ultrasound to overcome the problems of large size microalgae colonies and to form homogenized emulsions. The emulsified water fuels, prepared using ultrasound, were found to be stable and the size of FWM-CV colonies were effectively reduced to pass through the engine nozzle safely. Engine tests at 3670 rpm were conducted using three fuels: cottonseed biodiesel CS-B100, emulsified cottonseed biodiesel water fuel, water and emulsifier (CS-E20 and emulsified water containing FWM-CV cells CS-ME20. The results showed that the brake specific fuel consumption (BSFC was increased by about 41% when the engine was fueled with emulsified water fuels compared to CS-B100. The engine power, exhaust gas temperature, NOx and CO2 were significantly lower than that produced by CS-B100. The CS-ME20 produced higher power than CS-E20 due to the heating value improvement as a result of adding FWM-CV cells to the fuel.

  7. Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior

    International Nuclear Information System (INIS)

    Rizzo, Andrea Maria; Prussi, Matteo; Bettucci, Lorenzo; Libelli, Ilaria Marsili; Chiaramonti, David

    2013-01-01

    Highlights: ► Proximate and ultimate analysis of two microalgae (Nannochloropsis and Chlorella spp.). ► TGA of Chlorella spp. and Nannochloropsis investigated at 15 °C/min up to 800 °C. ► 1.2 kg of Chlorella pyrolyzed in a novel batch, intermediate pyrolysis pilot reactor at 450 °C. ► Bio-oil from Chlorella oil analysed and compared to pine chips fast pyrolysis oil. ► Bio-oil from Chlorella exhibited superior properties compared to lignocellulosic pyrolysis oil as intermediate energy carrier. -- Abstract: Microalgae are photosynthetic microorganisms living in marine or freshwater environment. In this study, samples of Chlorella spp. and Nannochloropsis from two different origins were analysed to settle a preliminary characterization of these microorganisms as intermediate energy carriers and their properties compared to a conventional lignocellulosic feedstock (pine chips). Both microalgae samples were characterized in terms of elemental composition (CHONS and P) and thermogravimetric behavior. This was investigated through non-isothermal thermogravimetric analysis in nitrogen atmosphere at heating rate of 15 °C min −1 and temperature up to 800 °C. Solid residues produced at 300 °C and 800 °C from TGA were also analysed to determine the ultimate composition of chars. Activation energy, reaction order and pre-exponential factor were calculated for the single step conversion mechanism of 1 g of Chlorella spp. and compared to literature data on Chlorella protothecoides and Spirulina platensis. Calculated kinetic parameters, given as intervals of several determinations, resulted to be: pre-exponential factor (A) 1.47–1.62E6 min −1 , activation energy (E) 7.13–7.92E4 J mol −1 , reaction order (n) 1.69–2.41. 1.2 kg of Chlorella spp. was then processed in a newly designed batch pyrolysis pilot reactor, capable of converting up to 1.5 kg h −1 of material, and pyrolysis liquid collected, analysed and compared with a sample of fast pyrolysis

  8. Sensing of phosphates by using luminescent Eu(III) and Tb(III) complexes: application to the microalgal cell Chlorella vulgaris.

    Science.gov (United States)

    Nadella, Sandeep; Sahoo, Jashobanta; Subramanian, Palani S; Sahu, Abhishek; Mishra, Sandhya; Albrecht, Markus

    2014-05-12

    Phenanthroline-based chiral ligands L(1) and L(2) as well as the corresponding Eu(III) and Tb(III) complexes were synthesized and characterized. The coordination compounds show red and green emission, which was explored for the sensing of a series of anions such as F(-), Cl(-), Br(-), I(-), NO3(-), NO2(-), HPO4(2-), HSO4(-), CH3COO(-), and HCO3(-). Among the anions, HPO4(2-) exhibited a strong response in the emission property of both europium(III) and terbium(III) complexes. The complexes showed interactions with the nucleoside phosphates adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP). Owing to this recognition, these complexes have been applied as staining agents in the microalgal cell Chlorella vulgaris. The stained microalgal cells were monitored through fluorescence microscopy and scanning electron microscopy. Initially, the complexes bind to the outer cell wall and then enter the cell wall through holes in which they probably bind to phospholipids. This leads to a quenching of the luminescence properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage.

    Science.gov (United States)

    Wen, Yangmin; He, Yongjin; Ji, Xiaowei; Li, Shaofeng; Chen, Ling; Zhou, Youcai; Wang, Mingzi; Chen, Bilian

    2017-11-01

    Bio-treatment of wastewater mediated by microalgae is considered as a promising solution. This work aimed to isolate an indigenous microalgal strain (named MBFJNU-1) from swine wastewater effluent and identify as Chlorella vulgaris. After 12days, the removal efficiencies of total nitrogen (TN) and total phosphorus (TP) in undiluted swine slurry were 90.51% and 91.54%, respectively. Stress tolerance in response to wastewater was verified by cultivating in artificial wastewater containing different levels of chemical oxygen demand (COD), TN and TP. MBFJNU-1 could grow well in undiluted swine slurry and artificial wastewater containing 30,000mg/L COD or 2000mg/L TN. Furthermore, global nuclear DNA methylation (5-mC) of MBFJNU-1 was employed to explore the possible mechanism in response to wastewater stress. The results showed that the level of 5-mC was inversely proportional to the growth of MBFJNU-1 in different diluted swine slurry, helping to understand 5-mC variation in response to stress environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris

    Czech Academy of Sciences Publication Activity Database

    Přibyl, Pavel; Cepák, Vladislav; Zachleder, Vilém

    2012-01-01

    Roč. 94, č. 2 (2012), s. 549-561 ISSN 0175-7598 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50200510 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : Chlorella * Parachlorella * lipids Subject RIV: EF - Botanics Impact factor: 3.689, year: 2012

  11. In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris.

    Science.gov (United States)

    Abu-Serie, Marwa M; Habashy, Noha H; Attia, Wafaa E

    2018-05-10

    Since oxidative stress and inflammation are two linked factors in the pathogenesis of several human diseases. Thus identification of effective treatment is of great importance. Edible mushroom and microalgae are rich in the effective antioxidant phytochemicals. Hence, their beneficial effects on oxidative stress-associated inflammation are extremely required to be investigated. This study evaluated the functional constituents, antioxidant and anti-inflammatory activities of Malaysian Ganoderma lucidum aqueous extract (GLE) and Egyptian Chlorella vulgaris ethanolic extract (CVE). Also, the synergistic, addictive or antagonistic activities of the combination between the two extracts (GLE-CVE) were studied. Expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor-kappa B, as well as levels of nitric oxide, tumor necrosis factor (TNF)-α, lipid peroxidation, reduced glutathione and antioxidant enzymes were determined using in vitro model of lipopolysaccharide-stimulated white blood cells.

  12. Cultivation of algae in photobioreator and obtention of biodiesel

    Directory of Open Access Journals (Sweden)

    Cristiane B. Hobuss

    2011-04-01

    Full Text Available In this work we described the cultivation of Chlorella vulgaris in a photobioreactor to algal biomass production. The dried biomass was used as feedstock for biodiesel production, it presented 26% lipids and via sonocatalysis stage of the methodology resulted in 60% of fatty acid methyl esters (FAME. The FAME content was confirmed by Gas Chromatography (GC.

  13. Association of Paramecium bursaria Chlorella viruses with Paramecium bursaria cells: ultrastructural studies.

    Science.gov (United States)

    Yashchenko, Varvara V; Gavrilova, Olga V; Rautian, Maria S; Jakobsen, Kjetill S

    2012-05-01

    Paramecium bursaria Chlorella viruses were observed by applying transmission electron microscopy in the native symbiotic system Paramecium bursaria (Ciliophora, Oligohymenophorea) and the green algae Chlorella (Chlorellaceae, Trebouxiophyceae). Virus particles were abundant and localized in the ciliary pits of the cortex and in the buccal cavity of P. bursaria. This was shown for two types of the symbiotic systems associated with two types of Chlorella viruses - Pbi or NC64A. A novel quantitative stereological approach was applied to test whether virus particles were distributed randomly on the Paramecium surface or preferentially occupied certain zones. The ability of the virus to form an association with the ciliate was investigated experimentally; virus particles were mixed with P. bursaria or with symbiont-free species P. caudatum. Our results confirmed that in the freshwater ecosystems two types of P. bursaria -Chlorella symbiotic systems exist, those without Chlorella viruses and those associated with a large amount of the viruses. The fate of Chlorella virus particles at the Paramecium surface was determined based on obtained statistical data and taking into account ciliate feeding currents and cortical reorganization during cell division. A life cycle of the viruses in the complete symbiotic system is proposed. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Coagulant effect of ferric chloride for separation of biomass from the microalgae Chlorella sp. of the water; Efeito coagulante do cloreto ferrico para separacao da biomassa da microalga Chlorella sp. da agua

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Tamara Daiane de; Mendes, Mucio Andre dos Santos Alves [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola e Ambiental], E-mail: tamara_daiane@yahoo.com.br; Matos, Antonio Teixeira de [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola; Lo Monaco, Paola Alfonsa Vieira [Instituto Federal do Espirito Santo (IFES), Santa Teresa, ES (Brazil); Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2010-07-01

    Currently, much interest has been focused on the biotechnological potential of microalgae, mainly in the production of biofuels. For this to become viable the biomass of algae should be separated from the water and the process of coagulation/flocculation/sedimentation may be an alternative. This study aimed to evaluate the effect of ferric chloride as coagulant agent of the microalgae Chlorella vulgaris. Were tested five concentrations of ferric chloride in the suspension containing the microalgae: 20,0; 30,0; 40,0; 50,0 e 100,0 g L{sup -1}. The tests were performed using the Jar-test apparatus and the turbidity was measured in suspensions after 2 hours of sedimentation. Mathematical equations were adjusted by regression, relating the concentration used in the tests according to the turbidity of the suspension. There was a linear decrease in turbidity with the addition of ferric chloride, and for concentration of 100.0 g L{sup -1} was achieved a removal efficiency of turbidity of 58%. However, it is necessary to conduct further research, evaluating the economic feasibility of the technique in the separation of microalgae from the water. (author)

  15. Cloning and Characterization of the -Carotene Desaturase Gene from Chlorella protothecoides CS-41

    Directory of Open Access Journals (Sweden)

    Meiya Li

    2011-01-01

    Full Text Available To elucidate the lutein biosynthesis pathway in the lutein-producing alga, Chlorella protothecoides CS-41, the -carotene desaturase gene (zds was isolated from Chlorella protothecoides using the approach of rapid amplification of cDNA ends. The full-length cDNA sequence was 2031 bp and contained 1755 bp putative open reading frame which encodes a 584 amino acid deduced polypeptide whose computed molecular weight was 63.7 kDa. Sequence homology research indicated that the nucleotide and putative protein had sequence identities of 72.5% and 69.5% with those of the green alga Chlamydomonas reinhardtii, respectively. Phylogenetic analysis demonstrated that the ZDS from C. protothecoides CS-41 had a closer relationship with those of chlorophyta and higher plants than with those of other species. In addition, we also found that the zds gene expression was upregulated in response to light.

  16. Medium's conductivity and stage of growth as crucial parameters for efficient hydrocarbon extraction by electric field from colonial micro-algae.

    Science.gov (United States)

    Guionet, Alexis; Hosseini, Bahareh; Akiyama, Hidenori; Hosano, Hamid

    2018-04-25

    The green algae Botryococcus braunii produces a high amount of extracellular hydrocarbon, making it a promising algae in the field of bio-fuels production. As it mainly produces squalene like hydrocarbons, cosmetic industries are also interested in its milking. Pulsed electric fields (PEF) are an innovative method allowing oil extraction from micro-algae. In common algae accumulating hydrocarbon inside cytoplasm (Chlorella vulgaris, Nannochloropsis sp., etc), electric fields can destroy cell membranes, allowing the release of hydrocarbon. However, for B.braunii, hydrocarbons adhere to the cell wall outside of cells as a matrix. In a previous article we reported that electric fields can unstick cells from a matrix, allowing hydrocarbon harvesting. In this work, we deeper investigated this phenomenon of cell hatching by following 2 parameters: the conductivity of the medium and the cultivation duration of the culture. Cell hatching is accurately evaluated by both microscopic and macroscopic observations. For high conductivity and a short time of cultivation, almost no effect is observed even after up to 1000 PEF pulses are submitted to the cells. While lower conductivity and a longer cultivation period allow strong cell hatching after 200 PEF pulses are applied to the cells. We identify 2 new crucial parameters, able to turn the method from inefficient to very efficient. It might help companies to save energy and money in case of mass production. Copyright © 2018. Published by Elsevier B.V.

  17. WATER CONDITION IN CELLS OF CHLORELLA

    Directory of Open Access Journals (Sweden)

    I. V. Kuznetsova

    2015-01-01

    Full Text Available The water condition in cages of the paste of chlorella was investigated by the method of thermogravimetric analysis. With increasing heating rate endothermic effect corresponding to the dehydration process is shifted towards higher temperatures. Temperature intervals of chlorella dehydration are defined at rate of heating 2 К/min - 308-368 K, 5 К/min - 323-403 K, and 10 К/min - 348-403 K. Quantitative characteristics of kinetic unequal water in chlorella have been received for each step (∆, ∆Т, a mass fraction (w, energy of activation (Еа. This process is similar to the process of the dehydration in ion exchange membranes. The derived kinetic characteristics give the possibility to define an optimum temperature interval and rate of drying microalgae for the purpose of increase of periods of storage in the form of paste or a solid substance for the further use as the bioadditive. In addition the presence of three types of water chlorella in a cell set according to NMR with pulsed magnetic field gradient. Since free water is involved in biochemical, chemical and microbiological processes, it is desirable to remove during drying of the preparation. The resulting temperature range of 323-343 K (step 2 at a heating rate of 2 K / min corresponds to a temperature range of drying the chlorella in a production environment. It should be noted that the highest number of algae in a tightly-water (the last stage. Apparently, this is determined by a unique cell structure. Temperature ranges dehydration process are not clear and vary depending on the heating rate, which is fully in line with previous studies of thermal analysis for grains, vegetables and bakery products.

  18. Different types of interactions of links in artificial and natural ecosystems under anthropogenic pressure

    Science.gov (United States)

    Somova, Lydia; Pisman, Tamara; Mikheeva, Galina; Pechurkin, Nickolay

    The life of organisms in an ecosystem depends not only on abiotic factors, but also on the interaction of organisms in which they come with each other. The study of mechanisms of the bioregulation based on ecological - biochemical interactions of ecosystem links is necessary to know the ecosystem development, its stability, survival of ecosystem organisms. It is of high importance as for the creation of artificial ecosystems, and also for the study of natural ecosystems under anthropogenic pressure on them. To create well-functioning ecosystems is necessary to study and consider the basic types of relationships between organisms. The basic types of interactions between organisms have been studied with simple terrestrial and water ecosystems. 1. The interaction of microbiocenoses and plants were studied in experiments with agrocenoses. Microbiocenosis proposed for increase of productivity of plants and for obtaining ecologically pure production of plants has been created taking into account mutual relationships between species of microorganisms. 2. The experimental model of the atmosphere closed «autotroph - heterotroph» system in which heterotrophic link was the mixed population of yeasts (Candida utilis and Candida guilliermondii) was studied. The algae Chlorella vulgaris was used as an autotroph link. It was shown, that the competition result for heterotrophic link depended on strategy of populations of yeast in relation to a substrate and oxygen utilization. 3. As a result of experimental and theoretical modelling of a competition of algae Chlorella vulgaris and Scenedesmus quadricauda at continuous cultivation, the impossibility of their coexistence in the conditions of limitation on nitrogen was shown. 4. Pray-predator interactions between algae (Chlorella vulgaris, Scenedesmus quadricauda) and invertebrates (Paramecium caudatum, Brachionus plicatilis) were studied in experimental closed ecosystem. This work was partly supported by the Russian Foundation for

  19. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillaume; Duncan, Garry A.; Agarakova, Irina; Borodovsky, Mark; Gurnon, James; Kuo, Alan; Lindquist, Erika; Lucas, Susan; Pangailinan, Jasmyn; Polle, Juergen; Salamov, Asaf; Terry, Astrid; Yamada, Takashi; Dunigan, David D.; Grigoriev, Igor V.; Claverie, Jean-Michel; Etten, James L. Van

    2010-05-06

    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.

