WorldWideScience

Sample records for alga anacystis nidulans

  1. Influence of ultraviolet irradiation on nutrient-gleaning capacity of two unicellular algae. [Anacystis nidulans and Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H D; Sharma, V; Bisaria, G P

    1975-01-01

    Two unicellular algae, viz., Anacystis nidulans and Chlorella vulgaris, growing in polluted effluents, were isolated in unialgal and bacteria free culture. They were mutagenically exposed to ultraviolet radiation and variant strains endowed with differing capacities for growth and nutrient-gleaning were successfully isolated as distinct clones on agar plates. One such clone each of the two species was tested further and found stable. While these variant strains grew more slowly than untreated controls, statistically significant differences with respect to phosphate and nitrate uptake were found between treated and control strains of the two species.

  2. Induction of mutations in blue-green alga Anacystis nidulans by consolidated and split UV irradiation

    International Nuclear Information System (INIS)

    Amla, D.V.

    1979-01-01

    Ultraviolet mutability of consolidated and split dose treatment in A. nidulans was investigated with reference to induction of phage- and streptomycin-resistant markers. The consolidated UV treatment induced both the markers about 100-150-fold, whereas under photoreactivating conditions the survival of alga was enhanced and mutation frequency was decreased. The split UV treatment with 6 hr dark incubation between two UV exposures enhanced the survival and mutation frequencies to 500-700 fold above the back-ground level. The data give indirect evidence for the presence of error-prone dark repair system in this organism. (auth.)

  3. Light-regulation of enzyme activity in anacystis nidulans (Richt.).

    Science.gov (United States)

    Duggan, J X; Anderson, L E

    1975-01-01

    The effect of light on the levels of activity of six enzymes which are light-modulated in higher plants was examined in the photosynthetic procaryot Anacystis nidulans. Ribulose-5-phosphate kinase (EC 2.7.1.19) was found to be light-activated in vivo and dithiothreitol-activated in vitro while glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was light-inactivated and dithiothreitol-inactivated. The enzymes fructose-1,6-diphosphate phosphatase (EC 3.1.3.11), sedoheptulose-1,7-diphosphate phosphatase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; EC 1.2.1.13) were not affected by light treatment of the intact algae, but sedoheptulose-diphosphate phosphatase and the glyceraldehyde-3-phosphate dehydrogenases were dithiothreitol-activated in crude extracts. Light apparently controls the activity of the reductive and oxidative pentose phosphate pathway in this photosynthetic procaryot as in higher plants, through a process which probably involves reductive modulation of enzyme activity.

  4. Post irradiative stimulation of the lipids synthesis in the cells of Anacystis nidulans

    International Nuclear Information System (INIS)

    Groshev, V.V.; Tiflova, O.A.

    1982-01-01

    Ultraviolet and X-ray irradiations stimulate postradiation synthesis of fatty acids of lipids in cells of Anacystis nidulans. Stimulation degree is proportional to the radiation dose and time of postradiation incubation of cells

  5. Effect of carbon and nitrogen assimilation on chlorophyll fluorescence emission by the cyanobacterium Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J.M.; Lara, C. (Instituto de Bioquimica Vegetal y Fotosintesis, Univ. de Sevilla y CSIC, Sevilla (ES)); Sivak, M.N. (Dept. of Biochemistry, Michigan State Univ., East Lansing (US))

    1992-01-01

    O{sub 2} evolution and chlorophyll A fluorescence emission have been monitored in intact cells of the cyanobacterium Anacystis nidulans 1402-1 to study the influence of carbon and nitrogen assimilation on the operation of the photosynthetic apparatus. The pattern of fluorescence induction in dark-adapted cyanobacterial cells was different from that of higher plants. Cyanobacteria undergo large, rapid state transitions upon illumination, which lead to marked changes in the fluorescence yield, complicating the estimation of quenching coefficients. The Kautsky effect was not evident, although it could be masked by a state II-state I transition, upon illumination with actinic light. The use of inhibitors of carbon assimilation such as D,L-glyceraldehyde or iodoacetamide allowed us to relate changes in variable fluorescence to active CO{sub 2} fixation. Ammonium, but not nitrate, induced non-photochemical fluorescence quenching, in agreement with a previous report on green algae, indicative of an ammonium-induced state i transition. (au).

  6. X-ray induced degradation of DNA in radiosensitive mutants of Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Zhukas, K I; Vorontsova, G V; Groshev, V V; Shestakov, S V [Moskovskij Gosudarstvennyj Univ. (USSR). Biologo-Pochvennyj Fakul' tet

    1975-01-01

    In irradiated Cyanophyceae (Anacystis nidulans) cells there occurs a process of DNA degeneration to acid-soluble products which is linked with protein synthesis and stimulated by caffeine and acriflavine. The degree of DNA degeneration increases with x-ray dose, is not very dependent on the composition of the incubation medium and is weakly linked with photosynthesis. In the cells of a radiation-resistant mutant the degree of DNA degeneration is slighter, and in the cells of radiosensitive mutants larger, than in ordinary cells. The role of DNA degradation in the radiation detruction of cells is discussed.

  7. X-ray induced degradation of DNA in radiosensitive mutants of Anacystis nidulans x-rays

    International Nuclear Information System (INIS)

    Zhukas, K.I.; Vorontsova, G.V.; Groshev, V.V.; Shestakov, S.V.

    1975-01-01

    In irradiated Cyanophyceae (Anacystis nidulans) cells there occurs a process of DNA degeneration to acid-soluble products which is linked with protein synthesis and stimulated by caffeine and acriflavine. The degree of DNA degeneration increases with X-ray dose, is not very dependent on the composition of the incubation medium and is weakly linked with photosynthesis. In the cells of a radiation-resistant mutant the degree of DNA degeneration is slighter, and in the cells of radiosensitive mutants larger, than in ordinary cells. The role of DNA degradation in the radiation detruction of cells is discussed. (author)

  8. Effect of manganese and zinc on the growth of Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.H.; Lustigman, B.; Dandorf, D. (Montclair State College, Upper Montclair, NJ (United States))

    1994-07-01

    Anacystis nidulans is a unicellular member of the cyanobacteria, one of the largest groups of the Kingdom Monera. It is similar to other bacteria in the structure and chemistry of the cell wall, and its cell division and genetic recombination. Photoautotrophy is the main mode of nutrition and the photosynthetic apparatus is similar to that of other cyanobacteria. Cyanobacteria are excellent organisms to serve as environmental pollution indicators for the investigation of a wide variety of biological problems. There have been several studies on the effects of heavy metals on A. nidulans. Some of these elements, such as manganese, are known to be essential nutrients for cyanobacteria. Others, such as cadmium, are not known to be necessary for normal growth and metabolism. Large amounts of either essential or non-essential elements can be toxic. Manganese and zinc are essential elements for all living organisms. Manganese is a cofactor for a number of different enzymatic reactions particularly those involved in phosphorylation. Iron deficiency induced by a number of metals, cobalt and manganese in particular, inhibit chlorophyll biosynthesis. Zinc deficiency affects early mitotic events and the cells are large and aberrant in appearance. Light is essential for cells to take in zinc. As an industrial contaminant, zinc has been found to block photosynthesis by causing structural damage to the photosynthetic apparatus. In the presence of various pH ranges, high zinc concentrations can be associated with low pH. It has been indicated that pH value and EDTA (Ethylene Diamine Tetraacetic Acid) have an influence on the effect of some metals. The purpose of this study was to determine the effect of manganese and zinc on the growth of Anacystis nidulans, with and without EDTA.

  9. Entrapment of active ion-permeable cyanobacteria (Anacystis nidulans) in calcium alginate

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiou, G.C.; Kalosaka, K.; Sotiropoulou, G.; Barbotin, J.N.; Thomasset, B.; Thomas, T.

    1988-12-01

    Cells of the unicellular cyanobacterium Anacystis nidulans were made permeable to ions by treating them with lysozyme and EDTA in a way that leaves the photosynthetic water-splitting function, the photoreduction of exogenous oxidants and the peptidoglycan exoskeleton of the cell virtually intact. The permeabilized cells (permeaplasts) were subsequently immobilized by entrapment in calcium alginate beads. The immobilized preparation exhibits remarkable stability both on storage and in action. On prolonged storage at room temperature in darkness, its photosynthetic activity deteriorates one-third as fast as the activity of immobilized intact cells. Illumination accelerates deactivation. Tested in prolonged runs, however, performed in an illuminated open reactor, alginate-immobilized Anacystis permeaplasts were capable of photoreducing ionic oxidants (ferricyanide) and of exporting ionic reductants (ferrocyanide) to the suspension medium continuously for more than 5 h before being totally inactivated. It is also shown that the major impediment to the photoreduction performance of immobilized permeaplasts arises from diffusion limitations, while the photonic limitation due to light reflection and scattering is approx. 7%.

  10. Characterization of the cytochrome c oxidase in isolated and purified plasma membranes from the cyanobacterium Anacystis nidulans

    International Nuclear Information System (INIS)

    Peschek, G.A.; Wastyn, M.; Trnka, M.; Molitor, V.; Fry, I.V.; Packer, L.

    1989-01-01

    Functionally intact plasma membranes were isolated from the cyanobacterium (blue-green alga) Anacystis nidulans through French pressure cell extrusion of lysozyme/EDTA-treated cells, separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation, and purified by repeated recentrifugation. Origin and identity of the chlorophyll-free plasma membrane fraction were confirmed by labeling of intact cells with impermeant protein markers, [ 35 S]diazobenzenesulfonate and fluorescamine, prior to membrane isolation. Rates of oxidation of reduced horse heart cytochrome c by purified plasma and thylakoid membranes were 90 and 2 nmol min -1 (mg of protein) -1 , respectively. The cytochrome oxidase in isolated plasma membranes was identified as a copper-containing aa 3 -type enzyme from the properties of its redox-active and EDTA-resistant Cu 2+ ESR signal, the characteristic inhibition profile, reduced minus oxidized difference spectra, carbon monoxide difference spectra, photoaction and photodissociation spectra of the CO-inhibited enzyme, and immunological cross-reaction of two subunits of the enzyme with antibodies against subunits I and II, and the holoenzyme, of Paracoccus denitrificans aa 3 -type cytochrome oxidase. The data presented are the first comprehensive evidence for the occurrence of aa 3 -type cytochrome oxidase in the plasma membrane of a cyanobacterium similar to the corresponding mitochondrial enzyme

  11. 1H and 15N resonance assignments of oxidized flavodoxin from Anacystis nidulans with 3D NMR

    International Nuclear Information System (INIS)

    Clubb, R.T.; Thanabal, V.; Wagner, G.; Osborne, C.

    1991-01-01

    Proton and nitrogen-15 sequence-specific nuclear magnetic resonance assignments have been determined for recombinant oxidized flavodoxin from Anacystis nidulans. Assignments were obtained by using 15 N- 1 H heteronuclear three-dimensional (3D) NMR spectroscopy on a uniformly nitrogen-15 enriched sample of the protein, pH 6.6, at 30C. For 165 residues, the backbone and a large fraction of the side-chain proton resonances have been assigned. Medium- and long-range NOE's have been used to characterize the secondary structure. In solution, flavodoxin consists of a five-stranded parallel β sheet involving residues 3-9, 31-37, 49-56, 81-89, 114-117, and 141-144. Medium-range NOE's indicate that presence of several helices. Several 15 N and 1 H resonances of the flavin mononucleotide (FMN) prosthetic group have been assigned. The FMN-binding site has been investigated by using polypeptide-FMN NOE's

  12. Eco-physiological studies on the uptake of the pollutants, copper, zinc and phosphate, by certain algae

    Energy Technology Data Exchange (ETDEWEB)

    Rana, B C; Kumar, H D

    1974-01-01

    Certain algae isolated from polluted and nonpolluted habitats were studied for their capacity to absorb copper, zinc, and phosphate from the ambient medium. They were found to possess a high gleaning capacity for these pollutants. The uptake of copper does not seem to require much metabolic energy and is independent of the growth of the alga, but the uptake of zinc seems to depend directly on its growth. Anacystis nidulans and Chlorella vulgaris are fast growing algae; they can absorb high amounts of phosphate and can be gainfully employed for retrieving the phosphate from the medium. However, the algae must be harvested before they excrete some of the phosphates back into the medium.

  13. Uptake and recovery of americium and uranium by Anacystis biomass

    International Nuclear Information System (INIS)

    Liu, H.H.; Jiunntzong Wu

    1993-01-01

    The optimum conditions for the uptake of americium and uranium from wastewater solutions by Anacystis nidulans cells, and the recovery of these radionuclides were studied. The optimum pH range for both actinides was in the acidic region between 3.0 and 5.0. In a pH 3.5 solution with an algal biomass of 70 μg/mL, up to 95% of the Am and U were taken up by the cells. However, the uptake levels were lowered considerably when ethylene dinitrilotetraacetic acid (EDTA) or iron or calcium ions were present in the solutions. Most of the radionuclides taken up by the cells could also be desorbed by washing with salt solutions. Of nine salt solutions tested, ammonium carbonate was the most effective. Our experiments using algal biomass to remove radionuclides from wastewater showed that about 92% of americium and 85% of uranium in wastewater could be taken up by algal biomass, from which about 46% of the Am and 82% of the U originally present in the wastewater could be recovered by elution with a salt solution. 17 refs., 7 figs., 2 tabs

  14. Algae

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Giordano, Mario

    2014-01-01

    Roč. 24, č. 13 (2014), s. 590-595 ISSN 0960-9822 Institutional support: RVO:61388971 Keywords : algae * life cycle * evolution Subject RIV: EE - Microbiology, Virology Impact factor: 9.571, year: 2014

  15. Selection arena in Aspergillus nidulans

    NARCIS (Netherlands)

    Bruggeman, J.; Debets, A.J.M.; Hoekstra, R.F.

    2004-01-01

    The selection arena hypothesis states that overproduction of zygotes-a widespread phenomenon in animals and plants-can be explained as a mechanism of progeny choice. As a similar mechanism, the ascomycetous fungus Aspergillus nidulans may overproduce dikaryotic fruit initials, hereafter called

  16. METHANE INCORPORATION BY PROCARYOTIC PHOTOSYNTHETICMICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Charles J.; Kirk, Martha; Calvin, Melvin

    1970-08-01

    The procaryotic photosynthetic microorganisms Anacystis nidulans, Nostoc and Rhodospirillum rubrum have cell walls and membranes that are resistant to the solution of methane in their lipid components and intracellular fluids. But Anacystis nidulans, possesses a limited bioxidant system, a portion of which may be extracellularly secreted, which rapidly oxidizes methane to carbon dioxide. Small C{sup 14} activities derived from CH{sub 4} in excess of experimental error are detected in all the major biochemical fractions of Anacystis nidulans and Nostoc. This limited capacity to metabolize methane appears to be a vestigial potentiality that originated over two billion years ago in the early evolution of photosynthetic bacteria and blue-green algae.

  17. Process for the production of 14C-labelled compounds

    International Nuclear Information System (INIS)

    Oldham, K.G.; Carr, N.G.

    1978-01-01

    The patent describes the production of 14 C-labelled compounds from solution with the aid of algae. A microorganism of the Anacystic species is used, preferably Anacystis nidulans which is also known as 'Indiana 625'. The experiments and their results are described in detail. (UWI) [de

  18. The transmission of cytoplasmic genes in Aspergillus nidulans

    NARCIS (Netherlands)

    Coenen, A.

    1997-01-01


    Introduction

    This manuscript concerns the spread of selfish cytoplasmic genes in the fungus Aspergillus nidulans. A.nidulans is a common soil fungus that grows vegetatively by forming a network (mycelium) of hyphae and reproduces

  19. The Study of Algae

    Science.gov (United States)

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  20. Analysis of mitotic nondisjunction with Aspergillus nidulans.

    Science.gov (United States)

    Morpurgo, G; Bellincampi, D; Gualandi, G; Baldinelli, L; Crescenzi, O S

    1979-08-01

    Two methods to detect the induction of nondisjunction with a diploid stable strain of A. nidulans are described. The first method gives only qualitative results, while the second method is quantitative and dose-effect curves can be done. Some physiological parameters affecting the induction of nondisjunction can also be studied, because either quiescent or germinating conidia can be treated with the drug under test. Some agents inducing nondisjunction were also tested for the induction of point mutation and somatic crossing-over with these comparative analysis. Two classes of agents inducing nondisjunction may be detected: the first causes all possible types of genetic damage either on quiescent or germinating conidia (a representative of this class is MMS) and acts presumably on the DNA level; the second acts only on germinating conidia and does not produce point mutation or crossing over. A representative of this class is Benomyl which interferes with spindle microtubules. A list of compounds tests is included.

  1. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  2. Heterologous expression of Gaeumannomyces graminis lipoxygenase in Aspergillus nidulans.

    Science.gov (United States)

    Heshof, Ruud; van Schayck, J Paul; Tamayo-Ramos, Juan Antonio; de Graaff, Leo H

    2014-01-01

    Aspergillus sp. contain ppo genes coding for Ppo enzymes that produce oxylipins from polyunsaturated fatty acids. These oxylipins function as signal molecules in sporulation and influence the asexual to sexual ratio of Aspergillus sp. Fungi like Aspergillus nidulans and Aspergillus niger contain just ppo genes where the human pathogenic Aspergillus flavus and Aspergillus fumigatus contain ppo genes as well as lipoxygenases. Lipoxygenases catalyze the synthesis of oxylipins and are hypothesized to be involved in quorum-sensing abilities and invading plant tissue. In this study we used A. nidulans WG505 as an expression host to heterologously express Gaeumannomyces graminis lipoxygenase. The presence of the recombinant LOX induced phenotypic changes in A. nidulans transformants. Also, a proteomic analysis of an A. nidulans LOX producing strain indicated that the heterologous protein was degraded before its glycosylation in the secretory pathway. We observed that the presence of LOX induced the specific production of aminopeptidase Y that possibly degrades the G. graminis lipoxygenase intercellularly. Also the presence of the protein thioredoxin reductase suggests that the G. graminis lipoxygenase is actively repressed in A. nidulans.

  3. Proteome map of Aspergillus nidulans during osmoadaptation.

    Science.gov (United States)

    Kim, Yonghyun; Nandakumar, M P; Marten, Mark R

    2007-09-01

    The model filamentous fungus Aspergillus nidulans, when grown in a moderate level of osmolyte (+0.6M KCl), was previously found to have a significantly reduced cell wall elasticity (Biotech Prog, 21:292, 2005). In this study, comparative proteomic analysis via two-dimensional gel electrophoresis (2de) and matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) mass spectrometry was used to assess molecular level events associated with this phenomenon. Thirty of 90 differentially expressed proteins were identified. Sequence homology and conserved domains were used to assign probable function to twenty-one proteins currently annotated as "hypothetical." In osmoadapted cells, there was an increased expression of glyceraldehyde-3-phosphate dehydrogenase and aldehyde dehydrogenase, as well as a decreased expression of enolase, suggesting an increased glycerol biosynthesis and decreased use of the TCA cycle. There also was an increased expression of heat shock proteins and Shp1-like protein degradation protein, implicating increased protein turnover. Five novel osmoadaptation proteins of unknown functions were also identified.

  4. Genetics of Polyketide Metabolism in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Marie L. Klejnstrup

    2012-01-01

    Full Text Available Secondary metabolites are small molecules that show large structural diversity and a broad range of bioactivities. Some metabolites are attractive as drugs or pigments while others act as harmful mycotoxins. Filamentous fungi have the capacity to produce a wide array of secondary metabolites including polyketides. The majority of genes required for production of these metabolites are mostly organized in gene clusters, which often are silent or barely expressed under laboratory conditions, making discovery and analysis difficult. Fortunately, the genome sequences of several filamentous fungi are publicly available, greatly facilitating the establishment of links between genes and metabolites. This review covers the attempts being made to trigger the activation of polyketide metabolism in the fungal model organism Aspergillus nidulans. Moreover, it will provide an overview of the pathways where ten polyketide synthase genes have been coupled to polyketide products. Therefore, the proposed biosynthesis of the following metabolites will be presented; naphthopyrone, sterigmatocystin, aspyridones, emericellamides, asperthecin, asperfuranone, monodictyphenone/emodin, orsellinic acid, and the austinols.

  5. Radiation induced genetic damage in Aspergillus nidulans

    International Nuclear Information System (INIS)

    Georgiou, J.T.

    1984-01-01

    The mechanism by which ionizing radiation induces genetic damage in haploid and diploid conidia of Aspergillus nidulans was investigated. Although the linear dose-response curves obtained following low LET irradiation implied a 'single-hit' action of radiation, high LET radiations were much more efficient than low LET radiations, which suggests the involvement of a multiple target system. It was found that the RBE values for non-disjunction and mitotic crossing-over were very different. Unlike mitotic crossing-over, the RBE values for non-disjunction were much greater than for cell killing. This suggests that non-disjunction is a particularly sensitive genetical endpoint that is brought about by damage to a small, probably non-DNA target. Radiosensitisers were used to study whether radiation acts at the level of the DNA or some other cellular component. The sensitisation to electrons and/or X-rays by oxygen, and two nitroimidazoles (metronidazole and misonidazole) was examined for radiation induced non-disjunction, mitotic crossing-over, gene conversion, point mutation and cell killing. It was found that these compounds sensitised the cells considerably more to genetic damage than to cell killing. (author)

  6. Purification and properties of beta-galactosidase from Aspergillus nidulans.

    Science.gov (United States)

    Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F

    1996-12-01

    Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).

  7. Analysis of Aspergillus nidulans metabolism at the genome-scale

    DEFF Research Database (Denmark)

    David, Helga; Ozcelik, İlknur Ş; Hofmann, Gerald

    2008-01-01

    of relevant secondary metabolites, was reconstructed based on detailed metabolic reconstructions available for A. niger and Saccharomyces cerevisiae, and information on the genetics, biochemistry and physiology of A. nidulans. Thereby, it was possible to identify metabolic functions without a gene associated...... a function. Results: In this work, we have manually assigned functions to 472 orphan genes in the metabolism of A. nidulans, by using a pathway-driven approach and by employing comparative genomics tools based on sequence similarity. The central metabolism of A. nidulans, as well as biosynthetic pathways......, in an objective and systematic manner. The functional assignments served as a basis to develop a mathematical model, linking 666 genes (both previously and newly annotated) to metabolic roles. The model was used to simulate metabolic behavior and additionally to integrate, analyze and interpret large-scale gene...

  8. Algae Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in a variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.

  9. Chromosomal duplication strains of Aspergillus nidulans and their instability

    International Nuclear Information System (INIS)

    Azevedo, J.L. de; Almeida Okino, L.M. de

    1981-01-01

    Strains of Aspergillus nidulans with chromosomal duplication were obtained after gamma irradiation followed by crossing of the translocated strains with normal strains. From 20 analysed colonies, 12 have shown translocations induced by irradiation. Segregants from four of these translocation strains crossed to normal strains have shown to be unstable although presenting normal morphology. Two segregants were genetically analysed. The first one has shown a duplication of part of linkage groups VIII and the second one presented a duplication of a segment of linkage group V. These new duplication strains in A. nidulans open new perspectives of a more detailed study of the instability phenomenon in this fungus. (Author) [pt

  10. Heterologous expression of Gaeumannomyces graminis lipoxygenase in Aspergillus nidulans

    NARCIS (Netherlands)

    Heshof, R.; Schayck, van J.P.; Tamayo Ramos, J.A.; Graaff, de L.H.

    2014-01-01

    Aspergillus sp. contain ppo genes coding for Ppo enzymes that produce oxylipins from polyunsaturated fatty acids. These oxylipins function as signal molecules in sporulation and influence the asexual to sexual ratio of Aspergillus sp. Fungi like Aspergillus nidulans and Aspergillus niger contain

  11. Mutants of Aspergillus nidulans affected in asexual development

    Indian Academy of Sciences (India)

    A. nidulans mutants by inducing base transitions and transversions ... tone 2, yeast extract 2, hydrolysed casein 1, and (in /g/l) in- ositol 4000, choline .... carbon sources; flu, fluffy mutation; uvsH, sensitivity to UV radiation. Gene symbols ...

  12. Characterization of the AN6448 cluster in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Nielsen, Jakob Blæsbjerg; Klejnstrup, Marie Louise; Khorsand-Jamal, Paiman

    2012-01-01

    With the aim of mapping the polyketome of A. nidulans we have made a library of strains, which individually overexpress PKS genes from an ectopic locus. A screen of this collection on different media demonstrated that AN6448 leads to production of 3-MOA. An inspection of the DNA sequence surround...

  13. Screening Senyawa Metabolit Sekunder Pada Fungi Laut Emericella Nidulans

    Directory of Open Access Journals (Sweden)

    Irah Namirah

    2016-01-01

    Full Text Available Abstract: Investigation bioactive secondary metabolite previously, Research Center for Marine and Fisheries Product Processing and Biotechnology found anticancer properties to Emericella nidulans marine fungi strain MFW39 isolated from ascidia Aplidium longithorax collected from Wakatobi Marine National Park. Emestrin was a compound with an ETP (epipolithiodioxopiperazine group that found in Emericella nidulans marine fungi have cytotoxicity properties. Emestrin show cytotoxic activity to breast cancer cell line [T47D], cancer cervic cell line [HeLa], colon cancer cell line [WiDr] and liver cancer cell line (HepG2. The aim of the research to investigated other derivative of emestrin compound. The screening with UPLC (Ultra Performance Liquid Chromatography mass analysis q-TOF/MS (quadrupole-Time of Flight/Mass spectra positif mode (ES+.. Monoisotopic ion Derivative compound of emestrin that detected from (ES+ UPLC-ESI-qTOF-MS spectrum are emestrin B, emestrin C. Another compound that detected are cytochalasin B dan C.Keywords: Emericella nidulans, Emestrin, Emestrin derivative, UPLC- q-TOF/MS spectrum Abstrak: Pada penelitian pencarian metabolit sekunder bioaktif sebelumnya, Balai Besar Riset Pengolahan Produk dan Bioteknologi Kelautan dan Perikanan menemukan fungi Emericella nidulans strain MFW39 yang diisolasi dari ascidia Aplidium longithorax dari Taman Nasional Laut Wakatobi, Sulawesi tenggara memiliki aktivitas sitotoksik terhadap beberapa sel kanker, diantaranya sel turunan kanker payudara (T47D, liver (HepG2, kanker usus (C28 dan serviks (HeLa. Senyawa yang berkontribusi terhadap sifat sitotoksik adalah senyawa emestrin yang memiliki gugus ETP (epipolithiodioxopiperazine. Hasil isolasi dan karakterisasi senyawa bioaktif yang ditemukan pada fungi Emericella nidulans strain MFW39 adalah senyawa emestrin. Penelitian ini bertujuan mencari derivat senyawa emestrin lain. Proses screening dilakukan dengan mencari puncak monoisotopik senyawa

  14. Reversion in variants from a duplication strain of Aspergillus nidulans

    International Nuclear Information System (INIS)

    Menezes, E.M.; Azevedo, J.L.

    1978-01-01

    Strains of Aspergillus nidulans with a chromosome segment in duplicate, one in normal position and one translocated to another chromosome, are unstable at mitosis. In addition to variants which result from deletions in either of the duplicate segments, which usually have improved morphology, they produce variants with deteriorated morphology. Three deteriorated variants reverted frequently to parental type morphology, both spontaneously and after ultra-violet treatment. Of six reversions analysed genetically, five were due to suppressors and one was probably due to back mutation. The suppressors segregated as single genes and were not linked to the mutation which they suppress. The instability of these so-called 'deteriorated' variants is discussed in relation to mitotic instability phenomena in A. nidulans. (orig.) [de

  15. Molecular cloning and characterization of Aspergillus nidulans cyclophilin B.

    Science.gov (United States)

    Joseph, J D; Heitman, J; Means, A R

    1999-06-01

    Cyclophilins are an evolutionarily conserved family of proteins which serve as the intracellular receptors for the immunosuppressive drug cyclosporin A. Here we report the characterization of the first cyclophilin cloned from the filamentous fungus Aspergillus nidulans (CYPB). Sequence analysis of the cypB gene predicts an encoded protein with highest homology to the murine cyclophilin B protein. The sequence similarity includes an N-terminal sequence predicted to target the protein to the endoplasmic reticulum (ER) as well as a C-terminal sequence predicted to retain the mature protein in the ER. The bacterially expressed hexa-histidine tagged protein displays peptidyl-prolyl isomerase activity which is inhibited by cyclosporin A. In the presence of cyclosporin A, the expressed protein also inhibits purified calcineurin. When the endogenous cypB gene was disrupted and placed under the control of the regulatable alcohol dehydrogenase promoter, the strain demonstrated no detectable growth phenotype under conditions which induce or repress cypB transcription. Induction or repression of the cypB gene also did not effect sensitivity of A. nidulans to cyclosporin A. cypB mRNA levels were significantly elevated under severe heat shock conditions, indicating a possible role for the A. nidulans cyclophilin B protein during growth in high stress environments. Copyright 1999 Academic Press.

  16. Systems Analysis Unfolds the Relationship between the Phosphoketolase Pathway and Growth in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Andersen, Mikael Rørdam; Grotkjær, Thomas

    2008-01-01

    Background: Aspergillus nidulans is an important model organism for studies on fundamental eukaryotic cell biology and on industrial processes due to its close relation to A. niger and A. oryzae. Here we identified the gene coding for a novel metabolic pathway in A. nidulans, namely...