  20. Biomass and protein production of Chlorella vulgarisBeyerinck (Chlorellales : Chlorellaceae via the design of selective culture media

    Directory of Open Access Journals (Sweden)

    Ángel Darío González-Delgado

    2017-09-01

    Full Text Available In recent years, it has become more frequent the use of alternative culture media that use phosphorus and nitrogen sources as well as microelements, instead of using the more traditional ones. Therefore, in this study two mixotrophic culture media were designed with different sodium nitrate, potassium phosphate and sodium acetate/ammonium carbonate concentrations as carbon source, to evaluate the biomass and protein production of the microalgae Chlorella vulgaris Beyerinck. A Pareto diagram and a response surface plot were generated in order to know the significant influence that the study variables have on protein production. The results showed that higher biomass production (3.72 g/L for the culture with acetate and 2.17 g/L for the one with carbonate are directly related to sodium nitrate (1.96 mM and potassium phosphate (2.11 mM. In addition, the maximum protein values obtained were 60% and 34% for acetate and carbonate cultures, respectively, both with 2.94 mM of sodium nitrate. Finally, the Pareto diagram showed that for the culture based on acetate there was no significant variables that influenced protein production; whereas the culture with carbonate, sodium nitrate and potassium phosphate influenced significantly the production of this metabolite.

  1. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations.

    Science.gov (United States)

    Ortiz Montoya, Erika Y; Casazza, Alessandro A; Aliakbarian, Bahar; Perego, Patrizia; Converti, Attilio; de Carvalho, João C Monteiro

    2014-01-01

    To reduce CO2 emissions and simultaneously produce biomass rich in essential fatty acids, Chlorella vulgaris CCAP 211 was continuously grown in a tubular photobioreactor using air alone or air enriched with CO2 as the sole carbon source. While on one hand, nitrogen-limited conditions strongly affected biomass growth, conversely, they almost doubled its lipid fraction. Under these conditions using air enriched with 0, 2, 4, 8, and 16% (v/v) CO2 , the maximum biomass concentration was 1.4, 5.8, 6.6, 6.8, and 6.4 gDB L(-1) on a dry basis, the CO2 consumption rate 62, 380, 391, 433, and 430 mgCO2 L(-1) day(-1) , and the lipid productivity 3.7, 23.7, 24.8, 29.5, and 24.4 mg L(-1) day(-1) , respectively. C. vulgaris was able to grow effectively using CO2 -enriched air, but its chlorophyll a (3.0-3.5 g 100gDB (-1) ), chlorophyll b (2.6-3.0 g 100gDB (-1) ), and lipid contents (10.7-12.0 g 100gDB (-1) ) were not significantly influenced by the presence of CO2 in the air. Most of the fatty acids in C. vulgaris biomass were of the saturated series, mainly myristic, palmitic, and stearic acids, but a portion of no less than 45% consisted of unsaturated fatty acids, and about 80% of these were high added-value essential fatty acids belonging to the ω3 and ω6 series. These results highlight that C. vulgaris biomass could be of great importance for human health when used as food additive or for functional food production. © 2014 American Institute of Chemical Engineers.

  2. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    Energy Technology Data Exchange (ETDEWEB)

    Attalah, Said; Waller, Peter M.; Khawam, George; Ryan, Randy D.; Huesemann, Michael H.

    2015-06-03

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  3. Evidence for non-assimilation of Chlorella by the African freshwater snail Bulinus (Physopsis) globosus

    International Nuclear Information System (INIS)

    Van Aardt, W.J.; Wolmarans, C.T.

    1981-01-01

    Little is known about the assimilation of its natural food by South African basommatophorans. It is generally assumed that the snails are microphagus herbivores which ingest mainly periphytic algae, detritus and the bacterial component of their food. Preliminary observations indicated that Chlorella spp. were by far the dominant algal species on stems and leaves of Juncus on which the snails were usually found in our study. This report describes experiments to see whether Chlorella is ingested and assimilated by Bulinus (Physopsis) globosus. A closely related species, B. (B.) tropicus, which occupies the same niche was also included in the study for purposes of comparison. It was found that, although Chlorella was continuously ingested by both species, it was assimilated by neither. Possible reasons for this are given

  4. Novel protocol for lutein extraction from microalga Chlorella vulgaris

    DEFF Research Database (Denmark)

    D'Este, Martina; De Francisci, Davide; Angelidaki, Irini

    2017-01-01

    Lutein is a pigment generally extracted from marigold flowers. However, lutein is also found in considerable amounts in microalgae. In this study a novel method was developed to improve the extraction efficiency of lutein from microalga C. vulgaris. Differently from conventional methods, ethanol...

  5. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation.

    Science.gov (United States)

    Fradique, Mónica; Batista, Ana Paula; Nunes, M Cristiana; Gouveia, Luísa; Bandarra, Narcisa M; Raymundo, Anabela

    2010-08-15

    Microalgae are able to enhance the nutritional content of conventional foods and hence to positively affect human health, due to their original chemical composition. The aim of the present study was to prepare fresh spaghetti enriched with different amounts of microalgae biomass (Chlorella vulgaris and Spirulina maxima) and to compare the quality parameters (optimal cooking time, cooking losses, swelling index and water absorption), chemical composition, instrumental texture and colour of the raw and cooked pasta enriched with microalgae biomass with standard semolina spaghetti. The incorporation of microalgae results in an increase of quality parameters when compared to the control sample. The colour of microalgae pastas remained relatively stable after cooking. The addition of microalgae resulted in an increase in the raw pasta firmness when compared to the control sample. Of all the microalgae studied, an increase in the biomass concentration (0.5-2.0%) resulted in a general tendency of an increase in the pasta firmness. Sensory analysis revealed that microalgae pastas had higher acceptance scores by the panellists than the control pasta. Microalgae pastas presented very appellative colours, such as orange and green, similar to pastas produced with vegetables, with nutritional advantages, showing energetic values similar to commercial pastas. The use of microalgae biomass can enhance the nutritional and sensorial quality of pasta, without affecting its cooking and textural properties. Copyright (c) 2010 Society of Chemical Industry.

  6. First case of Chlorella wound infection in a human in Australia

    Directory of Open Access Journals (Sweden)

    J. Hart

    2014-07-01

    Full Text Available A 30-year-old man developed an infected knee wound 2 days after jumping his bicycle into a freshwater dam. He required repeated debridement and tissue grew bright green colonies typical of the alga Chlorella plus Aeromonas hydrophila. This, and one previously reported case, responded to surgical debridement and careful wound management.

  7. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions.

    Science.gov (United States)

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the bacterium Azospirillum brasilense jointly immobilized with Chlorella vulgaris or C. sorokiniana in alginate beads on total carbohydrates and starch was studied under dark and heterotrophic conditions for 144 h in synthetic growth medium supplemented with either d-glucose or Na-acetate as carbon sources. In all treatments, enhanced total carbohydrates and starch content per culture and per cell was obtained after 24h; only jointly immobilized C. vulgaris growing on d-glucose significantly increased total carbohydrates and starch content after 96 h. Enhanced accumulation of carbohydrate and starch under jointly immobilized conditions was variable with time of sampling and substrate used. Similar results occurred when the microalgae was immobilized alone. In both microalgae growing on either carbon sources, the bacterium promoted accumulation of carbohydrates and starch; when the microalgae were immobilized alone, they used the carbon sources for cell multiplication. In jointly immobilized conditions with Chlorella spp., affinity to carbon source and volumetric productivity and yield were higher than when Chlorella spp. were immobilized alone; however, the growth rate was higher in microalgae immobilized alone. This study demonstrates that under heterotrophic conditions, A. brasilense promotes the accumulation of carbohydrates in two strains Chlorella spp. under certain time-substrate combinations, producing mainly starch. As such, this bacterium is a biological factor that can change the composition of compounds in microalgae in dark, heterotrophic conditions. Copyright © 2012. Published by Elsevier Inc.

  8. Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora)

    Science.gov (United States)

    SONNTAG, BETTINA; SUMMERER, MONIKA; SOMMARUGA, RUBEN

    2007-01-01

    Mycosporine-like amino acids (MAAs) are a family of secondary metabolites known to protect organisms exposed to solar UV radiation. We tested their distribution among several planktonic ciliates bearing Chlorella isolated from an oligo-mesotrophic lake in Tyrol, Austria. In order to test the origin of these compounds, the MAAs were assessed by high performance liquid chromatography in both the ciliates and their symbiotic algae. Considering all Chlorella-bearing ciliates, we found: (i) seven different MAAs (mycosporine-glycine, palythine, asterina-330, shinorine, porphyra-334, usujirene, palythene); (ii) one to several MAAs per species and (iii) qualitative and quantitative seasonal changes in the MAAs (e.g. in Pelagodileptus trachelioides). In all species tested, concentrations of MAAs were always <1% of ciliate dry weight. Several MAAs were also identified in the Chlorella isolated from the ciliates, thus providing initial evidence for their symbiotic origin. In Uroleptus sp., however, we found evidence for a dietary source of MAAs. Our results suggest that accumulation of MAAs in Chlorella-bearing ciliates represents an additional benefit of this symbiosis and an adaptation for survival in sunlit, UV-exposed waters.

  9. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Meilan Xue

    2012-12-01

    Full Text Available Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3, which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells. Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.

  10. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Meilan; Ge, Yinlin; Zhang, Jinyu [Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao Shandong (China); Wang, Qing [Affiliated Hospital of Qingdao University, Qingdao Shandong (China); Hou, Lin [Department of Biochemistry and Molecular Biology, Medical College, Qingdao University, Qingdao Shandong (China)

    2012-09-14

    Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.

  11. Gene transfer of Chlorella vulgaris n-3 fatty acid desaturase optimizes the fatty acid composition of human breast cancer cells

    International Nuclear Information System (INIS)

    Xue, Meilan; Ge, Yinlin; Zhang, Jinyu; Wang, Qing; Hou, Lin

    2012-01-01

    Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings

  12. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions.

    Science.gov (United States)

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the microalgae-growth promoting bacterium Azospirillum brasilense on accumulation of total carbohydrates and starch in two species of Chlorella (Chlorella vulgaris and Chlorella sorokiniana), when the bacterium and each microalga were jointly immobilized in alginate beads was studied under autotrophic conditions for 144 h in synthetic medium. The interaction of the bacterium with the microalgae enhanced accumulation of total carbohydrate and starch. Cells of Chlorella accumulated the highest amounts of carbohydrate after incubation for 24h. Yet, this did not coincide with the highest affinity and volumetric productivity measured in these cultures. However, after incubation for 72 h, mainly in jointly immobilized treatments of both microalgae species, the cultures reached their highest total carbohydrate content (mainly as starch) and also the highest affinity and volumetric productivity. These results demonstrate the potential of A. brasilense to affect carbohydrates and starch accumulation in Chlorella spp. when both microorganisms are co-cultured, which can be an important tool for applications of microalgae. Copyright © 2012. Published by Elsevier Inc.

  13. The Potential of Microalgae Lipids for Edible Oil Production.

    Science.gov (United States)

    Huang, Yanfei; Zhang, Dongmei; Xue, Shengzhang; Wang, Meng; Cong, Wei

    2016-10-01

    The objective of this study was to evaluate the potential of oil-rich green algae, Chlorella vulgaris, Scenedesmus obliquus, and Nannochloropsis oceanica, to produce edible oil with respect to lipid and residue properties. The results showed that C. vulgaris and N. oceanica had similarly much higher lipid recovery (about 50 %) in hexane extraction than that of S. obliquus (about 25 %), and C. vulgaris had the highest content of neutral lipids among the three algae. The fatty acid compositions of neutral lipids from C. vulgaris and S. obliquus were mainly C16 and C18, resembling that of vegetable oils. ARA and EPA were the specific valuable fatty acids in lipids of N. oceanica, but the content of which was lower in neutral lipids. Phytol was identified as the major unsaponifiable component in lipids of the three algae. Combined with the evaluation of the ratios in SFA/MUFA/PUFA, (n-6):(n-3) and content of free fatty acids, lipids obtained from C. vulgaris displayed the great potential for edible oil production. Lipids of N. oceanica showed the highest antioxidant activity, and its residue contained the largest amounts of protein as well as the amino acid compositions were greatly beneficial to the health of human beings.

  14. Micro-algae: French players discuss the matter

    International Nuclear Information System (INIS)

    Bouveret, T.

    2013-01-01

    About 75000 species of algae have been reported so far, the domains of application are huge and investment are increasing all around the world. One of the difficulties is to find the most appropriate algae to a specific application. Some development programs have failed scientifically or economically for instance the production of protein for animal food from the chlorella algae or the production of bio-fuel from C14-C18 chains, from zeaxanthine and from phycoerytrine. On the other side some research programs have led to promising industrial applications such as the production of food for fish and farm animals. Some research fields are completely innovative such as the use of micro-algae for the construction of bio-walls for buildings. Micro-algae are diverse and fragile. Photo-bioreactors have been designed to breed fragile algae like some types of chlorophycees used in bio-fuel and in cosmetics, a prototype has been tested for 15 months and its production is about 2 kg of dry matter a day. (A.C.)

  15. Study in biosorption of lead, cadmium, nickel and zink to algae; Untersuchung der Biosorption von Blei, Cadmium, Nickel und Zink an Algen

    Energy Technology Data Exchange (ETDEWEB)

    Klimmek, S.; Stan, H.J. [Technische Univ. Berlin (Germany). Inst. fuer Lebensmittelchemie

    1999-07-01

    In a screening test, 25 algae have so far been examined for their ability to adsorb the four heavy metals Pb, Cd, Ni, Zn. The chlorophycea species Chlorella salina and the cynaophycea species Lyngbya taylorii proved the most efficient algae in the screening. The potential of algae as heavy metal adsorbers is shown by the example of Lyngbya taylorii. (orig.) [German] In einem Screeningverfahren wurden bisher 25 Algen auf ihre Faehigkeit, die vier Schwermetalle (Pb, Cd, Ni, Zn) zu adsorbieren, untersucht. Die Chlorophycee Chlorella salina und die Cyanophycee Lyngbya taylorii erwiesen sich als die leistungsfaehigsten Algen im Screening. Das Potential der Algen als Schwermetalladsorber wird am Beispiel von Lyngbya taylorii gezeigt. (orig.)

  16. Biofilm Attached Cultivation of Chlorella pyrenoidosa Is a Developed System for Swine Wastewater Treatment and Lipid Production

    Science.gov (United States)

    Cheng, Pengfei; Wang, Yuanzhu; Liu, Tianzhong; Liu, Defu

    2017-01-01

    This study showed the new potential of using soluble contents and heavy metals in swine wastewater as nutrient supplements for the algae Chlorella pyrenoidosa with biofilm attached method. Algae with biofilm attached cultivation grew well in unpasteurized wastewater reaching a biomass productivity of 5.03 g m−2 d−1, lipid content of 35.9% and lipid productivity of 1.80 g m−2 d−1. Chlorella grew in BG11 medium delivered lower values for each of the aforementioned parameters. The FAMEs compositions in the algae paste were mainly consisted of C16:0, C18:2, and C18:3. Algae removed NH4+–N, total phosphorus (TP), and COD by 75.9, 68.4, and 74.8%, respectively. Notably, Zn2+, Cu+, and Fe2+ were removed from wastewater with a ratio of 65.71, 53.64, and 58.89%, respectively. Biofilm attached cultivation of C. pyrenoidosa in swine wastewater containing heavy metals could accumulate considerable biomass and lipid, and the removal ratio of NH4+–N, TP, COD, and as well as heavy metal were high. Treatment of wastewater with biofilm attached cultivation showed an increasingly popular for the concentration of microalgae and environmental sustainability. PMID:28983302

  17. Biofilm Attached Cultivation of Chlorella pyrenoidosa Is a Developed System for Swine Wastewater Treatment and Lipid Production

    Directory of Open Access Journals (Sweden)

    Pengfei Cheng

    2017-09-01

    Full Text Available This study showed the new potential of using soluble contents and heavy metals in swine wastewater as nutrient supplements for the algae Chlorella pyrenoidosa with biofilm attached method. Algae with biofilm attached cultivation grew well in unpasteurized wastewater reaching a biomass productivity of 5.03 g m−2 d−1, lipid content of 35.9% and lipid productivity of 1.80 g m−2 d−1. Chlorella grew in BG11 medium delivered lower values for each of the aforementioned parameters. The FAMEs compositions in the algae paste were mainly consisted of C16:0, C18:2, and C18:3. Algae removed NH4+–N, total phosphorus (TP, and COD by 75.9, 68.4, and 74.8%, respectively. Notably, Zn2+, Cu+, and Fe2+ were removed from wastewater with a ratio of 65.71, 53.64, and 58.89%, respectively. Biofilm attached cultivation of C. pyrenoidosa in swine wastewater containing heavy metals could accumulate considerable biomass and lipid, and the removal ratio of NH4+–N, TP, COD, and as well as heavy metal were high. Treatment of wastewater with biofilm attached cultivation showed an increasingly popular for the concentration of microalgae and environmental sustainability.

  18. Antimicrobial activity of ethanolic extracts from algae against Penicillium expansum Link (Trichocomaceae, Ascomycota

    Directory of Open Access Journals (Sweden)

    Argus Cezar da Rocha Neto

    2015-12-01

    Full Text Available Penicillium expansum is a cosmopolitan, highly aggressive pathogen that causes blue mold, a disease of great importance that leads to losses in quality and quantity of harvested fruits. The application of chemicals is traditionally used as a control method. However, algae bioprospecting has revealed many antifungal compounds that can be used to control pathogens. Thus, the objective of this study was to evaluate the effects of ethanolic extracts from seven microalgae and five macroalgae against P. expansum. The antifungal potential was evaluated by analyzing germination percentage, the size of the germ tube, minimum inhibitory concentration (MIC, and the median effective concentration (EC50. The spectrophotometric profile was determined for extracts that showed an inhibitory effect. Among the investigated algae, the Chlorella sp. and H. pluvialis extracts, which had final concentrations of 18.8 and 125.95mg.mL-1, inhibited 100% and 91% germination, respectively. The EC50 was 2.93 and 61.20 mg.mL-1 for Chlorella sp. and H. pluvialis, respectively. Chlorella sp. showed absorption peaks in the range of chlorophyll-a and H. pluvialis presented a peak in the range of phenolic compounds. Although further studies are required to characterize the extracts, Chlorella sp. and H. pluvialis showed promising antifungal effects on the control of P. expansum.

  19. The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-07-01

    Full Text Available Abstract Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales. Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate

  20. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions

    Czech Academy of Sciences Publication Activity Database

    Takeshita, T.; Ota, M. S.; Yamazaki, T.; Hirata, A.; Zachleder, Vilém; Kawano, S.

    2014-01-01

    Roč. 158, č. 2 (2014), s. 127-134 ISSN 0960-8524 Institutional support: RVO:61388971 Keywords : Chlorella * alga * starch * lipids Subject RIV: EE - Microbiology, Virology Impact factor: 4.494, year: 2014

  1. Characteristics of the digestive vacuole membrane of the alga-bearing ciliate Paramecium bursaria.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2012-07-01

    Cells of the ciliate Paramecium bursaria harbor symbiotic Chlorella spp. in their cytoplasm. To establish endosymbiosis with alga-free P. bursaria, symbiotic algae must leave the digestive vacuole (DV) to appear in the cytoplasm by budding of the DV membrane. This budding was induced not only by intact algae but also by boiled or fixed algae. However, this budding was not induced when food bacteria or India ink were ingested into the DVs. These results raise the possibility that P. bursaria can recognize sizes of the contents in the DVs. To elucidate this possibility, microbeads with various diameters were mixed with alga-free P. bursaria and traced their fate. Microbeads with 0.20μm diameter did not induce budding of the DVs. Microbeads with 0.80μm diameter produced DVs of 5-10μm diameter at 3min after mixing; then the DVs fragmented and became vacuoles of 2-5μm diameter until 3h after mixing. Each microbead with a diameter larger than 3.00μm induced budding similarly to symbiotic Chlorella. These observations reveal that induction of DV budding depends on the size of the contents in the DVs. Dynasore, a dynamin inhibitor, greatly inhibited DV budding, suggesting that dynamin might be involved in DV budding. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography

    Czech Academy of Sciences Publication Activity Database

    Hodač, L.; Hallmann, Ch.; Spitzer, K.; Elster, Josef; Fasshauer, F.; Brinkmann, N.; Lepka, D.; Diwan, V.; Friedl, T.

    2016-01-01

    Roč. 92, č. 8 (2016), s. 1-16, č. článku fiw122. ISSN 0168-6496 Institutional support: RVO:67985939 Keywords : Chlorella * Stichococcus * biogeography Subject RIV: EH - Ecology, Behaviour Impact factor: 3.720, year: 2016

  3. Candida utilis and Chlorella vulgaris counteract intestinal inflammation in Atlantic salmon (Salmo salar L..

    Directory of Open Access Journals (Sweden)

    Fabian Grammes

    Full Text Available Intestinal inflammation, caused by impaired intestinal homeostasis, is a serious condition in both animals and humans. The use of conventional extracted soybean meal (SBM in diets for Atlantic salmon and several other fish species is known to induce enteropathy in the distal intestine, a condition often referred to as SBM induced enteropathy (SBMIE. In the present study, we investigated the potential of different microbial ingredients to alleviate SBMIE in Atlantic salmon, as a model of feed-induced inflammation. The dietary treatments consisted of a negative control based on fish meal (FM, a positive control based on 20% SBM, and four experimental diets combining 20% SBM with either one of the three yeasts Candida utilis (CU, Kluyveromyces marxianus (KM, Saccharomyces cerevisiae (SC or the microalgae Chlorella vulgaris (CV. Histopathological examination of the distal intestine showed that all fish fed the SC or SBM diets developed characteristic signs of SBMIE, while those fed the FM, CV or CU diets showed a healthy intestine. Fish fed the KM diet showed intermediate signs of SBMIE. Corroborating results were obtained when measuring the relative length of PCNA positive cells in the crypts of the distal intestine. Gene set enrichment analysis revealed decreased expression of amino acid, fat and drug metabolism pathways as well as increased expression of the pathways for NOD-like receptor signalling and chemokine signalling in both the SC and SBM groups while CV and CU were similar to FM and KM was intermediate. Gene expression of antimicrobial peptides was reduced in the groups showing SBMIE. The characterisation of microbial communities using PCR-DGGE showed a relative increased abundance of Firmicutes bacteria in fish fed the SC or SBM diets. Overall, our results show that both CU and CV were highly effective to counteract SBMIE, while KM had less effect and SC had no functional effects.

  4. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.

    Science.gov (United States)

    Yadav, Anant; Choudhary, Piyush; Atri, Neelam; Teir, Sebastian; Mutnuri, Srikanth

    2016-11-01

    The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO 2 from vent gas. The studies were carried out for CO 2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO 2 in vent gas to 15 vol.% of CO 2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m 2 /day. The methane yield was 386 l CH 4 /kg VS fed of Chlorella sp. whereas 228 l CH 4 /kg VS fed of the consortium of algae.

  5. Potential role of marine algae extract on 3T3-L1 cell proliferation and differentiation: an in vitro approach

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    Full Text Available BACKGROUND: From ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. Hence, we aimed to investigate the chemical constituents and adipo-genic modulatory properties of C. vulgaris in 3T3-L1 pre-adipocytes. RESULTS: We analysed chemical constituents in ethanolic extract of C. vulgaris (EECV by LC-MS. Results revealed that the EECV contains few triterpenoids and saponin compounds. Further, the effect of EECV on lipid accumulation along with genes and proteins expressions which are associated with adipogenesis and lipogenesis were evaluated using oil red O staining, qPCR and western blot techniques. The data indicated that that EECV treatment increased differentiation and lipid accumulation in 3T3-L1 cells, which indicates positive regulation of adipogenic and lipogenic activity. These increases were associated with up-regulation of PPAR-γ2, C/EBP-α, adiponectin, FAS, and leptin mRNA and protein expressions. Also, EECV treatments increased the concentration of glycerol releases as compared with control cells. Troglitazone is a PPAR-γ agonist that stimulates the PPAR-y2, adiponectin, and GLUT-4 expressions. Similarly, EECV treatments significantly upregulated PPAR-γ2, adiponectin, GLUT-4 expressions and glucose utilization. Further, EECV treatment decreased AMPK-α expression as compared with control and metformin treated cells. CONCLUSION: The present research findings confirmed that the EECV effectively modulates the lipid accumulation and differentiation in 3T3-L1 cells through AMPK-α mediated signalling pathway.

  6. Growth of microalgae with increased calorific values in a tubular bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Scragg, A.H.; Illman, A.M.; Carden, A.; Shales, S.W. [University of the West of England, Dept. of Environmental Sciences, Bristol (United Kingdom)

    2002-07-01

    In order to use microalgae as a fuel the algae should be of high calorific value and must be capable of growth in large volumes. Chlorella vulgaris and C. emersonii have been shown to grow in a 230 I pumped tubular photobioreactor in Watanabe's medium and a low nitrogen medium. The low nitrogen medium induces higher lipid accumulation in both algae, which increased their calorific value. The highest calorific value was obtained with C. vulgaris (28 kJg{sup -1}) grown in low nitrogen medium. However, the biomass productivity was 24 mg dry wtl {sup -1} d{sup -1} in the low nitrogen medium which was lower than in Watanabe's medium (40 mg dry wtl{sup -1} d{sup -1}) and represents a reduced energy recovery. (Author)

  7. Biosorption characteristics of Spirulina and Chlorella cells to accumulate heavy metals

    Directory of Open Access Journals (Sweden)

    Kőnig-Péter Anikó

    2015-01-01

    Full Text Available The heavy metal biosorption of dried Chlorella vulgaris and Spirulina platensis-Spirulina maxima cells was studied under various experimental conditions. The effect of biosorbent dosage, pH, adsorption time, temperature, initial metal concentration on biosorption was studied. Biosorption process can be divided into two parts: the first part follows zero-order, the second part pseudo second-order kinetics. Characterization of biosorption equilibrium was evaluated with Langmuir and Dubinin-Radushkevich models using non-linear regression. The optimum pH range was found to be 5.0 − 6.0 for Pb(II and 4.0 − 6.0 for Cu(II and Cd(II adsorption. The maximum adsorption capacities for Pb(II, Cd(II and Cu(II were 144, 161 and 138 mg g-1 by Chlorella cells and 370, 201 and 165 by Spirulina cells, based on the experimental data. The same values for activated carbon were 86, 134 and 43 mg g-1, respectively.

  8. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.

    Science.gov (United States)

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2011-11-01

    Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Algal Production of Extra- and Intra-Cellular Polysaccharides as an Adaptive Response to the Toxin Crude Extract of Microcystis Aeruginosa

    Directory of Open Access Journals (Sweden)

    Mostafa Mohamed El-Sheekh

    2012-11-01

    Full Text Available This is an investigation concerned with studying the possible adaptive response of four different unicellular algae, Anabaena PCC 7120, Oscillatoria angustissima, Scendesmus obliquus and Chlorella vulgaris, to the toxin of Microcystis aeruginosa (Kützing. Theeffects of four different concentrations, 25, 50, 100 and 200 μg mL-1 of microcystins crude extract of M. aeruginosa, on both intra and extra-cellular polysaccharide levels, in log phase,of the four tested algae were studied. The obtained results showed differential increase in the production levels for both intra and extra-cellular polysaccharides by the tested algae,compared with the control. S. obliquus and C. vulgaris showed a resistance to crude toxinhigher than Anabaena PCC 7120 and O. angustissima. The highly production of polysaccharides by green algal species under this toxic stress indicated the involvement of these polysaccharides in protecting the algal cells against toxic species and, reflect thebiological behavior of particular algal species to the environmental stresses.

  10. Monitoring Growth and Lipid Production of Some Egyptian Microalgae

    International Nuclear Information System (INIS)

    El-Baghdady, K.Z.; Zakaria, A.E.; Mousa, L.A.; Sadek, H.N.; Abd El Fatah, H.M.

    2016-01-01

    Microalgae bio diesel is a green and renewable energy resource. This study aims to examine growth and lipid production by various isolates of icroalgae using different growth media and lipid extraction techniques. Ten microalgae isolates were isolated from different samples collected from Egypt. The purified isolates were identified microscopically as: Lyngbya confervoides, Phormidium bohneri, Oscillatoria pseudogeminata, Amorphonostoc sp., Nostoc paludosum, Anabaena sphaerica related to cyanobacteria (blue green algae) and Chlorella vulgaris, Chlorella ellipsoidea, Scened esmusacutus acutus, Chlamydomonas globose related to green algae. These organisms were cultivated on two media: Bold's Basal Medium(BBM medium) and Blue Green Medium (BG-11 medium) to examine the favorite medium which supports the growth of each isolate In order to examine lipid production potentials by cyanobacterial isolates and green microalgae, two solvent systems were applied for lipid extraction, the first was (Chloroform - methanol 1:1 ) and the second was (Hexane-ethanol 1:1). Chlorella vulgaris and Anabaena sphaerica were selected as models of green microalgae and cyanobacteria espectively. Hexane-ethanol solvent system revealed higher lipid extraction capacity as compared to Chloroform- methanol system. A comparison between ten organisms for lipid production was carried out by the selected solvent mixture. The percentages of lipid to dry weight produced by Oscillatoria pseudogeminata and Chlamydomonas globose were 19.8% and14 .6% respectively recording the highest lipid to dry weight percentage. They can be considered as a promising lipid producing microalgae

  11. The Influence of Chlorella and Its Hot Water Extract Supplementation on Quality of Life in Patients with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Naoto Noguchi

    2014-01-01

    Full Text Available A self-control, randomized, and open-label clinical trial was performed to test the effects of the unicellular green algae Chlorella and hot water extract supplementation on quality of life (QOL in patients with breast cancer. Forty-five female patients with breast cancer who were living at home and not hospitalized were randomly assigned to 3 groups receiving vitamin mix tablet (control, Chlorella granules (test food-1, or Chlorella extract drink (test food-2 daily for one month. The Functional Assessment of Cancer Therapy-Breast (FACT-B, the Izumo scale for abdominal symptom-specific QOL, and a narrative-form questionnaire were used to determine outcomes. Data of thirty-six subjects were included for final analysis. FACT-B scores at presupplementation found no significant group differences in all subscales. Scores on the breast cancer subscale in the Chlorella granule group significantly increased during the supplementation period (P=0.042. Fifty percent of the Chlorella extract group reported positive effects by the test food such as reduction of fatigue and improvements of dry skin (P<0.01 versus control group. The findings suggested the beneficial effects of Chlorella on breast cancer-related QOL and of Chlorella extract on vitality status in breast cancer patients. These findings need to be confirmed in a larger study.