  17. The nucleation of microtubules in Aspergillus nidulans germlings

    Directory of Open Access Journals (Sweden)

    Cristina de Andrade-Monteiro

    1999-09-01

    Full Text Available Microtubules are filaments composed of dimers of alpha- and beta-tubulins, which have a variety of functions in living cells. In fungi, the spindle pole bodies usually have been considered to be microtubule-organizing centers. We used the antimicrotubule drug Benomyl in block/release experiments to depolymerize and repolymerize microtubules in Aspergillus nidulans germlings to learn more about the microtubule nucleation process in this filamentous fungus. Twenty seconds after release from Benomyl short microtubules were formed from several bright (immunofluorescent dots distributed along the germlings, suggesting that microtubule nucleation is randomly distributed in A. nidulans germlings. Since nuclear movement is dependent on microtubules in A. nidulans we analyzed whether mutants defective in nuclear distribution along the growing hyphae (nud mutants have some obvious microtubule defect. Cytoplasmic, astral and spindle microtubules were present and appeared to be normal in all nud mutants. However, significant changes in the percentage of short versus long mitotic spindles were observed in nud mutants. This suggests that some of the nuclei of nud mutants do not reach the late stage of cell division at normal temperatures.Microtúbulos são filamentos compostos por dímeros das tubulinas a e b e têm uma variedade de funções nas células vivas. Em fungos, os corpúsculos polares dos fusos são geralmente considerados os centros organizadores dos microtúbulos. Com o objetivo de contribuir para uma melhor compreensão dos processos de nucleação dos microtúbulos no fungo filamentoso A. nidulans, nós utilizamos a droga antimicrotúbulo Benomil em experimentos de bloqueio e liberação para depolimerizar e repolimerizar os microtúbulos. Após 20 segundos de reincubação em meio sem Benomil, pequenos microtúbulos foram formados a partir de pontos distribuídos pela célula, sugerindo que os pontos de nucleação de microtúbulos s

  18. An adaptive response to alkylating agents in Aspergillus nidulans.

    Science.gov (United States)

    Hooley, P; Shawcross, S G; Strike, P

    1988-11-01

    A simple method is described for demonstrating adaptation to alkylation damage in Aspergillus nidulans. One wild type, two MNNG-sensitive, and one MNNG-resistant strain all showed improvement in colony growth when challenged with MNNG following appropriate inducing pretreatments. Other alkylating agents (MMS, EMS) could also adapt mycelium to later MNNG challenge, while 4NQO and UV could not. The inducible effect was not transmissible through conidia. A standard reversion assay based upon methG proved impractical for studying mutation frequencies during alkylation treatments owing to variations in MNNG resistance amongst revertants.

  19. The Spt-Ada-Gcn5 Acetyltransferase (SAGA complex in Aspergillus nidulans.

    Directory of Open Access Journals (Sweden)

    Paraskevi Georgakopoulos

    Full Text Available A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.

  20. Magnetic separation of algae

    Science.gov (United States)

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  1. Blue-Green Algae

    Science.gov (United States)

    ... that taking a specific blue-green algae product (Super Blue-Green Algae, Cell Tech, Klamath Falls, OR) ... system. Premenstrual syndrome (PMS). Depression. Digestion. Heart disease. Memory. Wound healing. Other conditions. More evidence is needed ...

  2. VelC positively controls sexual development in Aspergillus nidulans.

    Directory of Open Access Journals (Sweden)

    Hee-Soo Park

    Full Text Available Fungal development and secondary metabolism is intimately associated via activities of the fungi-specific velvet family proteins including VeA, VosA, VelB and VelC. Among these, VelC has not been characterized in Aspergillus nidulans. In this study, we characterize the role of VelC in asexual and sexual development in A. nidulans. The velC mRNA specifically accumulates during the early phase of sexual development. The deletion of velC leads to increased number of conidia and reduced production of sexual fruiting bodies (cleistothecia. In the velC deletion mutant, mRNA levels of the brlA, abaA, wetA and vosA genes that control sequential activation of asexual sporulation increase. Overexpression of velC causes increased formation of cleistothecia. These results suggest that VelC functions as a positive regulator of sexual development. VelC is one of the five proteins that physically interact with VosA in yeast two-hybrid and GST pull down analyses. The ΔvelC ΔvosA double mutant produced fewer cleistothecia and behaved similar to the ΔvosA mutant, suggesting that VosA is epistatic to VelC in sexual development, and that VelC might mediate control of sex through interacting with VosA at specific life stages for sexual fruiting.

  3. A quick method for testing recessive lethal damage with a diploid strain of Aspergillus nidulans

    International Nuclear Information System (INIS)

    Morpurgo, G.; Puppo, S.; Gualandi, G.; Conti, L.

    1978-01-01

    A simple method capable of detecting recessive lethal damage in a diploid strain of Aspergillus nidulans is described. The method scores the recessive lethals on the 1st, the 3rd and the 5th chromosomes, which represent about 40% of the total map of A. nidulans. Two examples of induced lethals, with ultraviolet irradiation and methyl methanesulfonate are shown. The frequency of lethals may reach 36% of the total population with UV irradiation. (Auth.)

  4. Investigating Aspergillus nidulans secretome during colonisation of cork cell walls.

    Science.gov (United States)

    Martins, Isabel; Garcia, Helga; Varela, Adélia; Núñez, Oscar; Planchon, Sébastien; Galceran, Maria Teresa; Renaut, Jenny; Rebelo, Luís P N; Silva Pereira, Cristina

    2014-02-26

    Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATR-FTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (β-glucosidases and endo-1,5-α-l-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of β-glucosidase in cork secretome. Cork degradation by fungi remains largely overlook. Herein we aimed at understanding how A. nidulans colonise cork cell walls and how this relates to wood colonisation. To address this, the protein species consistently present in the secretome were analysed, as well as major alterations occurring in the substrate, including lignin degradation compounds being released. The obtained data demonstrate that this fungus has superficially attacked the cork cell walls apparently by

  5. Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans.

    Science.gov (United States)

    Chu, Xin-Ling; Feng, Ming-Guang; Ying, Sheng-Hua

    2016-02-01

    Protein ubiquitination is an evolutionarily conserved post-translational modification process in eukaryotes, and it plays an important role in many biological processes. Aspergillus nidulans, a model filamentous fungus, contributes to our understanding of cellular physiology, metabolism and genetics, but its ubiquitination is not completely revealed. In this study, the ubiquitination sites in the proteome of A. nidulans were identified using a highly sensitive mass spectrometry combined with immuno-affinity enrichment of the ubiquitinated peptides. The 4816 ubiquitination sites were identified in 1913 ubiquitinated proteins, accounting for 18.1% of total proteins in A. nidulans. Bioinformatic analysis suggested that the ubiquitinated proteins associated with a number of biological functions and displayed various sub-cellular localisations. Meanwhile, seven motifs were revealed from the ubiquitinated peptides, and significantly over-presented in the different pathways. Comparison of the enriched functional catalogues indicated that the ubiquitination functions divergently during growth of A. nidulans and Saccharomyces cerevisiae. Additionally, the proteins in A. nidulans-specific sub-category (cell growth/morphogenesis) were subjected to the protein interaction analysis which demonstrated that ubiquitination is involved in the comprehensive protein interactions. This study presents a first proteomic view of ubiquitination in the filamentous fungus, and provides an initial framework for exploring the physiological roles of ubiquitination in A. nidulans.

  6. Structure and activity of Aspergillus nidulans copper amine oxidase

    DEFF Research Database (Denmark)

    McGrath, Aaron P; Mithieux, Suzanne M; Collyer, Charles A

    2011-01-01

    Aspergillus nidulans amine oxidase (ANAO) has the unusual ability among the family of copper and trihydroxyphenylalanine quinone-containing amine oxidases of being able to oxidize the amine side chains of lysine residues in large peptides and proteins. We show here that in common with the related...... enzyme from the yeast Pichia pastoris, ANAO can promote the cross-linking of tropoelastin and oxidize the lysine residues in α-casein proteins and tropoelastin. The crystal structure of ANAO, the first for a fungal enzyme in this family, has been determined to a resolution of 2.4 Å. The enzyme is a dimer...... with the archetypal fold of a copper-containing amine oxidase. The active site is the most open of any of those of the structurally characterized enzymes in the family and provides a ready explanation for its lysine oxidase-like activity....

  7. Characterisation of the Aspergillus nidulans frA1 mutant: hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression.

    NARCIS (Netherlands)

    Ruijter, G.J.G.; Panneman, H.; Broeck, van den H.C.; Bennett, J.M.; Visser, J.

    1996-01-01

    Hexose phosphorylation was studied in Aspergillus nidulans wild-type and in a fructose non-utilising mutant (frA). The data indicate the presence of at least one hexokinase and one glucokinase in wild-type A. nidulans, while the frA1 mutant lacks hexokinase activity. The A. nidulans gene encoding

  8. Algae Derived Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Jahan, Kauser [Rowan Univ., Glassboro, NJ (United States)

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  9. Asexual sporulation signalling regulates autolysis of Aspergillus nidulans via modulating the chitinase ChiB production.

    Science.gov (United States)

    Pócsi, I; Leiter, E; Kwon, N-J; Shin, K-S; Kwon, G-S; Pusztahelyi, T; Emri, T; Abuknesha, R A; Price, R G; Yu, J-H

    2009-08-01

    Elucidation of the regulation of ChiB production in Aspergillus nidulans. Mutational inactivation of the A. nidulans chiB gene resulted in a nonautolytic phenotype. To better understand the mechanisms controlling both developmental progression and fungal autolysis, we examined a range of autolysis-associated parameters in A. nidulans developmental and/or autolytic mutants. Investigation of disorganization of mycelial pellets, loss of biomass, extra-/intracellular chitinase activities, ChiB production and chiB mRNA levels in various cultures revealed that, in submerged cultures, initialization of autolysis and stationary phase-induced ChiB production are intimately coupled, and that both processes are controlled by the FluG-BrlA asexual sporulation regulatory pathway. ChiB production does not affect the progression of apoptotic cell death in the aging A. nidulans cultures. The endochitinase ChiB plays an important role in autolysis of A. nidulans, and its production is initiated by FluG-BrlA signalling. Despite the fact that apoptosis is an inseparable part of fungal autolysis, its regulation is independent to FluG-initiated sporulation signalling. Deletion of chiB and fluG homologues in industrial filamentous fungal strains may stabilize the hyphal structures in the autolytic phase of growth and limit the release of autolytic hydrolases into the culture medium.

  10. Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus nidulans

    Science.gov (United States)

    Graminha, Marcia A. S.; Rocha, Eleusa M. F.; Prade, Rolf A.; Martinez-Rossi, Nilce M.

    2004-01-01

    Resistance to antifungal agents is a recurring and growing problem among patients with systemic fungal infections. UV-induced Aspergillus nidulans mutants resistant to terbinafine have been identified, and we report here the characterization of one such gene. A sib-selected, 6.6-kb genomic DNA fragment encodes a salicylate 1-monooxygenase (salA), and a fatty acid synthase subunit (fasC) confers terbinafine resistance upon transformation of a sensitive strain. Subfragments carrying salA but not fasC confer terbinafine resistance. salA is present as a single-copy gene on chromosome VI and encodes a protein of 473 amino acids that is homologous to salicylate 1-monooxygenase, a well-characterized naphthalene-degrading enzyme in bacteria. salA transcript accumulation analysis showed terbinafine-dependent induction in the wild type and the UV-induced mutant Terb7, as well as overexpression in a strain containing the salA subgenomic DNA fragment, probably due to the multicopy effect caused by the transformation event. Additional naphthalene degradation enzyme-coding genes are present in fungal genomes, suggesting that resistance could follow degradation of the naphthalene ring contained in terbinafine. PMID:15328121

  11. Intra and extracellular nuclease production by Aspergillus niger and Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Ferreira Adlane V. B.

    1998-01-01

    Full Text Available Intra and extracellular nuclease production by strains of Aspergillus niger and Aspergillus nidulans was estimated using a modified DNAse test agar and cell-free extract assays. Differences in the production of nucleases by A. niger and A. nidulans were observed. These observations suggest that the DNAse test agar can be helpful for a quick screening for some types of nucleases in filamentous fungi. The assays using cell-free extracts can also be useful for initial characterization of other types of nucleases.

  12. Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation

    DEFF Research Database (Denmark)

    Dynesen, Jens Østergaard; Nielsen, Jens

    2003-01-01

    Formation of pellets by Aspergillus nidulans is primarily due to agglomeration of the fungal conidiospores. Although agglomeration of conidiospores has been known for a long time, its mechanism has not been clearly elucidated. To study the influence of the fungal conidiospore wall hydrophobicity...... on conidiospore agglomeration, pellet formation of an A. nidulans wild type and strains deleted in the conidiospore-wall-associated hydrophobins DewA and RodA was compared at different pH values. From contact angle measurements, RodA was found to be more important for the surface hydrophobicity than Dew...

  13. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  14. Multiple nucleobase transporters contribute to boscalid sensitivity in Aspergillus nidulans.

    Science.gov (United States)

    Kalampokis, Ioannis F; Kapetanakis, George C; Aliferis, Konstantinos A; Diallinas, George

    2018-03-01

    The development of fungicide-resistant fungal populations represents a major challenge for the agrochemical and agri-food sectors, which threatens food supply and security. The issue becomes complex for fungi that cause quantitative and qualitative losses due to mycotoxin biosynthesis. Nonetheless, currently, the molecular details underlying fungicide action and fungal resistance mechanisms are partially known. Here, we have investigated whether plasma membrane transporters contribute to specific fungicide uptake in the model fungus Aspergillus nidulans. Independent physiological tests and toxicity screening of selected fungicides provided evidence that the antifungal activity of Succinate Dehydrogenase Inhibitors (SDHIs) is associated with the expression of several nucleobase-related transporters. In particular, it was shown that a strain genetically inactivated in all seven nucleobase-related transporters is resistant to the fungicide boscalid, whereas none of the single null mutants exhibited significant resistance level. By constructing and testing isogenic strains that over-express each one of the seven transporters, we confirmed that five of them, namely, UapC, AzgA, FycB, CntA, and FurA, contribute to boscalid uptake. Additionally, by employing metabolomics we have examined the effect of boscalid on the metabolism of isogenic strains expressing or genetically lacking boscalid-related nucleobase transporters. The results confirmed the involvement of specific nucleobase transporters in fungicide uptake, leading to the discovery of corresponding metabolites-biomarkers. This work is the first report on the involvement of specific transporters in fungicide uptake and toxicity and their impact on fungal metabolism regulation and results might be further exploited towards the deeper understanding of fungal resistance to fungicides. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Different roles of the Mre11 complex in the DNA damage response in Aspergillus nidulans.

    Science.gov (United States)

    Semighini, Camile P; von Zeska Kress Fagundes, Márcia Regina; Ferreira, Joseane Cristina; Pascon, Renata Castiglioni; de Souza Goldman, Maria Helena; Goldman, Gustavo Henrique

    2003-06-01

    The Mre11-Rad50-Nbs1 protein complex has emerged as a central player in the cellular DNA damage response. Mutations in scaANBS1, which encodes the apparent homologue of human Nbs1 in Aspergillus nidulans, inhibit growth in the presence of the anti-topoisomerase I drug camptothecin. We have used the scaANBS1 cDNA as a bait in a yeast two-hybrid screening and report the identification of the A. nidulans Mre11 homologue (mreA). The inactivated mreA strain was more sensitive to several DNA damaging and oxidative stress agents. Septation in A. nidulans is dependent not only on the uvsBATR gene, but also on the mre11 complex. scaANBS1 and mreA genes are both involved in the DNA replication checkpoint whereas mreA is specifically involved in the intra-S-phase checkpoint. ScaANBS1 also participates in G2-M checkpoint control upon DNA damage caused by MMS. In addition, the scaANBS1 gene is also important for ascospore viability, whereas mreA is required for successful meiosis in A. nidulans. Consistent with this view, the Mre11 complex and the uvsCRAD51 gene are highly expressed at the mRNA level during the sexual development.

  16. Metabolic conversion of methyl benzimidazol 2 yl carbamate (MBC) in Aspergillus nidulans

    NARCIS (Netherlands)

    Davidse, L.C.

    1976-01-01

    Methyl benzimidazol 2 yl carbamate was metabolized by Aspergillus nidulans mycelium to two metabolites, one of which was identified as methyl 5 hydroxybenzimidazol 2 yl carbamate. This compound was further converted to a second metabolite which was not identified. Conversion rate was highest when

  17. Chemical analysis of a genome wide polyketide synthase gene deletion library in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Larsen, Thomas Ostenfeld; Klejnstrup, Marie Louise; Nielsen, Jakob Blæsbjerg

    . This may reflect that many PKs are either produced in small amounts, under special conditions or in developmental stages that are rarely observed under laboratory conditions. In order to trigger expression of “silent” genes we are currently pursuing several approaches; i) stimulation of A. nidulans wild...

  18. Mapping of polyketide biosynthesis pathways in Aspergillus nidulans using a genome wide PKS gene deletion library

    DEFF Research Database (Denmark)

    Larsen, Thomas Ostenfeld; Rank, Christian; Klejnstrup, Marie Louise

    In order to map new links between PKS genes and their products in Aspergillus nidulans we have systematically deleted all thirty-two individual genes predicted to encode polyketide synthases in this model organism. This number greatly exceeds the number of currently known PKs calling for new appr...

  19. A molecular analysis of L-arabinan degradation in Aspergillus niger and Aspergillus nidulans

    NARCIS (Netherlands)

    Flipphi, M.J.A.

    1995-01-01

    This thesis describes a molecular study of the genetics ofL-arabinan degradation in Aspergillus niger and Aspergillus nidulans. These saprophytic hyphal fungi produce an extracellular hydrolytic enzyme system to

  20. ABC transporters from Aspergillus nidulans are involved in protection against cytotoxic agents and antibiotic production

    NARCIS (Netherlands)

    Andrade, A.C.; Nistelrooy, van J.G.M.; Peery, R.B.; Skatrud, P.L.; Waard, de M.A.

    2000-01-01

    This paper describes the characterization of atrC and atrD (ABC transporters C and D), two novel ABC transporter-encoding genes from the filamentous fungus Aspergillus nidulans, and provides evidence for the involvement of atrD in multidrug transport and antibiotic production. BLAST analysis of the

  1. Characterization of Emericella nidulans RodA and DewA hydrophobin mutants

    DEFF Research Database (Denmark)

    Jensen, Britt Guillaume; Nielsen, Jakob Blæsbjerg; Pedersen, Mona Højgaard

    Hydrophobins are small amphiphilic proteins containing an eight cysteine pattern only found in filamentous fungi. They are involved in the attachment of hyphae to hydrophobic structures and the formation of aerial structures. Five Emericella nidulans mutant strains were examined to study the two...

  2. Antisense silencing of the creA gene in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Bautista, L. F.; Aleksenko, Alexei Y.; Hentzer, Morten

    2000-01-01

    Antisense expression of a portion of the gene encoding the major carbon catabolite repressor CREA in Aspergillus nidulans resulted in a substantial increase in the levels of glucose-repressible enzymes, both endogenous and heterologous, in the presence of glucose. The derepression effect was appr...

  3. Heterologous expression of the Aspergillus nidulans regulatory gene nirA in Fusarium oxysporum.

    Science.gov (United States)

    Daboussi, M J; Langin, T; Deschamps, F; Brygoo, Y; Scazzocchio, C; Burger, G

    1991-12-20

    We have isolated strains of Fusarium oxysporum carrying mutations conferring a phenotype characteristic of a loss of function in the regulatory gene of nitrate assimilation (nirA in Aspergillus nidulans, nit-4 in Neurospora crassa). One of these nir- mutants was successfully transformed with a plasmid containing the nirA gene of A. nidulans. The nitrate reductase of the transformants is still inducible, although the maximum activity is lower than in the wild type. Single and multiple integration events were found, as well as a strict correlation between the presence of the nirA gene and the Nir+ phenotype of the F. oxysporum transformants. We also investigated how the A. nidulans structural gene (niaD) is regulated in F. oxysporum. Enzyme assays and Northern experiments show that the niaD gene is subject to nitrate induction and that it responds to nitrogen metabolite repression in a F. oxysporum genetic background. This indicates that both the mechanisms of specific induction, mediated by a gene product isofunctional to nirA, and nitrogen metabolite repression, presumably mediated by a gene product isofunctional to the homologous gene of A. nidulans, are operative in F. oxysporum.

  4. Screening of Aspergillus nidulans metabolites from habitat mimicking media using LC-DAD-TOFMS system

    DEFF Research Database (Denmark)

    Klitgaard, Andreas; Holm, Dorte Koefoed; Frisvad, Jens Christian

    2012-01-01

    Fungi are a valuable source of metabolites and other bioactive compounds. These compounds are essential for human society, and it is estimated that around 49% of the drugs used to treat cancer are natural products or derived therefrom. Six different wild types of Aspergillus nidulans have been cu...

  5. Correlation of mycelial growth rate with other characters in evolved genotypes of Aspergillus nidulans

    NARCIS (Netherlands)

    Schoustra, S.E.; Punzalan, D.

    2012-01-01

    Fungal populations can adapt to their environment by the generation and fixation of spontaneous beneficial mutations. In this study we examined whether adaptation, measured as an increased mycelial growth rate, has correlated responses in the filamentous fungus Aspergillus nidulans with several

  6. A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover

    Directory of Open Access Journals (Sweden)

    Saykhedkar Sayali

    2012-07-01

    Full Text Available Abstract Background Fungi are important players in the turnover of plant biomass because they produce a broad range of degradative enzymes. Aspergillus nidulans, a well-studied saprophyte and close homologue to industrially important species such as A. niger and A. oryzae, was selected for this study. Results A. nidulans was grown on sorghum stover under solid-state culture conditions for 1, 2, 3, 5, 7 and 14 days. Based on analysis of chitin content, A. nidulans grew to be 4-5% of the total biomass in the culture after 2 days and then maintained a steady state of 4% of the total biomass for the next 12 days. A hyphal mat developed on the surface of the sorghum by day one and as seen by scanning electron microscopy the hyphae enmeshed the sorghum particles by day 5. After 14 days hyphae had penetrated the entire sorghum slurry. Analysis (1-D PAGE LC-MS/MS of the secretome of A. nidulans, and analysis of the breakdown products from the sorghum stover showed a wide range of enzymes secreted. A total of 294 extracellular proteins were identified with hemicellulases, cellulases, polygalacturonases, chitinases, esterases and lipases predominating the secretome. Time course analysis revealed a total of 196, 166, 172 and 182 proteins on day 1, 3, 7 and 14 respectively. The fungus used 20% of the xylan and cellulose by day 7 and 30% by day 14. Cellobiose dehydrogenase, feruloyl esterases, and CAZy family 61 endoglucanases, all of which are thought to reduce the recalcitrance of biomass to hydrolysis, were found in high abundance. Conclusions Our results show that A. nidulans secretes a wide array of enzymes to degrade the major polysaccharides and lipids (but probably not lignin by 1 day of growth on sorghum. The data suggests simultaneous breakdown of hemicellulose, cellulose and pectin. Despite secretion of most of the enzymes on day 1, changes in the relative abundances of enzymes over the time course indicates that the set of enzymes

  7. Genotoxicity of the cyclo-oxygenase-inhibitor sulindac sulfide in the filamentous fungus Aspergillus nidulans Genotoxicidade de sulfeto de sulindaco em Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Claudinéia Conationi da Silva Franco

    2007-09-01

    Full Text Available Sulindac sulfide is a non-steroidal anti-inflammatory drug (NSAID with chemopreventive effect on human cancer cells. Due to the involvement of the somatic recombination in the carcinogenic process, sulindac sulfide's recombinogenic potential was evaluated by the Homozygotization Index (HI in the filamentous fungus Aspergillus nidulans. The drug's recombinogenic potential was evaluated by its capacity to induce homozygosis of recessive genes from heterozygous diploid cells. Sulindac sulfide at 175 and 350 µM concentrations induced mitotic recombination in A. nidulans diploid cells, with HI values for genetic markers higher than 2.0, and significantly different from control HI values. The recombinogenic effect of NSAID was related to the induction of DNA strand breaks and cell cycle alterations. Sulindac sulfide's carcinogenic potential was also discussed.Sulfeto de sulindaco é um antiinflamatório não-esteroidal com efeitos quimiopreventivos em cânceres humanos. O presente estudo teve como objetivo avaliar o potencial recombinagênico do sulfeto de sulindaco em células diplóides de Aspergillus nidulans. O efeito recombinagênico da droga foi demonstrado através da homozigotização de genes recessivos, previamente presentes em heterozigose. Os valores de HI (Índice de Homozigotização para diferentes marcadores genéticos apresentaram-se maiores do que 2,0 e significativamente diferentes dos valores obtidos em sulfeto de sulindaco ausência da droga (controle. O potencial recombinagênico do sulfeto de sulindaco foi associado à indução de quebras na molécula do DNA e a alterações no ciclo celular. O potencial carcinogênico do sulfeto de sulindaco foi discutido no presente trabalho.

  8. How many 5S rRNA genes and pseudogenes are there in ''Aspergillus nidulans''?

    International Nuclear Information System (INIS)

    Pelczar, P.; Fiett, J.; Bartnik, E.

    1994-01-01

    We have estimated the number of 5S rRNA genes in ''Aspergillus nidulans'' using two-dimensional agarose gel electrophoresis and hybridization to appropriate probes, representing the 5'-halves, the 3'-halves of the 5S rRNA sequence and a sequence found at the 3'-end of all known. ''A. nidulans'' pseudogenes (block C). We have found 23 5S rRNA genes, 15 pseudogenes consisting of the 5'-half of the 5S rRNA sequence (of which 3 are flanked by block C) and 12 copies of block C which do not seem to be in the vicinity of 5S rRNA sequences. This number of genes is much lower than our earlier estimates, and makes our previously analyzed sample of 9 sequenced genes and 3 pseudogenes much more representative. (author). 7 refs, 1 fig

  9. PepJ is a new extracellular proteinase of Aspergillus nidulans.

    Science.gov (United States)

    Emri, T; Szilágyi, M; László, K; M-Hamvas, M; Pócsi, I

    2009-01-01

    Under carbon starvation, Aspergillus nidulans released a metallo-proteinase with activities comparable to those of PrtA, the major extracellular serine proteinase of the fungus. The relative molar mass of the enzyme was 19 kDa as determined with both denaturing and renaturing SDS PAGE, while its isoelectric point and pH and temperature optima were 8.6, 5.5 and 65 degrees C, respectively. The enzyme was stable at pH 3.5-10.5 and was still active at 95 degrees C in the presence of azocasein substrate. MALDI-TOF MS analysis demonstrated that the proteinase was encoded by the pepJ gene (locus ID AN7962.3), and showed high similarity to deuterolysin from Aspergillus oryzae. The size of the mature enzyme, its EDTA sensitivity and heat stability also supported the view that A. nidulans PepJ is a deuterolysin-type metallo-proteinase.

  10. A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotransposons

    DEFF Research Database (Denmark)

    Nielsen, M.L.; Hermansen, T.D.; Aleksenko, Alexei Y.

    2001-01-01

    In the course of a chromosomal walk towards the centromere of chromosome IV of Aspergillus nidulans, several cross- hybridizing genomic cosmid clones were isolated. Restriction mapping of two such clones revealed that their restriction patterns were similar in a region of at least 15 kb, indicati......) phenomenon, first described in Neurospora crassa, may have operated in A. nidulans. The data indicate that this family of repeats has assimilated mobile elements that subsequently degenerated but then underwent further duplications as a part of the host repeats....... the presence of a large repeat. The nature of the repeat was further investigated by sequencing and Southern analysis. The study revealed a family of long dispersed repeats with a high degree of sequence similarity. The number and location of the repeats vary between wild isolates. Two copies of the repeat...

  11. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  12. Glucose-mediated repression of autolysis and conidiogenesis in Emericella nidulans.

    Science.gov (United States)

    Emri, Tamás; Molnár, Zsolt; Veres, Tünde; Pusztahelyi, Tünde; Dudás, Gábor; Pócsi, István

    2006-10-01

    Glucose-mediated repression of autolysis and sporulation was studied in submerged Emericellanidulans (anam. Aspergillus nidulans) cultures. Null mutation of the creA gene, which encodes the major carbon catabolite repressor CreA in E. nidulans, resulted in a hyperautolytic phenotype characterized by increased extracellular hydrolase production and dry cell mass declination. Interestingly, glucose, as well as the glucose antimetabolite 2-deoxy-d-glucose, repressed autolysis and sporulation in both the control and the creA null mutant strains suggesting that these processes were also subjected to CreA-independent carbon regulation. For example, the glucose-mediated, but CreA-independent, repression of the sporulation transcription factor BrlA was likely to contribute to the negative regulation of conidiogenesis by glucose. Although CreA played a prominent role in the regulation of autolysis via the repression of genes encoding important autolytic hydrolases like ChiB chitinase and PrtA protease the age-related production of the chitinase activity was also negatively affected by the down-regulation of brlA expression. However, neither CreA-dependent nor CreA-independent elements of carbon regulation affected the initiation and regulation of cell death in E. nidulans under carbon starvation.