  12. Effect of three food types on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae

    Directory of Open Access Journals (Sweden)

    S.S.S. Sarma

    2001-03-01

    Full Text Available We compared the population growth of B. calyciflorus and B. patulus using the green alga Chlorella vulgaris, baker’s yeast Saccharomyces cerevisiae or their mixture in equal proportions as food. Food was offered once every 24 h in two concentrations (low: 1x10(6 and high: 3x10(6 ind. ml-1 separately for each species. The experiments were terminated after 15 days. In general, at any food type or concentration, B. patulus reached a higher population density. A diet of Chlorella alone supported a higher population growth of both rotifer species than yeast alone. B. calyciflorus and B. patulus achieved highest population densities (103+8 ind. ml-1 and 296+20 ind. ml-1, respectively on a diet of Chlorella at 3x10(6 ind. ml-1. When cultured using the mixture of Chlorella and yeast, the maximal population densities of B. calyciflorus were lower than those grown on Chlorella. Under similar conditions, the maximal abundance values of B. patulus were comparable in both food types. Regardless of food type and density the rate of population increase per day (r for B. calyciflorus varied from 0.13+0.03 to 0.63+0.04. These values for B. patulus ranged from 0.19+0.01 to 0.37+0.01. The results indicated that even though Chlorella was a superior foof for the tested rotifers, yeast can be effectively used at low concentrations to supplement algal requirements in rotifer culture systems.Se comparó el crecimiento poblacional de dos especies planctónicas (B. calyciflorus y B. patulus desarrolladas con el alga verde Chlorella vulgaris, la levadura de cerveza Saccharomyces cerevisiae y la mezcla de ambas dietas en proporciones iguales. B. patulus alcanzó las mayores densidades con cualquier tipo de alimento utilizado en comparación con B. calyciflorus. La dieta a base de Chlorella vulgaris sola promovió el mayor crecimiento poblacional en relación con la dieta de levadura sola. B. calyciflorus y B. patulus alcanzaron las mayores densidades de 103+8 ind. ml-1 y

  13. Evaluation of algal biofilms on indium tin oxide (ITO for use in biophotovoltaic platforms based on photosynthetic performance.

    Directory of Open Access Journals (Sweden)

    Fong-Lee Ng

    Full Text Available In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP, USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC generated using a pulse amplitude modulation (PAM fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria Synechococcus elongatus (UMACC 105, Spirulina platensis. (UMACC 159 and the Chlorophyta Chlorella vulgaris (UMACC 051, and Chlorella sp. (UMACC 313 were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105 (6.38×10(-5 Wm(-2/µgChl-a>Chlorella vulgaris UMACC 051 (2.24×10(-5 Wm(-2/µgChl-a>Chlorella sp.(UMACC 313 (1.43×10(-5 Wm(-2/µgChl-a>Spirulina platensis (UMACC 159 (4.90×10(-6 Wm(-2/µgChl-a. Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power.

  14. Uptake of americium-241 by algae and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Giesy, Jr, J P; Paine, D [Savannah River Ecology Lab., Aiken, S.C. (USA)

    1978-01-01

    The uptake of americium by three algae, Scenedesmus obliguus, Selenastrum capricomutum and Chlorella pyrenosdosa and a bacterium Aeromonas hydrophila was studied. Live and fixed cells of each algal species and live bacterial cells were used. It is shown that algae and bacteria concentrate americium 241 to a high degree which makes them important links in the biomagnification phenomenon which may ultimately lead to a human hazard and be potentially important in recycling Am /sup 241/ in the water column and mobilization from sediments. Chemical fixation of algal cells caused increased uptake which indicated that uptake is by passive diffusion and probably due to chemical alteration of surface binding sites.

  15. Investigation and modeling of the effects of light spectrum and incident angle on the growth of Chlorella vulgaris in photobioreactors.

    Science.gov (United States)

    Souliès, Antoine; Legrand, Jack; Marec, Hélène; Pruvost, Jérémy; Castelain, Cathy; Burghelea, Teodor; Cornet, Jean-François

    2016-03-01

    An in-depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab-scale PBRs, a torus PBR and a thin flat-panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat-panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247-261, 2016. © 2016 American Institute of Chemical Engineers.

  16. Functional and structural impact of linuron on a freshwater community of primary producers: the use of immobilized algae

    NARCIS (Netherlands)

    Slijkerman, D.M.E.; Moreira-Santos, M.; Jak, R.G.; Ribeiro, R.; Soares, A.M.V.M.; Straalen, van N.M.

    2005-01-01

    An approach in determining ecosystem integrity and stress on ecosystem level is to assess processes within ecosystems. The aim of the present study was to evaluate the potential use of an in situ assay with immobilized Chlorella vulgaris as an indicator of effects on ecosystem functioning with

  17. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  18. Cost effective and economic method for cultivation of Chlorella pyrenoidosa for the simultaneous treatment of biogas digester wastewater and biogas production

    OpenAIRE

    Rohit Sharma; Avanish K Tiwari; G. Sanjay Kumar; Bhawna Y. Lamba

    2015-01-01

    Microalgae have recently received a lot of attention as a new biomass source for the production of bio fuels and for the treatment of waste water. In this work, Chlorella pyrenoidosa was cultivated in biogas digester wastewater. The growth kinetics of the algae as well as the bio-remediation effect on the waste water was studied. The Chlorella pyrenoidosa can utilize the nitrogen content present in biogas digester wastewater as a substrate for its growth. The growth of microalgae was found to...

  19. Remember the Algae that Went to Space? Here's What Happened Next | News |

    Science.gov (United States)

    . He met with Dr. Alexandra Dubini, at the time a research scientist at NREL working with the algae education how to grow algae. Nick Sweeney, a research technician in NREL's National Bioenergy Center . vulgaris to shift into lipid production mode. Squares of a special tape that changes color from tan to gray

  20. Chlorella intake attenuates reduced salivary SIgA secretion in kendo training camp participants

    Directory of Open Access Journals (Sweden)

    Otsuki Takeshi

    2012-12-01

    Full Text Available Abstract Background The green alga Chlorella contains high levels of proteins, vitamins, and minerals. We previously reported that a chlorella-derived multicomponent supplement increased the secretion rate of salivary secretory immunoglobulin A (SIgA in humans. Here, we investigated whether intake of this chlorella-derived supplement attenuated the reduced salivary SIgA secretion rate during a kendo training camp. Methods Ten female kendo athletes participated in inter-university 6-day spring and 4-day summer camps. They were randomized into two groups; one took placebo tablets during the spring camp and chlorella tablets during the summer camp, while the other took chlorella tablets during the spring camp and placebo tablets during the summer camp. Subjects took these tablets starting 4 weeks before the camp until post-camp saliva sampling. Salivary SIgA concentrations were measured by ELISA. Results All subjects participated in nearly all training programs, and body-mass changes and subjective physical well-being scores during the camps were comparable between the groups. However, salivary SIgA secretion rate changes were different between these groups. Salivary SIgA secretion rates decreased during the camp in the placebo group (before vs. second, middle, and final day of camp, and after the camp: 146 ± 89 vs. 87 ± 56, 70 ± 45, 94 ± 58, and 116 ± 71 μg/min, whereas no such decreases were observed in the chlorella group (121 ± 53 vs. 113 ± 68, 98 ± 69,115 ± 80, and 128 ± 59 μg/min. Conclusion Our results suggest that a use of a chlorella-derived dietary supplement attenuates reduced salivary SIgA secretion during a training camp for a competitive sport.

  1. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    Science.gov (United States)

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor.

    Science.gov (United States)

    Liu, Lin; Zeng, Zhichao; Bee, Mingyang; Gibson, Valerie; Wei, Lili; Huang, Xu; Liu, Chaoxiang

    2018-05-05

    The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity. Copyright © 2018. Published by Elsevier B.V.

  3. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor.

    Science.gov (United States)

    Liao, Qiang; Sun, Yahui; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun

    2017-11-01

    Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL -1 ) were attained under 560μmolm -2 s -1 , which were 86.82% and 133.56% higher relative to those obtained under 160μmolm -2 s -1 , respectively. The PW-PBR provides a promising way for microalgae lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae

    Science.gov (United States)

    Cardinale, Bradley J.; Bier, Raven; Kwan, Courtney

    2012-08-01

    We examined how TiO2 nanoparticles ( nTiO2) impact the growth and metabolism of three species of freshwater green algae ( Scenedesmus quadricauda, Chlamydomonas moewusii, and Chlorella vulgaris) that are widespread throughout North America. We exposed laboratory cultures to five initial concentrations of nTiO2 (0, 50, 100, 200, and 300 ppm) and measured impacts on species population growth rates, as well as on metabolic rates of gross primary production (GPP) and respiration ( R). Population growth rates were consistently reduced by nTiO2, with reduction ranging from 11 to 27 % depending on the species. But the mechanisms of reduction differed among species. For Chlamydomonas, nTiO2 reduced both GPP and R, but effects on GPP were stronger. As a consequence, carbon was respired more quickly than it was fixed, leading to reduced growth. In contrast, nTiO2 stimulated both GPP and R in Chorella. But because R was stimulated to a greater extent than GPP, carbon loss again exceeded fixation, leading to reduced growth. For Scenedesmus, nTiO2 had no significant impact on R, but reduced GPP. This pattern also caused carbon loss to exceed fixation. Results suggest that nTiO2 may generally suppress the growth of pelagic algae, but these impacts are manifest through contrasting effects on species-specific metabolic functions. Because growth and metabolism of algae are fundamental to the functioning of ecosystems and the structure of aquatic food-webs, our study suggests nTiO2 has potential to alter important community and ecosystem properties of freshwater habitats.

  5. Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae

    International Nuclear Information System (INIS)

    Cardinale, Bradley J.; Bier, Raven; Kwan, Courtney

    2012-01-01

    We examined how TiO 2 nanoparticles (nTiO 2 ) impact the growth and metabolism of three species of freshwater green algae (Scenedesmus quadricauda, Chlamydomonas moewusii, and Chlorella vulgaris) that are widespread throughout North America. We exposed laboratory cultures to five initial concentrations of nTiO 2 (0, 50, 100, 200, and 300 ppm) and measured impacts on species population growth rates, as well as on metabolic rates of gross primary production (GPP) and respiration (R). Population growth rates were consistently reduced by nTiO 2 , with reduction ranging from 11 to 27 % depending on the species. But the mechanisms of reduction differed among species. For Chlamydomonas, nTiO 2 reduced both GPP and R, but effects on GPP were stronger. As a consequence, carbon was respired more quickly than it was fixed, leading to reduced growth. In contrast, nTiO 2 stimulated both GPP and R in Chorella. But because R was stimulated to a greater extent than GPP, carbon loss again exceeded fixation, leading to reduced growth. For Scenedesmus, nTiO 2 had no significant impact on R, but reduced GPP. This pattern also caused carbon loss to exceed fixation. Results suggest that nTiO 2 may generally suppress the growth of pelagic algae, but these impacts are manifest through contrasting effects on species-specific metabolic functions. Because growth and metabolism of algae are fundamental to the functioning of ecosystems and the structure of aquatic food-webs, our study suggests nTiO 2 has potential to alter important community and ecosystem properties of freshwater habitats.

  6. Effect of cell wall characteristics on algae nutrient digestibility in Nile tilapia (Oreochromis niloticus) and African catfish (Clarus gariepinus)

    NARCIS (Netherlands)

    Teuling, Emma; Schrama, Johan W.; Gruppen, Harry; Wierenga, Peter A.

    2017-01-01

    This study aimed to assess the effect of cell wall hardness and fish species on digestibility of unicellular sources. The gross composition, and the composition and cell wall hardness of the sources were determined for four sources. These were 3 microalgae species (Chlorella vulgaris, Scenedesmus

  7. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    Science.gov (United States)

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Effects of TiO{sub 2} nanoparticles on the growth and metabolism of three species of freshwater algae

    Energy Technology Data Exchange (ETDEWEB)

    Cardinale, Bradley J., E-mail: bradcard@umich.edu [University of Michigan, School of Natural Resources and Environment (United States); Bier, Raven [Duke University, Department of Biology (United States); Kwan, Courtney [Evolution and Marine Biology, University of California, Department of Ecology (United States)

    2012-08-15

    We examined how TiO{sub 2} nanoparticles (nTiO{sub 2}) impact the growth and metabolism of three species of freshwater green algae (Scenedesmus quadricauda, Chlamydomonas moewusii, and Chlorella vulgaris) that are widespread throughout North America. We exposed laboratory cultures to five initial concentrations of nTiO{sub 2} (0, 50, 100, 200, and 300 ppm) and measured impacts on species population growth rates, as well as on metabolic rates of gross primary production (GPP) and respiration (R). Population growth rates were consistently reduced by nTiO{sub 2}, with reduction ranging from 11 to 27 % depending on the species. But the mechanisms of reduction differed among species. For Chlamydomonas, nTiO{sub 2} reduced both GPP and R, but effects on GPP were stronger. As a consequence, carbon was respired more quickly than it was fixed, leading to reduced growth. In contrast, nTiO{sub 2} stimulated both GPP and R in Chorella. But because R was stimulated to a greater extent than GPP, carbon loss again exceeded fixation, leading to reduced growth. For Scenedesmus, nTiO{sub 2} had no significant impact on R, but reduced GPP. This pattern also caused carbon loss to exceed fixation. Results suggest that nTiO{sub 2} may generally suppress the growth of pelagic algae, but these impacts are manifest through contrasting effects on species-specific metabolic functions. Because growth and metabolism of algae are fundamental to the functioning of ecosystems and the structure of aquatic food-webs, our study suggests nTiO{sub 2} has potential to alter important community and ecosystem properties of freshwater habitats.

  9. The biological soil crusts of the San Nicolas Island: Enigmatic algae from a geographically isolated ecosystem

    Science.gov (United States)

    Flechtner, V.R.; Johansen, J.R.; Belnap, J.

    2008-01-01

    Composite soil samples from 7 sites on San Nicolas Island were evaluated quantitatively and qualitatively for the presence of cyanobacteria and eukaryotic microalgae. Combined data demonstrated a rich algal flora with 19 cyanobacterial and 19 eukaryotic microalgal genera being identified, for a total of 56 species. Nine new species were identified and described among the cyanobacteria and the eukaryotic microalgae that were isolated: Leibleinia edaphica, Aphanothece maritima, Chroococcidiopsis edaphica, Cyanosarcina atroveneta, Hassallia californica, Hassallia pseudoramosissima, Microchaete terrestre, Palmellopsis californiens, and Pseudotetracystis compactis. Distinct distributional patterns of algal taxa existed among sites on the island and among soil algal floras of western North America. Some algal taxa appeared to be widely distributed across many desert regions, including Microcoleus vaginatus, Nostoc punctiforme, Nostoc paludosum, and Tolypothrix distorta, Chlorella vulgaris, Diplosphaera cf. chodatii, Myrmecia astigmatica, Myrmecia biatorellae, Hantzschia amphioxys, and Luticola mutica. Some taxa share a distinctly southern distribution with soil algae from southern Arizona, southern California, and Baja California (e.g., Scenedesmus deserticola and Eustigmatos magnus). The data presented herein support the view that the cyanobacterial and microalgal floras of soil crusts possess significant biodiversity, much of it previously undescribed.

  10. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor

  11. Arsenic uptake, transformation, and release by three freshwater algae under conditions with and without growth stress.

    Science.gov (United States)

    Xie, Shaowen; Liu, Jinxin; Yang, Fen; Feng, Hanxiao; Wei, Chaoyang; Wu, Fengchang

    2018-05-04

    This study was carried out using indoor controlled experiments to study the arsenic (As) uptake, biotransformation, and release behaviors of freshwater algae under growth stress. Three freshwater algae, Microcystis aeruginosa, Anabaena flosaquae, and Chlorella sp., were chosen. Two types of inhibitors, e.g., Cu 2+ and isothiazolinone, were employed to inhibit the growth of the algae. The algae were cultivated to a logarithmic stage in growth media containing 0.1 mg/L P; then, 0.8 mg/L As in the form of arsenate (iAs V ) was added, while both inhibitors were simultaneously added at dosages of 0.1 and 0.3 mg/L, with no addition of inhibitors in the control. After 2 days of exposure, the average growth rate (μ 2d ) was measured to represent the growth rates of the algae cells; the extra- and intracellular As concentrations in various forms, i.e., arsenate, arsenite (iAs III ), monomethyl arsenic (MMA), and dimethyl arsenic (DMA), were also measured. Without inhibitors, the average growth rate followed the order of M. aeruginosa, Chlorella sp., and A. flosaquae, with the growth rate of M. aeruginosa significantly higher than that of the other two algae. However, when Cu 2+ was added as an external inhibitor, the order of the average growth rate for the three algae became partially reversed, suggesting differentiation of the algae in response to the inhibitor. This differentiation can be seen by the reduction in the average growth rate of M. aeruginosa, which was as high as 1730% at the 0.3-mg/L Cu 2+ dosage when compared with the control, while for the other two algae, much fewer changes were seen. The great reduction in M. aeruginosa growth rate was accompanied by increases in extracellular iAs V and iAs III and intracellular iAs V concentrations in the algae, indicating that As transformation is related to the growth of this algae. Much fewer or neglectable changes in growth were observed that were consistent with the few changes in the extra- and intracellular

  12. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris.

    Science.gov (United States)

    Alketife, Ahmed M; Judd, Simon; Znad, Hussein

    2017-01-01

    The synergistic effects and optimization of nitrogen (N) and phosphorus (P) concentrations on the growth of Chlorella vulgaris (CCAP 211/11B, CS-42) and nutrient removal have been investigated under different concentrations of N (0-56 mg/L) and P (0-19 mg/L). The study showed that N/P ratio has a crucial effect on the biomass growth and nutrient removal. When N/P=10, a complete P and N removal was achieved at the end of cultivation with specific growth rate (SGR) of 1 d -1 and biomass concentration of 1.58 g/L. It was also observed that when the N content <2.5 mg/L, the SGR significantly reduced from 1.04 to 0.23 d -1 and the maximum biomass produced was decreased more than three-fold to 0.5 g/L. The Box-Behnken experimental design and response surface method were used to study the effects of the initial concentrations (P, N and C) on P and N removal efficiencies. The optimized P, N and C concentrations supporting 100% removal of both P and N at an SGR of 0.95 were 7, 55 and 10 mg/L respectively, with desirability value of 0.94. The results and analysis obtained could be very useful when applying the microalgae for efficient wastewater treatment and nutrient removal.

  13. The role of algal organic matter in the separation of algae and cyanobacteria using the novel "Posi" - Dissolved air flotation process.

    Science.gov (United States)

    Hanumanth Rao, Narasinga Rao; Yap, Russell; Whittaker, Michael; Stuetz, Richard M; Jefferson, Bruce; Peirson, William L; Granville, Anthony M; Henderson, Rita K

    2018-03-01

    Algae and cyanobacteria frequently require separation from liquid media in both water treatment and algae culturing for biotechnology applications. The effectiveness of cell separation using a novel dissolved air flotation process that incorporates positively charged bubbles (PosiDAF) has recently been of interest but has been shown to be dependent on the algae or cyanobacteria species tested. Previously, it was hypothesised that algal organic matter (AOM) could be impacting the separation efficiency. Hence, this study investigates the influence of AOM on cell separation using PosiDAF, in which bubbles are modified using a commercially available cationic polyelectrolyte poly(N, N-diallyl-N,N-dimethylammonium chloride) (PDADMAC). The separation of Chlorella vulgaris CS-42/7, Mychonastes homosphaera CS-556/01 and two strains of Microcystis aeruginosa (CS-564/01 and CS-555/1), all of which have similar cell morphology but different AOM character, was investigated. By testing the cell separation in the presence and absence of AOM, it was determined that AOM enhanced cell separation for all the strains but to different extents depending on the quantity and composition of carbohydrates and proteins in the AOM. By extracting AOM from the strain for which optimal separation was observed and adding it to the others, cell separation improved from 90%. This was attributed to elevated levels of acidic carbohydrates as well as glycoprotein-carbohydrate conjugations, which in turn were related to the nature and quantity of proteins and carbohydrates present in the AOM. Therefore, it was concluded that process optimisation requires an in-depth understanding of the AOM and its components. If culturing algae for biotechnology applications, this indicates that strain selection is not only important with respect to high value product content, but also for cell separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Exchange of certain radionuclides between environment and freshwater algae

    International Nuclear Information System (INIS)

    Marchyulenene, E. D.P.

    1978-01-01

    Data on the dynamics and levels of accumulation of strontium, cesium, cerium and ruthenium radionuclides by Charophyta and Cladophora fresh-water algae are presented. An attempt has been made to investigate some processes that accompany the accumulation of radionuclides by plants. Under experimental conditions, the intensity and levels of radionuclide accumulation can be presented in the following order: 144 Ce> 106 Ru> 90 Sr> 137 Cs. The dynamics of radionuclide accumulation varied greatly with the radionuclide and the algae species studied. The 144 Ce accumulation coefficients (AC) in the course of experiment (from 3 hours to 16 days) increased 8-, 9-, 23.4-, 27-, 14.3- and 20.4-fold for Cladophora glomerata, Nitella syncarpa, Nitellopsis obtusa, Chara vulgaris, Ch. rudis, and Ch. aspera, respectively. In the case of 106 Ru, AC for C.glomerata, N. syncarapa, Ch. vulgaris and Ch. rudis increased 34-, 18-,24- and 23-fold, respectively. In all algae species studied the equilibrium of radionuclide accumulation was attained after 2-4 days of experiment. Levels of accumulated 90 Sr and 137 Cs in most species depended on the season while that of 144 Cs and 106 Ru remained constant throughout the vegetation period. The levels of radionuclide elimination, like the accumulation levels, are shown to depend on both isotopes and algae species

  15. Development of Bio-Oil Commodity Fuel as a Refinery Feedstock from High Impact Algae Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, James [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Mani, Sudhagar [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Das, K. C. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Hilten, Roger [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemical Engineering; Jena, Umakanta [Desert Research Inst. (DRI), Reno, NV (United States)

    2014-11-30

    A two-stage hydrothermal liquefaction (HTL) process was developed to 1) reduce nitrogen levels in algal oil, 2) generate a nitrogen rich stream with limited inhibitors for recycle and algae cultivation, and 3) improve downstream catalytic hydrodenitrogenation and hydrodeoxygenation of the algal oil to refinery intermediates. In the first stage, low temperature HTL was conducted at 125, 175, and 225°C at holding times ranging from 1 to 30 min (time at reaction temperature). A consortium of three algal strains, namely Chlorella sorokiniana, Chlorella minutissima, and Scenedesmus bijuga were used to grow and harvest biomass in a raceway system – this consortium is called the UGA Raceway strain throughout the report. Subsequent analysis of the final harvested product indicated that only two strains predominated in the final harvest - Chlorella sorokiniana and Scenedesmus bijuga. Two additional strains representing a high protein (Spirulina platensis) and high lipid algae (Nannochloropsis) strains were also used in this study. These strains were purchased from suppliers. S. platensis biomass was provided by Earthrise Nutritionals LLC (Calipatria, CA) in dry powder form with defined properties, and was stored in airtight packages at 4°C prior to use. A Nannochloropsis paste from Reed Mariculture was purchased and used in the two-stage HTL/HDO experiments. The solids and liquids from this low temperature HTL pretreatment step were separated and analyzed, leading to the following conclusions. Overall, these results indicate that low temperature HTL (200-250°C) at short residence times (5-15 min) can be used to lyse algae cells and remove/separate protein and nitrogen before subsequent higher temperature HTL (for lipid and other polymer hydrolysis) and HDO. The significant reduction in nitrogen when coupled with low protein/high lipid algae cultivation methods at scale could significantly improve downstream catalytic HDO results. However, significant barriers and

  16. Carbon Dioxide Mitigation by Microalgal Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mijeong Lee; Gillis, James M.; Hwang, Jiann Yang [Michigan Technological University, Houghton (United States)

    2003-12-15

    Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 μg CO{sub 2}/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8.

  17. The Selective Use of Hypochlorite to Prevent Pond Crashes for Algae-Biofuel Production.

    Science.gov (United States)

    2015-09-21

    Although algae-biofuels have many advantages including high areal productivity, algae can be preyed upon by amoebas, protozoans, ciliates, and rotifers, particularly in open pond systems. Thus, these higher organisms need to be controlled. In this study, Chlorella kessleri was used as the algal culture and Brachionus calyciflorus as the source of predation. The effect of sodium hypochlorite (bleach) was tested with the goal of totally inhibiting the rotifer while causing minor inhibition to the alga. The 24-hr LC50 for B. calyciflorus in spring water was 0.198 mg Cl/L while the 24-hr LC50 for C. kessleri was 0.321 mg Cl/L. However, chlorine dissipates rapidly as the algae serves as reductant. Results showed a chlorine dosage between 0.45 to 0.6 mg Cl/L and a dosing interval of two hours created the necessary chlorine concentrations to inhibit predation while letting the algae grow; thus giving algae farmers a tool to prevent pond crashes. Water Environ. Res., 87 (2015).

  18. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species

    Directory of Open Access Journals (Sweden)

    Alice Jernigan

    2015-01-01

    Full Text Available Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green and eukaryotic (green and brown algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis, five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata, and one brown algae (Ectocarpus sp. were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred.

  19. Ecological studies on algae isolated from the effluents of an oil refinery, a fertilizer factory and a brewery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H D [Banarus Hindu Univ.; Bisaria, G P; Bhandari, L M; Rana, B C; Sharma, V

    1974-07-01

    Tha algal flora and physico-chemical characteristics of the effluents of the Indian Oil Refinery, Barauni; the Sindri Fertilizer Factory, Sindri; and the Mohan Meakin Brewery, Ghaziabad were studied. The studies indicate that algae can tolerate and grow in highly polluted waters. The blue-green algae, flagellates and euglenoids are mostly associated with organically rich effluents, low in dissolved oxygen, whereas waters rich in nitrogenous compounds favor the growth of green algae, e.g., Chlorella. A combination of algal and chemical characteristics may be successfully employed to evaluate the water quality of a given habitat.

  20. Bionota: Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales Microalgae growth-promoting bacteria: A novel approach in wastewater treatment

    Directory of Open Access Journals (Sweden)

    Bashan Yoav

    2003-12-01

    -inmovilización; PGPB; micro-algae; wastewater treatment; co-immobilisedPlant growth-promoting bacteria (PGPB from the genus Azospirillum are known to enhance the growth of numerous agricultural crops. The use of these bacteria is proposed as "micro-algae-growth promoting bacteria" (MGPB for enhancing freshwater micro-algae Chlorella vulgaris and C. sorokiniana capadty to clean polluted water. The deliberate inoculation of Chlorella sp. with a terrestrial PGPB has not been reported prior to these studies, perhaps because of the different origin of the two micro-organisms. Chlorella spp. is not known to harbour any plant growth-promoting bacteria and Azospirillum sp. is rarely used for inoculation in aquatic environments. Co-immobilisation of C. vulgaris and A. brasilense Cd in small alginate beads resulted in significant increases in numerous micro-algae growth parameters. Dry and fresh weight, total number of cells, micro-algal cluster (colonies size within the bead, number of micro-algal cells per cluster and micro-algal pigments levels significantly increased. Lipids and the variety of fatty adds also significantly increased, as did the combination of micro-algae. MGPB had superior capacity for removing ammonium and phosphorus from polluted synthetic and municipal wastewaters than the micro-algae by itself. Other PGPB (i.e. Flavobacterium sp. Azospirillum sp. and Azotobacter sp. are currently being tested in aquaculture; carp farming using enhanced phytoplankton growth and stabilising mass marine micro-algae culture for use as feed for marine organisms are both retuming promising results. This aspect of PGPB effect on water micro-organisms is currently in its infancy. We pro pose that co-immobilising micro-algae and plant growth-promoting bacteria represent an effective means of increasing micro-algal populations and also their capacity for cleaning polluted water. Key words: PGPB; micro-algae; wastewater treatment; co-immobilised

  1. Algae culture on drainwater from greenhouse horticulture. Towards an algae culture pilot for greenhouse horticulture; Algencultuur op drainwater uit de glastuinbouw. Naar een pilot algenteelt voor de glastuinbouw

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-09-15

    The agriculture sector is rapidly warming to the idea of algae culture. Arable farmers, livestock farmers and greenhouse growers are all interested. This report contains an elaborated plan for a pilot-scale practical test and three appendices. The two-year pilot is going to cost about EUR 1 million and will yield practical knowledge about using algae to purify drainwater from greenhouse horticulture. A partnership between numerous small algae growers in a sales cooperative should lead to a better market position. Appendix 1 gives a description of various algae systems and the different types of algae that can currently be cultivated. Chlorella and Arthrospira are the most suitable types for cultivation on greenhouse drainwater. The most economically viable choice appears to be a hybrid nursery with a photobioreactor for starter material and covered raceways for mass production. Appendix 2 gives specific options for combining greenhouse horticulture and algae culture, including the surface allocated to, respectively, algae culture and greenhouse horticulture. Appendix 3 gives the detailed findings of research conducted by Imares into algae on drainwater specifically for the oyster growing sector [Dutch] De belangstelling van het agrarisch bedrijfsleven voor de algenteelt groeit snel. Akkerbouwers, veehouders en glastuinders tonen interesse. Dit rapport bevat een uitwerking voor een praktijkproef op pilotschaal, en drie bijlagen. De praktijkproef van twee jaar gaat circa 1 miljoen euro kosten en levert kennis uit de praktijk op om afvalwater uit de glastuinbouw te zuiveren middels algen. Een samenwerkingsverband tussen tal van kleine algentelers in een afzetcoöperatie moet tot een betere marktpositie kunnen leiden. Bijlage 1 geeft een beschrijving van verschillende algensystemen en de verschillende types algen die op dit moment te kweken zijn. Chlorella en Arthrospira zijn de meest in aanmerking komende soorten om op drainwater uit de glastuinbouw te kweken. De

  2. Differential effects of P25 TiO{sub 2} nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Rajdeep; Parashar, Abhinav; Bhuvaneshwari, M.; Chandrasekaran, N.; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com

    2016-07-15

    Highlights: • Differential effects of P25 TiO{sub 2} NPs on Chlorella and Scenedesmus. • Concentration dependent effects in morphology and viability. • Increased ROS, catalase activity & LPO release with loss in SOD & GSH activity. • Dose dependent differential TiO{sub 2} NPs uptake affected by colonization of algae. - Abstract: P25 TiO{sub 2} nanoparticles majorly used in cosmetic products have well known detrimental effects towards the aquatic environment. In a freshwater ecosystem, Chlorella and Scenedesmus are among the most commonly found algal species frequently used to study the effects of metal oxide nanoparticles. A comparative study has been conducted herein to investigate differences in the toxic effects caused by these nanoparticles towards the two algae species. The three different concentrations of P25 TiO{sub 2} NPs (0.01, 0.1 & 1 μg/mL, i.e., 0.12, 1.25 and 12.52 μM) were selected to correlate surface water concentrations of the nanoparticles, and filtered and sterilized fresh water medium was used throughout this study. There was significant increase (p < 0.001) in hydrodynamic diameter of nanoparticles with respect to both, time (0, 24, 48 and 72 h) as well as concentration under all the exposure conditions. Although, significant dose-dependent morphological (surface area & biovolume) interspecies variations were not observed, it was evident at the highest concentration of exposure within individuals. At 1 μg/mL exposure concentration, a significant difference in toxicity was noted between Chlorella and Scenedesmus under only visible light (p < 0.001) and UVA (p < 0.01) irradiation conditions. The viability data were well supported by the results obtained for oxidative stress induced by NPs on the cells. At the highest exposure concentration, superoxide dismutase and reduced glutathione activities were assessed for both the algae under all the irradiation conditions. Increased catalase activity and LPO release complemented the cytotoxic

  3. A Comparative Study on the Effects of Millisecond- and Microsecond-Pulsed Electric Field Treatments on the Permeabilization and Extraction of Pigments from Chlorella vulgaris.