  13. A combined genetic and multi medium approach revels new secondary metabolites in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Klejnstrup, Marie Louise; Nielsen, Morten Thrane; Frisvad, Jens Christian

    Secondary metabolites are a diverse group of metabolites which serve as important natural sources of drugs for treating diseases. The availability of full genome sequences of several filamentous fungi has revealed a large genetic potential for production of secondary metabolites that are not obse......Secondary metabolites are a diverse group of metabolites which serve as important natural sources of drugs for treating diseases. The availability of full genome sequences of several filamentous fungi has revealed a large genetic potential for production of secondary metabolites...... that are not observed under standard laboratory conditions. Genetic approaches have proven a fruitfull strategy towards the production and identification of these unknown metabolites. Examples include deletion of the cclA1 and laeA2 genes in A. nidulans which affects the expression of secondary metabolites including...... monodictyphenone and terrequinone A respectively. We have deleted the cclA gene in A. nidulans and grown the mutants on several complex media to provoke the production of secondary metabolites. This resulted in the production of several metabolites not previously reported from A. nidulans. Some of these have been...

  14. Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae

    NARCIS (Netherlands)

    Coutinho, Pedro M; Andersen, Mikael R; Kolenova, Katarina; vanKuyk, Patricia A; Benoit, Isabelle; Gruben, Birgit S; Trejo-Aguilar, Blanca; Visser, Hans; van Solingen, Piet; Pakula, Tiina; Seiboth, Bernard; Battaglia, Evy; Aguilar-Osorio, Guillermo; de Jong, Jan F; Ohm, Robin A; Aguilar, Mariana; Henrissat, Bernard; Nielsen, Jens; Stålbrand, Henrik; de Vries, Ronald P

    The plant polysaccharide degradative potential of Aspergillus nidulans was analysed in detail and compared to that of Aspergillus niger and Aspergillus oryzae using a combination of bioinformatics, physiology and transcriptomics. Manual verification indicated that 28.4% of the A. nidulans ORFs

  15. Expression and characterization of an endo-1,4-β-galactanase from Emericella nidulans in Pichia pastoris for enzymatic design of potentially prebiotic oligosaccharides from potato galactans

    DEFF Research Database (Denmark)

    Michalak, Malwina; Thomassen, Lise Vestergaard; Roytio, Henna

    2012-01-01

    was to use potato β-1,4-galactan and the SPPP as substrates for enzymatic production of potentially prebiotic compounds of lower and narrower molecular weight. A novel endo-1,4-β-galactanase from Emericella nidulans (anamorph Aspergillus nidulans), GH family 53, was produced in a recombinant Pichia pastoris...

  16. The fluG-BrlA pathway contributes to the initialisation of autolysis in submerged Aspergillus nidulans cultures.

    Science.gov (United States)

    Emri, Tamás; Molnár, Zsolt; Pusztahelyi, Tünde; Varecza, Zoltán; Pócsi, István

    2005-07-01

    The fluG gene proved to be essential in the initialisation of autolysis in Aspergillus nidulans (teleomorph Emericella nidulans) cultures, while a loss-of-function mutation in only one out of the flbB-E genes had only minor effects on autolysis. In contrast to its important role in sporulation, brlA regulated only some, but not all, elements of the autolytic process. The tightly coupled autolytic events (chitinase and proteinase production, hyphal fragmentation, disorganisation of pellets, autolytic loss of biomass) observable in ageing cultures of A. nidulans were disconnected by loss-of-function mutations in some genes of the FluG-BrlA regulatory network. The tight correlation between pellet morphology and size and hydrolase production was also erased by these mutations. On the other hand, the mutations studied did not affect the glutathione metabolism of the fungus.

  17. Cloning of the DNA Repair Gene, Uvsf, by Transformation of Aspergillus Nidulans

    OpenAIRE

    Oza, K.; Kafer, E.

    1990-01-01

    As a first step in the cloning of the DNA repair gene uvsF of Aspergillus nidulans, uvsF pyrG double mutant strains were transformed with a genomic library which carried the complementing Neurospora pyr-4 gene in the vector. Rare pyr(+) uvs(+) cotransformants were obtained on media lacking pyrimidines, overlayed with MMS (methyl-methane sulfonate) to which uvsF is hypersensitive. Among MMS-resistant transformants, Southerns revealed two types which showed single bands of different sizes when ...

  18. Shewanella algae in acute gastroenteritis

    Directory of Open Access Journals (Sweden)

    S Dey

    2015-01-01

    Full Text Available Shewanella algae is an emerging bacteria rarely implicated as a human pathogen. Previously reported cases of S. algae have mainly been associated with direct contact with seawater. Here we report the isolation of S. algae as the sole etiological agent from a patient suffering from acute gastroenteritis with bloody diarrhoea. The bacterium was identified by automated identification system and 16S rRNA gene sequence analysis. Our report highlights the importance of looking for the relatively rare aetiological agents in clinical samples that does not yield common pathogens. It also underscores the usefulness of automated systems in identification of rare pathogens.

  19. Transgenic algae engineered for higher performance

    Science.gov (United States)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  20. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans

    NARCIS (Netherlands)

    Fillinger, S.; Chaveroche, M.; Vries, de R.; Dijck, van P.; Ruijter, G.; Thevelien, J.; Enfert, d' C.

    2001-01-01

    Trehalose is a non-reducing disaccharide found at high concentrations in Aspergillus nidulans conidia and rapidly degraded upon induction of conidial germination. Furthermore, trehalose is accumulated in response to a heat shock or to an oxidative shock. The authors have characterized the A.

  1. The binding of zinc ions to Emericella nidulans endo-β-1,4-galactanase is essential for crystal formation

    DEFF Research Database (Denmark)

    Otten, Harm; Michalak, Malwina; Mikkelsen, Jørn Dalgaard

    2013-01-01

    A novel Emericella nidulans endo-β-1,4-galactanase (EnGAL) demonstrates a strong capacity to generate high levels of very potent prebiotic oligosaccharides from potato pulp, a by-product of the agricultural potato-starch industry. EnGAL belongs to glycoside hydrolase family 53 and shows high (72...

  2. Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans

    DEFF Research Database (Denmark)

    Nielsen, Jakob Blæsbjerg; Nielsen, Michael Lynge; Mortensen, Uffe Hasbro

    2008-01-01

    influences subsequent analyses of the manipulated strain. Our system will facilitate construction of large numbers of defined mutations in A. nidulans. Moreover, as the system can likely be adapted to other filamentous fungi, we expect it will be particularly beneficial in species where NHEJ cannot...... be restored by sexual crossing. (c) 2007 Elsevier Inc. All rights reserved....

  3. EVALUATION OF CELL CYCLE OF Aspergillus nidulans EXPOSED TO THE EXTRACT OF Copaifera officinalis L PLANT

    Directory of Open Access Journals (Sweden)

    Simone Jurema Ruggeri Chiuchetta, Uériton Dias de Oliveira e Josy Fraccaro de Marins

    2006-12-01

    Full Text Available The oil extracted from the Copaifera officinalis L plant has been used in popular medicine to the treatment of several diseases, like cancer. In eukaryotic cells, the process of cellular proliferation follows a standard cycle, named cellular cycle. The transformation of a normal cell in a malignant one requires several steps, in which genes that control normal cellular division or cellular death are modified. Aspergillus nidulans fungus is an excellent system for the study of the cellular differentiation. Its asexual cycle results in the formation of conidia, which are disposed like chains, constituting a structure named conidiophore. This structure consists in an aerial hifae, multinucleate vesicle and uninucleate cells. Current research evaluated the capacity of the C. officinalis L plant extract in promoting alterations in the cellular cycle of A. nidulans diploid strains, by observing macroscopic and microscopic alterations in cellular growth of this fungus. Results shown that no macroscopic alterations were observed in cellular growth of strains exposed to the extract, however, microscopic alterations of conidiophore have been observed in the different extract concentrations analyzed. In this way, the study of the action of C. officinalis L plant extract becomes important considering the fact that this substance is capable to promote alterations in cellular cycle of eukaryotic cells.

  4. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Mcintyre, Mhairi; Nielsen, Jens

    2004-01-01

    The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars. In the cultivat......The catabolism of glucose and xylose was studied in a wild type and creA deleted (carbon catabolite de-repressed) strain of Aspergillus nidulans. Both strains were cultivated in bioreactors with either glucose or xylose as the sole carbon source, or in the presence of both sugars...... on the sugar mixture, glucose repression of xylose utilisation was observed; with xylose utilisation occurring only after glucose was depleted. This phenomenon was not seen in the creA deleted strain, where glucose and xylose were catabolised simultaneously. Measurement of key metabolites and the activities...... of key enzymes in the xylose utilisation pathway revealed that xylose metabolism was occurring in the creA deleted strain, even at high glucose concentrations. Conversely, in the wild type strain, activities of the key enzymes for xylose metabolism increased only when the effects of glucose repression...

  5. Elucidation of substrate specificity in Aspergillus nidulans UDP-galactose-4-epimerase.

    Directory of Open Access Journals (Sweden)

    Sean A Dalrymple

    Full Text Available The frequency of invasive fungal infections has rapidly increased in recent years. Current clinical treatments are experiencing decreased potency due to severe host toxicity and the emergence of fungal drug resistance. As such, new targets and their corresponding synthetic pathways need to be explored for drug development purposes. In this context, galactofuranose residues, which are employed in fungal cell wall construction, but are notably absent in animals, represent an appealing target. Herein we present the structural and biochemical characterization of UDP-galactose-4-epimerase from Aspergillus nidulans which produces the precursor UDP-galactopyranose required for galactofuranose synthesis. Examination of the structural model revealed both NAD(+ and UDP-glucopyranose were bound within the active site cleft in a near identical fashion to that found in the Human epimerase. Mutational studies on the conserved catalytic motif support a similar mechanism to that established for the Human counterpart is likely operational within the A. nidulans epimerase. While the K m and k cat for the enzyme were determined to be 0.11 mM and 12.8 s(-1, respectively, a single point mutation, namely L320C, activated the enzyme towards larger N-acetylated substrates. Docking studies designed to probe active site affinity corroborate the experimentally determined activity profiles and support the kinetic inhibition results.

  6. Algae biotechnology: products and processes

    National Research Council Canada - National Science Library

    Bux, F; Chisti, Yusuf

    2016-01-01

    This book examines the utilization of algae for the development of useful products and processes with the emphasis towards green technologies and processes, and the requirements to make these viable...

  7. Algae: America's Pathway to Independence

    National Research Council Canada - National Science Library

    Custer, James

    2007-01-01

    .... Oil dependency is an unacceptable risk to U.S. national strategy. This paper advocates independence from foreign oil by converting the national transportation fleet to biodiesel derived from algae...

  8. Scenario studies for algae production

    OpenAIRE

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass productivity and energy consumption, while considering the uncertainty and complexity in such large-scale systems. In this thesis frameworks are developed to assess 1) the productivity during algae culti...

  9. Phthalate esters in marine algae

    OpenAIRE

    Gezgin, Tuncay; Güven, Kasim Cemal; Akçin, Göksel

    2001-01-01

    Abstract o-Phthalate esters as diethyl phthalate, dibutyl phthalate, di-isobutyl phthalate and diethylhexyl phthalate were identified at surface and inner part of algae collected in the Bosphorus, as Ulva lactuca, Enteromorpha linza, Cystoseria barbata, Pterocladia capillaceaeand Ceramium rubrum. The same esters were also detected in seawater samples taken from the same area. Thus parallelism in pollution was noted between the algae and the surrounding seawater,

  10. Gβ-like CpcB plays a crucial role for growth and development of Aspergillus nidulans and Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Qing Kong

    Full Text Available Growth, development, virulence and secondary metabolism in fungi are governed by heterotrimeric G proteins (G proteins. A Gβ-like protein called Gib2 has been shown to function as an atypical Gβ in Gpa1-cAMP signaling in Cryptococcus neoformans. We found that the previously reported CpcB (cross pathway control B protein is the ortholog of Gib2 in Aspergillus nidulans and Aspergillus fumigatus. In this report, we further characterize the roles of CpcB in governing growth, development and toxigenesis in the two aspergilli. The deletion of cpcB results in severely impaired cellular growth, delayed spore germination, and defective asexual sporulation (conidiation in both aspergilli. Moreover, CpcB is necessary for proper expression of the key developmental activator brlA during initiation and progression of conidiation in A. nidulans and A. fumigatus. Somewhat in accordance with the previous study, the absence of cpcB results in the formation of fewer, but not micro-, cleistothecia in A. nidulans in the presence of wild type veA, an essential activator of sexual development. However, the cpcB deletion mutant cleistothecia contain no ascospores, validating that CpcB is required for progression and completion of sexual fruiting including ascosporogenesis. Furthermore, unlike the canonical GβSfaD, CpcB is not needed for the biosynthesis of the mycotoxin sterigmatocystin (ST as the cpcB null mutant produced reduced amount of ST with unaltered STC gene expression. However, in A. fumigatus, the deletion of cpcB results in the blockage of gliotoxin (GT production. Further genetic analyses in A. nidulans indicate that CpcB may play a central role in vegetative growth, which might be independent of FadA- and GanB-mediated signaling. A speculative model summarizing the roles of CpcB in conjunction with SfaD in A. nidulans is presented.

  11. Algae-Based Carbon Sequestration

    Science.gov (United States)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  12. Effect of secretory pathway gene overexpression on secretion of a fluorescent reporter protein in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Schalén, Martin; Anyaogu, Diana Chinyere; Hoof, Jakob Blæsbjerg

    2016-01-01

    roles in the process have been identified through transcriptomics. The assignment of function to these genes has been enabled in combination with gene deletion studies. In this work, 14 genes known to play a role in protein secretion in filamentous fungi were overexpressed in Aspergillus nidulans....... The background strain was a fluorescent reporter secreting mRFP. The overall effect of the overexpressions could thus be easily monitored through fluorescence measurements, while the effects on physiology were determined in batch cultivations and surface growth studies. Results: Fourteen protein secretion...... pathway related genes were overexpressed with a tet-ON promoter in the RFP-secreting reporter strain and macromorphology, physiology and protein secretion were monitored when the secretory genes were induced. Overexpression of several of the chosen genes was shown to cause anomalies on growth, micro...

  13. Branching is coordinated with mitosis in growing hyphae of Aspergillus nidulans

    DEFF Research Database (Denmark)

    Dynesen, Jens Østergaard; Nielsen, Jens

    2003-01-01

    Filamentous fungi like Aspergillus nidulans can effectively colonize their surroundings by the formation of new branches along the existing hyphae. While growth conditions, chemical perturbations, and mutations affecting branch formation have received great attention during the last decades......, the mechanisms that regulates branching is still poorly understood. In this study, a possible relation between cell cycle progression and branching was studied by testing the effect of a nuclei distribution mutation, cell cycle inhibitors. and conditional cell cycle mutations in combination with tip......-growth inhibitors and varying substrate concentrations on branch initiation. Formation of branches was blocked after inhibition of nuclear division, which was not caused by a reduced growth rate. In hyphae of a nuclei distribution mutant branching was severely reduced in anucleated hyphae whereas the number...

  14. Aspergillus nidulans as a platform for discovery and characterization of complex biosynthetic pathways

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere

    in industrial applications for the productionof these bioactive compounds and other chemicals as well as for enzyme production. Especially Aspergillusniger and Aspergillus oryzae are used as industrial workhorses for the production of various enzymes. Manyof the secreted proteins are glycosylated, indicating...... aspharmaceuticals. Access to this unexploited reservoir is hampered as many of the clusters are silent orbarely expressed under laboratory conditions. Methods for activating these pathways are thereforeessential for pathway discovery and elucidation.  Filamentous fungi and Aspergillus species in particular are used...... that glycosylation plays an important role in thesecretory pathway. Thus, understanding the role and process of glycosylation will enable directedglycoengineering in Aspergilli to improve protein production and expand the repertoire of proteins, whichcan be produced by these fungi. Aspergillus nidulans has been used...

  15. Characterization of a second physiologically relevant lactose permease gene (lacpB) in Aspergillus nidulans.

    Science.gov (United States)

    Fekete, Erzsébet; Orosz, Anita; Kulcsár, László; Kavalecz, Napsugár; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    In Aspergillus nidulans, uptake rather than hydrolysis is the rate-limiting step of lactose catabolism. Deletion of the lactose permease A-encoding gene (lacpA) reduces the growth rate on lactose, while its overexpression enables faster growth than wild-type strains are capable of. We have identified a second physiologically relevant lactose transporter, LacpB. Glycerol-grown mycelia from mutants deleted for lacpB appear to take up only minute amounts of lactose during the first 60 h after a medium transfer, while mycelia of double lacpA/lacpB-deletant strains are unable to produce new biomass from lactose. Although transcription of both lacp genes was strongly induced by lactose, their inducer profiles differ markedly. lacpA but not lacpB expression was high in d-galactose cultures. However, lacpB responded strongly also to β-linked glucopyranose dimers cellobiose and sophorose, while these inducers of the cellulolytic system did not provoke any lacpA response. Nevertheless, lacpB transcript was induced to higher levels on cellobiose in strains that lack the lacpA gene than in a wild-type background. Indeed, cellobiose uptake was faster and biomass formation accelerated in lacpA deletants. In contrast, in lacpB knockout strains, growth rate and cellobiose uptake were considerably reduced relative to wild-type, indicating that the cellulose and lactose catabolic systems employ common elements. Nevertheless, our permease mutants still grew on cellobiose, which suggests that its uptake in A. nidulans prominently involves hitherto unknown transport systems.

  16. Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy.

    Science.gov (United States)

    Paul, Biplab C; El-Ganiny, Amira M; Abbas, Mariam; Kaminskyj, Susan G W; Dahms, Tanya E S

    2011-05-01

    The fungal wall mediates cell-environment interactions. Galactofuranose (Galf), the five-member ring form of galactose, has a relatively low abundance in Aspergillus walls yet is important for fungal growth and fitness. Aspergillus nidulans strains deleted for Galf biosynthesis enzymes UgeA (UDP-glucose-4-epimerase) and UgmA (UDP-galactopyranose mutase) lacked immunolocalizable Galf, had growth and sporulation defects, and had abnormal wall architecture. We used atomic force microscopy and force spectroscopy to image and quantify cell wall viscoelasticity and surface adhesion of ugeAΔ and ugmAΔ strains. We compared the results for ugeAΔ and ugmAΔ strains with the results for a wild-type strain (AAE1) and the ugeB deletion strain, which has wild-type growth and sporulation. Our results suggest that UgeA and UgmA are important for cell wall surface subunit organization and wall viscoelasticity. The ugeAΔ and ugmAΔ strains had significantly larger surface subunits and lower cell wall viscoelastic moduli than those of AAE1 or ugeBΔ hyphae. Double deletion strains (ugeAΔ ugeBΔ and ugeAΔ ugmAΔ) had more-disorganized surface subunits than single deletion strains. Changes in wall surface structure correlated with changes in its viscoelastic modulus for both fixed and living hyphae. Wild-type walls had the largest viscoelastic modulus, while the walls of the double deletion strains had the smallest. The ugmAΔ strain and particularly the ugeAΔ ugmAΔ double deletion strain were more adhesive to hydrophilic surfaces than the wild type, consistent with changes in wall viscoelasticity and surface organization. We propose that Galf is necessary for full maturation of A. nidulans walls during hyphal extension.

  17. Expression of Aspergillus nidulans phy Gene in Nicotiana benthamiana Produces Active Phytase with Broad Specificities

    Directory of Open Access Journals (Sweden)

    Tae-Kyun Oh

    2014-09-01

    Full Text Available A full-length phytase gene (phy of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR, and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa was overexpressed in the insoluble fraction of Escherichia coli culture, purified by Ni-NTA resin under denaturing conditions and injected into rats as an immunogen. To express A. nidulans phytase in a plant, the full-length of phy was cloned into a plant expression binary vector, pPZP212. The resultant construct was tested for its transient expression by Agrobacterium-infiltration into Nicotiana benthamiana leaves. Compared with a control, the agro-infiltrated leaf tissues showed the presence of phy mRNA and its high expression level in N. benthamiana. The recombinant phytase (rPhy-P, 62 kDa was strongly reacted with the polyclonal antibody against the nonglycosylated rPhy-E. The rPhy-P showed glycosylation, two pH optima (pH 4.5 and pH 5.5, an optimum temperature at 45~55 °C, thermostability and broad substrate specificities. After deglycosylation by peptide-N-glycosidase F (PNGase-F, the rPhy-P significantly lost the phytase activity and retained 1/9 of the original activity after 10 min of incubation at 45 °C. Therefore, the deglycosylation caused a significant reduction in enzyme thermostability. In animal experiments, oral administration of the rPhy-P at 1500 U/kg body weight/day for seven days caused a significant reduction of phosphorus excretion by 16% in rat feces. Besides, the rPhy-P did not result in any toxicological changes and clinical signs.

  18. Expression of Aspergillus nidulans phy Gene in Nicotiana benthamiana Produces Active Phytase with Broad Specificities

    Science.gov (United States)

    Oh, Tae-Kyun; Oh, Sung; Kim, Seongdae; Park, Jae Sung; Vinod, Nagarajan; Jang, Kyung Min; Kim, Sei Chang; Choi, Chang Won; Ko, Suk-Min; Jeong, Dong Kee; Udayakumar, Rajangam

    2014-01-01

    A full-length phytase gene (phy) of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR), and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa) was overexpressed in the insoluble fraction of Escherichia coli culture, purified by Ni-NTA resin under denaturing conditions and injected into rats as an immunogen. To express A. nidulans phytase in a plant, the full-length of phy was cloned into a plant expression binary vector, pPZP212. The resultant construct was tested for its transient expression by Agrobacterium-infiltration into Nicotiana benthamiana leaves. Compared with a control, the agro-infiltrated leaf tissues showed the presence of phy mRNA and its high expression level in N. benthamiana. The recombinant phytase (rPhy-P, 62 kDa) was strongly reacted with the polyclonal antibody against the nonglycosylated rPhy-E. The rPhy-P showed glycosylation, two pH optima (pH 4.5 and pH 5.5), an optimum temperature at 45~55 °C, thermostability and broad substrate specificities. After deglycosylation by peptide-N-glycosidase F (PNGase-F), the rPhy-P significantly lost the phytase activity and retained 1/9 of the original activity after 10 min of incubation at 45 °C. Therefore, the deglycosylation caused a significant reduction in enzyme thermostability. In animal experiments, oral administration of the rPhy-P at 1500 U/kg body weight/day for seven days caused a significant reduction of phosphorus excretion by 16% in rat feces. Besides, the rPhy-P did not result in any toxicological changes and clinical signs. PMID:25192284

  19. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  20. Formation of algae growth constitutive relations for improved algae modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  1. Indigenous algae: Potential factories for biodiesel production

    CSIR Research Space (South Africa)

    Maharajh, Dheepak M

    2008-11-01

    Full Text Available advantages. Approximately 30% of South African environments favourable for isolating algae have been sampled. Samples were enriched, purified and assessed for lipid content, resulting in a database of indigenous algae. Positive isolates were grown under...

  2. Microscopic Gardens: A Close Look at Algae.

    Science.gov (United States)

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  3. Heterologous Reconstitution of the Intact Geodin Gene Cluster in Aspergillus nidulans through a Simple and Versatile PCR Based Approach

    DEFF Research Database (Denmark)

    Nielsen, Morten Thrane; Nielsen, Jakob Blæsbjerg; Anyaogu, Dianna Chinyere

    2013-01-01

    was transferred in a two step procedure to an expression platform in A. nidulans. The individual cluster fragments were generated by PCR and assembled via efficient USER fusion prior to ransformation and integration via re-iterative gene targeting. A total of 13 open reading frames contained in 25 kb of DNA were...... of solid methodology for genetic manipulation of most species severely hampers pathway haracterization. Here we present a simple PCR based approach for heterologous reconstitution of intact gene clusters. Specifically, the putative gene cluster responsible for geodin production from Aspergillus terreus...... successfully transferred between the two species enabling geodin synthesis in A. nidulans. Subsequently, functions of three genes in the cluster were validated by genetic and chemical analyses. Specifically, ATEG_08451 (gedC) encodes a polyketide synthase, ATEG_08453 (gedR) encodes a transcription factor...

  4. Modifying action of DNA synthesis precursors on Aspergillus nidulans conidium irradiated by ultraviolet and X-rays

    International Nuclear Information System (INIS)

    Muronets, E.M.; Kameneva, S.V.

    1975-01-01

    Modification of inactivation action of radiation on conidia Aspergillus nidulans, UVS + and UVS strains, by desoxynucleosides, purine and pyrimidine bases is shown. The modification manifested in increased conidia survival is revealed when the precursor of DNA synthesis is added to the suspension before exposure to ultraviolet or X-rays. In the case of postradiation application of the substance no modification is observed. The modifying effect of different precursors becomes equally apparent with equimolar solutions and increases at higher concentration of the latter. An increase in thymidine endogenic pool in the exposed conidia does not affect their survival. When conidia are exposed to ultraviolet rays through a thymidine filter the survival rate increases to the same extent as in the case when they are exposed to irradiation in thymidine solution. The authors suggest that modification of the inactivating radiation action by DNA precursors at exposure of conidia Aspergillus nidulans is caused by the radioprotective effect of precursors not related to reparation [ru

  5. Biodegradation of a Nigerian Crude Oil by a Micro Alga and a ...

    African Journals Online (AJOL)

    This study investigated the ability of pure and co-cultures of the eukaryotic green microalga Chlorella and the Cyanobacterium, Chroococcus sp. (Anacystis) obtained from a freshwater system in the Niger Delta, to degrade a Nigerian crude (Bonny Light) in a batch system for a 28-day period. Biodegradation experiments ...

  6. Mutants of Aspergillus nidulans with increased resistance to the alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine.

    Science.gov (United States)

    Hooley, P; Shawcross, S G; Strike, P

    1988-05-01

    The isolation and characterisation of mutants of Aspergillus nidulans showing resistance to MNNG is described. Such isolates were stable through prolonged subculture in the absence of the selective agent, and resistance segregated as an allele of a single gene in meiotic and mitotic analysis. MNNG-resistant strains showed an increase in resistance to EMS and UV irradiation but no cross-resistance to MMS was detected. Possible mechanisms of resistance to alkylating agents are discussed.

  7. Neurospora crassa ASM-1 complements the conidiation defect in a stuA mutant of Aspergillus nidulans.

    Science.gov (United States)

    Chung, Dawoon; Upadhyay, Srijana; Bomer, Brigitte; Wilkinson, Heather H; Ebbole, Daniel J; Shaw, Brian D

    2015-01-01

    Aspergillus nidulans StuA and Neurospora crassa ASM-1 are orthologous APSES (ASM-1, PHD1, SOK2, Efg1, StuA) transcription factors conserved across a diverse group of fungi. StuA and ASM-1 have roles in asexual (conidiation) and sexual (ascospore formation) development in both organisms. To address the hypothesis that the last common ancestor of these diverse fungi regulated conidiation with similar genes, asm-1 was introduced into the stuA1 mutant of A. nidulans. Expression of asm-1 complemented defective conidiophore morphology and restored conidia production to wild type levels in stuA1. Expression of asm-1 in the stuA1 strain did not rescue the defect in sexual development. When the conidiation regulator AbaA was tagged at its C-terminus with GFP in A. nidulans, it localized to nuclei in phialides. When expressed in the stuA1 mutant, AbaA::GFP localized to nuclei in conidiophores but no longer was confined to phialides, suggesting that expression of AbaA in specific cell types of the conidiophore was conditioned by StuA. Our data suggest that the function in conidiation of StuA and ASM-1 is conserved and support the view that, despite the great morphological and ontogenic diversity of their condiphores, the last common ancestor of A. nidulans and N. crassa produced an ortholog of StuA that was involved in conidiophore development. © 2015 by The Mycological Society of America.

  8. Aspergillus nidulans Natural Product Biosynthesis Is Regulated by MpkB, a Putative Pheromone Response Mitogen-Activated Protein Kinase

    International Nuclear Information System (INIS)

    Atoui, A.; Bao, D.; Kaur, N.; Grayburn, W.S.; Calvo, A.M.

    2008-01-01

    The Aspergillus nidulans putative mitogen-activated protein kinase encoded by mpkB has a role in natural product biosynthesis. An mpkB mutant exhibited a decrease in sterigmatocystin gene expression and low mycotoxin levels. The mutation also affected the expression of genes involved in penicillin and terrequinone A synthesis. mpkB was necessary for normal expression of laeA, which has been found to regulate secondary metabolism gene clusters. (author)

  9. Functional analysis of TamA, a coactivator of nitrogen-regulated gene expression in Aspergillus nidulans.

    Science.gov (United States)

    Small, A J; Todd, R B; Zanker, M C; Delimitrou, S; Hynes, M J; Davis, M A

    2001-06-01

    The tam A gene of Aspergillus nidulans encodes a 739-amino acid protein with similarity to Uga35p/Dal81p/DurLp of Saccharomyces cerevisiae. It has been proposed that TamA functions as a co-activator of AreA, the major nitrogen regulatory protein in A. nidulans. Because AreA functions as a transcriptional activator under nitrogen-limiting conditions, we investigated whether TamA was also present in the nucleus. We found that a GFP-TamA fusion protein was predominantly localised to the nucleus in the presence and absence of ammonium, and that AreA was not required for this distribution. As the predicted DNA-binding domain of TamA is not essential for function, we have used a number of approaches to further define functionally important regions. We have cloned the tamA gene of A. oryzae and compared its functional and sequence characteristics with those of A. nidulans tamA and S. cerevisiae UGA35/DAL81/DURL. The Aspergillus homologues are highly conserved and functionally interchangeable, whereas the S. cerevisiae gene does not complement a tamA mutant when expressed in A. nidulans. Uga35p/Dal81p/DurLp was also found to be unable to recruit AreA. The sequence changes in a number of tamA mutant alleles were determined, and altered versions of TamA were tested for tamA complementation and interaction with AreA. Changes in most regions of TamA appeared to destroy its function, suggesting that the overall conformation of the protein may be critical for its activity.