    Science.gov (United States)

    Luengo, Elisa; Martínez, Juan Manuel; Coustets, Mathilde; Álvarez, Ignacio; Teissié, Justin; Rols, Marie-Pierre; Raso, Javier

    2015-10-01

    The interdependencies of the two main processing parameters affecting "electroporation" (electric field strength and pulse duration) while using pulse duration in the range of milliseconds and microseconds on the permeabilization, inactivation, and extraction of pigments from Chlorella vulgaris was compared. While irreversible "electroporation" was observed above 4 kV/cm in the millisecond range, electric field strengths of ≥10 kV/cm were required in the microseconds range. However, to cause the electroporation of most of the 90 % of the population of C. vulgaris in the millisecond (5 kV/cm, 20 pulses) or microsecond (15 kV/cm, 25 pulses) range, the specific energy that was delivered was lower for microsecond treatments (16.87 kJ/L) than in millisecond treatments (150 kJ/L). In terms of the specific energy required to cause microalgae inactivation, treatments in the microsecond range also resulted in greater energy efficiency. The comparison of extraction yields in the range of milliseconds (5 kV, 20 ms) and microseconds (20, 25 pulses) under the conditions in which the maximum extraction was observed revealed that the improvement in the carotenoid extraction was similar and chlorophyll a and b extraction was slightly higher for treatments in the microsecond range. The specific energy that was required for the treatment in the millisecond range (150 kJ/L) was much higher than those required in the microsecond range (30 kJ/L). The comparison of the efficacy of both types of pulses on the extraction enhancement just after the treatment and after a post-pulse incubation period seemed to indicate that PEF in the millisecond range created irreversible alterations while, in the microsecond range, the defects were a dynamic structure along the post-pulse time that caused a subsequent increment in the extraction yield.

  4. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-05-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical oxygen demand (COD) together with oil and grease in terms of hexane extractable material (HEM) in the reactors were measured after batch cultivation tests of Chlorella Vulgaris, indicating the releasing algal metabolites were oleaginous (dissolved HEM up to 8.470 mg/L) and might hazard effluent quality. Ultrafiltration adopted as solid-liquid separation step was studied via critical flux and liquid chromatography-organic carbon detection (LC-OCD) analysis. Although nutrients removal was dominated by algal assimilation, nitrogen removal (99.6% maximum) was affected by generation time (2.49 days minimum) instead of specific nitrogen removal rate (sN, 20.72% maximum), while phosphorus removal (49.83% maximum) was related to both generation time and specific phosphorus removal rate (sP, 1.50% maximum). COD increase was affected by cell concentration (370.90 mg/L maximum), specific COD change rate (sCOD, 0.87 maximum) and shading effect. sCOD results implied algal metabolic pathway shift under nutrients stress, generally from lipid accumulation to starch accumulation when phosphorus lower than 5 mg/L, while HEM for batches with initial nitrogen of 10 mg/L implied this threshold around 8 mg/L. HEM and COD results implied algal metabolic pathway shift under nutrients stress. Anaerobic membrane bioreactor effluent polishing showed similar results to synthetic anaerobic secondary effluent with slight inhibition while 4 symbiotic bioremediation of raw municipal wastewater with microalgae and activated sludge showed competition for ammonium together with precipitation or microalgal luxury uptake of phosphorus. Critical flux was governed by algal cell concentration for ultrafiltration membrane with pore size of 30 nm, while

  5. Antimicrobial-resistant faecal organisms in algae products marketed as health supplements

    LENUS (Irish Health Repository)

    2017-09-01

    Dietary supplements are increasingly popular in Irish society. One of these is blue-green algae which is used with a variety health benefits in mind. A batch of Chlorella powder was found to be contaminated with Salmonella species in Ireland in 2015. This prompted additional testing of a total of 8 samples of three different products (Chlorella, Spirulina and Super Greens), for other faecal flora and antimicrobial resistance in any bacteria isolated. All 8 samples cultured enteric flora such as Enterococci, Enterobacteriaceae and Clostridium species. Antimicrobial susceptibility testing revealed one isolate with extended-spectrum β-lactamase (ESBL) activity and one with carbapenemase activity. Clinicians caring for vulnerable patients should be aware of the potential risk of exposure to antimicrobial resistant bacteria associated with these products

  6. Meteorological effects on variation of airborne algae in Mexico

    Science.gov (United States)

    Rosas, Irma; Roy-Ocotla, Guadalupe; Mosiño, Pedro

    1989-09-01

    Sixteen species of algae were collected from 73.8 m3 of air. Eleven were obtained in Minatitlán and eleven in México City. The data show that similar diversity occurred between the two localities, in spite of the difference in altitude. This suggests that cosmopolitan airborne microorganisms might have been released from different sources. Three major algal divisions (Chlorophyta, Cyanophyta and Chrysophyta) formed the airborne algal group. Also, a large concentration of 2220 algae m-3 was found near sea-level, while lower amounts were recorded at the high altitude of México City. The genera Scenedesmus, Chlorella and Chlorococcum dominated. Striking relationships were noted between the concentration of airborne green and blue-green algae, and meteorological conditions such as rain, vapour pressure, temperature and winds for different altitudes. In Minatitlán a linear relationship was established between concentration of algae and both vapour pressure (mbar) and temperature (° C), while in México City the wind (m s-1) was associated with variations in the algal count.

  7. Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris.

    Science.gov (United States)

    Malekzadeh, Mohammad; Abedini Najafabadi, Hamed; Hakim, Maziar; Feilizadeh, Mehrzad; Vossoughi, Manouchehr; Rashtchian, Davood

    2016-02-01

    In this research, organic solvent composed of hexane and methanol was used for lipid extraction from dry and wet biomass of Chlorella vulgaris. The results indicated that lipid and fatty acid extraction yield was decreased by increasing the moisture content of biomass. However, the maximum extraction efficiency was attained by applying equivolume mixture of hexane and methanol for both dry and wet biomass. Thermodynamic modeling was employed to estimate the effect of hexane/methanol ratio and moisture content on fatty acid extraction yield. Hansen solubility parameter was used in adjusting the interaction parameters of the model, which led to decrease the number of tuning parameters from 6 to 2. The results indicated that the model can accurately estimate the fatty acid recovery with average absolute deviation percentage (AAD%) of 13.90% and 15.00% for the two cases of using 6 and 2 adjustable parameters, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes.

    Science.gov (United States)

    Agarkova, Irina; Dunigan, David; Gurnon, James; Greiner, Timo; Barres, Julia; Thiel, Gerhard; Van Etten, James L

    2008-12-01

    Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.

  9. Identification of a volatile phytotoxin from algae

    Science.gov (United States)

    Garavelli, J. S.; Fong, F.; Funkhouser, E. A.

    1984-01-01

    The objectives were to develop a trap system for isolating fractions of volatile algal phytotoxin and to characterize the major components of the isolated phytotoxin fractions. A bioassay using Phaseolus vulgaris seedlings was developed to aid in investigating the properties of the phytotoxin produced by cultures of Euglena gracilis var. bacillaris and Chlorella vulgaris. Two traps were found, 1.0 M hydrochloric acid and 0 C, which removed the phytotoxin from the algal effluent and which could be treated to release that phytotoxin as judged with the bioassay procedure. It was also determined that pretraps of 1.0 M sodium hydroxide and 1.0 M potassium biocarbonate could be used without lowering the phytotoxin effect. Ammonia was identified in trap solutions by ninhydrin reaction, indophenol reaction and derivatization with dansyl chloride and phenylisothiocyanate. Ammonia at the gaseous concentrations detected was found to have the same effects in the bioassay system as the volatile phytotoxin. It is possible that other basic, nitrogen containing compounds which augment the effects of ammonia were present at lower concentrations in the algal effluent.

  10. Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application.

    Science.gov (United States)

    Cha, Thye San; Chen, Jian Woon; Goh, Eng Giap; Aziz, Ahmad; Loh, Saw Hong

    2011-11-01

    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (pdifferentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus

    International Nuclear Information System (INIS)

    Ruangsomboon, Suneerat; Wongrat, Ladda

    2006-01-01

    The accumulation of cadmium (Cd) was studied in an experimental aquatic food chain involving the phytoplankton Chlorella vulgaris as the primary producer, the zooplankton Moina macrocopa as the primary consumer, and the catfish Clarias macrocephalus x Clarias gariepinus as the secondary consumer. C. vulgaris was first exposed to Cd solutions at 0.00, 0.35, and 3.50 mg l -1 , referred to as control group and experimental groups 1 and 2, respectively. Subsequently, each group was fed to three corresponding groups of M. macrocopa. Finally, three groups of catfish were fed these corresponding groups of M. macrocopa. After C. vulgaris was exposed to 3.50 mg l -1 Cd (experimental group 2), the residual Cd in solution was only 4.01 μg l -1 , lower than the maximum allowable limit of Cd in natural water sources (5 μg l -1 ). Cd concentrations in C. vulgaris were 0.01 ± 0.00 μg g -1 (dry wt) in the control group, 194 ± 1.80 μg g -1 (dry wt) in experimental group 1, and 1140 ± 20.06 μg g -1 (dry wt) in experimental group 2. The Cd concentrations in M. macrocopa were 0.01 ± 0.00 μg g -1 (dry wt) in the control group, 16.48 ± 2.23 μg g -1 (dry wt) in experimental group 1, and 56.6 ± 3.23 μg g -1 (dry wt) in experimental group 2. The Cd concentrations in catfish muscle increased with increasing Cd concentrations in the food. After 60 days of fish culture, the mean concentrations of Cd in fish muscle were 0.01 ± 0.00 μg g -1 (dry wt) in the control group, 0.61 ± 0.02 μg g -1 (dry wt) in experimental group 1 and 1.04 ± 0.06 μg g -1 (dry wt) in experimental group 2. Cd concentration in fish muscle of experimental group 2 was equal to the permissible limit. Cd accumulation affected fish growth: at the end of the study, the mean fresh weight (12.81 g) of catfish in the control group, was significantly higher than those experimental group 1 (10.43 g) and experimental group 2 (10.00 g). The results showed that the measurement of Cd concentration in water does not

  12. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus

    Energy Technology Data Exchange (ETDEWEB)

    Ruangsomboon, Suneerat [Faculty of Agricultural Technology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand)]. E-mail: krsuneer@kmitl.ac.th; Wongrat, Ladda [Faculty of Fishery, Kasetsart University, Bangkok 10900 (Thailand)

    2006-06-10

    The accumulation of cadmium (Cd) was studied in an experimental aquatic food chain involving the phytoplankton Chlorella vulgaris as the primary producer, the zooplankton Moina macrocopa as the primary consumer, and the catfish Clarias macrocephalus x Clarias gariepinus as the secondary consumer. C. vulgaris was first exposed to Cd solutions at 0.00, 0.35, and 3.50 mg l{sup -1}, referred to as control group and experimental groups 1 and 2, respectively. Subsequently, each group was fed to three corresponding groups of M. macrocopa. Finally, three groups of catfish were fed these corresponding groups of M. macrocopa. After C. vulgaris was exposed to 3.50 mg l{sup -1} Cd (experimental group 2), the residual Cd in solution was only 4.01 {mu}g l{sup -1}, lower than the maximum allowable limit of Cd in natural water sources (5 {mu}g l{sup -1}). Cd concentrations in C. vulgaris were 0.01 {+-} 0.00 {mu}g g{sup -1} (dry wt) in the control group, 194 {+-} 1.80 {mu}g g{sup -1} (dry wt) in experimental group 1, and 1140 {+-} 20.06 {mu}g g{sup -1} (dry wt) in experimental group 2. The Cd concentrations in M. macrocopa were 0.01 {+-} 0.00 {mu}g g{sup -1} (dry wt) in the control group, 16.48 {+-} 2.23 {mu}g g{sup -1} (dry wt) in experimental group 1, and 56.6 {+-} 3.23 {mu}g g{sup -1} (dry wt) in experimental group 2. The Cd concentrations in catfish muscle increased with increasing Cd concentrations in the food. After 60 days of fish culture, the mean concentrations of Cd in fish muscle were 0.01 {+-} 0.00 {mu}g g{sup -1} (dry wt) in the control group, 0.61 {+-} 0.02 {mu}g g{sup -1} (dry wt) in experimental group 1 and 1.04 {+-} 0.06 {mu}g g{sup -1} (dry wt) in experimental group 2. Cd concentration in fish muscle of experimental group 2 was equal to the permissible limit. Cd accumulation affected fish growth: at the end of the study, the mean fresh weight (12.81 g) of catfish in the control group, was significantly higher than those experimental group 1 (10.43 g) and

  13. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO.

    Science.gov (United States)

    Liu, Na; Wang, Yipeng; Ge, Fei; Liu, Shixiang; Xiao, Huaixian

    2018-04-01

    The interaction of nanoparticles with coexisting chemicals affects the fate and transport of nanoparticles, as well as their combined effects on aquatic organisms. Here, we evaluated the joint effect of ZnO nanoparticle (nano-ZnO) and cetyltrimethyl ammonium chloride (CTAC) on the growth of Chlorella vulgaris and explored the possible mechanism. Results showed that an antagonistic effect of nano-ZnO and CTAC (0.1, 0.2 and 0.3 mg L -1 ) was found because CTAC stop nano-ZnO being broken down into solution zinc ions (Zn 2+ ). In the presence of CTAC, the zinc (including nano-ZnO and released Zn 2+ ) showed a higher adsorption on bound extracellular polymeric substances (B-EPS) but lower accumulation in the algal cells. Moreover, we directly demonstrated that nano-ZnO was adsorbed on the algal B-EPS and entered into the algal cells by transmission electron microscope coupled with energy dispersive X-ray (TEM-EDX). Hence, these results suggested that the combined system of nano-ZnO and CTAC exhibited an antagonistic effect due to the inhibition of CTAC on dissolution of nano-ZnO and accumulation of the zinc in the algal cells. Copyright © 2017. Published by Elsevier Ltd.

  14. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta.

    Directory of Open Access Journals (Sweden)

    Shanmei Zou

    Full Text Available Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella-like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential "specific barcode" for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes.

  15. Analysis of removal of cadmium by action of immobilized Chlorella sp. micro-algae in alginate beads [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Christian Valdez

    2018-01-01

    Full Text Available Cadmium (Cd is a metal that can negatively interfere with the metabolic systems of living beings. The objective of this work was to evaluate the capacity for cadmium removal in aqueous solutions by immobilized Chlorella sp. in calcium alginate beads. Beads without Chlorella sp. were used as a control. All the treatments were established in triplicate for 80 min, at four concentrations of cadmium (0, 20, 100 and 200 ppm, taking samples of aqueous solution every 10 min, to be read using atomic absorption equipment. The study determined that the treatment of alginate beads with immobilized Chlorella sp. removed 59.67% of cadmium at an initial concentration of 20 ppm, this being the best removal result.

  16. Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi.