  10. Algae. LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  11. Scenario studies for algae production

    NARCIS (Netherlands)

    Slegers, P.M.

    2014-01-01

    Microalgae are a promising biomass for the biobased economy to produce food, feed, fuel, chemicals and materials. So far, large-scale production of algae is limited and as a result estimates on the performance of such large systems are scarce. There is a need to estimate large-scale biomass

  12. Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram residue as the substrate and its industrial applications

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2016-06-01

    Full Text Available The production of crop residues in India is estimated to be about 500–550 million tons annually. It is estimated that about 93 million tons of crop residues is burnt annually which is not only wastage of valuable biomass resources but pollution of the environment with the production of green house gases also. Among different low cost crop residues, black gram residue as the substrate produced maximal endoglucanase, FPase, and β-glucosidase activities from Aspergillus nidulans AKB-25 under solid-state fermentation. During optimisation of cultural parameters A. nidulans AKB-25 produced maximal endoglucanase (152.14 IU/gds, FPase (3.42 FPU/gds and xylanase (2441.03 IU/gds activities. The crude enzyme was found effective for the saccharification of pearl millet stover and bio-deinking of mixed office waste paper. The crude enzyme from A. nidulans AKB-25 produced maximum fermentable sugars of 546.91 mg/g from alkali-pretreated pearl millet stover by saccharification process at a dose of 15 FPU/g of substrate. Pulp brightness and deinking efficiency of mixed office waste paper improved by 4.6% and 25.01% respectively and mitigated dirt counts by 74.70% after bio-deinking. Physical strength properties like burst index, tensile index and double fold number were also improved during bio-deinking of mixed office waste paper.

  13. Different test systems in Aspergillus nidulans for the evaluation of mitotic gene conversion, crossing-over and non-disjunction

    International Nuclear Information System (INIS)

    De Bertoldi, M.; Griselli, M.; Consiglio Nazionale delle Ricerche, Pisa; Barale, R.

    1980-01-01

    The wide variety of the genetic alterations produced by environmental mutagens has increased the necessity of using experimental microorganisms to reveal the induction of such genetic events with short-term tests. Aspergillus nidulans, because of its well-developed genetic system and the availability of morphological markers seay to score, can be profitably used in mutagen testing. The constitution of particular diploid strains of A. nidulans able to detect the induction of mitotic gene conversion, mitotic crossing-over and mitotic non-disjunction with selective procedures are described and validated with standard mutagens: methyl methanesulphonate and UV radiation (lacking a specific genetic activity), benomyl and p-fluorophenylalanine (with a specific genetic activity). The possibility of using mammalian metabolic activation of promutagens in A. nidulans in vitro was tested with cyclophosphamide, with positive results in all the tested genetic systems. A method that increases the sensitivity of conidia to mutagenic treatments is described; its application appeared to be particularly useful in experiments on crossing-over and non-disjunction. (orig.)

  14. Aspergillus nidulans cell wall composition and function change in response to hosting several Aspergillus fumigatus UDP-galactopyranose mutase activity mutants.

    Directory of Open Access Journals (Sweden)

    Md Kausar Alam

    Full Text Available Deletion or repression of Aspergillus nidulans ugmA (AnugmA, involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and wall composition in A. nidulans. The complemented (AnugmA::wild type AfugmA strain had wild type phenotype, indicating these genes had functional homology. Consistent with in vitro studies, AfUgmA residues R182 and R327 were important for its function in vivo, with even conservative amino (RK substitutions producing AnugmA? phenotype strains. Similarly, the conserved AfUgmA loop III histidine (H63 was important for Galf generation: the H63N strain had a partially rescued phenotype compared to AnugmA▵. Collectively, A. nidulans strains that hosted mutated AfUgmA constructs with low enzyme activity showed increased hyphal surface adhesion as assessed by binding fluorescent latex beads. Consistent with previous qPCR results, immunofluorescence and ELISA indicated that AnugmA▵ and AfugmA-mutated A. nidulans strains had increased α-glucan and decreased β-glucan in their cell walls compared to wild type and AfugmA-complemented strains. Like the AnugmA▵ strain, A. nidulans strains containing mutated AfugmA showed increased sensitivity to antifungal drugs, particularly Caspofungin. Reduced β-glucan content was correlated with increased Caspofungin sensitivity. Aspergillus nidulans wall Galf, α-glucan, and β-glucan content was correlated in A. nidulans hyphal walls, suggesting dynamic coordination between cell wall synthesis and cell wall integrity.

  15. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  16. Cremophor EL stimulates mitotic recombination in uvsH//uvsH diploid strain of Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Cleverson Busso

    2004-03-01

    Full Text Available Cremophor EL is a solubilizer and emulsifier agent used in the pharmaceutical and foodstuff industries. The solvent is the principal constituent of paclitaxel's clinical formulation vehicle. Since mitotic recombination plays a crucial role in multistep carcinogenesis, the study of the recombinagenic potential of chemical compounds is of the utmost importance. In our research genotoxicity of cremophor EL has been studied by using an uvsH//uvsH diploid strain of Aspergillus nidulans. Since it spends a great part of its cell cycle in the G2period, this fungus is a special screening system for the study of mitotic recombination induced by chemical substances. Homozygotization Indexes (HI for paba and bi markers from heterozygous B211//A837 diploid strain were determined for the evaluation of the recombinagenic effect of cremophor EL. It has been shown that cremophor EL induces increase in mitotic crossing-over events at nontoxic concentrations (0.05 and 0.075% v/v.Cremofor EL (CEL é um solubilizante e emulsificante amplamente utilizado nas indústrias farmacêuticas e de gêneros alimentícios. É o principal veículo empregado nas formulações clínicas do antineoplásico paclitaxel. Considerando-se que a recombinação mitótica desempenha importante função no processo de carcinogênese, o estudo de substâncias químicas com potencial recombinagênico assume importância crucial, no sentido de se detectar aquelas que eventualmente possam atuar como promotoras de neoplasias. A genotoxicidade do cremofor EL foi estudada no presente trabalho, utilizando-se uma linhagem diplóide uvsH//uvsH de Aspergillus nidulans. Neste fungo as células vegetativas comumente repousam no período G2 do ciclo celular, facilitando a ocorrência da recombinação mitótica. O efeito recombinagênico do CEL foi avaliado através da determinação dos Índices de Homozigotização para os marcadores nutricionais paba e bi do diplóide heterozigoto B211//A837. Os

  17. Bioethanol Production from Indigenous Algae

    Directory of Open Access Journals (Sweden)

    Madhuka Roy

    2015-02-01

    Full Text Available Enhanced rate of fossil fuel extraction is likely to deplete limited natural resources over short period of time. So search for alternative fuel is only the way to overcome this problem of upcoming energy crisis. In this aspect biofuel is a sustainable option. Agricultural lands cannot be compromised for biofuel production due to the requirement of food for the increasing population. Certain species of algae can produce ethanol during anaerobic fermentation and thus serve as a direct source for bioethanol production. The high content of complex carbohydrates entrapped in the cell wall of the microalgae makes it essential to incorporate a pre-treatment stage to release and convert these complex carbohydrates into simple sugars prior to the fermentation process. There have been researches on production of bioethanol from a particular species of algae, but this work was an attempt to produce bioethanol from easily available indigenous algae. Acid hydrolysis was carried out as pre-treatment. Gas Chromatographic analysis showed that 5 days’ fermentation by baker’s yeast had yielded 93% pure bioethanol. The fuel characterization of the bioethanol with respect to gasoline showed comparable and quite satisfactory results for its use as an alternative fuel.DOI: http://dx.doi.org/10.3126/ije.v4i1.12182International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 112-120  

  18. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Khola, G.; Ghazala, B.

    2011-01-01

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  19. Different action of MMS and EMS in UV-sensitive strains of Aspergillus nidulans.

    Science.gov (United States)

    Babudri, N; Politi, M G

    1989-05-01

    The repair of methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) damages has been investigated in the fungus Aspergillus nidulans. 4 UV-sensitive mutants, namely uvsB, uvsD, uvsF and uvsH have been tested for their sensitivity and mutability to the above-mentioned agents. The results obtained show that: (1) uvsB and uvsD mutants are no more sensitive than the wild-type strain to the lethal action of EMS. In contrast, they are more sensitive to MMS; (2) uvsF and uvsH mutants are more sensitive than the wild type to EMS at 37 degrees C but not at 20 degrees C. However, they are more sensitive than the wild type to MMS at 37 degrees C as well as at 20 degrees C; (3) the mutation frequencies after treatment with either MMS or EMS plotted against survival are not altered in the UV-sensitive strains compared to the wild-type strain. From these data it may be concluded that the repair of lethal lesions induced by ethylating and methylating agents is under the control of different pathways. Furthermore the mutants tested are not involved in the mutagenic process.

  20. Mitotic catastrophe is the mechanism of lethality for mutations that confer mutagen sensitivity in Aspergillus nidulans.

    Science.gov (United States)

    Denison, S H; May, G S

    1994-01-16

    We have examined the consequences of treatment with DNA-damaging agents of uvs mutants and the bimD6 mutant of Aspergillus nidulans. We first established that wild-type Aspergillus undergoes a cell cycle delay following treatment with the DNA-damaging agents methyl methanesulfonate (MMS) or ultraviolet light (UV). We have also determined that strains carrying the bimD6, uvsB110, uvsH77, uvsF201 and the uvsC114 mutations, all of which cause an increased sensitivity to DNA-damaging agents, undergo a cell-cycle delay following DNA damage. These mutations therefore do not represent nonfunctional checkpoints in Aspergillus. However, all of the mutant strains accumulated nuclear defects after a period of delay following mutagen treatment. The nuclear defects in the uvsB110 and bimD6 strains following MMS treatment were shown to be dependent on passage through mitosis after DNA damage, as the defects were prevented with benomyl. Checkpoint controls responding to DNA damage thus only temporarily halt cell-cycle progression in response to DNA damage. The conditional bimD6 mutation also results in a defective mitosis at restrictive temperatures. This mitotic defect is similar to that seen with MMS treatment at temperatures permissive for the mitotic defect. Thus the bimD gene product may perform dual roles, one in DNA repair and the other during the mitotic cell cycle in the absence of damage.

  1. MMS induction of different types of genetic damage in Aspergillus nidulans: a comparative analysis in mutagenesis.

    Science.gov (United States)

    Gualandi, G; Bellincampi, D; Puppo, S

    1979-09-01

    Methyl methanesulphonate (MMS) was used to test the induction of gene mutation, somatic crossing-over and mitotic non-disjunction in A. nidulans. Gene mutation was tested by inducing mutants resistant to 8-azaguanine and revertants of methG1 in a haploid strain. Somatic crossing-over was tested in heterozygous diploids, both with a selective method, i.e. inducing homozygosis to FPA resistance in a heterozygous fpa A1/+ strain, and with a non-selective method, i.e. identifying the frequencies of colour sectors. This latter method was also used to estimate the induction of non-disjunction because additional markers were present which permitted us to distinguish the two types of colour segregant. Generally, 3 different experimental procedures were used, namely the "plate test", i.e. plating of conidia in agar media containing MMS, and two types of "liquid test", i.e. brief treatment of quiescent or pre-germinated conidia in MMS solution before they were plated on agar media. Point mutations were induced with about equal efficiency with each method, whereas crossing-over was induced preferentially when germinating conidia were exposed to MMS. On the other hand, non-disjunction was induced in germinating and quiescent spores with equal efficiency, but such segregants were not recovered with the selective (fpa) method. The results are discussed for both their practical use in the mutagenic testing procedure and their theoretical implication.

  2. The MpkB MAP kinase plays a role in autolysis and conidiation of Aspergillus nidulans.

    Science.gov (United States)

    Kang, Ji Young; Chun, Jeesun; Jun, Sang-Cheol; Han, Dong-Min; Chae, Keon-Sang; Jahng, Kwang Yeop

    2013-12-01

    The mpkB gene of Aspergillus nidulans encodes a MAP kinase homologous to Fus3p of Saccharomyces cerevisiae which is involved in conjugation process. MpkB is required for completing the sexual development at the anastomosis and post-karyogamy stages. The mpkB deletion strain could produce conidia under the repression condition of conidiation such as sealing and even in the submerged culture concomitant with persistent brlA expression, implying that MpkB might have a role in timely regulation of brlA expression. The submerged culture of the deletion strain showed typical autolytic phenotypes including decrease in dry cell mass (DCM), disorganization of mycelial balls, and fragmentation of hyphae. The chiB, engA and pepJ genes which are encoding cell wall hydrolytic enzymes were transcribed highly in the submerged culture. Also, we observed that the enzyme activity of chitinase and glucanase in the submerged culture of mpkB deletion strain was much higher than that of wild type. The deletion of mpkB also caused a precocious germination of conidia and reduction of spore viability. The expression of the vosA gene, a member of velvet gene family, was not observed in the mpkB deletion strain. These results suggest that MpkB should have multiple roles in germination and viability of conidia, conidiation and autolysis through regulating the expression of vosA and brlA. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  4. Continuous xylanase production with Aspergillus nidulans under pyridoxine limitation using a trickle bed reactor.

    Science.gov (United States)

    Müller, Michael; Prade, Rolf A; Segato, Fernando; Atiyeh, Hasan K; Wilkins, Mark R

    2015-01-01

    A trickle bed reactor (TBR) with recycle was designed and tested using Aspergillus nidulans with a pyridoxine marker and over-expressing/secreting recombinant client xylanase B (XynB). The pyridoxine marker prevented the fungus from synthesizing its own pyridoxine and fungus was unable to grow when no pyridoxine was present in the medium; however, enzyme production was unaffected. Uncontrolled mycelia growth that led to clogging of the TBR was observed when fungus without a pyridoxine marker was used for XynB production. Using the fungus with pyridoxine marker, the TBR was operated continuously for 18 days and achieved a XynB output of 41 U/ml with an influent and effluent flow rate of 0.5 ml/min and a recycle flow rate of 56 ml/min. Production yields in the TBR were 1.4 times greater than a static tray culture and between 1.1 and 67 times greater than yields for SSF enzyme production stated in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A glycoprotein with anti-inflammatory properties secreted by an Aspergillus nidulans modified strain

    Directory of Open Access Journals (Sweden)

    J. C. F. Queiroz

    2007-01-01

    Full Text Available Total RNA from lipopolysaccharide (LPS-stimulated rat macrophages used to treat protoplasts from an Aspergillus nidulans strain originated the RT2 regenerated strain, whose culture supernatant showed anti-inflammatory activity in Wistar rats. The protein fraction presenting such anti-inflammatory activity was purified and biochemically identified. The screening of the fraction responsible for such anti-inflammatory property was performed by evaluating the inhibition of carrageenan-induced paw edema in male Swiss mice. Biochemical analyses of the anti-inflammatory protein used chromatography, carbohydrates quantification of the protein sample, amino acids content analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Total sugar quantification revealed 32% glycosylation of the protein fraction. Amino acid analysis of such fraction showed a peculiar pattern presenting 29% valine. SDS-PAGE revealed that the protein sample is pure and its molecular weight is about 40kDa. Intravenous injection of the isolated substance into mice significantly inhibited carrageenan-induced paw edema. The isolated glycoprotein decreased carrageenan-induced paw edema in a prostaglandin-dependent phase, suggesting an inhibitory effect of the isolated glycoprotein on prostaglandin synthesis.

  6. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network

    Directory of Open Access Journals (Sweden)

    Vitor Badiale Furlong

    2013-02-01

    Full Text Available In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days, number of clusters (10, 30 and 50 clusters and internal weight softening parameter (Sigma (0.30, 0.45 and 0.60. These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A and 18 (B days of culture growth. The validations demonstrated that in long-term experiments (Validation A the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B, Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.

  7. Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans

    International Nuclear Information System (INIS)

    Atoui, A.; Larey, C.; Thokala, R.; Calvo, A.M.; Kastner, C.; Fischer, R.; Etxebeste, O; Espeso, E.A.

    2010-01-01

    Light is a major environmental stimulus that has a broad effect on organisms, triggering a cellular response that results in an optimal adaptation enhancing fitness and survival. In fungi, light affects growth, and causes diverse morphological changes such as those leading to reproduction. Light can also affect fungal metabolism, including the biosynthesis of natural products. In this study we show that in Aspergillus nidulans the effect of light on the production of the sterigmatocystin (ST) toxin depends on the glucose concentration. In cultures grown with 1% glucose and exposed to light, ST production was lower than when grown in the dark. This lower ST production coincided with an elevated rate of cellular damage with partial loss of nuclear integrity and vacuolated cytoplasm. However, in cultures grown with 2% glucose these effects were reversed and light enhanced ST production. Glucose abundance also affected the light-dependent subcellular localization of the VeA (velvet) protein, a key regulator necessary for normal light-dependent morphogenesis and secondary metabolism in Aspergilli and other fungal gen- era. The role of other VeA-associated proteins, particularly the blue-light-sensing proteins LreA and LreB (WC-1 and WC-2 orthologs), on conidiation could also be modified by the abundance of glucose. We also show that LreA and LreB, as well as the phytochrome FphA, modulate not only the synthesis of sterigmat- ocystin, but also the production of the antibiotic penicillin. (author)

  8. 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans.

    Science.gov (United States)

    Herrero-Garcia, Erika; Garzia, Aitor; Cordobés, Shandra; Espeso, Eduardo A; Ugalde, Unai

    2011-01-01

    Germination of Aspergillus nidulans conidia in liquid cultures was progressively inhibited at inoculum loads above 1×10(5)conidiamL(-1). High conidial densities also inhibited growth of neighbouring mycelia. The eight-carbon oxylipin 1-octen-3-ol was identified as the main inhibitor in a fraction also containing 3-octanone and 3-octanol. These three oxylipins also increased the conidiation rate of dark-grown surface cultures, but had no effect on liquid cultures. 3-octanone was the most conidiogenic compound. The action of 3-octanone required functional forms of developmental activators fluG, flbB-D and brlA, and was not additive to the conidiogenic effect of stress stimuli such as osmotic stress or carbon starvation. Oxylipins were produced shortly after hyphae made contact with the atmosphere and were most effective on aerial mycelia, indicating that they perform their signalling function in the gas phase. Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Probing the effect of tip pressure on fungal growth: Application to Aspergillus nidulans

    Science.gov (United States)

    González-Bermúdez, Blanca; Li, Qingxuan; Guinea, Gustavo V.; Peñalva, Miguel A.; Plaza, Gustavo R.

    2017-08-01

    The study of fungal cells is of great interest due to their importance as pathogens and as fermenting fungi and for their appropriateness as model organisms. The differential pressure between the hyphal cytoplasm and the bordering medium is essential for the growth process, because the pressure is correlated with the growth rate. Notably, during the invasion of tissues, the external pressure at the tip of the hypha may be different from the pressure in the surrounding medium. We report the use of a method, based on the micropipette-aspiration technique, to study the influence of this external pressure at the hyphal tip. Moreover, this technique makes it possible to study hyphal growth mechanics in the case of very thin hyphae, not accessible to turgor pressure probes. We found a correlation between the local pressure at the tip and the growth rate for the species Arpergillus nidulans. Importantly, the proposed method allows one to measure the pressure at the tip required to arrest the hyphal growth. Determining that pressure could be useful to develop new medical treatments for fungal infections. Finally, we provide a mechanical model for these experiments, taking into account the cytoplasm flow and the wall deformation.

  10. The phosphoproteome of Aspergillus nidulans reveals functional association with cellular processes involved in morphology and secretion.

    Science.gov (United States)

    Ramsubramaniam, Nikhil; Harris, Steven D; Marten, Mark R

    2014-11-01

    We describe the first phosphoproteome of the model filamentous fungus Aspergillus nidulans. Phosphopeptides were enriched using titanium dioxide, separated using a convenient ultra-long reverse phase gradient, and identified using a "high-high" strategy (high mass accuracy on the parent and fragment ions) with higher-energy collisional dissociation. Using this approach 1801 phosphosites, from 1637 unique phosphopeptides, were identified. Functional classification revealed phosphoproteins were overrepresented under GO categories related to fungal morphogenesis: "sites of polar growth," "vesicle mediated transport," and "cytoskeleton organization." In these same GO categories, kinase-substrate analysis of phosphoproteins revealed the majority were target substrates of CDK and CK2 kinase families, indicating these kinase families play a prominent role in fungal morphogenesis. Kinase-substrate analysis also identified 57 substrates for kinases known to regulate secretion of hydrolytic enzymes (e.g. PkaA, SchA, and An-Snf1). Altogether this data will serve as a benchmark that can be used to elucidate regulatory networks functionally associated with fungal morphogenesis and secretion. All MS data have been deposited in the ProteomeXchange with identifier PXD000715 (http://proteomecentral.proteomexchange.org/dataset/PXD000715). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of hydrocortisone bioconversion and 16S RNA gene in Synechococcus nidulans cultures.

    Science.gov (United States)

    Rasoul-Amini, S; Ghasemi, Y; Morowvat, M H; Ghoshoon, M B; Raee, M J; Mosavi-Azam, S B; Montazeri-Najafabady, N; Nouri, F; Parvizi, R; Negintaji, N; Khoubani, S

    2010-01-01

    A unicellular cyanobacterium, Synechococcus nidulans (Pringsheim) Komárek, was isolated from paddy-fields and applied in the biotransformation experiment of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The obtained products were chromatographically purified followed by their characterization using spectroscopic methods. 11beta,17beta-dihydroxyandrost-4-en-3-one (2), 11beta-hydroxyandrost-4-en-3,17-dione (3), and androst-4-ene-3,17-dione (4) were the main bioproducts in the hydrocortisone bioconversion. The observed bioreaction characteristics were the side chain degradation of the substrate to prepare compounds (2) and (3) following the 11beta-dehydroxylation for accumulation of the compound (4). Time course study showed the accumulation of the product (2) from the second day of the fermentation and compounds (3) and (4) from the third day. All the metabolites reached their maximum concentration in seven days. Cyanobacterial 16S rRNA gene was also amplified by PCR. Sequences were amplified using the universal prokaryotic primers which amplify a approximately 400-bp region of the 16S rRNA gene. PCR products were sequenced to confirm their authenticity as 16S rRNA gene of cyanobacteria. The result of PCR blasted with other sequenced cyanobacteria in NCBI showed 99% identity to the 16S small subunit rRNA of seven Synechococcus species.

  12. Anaplerotic metabolism of Aspergillus nidulans and its effect on biomass synthesis in carbon limited chemostats

    Energy Technology Data Exchange (ETDEWEB)

    Bushell, M E; Bull, A T

    1981-01-01

    Anaplerotic fixation of carbon dioxide by the fungus Aspergillus nidulans when grown under carbon-limited conditions was mediated by pyruvate carboxylase and a phosphoenol pyruvate (PEP)-metabolising enzyme which has been tentatively designated as PEP carboxylase. The activities of both enzymes were growth rate dependent and measurements of H/sup 14/CO/sub 3/ incorporation by growing mycelium indicated that they were responsible for almost all the assimilated carbon dioxide. In carbon-limited chemostats, the maximum rate of bicarbonate assimilation occurred at a dilution rate of 0.11 h/sup -1/, equivalent to 1/2 ..mu..sub(max). The affinity of the pyruvate carboxylase for bicarbonate was twice of the PEP carboxylase under the conditions of growth used. The effect of changing the bicarbonate concentration in carbon-limited chemostats was substantial: increasing the HCO/sup -//sub 3/ concentration over the range 0.7-2.8 mM enhanced biomass synthesis by 22%. Over-shoots in bicarbonate assimilation and carboxylase activity occurred when steady state chemostat cultures were subjected to a step down in dilution rate.

  13. Dose effect of the uvsA+ gene product in duplication strains of Aspergillus nidulans

    International Nuclear Information System (INIS)

    Majerfeld, I.H.; Roper, J.A.

    1978-01-01

    Strains of Aspergillus nidulans which carry a particular segment of chromosome I in duplicate - one segment in normal position, the other translocated to chromosome II - are more resistant to uv light than are strains with a balanced haploid genome. A double dose of the uvsA + allele, carried on the duplicate segment, determines this enhanced resistance; this is shown by the descending order of resistance of duplication haploids uvsA + /uvsA + , uvsA1/uvsA + and uvsA1/uvsA1. An unbalanced diploid with three doses of the uvsA + allele also shows greater resistance than a balanced uvsA + //uvsA + diploid. However, in balanced diploids the uvsA1 allele appears to be completely recessive; uvsA + //uvsA + and uvsA + //uvsA1 diploids produce indistinguishable survival curves after uv irradiation. Thus, the uvsA + gene product is not rate-limiting in repair processes in strains with a balanced genome. The rate-limiting effect observed in these unbalanced strains presumably reflects an interaction of the uvsA + product and other functions determined by the rest of the genome. Duplication haploids and normal haploids lose photorepairable lesions at similar rates. This observation may be interpreted to indicate that differences in survival are not due to differences in the efficiency of excision of uv-induced pyrimidime dimers

  14. Red algae and their use in papermaking.

    Science.gov (United States)

    Seo, Yung-Bum; Lee, Youn-Woo; Lee, Chun-Han; You, Hack-Chul

    2010-04-01

    Gelidialian red algae, that contain rhizoidal filaments, except the family Gelidiellaceae were processed to make bleached pulps, which can be used as raw materials for papermaking. Red algae consist of rhizoidal filaments, cortical cells usually reddish in color, and medullary cells filled with mucilaginous carbohydrates. Red algae pulp consists of mostly rhizoidal filaments. Red algae pulp of high brightness can be produced by extracting mucilaginous carbohydrates after heating the algae in an aqueous medium and subsequently treating the extracted with bleaching chemicals. In this study, we prepared paper samples from bleached pulps obtained from two red algae species (Gelidium amansii and Gelidium corneum) and compared their properties to those of bleached wood chemical pulps. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Cellulose powder from Cladophora sp. algae.

    Science.gov (United States)

    Ek, R; Gustafsson, C; Nutt, A; Iversen, T; Nyström, C

    1998-01-01

    The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.

  16. Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae

    DEFF Research Database (Denmark)

    Coutinho, Pedro M.; Andersen, Mikael Rørdam; Kolenova, Katarina

    2009-01-01

    The plant polysaccharide degradative potential of Aspergillus nidulans was analysed in detail and compared to that of Aspergillus niger and Aspergillus oryzae using a combination of bioinformatics, physiology and transcriptomics. Manual verification indicated that 28.4% of the A. nidulans ORFs...... between the Aspergilli in the presence Of putative regulatory sequences in the promoters of the ORFs Of this Study and correlation of the presence Of putative XlnR binding sites to induction by xylose was detected for A. niger. These data demonstrate differences at genome content, Substrate specificity...

  17. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Arntzen, Magnus Ø.; Svensson, Birte

    2016-01-01

    of Aspergillus nidulans grown on cereal starches from wheat and high-amylose (HA) maize, as well as legume starch from pea for 5 days. Aspergillus nidulans grew efficiently on cereal starches, whereas growth on pea starch was poor. The secretomes at days 3-5 were starch-type dependent as also reflected...... by amylolytic activity measurements. Nearly half of the 312 proteins in the secretomes were carbohydrate-active enzymes (CAZymes), mostly glycoside hydrolases (GHs) and oxidative auxiliary activities (AAs). The abundance of the GH13 α-amylase (AmyB) decreased with time, as opposed to other starch...

  18. Biosynthesis of 3-Dimethylsulfoniopropionate in Marine Algae

    National Research Council Canada - National Science Library

    Rhodes, David

    2000-01-01

    ...) in marine algae, including identification of intermediates and enzymes of the pathway in the macroalgae Enteromorpha Intestinalis, and three diverse marine phytoplankton species; Tetraselmis sp...

  19. Algae-production in the desert

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, H.

    1988-11-01

    The company Koor Food Ltd. (Israel) developed in co-operation with the Weizmann-Institute (Israel) a production-plant for the industrial cultivation of algae in the desert area of Elat. For almost a year now, they succeed in harvesting large amounts of algae material with the help of the intensive sun and the Red Sea water. The alga Dunaliella with the natural US -carotine, as well as the alga Spirulina with the high content of protein find their market in the food-, cosmetic- and pharma-industry. This article will give a survey of a yet here unusual project.

  20. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51.

    Science.gov (United States)

    van Heemst, D; Swart, K; Holub, E F; van Dijk, R; Offenberg, H H; Goosen, T; van den Broek, H W; Heyting, C

    1997-05-01

    We have cloned the uvsC gene of Aspergillus nidulans by complementation of the A. nidulans uvsC114 mutant. The predicted protein UVSC shows 67.4% sequence identity to the Saccharomyces cerevisiae Rad51 protein and 27.4% sequence identity to the Escherichia coli RecA protein. Transcription of uvsC is induced by methyl-methane sulphonate (MMS), as is transcription of RAD51 of yeast. Similar levels of uvsC transcription were observed after MMS induction in a uvsC+ strain and the uvsC114 mutant. The coding sequence of the uvsC114 allele has a deletion of 6 bp, which results in deletion of two amino acids and replacement of one amino acid in the translation product. In order to gain more insight into the biological function of the uvsC gene, a uvsC null mutant was constructed, in which the entire uvsC coding sequence was replaced by a selectable marker gene. Meiotic and mitotic phenotypes of a uvsC+ strain, the uvsC114 mutant and the uvsC null mutant were compared. The uvsC null mutant was more sensitive to both UV and MMS than the uvsC114 mutant. The uvsC114 mutant arrested in meiotic prophase-I. The uvsC null mutant arrested at an earlier stage, before the onset of meiosis. One possible interpretation of these meiotic phenotypes is that the A. nidulans homologue of Rad51 of yeast has a role both in the specialized processes preceding meiosis and in meiotic prophase I.

  1. The extracellular β-1,3-endoglucanase EngA is involved in autolysis of Aspergillus nidulans.

    Science.gov (United States)

    Szilágyi, M; Kwon, N-J; Dorogi, C; Pócsi, I; Yu, J-H; Emri, T

    2010-11-01

    To elucidate the roles of the β-1,3-endoglucanase EngA in autolysis of the filamentous fungus Aspergillus nidulans and to identify the common regulatory elements of autolytic hydrolases. A β-1,3-endoglucanase was purified from carbon-starving cultures of A. nidulans. This enzyme is found to be encoded by the engA gene (locus ID: AN0472.3). Functional and gene-expression studies demonstrated that EngA is involved in the autolytic cell wall degradation resulting from carbon starvation of the fungus. Moreover, regulation of engA is found to be dependent on the FluG/BrlA asexual sporulation signalling pathway in submerged culture. The deletion of either engA or chiB (encoding an endochitinase) caused highly reduced production of hydrolases in general. The β-1,3-endoglucanase EngA plays a pivotal role in fungal autolysis, and activities of both EngA and ChiB are necessary to orchestrate the expression of autolytic hydrolases. The production of cell wall-degrading enzymes was coordinately controlled in a highly sophisticated and complex manner. No information was available on the autolytic glucanase(s) of the euascomycete A. nidulans. This study demonstrates that EngA is a key element in fungal autolysis, and normal activities of both EngA and ChiB are crucial for balanced production of hydrolases. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  2. Application of a new dual localization-affinity purification tag reveals novel aspects of protein kinase biology in Aspergillus nidulans.

    Science.gov (United States)

    De Souza, Colin P; Hashmi, Shahr B; Osmani, Aysha H; Osmani, Stephen A

    2014-01-01

    Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients

  3. PHENOTYPIC CHARACTERISATION AND GENETIC ANALYSIS OF MUTANTS OF ASPERGILLUS NIDULANS RESISTANT TO THE FUNGICIDE TOLCLOFOS-METHYL

    Directory of Open Access Journals (Sweden)

    A CHIBANI

    2000-12-01

    Full Text Available Spontaneous mutants of Aspergillus nidulans were recovered from 0,55.10+7  conidia incubated on synthetic medium supplemented with 100 mg tolclofos-methyl/ml. They differed considerably in morphology, growth rate, and level of resistance to two other fungicides. All mutants tested were cross-resistant to quintozene and vinclozolin; they produced fewer conidia than their wild-type parent. Some mutants required fungicides for maximum growth. Genetic analysis revealed that the mutants carried mutations in one gene located on linkage group III.

  4. Cultivation of macroscopic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  5. Cloning of the DNA repair gene, uvsF, by transformation of Aspergillus nidulans.

    Science.gov (United States)

    Oza, K; Käfer, E

    1990-06-01

    As a first step in the cloning of the DNA repair gene uvsF of Aspergillus nidulans, uvsF pyrG double mutant strains were transformed with a genomic library which carried the complementing Neurospora pyr-4 gene in the vector. Rare pyr+ uvs+ cotransformants were obtained on media lacking pyrimidines, overlayed with MMS (methyl-methane sulfonate) to which uvsF is hypersensitive. Among MMS-resistant transformants, Southerns revealed two types which showed single bands of different sizes when BglII-digested genomic DNA was probed with the vector. Both types produced uvsF- recombinants without vector sequences in homozygous crosses, but only those with the larger band also produced haploid uvs+ progeny. Using BglII-digested genomic DNA to transform Escherichia coli, plasmids of the corresponding two sizes could be rescued. Their inserts had a short internal region in common, giving evidence of rearrangement(s). In secondary transformation of uvsF mutants, only the plasmids with the larger insert showed complementation and these were used to screen Aspergillus libraries. Three types of genomic and two overlapping cDNA clones were identified. The cDNAs hybridized not only to each other, but also to the common region of the rescued plasmids. Therefore, cDNA subclones were used to map the putative uvsF sequences to a short segment in one genomic clone. In Northerns, the complementing large plasmid hybridized to three mRNAs, while the cDNA subclone identified one of these as the probable uvsF message.

  6. Elucidation of functional markers from Aspergillus nidulans developmental regulator FlbB and their phylogenetic distribution.

    Directory of Open Access Journals (Sweden)

    Marc S Cortese

    Full Text Available Aspergillus nidulans is a filamentous fungus widely used as a model for biotechnological and clinical research. It is also used as a platform for the study of basic eukaryotic developmental processes. Previous studies identified and partially characterized a set of proteins controlling cellular transformations in this ascomycete. Among these proteins, the bZip type transcription factor FlbB is a key regulator of reproduction, stress responses and cell-death. Our aim here was the prediction, through various bioinformatic methods, of key functional residues and motifs within FlbB in order to inform the design of future laboratory experiments and further the understanding of the molecular mechanisms that control fungal development. A dataset of FlbB orthologs and those of its key interaction partner FlbE was assembled from 40 members of the Pezizomycotina. Unique features were identified in each of the three structural domains of FlbB. The N-terminal region encoded a bZip transcription factor domain with a novel histidine-containing DNA binding motif while the dimerization determinants exhibited two distinct profiles that segregated by class. The C-terminal region of FlbB showed high similarity with the AP-1 family of stress response regulators but with variable patterns of conserved cysteines that segregated by class and order. Motif conservation analysis revealed that nine FlbB orthologs belonging to the Eurotiales order contained a motif in the central region that could mediate interaction with FlbE. The key residues and motifs identified here provide a basis for the design of follow-up experimental investigations. Additionally, the presence or absence of these residues and motifs among the FlbB orthologs could help explain the differences in the developmental programs among fungal species as well as define putative complementation groups that could serve to extend known functional characterizations to other species.

  7. Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes.

    Science.gov (United States)

    Herr, Andreas; Fischer, Reinhard

    2014-09-01

    Aspergillus nidulans is able to synthesize penicillin and serves as a model to study the regulation of its biosynthesis. Only three enzymes are required to form the beta lactam ring tripeptide, which is comprised of l-cysteine, l-valine and l-aminoadipic acid. Whereas two enzymes, AcvA and IpnA localize to the cytoplasm, AatA resides in peroxisomes. Here, we tested a novel strategy to improve penicillin production, namely the change of the residence of the enzymes involved in the biosynthesis. We tested if targeting of AcvA or IpnA (or both) to peroxisomes would increase the penicillin yield. Indeed, AcvA peroxisomal targeting led to a 3.2-fold increase. In contrast, targeting IpnA to peroxisomes caused a complete loss of penicillin production. Overexpression of acvA, ipnA or aatA resulted in 1.4, 2.8 and 3.1-fold more penicillin, respectively in comparison to wildtype. Simultaneous overexpression of all three enzymes resulted even in 6-fold more penicillin. Combination of acvA peroxisomal targeting and overexpression of the gene led to 5-fold increase of the penicillin titer. At last, the number of peroxisomes was increased through overexpression of pexK. A strain with the double number of peroxisomes produced 2.3 times more penicillin. These results show that penicillin production can be triggered at several levels of regulation, one of which is the subcellular localization of the enzymes. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Proteomic alterations induced by ionic liquids in Aspergillus nidulans and Neurospora crassa.

    Science.gov (United States)

    Martins, Isabel; Hartmann, Diego O; Alves, Paula C; Planchon, Sébastien; Renaut, Jenny; Leitão, M Cristina; Rebelo, Luís P N; Silva Pereira, Cristina

    2013-12-06

    This study constitutes the first attempt to understand at the proteomic level the fungal response to ionic liquid stress. Ascomycota are able to grow in media supplemented with high concentrations of an ionic liquid, which, in turn, lead to major alterations in the fungal metabolic footprint. Herein, we analysed the differential accumulation of mycelial proteins in Aspergillus nidulans and Neurospora crassa after their exposure to two of the most commonly used ionic liquids: 1-ethyl-3-methylimidazolium chloride or cholinium chloride. Data obtained showed that numerous stress-responsive proteins (e.g. anti-ROS defence proteins) as well as several critical biological processes and/or pathways were affected by either ionic liquid. Amongst other changes, these compounds altered developmental programmes in both fungi (e.g. promoting the development of Hülle cells or conidiation) and led to accumulation of osmolytes, some of which may play an important role in multiple stress responses. In particular, in N. crassa, both ionic liquids increased the levels of proteins which are likely involved in the biosynthesis of unusual metabolites. These data potentially open new perspectives on ionic liquid research, furthering their conscious design and their use to trigger production of targeted metabolites. The present study emphasises the importance of understanding ionic liquid's stress responses, crucial to further their safe large-scale usage. Knowledge of the alterations prompted at a cellular and biochemical level gives also fresh perspectives on how to employ these "novel" compounds to manipulate proteins or pathways of biotechnological value. The results presented here provide meaningful insights into the understanding of fungi stress and adaptation responses to anthropogenic chemicals used in industry. © 2013.

  9. Modeling and optimization of algae growth

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Bokhove, Onno; Zhang, Bowen; van der Sar, Dick M.; Kumar, Kundan; Pisarenco, Maxim; Rudnaya, Maria; Savcenco, Valeriu; Rademacher, Jens; Zijlstra, Julia; Szabelska, Alicja; Zyprych, Joanna; van der Schans, Martin; Timperio, Vincent; Veerman, Frits

    2010-01-01

    The wastewater from greenhouses has a high amount of mineral contamination and an environmentally-friendly method of removal is to use algae to clean this runoff water. The algae consume the minerals as part of their growth process. In addition to cleaning the water, the created algal bio-mass has a

  10. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  11. Potential biomedical applications of marine algae.

    Science.gov (United States)

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cars will be fed on algae

    International Nuclear Information System (INIS)

    Peltier, G.

    2012-01-01

    The development of the first and second generations of bio-fuels has led to a rise in food prices and the carbon balance sheet is less good than expected. Great hopes have been put on unicellular algae for they can synthesize oils, sugar and even hydrogen and the competition with food production is far less harsh than with actual bio-fuels. Moreover, when you grow micro-algae, the loss of water through evaporation is less important than in the case of intensive farm cultures. In 2009 10.000 tonnes of micro-algae were produced worldwide, they were mainly used for the production of fish food and of complements for humane food (fat acids and antioxidants). Different research programs concern unicellular algae: they aim at modifying micro-algae genetically in order to give them a higher productivity or to make them produce an oil more adapted for motor fuel or more easily recoverable. (A.C.)

  13. Composting of waste algae: a review.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  15. An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans

    DEFF Research Database (Denmark)

    von Freiesleben, Pernille; Spodsberg, Nikolaj; Holberg Blicher, Thomas

    2016-01-01

    The activity and substrate degradation pattern of a novel Aspergillus nidulans GH26 endo-β-mannanase (AnMan26A) was investigated using two galactomannan substrates with varying amounts of galactopyranosyl residues. The AnMan26A was characterized in parallel with the GH26 endomannanase from Podosp...

  16. Enzymatic synthesis of β-xylosyl-oligosaccharides by transxylosylation using two beta-xylosidases of glycoside hydrolase family 3 from Aspergillus nidulans FGSC A4

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol; Nakai, Hiroyuki; Gotfredsen, Charlotte Held

    2011-01-01

    Two beta-xylosidases of glycoside hydrolase family 3 (GH 3) from Aspergillus nidulans FGSC A4, BxlA and BxlB were produced recombinantly in Pichia pastoris and secreted to the culture supernatants in yields of 16 and 118 mg/L, respectively. BxlA showed about sixfold higher catalytic efficiency (k...

  17. Recombinant production and characterisation of two related GH5 endo-β-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol; Nakai, Hiroyuki; Gotfredsen, Charlotte Held

    2011-01-01

    The glycoside hydrolase family 5 (GH5) endo-β-1,4-mannanases ManA and ManC from Aspergillus nidulans FGSC A4 were produced in Pichia pastoris X33 and purified in high yields of 120 and 145mg/L, respectively, from the culture supernatants. Both enzymes showed increasing catalytic efficiency (kcat...

  18. Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach.

    Directory of Open Access Journals (Sweden)

    Morten Thrane Nielsen

    Full Text Available Fungal natural products are a rich resource for bioactive molecules. To fully exploit this potential it is necessary to link genes to metabolites. Genetic information for numerous putative biosynthetic pathways has become available in recent years through genome sequencing. However, the lack of solid methodology for genetic manipulation of most species severely hampers pathway characterization. Here we present a simple PCR based approach for heterologous reconstitution of intact gene clusters. Specifically, the putative gene cluster responsible for geodin production from Aspergillus terreus was transferred in a two step procedure to an expression platform in A. nidulans. The individual cluster fragments were generated by PCR and assembled via efficient USER fusion prior to transformation and integration via re-iterative gene targeting. A total of 13 open reading frames contained in 25 kb of DNA were successfully transferred between the two species enabling geodin synthesis in A. nidulans. Subsequently, functions of three genes in the cluster were validated by genetic and chemical analyses. Specifically, ATEG_08451 (gedC encodes a polyketide synthase, ATEG_08453 (gedR encodes a transcription factor responsible for activation of the geodin gene cluster and ATEG_08460 (gedL encodes a halogenase that catalyzes conversion of sulochrin to dihydrogeodin. We expect that our approach for transferring intact biosynthetic pathways to a fungus with a well developed genetic toolbox will be instrumental in characterizing the many exciting pathways for secondary metabolite production that are currently being uncovered by the fungal genome sequencing projects.

  19. Stress tolerances of nullmutants of function-unknown genes encoding menadione stress-responsive proteins in Aspergillus nidulans.

    Science.gov (United States)

    Leiter, Éva; Bálint, Mihály; Miskei, Márton; Orosz, Erzsébet; Szabó, Zsuzsa; Pócsi, István

    2016-07-01

    A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Physiological characterisation of recombinant Aspergillus nidulans strains with different creA genotypes expressing A-oryzae alpha-amylase

    DEFF Research Database (Denmark)

    Agger, Teit; Petersen, J.B.; O'Connor, S.M.

    2002-01-01

    The physiology of three strains of Aspergillus nidulans was examined-a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations and the biom......The physiology of three strains of Aspergillus nidulans was examined-a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations...... and the biomass formation and alpha-amylase production was characterised. Overexpression of the creA gene resulted in a lower maximum specific growth rate and a slightly higher repression of the alpha-amylase production during conditions with high glucose concentration. No expression of creA also resulted...... in a decreased maximum specific growth rate, but also in drastic changes in morphology. Furthermore, the expression of alpha-amylase was completely derepressed and creA thus seems to be the only regulatory protein responsible for glucose repression of alpha-amylase expression. The effect of different carbon...

  1. Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Zoltán Németh

    2016-11-01

    Full Text Available Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L−1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis.

  2. Algae biodiesel - a feasibility report

    Science.gov (United States)

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  3. Algae biodiesel - a feasibility report

    Directory of Open Access Journals (Sweden)

    Gao Yihe

    2012-04-01

    Full Text Available Abstract Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model.

  4. Method and apparatus for processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  5. Errors When Extracting Oil from Algae

    Science.gov (United States)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  6. A second component of the SltA-dependent cation tolerance pathway in Aspergillus nidulans.

    Science.gov (United States)

    Mellado, Laura; Calcagno-Pizarelli, Ana Maria; Lockington, Robin A; Cortese, Marc S; Kelly, Joan M; Arst, Herbert N; Espeso, Eduardo A

    2015-09-01

    The transcriptional response to alkali metal cation stress is mediated by the zinc finger transcription factor SltA in Aspergillus nidulans and probably in other fungi of the pezizomycotina subphylum. A second component of this pathway has been identified and characterized. SltB is a 1272 amino acid protein with at least two putative functional domains, a pseudo-kinase and a serine-endoprotease, involved in signaling to the transcription factor SltA. Absence of SltB activity results in nearly identical phenotypes to those observed for a null sltA mutant. Hypersensitivity to a variety of monovalent and divalent cations, and to medium alkalinization are among the phenotypes exhibited by a null sltB mutant. Calcium homeostasis is an exception and this cation improves growth of sltΔ mutants. Moreover, loss of kinase HalA in conjunction with loss-of-function sltA or sltB mutations leads to pronounced calcium auxotrophy. sltA sltB double null mutants display a cation stress sensitive phenotype indistinguishable from that of single slt mutants showing the close functional relationship between these two proteins. This functional relationship is reinforced by the fact that numerous mutations in both slt loci can be isolated as suppressors of poor colonial growth resulting from certain null vps (vacuolar protein sorting) mutations. In addition to allowing identification of sltB, our sltB missense mutations enabled prediction of functional regions in the SltB protein. Although the relationship between the Slt and Vps pathways remains enigmatic, absence of SltB, like that of SltA, leads to vacuolar hypertrophy. Importantly, the phenotypes of selected sltA and sltB mutations demonstrate that suppression of null vps mutations is not dependent on the inability to tolerate cation stress. Thus a specific role for both SltA and SltB in the VPS pathway seems likely. Finally, it is noteworthy that SltA and SltB have a similar, limited phylogenetic distribution, being restricted to

  7. 21 CFR 73.275 - Dried algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  8. The Biology of blue-green algae

    National Research Council Canada - National Science Library

    Carr, Nicholas G; Whitton, B. A

    1973-01-01

    .... Their important environmental roles, their part in nitrogen fixation and the biochemistry of phototrophic metabolism are some of the attractions of blue-geen algae to an increasing number of biologists...

  9. Diatom algae of the Guni river (Pamir)

    International Nuclear Information System (INIS)

    Kurbonova, P.A.; Hisoriev, H.H.

    2006-01-01

    There are presented the dates of the results of diatom algae (Bacillariophyta) of the Gunt river. There was found 107 species and 9 subspecies which belong to 3 classics, 12 ordos, 13 families and 28 genus

  10. 2011 Biomass Program Platform Peer Review: Algae

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joyce [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  11. Dipeptides from the red alga Acanthopora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; De; Kamat, S.Y.

    An investigation of red alga Acanthophora spicifera afforded the known peptide, aurantiamide acetate and a new diastereoisomer of this dipeptide (dia-aurantiamide acetate). This is a first report of aurantiamide acetate from a marine source...

  12. Sustainable Algae Biodiesel Production in Cold Climates

    OpenAIRE

    Baliga, Rudras; Powers, Susan E.

    2010-01-01

    This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA) are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a ...

  13. Antioxidant Activity of Hawaiian Marine Algae

    Directory of Open Access Journals (Sweden)

    Anthony D. Wright

    2012-02-01

    Full Text Available Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  14. Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory.

    Science.gov (United States)

    Pardo-Planas, Oscar; Prade, Rolf A; Müller, Michael; Atiyeh, Hasan K; Wilkins, Mark R

    2017-11-01

    An Aspergillus nidulans cell factory was genetically engineered to produce an aryl alcohol oxidase (AAO). The cell factory initiated production of melanin when growth-limited conditions were established using stationary plates and shaken flasks. This phenomenon was more pronounced when the strain was cultured in a trickle bed reactor (TBR). This study investigated different approaches to reduce melanin formation in fungal mycelia and liquid medium in order to increase the enzyme production yield. Removal of copper from the medium recipe reduced melanin formation in agar cultures and increased enzyme activities by 48% in agitated liquid cultures. Copper has been reported as a key element for tyrosinase, an enzyme responsible for melanin production. Ascorbic acid (0.44g/L) stopped melanin accumulation, did not affect growth parameters and resulted in AAO activity that was more than two-fold greater than a control treatment with no ascorbic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi, Claire; Battaglia, Evy; Kun, Roland S.; Dalhuijsen, Sacha; Visser, Jaap; Aguilar-Pontes, Maria V.; Zhou, Miamiao; Heyman, Heino M.; Kim, Young-Mo; Baker, Scott E.; de Vries, Ronald P.

    2018-03-22

    Background: Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involved in regulating preferential use of different carbon catabolic pathways. Results: Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. Conclusion: Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses.

  16. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    Science.gov (United States)

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Radiation sterilization of harmful algae in water

    International Nuclear Information System (INIS)

    Byung Chull An; Jae-Sung Kim; Seung Sik Lee; Shyamkumar Barampuram; Eun Mi Lee; Byung Yeoup Chung

    2007-01-01

    Complete text of publication follows. Objective: Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of harmful micro-organisms. The human and animal harmful algae is a waterborne risk to public health and economy because the algae are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Gamma and electron beam radiation technology is of growing in the water industry since it was demonstrated that gamma and electron beam radiation is very effective against harmful algae. Materials and Methods: Harmful algae (Scenedesmus quadricauda(Turpin) Brebisson 1835 (AG10003), Chlorella vulgaris Beijerinck 1896 (AG30007) and Chlamydomonas sp. (AG10061)) were distributed from Korean collection for type cultures (KCTC). Strains were cultured aerobically in Allen's medium at 25□ and 300 umol/m2s for 1 week using bioreactor. We investigated the disinfection efficiency of harmful algae irradiated with gamma (0.05 to 10 kGy for 30 min) and electron beam (1 to 19 kGy for 5 sec) rays. Results and Conclusion: We investigated the disinfection efficiency of harmful algae irradiated with gamma and electron beam rays of 50 to 19000 Gy. We established the optimum sterilization condition which use the gamma and electron beam radiation. Gamma ray disinfected harmful algae at 400 Gy for 30 min. Also, electron beam disinfected at 1000 Gy for 5 sec. This alternative disinfection practice had powerful disinfection efficiency. Hence, the multi-barrier approach for drinking water treatment in which a combination of various disinfectants and filtration technologies are applied for removal and inactivation of different microbial pathogens will guarantee a lower risk of microbial contamination.

  18. Algae production for energy and foddering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Attila; Jobbagy, Peter; Durko, Emilia [University of Debrecen, Faculty of Applied Economics and Rural Development (UD-FAERD), Centre for Agricultural and Applied Economic Sciences, Debrecen (Hungary)

    2011-09-15

    This study not only presents the results of our own experiments in alga production, but also shows the expected economic results of the various uses of algae (animal feed, direct burning, pelleting, bio-diesel production), the technical characteristics of a new pelleting method based on literature, and also our own recommended alga production technology. In our opinion, the most promising alternative could be the production of alga species with high levels of oil content, which are suitable for utilization as by-products for animal feed and in the production of bio-diesel, as well as for use in waste water management and as a flue gas additive. Based on the data from our laboratory experiments, of the four species we analyzed, Chlorella vulgaris should be considered the most promising species for use in large-scale experiments. Taking expenses into account, our results demonstrate that the use of algae for burning technology purposes results in a significant loss under the current economic conditions; however, the utilization of algae for feeding and bio-diesel purposes - in spite of their innovative nature - is nearing the level needed for competitiveness. By using the alga production technology recommended by us and described in the present study in detail, with an investment of 545 to 727 thousand EUR/ha, this technology should be able to achieve approximately 0-29 thousand EUR/ha net income, depending on size. More favorable values emerge in the case of the 1-ha (larger) size, thanks to the significant savings on fixed costs (depreciation and personnel costs). (orig.)

  19. Synechococcus nidulans from a thermoelectric coal power plant as a potential CO2 mitigation in culture medium containing flue gas wastes.

    Science.gov (United States)

    Duarte, Jessica Hartwig; Costa, Jorge Alberto Vieira

    2017-10-01

    This study evaluated the intermittent addition of coal flue gas wastes (CO 2 , SO 2 , NO and ash) into a Synechococcus nidulans LEB 115 cultivation in terms of growth parameters, CO 2 biofixation and biomass characterization. The microalga from a coal thermoelectric plant showed tolerance up to 200ppm SO 2 and NO, with a maximum specific growth rate of 0.18±0.03d - 1 . The addition of thermal coal ash to the cultivation increased the Synechococcus nidulans LEB 115 maximum cell growth by approximately 1.3 times. The best CO 2 biofixation efficiency was obtained with 10% CO 2 , 60ppm SO 2 , 100ppm NO and 40ppm ash (55.0±3.1%). The biomass compositions in the assays were similar, with approximately 9.8% carbohydrates, 13.5% lipids and 62.7% proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Macromolecular synthesis in algal cells

    International Nuclear Information System (INIS)

    Ishida, M.R.; Kikuchi, Tadatoshi

    1980-01-01

    The present paper is a review of our experimental results obtained previously on the macromolecular biosyntheses in the cells of blue-green alga Anacystis nidulans as a representative species of prokaryote, and also in those of three species of eukaryotic algae, i.e. Euglena gracilis strain Z, Chlamydomonas reinhardi, and Cyanidium caldarium. In these algal cells, the combined methods consisting of pulse-labelling using 32 P, 3 H- and 14 C-labelled precursors for macromolecules, of their chasing and of the use of inhibitors which block specifically the syntheses of macromolecules such as proteins, RNA and DNA in living cells were very effectively applied for the analyses of the regulatory mechanism in biosyntheses of macromolecules and of the mode of their assembly into the cell structure, especially organelle constituents. Rased on the results obtained thus, the following conclusions are reached: (1) the metabolic pool for syntheses of macromolecules in the cells of prokaryotic blue-green alga is limited to the small extent and such activities couple largely with the photosynthetic mechanism; (2) 70 S ribosomes in the blue-green algal cells are assembled on the surface of thylakoid membranes widely distributed in their cytoplasm; and (3) the cells of eukaryotic unicellular algae used here have biochemical characters specific for already differentiated enzyme system involving in transcription and translation machineries as the same as in higher organisms, but the control mechanism concerning with such macromolecule syntheses are different among each species. (author)

  1. An efficient arabinoxylan-debranching α-l-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site

    DEFF Research Database (Denmark)

    Wilkens, Casper; Andersen, Susan; Petersen, Bent O.

    2016-01-01

    An α-l-arabinofuranosidase of GH62 from Aspergillus nidulans FGSC A4 (AnAbf62A-m2,3) has an unusually high activity towards wheat arabinoxylan (WAX) (67 U/mg; kcat = 178/s, Km = 4.90 mg/ml) and arabinoxylooligosaccharides (AXOS) with degrees of polymerisation (DP) 3–5 (37–80 U/mg), but about 50 t...

  2. Effect of ferrate on green algae removal.

    Science.gov (United States)

    Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea

    2017-09-01

    Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.

  3. Phospholipids of New Zealand Edible Brown Algae.

    Science.gov (United States)

    Vyssotski, Mikhail; Lagutin, Kirill; MacKenzie, Andrew; Mitchell, Kevin; Scott, Dawn

    2017-07-01

    Edible brown algae have attracted interest as a source of beneficial allenic carotenoid fucoxanthin, and glyco- and phospholipids enriched in polyunsaturated fatty acids. Unlike green algae, brown algae contain no or little phosphatidylserine, possessing an unusual aminophospholipid, phosphatidyl-O-[N-(2-hydroxyethyl) glycine], PHEG, instead. When our routinely used technique of 31 P-NMR analysis of phospholipids was applied to the samples of edible New Zealand brown algae, a number of signals corresponding to unidentified phosphorus-containing compounds were observed in total lipids. NI (negative ion) ESI QToF MS spectra confirmed the presence of more familiar phospholipids, and also suggested the presence of PHEG or its isomers. The structure of PHEG was confirmed by comparison with a synthetic standard. An unusual MS fragmentation pattern that was also observed prompted us to synthesise a number of possible candidates, and was found to follow that of phosphatidylhydroxyethyl methylcarbamate, likely an extraction artefact. An unexpected outcome was the finding of ceramidephosphoinositol that has not been reported previously as occurring in brown algae. An uncommon arsenic-containing phospholipid has also been observed and quantified, and its TLC behaviour studied, along with that of the newly synthesised lipids.

  4. Radiation effects on algae and its application

    International Nuclear Information System (INIS)

    Dwivedi, Rakesh Kumar

    2013-01-01

    The effects of radiation on algae have been summarized in this article. Today, algae are being considered to have the great potential to fulfill the demand of food, fodder, fuel and various pharmaceutical products. Red algae are particularly rich in the content of polysaccharides present in their cell wall. For isolation of these polysaccharides, separation of cells cemented together by middle lamella is essential. The gamma rays are known to bring about biochemical changes in the cell wall and cause the breakdown of the middle lamella. These rays ate also known to speed up the starch sugar inter-conversion in the cells which is very useful for the tapping the potential of algae to be used as biofuel as well as in pharmaceutical industries. Cyanobacteria, among algae and other plants are more resistant to the radiation. In some cyanobacteria the radiation treatment is known to enhance the resistance against the antibiotics. Radiation treatment is also known to enhance the diameter of cell and size of the nitrogen fixing heterocyst. (author)

  5. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  6. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Transcriptional regulation of fksA, a β-1,3-glucan synthase gene, by the APSES protein StuA during Aspergillus nidulans development.