    Science.gov (United States)

    Fitzgerald, Lisa A; Graves, Michael V; Li, Xiao; Feldblyum, Tamara; Hartigan, James; Van Etten, James L

    2007-02-20

    Viruses MT325 and FR483, members of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella Pbi. The 314,335-bp genome of MT325 and the 321,240-bp genome of FR483 are the first viruses that infect Chlorella Pbi to have their genomes sequenced and annotated. Furthermore, these genomes are the two smallest chlorella virus genomes sequenced to date, MT325 has 331 putative protein-encoding and 10 tRNA-encoding genes and FR483 has 335 putative protein-encoding and 9 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands, and intergenic space is minimal. Approximately 40% of the viral gene products resemble entries in public databases, including some that are the first of their kind to be detected in a virus. For example, these unique gene products include an aquaglyceroporin in MT325, a potassium ion transporter protein and an alkyl sulfatase in FR483, and a dTDP-glucose pyrophosphorylase in both viruses. Comparison of MT325 and FR483 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that approximately 82% of the genes are present in all three viruses.

  17. Improving productivity and quality of biodiesel from Chlorella vulgaris SDEC-3M through customized process designs

    International Nuclear Information System (INIS)

    Qi, Feng; Pei, Haiyan; Ma, Guixia; Zhang, Shuo; Mu, Ruimin

    2016-01-01

    Highlights: • Responses of growth and lipid in SDEC-3M to N concentrations were described. • The high lipid accumulation and biomass production were coexisted in buffer period. • Shorting N-deficient culture stage could improve lipid productivity. • A scheme of optimal designs was suggested to improve lipid productivity. • Biodiesels were meet standards and their performances varied with N-deficient time. - Abstract: In this study, temporal variations of microalgae growth and lipid accumulation in response to different nitrogen concentrations in media were investigated and discussed in detail, using a mutant Chlorella vulgaris SDEC-3M as a model. The results show that a short-term of dramatic lipid accumulation and nonsignificant descent of biomass productivities can be concomitant in SDEC-3M during early N-deficient stage (buffer period). It was found that the maximum lipid productivities of 63.52 mg L"−"1 d"−"1 occurred after 24 h N-shift. It means that, obtained lipid productivity under two-stage strategy with 24 h N-deficient stage was approximately three times as high as the maximum one obtained under N-rich condition and the final one obtained during longer N-deficient culture. Batch culture mode, higher light intensity and light/dark cycle in cooperation with N-rich/N-deficient cycle were also suggested as feasible scheme to improve lipid productivity in large scale culture. Additionally, the fatty acid profiles analysis indirectly showed that the properties of biodiesel from SDEC-3M majorly satisfied biodiesel standards. The fuel performances varied with N-deficient culture time, meaning that better combustion performance, oxidation stability, and exhaust emissions level related to longer N-deficient stage, while the biodiesel produced form N-deficient would perform well under low temperature. The results mean that SDEC-3M-derived biodiesels with customized process designs have commercial potential in the aspects of productivity and quality.

  18. A randomized controlled trial of 6-week Chlorella vulgaris supplementation in patients with major depressive disorder.

    Science.gov (United States)

    Panahi, Yunes; Badeli, Roghayeh; Karami, Gholam-Reza; Badeli, Zeinab; Sahebkar, Amirhossein

    2015-08-01

    Major depressive disorder (MDD) is a widespread psychiatric disorder with incapacitating symptoms. Oxidative stress has been identified to play a role in the pathophysiology of MDD. To evaluate the therapeutic effectiveness of a chemically defined and antioxidant-rich Chlorella vulgaris extract (CVE) as adjunct to standard treatment in patients suffering from MDD. Subjects with MDD diagnosis according to DSM-IV criteria who were receiving standard antidepressant therapy were assigned to add-on therapy with CVE (1800 mg/day; n=42), or continued standard antidepressant therapy alone (n=50) for a period of 6 weeks. Changes in the frequency of depressive symptoms were assessed using the Hospital Anxiety and Depression Scale (HADS) and Beck Depression Inventory II (BDI-II) scale. There were significant reductions in total and subscale BDI-II and HADS scores in both CVE and control groups by the end of trial. The magnitude of reductions in total BDI-II score [-4.14 (-5.30 to -2.97)] as well as physical [-2.34 (-2.84 to -1.84)] and cognitive [-1.12 (-1.62 to -0.61)] subscales were significantly greater in the CVE versus control group, however, reduction of the affective symptoms was greater in the control compared with the CVE group [0.95 (0.18-0.72)]. Total HADS [-3.71 (-4.44 to -2.98)] as well as individual subscales of depression [-1.46 (-2.02 to -0.90)] and anxiety [-2.25 (-2.74 to -1.76)] were reduced to a greater degree in the CVE group. CVE was well tolerated and no serious adverse event was reported. This pilot exploratory trial provides the first clinical evidence on the efficacy and safety of adjunctive therapy with CVE in improving physical and cognitive symptoms of depression as well as anxiety symptoms in patients who are receiving standard antidepressant therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Does the cell radioresistance acquired by low dose-rate gamma irradiation depend on genetic factors or physiological changes. Study carried out on inactive cells of the unicellular green alga Chlorella pyrenoidosa CHICK

    International Nuclear Information System (INIS)

    Dettwiller, Pascale.

    1982-09-01

    Inactive cells of the unicellular green alga Chlorella pyrenoidosa CHICK were used to test the following hypothesis: the radioresistance acquired by these cells after irradiation at low dose rate (0.06 Gy/mn) is due to the selection or induction of radioresistant clones. Clone cultures were grown mainly from colonies exhibiting defects (high cell loss, slowed growth, pigment deficiency). Of thirty clones studied, three only of second and third separations possessed the radioresistance of their original population. On the basis of these results, backed up by a first experiment which shows the loss of cell radioresistance when continuous irradiation is stopped, the initial hypothesis may be dismissed and research directed towards changes relative to cell restoration processes by irradiation at low dose rates [fr

  20. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Godlewska-Zylkiewicz, Beata E-mail: bgodlew@uwb.edu.pl

    2003-08-15

    Inexpensive baker's yeast Saccharomyces cerevisiae and green algae Chlorella vulgaris, either free or immobilized on silica gel have been shown to selectively accumulate platinum and palladium from water samples in acidic medium (pH 1.6-1.8). Optimization of conditions of metals biosorption (sample pH, algae and yeast masses, adsorption time, temperature) was performed in batch mode. The procedure of matrix separation based on biosorption of platinum and palladium on algae C. vulgaris covalently immobilized on silica gel in flow mode was developed. The use of algae in flow procedure offers several advantages compared with its use in the batch mode. The procedure shows better reproducibility (<2%), improved efficiency of platinum retention on the column (93.3{+-}1.6%), is less laborious and less time consuming. The best recovery of biosorbed metals from column (87.7{+-}3.3% for platinum and 96.8{+-}1.1 for palladium) was obtained with solution of 0.3 mol l{sup -1} thiourea in 1 mol l{sup -1} hydrochloric acid. The influence of thiourea on analytical signals of examined metals during GFAAS determination is discussed. The procedure has been applied for separation of noble metals from tap and waste water samples spiked with platinum and palladium.

  1. Optimization of direct solvent lipid extraction kinetics on marine trebouxiophycean alga by central composite design – Bioenergy perspective

    International Nuclear Information System (INIS)

    Mathimani, Thangavel; Uma, Lakshmanan; Prabaharan, Dharmar

    2017-01-01

    Highlights: • Direct solvent extraction is an appropriate pretreatment for marine C. vulgaris. • 2:1 chloroform/methanol, 1:5 DCW/solvent, 65 °C and 120 min time are optimal variables. • Favorable R"2, Prob > F, F value and desirability ratio for all models was observed. • Precision and compatibility of the optimized process suit well with Picochlorum sp. • Fuel properties of biodiesel comply ASTM, EN and ISO standards. - Abstract: This present work compares various pretreatment techniques, single/binary solvent system, biomass drying methods and biomass particle sizes to ascertain effective lipid extraction process for marine trebouxiophycean microalga Chlorella vulgaris BDUG 91771. Of the tested methods, homogenization or direct solvent extraction (DSE) pretreatment, chloroform/methanol binary solvent system, and ≤600 µm particle size extracted maximum lipid of 22.1% irrespective of different biomass drying methods. Further, considering low energy consumption and industrial feasibility, optimization of DSE process kinetics was performed by central composite design. According to central composite design, high lipid recovery was attained with 2:1 chloroform/methanol ratio, 1:5 dry cell weight/solvent ratio, 65 °C temperature, 120 min reaction time, and it was highly validated by regression analysis, coefficient determination, F-value, coefficient variation, desirability ratio of the models. It is noteworthy that, the optimized DSE process was compatible with another trebouxiophycean alga Picochlorum sp. BDUG 91281 through biological and technical replicates. In a bioenergy outlook, fuel properties of C. vulgaris BDUG 91771 biodiesel such as degree of unsaturation (69.03), long chain saturation factor (2.49), cold filter plugging point (−9.75 °C), cloud point (8.1 °C), pour point (0.66 °C), saponification value (248.2 mg KOH/g), acid value (0.51 mg KOH/g), ash content (0.019%), insoluble impurities (0.022 g/kg) and viscosity (4.1 cSt) comply ASTM

  2. Bioelectrogenesis with microbial fuel cells (MFCs using the microalga Chlorella vulgaris and bacterial communities

    Directory of Open Access Journals (Sweden)

    Ronald Huarachi-Olivera

    2018-01-01

    Conclusions: These findings suggest that MFCs with C. vulgaris and bacterial community have a simultaneous efficiency in the production of bioelectricity and bioremediation processes, becoming an important source of bioenergy in the future.

  3. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  4. The laboratory environmental algae pond simulator (LEAPS) photobioreactor: Validation using outdoor pond cultures of Chlorella sorokiniana and Nannochloropsis salina

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, M.; Williams, P.; Edmundson, S.; Chen, P.; Kruk, R.; Cullinan, V.; Crowe, B.; Lundquist, T.

    2017-09-01

    A bench-scale photobioreactor system, termed Laboratory Environmental Algae Pond Simulator (LEAPS), was designed and constructed to simulate outdoor pond cultivation for a wide range of geographical locations and seasons. The LEAPS consists of six well-mixed glass column photobioreactors sparged with CO2-enriched air to maintain a set-point pH, illuminated from above by a programmable multicolor LED lighting (0 to 2,500 µmol/m2-sec), and submerged in a temperature controlled water-bath (-2 °C to >60 °C). Measured incident light intensities and water temperatures deviated from the respective light and temperature set-points on average only 2.3% and 0.9%, demonstrating accurate simulation of light and temperature conditions measured in outdoor ponds. In order to determine whether microalgae strains cultured in the LEAPS exhibit the same linear phase biomass productivity as in outdoor ponds, Chlorella sorokiniana and Nannochloropsis salina were cultured in the LEAPS bioreactors using light and temperature scripts measured previously in the respective outdoor pond studies. For Chlorella sorokiniana, the summer season biomass productivity in the LEAPS was 6.6% and 11.3% lower than in the respective outdoor ponds in Rimrock, Arizona, and Delhi, California; however, these differences were not statistically significant. For Nannochloropsis salina, the winter season biomass productivity in the LEAPS was statistically significantly higher (15.2%) during the 27 day experimental period than in the respective outdoor ponds in Tucson, Arizona. However, when considering only the first 14 days, the LEAPS biomass productivity was only 9.2% higher than in the outdoor ponds, a difference shown to be not statistically significant. Potential reasons for the positive or negative divergence in LEAPS performance, relative to outdoor ponds, are discussed. To demonstrate the utility of the LEAPS in predicting productivity, two other strains – Scenedesmus obliquus and Stichococcus minor

  5. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.

    Science.gov (United States)

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2013-05-01

    In this work, a one-step extraction/transesterification process was developed to directly convert wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 into biodiesel using immobilized Burkholderia lipase as the catalyst. The microalgal biomass (water content of 86-91%; oil content 14-63%) was pre-treated by sonication to disrupt the cell walls and then directly mixed with methanol and solvent to carry out the enzymatic transesterification. Addition of a sufficient amount of solvent (hexane is most preferable) is required for the direct transesterification of wet microalgal biomass, as a hexane-to-methanol mass ratio of 1.65 was found optimal for the biodiesel conversion. The amount of methanol and hexane required for the direct transesterification process was also found to correlate with the lipid content of the microalga. The biodiesel synthesis process was more efficient and economic when the lipid content of the microalgal biomass was higher. Therefore, using high-lipid-content microalgae as feedstock appears to be desirable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta)

    Science.gov (United States)

    Zou, Shanmei; Fei, Cong; Song, Jiameng; Bao, Yachao; He, Meilin; Wang, Changhai

    2016-01-01

    Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella–like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential “specific barcode” for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes. PMID:27092945

  7. Bioremediation of acid mine drainage using algae strains: A review

    Directory of Open Access Journals (Sweden)

    J.K. Bwapwa

    2017-12-01

    Full Text Available Acid mine drainage (AMD causes massive environmental concerns worldwide. It is highly acidic and contains high levels of heavy metals causing environmental damage. Conventional treatment methods may not be effective for AMD. The need for environmental remediation requires cost effective technologies for efficient removal of heavy metals. In this study, algae based systems were reviewed and analyzed to point out the potentials and gaps for future studies. Algae strains such as Spirulina sp., Chlorella, Scenedesmus, Cladophora, Oscillatoria, Anabaena, Phaeodactylum tricornutum have showed the capacity to remove a considerable volume of heavy metals from AMD. They act as “hyper-accumulators” and “hyper-adsorbents” with a high selectivity for different elements. In addition, they generate high alkalinity which is essential for precipitation of heavy metals during treatment. However, algae based methods of abating AMD are not the ultimate solution to the problem and there is room for more studies. : The bioremediation of acid mine drainage is achievable with the use of microalgae. Keywords: Acid mine drainage, Algae strains, Contamination, Heavy metals, Bioremediation

  8. Designing of plant artificial chromosome (PAC) by using the Chlorella smallest chromosome as a model system.

    Science.gov (United States)

    Noutoshi, Y; Arai, R; Fujie, M; Yamada, T

    1997-01-01

    As a model for plant-type chromosomes, we have been characterizing molecular organization of the Chlorella vulgaris C-169 chromosome I. To identify chromosome structural elements including the centromeric region and replication origins, we constructed a chromosome I specific cosmid library and aligned each cosmid clones to generate contigs. So far, more than 80% of the entire chromosome I has been covered. A complete clonal physical reconstitution of chromosome I provides information on the structure and genomic organization of plant genome. We propose our strategy to construct an artificial chromosome by assembling the functional chromosome structural elements identified on Chrorella chromosome I.

  9. Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae.

    Science.gov (United States)

    Kelly, David J A; Budd, Kenneth; Lefebvre, Daniel D

    2007-01-01

    Eukaryotic algae were studied to determine their ability to biotransform Hg(II) under aerated and pH controlled conditions. All algae converted Hg(II) into beta-HgS and Hg(0) to varying degrees. When Hg(II) was administered as HgCl(2) to the algae, biotransformation by species of Chlorophyceae (Selenastrum minutum and Chlorella fusca var. fusca) was initiated with beta-HgS synthesis (K (1/2) of hours) and concomitant Hg degrees evolution occurred in the first hour. Hg degrees synthesis was impeded by the formation of beta-HgS and this inhibition was released in C. fusca var. fusca when cellular thiols were oxidized by the addition of dimethylfumarate (DMF). The diatom, Navicula pelliculosa (Bacillariophyceae), converted a substantially greater proportion of the applied Hg(II) into Hg(0), whereas the thermophilic alga, Galdieria sulphuraria (Cyanidiophyceae), rapidly biotransformed as much as 90% of applied Hg(II) into beta-HgS (K (1/2) approximately 20 min). This thermophile was also able to generate Hg(0) even after all exogenously applied HgCl(2) had been biotransformed. The results suggest that beta-HgS may be the major dietary mercurial for grazers of contaminated eukaryotic algae.