    Science.gov (United States)

    Park, Bum-Chan; Park, Yun-Hee; Yi, Soohyun; Choi, Yu Kyung; Kang, Eun-Hye; Park, Hee-Moon

    2014-11-01

    The temporal and spatial regulation of β-1,3-glucan synthesis plays an important role in morphogenesis during fungal growth and development. Northern blot analysis showed that the transcription of fksA, the gene encoding β-1,3-glucan synthase in Aspergillus nidulans, was cell-cycle-dependent and increased steadily over the duration of the vegetative period, but its overall expression during the asexual and sexual stages was fairly constant up until the time of transcription cessation. In an A. nidulans strain mutated in the eukaryotic bHLH-like APSES transcription factor stuA1, the transcriptional level of fksA, and consequently the content of alkali-insoluble cell wall β-glucan, significantly increased at the conidial chain formation and maturation stage. Electrophoretic mobility shift assays revealed that StuA was bound to StREs (StuA Response Elements) on the fksA promoter region. Promoter analysis with sGFP-fusion constructs also indicated the negative regulation of fksA expression by StuA, especially during asexual development. Taken together, these data suggest that StuA plays an important role in cell wall biogenesis during the development of A. nidulans, by controlling the transcription level of fksA.

  8. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Van Baelen, J.; Hurtger, C.; Cogneau, M.; Van der Ben, D.; Verthe, C.; Bouquegneau, J.M.

    1985-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95m-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography

  9. Freshwater algae of the Nevada Test Site

    International Nuclear Information System (INIS)

    Taylor, W.D.; Giles, K.R.

    1979-06-01

    Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs

  10. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Baelen, J. van; Hurtgen, C.; Cogneau, M.; Ben, D. van der; Verthe, C.; Bouquegneau, J.M.

    1986-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography. (author)

  11. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    International Nuclear Information System (INIS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-01-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation

  12. Serpins in plants and green algae

    DEFF Research Database (Denmark)

    Roberts, Thomas Hugh; Hejgaard, Jørn

    2008-01-01

    . Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors...... of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting...

  13. Biological synthesis of metallic nanoparticles using algae.

    Science.gov (United States)

    Castro, Laura; Blázquez, María Luisa; Muñoz, Jesus Angel; González, Felisa; Ballester, Antonio

    2013-09-01

    The increasing demand and limited natural resources of noble metals make its recovery from dilute industrial wastes attractive, especially when using environmentally friendly methods. Nowadays, the high impact that nanotechnology is having in both science and society offers new research possibilities. Gold and silver nanoparticles were biosynthesised by a simple method using different algae as reducing agent. The authors explored the application of dead algae in an eco-friendly procedure. The nanoparticle formation was followed by UV-vis absorption spectroscopy and transmission electron microscopy. The functional groups involved in the bioreduction were studied by Fourier transform infrared spectroscopy.

  14. P-32 uptake in lentic algae

    International Nuclear Information System (INIS)

    Strange, J.R.; Williamson, G.D.; Fletcher, D.J.

    1975-01-01

    A study of the Flat Creek Embayment of Lake Sidney Lanier near Gainesville, Georgia revealed three genera of algae, Chlorococcum, Fragillaria and Nostoc, to be prominent in this eutrophic region of the lake. The algae was grown in phosphate-rich media and subsequently labelled with P-32. All species incorporated luxury amounts of phosphorus as determined by the uptake of P-32. The results indicate that the P-32 uptake is proportional to the surface-per-volume ratio. The higher surface-per-volume ratio resulted in greater uptake of P-32

  15. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  16. Algas: cosmética y salud

    OpenAIRE

    Arenas, Patricia Marta; Guayta, Silvina L.

    1998-01-01

    El uso de las algas con fines estéticos y terapéuticos tiene su origen en tiempos muy antiguos. El auge de la utilización de “productos naturales” ha llevado a sobrevalorar las propiedades de los vegetales en general y de las algas en particular. Por tal razón, las mismas gozan de un elevado prestigio, incluso cuando las propiedades reales son en gran medida superadas por las popularmente atribuidas. De allí que surja la necesidad de abordar estudios interdisciplinarios y de naturaleza aplica...

  17. Growth acceleration and photosynthesis of the scenedesmus algae and cocconeis algae in deuterium water

    International Nuclear Information System (INIS)

    Liu Feng; Wang Wenqing

    1998-01-01

    In order to find new way to treat the radioactive tritium waste water, scenedesmus algae and cocconeis algae are cultured in medium which contains 30% (w) deuterium water. During different time, activities of photosymthesis, absorption spectrum, growth rate and low-temperature fluorescence spectrum are measured. Accelerated growth is found in the deuterium water compared to the normal water. Activities of photosynthesis show the similar result (F v /F m ) to the growth data. It is also concluded from low-temperature fluorescence spectra that algae activities in the deuterium water, which are expressed by PS I/PS II, are more sensitive than those in the normal water

  18. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    Science.gov (United States)

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  19. Accumulation of polycyclic arenes in Baltic Sea algae

    Energy Technology Data Exchange (ETDEWEB)

    Veldre, I.A.; Itra, A.R.; Paal' me, L.P.; Kukk, Kh.A.

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Kaesmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf.

  20. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  1. Association of thraustochytrids and fungi with living marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Nagarkar, S.; Raghukumar, S.

    only in C. clavulatum, Sargassum cinereum and Padina tetrastromatica whilst mycelial fungi occurred in all. Growth experiments in the laboratory indicated that the growth of thraustochytrids was inhibited on live algae, whereas killed algae supported...

  2. How to Identify and Control Water Weeds and Algae.

    Science.gov (United States)

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  3. Inventory of North-West European algae initiatives

    NARCIS (Netherlands)

    Spruijt, J.

    2015-01-01

    In 2012 an inventory of North-West European (NWE) algae initiatives was carried out to get an impression of the market and research activities on algae production and refinery, especially for bioenergy purposes. A questionnaire was developed that would provide the EnAlgae project with information on

  4. New methodologies for integrating algae with CO2 capture

    NARCIS (Netherlands)

    Hernandez Mireles, I.; Stel, R.W. van der; Goetheer, E.L.V.

    2014-01-01

    It is generally recognized, that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient

  5. KAROTENOID PADA ALGAE: KAJIAN TENTANG BIOSINTESIS, DISTRIBUSI SERTA FUNGSI KAROTENOID

    OpenAIRE

    Merdekawati, Windu; Karwur, Ferry F.; Susanto, A. B.

    2017-01-01

    ABSTRAK   Karotenoid terdistribusi pada archaea, bakteri, jamur, tumbuhan, hewan serta algae. Karotenoid dihasilkan dari komponen isopentenyl pyrophosphate (IPP) yang mengalami proses secara bertahap untuk membentuk beragam jenis karotenoid. Terdapat dua kelompok karotenoid yaitu karoten dan xantofil dengan berbagai jenis turunannya. Struktur kimia pada karotenoid algae yaitu allene, acetylene serta acetylated carotenoids. Algae mempunyai karotenoid spesifik yang menarik untuk dipe...

  6. Composition of phytoplankton algae in Gubi Reservoir, Bauchi ...

    African Journals Online (AJOL)

    Studies on the distribution, abundance and taxonomic composition of phytoplankton algae in Gubi reservoir were carried out for 12 months (from January to December 1995). Of the 26 algal taxa identified, 14 taxa belonged to the diatoms, 8 taxa were green algae while 4 taxa belonged to the blue-green algae. Higher cell ...

  7. Can the primary algae production be measured precisely?

    International Nuclear Information System (INIS)

    Olesen, M.; Lundsgaard, C.

    1996-01-01

    Algae production in seawater is extremely important as a basic link in marine food chains. Evaluation of the algae quantity is based on 14CO 2 tracer techniques while natural circulation and light absorption in seawater is taken insufficiently into account. Algae production can vary by 500% in similar nourishment conditions, but varying water mixing conditions. (EG)

  8. Agricultural importance of algae | Abdel-Raouf | African Journal of ...

    African Journals Online (AJOL)

    Algae are a large and diverse group of microorganisms that can carry out photosynthesis since they capture energy from sunlight. Algae play an important role in agriculture where they are used as biofertilizer and soil stabilizers. Algae, particularly the seaweeds, are used as fertilizers, resulting in less nitrogen and ...

  9. NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Ariann E. Mendoza-Martínez

    2017-03-01

    Full Text Available The redox-regulated transcription factors (TFs of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H2O2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also involved in oxidant detoxification, showing that these TFs play different roles in oxidative stress resistance, catalase gene regulation and development, during A. nidulans life cycle. We also uncover novel NapA roles in repression of sexual development, normal conidiation, conidial mRNA accumulation, and carbon utilization. The phenotypic characterization of ΔgpxA, ΔtpxA, and ΔtpxB single, double and triple peroxiredoxin mutants in wild type or ΔnapA backgrounds shows that none of these Prxs is required for NapA function in H2O2 and menadione resistance. However, these Prxs participate in a minor NapA-independent H2O2 resistance pathway and NapA and TpxA appear to regulate conidiation along the same route. Using transcriptomic analysis we show that during conidial development NapA-dependent gene expression pattern is different from canonical oxidative stress patterns. In the course of conidiation, NapA is required for regulation of at least 214 genes, including ethanol utilization genes alcR, alcA and aldA, and large sets of genes encoding proteins involved in transcriptional regulation, drug detoxification, carbohydrate utilization and secondary metabolism, comprising multiple oxidoreductases, membrane transporters and hydrolases. In agreement with this, ΔnapA mutants fail to grow or grow very poorly in ethanol, arabinose or fructose as sole carbon sources. Moreover, we show that NapA nuclear localization is induced not only by oxidative stress but also by growth in ethanol and by carbon starvation. Together with our previous work, these results show

  10. UV effects on bottom ice algae

    International Nuclear Information System (INIS)

    Ryan, K.; Buckley, B.

    1993-01-01

    Antarctic sea ice can be surprisingly transparent to UV radiation, particularly during spring when ozone depletion reaches a maximum. A 5% reduction in photosynthetic production was observed in laboratory experiments for UVB levels expected under the ice at this time. In situ studies modifying the UVB radiation falling onto algae were inconclusive. (author). 5 refs

  11. Analysis, numerics, and optimization of algae growth

    NARCIS (Netherlands)

    Kumar, K.; Pisarenco, M.; Rudnaya, M.; Savcenco, V.

    2010-01-01

    We extend the mathematical model for algae growth as described in [11] to include new effects. The roles of light, nutrients and acidity of the water body are taken into account. Important properties of the model such as existence and uniqueness of solution, as well as boundedness and positivity are

  12. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  13. Bromophenols in Marine Algae and Their Bioactivities

    DEFF Research Database (Denmark)

    Ming, Liu; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect...

  14. Selenium accumulation and metabolism in algae.

    Science.gov (United States)

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Research for Developing Renewable Biofuels from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Black, Paul N. [Univ. of Nebraska, Lincoln, NE (United States)

    2012-12-15

    Task A. Expansion of knowledge related to lipid production and secretion in algae A.1 Lipid biosynthesis in target algal species; Systems biology approaches are being used in combination with recent advances in Chlorella and Chlamydomonas genomics to address lipid accumulation in response to defined nutrient regimes. The UNL Algal Group continues screening additional species of Chlorella and other naturally occurring algae for those with optimal triglyceride production; Of the strains examined by the DOE's Aquatic Species Program, green algae, several species of Chlorella represent the largest group from which oleaginous candidates have been identified; A.1.1. Lipid profiling; Neutral lipid accumulation is routinely monitored by Nile red and BODIPY staining using high throughput strategies to screen for naturally occurring algae that accumulate triglyceride. These strategies complement those using spectrofluorometry to quantify lipid accumulation; Neutral lipid accumulation is routinely monitored by high performance thin-layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) of lipid extracts in conjunction with; Carbon portioning experiments have been completed and the data currently are being analyzed and prepared for publication; Methods in the Black lab were developed to identify and quantify triacylglycerol (TAG), major membrane lipids [diacylglycerol trimethylhomoserine, phosphatidylethanolamine and chloroplast glycolipids], biosynthetic intermediates such as diacylglycerol, phosphatidic acid and lysophospholipids and different species of acyl-coenzyme A (acyl CoA).

  16. Taxonomic Challenges and Distribution of Gracilarioid Algae ...

    African Journals Online (AJOL)

    This paper reviews the taxonomical literature of the gracilarioid algae from Tanzania, and provides information about their ecology and distribution based on an intensive regime of local collection. Its aim was to provide names, even if on a preliminary basis, for local gracilarioid taxa. Our revision shows that species ...

  17. Washington State University Algae Biofuels Research

    Energy Technology Data Exchange (ETDEWEB)

    chen, Shulin [Washington State Univ., Pullman, WA (United States). Dept. of Biological Systems Engineering; McCormick, Margaret [Targeted Growth, Inc., Seattle, WA (United States); Sutterlin, Rusty [Inventure Renewables, Inc., Gig Harbor, WA (United States)

    2012-12-29

    The goal of this project was to advance algal technologies for the production of biofuels and biochemicals by establishing the Washington State Algae Alliance, a collaboration partnership among two private companies (Targeted Growth, Inc. (TGI), Inventure Chemicals (Inventure) Inc (now Inventure Renewables Inc) and Washington State University (WSU). This project included three major components. The first one was strain development at TGI by genetically engineering cyanobacteria to yield high levels of lipid and other specialty chemicals. The second component was developing an algal culture system at WSU to produce algal biomass as biofuel feedstock year-round in the northern states of the United States. This system included two cultivation modes, the first one was a phototrophic process and the second a heterotrophic process. The phototrophic process would be used for algae production in open ponds during warm seasons; the heterotrophic process would be used in cold seasons so that year-round production of algal lipid would be possible. In warm seasons the heterotrophic process would also produce algal seeds to be used in the phototrophic culture process. Selected strains of green algae and cyanobacteria developed by TGI were tested in the system. The third component was downstream algal biomass processing by Inventure that included efficiently harvesting the usable fuel fractions from the algae mass and effectively isolating and separating the usable components into specific fractions, and converting isolated fractions into green chemicals.

  18. 21 CFR 184.1120 - Brown algae.

    Science.gov (United States)

    2010-04-01

    ... used in food only within the following specific limitations: Category of food Maximum level of use in... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  19. 21 CFR 184.1121 - Red algae.

    Science.gov (United States)

    2010-04-01

    ... within the following specific limitations: Category of food Maximum level of use in food (as served... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  20. The ice nucleation activity of extremophilic algae

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana; Hájek, J.; Worland, M. R.

    2013-01-01

    Roč. 34, č. 2 (2013), s. 137-148 ISSN 0143-2044 R&D Projects: GA AV ČR KJB601630808; GA AV ČR KJB600050708 Institutional support: RVO:67985939 Keywords : Ice nucleation * snow algae * lichen photobionts Subject RIV: EF - Botanics Impact factor: 0.640, year: 2013

  1. Photoprotection strategies of the alga Nannochloropsis gaditana

    NARCIS (Netherlands)

    Chukhutsina, Volha U.; Fristedt, Rikard; Morosinotto, Tomas; Croce, Roberta

    2017-01-01

    Nannochloropsis spp. are algae with high potential for biotechnological applications due to their capacity to accumulate lipids. However, little is known about their photosynthetic apparatus and acclimation/photoprotective strategies. In this work, we studied the mechanisms of non-photochemical

  2. Usos industriales de las algas diatomeas.

    OpenAIRE

    Illana Esteban, Carlos

    2007-01-01

    Las diatomeas son algas microscópicas que habitan tanto en aguas dulces como marinas. Aparte de su destacado papel en la cadena trófica de los ecosistemas acuáticos, con el tiempo forman depósitos a los que el hombre ha encontrado abundantes aplicaciones prácticas.

  3. Heterotrophic bacteria associated with the green alga

    NARCIS (Netherlands)

    Ismail, A.; Ktari, L.; Ahmed, M.; Bolhuis, H.; Bouhaouala-Zahar, B.; Stal, L.J.; Boudabbous, A.; El Bour, M.

    2018-01-01

    Heterotrophic bacteria associated with the green alga Ulva rigida, collected from the coast of Tunisia, were isolated andsubsequently identified by their 16S rRNA gene sequences and by phylogenetic analysis. The 71 isolates belong to four phyla:Proteobacteria (Alpha-and Gamma- subclasses),

  4. Genetic control of chromosome instability in Aspergillus nidulans as a means for gene amplification in eukaryotic microorganisms

    International Nuclear Information System (INIS)

    Parag, Y.; Roper, J.A.

    1975-01-01

    A haploid strain of Aspergillus nidulans carrying I-II duplication homozygous for the leaky mutation adE20 shows improved growth on minimal medium. The duplication, though more stable than disomics, still shows instability. Several methods were used for detecting genetic control of improved stability. a) visual selection, using a duplicated strain which is very unstable due to UV sensitivity, (adE20, biAl/dp yA2; uvsB). One stable strain showed a deletion (or a lethal mutation) distal to biA on the segment at the original position (on chromosome I). This deletion reduces crossing-over frequency detween the two homologous segments. As the deletion of the non-translated segment (yellow sectors) must be preceded by crossing-over, the above reduces the frequency of yellow sectors. A deletion of the translocated segment (green sectors) results in non-viability due to the deletion, and such sectors do not appear. The net result is a stable duplication involving only 12 C.O. units carrying the gene in concern. b) Suppressors of UV sensitivity (su-uvsB) were attempted using the above uvs duplicated strain. Phenotypic revertants were easily obtained, but all were back mutations at the uvsB locus. c) Mutations for UV resistance higher than that of the wild type were not obtained, in spite of the strong selective pressure inserted. d) Recombination deficient mutations (rec), six altogether, all uvs + , did not have any effect on stability. (orig.) [de

  5. Development of a Candida glabrata dominant nutritional transformation marker utilizing the Aspergillus nidulans acetamidase gene (amdS).

    Science.gov (United States)

    Fu, Jianmin; Blaylock, Morganne; Wickes, Cameron F; Welte, William; Mehrtash, Adrian; Wiederhold, Nathan; Wickes, Brian L

    2016-05-01

    The gene encoding Aspergillus nidulans acetamidase (amdS) was placed under control of Candida albicans ACT1 promoter and terminator sequences and then cloned into a plasmid containing C. glabrata ARS10,CEN8 or ARS10+CEN8 sequences. All plasmids transformed C. glabrata wild-type cells to acetamide+, with the ARS-only containing plasmid transforming cells at the highest frequencies (>1.0 × 10(4) transformants μg(-1)). Plasmids were rapidly lost under non-selective conditions with the frequency dependent on chromosomal element, thus recycling the acetamide- phenotype. The amdS plasmid was used to transform a set of clinical isolates resistant to a variety of antifungal drugs. All strains were successfully transformed to the acetamide+ phenotype at high frequency, confirming that this plasmid construct could be used as a simple dominant marker on virtually any strain. Gap repair experiments demonstrated that just as in Saccharomyces cerevisiae, gap repair functions efficiently inC. glabrata, suggesting that C. glabrata has numerous similarities toS. cerevisiae with regard to ease of molecular manipulation. The amdS system is inexpensive and efficient, and combined with existing C. glabrata plasmid elements, confers a high transformation frequency for C. glabrata with a phenotype that can be easily recycled. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Proof-of-principle for SERS imaging of Aspergillus nidulans hyphae using in vivo synthesis of gold nanoparticles.

    Science.gov (United States)

    Prusinkiewicz, Martin A; Farazkhorasani, Fatemeh; Dynes, James J; Wang, Jian; Gough, Kathleen M; Kaminskyj, Susan G W

    2012-11-07

    High spatial resolution methods to assess the physiology of growing cells should permit analysis of fungal biochemical composition. Whole colony methods cannot capture the details of physiology and organism-environment interaction, in part because the structure, function and composition of fungal hyphae vary within individual cells depending on their distance from the growing apex. Surface Enhanced Raman Scattering (SERS) can provide chemical information on materials that are in close contact with appropriate metal substrates, such as nanopatterned gold surfaces and gold nanoparticles (AuNPs). Since nanoparticles can be generated by living cells, we have created conditions for AuNP formation within and on the surface of Aspergillus nidulans hyphae in order to explore their potential for SERS analysis. AuNP distribution and composition have been assessed by UV-Vis spectroscopy, fluorescence light microscopy, transmission electron microscopy, and scanning transmission X-ray microscopy. AuNPs were often associated with hyphal walls, both in the peripheral cytoplasm and on the outer wall surface. Interpretation of SERS spectra is challenging, and will require validation for the diversity of organic molecules present. Here, we show proof-of-principle that it is possible to generate SERS spectra from nanoparticles grown in situ by living hyphae.

  7. The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans.

    Science.gov (United States)

    Martins, Tiago M; Hartmann, Diego O; Planchon, Sébastien; Martins, Isabel; Renaut, Jenny; Silva Pereira, Cristina

    2015-01-01

    Aspergilli play major roles in the natural turnover of elements, especially through the decomposition of plant litter, but the end catabolism of lignin aromatic hydrocarbons remains largely unresolved. The 3-oxoadipate pathway of their degradation combines the catechol and the protocatechuate branches, each using a set of specific genes. However, annotation for most of these genes is lacking or attributed to poorly- or un-characterised families. Aspergillus nidulans can utilise as sole carbon/energy source either benzoate or salicylate (upstream aromatic metabolites of the protocatechuate and the catechol branches, respectively). Using this cultivation strategy and combined analyses of comparative proteomics, gene mining, gene expression and characterisation of particular gene-replacement mutants, we precisely assigned most of the steps of the 3-oxoadipate pathway to specific genes in this fungus. Our findings disclose the genetically encoded potential of saprophytic Ascomycota fungi to utilise this pathway and provide means to untie associated regulatory networks, which are vital to heightening their ecological significance. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Flux Balance Analysis of Cyanobacterial Metabolism.The Metabolic Network of Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Knoop, H.; Gründel, M.; Zilliges, Y.; Lehmann, R.; Hoffmann, S.; Lockau, W.; Steuer, Ralf

    2013-01-01

    Roč. 9, č. 6 (2013), e1003081-e1003081 ISSN 1553-7358 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : SP STRAIN PCC-6803 * SP ATCC 51142 * photoautotrophic metabolism * anacystis-nidulans * reconstructions * pathway * plants * models * growth Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.829, year: 2013

  9. Biofuels from algae for sustainable development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih

    2011-01-01

    Microalgae are photosynthetic microorganisms that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and useful chemicals. Two algae samples (Cladophora fracta and Chlorella protothecoid) were studied for biofuel production. Microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Microalgae can be converted to biodiesel, bioethanol, bio-oil, biohydrogen and biomethane via thermochemical and biochemical methods. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 liters per acre, per year; this is 7-31 times greater than the next best crop, palm oil. Algal oil can be used to make biodiesel for cars, trucks, and airplanes. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. The effect of temperature on the yield of hydrogen from two algae (C. fracta and C. protothecoid) by pyrolysis and steam gasification were investigated in this study. In each run, the main components of the gas phase were CO 2 , CO, H 2 , and CH 4 .The yields of hydrogen by pyrolysis and steam gasification processes of the samples increased with temperature. The yields of gaseous products from the samples of C. fracta and C. protothecoides increased from 8.2% to 39.2% and 9.5% to 40.6% by volume, respectively, while the final pyrolysis temperature was increased from 575 to 925 K. The percent of hydrogen in gaseous products from the samples of C. fracta and C. protothecoides increased from 25.8% to 44.4% and 27.6% to 48.7% by volume

  10. Radiokinetic study in betony marine algae

    International Nuclear Information System (INIS)

    Azevedo Gouvea, V. de.

    1981-01-01

    The influx and outflux kinetics of some radionuclides in algae of the Rio de Janeiro coastline, were studied in order to select bioindicators for radioactive contamination in aquatic media, due to the presence of Nuclear Power Stations. Bioassays of the concentration and loss of radionuclides such as 137 Cs, 51 Cr, 60 Co and 131 I were performed in 1000cm 3 aquarium under controlled laboratory conditions, using a single channel gamma counting system, to study the species of algae most frequently found in the region. The concentration and loss parameters for all the species and radionuclides studied were obtained from the normalized results. The loss parameters were computerwise adjusted using Powell's multiparametric method. (author)

  11. Hyperaccumulation of radioactive isotopes by marine algae

    International Nuclear Information System (INIS)

    Ishii, Toshiaki; Hirano, Shigeki; Watabe, Teruhisa

    2003-01-01

    Hyperaccumlators are effective indicator organisms for monitoring marine pollution by heavy metals and artificial radionuclides. We found a green algae, Bryopsis maxima that hyperaccumulate a stable and radioactive isotopes such as Sr-90, Tc-99, Ba-138, Re-187, and Ra-226. B. maxima showed high concentration factors for heavy alkali earth metals like Ba and Ra, compared with other marine algae in Japan. Furthermore, this species had the highest concentrations for Tc-99 and Re-187. The accumulation and excretion patterns of Sr-85 and Tc-95m were examined by tracer experiments. The chemical states of Sr and Re in living B. maxima were analyzed by HPLC-ICP/MS, LC/MS, and X-ray absorption fine structure analysis using synchrotron radiation. (author)

  12. Analysis of the ionic interaction between the hydrophobin RodA and two cutinases of Aspergillus nidulans obtained via an Aspergillus oryzae expression system.

    Science.gov (United States)

    Tanaka, Takumi; Nakayama, Mayumi; Takahashi, Toru; Nanatani, Kei; Yamagata, Youhei; Abe, Keietsu

    2017-03-01

    Hydrophobins are amphipathic secretory proteins with eight conserved cysteine residues and are ubiquitous among filamentous fungi. In the fungus Aspergillus oryzae, the hydrophobin RolA and the polyesterase CutL1 are co-expressed when the sole available carbon source is the biodegradable polyester polybutylene succinate-co-adipate (PBSA). RolA promotes the degradation of PBSA by attaching to the particle surface, changing its structure and interacting with CutL1 to concentrate CutL1 on the PBSA surface. We previously reported that positively charged residues in RolA and negatively charged residues in CutL1 are cooperatively involved in the ionic interaction between RolA and CutL1. We also reported that hydrophobin RodA of the model fungus Aspergillus nidulans, which was obtained via an A. oryzae expression system, interacted via ionic interactions with CutL1. In the present study, phylogenetic and alignment analyses revealed that the N-terminal regions of several RolA orthologs contained positively charged residues and that the corresponding negatively charged residues on the surface of CutL1 that were essential for the RolA-CutL1 interaction were highly conserved in several CutL1 orthologs. A PBSA microparticle degradation assay, a pull-down assay using a dispersion of Teflon particles, and a kinetic analysis using a quartz crystal microbalance revealed that recombinant A. nidulans RodA interacted via ionic interactions with two recombinant A. nidulans cutinases. Together, these results imply that ionic interactions between hydrophobins and cutinases may be common among aspergilli and other filamentous fungi.

  13. Algae-Derived Dietary Ingredients Nourish Animals

    Science.gov (United States)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  14. Selenium Uptake and Volatilization by Marine Algae

    Science.gov (United States)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  15. Algae as reservoirs for coral pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Sweet

    Full Text Available Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS in the Indo-Pacific and Yellow Band Disease (YBD in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively. Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is

  16. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network Estimador neuro-fuzzy de concentração diária de biomassa da microalga Synechococcus nidulans

    Directory of Open Access Journals (Sweden)

    Vitor Badiale Furlong

    2013-02-01

    Full Text Available In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days, number of clusters (10, 30 and 50 clusters and internal weight softening parameter (Sigma (0.30, 0.45 and 0.60. These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A and 18 (B days of culture growth. The validations demonstrated that in long-term experiments (Validation A the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B, Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.Neste trabalho, foi construído um estimador neuro-fuzzy da concentração de biomassa da microalga Synechococcus nidulans a partir de concentrações iniciais da batelada, visando possibilitar a predição da produtividade. Nove experimentos em réplica foram realizados. O crescimento foi acompanhado diariamente pela transmitância do meio e mantido até o final da fase exponencial de crescimento. O treinamento das redes ocorreu segundo delineamento experimental 3³, os fatores foram o número de dias no vetor de entrada (3, 5 e 7 dias, o número de clusters (10, 30 e 50 clusters e o valor de abrandamento do filtro interno (Sigma (0,30, 0,45 e 0,60. A variável resposta foi o somatório do erro quadrático das validações. Estas possuíam 24 (A

  17. Antibody Production in Plants and Green Algae.

    Science.gov (United States)

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  18. New records of marine algae in Vietnam

    Science.gov (United States)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  19. Electro-coagulation-flotation process for algae removal

    International Nuclear Information System (INIS)

    Gao Shanshan; Yang Jixian; Tian Jiayu; Ma Fang; Tu Gang; Du Maoan

    2010-01-01

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm 2 , pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 10 9 -1.55 x 10 9 cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m 3 . The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  20. The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans.

    OpenAIRE

    Ye, X S; Fincher, R R; Tang, A; Osmani, S A

    1997-01-01

    It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DN...

  1. Effect of cell wall integrity stress and RlmA transcription factor on asexual development and autolysis in Aspergillus nidulans.

    Science.gov (United States)

    Kovács, Zsuzsanna; Szarka, Máté; Kovács, Szilvia; Boczonádi, Imre; Emri, Tamás; Abe, Keietsu; Pócsi, István; Pusztahelyi, Tünde

    2013-05-01

    The cell wall integrity (CWI) signaling pathway is responsible for cell wall remodeling and reinforcement upon cell wall stress, which is proposed to be universal in fungal cultures. In Aspergillus nidulans, both the deletion of rlmA encoding the RlmA transcription factor in CWI signaling and low concentrations of the cell wall polymer intercalating agent Congo Red caused significant physiological changes. The gene deletion mutant ΔrlmA strain showed decreased CWI and oxidative stress resistances, which indicated the connection between the CWI pathway and the oxidative stress response system. The Congo Red stress resulted in alterations in the cell wall polymer composition in submerged cultures due to the induction of the biosynthesis of the alkali soluble fraction as well as the hydrolysis of cell wall biopolymers. Both RlmA and RlmA-independent factors induced by Congo Red stress regulated the expression of glucanase (ANID_00245, engA) and chitinase (chiB, chiA) genes, which promoted the autolysis of the cultures and also modulated the pellet sizes. CWI stress and rlmA deletion affected the expression of brlA encoding the early conidiophore development regulator transcription factor BrlA and, as a consequence, the formation of conidiophores was significantly changed in submerged cultures. Interestingly, the number of conidiospores increased in surface cultures of the ΔrlmA strain. The in silico analysis of genes putatively regulated by RlmA and the CWI transcription factors AnSwi4/AnSwi6 in the SBF complex revealed only a few jointly regulated genes, including ugmA and srrA coding for UgmA UDP-galactopyranose mutase and SrrA stress response regulator, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Minos as a novel Tc1/mariner-type transposable element for functional genomic analysis in Aspergillus nidulans.

    Science.gov (United States)

    Evangelinos, Minoas; Anagnostopoulos, Gerasimos; Karvela-Kalogeraki, Iliana; Stathopoulou, Panagiota M; Scazzocchio, Claudio; Diallinas, George

    2015-08-01

    Transposons constitute powerful genetic tools for gene inactivation, exon or promoter trapping and genome analyses. The Minos element from Drosophila hydei, a Tc1/mariner-like transposon, has proved as a very efficient tool for heterologous transposition in several metazoa. In filamentous fungi, only a handful of fungal-specific transposable elements have been exploited as genetic tools, with the impala Tc1/mariner element from Fusarium oxysporum being the most successful. Here, we developed a two-component transposition system to manipulate Minos transposition in Aspergillus nidulans (AnMinos). Our system allows direct selection of transposition events based on re-activation of niaD, a gene necessary for growth on nitrate as a nitrogen source. On average, among 10(8) conidiospores, we obtain up to ∼0.8×10(2) transposition events leading to the expected revertant phenotype (niaD(+)), while ∼16% of excision events lead to AnMinos loss. Characterized excision footprints consisted of the four terminal bases of the transposon flanked by the TA target duplication and led to no major DNA rearrangements. AnMinos transposition depends on the presence of its homologous transposase. Its frequency was not significantly affected by temperature, UV irradiation or the transcription status of the original integration locus (niaD). Importantly, transposition is dependent on nkuA, encoding an enzyme essential for non-homologous end joining of DNA in double-strand break repair. AnMinos proved to be an efficient tool for functional analysis as it seems to transpose in different genomic loci positions in all chromosomes, including a high proportion of integration events within or close to genes. We have used Minos to obtain morphological and toxic analogue resistant mutants. Interestingly, among morphological mutants some seem to be due to Minos-elicited over-expression of specific genes, rather than gene inactivation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    Science.gov (United States)

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  4. Algae to Economically Viable Low-Carbon-Footprint Oil.

    Science.gov (United States)

    Bhujade, Ramesh; Chidambaram, Mandan; Kumar, Avnish; Sapre, Ajit

    2017-06-07

    Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30-$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.

  5. Interspecific variation in total phenolic content in temperate brown algae

    Directory of Open Access Journals (Sweden)

    Anna Maria Mannino

    2017-09-01

    Full Text Available Marine algae synthesize secondary metabolites such as polyphenols that function as defense and protection mechanisms. Among brown algae, Fucales and Dictyotales (Phaeophyceae contain the highest levels of phenolic compounds, mainly phlorotannins, that play multiple roles. Four temperate brown algae (Cystoseira amentacea, Cystoseira compressa, Dictyopteris polypodioides and Padina pavonica were studied for total phenolic contents. Total phenolic content was determined colorimetrically with the Folin-Ciocalteu reagent. Significant differences in total phenolic content were observed between leathery and sheetlike algae and also within each morphological group. Among the four species, the sheet-like alga D. polypodioides, living in the upper infralittoral zone, showed the highest concentration of phenolic compounds. These results are in agreement with the hypothesis that total phenolic content in temperate brown algae is influenced by a combination of several factors, such as growth form, depth, and exposition to solar radiation.

  6. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  7. Production and characterization of algae extract from Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Weston Kightlinger

    2014-01-01

    Conclusions: This study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.

  8. Method and apparatus for iterative lysis and extraction of algae

    Science.gov (United States)

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  9. Method and apparatus for lysing and processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  10. Importance of algae oil as a source of biodiesel

    International Nuclear Information System (INIS)

    Demirbas, Ayhan; Fatih Demirbas, M.

    2011-01-01

    Algae are the fastest-growing plants in the world. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae are very important as a biomass source. Algae will some day be competitive as a source for biofuel. Different species of algae may be better suited for different types of fuel. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Algae can be a replacement for oil based fuels, one that is more effective and has no disadvantages. Algae are among the fastest-growing plants in the world, and about 50% of their weight is oil. This lipid oil can be used to make biodiesel for cars, trucks, and airplanes. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 l per acre, per year; this is 7-31 times greater than the next best crop, palm oil. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. Most current research on oil extraction is focused on microalgae to produce biodiesel from algal oil. Algal-oil processes into biodiesel as easily as oil derived from land-based crops.

  11. Accumulation of 210Po by benthic marine algae

    International Nuclear Information System (INIS)

    Gouvea, R.C.; Branco, M.E.C.; Santos, P.L.

    1988-01-01

    The accumulation of polonium 210 Po by various species of benthic marine seaweeds collected from 4 different points on the coast of Rio de Janeiro, showed variations by species and algal groups. The highest value found was in red alga, Plocamium brasiliensis followed by other organisms of the same group. In the group of the brown alga, the specie Sargassum stenophylum was outstanding. The Chlorophyta presented the lowest content of 210 Po. The algae collected in open sea, revealed greater concentration factors of 210 Po than the same species living in bays. The siliceous residue remaining after mineralization of the algae did not interfere with the detection of polonium. (author)

  12. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    Science.gov (United States)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  13. Economic evaluation of algae biodiesel based on meta-analyses

    Science.gov (United States)

    Zhang, Yongli; Liu, Xiaowei; White, Mark A.; Colosi, Lisa M.

    2017-08-01

    The objective of this study is to elucidate the economic viability of algae-to-energy systems at a large scale, by developing a meta-analysis of five previously published economic evaluations of systems producing algae biodiesel. Data from original studies were harmonised into a standardised framework using financial and technical assumptions. Results suggest that the selling price of algae biodiesel under the base case would be 5.00-10.31/gal, higher than the selected benchmarks: 3.77/gal for petroleum diesel, and 4.21/gal for commercial biodiesel (B100) from conventional vegetable oil or animal fat. However, the projected selling price of algal biodiesel (2.76-4.92/gal), following anticipated improvements, would be competitive. A scenario-based sensitivity analysis reveals that the price of algae biodiesel is most sensitive to algae biomass productivity, algae oil content, and algae cultivation cost. This indicates that the improvements in the yield, quality, and cost of algae feedstock could be the key factors to make algae-derived biodiesel economically viable.

  14. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle.

    Science.gov (United States)

    Flipphi, Michel; Oestreicher, Nathalie; Nicolas, Valérie; Guitton, Audrey; Vélot, Christian

    2014-07-01

    In Aspergillus nidulans, the utilization of acetate as sole carbon source requires several genes (acu). Most of them are also required for the utilization of fatty acids. This is the case for acuD and acuE, which encode the two glyoxylate cycle-specific enzymes, isocitrate lyase and malate synthase, respectively, but also for acuL that we have identified as AN7287, and characterized in this study. Deletion of acuL resulted in the same phenotype as the original acuL217 mutant. acuL encodes a 322-amino acid protein which displays all the structural features of a mitochondrial membrane carrier, and shares 60% identity with the Saccharomyces cerevisiae succinate/fumarate mitochondrial antiporter Sfc1p (also named Acr1p). Consistently, the AcuL protein was shown to localize in mitochondria, and partial cross-complementation was observed between the S. cerevisiae and A. nidulans homologues. Extensive phenotypic characterization suggested that the acuL gene is involved in the utilization of carbon sources that are catabolized via the TCA cycle, and therefore require gluconeogenesis. In addition, acuL proves to be co-regulated with acuD and acuE. Overall, our data suggest that AcuL could link the glyoxylate cycle to gluconeogenesis by exchanging cytoplasmic succinate for mitochondrial fumarate. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica

    International Nuclear Information System (INIS)

    Poopanitpan, Napapol; Kobayashi, Satoshi; Fukuda, Ryouichi; Horiuchi, Hiroyuki; Ohta, Akinori

    2010-01-01

    Research highlights: → POR1 is a Yarrowia lipolytica ortholog of farA involved in fatty acid response in A. nidulans. → Deletion of POR1 caused growth defects on fatty acids. → Δpor1 strain exhibited defects in the induction of genes involved in fatty acid utilization. -- Abstract: The yeast Yarrowia lipolytica effectively utilizes hydrophobic substrates such as fatty acids and n-alkanes. To identify a gene(s) regulating fatty acid utilization in Y. lipolytica, we first studied homologous genes to OAF1 and PIP2 of Saccharomyces cerevisiae, but their disruption did not change growth on oleic acid at all. We next characterized a Y. lipolytica gene, POR1 (primary oleate regulator 1), an ortholog of farA encoding a transcriptional activator that regulates fatty acid utilization in Aspergillus nidulans. The deletion mutant of POR1 was defective in the growth on various fatty acids, but not on glucose, glycerol, or n-hexadecane. It exhibited slight defect on n-decane. The transcriptional induction of genes involved in β-oxidation and peroxisome proliferation by oleate was distinctly diminished in the Δpor1 strains. These data suggest that POR1 encodes a transcriptional activator widely regulating fatty acid metabolism in Y. lipolytica.

  16. Enhancement of Echinocandin B Production by a UV- and Microwave-Induced Mutant of Aspergillus nidulans with Precursor- and Biotin-Supplying Strategy.

    Science.gov (United States)

    Hu, Zhong-Ce; Peng, Li-Yuan; Zheng, Yu-Guo

    2016-08-01

    Echinocandin B belongs to lipopeptide antifungal antibiotic bearing five types of direct precursor amino acids including proline, ornithine, tyrosine, threonine, and leucine. The objective of this study is to screen over-producing mutant in order to improve echinocandin B production; a stable mutant Aspergillus nidulans ZJB12073, which can use fructose as optimal carbon source instead of expensive mannitol, was selected from thousand isolates after several cycles of UV and microwave irradiation in turn. The results showed that mutant strain ZJB12073 exhibited 1.9-fold improvement in echinocandin B production to 1656.3 ± 40.3 mg/L when compared with the parent strain. Furthermore, the effects of precursor amino acids and some chemicals on echinocandin B biosynthesis in A. nidulans were investigated, respectively. Tyrosine, leucine, and biotin were selected as key factors to optimize the medium employing uniform design method. The results showed that the optimized fermentation medium provided another 63.1 % increase to 2701.6 ± 31.7 mg/L in final echinocandin B concentration compared to that of unoptimized medium.

  17. Cloning and characterisation of the sagA gene of Aspergillus nidulans: a gene which affects sensitivity to DNA-damaging agents.

    Science.gov (United States)

    Jones, G W; Hooley, P; Farrington, S M; Shawcross, S G; Iwanejko, L A; Strike, P

    1999-03-01

    Mutations within the sagA gene of Aspergillus nidulans cause sensitisation to DNA-damaging chemicals but have no effect upon spontaneous or damage-induced mutation frequency. The sagA gene was cloned on a 19-kb cosmid-derived fragment by functional complementation of a sagA1 sagC3 double mutant; subsequently, a fragment of the gene was also isolated on a 3.9-kb genomic subclone. Initial sequencing of a small section of the 19-kb fragment allowed the design of primers that were subsequently used in RTPCR experiments to show that this DNA is transcribed. A 277-bp fragment derived from the transcribed region was used to screen an A. nidulans cDNA library, resulting in the isolation of a 1.4-kb partial cDNA clone which had sequence overlap with the genomic sagA fragment. This partial cDNA was incomplete but appeared to contain the whole coding region of sagA. The sagA1 mutant was shown to possess two mutations; a G-T transversion and a+ 1 frameshift due to insertion of a T. causing disruption to the C-terminal region of the SagA protein. Translation of the sagA cDNA predicts a protein of 378 amino acids, which has homology to the Saccharomyces cerevisiae End3 protein and also to certain mammalian proteins capable of causing cell transformation.

  18. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  19. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    Science.gov (United States)

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  20. Snow algae and lichen algae differ in their resistance to freezing temperature: An ice nucleation study

    Czech Academy of Sciences Publication Activity Database

    Hajek, J.; Kvíderová, Jana; Worland, R.; Barták, M.; Elster, Josef; Vaczi, P.

    2009-01-01

    Roč. 48, č. 4 (2009), s. 37-38 ISSN 0031-8884. [International Phycological Congress /9./. 02.08.2009-08.08.2009, Tokyo] R&D Projects: GA AV ČR IAA600050702; GA AV ČR KJB601630808 Institutional research plan: CEZ:AV0Z60050516 Keywords : ice nucleation * algae * freezing Subject RIV: EF - Botanics

  1. Role of marine algae in organic farming

    Digital Repository Service at National Institute of Oceanography (India)

    Pereira, N.; Verlecar, X.N.

    Division of Publication and Information, Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, New Delhi 110 029, India e - mail: encejain@yahoo.co.in Role of marine algae in organic far m ing As rightly outlined.... The Indi an Ocean, including its adjacent seas, extends over an area of about 73.44 ? 10 6 km 2 and the potential harvest of seaweeds from the Indian Ocean is about 870 thousand tonnes (wet weight) 3 . India could draw benefits from this marine...

  2. Effect of petroleum hydrocarbons on algae

    International Nuclear Information System (INIS)

    Bhadauria, S.; Sengar, R.M.S.; Mittal, S.; Bhattacharjee, S.

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae

  3. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  4. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.

    2009-08-15

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  5. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.; Curtis, Tom P.; Logan, Bruce E.

    2009-01-01

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  6. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  7. Management of autotrophic mass cultures of micro-algae

    CSIR Research Space (South Africa)

    Toerien, DF

    1987-01-01

    Full Text Available Interest in the mass cultivation of micro-algae as feed and foodstuff has existed since the turn of the century (Robinson and Toerien, 1962). Experiments using algae in photosynthetic research (Warburg, 1919) also led to an appreciation...

  8. EnAlgae Decision Support Toolset: model validation

    NARCIS (Netherlands)

    Kenny, Philip; Visser, de Chris; Skarka, Johannes; Sternberg, Kirstin; Schipperus, Roelof; Silkina, Alla; Ginnever, Naomi

    2015-01-01

    One of the drivers behind the EnAlgae project is recognising and addressing the need for increased availability of information about developments in applications of algae biotechnology for energy, particularly in the NW Europe area, where activity has been less intense than in other areas of the

  9. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. ... African Journal of Biotechnology ... This study shows the benefit of using activated carbon from marine red algae as a low cost sorbent for the removal of copper from aqueous solution wastewater.

  10. Rare species of fungi parasiting on algae. III.

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995 parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  11. Rare species of fungi parasiting on algae. III.

    OpenAIRE

    Joanna Z. Kadłubowska

    2014-01-01

    The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995) parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  12. Persistence and proliferation of some unicellular algae in drinking ...

    African Journals Online (AJOL)

    Drinking water systems have a complex structure and are characterised by the absence of light, the presence of disinfectants and by low levels of nutrients. Several kinds of bacteria, protozoa, algae and fungi can be found in tap water. Little is known about the ecology of algae in drinking water systems, although their ...

  13. Isolation and Characterization of Blue Green Algae from Egyptian ...

    African Journals Online (AJOL)

    meldemellawy

    2014-02-20

    Feb 20, 2014 ... aminotransferase (AMT) domains of the mycE and ndaF genes (Jungblut et al., 2006) allowing detection of microcystin and nodularin-producing cyanobacteria. MATERIALS AND METHODS. Isolation and cultivation of blue green algae. Blue green algae had been isolated from soil of Rice field in river.

  14. 21 CFR 73.185 - Haematococcus algae meal.

    Science.gov (United States)

    2010-04-01

    ... stabilized color additive mixture. Color additive mixtures for fish feed use made with haematococcus algae... in color additive mixtures for coloring foods. (b) Specifications. Haematococcus algae meal shall... salmonid fish in accordance with the following prescribed conditions: (1) The color additive is used to...

  15. Study on the effect of irradiation on algae by proteomics

    International Nuclear Information System (INIS)

    Choi, Jong Il; Yoon, Yo Han; Kim, Jae Hun

    2010-06-01

    Algae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the algae is just beginning and the study on protein expression and growth by the change of condition was not reported. In this study, the effect of radiation on the protein expression was investigated for the protection mechanisms and new genome source and furthermore, isolation of new mutant strains. To monitor the growth of algae, absorbance and FDA staining methods were developed and the content of lipid of algae species were measured. With these methods, the radiation sensitivity of algae species was determined. To investigate the proteome of algae, 2D-electrophoresis methods was applied. From the comparison of proteomes, the radiation specific expressed protein was identified as thioredoxin-h and its nucleotide sequences was defined. The expression of thioredoxin-h was further defined on the mRNA level. Also, the extract of algae species was analyzed for its antioxidant activity and polyphenolic content. The changes in antioxidant activity of extract by radiation was investigated. From the radiation experiments, mutant Spirogyra species having higher resistant against radical stress was obtained. The mutant strain has higher antioxidant activity. This results can provide the proteome date and mutation technology of algae and further contribute in the activation of fishery industry and national health enhancement

  16. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  17. Efficiency of using green algae as biological controllers against toxic ...

    African Journals Online (AJOL)

    Efficiency of using green algae as biological controllers against toxic algal taxa in cultured ... of two green algal species as biological control of the growth of toxic blue-green algae. ... African Journal of Aquatic Science 2014, 39(4): 443–450 ...

  18. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  19. Uptake of americium-241 by algae and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geisy, J P; Paine, D

    1978-01-01

    Algae and bacteria are important factors in the transport and mobilization of elements in the biosphere. These factors may be involved in trophic biomagnification, resulting in a potential human hazard or environmental degradation. Although americium, one of the most toxic elements known, is not required for plant growth, it may be concentrated by algae and bacteria. Therefore, the availability of americium-241 to algae and bacteria was studied to determine their role in the ultimate fate of this element released into the environment. Both algae and bacteria concentrated americium-241 to a high degree, making them important parts of the biomagnification process. The ability to concentrate americium-241 makes algae and bacteria potentially significant factors in cycling this element in the water column. (4 graphs, numerous references, 3 tables)

  20. Investigation about Role of Algae in Kazeroon Sasan Spring Odor

    Directory of Open Access Journals (Sweden)

    A Hamzeian

    2016-05-01

    Full Text Available Introduction: As odor for potable water is unpleasant for costumers, it needs to do researches for finding the reasons of odorous water. Sasan spring that is located in, near kazeroon city, Fars, Iran, is potable water resource for Kazeroon and Booshehr city and many other villages. Water in Sasan spring has the odor problem. With regards to important   role of algae on ado r problems in this study the role of algae on   odor was investigated. Methods: After regular sampling, the TON (threshold odor number was indicated and algae species was distinguished and the number of total algae and any species  of algae was numbers by microscopic direct numbering method .as the algae mass  is related to nitrogen and phosphor concentration, results of concentration Of nitrogen and phosphor in this spring that was examined regularity by water company was investigated and compared to concentration of these component that are need for algae growing.   Results: results shows that TON was in range  of 4.477 to 6.2 that indicated  oderous limit . Regression and diagram between TON and number of total algae showed the linear relationship. The concentration of nitrogen and phosphor, showed adequate condition for algal grow. Result of determination of algae species showed high population of Oscilatoria and Microcystis species, which are known as essential case of mold odor in water resources. Investigation on geological maps in the region around the Sasan spring, show alluvium source and is effected by surface part of it’s around land. Conclusion: because of the algae was determined as the essential cause of odor   in the spring, and algal growth is related to nutrients, and because of the surface pollution can penetrate in the alluvium lands around the spring, and effect the water in spring, so nutrient control and management is the essential way for odor control in the spring.

  1. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    Science.gov (United States)

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  2. Antibiotic Algae by Chemical Surface Engineering.

    Science.gov (United States)

    Kerschgens, Isabel P; Gademann, Karl

    2018-03-02

    Chemical cell-surface engineering is a tool for modifying and altering cellular functions. Herein, we report the introduction of an antibiotic phenotype to the green alga Chlamydomonas reinhardtii by chemically modifying its cell surface. Flow cytometry and confocal microscopy studies demonstrated that a hybrid of the antibiotic vancomycin and a 4-hydroxyproline oligomer binds reversibly to the cell wall without affecting the viability or motility of the cells. The modified cells were used to inhibit bacterial growth of Gram-positive Bacillus subtilis cultures. Delivery of the antibiotic from the microalgae to the bacterial cells was verified by microscopy. Our studies provide compelling evidence that 1) chemical surface engineering constitutes a useful tool for the introduction of new, previously unknown functionality, and 2) living microalgae can serve as new platforms for drug delivery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The economics of producing biodiesel from algae

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Brian J. [Ecotonics Environmental Scientists, 1801 Century Park East, Suite 2400, Los Angeles, CA 90067 (United States)

    2011-01-15

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  4. The economics of producing biodiesel from algae

    International Nuclear Information System (INIS)

    Gallagher, Brian J.

    2011-01-01

    Biodiesel is an alternative fuel for conventional diesel that is made from natural plant oils, animal fats, and waste cooking oils. This paper discusses the economics of producing biodiesel fuel from algae grown in open ponds. There is potential for large-scale production of biodiesel from algal farms on non-arable land; however, previous studies have failed to demonstrate an economically viable process that could be scalable to a commercialized industry. The problems include inconsistent and insufficient algal productivities, uncertain capital and operating costs, volatile market prices and unknown levels of government support. Although intensive work is being done on many technological issues, the economic studies and data are incomplete and out of date. This paper presents an updated financial analysis of the production and economic conditions that could have a profound effect on the success of this important alternative fuel production process. (author)

  5. A screening method for cardiovascular active compounds in marine algae.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Kustrin, E; Angove, M J; Morton, D W

    2018-05-18

    The interaction of bioactive compounds from ethanolic extracts of selected marine algae samples, separated on chromatographic plates, with nitric/nitrous acid was investigated. The nature of bioactive compounds in the marine algae extracts was characterised using UV absorption spectra before and after reaction with diluted nitric acid, and from the characteristic colour reaction after derivatization with anisaldehyde. It was found that diterpenes from Dictyota dichotoma, an edible brown algae, and sterols from green algae Caulerpa brachypus, bind nitric oxide and may act as a nitric oxide carrier. Although the carotenoid fucoxanthin, found in all brown marine algae also binds nitric oxide, the bonds between nitrogen and the fucoxanthin molecule are much stronger. Further studies are required to evaluate the effects of diterpenes from Dictyota dichotoma and sterols from green algae Caulerpa brachypus to see if they have beneficial cardiovascular effects. The method reported here should prove useful in screening large numbers of algae species for compounds with cardiovascular activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    Energy Technology Data Exchange (ETDEWEB)

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  7. X-ray induced degradation of DNA in Aspergillus nidulans cells comparative analysis of UV- and X-ray induced DNA degradation

    International Nuclear Information System (INIS)

    Zinchenko, V.V.; Babykin, M.M.

    1980-01-01

    Irradiating cells of Aspergillus nidulans of the wild type in the logarythmical growth phase with X-rays leads to a certain retention in DNA synthesis. This period is characterized by an insignificant fermentative DNA degradation connected with a process of its repair. There is no direct dependence between the radiation dose and the level of DNA degradation. The investigation of X-ray induced DNA degradation in a number of UVS-mutants permits to show the existence of two branches of DNA degradation - dependent and independent of the exogenic energy source. The dependence of DNA degradation on albumen synthesis prior to irradiation and after it, is demonstrated. It is supposed that the level of X-ray induced DNA degradation is determined by two albumen systems, one of which initiates degradation and the other terminates it. The comparative analysis of UV and X-ray induced DNA degradation is carried out

  8. The mutagenic effect of near ultraviolet light on the nvs strains of Aspergillus nidulans in the presence of 8-metoxypsoralen or angelicin

    International Nuclear Information System (INIS)

    Muronets, E.M.; Kovtunenko, L.V.; Kameneva, S.V.

    1980-01-01

    The mutual mutagenic effect of long-wave ultraviolet radiation (EUV) with angelicin which forms monoadducts in DNA and 8-metoxypsoralen (8 MOP) which forms monoadducts and joints, on conidia of uvs- and uvs+ strains of Aspergillus nidulans, is studied. The two types of interaction are shown to induce mutations intensively. Mutation induction with angelicin shows the role of psoralen pyrimidine monoadducts in mutagenesis. The technique of fractionated EUV radiation and studying the effect of monoadduct repair effectiveness on mutation output permits to prove that interthread DNA joints induced by 8-MOP+EUV are also highly mutagenous. The products of UVS/2, 20b, 26 genes which take part in the excision of DNA damages do not take part in the formation of mutations induced in aspergil by furocoumarine + EUV. The products of uvs 19, 20a genes which take part in the postreplicative DNA reduction are neccessary for the repair of premutation damages induced by furocoumarine + EUV

  9. Photophysiology and cellular composition of sea ice algae

    International Nuclear Information System (INIS)

    Lizotte, M.P.

    1989-01-01

    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 μg C · μg chl -1 · h -1 higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and 14 C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and 14 C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities

  10. The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans.

    Science.gov (United States)

    Ye, X S; Fincher, R R; Tang, A; Osmani, S A

    1997-01-02

    It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DNA. However, non-dividing quiescent conidiospores of the Tyr15 mutant strain were not sensitive to DNA damage. The UV and MMS sensitivity of cells unable to tyrosine phosphorylate p34cdc2 is therefore caused by defects in DNA damage checkpoint regulation over mitosis. Both the nimA5 and nimT23 temperature-sensitive mutations cause an arrest in G2 at 42 degrees C. Addition of MMS to nimT23 G2-arrested cells caused a marked delay in their entry into mitosis upon downshift to 32 degrees C and this delay was correlated with a long delay in the dephosphorylation and activation of p34cdc2. Addition of MMS to nimA5 G2-arrested cells caused inactivation of the H1 kinase activity of p34cdc2 due to an increase in its Tyr15 phosphorylation level and delayed entry into mitosis upon return to 32 degrees C. However, if Tyr15 phosphorylation of p34cdc2 was prevented then its H1 kinase activity was not inactivated upon MMS addition to nimA5 G2-arrested cells and they rapidly progressed into a lethal mitosis upon release to 32 degrees C. Thus, Tyr15 phosphorylation of p34cdc2 in G2 arrests initiation of mitosis after DNA damage in A. nidulans.

  11. Photobiological hydrogen production with switchable photosystem-II designer algae

    Science.gov (United States)

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  12. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Thomas, Joseph

    1977-01-01

    Recent work using radioactive nitrogen on the blue-green algae of paddy fields has been reviewed. These algae fix dinitrogen and photoassimilate carbon evolving oxygen, thereby augmenting nitrogen and carbon status of the soil and also providing oxygen to the water-logged rice paddies. Further studies using radioactive isotopes 13 N, 24 Na and 22 Na on their nitrogen fixation, nitrogen assimilation pathways; regulation of nitrogenase, heterocysts production and sporulation and sodium transport and metabolism have been carried out and reported. The field application of blue green algae for N 2 fixation was found to increase the status of soil nitrogen and yield of paddy. (M.G.B.)

  13. Utilização de linhagens diplóides uvsH//uvsH de Aspergillus nidulans (Ascomycetes para a avaliação do potencial recombinagênico de agentes químicos e físicos uvsH//uvsH diploid strain favors an efficient method to evaluate the recombinagenic effect of chemical and physical agents in Aspergillus nidulans (Ascomycetes

    Directory of Open Access Journals (Sweden)

    Francielle Baptista

    2001-05-01

    Full Text Available O ascomiceto Aspergillus nidulans apresenta-se como um excelente sistema para o estudo da recombinação somática, por passar grande parte de seu ciclo celular em G2 e por apresentar mutações uvs que promovem aumento das freqüências normais de recombinação mitótica (uvsF e uvsH. O presente trabalho teve como objetivo obter uma nova linhagem diplóide de A. nidulans, com características apropriadas para estudos da recombinagênese, tais como: hetererozigose para marcadores nutricionais e de coloração de conidios e homozigose para a mutação uvsH. A maior sensibilidade do diplóide uvsH//uvsH no monitoramento de eventos de recombinação mitótica foi demonstrada através dos mais altos índices de recombinação mitótica espontânea por ele apresentados, em comparação com o diplóide uvsH+//uvsH +. A nova linhagem apresenta-se como uma ferramenta versátil, podendo ser utilizada em diferentes estudos relacionados à recombinação mitótica em A. nidulansAscomycete Aspergillus nidulans is an excellent system for mitotic crossing-over studies. This is due to the fact that much of its cell cycle is passed in G2 and presents uvs mutations that increase frequencies of normal mitotic recombinations (uvsF and uvsH. The aim of this research was to obtain a new diploid strain of A. nidulans with proper characteristics for recombinagenesis investigations, or rather, heterozygous for nutritional markers and conidia coloration and homozygous for uvsH mutation. Higher sensitivity of diploid uvsH//uvsH in the monitoring of mitotic recombination events was shown by higher indexes of the diploid’s spontaneous mitotic recombination when compared with diploid uvsH+//uvsH +. New strain is a versatile tool that may be used in different studies on mitotic recombination in A. nidulans

  14. Macro-economics of algae products : Output WP2A7.02

    NARCIS (Netherlands)

    Voort, van der M.P.J.; Vulsteke, E.; Visser, de C.L.M.