  10. Research of nickel nanoparticles toxicity with use of Aquatic Organisms

    International Nuclear Information System (INIS)

    Morgaleva, T; Morgalev, Yu; Gosteva, I; Morgalev, S

    2015-01-01

    The effect of nanoparticles with the particle size Δ 50 =5 nm on the test function of aquatic organisms was analyzed by means of biotesting methods with the use of a complex of test-organisms representing general trophic levels. The dependence of an infusoria Paramecium caudatum chemoattractant-elicited response, unicellular algae Chlorella vulgaris Beijer growth rate, Daphnia magna Straus mortality and trophic activity and Danio rerio fish kill due to nNi disperse system concentration, is estimated. It is determined that the release of chlorella into cultivated environment including nNi as a feed for daphnias raises the death rate of entomostracans. The minimal concentration, whereby an organism response to the effect of nNi is registered, depends on the type of test organism and the analysed test function. L(E)C 20 is determined for all the organisms used in bioassays. L(E)C 50 is estimated for Paramecium caudatum (L(E)C 50 = 0.0049 mg/l), for Chlorella vulgaris Beijer (L(E)C 50 = 0.529 mg/l), for Daphnia m. S (L(E)C 50 > 100 mg/l) and for fish Danio rerio (L(E)C 50 > 100 mg/l). According to the Globally Harmonized System hazard substance evaluation criteria and Commission Directive 93/67/EEC, nNi belongs to the “acute toxicity 1” category of toxic substances. (paper)

  11. Research of nickel nanoparticles toxicity with use of Aquatic Organisms

    Science.gov (United States)

    Morgaleva, T.; Morgalev, Yu; Gosteva, I.; Morgalev, S.

    2015-11-01

    The effect of nanoparticles with the particle size Δ50=5 nm on the test function of aquatic organisms was analyzed by means of biotesting methods with the use of a complex of test-organisms representing general trophic levels. The dependence of an infusoria Paramecium caudatum chemoattractant-elicited response, unicellular algae Chlorella vulgaris Beijer growth rate, Daphnia magna Straus mortality and trophic activity and Danio rerio fish kill due to nNi disperse system concentration, is estimated. It is determined that the release of chlorella into cultivated environment including nNi as a feed for daphnias raises the death rate of entomostracans. The minimal concentration, whereby an organism response to the effect of nNi is registered, depends on the type of test organism and the analysed test function. L(E)C20 is determined for all the organisms used in bioassays. L(E)C50 is estimated for Paramecium caudatum (L(E)C50 = 0.0049 mg/l), for Chlorella vulgaris Beijer (L(E)C50 = 0.529 mg/l), for Daphnia m. S (L(E)C50 > 100 mg/l) and for fish Danio rerio (L(E)C50 > 100 mg/l). According to the Globally Harmonized System hazard substance evaluation criteria and Commission Directive 93/67/EEC, nNi belongs to the “acute toxicity 1” category of toxic substances.

  12. Acute and chronic toxic effects of bisphenol A on Chlorella pyrenoidosa and Scenedesmus obliquus.

    Science.gov (United States)

    Zhang, Wei; Xiong, Bang; Sun, Wen-Fang; An, Shuai; Lin, Kuang-Fei; Guo, Mei-Jin; Cui, Xin-Hong

    2014-06-01

    The acute and chronic toxic effects of Bisphenol A (BPA) on Chlorella pyrenoidosa (C. pyrenoidosa) and Scenedesmus obliquus (S. obliquus) were not well understood. The indoor experiments were carried out to observe and analyze the BPA-induced changes. Results of the observations showed that in acute tests BPA could significantly inhibit the growth of both algae, whereas chronic exposure hardly displayed similar trend. Superoxide dismutase (SOD) and Catalase (CAT) activities of both algae were promoted in all the treatments. Chlorophyll a synthesis of the two algae exhibited similar inhibitory trend in short-term treatments, and in chronic tests C. pyrenoidosa hardly resulted in visible influence, whereas in contrast, dose-dependent inhibitory effects of S. obliquus could be clearly observed. The experimental results indicated that the growth and Chlorophyll a syntheses of S.obliquus were more sensitive in response to BPA than that of C. pyrenoidosa, whereas for SOD andCAT activities, C. pyrenoidosa was more susceptible. This research provides a basic understanding of BPA toxicity to aquatic organisms. Copyright © 2012 Wiley Periodicals, Inc.

  13. Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain

    DEFF Research Database (Denmark)

    Kalman, Judit; Paul, Kai B.; Khan, Farhan R.

    2015-01-01

    This study investigated the bioaccumulation dynamics of silver nanoparticles (Ag NPs) with different coatings (polyvinyl pyrrolidone, polyethylene glycol and citrate), in comparison with aqueous Ag (added as AgNO3), in a simplified freshwater food chain comprising the green alga Chlorella vulgaris...... and the crustacean Daphnia magna. Algal uptake rate constants (ku) and membrane transport characteristics (binding site density, transporter affinity and strength of binding) were determined after exposing algae to a range of either aqueous Ag or Ag NP concentrations. In general, higher ku values were related......). Ag NPs were only visualised in algal cells exposed to high Ag NP concentrations. To establish D. magna biodynamic model constants, organisms were fed Ag-contaminated algae and depurated for 96 h. Assimilation efficiencies ranged from 10 to 25 % and the elimination of accumulated Ag followed a two...

  14. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology.

    Science.gov (United States)

    Aguirre, Ana-Maria; Bassi, Amarjeet

    2013-08-01

    The microalgae Chlorella vulgaris produce lipids that after extraction from cells can be converted into biodiesel. However, these lipids cannot be efficiently extracted from cells due to the presence of the microalgae cell wall, which acts as a barrier for lipid removal when traditional extraction methods are employed. Therefore, a microalgae system with high lipid productivity and thinner cell walls could be more suitable for lipid production from microalgae. This study addresses the effect of culture conditions, specifically carbon dioxide and sodium nitrate concentrations, on biomass concentration and the ratio of lipid productivity/cellulose content. Optimization of culture conditions was done by response surface methodology. The empirical model for biomass concentration (R(2)  = 96.0%) led to a predicted maximum of 1123.2 mg dw L(-1) when carbon dioxide and sodium nitrate concentrations were 2.33% (v/v) and 5.77 mM, respectively. For lipid productivity/cellulose content ratio (R(2)  = 95.2%) the maximum predicted value was 0.46 (mg lipid L(-1)  day(-1) )(mg cellulose mg biomass(-1) )(-1) when carbon dioxide concentration was 4.02% (v/v) and sodium nitrate concentration was 3.21 mM. A common optimum point for both variables (biomass concentration and lipid productivity/cellulose content ratio) was also found, predicting a biomass concentration of 1119.7 mg dw L(-1) and lipid productivity/cellulose content ratio of 0.44 (mg lipid L(-1)  day(-1) )(mg cellulose mg biomass(-1) )(-1) for culture conditions of 3.77% (v/v) carbon dioxide and 4.01 mM sodium nitrate. The models were experimentally validated and results supported their accuracy. This study shows that it is possible to improve lipid productivity/cellulose content by manipulation of culture conditions, which may be applicable to any scale of bioreactors. Copyright © 2013 Wiley Periodicals, Inc.

  15. Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris

    Science.gov (United States)

    Zhang, Ping; Li, Zhe; Lu, Lunhui; Xiao, Yan; Liu, Jing; Guo, Jinsong; Fang, Fang

    2017-06-01

    Stressful conditions can stimulate the accumulation of carotenoids in some microalgae. To obtain more knowledge of the stress response, we studied the effects of different N concentrations on unicellular content of carotenoids using Raman spectroscopic technique; cellular stoichiometric changes and the fluorescence parameters of Chlorella vulgaris were concomitantly studied. Initially, we optimized the Raman scattering conditions and demonstrated the feasibility of unicellular carotenoid analysis by Raman spectroscopic technique. The results showed that an integration time of 10 s, laser power at 0.1 mW and an accumulation time of 1 were the optimum conditions, and the peak height at 1523 cm- 1 scaled linearly with the carotenoid content in the range of 0.625-1440 mg/L with a recovery rate of 97% 103%. In the experiment, seven different nitrogen levels ranging from 0 to 2.48 × 105 μg/L were imposed. Samples were taken at the start, exponential phase and end of the experiment. The results showed that nitrogen stress can facilitate the synthesis of carotenoids, while at the same time, excessive nitrogen stress led to lower proliferative and photosynthetic activity. Compared with carotenoids, chlorophylls were more sensitive to nitrogen stress; it declined dramatically as stress processed. There existed no significant differences for Fv/Fm among different nitrogen levels during the exponential phase, while in the end, it declined and a significant difference appeared between cells in 2.48 × 105 μg/L N and other experimental levels. Photosynthetic efficiency, namely the C/N mole ratio in algal cells, didnot significantly change during the exponential phase; however, apparent increases ultimately occurred, except for the stable C/N in BG11 medium. This increase matched well with the carotenoid decline, indicating that an increasing cellular C/N mole ratio can be used as an indicator of excessive stress in carotenoid production. Besides, there also existed an inverse

  16. Efecto de la radiación ultravioleta B en la producción de polifenoles en la microalga marina Chlorella sp. Effect of ultraviolet B radiation on the production of polyphenols in the marine microalga Chlorella sp.

    Directory of Open Access Journals (Sweden)

    Jaime Copia

    2012-03-01

    Full Text Available Las algas marinas son una fuente importante de compuestos antioxidantes (fenoles y polifenoles, generados como mecanismos de defensa frente a factores de estrés (radiación UV, temperatura, herbívora. El objetivo de este trabajo es evaluar la estrategia de adaptación al efecto de la radiación ultravioleta B (RUV-B, 280-315 nm en la microalga marina Chlorella sp. mediante la producción de polifenoles y capacidad antioxidante total. Se expusieron cultivos de Chlorella sp. fueron expuestos a radiación UV-B (470 μW cm-2 por periodo de tiempos ascendentes. Se evaluó la capacidad antioxidante total DPPH, polifenoles totales, clorofila-a y b así como la densidad celular en cultivos expuestos y no expuestos. Los resultados indicaron que la RUV-B genera una disminución de la densidad celular en los cultivos irradiados por primera vez (1ª etapa, existiendo un aumento significativo (P Marine algae are an important source of antioxidant compounds (phenols and polyphenols, generated as defense mechanisms against stress factors (UV radiation, temperature, herbivory. The aim of this study was to evaluate the strategy of adaptation to the effect of ultraviolet B radiation (UV-B, 280-315 nm in the marine microalga Chlorella sp. through, the production of polyphenols and total antioxidant capacity. Chlorella sp. cultures were exposed to UV-B radiation (470 μW cm-2 over increasing time periods. We evaluated the total antioxidant capacity DPPH, total polyphenols, chlorophyll-a and b, and cell densities in exposed and unexposed cultures. The results indicated that UV-B caused a decrease in cell density in cultures irradiated for the first time (1st stage, with a significant increment (P < 0.05, lower than the control in the 2nd and 3rd stages only through the 4th stage (day 7, corresponding to a dose of 16,920 J m-2. The production of total phenols increased significantly (P < 0.05 for the IVth extract with respect to the control, confirming that the

  17. Some aspects of the combined mutagenic utilization of ionizing radiation and chemical mutagens in the experimental mutagenesis with Chlorella vulgaris B

    International Nuclear Information System (INIS)

    Mekhandzhiev, A.D.; Chankova, S.G.; Petkova, S.D.

    1979-01-01

    The influence of mutagen dose and cell cycle phase in combined mutagenic effects of ionizing radiation and EMS was experimentally studied on Chlorella vulgaris B. The duration of the cell cycle phases was determined from autoradiographic data on the kinetics of the incorporated labelled precursor ( 3 H-thymidine). The mutagenic effect was evaluated on the 10th or 11th day by the induced pigment mutations on a total of 450,105 colonies. It was found that the combining of 2, 6 or 15 krad gamma rays with EMC in doses 0.002, 0.125 or 0.5 M on the 4th, 12th, 11th, 16th or 18th hour of the cell cycle has a different effect, depending on mutagen dose and cell cycle phase. In this way, combining three different doses of gamma rays with 0.5 M EMC(LDsub(90-99)) at the onset of G 1 induces a distinct rise in the percentage of pigment mutations, as compared to the theoretically expected. The superadditive effect in this case however was associated with limitation of the mutation spectrum. Treatment with average lethal combination (6 krad gamma rays + 0.002 M EMC or 6 krad gamma rays + 0.125 M EMC) was not very effective, but the induced mutations had a rather broader spectrum (8-9 types). A comparison of the theoretically expected yield of pigment mutations with the actually obtained one shows a superadditibility only in cells treated in G 1 (LD 60 ) and in the mid S-phase (LD 40 ). (A.B.)

  18. Composition of the sheath produced by the green alga Chlorella sorokiniana.

    Science.gov (United States)

    Watanabe, K; Imase, M; Sasaki, K; Ohmura, N; Saiki, H; Tanaka, H

    2006-05-01

    To investigate the chemical characterization of the mucilage sheath produced by Chlorella sorokiniana. Algal mucilage sheath was hydrolysed with NaOH, containing EDTA. The purity of the hydrolysed sheath was determined by an ATP assay. The composition of polysaccharide in the sheath was investigated by high-performance anion-exchange chromatography with pulsed amperometric detection. Sucrose, galacturonic acid, xylitol, inositol, ribose, mannose, arabinose, galactose, rhamnose and fructose were detected in the sheath as sugar components. Magnesium was detected in the sheath as a divalent cation using inductively coupled argon plasma. The sheath matrix also contained protein. It appears that the sheath is composed of sugars and metals. Mucilage sheath contains many kinds of saccharides that are produced as photosynthetic metabolites and divalent cations that are contained in the culture medium. This is the first report on chemical characterization of the sheath matrix produced by C. sorokiniana.

  19. Preparation of saccharides uniformly labelled with 14C radioisotope. Part VI

    International Nuclear Information System (INIS)

    Skala, L.

    1987-01-01

    1,6-anhydro-β-D-[U- 14 C]-glucopyranose was prepared by pyrolysis of U- 14 C-glucane from the Chlorella vulgaris Beijerinck algae at reduced pressure. The compound was separated by preparative paper chromatography with yields of 25 to 30% relative to the radioactivity of the initial[U- 14 C]glucane. The compound whose preparation has not been described in the literature is of a potential value as an initial compound for the preparation of a number of saccharides and their derivatives that are difficult to obtain. (author). 1 fig., 20 refs

  20. Pathway of /sup 14/Co/sub 2/ fixation in marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, G V; Karekar, M D [Shivaji Univ., Kolhapur (India). Dept. of Botany

    1973-08-01

    Marine plants have a different metabolic environment which is likely to affect pathways of CO/sub 2/ fixation. It has been observed that in marine alga, Ulva lactuca, during short term light fixation of /sup 14/CO/sub 2/, besides PGA, an appreciable amount of activity was located in aspartate. This curious observation can now be explained on the basis of Hatch, Slack and Kortschak pathway of CO/sub 2/ fixation. In order to trace pathways of /sup 14/CO/sub 2/ in marine algae, a wide variety of algal specimens were exposed to NaH/sup 14/CO/sub 3/ in light and the products were analyzed. The algae selected were Ulva lactuca, Sargassum ilicifolium, Sphacelaria sp., Padina tetrastromatica, Chaetomorpha media and Enteromorpha tubulosa. It has been found that the pathways of CO/sub 2/ in the above marine algae differ from the conventional pattern recorded in Chlorella. The early labelling of aspartate and its subsequent utilization indicates that HSK pathway is operative in the marine algae. Malate synthesis is inhibited due to the effect of saline environment on the activity of malic dehydrogenase. Appreciable label in PGA is suggestive of the fact that Calvin and Bassham pathway as well as the HSK route are simultaneously operating. (auth)