    2015-01-01

    This report is part of the EnAlgae Workpackage 2, Action 7, directed at the economics of algae production. The goal of this report is to highlight potential markets for algae. Per type of algae market the market size, product alternatives, constraints and prices are highlighted. Based on these

  15. Scenario analysis of large scale algae production in tubular photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Beveren, van P.J.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2013-01-01

    Microalgae productivity in tubular photobioreactors depends on algae species, location, tube diameter, biomass concentration, distance between tubes and for vertically stacked systems, the number of horizontal tubes per stack. A simulation model for horizontal and vertically stacked horizontal

  16. Kalaärimeeste kohus algas venitamisega / Hindrek Riikoja

    Index Scriptorium Estoniae

    Riikoja, Hindrek

    2007-01-01

    Harju maakohtus algas kohtuprotsess veterinaar- ja toiduameti endise asejuhi Vladimir Razumovski väidetava altkäemaksuvõtmise üle, kus on süüdistavaid eraisikuid ja ettevõtjaid. Lisa: Kes on kohtu all?

  17. The role of algae in agriculture: a mathematical study.

    Science.gov (United States)

    Tiwari, P K; Misra, A K; Venturino, Ezio

    2017-06-01

    Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.

  18. Modelization of tritium transfer into the organic compartments of algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Arapis, G.; Kirchmann, R.

    1982-01-01

    Uptake of tritium oxide and its conversion into organic tritium was studied in four different types of algae with widely varying size and growth characteristics (Acetabularia acetabulum, Boergesenia forbesii, two strains of Chlamydomonas and Dunaliella bioculata). Water in the cell and the vacuales equilibrates rapidly with external tritium water. Tritium is actively incorporated into organically bound form as the organisms grow. During the stationary phase, incorporation of tritium is slow. There exists a discrimination against the incorporation of tritium into organically bound form. A model has been elaborated taking in account these different factors. It appears that transfer of organic tritium by algae growing near the sites of release would be significant only for actively growing algae. Algae growing slowly may, however, be useful as cumulative indicators of discontinuous tritium release. (author)

  19. Studies on allergenic algae of Delhi area: botanical aspects.

    Science.gov (United States)

    Mittal, A; Agarwal, M K; Shivpuri, D N

    1979-04-01

    To study distribution of algae in and around Delhi aerobiological surveys were undertaken for two consecutive years (September, 1972, to August, 1974). The surveys were accomplished by (a) slide exposure method and (b) culture plate exposure method. A total of 850 slides were exposed using Durham's gravity sampling device. Of these, 560 slides were exposed during 1973 (272 slides at two meter and 288 at ten meter height) and the rest (290 slides) were exposed during 1974 at ten meter height. A total of 858 culture plates were exposed (276 for one hour and 282 for two hours) during 1973 and the rest (300 culture plates) were exposed during 1974 at ten meter height for two hours duration only. Air was found to be rich in algae flora during the months of September to November. The dominant forms of algae present were all blue greens. This might be due to the relative greater resistance of blue green algae to unfavorable conditions.

  20. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice

    DEFF Research Database (Denmark)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.

    2018-01-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light......, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties...... for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with approximate to 1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (...

  1. Composition, Occurrences and Checklist of Periphyton Algae of ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    The periphyton is also an important indicator of water quality (Azim et al, 2006). Attached algae are primitive plants that get their nutrients from water passing over them. ... rung in the aquatic food chain depend directly ... influence of sea water.

  2. Planktonic algae and cyanoprokaryotes as indicators of ecosystem ...

    African Journals Online (AJOL)

    Planktonic algae and cyanoprokaryotes as indicators of ecosystem quality in the Mooi River system in the North-West Province, South Africa. ... is important for maintaining the quality of potable water of Potchefstroom and surrounding areas.

  3. Chemical examination of the brown alga Stoechospermum marginatum (C. Agardh)

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    The crude methalonic extract of marine algae Stoechospermum marginatum from west coast of India was found to have spasmolytic activity. Search for the pharmacologically active compounds led to the isolation of steroids, fatty acids and an ester...

  4. The Belmont Valley integrated algae pond system in retrospect

    African Journals Online (AJOL)

    2013-03-26

    Mar 26, 2013 ... ness amongst all stakeholders including the public at large, the three spheres of ...... (2011) Algae biofuel from wastewater treatment high rate algal ponds. .... and OELMÜLLER R (2002) Photosynthetic electron transport.

  5. Diterpenes from the Marine Algae of the Genus Dictyota.

    Science.gov (United States)

    Chen, Jiayun; Li, Hong; Zhao, Zishuo; Xia, Xue; Li, Bo; Zhang, Jinrong; Yan, Xiaojun

    2018-05-11

    Species of the brown algae of the genus Dictyota are rich sources of bioactive secondary metabolites with diverse structural features. Excellent progress has been made in the discovery of diterpenes possessing broad chemical defensive activities from this genus. Most of these diterpenes exhibit significant biological activities, such as antiviral, cytotoxic and chemical defensive activities. In the present review, we summarized diterpenes isolated from the brown algae of the genus.

  6. Algae Reefs in Shark Bay, Western Australia, Australia

    Science.gov (United States)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  7. Thermal algae in certain radioactive springs in Japan, (3)

    International Nuclear Information System (INIS)

    Mifune, Masaaki; Hirose, Hiroyuki.

    1982-01-01

    Shikano Hot Springs are located at five km to the south of Hamamura Station on the Sanin Line in Tottori Prefecture. The water temperature and the pH of the springs are 40.2 - 61.2 0 C, and 7.5 - 7.8, respectively. They belong to simple thermals. Hamamura Hot Springs are located in the neighbourhood of Hamamura Station. The highest radon content of the hot springs is 175.1 x 10 -10 Ci/l, and the great part of the springs belong to radioactive ones. From the viewpoint of the major ionic constituents, they are also classified under weak salt springs, sulfated salt springs, and simple thermals. Regarding the habitates of the algal flora, the water temperature and the pH of the springs are 28.0 - 68.0 0 C, and 6.8 - 7.4, respectively. The thermal algae found by Ikoma and Doi at Hamamura Hot Springs were two species of Cyanophyceae. By the authors, nine species and one variety of Cyanophyceae including Ikoma and Doi's two species were newly found at Shikano and Hamamura Hot Springs. Chlorophyceous alga was not found. The dominant thermal algae of these hot springs were Mastigocladus laminosus, and the other algae which mainly consist of Oscillatoriaceous algae. From these points, it seems that the thermal algae of Shikano and Hamamura Hot Springs belong to the normal type of thermal algae, and they are different from the thermal algae of Ikeda Mineral Springs and Masutomi Hot Springs which belong to strongly radioactive springs. (author)

  8. Using the marine unicellular algae in biological monitoring

    OpenAIRE

    Kapkov V. I.; Shoshina E. V.; Belenikina O. A.

    2017-01-01

    The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb) in the form of chloride salts on the growth...

  9. Aspergillus nidulans Synthesize Insect Juvenile Hormones upon Expression of a Heterologous Regulatory Protein and in Response to Grazing by Drosophila melanogaster Larvae

    DEFF Research Database (Denmark)

    Nielsen, Morten Thrane; Klejnstrup, Marie Louise; Rohlfs, Marko

    2013-01-01

    , indicating that fungal secondary metabolites remain an underexplored resource of bioactive molecules. In this study, we combine heterologous expression of regulatory proteins in Aspergillus nidulans with systematic variation of growth conditions and observe induced synthesis of insect juvenile hormone......-III and methyl farnesoate. Both compounds are sesquiterpenes belonging to the juvenile hormone class. Juvenile hormones regulate developmental and metabolic processes in insects and crustaceans, but have not previously been reported as fungal metabolites. We found that feeding by Drosophila melanogaster larvae...

  10. Micro-algae: French players discuss the matter

    International Nuclear Information System (INIS)

    Bouveret, T.

    2013-01-01

    About 75000 species of algae have been reported so far, the domains of application are huge and investment are increasing all around the world. One of the difficulties is to find the most appropriate algae to a specific application. Some development programs have failed scientifically or economically for instance the production of protein for animal food from the chlorella algae or the production of bio-fuel from C14-C18 chains, from zeaxanthine and from phycoerytrine. On the other side some research programs have led to promising industrial applications such as the production of food for fish and farm animals. Some research fields are completely innovative such as the use of micro-algae for the construction of bio-walls for buildings. Micro-algae are diverse and fragile. Photo-bioreactors have been designed to breed fragile algae like some types of chlorophycees used in bio-fuel and in cosmetics, a prototype has been tested for 15 months and its production is about 2 kg of dry matter a day. (A.C.)

  11. Radionuclides and trace metals in eastern Mediterranean Sea algae

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mamish, S.; Budier, Y.

    2003-01-01

    Three types of sea alga distributed along the Syrian coast have been collected and analyzed for radioactivity and trace elements. Results have shown that 137 Cs concentrations in all the analyzed sample were relatively low (less than 1.2 Bq kg -1 dry weight) while the levels of naturally occurring radionuclides, such as 210 Po and 210 Pb, were found to be high in most samples; the highest observed value (27.43 Bq kg -1 dry weight) for 210 Po being in the red Jania longifurca alga. In addition, most brown alga species were also found to accumulate 210 Po, which indicates their selectivity to this isotope. On the other hand, brown alga (Cystoseira and Sargassum Vulgare) have shown a clear selectivity for some trace metals such as Cr, As, Cu and Co, this selectivity may encourage their use as biomonitor for pollution by trace metals. Moreover, the red alga species were found to contain the highest levels of Mg while the brown alga species were found to concentrate Fe, Mn, Na and K and nonmetals such as Cl, I and Br

  12. Combining of radionuclides with constituent materials of marine algae

    International Nuclear Information System (INIS)

    Nakamura, Ryoichi; Nakahara, Motokazu; Ishii, Toshiaki; Ueda, Taishi; Shimizu, Chiaki.

    1979-01-01

    The relations between the accumulation-elimination of radionuclides and the constituent materials of marine algae were studied to determine more precisely the mechanism of the radioactive contamination of marine organisms. This will increase the information about the behavior of radionuclides in marine organisms in relation to the environmental conditions (temperature, physico-chemical state of radioisotope, and so on) and the biological conditions (feeding habits, species, and so on). Eisenia contaminated by 137 Cs and 106 Ru- 106 Rh was fractionated by solvent extraction into 6 fractions. The largest portion of 137 Cs was in the boiling water fraction; 106 Ru- 106 Rh was most extracted by 24% KOH solution. Elution patterns by Sephadex G-100 gel-filtration of samples differed largely from each other, both among the 3 kinds of radionuclides and between the 2 species of the algae. Therefore, the accumulation of the radionuclides by the marine algae was proved to be not only due to a physical absorption to the surface of the algae but also to the biological combining of the radionuclides with the constituents of the algae. Furthermore, it was found that radionuclides which combine with a few constituents of alga are not eliminated equally. This is considered to be useful for the physiological analysis of elimination curves. (author)

  13. Algae as a Biofuel: Renewable Source for Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Vijay Kant Pandey

    2016-09-01

    Full Text Available Biofuels produced by algae may provide a feasible alternative to fossil fuels like petroleum sourced fuels. However, looking to limited fossil fuel associated with problems, intensive efforts have been given to search for alternative biofuels like biodiesel. Algae are ubiquitous on earth, have potential to produce biofuel. However, technology of biofuel from algae facing a number of hurdles before it can compete in the fuel market and be broadly organized. Different challenges include strain identification and improvement of algal biomass, both in terms of biofuel productivity and the production of other products to improve the economics of the entire system. Algal biofuels could be made more cost effective by extracting other valuable products from algae and algal strains. Algal oil can be prepared by culture of algae on municipal and industrial wastewaters. Photobioreactors methods provide a controlled environment that can be tailored to the specific demands of high production of algae to attain a consistently good yield of biofuel. The algal biomass has been reported to yield high oil contents and have good amount of the biodiesel production capacity. In this article, it has been attempted to review to elucidate the approaches for making algal biodiesel economically competitive with respect to petrodiesel. Consequently, R & D work has been carried out for the growth, harvesting, oil extraction and conversion to biodiesel from algal sources.

  14. Biodiesel Production From Algae to Overcome the Energy Crisis

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2017-10-01

    Full Text Available The use of energy sources has reached at the level that whole world is relying on it. Being the major source of energy, fuels are considered the most important. The fear of diminishing the available sources thirst towards biofuel production has increased during last decades. Considering the food problems, algae gain the most attention to be used as biofuel producers. The use of crop and food-producing plants will never be a best fit into the priorities for biofuel production as they will disturb the food needs. Different types of algae having the different production abilities. Normally algae have 20%–80% oil contents that could be converted into different types of fuels such as kerosene oil and biodiesel. The diesel production from algae is economical and easy. Different species such as tribonema, ulothrix and euglena have good potential for biodiesel production. Gene technology can be used to enhance the production of oil and biodiesel contents and stability of algae. By increasing the genetic expressions, we can find the ways to achieve the required biofuel amounts easily and continuously to overcome the fuels deficiency. The present review article focusses on the role of algae as a possible substitute for fossil fuel as an ideal biofuel reactant.

  15. Development of Green Fuels From Algae - The University of Tulsa

    Energy Technology Data Exchange (ETDEWEB)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  16. Is the Future Really in Algae?

    Science.gov (United States)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  17. Detection of Cyanotoxins in Algae Dietary Supplements.

    Science.gov (United States)

    Roy-Lachapelle, Audrey; Solliec, Morgan; Bouchard, Maryse F; Sauvé, Sébastien

    2017-02-25

    Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF), anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae . Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD) and ultra-high performance liquid chromatography (UHPLC) both coupled to high resolution mass spectrometry (HRMS) enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer's awareness on the potential risks associated with the consumption of these supplements.

  18. Detection of Cyanotoxins in Algae Dietary Supplements

    Directory of Open Access Journals (Sweden)

    Audrey Roy-Lachapelle

    2017-02-01

    Full Text Available Algae dietary supplements are marketed worldwide as natural health products. Although their proprieties have been claimed as beneficial to improve overall health, there have been several previous reports of contamination by cyanotoxins. These products generally contain non-toxic cyanobacteria, but the methods of cultivation in natural waters without appropriate quality controls allow contamination by toxin producer species present in the natural environment. In this study, we investigated the presence of total microcystins, seven individual microcystins (RR, YR, LR, LA, LY, LW, LF, anatoxin-a, dihydroanatoxin-a, epoxyanatoxin-a, cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine in 18 different commercially available products containing Spirulina or Aphanizomenon flos-aquae. Total microcystins analysis was accomplished using a Lemieux oxidation and a chemical derivatization using dansyl chloride was needed for the simultaneous analysis of cylindrospermopsin, saxitoxin, and β-methylamino-l-alanine. Moreover, the use of laser diode thermal desorption (LDTD and ultra-high performance liquid chromatography (UHPLC both coupled to high resolution mass spectrometry (HRMS enabled high performance detection and quantitation. Out of the 18 products analyzed, 8 contained some cyanotoxins at levels exceeding the tolerable daily intake values. The presence of cyanotoxins in these algal dietary supplements reinforces the need for a better quality control as well as consumer’s awareness on the potential risks associated with the consumption of these supplements.

  19. [The effects of blue algae on health].

    Science.gov (United States)

    van Riel, A J H P; Schets, F M; Meulenbelt, J

    2007-08-04

    Cyanobacteria (blue algae) regularly cause recreational waters to become murky and smelly. Skin irritation and mild gastrointestinal disorders have regularly been reported following recreational activities in water suspected of being contaminated with cyanobacteria. The exact cause of these effects on health is not clear. Severe effects are not to be expected from recreational exposure to water contaminated with cyanobacteria. Cyanobacteria can produce hepatotoxins, neurotoxins, cytotoxins and irritants. In Brazil lethal intoxications have occurred due to the occurrence of toxins in drinking water and in dialysis fluid. The Dutch policy is based on the Commissie Integraal Waterbeheer (Commission Integral Water Management) guidelines for recreational waters. It is not clear to what extent the other cyanotoxins occur in the Netherlands. However, several genera ofcyanobacteria capable of producing these other cyanotoxins have been found in the Netherlands. For a good risk assessment in the Netherlands, more information is needed on the effects on health of cyanobacteria. There is also a need for more data on the prevalence of different cyanobacteria and toxins in Dutch recreational waters.

  20. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers.

    Science.gov (United States)

    Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew

    2016-07-01

    The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. SOIL ALGAE OF BLADE OF COIL IN DONETSK REGION

    Directory of Open Access Journals (Sweden)

    Maltseva I.A.

    2011-12-01

    Full Text Available On territory of Donbass for more than 200 years the underground coal mining has produced, accompanied by the formation of the mine dumps. Finding ways to reduce their negative impact on the environment should be based on their comprehensive study. The soil algae are active participants in the syngenetic processes in industrial dumps of different origin. The purpose of this paper is to identify the species composition and dominant algae groups in dump mine SH/U5 “Western” in the western part of Donetsk.The test blade is covered with vegetation to the middle from all sides, and on the north side of 20-25 m to the top. The vegetation cover of the lower and middle tiers of all the exposures range in 70-80%. Projective vegetation cover of upper tiers of the northern, north-eastern and north-western exposures are in the range of 20-40%, other – 5-10%. We revealed some 38 algae species as a result of our research in southern, northern, western, and eastern slopes of the blade “Western”. The highest species diversity has Chlorophyta - 14 species (36.8% of the total number of species, then Cyanophyta - 9 (23,7%, Bacillariophyta - 7 (18,4%, Xantophyta - 5 (13.2%, and Eustigmatophyta - 3 (7.9%. The dominants are represented by Hantzschia amphyoxys (Ehrenberg Grunow in Cleve et Grunow, Bracteacoccus aerius, Klebsormidium flaccidum (Kützing Silva et al., Phormidium autumnale, Pinnularia borealis Ehrenberg, Planothidium lanceolatum (Brebisson in Kützing Bukhtiyarova, Xanthonema exile (Klebs Silva.It should be noted that the species composition of algae groups in different slopes of the blade was significantly different. Jacquard coefficient was calculated for algae communities varied in the range of 15,4-39,1%. The smallest number of algae species was observed on the southern slope of the blade (14 species, maximum was registered in the areas of north and west slopes. Differences in the species composition of algae were also observed in three

  2. Bacterial community changes in an industrial algae production system.

    Science.gov (United States)

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  3. Two-step evolution of endosymbiosis between hydra and algae.

    Science.gov (United States)

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu

    2016-07-09

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians.

  5. DISTRIBUTIONAND DIVERSITY OF MACRO ALGAE COMMUNITIES IN THE AMBON BAY

    Directory of Open Access Journals (Sweden)

    Christina Litaay

    2014-11-01

    Full Text Available Water conditions affected by natural and anthropogenic parameters such as sedimentation and solid waste disposal can influence the growth and distribution of macro algae. Sustainable management efforts can reduce damage on the Gulf coast of Ambon due to human activities and land clearing. This study was conducted in October 2008 using the transect method with 3 replicates in five locations i.e., Tantui, Air Salobar, Hative Besar, Halong, and Lateri. The interior and exterior waters of Ambon Bay contained different habitat conditions due to  sedimentation processes. The purpose of this study was to determine the distribution and diversity of macro algae communities in the Ambon Bay. The results found 21 species of macro- algae consisting of 10 species of Rhodhophyceae, 6 species of Chlorophyceae, and 5 species of Phaeophyceae. The highest density value of seaweed in Tantui was 389.0 g/m² of Chlorophyceae of Halimeda genus. In Air Salobar and Halong, the highest density value was Rhodophyceae of Gracilaria genus of 172.0 g/m² and 155.0 g/m², respectively. For the other genus in the Tantui and Lateri regions were dominated by Ulva at 92.10 gr/m2 and Padina of 20.0 gr/m2, respectively. The highest dominance of macro algae in the Hative Besar was found Chlorophyceae of Halimeda genus of 2.93 %, in the Air Salobar of Phaeophyceae of Turbinaria genus of 1.43 %. The difference values in density and the dominance of macro algae indicated an influence of habitat and environment due to seasons, sediment, and solid waste disposal to the diversity of macro algae. Keywords: Diversity, macro algae, Ambon Bay.

  6. The effects of mutagens on some algae

    International Nuclear Information System (INIS)

    Aranez, A.T.

    1984-01-01

    Pure cultures of Scenedesmus quadricauda (Turp.) Breb. and chlorella pyrenoidosa Chick were subjected to 0.5, 3, 6, 9 and 12 Kr gamma radiation ( 60 Co source) from the Philippine Atomic Energy Commission. Untreated cells were used as control. Dose of 0.5 Kr increased the growth rate of Scenedesmus by 3.12%, 15.27% and 20.48% during the first, third and fourth week respectively. Doses of 6, 9 and 12 decreased the growth rate by 86.33%, 70.7% and 58.2% respectively during the first week. The stimulating effect of low dose (0.5 Kr) was recovered after the fourth week while the inhibiting effect on growth by higher doses was recovered after the first week. Gamma radiation produced morphological changes in the Scenedesmus in the form of enlarged cells, cells with kidney-shape chloroplast, cells in chain, and coenobia with cells that were not in perfect alignment with each other. In chlorella, gamma radiation produced enlarged cells, cells with wrinkled surface and cells that were colourless. Ethyl methanesulfate of 0.1%, 0.4%, 0.8% and 1.25% in phosphate buffer solution was another mutagen used. Algae in distilled water and phosphate buffer were used as control. Treatment with EMS produced coenobia of Scenedesmus with cells that were twice and thrice the normal cells, cells that were rounded or oval in outline, with wavy instead of smooth margin, cells with pseudopodia-like protrusions and coenobia with abnormal number of cells. In Chlorella, EMS produced cells that were twice the size of the normal size of the normal ones, cells that were wavy in outline, abnormal in shape, and cells with no chlorophyll. Scenedesmus was more sensitive to gamma radiation and EMS than chlorella. Of the morphological changes observed, only Scenedesmus with cells around twice the size of the normal ones produced by treatment with either gamma radiation of EMS were successfully propagated. (author)

  7. Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures – linking genome-wide transcriptional changes to cellular physiology

    Science.gov (United States)

    Pócsi, István; Miskei, Márton; Karányi, Zsolt; Emri, Tamás; Ayoubi, Patricia; Pusztahelyi, Tünde; Balla, György; Prade, Rolf A

    2005-01-01

    Background In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O22-), superoxide (O2•-) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. Results Genome-wide transcriptional changes triggered by diamide, H2O2 and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H2O2 were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O22-, O2•- concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H2O2 and menadione treatments and gene groups influenced by GSH/GSSG, O22- and O2•- were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development

  8. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  9. Optimal control of algae growth by controlling CO 2 and nutrition flow using Pontryagin Maximum Principle

    Science.gov (United States)

    Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi

    2017-09-01

    There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.

  10. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    OpenAIRE

    David M. Metzler; Ayca Erdem; Chin Pao Huang

    2018-01-01

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 ...

  11. Radionuclides in macro algae at Monaco following the Chernobyl accident

    International Nuclear Information System (INIS)

    Holm, E.; Ballestra, S.; Lopez, J.J.; Bulos, A.; Whitehead, N.E.; Barci-Funel, G.; Ardisson, G.

    1994-01-01

    Samples of macro algae, Codmium tomentosum (green), Corallina mediterranea (red), Sphaerococcus coronopifolius (red) and Dictyota dichotoma (brown), were collected off Monaco during 1984 and 1988 and analysed for gamma-emitting radionuclides and transuranium elements. Due to the Chernobyl accident, increased radioactivity in the atmosphere at Monaco was recorded on 30 April 1986 with maximal activity concentrations on 2-3 May. The maximal activity concentrations in sea water occurred on 5-6 May and in the algae on 11 May. The decrease of activity concentrations can be described after May 11 as a single exponential relationship, where elimination rates for different radionuclides and different species specific to the environment can be calculated. The elimination rates thus observed correspond to mean residence times between 70 and 370 days corrected for physical decay. The concentration factors were also estimated and the highest values were found for 131 I, 129 Te m , and 110 Ag m and lowest for radiocesium and 140 Ba. The red algae Sphaerococcus coronopifoius showed generally higher concentration factors than green and brown algae. Regarding transuranium elements, a theoretical contribution from the Chernobyl accident can be made but only 242 Cm was detected in the algae above previous levels before the accident, due to the relatively small fallout of transuranics. (author) 23 refs.; 9 figs.; 4 tabs

  12. Acute toxicity and associated mechanisms of four strobilurins in algae.

    Science.gov (United States)

    Liu, Xiaoxu; Wang, Yu; Chen, Hao; Zhang, Junli; Wang, Chengju; Li, Xuefeng; Pang, Sen

    2018-04-03

    Strobilurins have been reported highly toxic to non-target aquatic organisms but few illustrated how they cause toxic effects on algae. This study investigated the acute toxicity of Kresoxim-methy (KRE), Pyraclostrobin (PYR), Trifloxystrobin (TRI) and Picoxystrobin (PIC) on two algae and their toxicity mechanisms. Four strobilurins showed lower toxic effects on Chlorella pyrenoidsa but higher on Chlorella vulgaris. bc1 complex activities in C. vulgaris were significantly inhibited by all strobilurins, suggesting bc 1 complex might be the target of strobilurin toxicity in algae. Moreover, SOD, CAT and POD activities were significantly up-regulated by all doses of KRE, PYR and PIC. In contrast, low concentrations of TRI stimulated SOD and POD activities but highest concentration significantly inhibited those activities. Comet assays showed damaged DNA in C. vulgaris by four strobulirins, suggesting their potential genotoxic threats to algae. The results illustrated acute toxicity by strobulirins on algae and their possible toxicity mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Algae Production from Wastewater Resources: An Engineering and Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan [Longitude 122 West, Inc.; Efroymson, Rebecca Ann [ORNL

    2018-03-01

    Co-locating algae cultivation ponds near municipal wastewater (MWW) facilities provides the opportunity to make use of the nitrogen and phosphorus compounds in the wastewater as nutrient sources for the algae. This use benefits MWW facilities, the algae biomass and biofuel or bioproduct industry, and the users of streams where treated or untreated waste would be discharged. Nutrient compounds can lead to eutrophication, hypoxia, and adverse effects to some organisms if released downstream. This analysis presents an estimate of the cost savings made possible to cultivation facilities by using the nutrients from wastewater for algae growth rather than purchase of the nutrients. The analysis takes into consideration the cost of pipe transport from the wastewater facility to the algae ponds, a cost factor that has not been publicly documented in the past. The results show that the savings in nutrient costs can support a wastewater transport distance up to 10 miles for a 1000-acre-pond facility, with potential adjustments for different operating assumptions.

  14. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    Directory of Open Access Journals (Sweden)

    Ingrid Ramírez

    2011-05-01

    Full Text Available Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens.

  15. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    Science.gov (United States)

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Mg-lattice associations in red coralline algae

    Science.gov (United States)

    Kamenos, N. A.; Cusack, M.; Huthwelker, T.; Lagarde, P.; Scheibling, R. E.

    2009-04-01

    Recent investigations have shown red coralline algae to record ambient temperature in their calcite skeletons. Temperature recorded by variation in Mg concentrations within algal growth bands has sub-annual resolution and high accuracy. The conversion of Mg concentration to temperature is based on the assumption of Ca replacement by Mg within the algal calcite skeleton at higher temperatures. While Mg-temperature relationships in coralline algae have been calibrated for some species, the location of Mg within the calcite lattice remains unknown. Critically, if Mg is not a lattice component but associated with organic components this could lead to erroneous temperature records. Before coralline algae are used in large scale climate reconstructions it is therefore important to determine the location of Mg. Synchrotron Mg-X-ray absorbance near edge structure (XANES) indicates that Mg is associated with the calcite lattice in Lithothamnion glaciale (contemporary free-living, contemporary encrusting and sub-fossil free-living) and Phymatolithon calcareum (contemporary free-living) coralline algae. Mg is deposited within the calcite lattice in all seasons ( L. glaciale & P. calcareum) and thallus areas ( P. calcareum). These results suggest L. glaciale and P. calcareum are robust Mg-palaeotemperature proxies. We suggest that similar confirmation be obtained for Mg associations in other species of red coralline algae aiding our understanding of their role in climate reconstruction at large spatial scales.

  17. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  18. Algae from the arid southwestern United States: an annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  19. Are anti-fouling effects in coralline algae species specific?

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2004-03-01

    Full Text Available The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected.As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em

  20. Stream Level Stabilization by Algae of the Genus Cladophora

    Directory of Open Access Journals (Sweden)

    Zeman J.

    2018-03-01

    Full Text Available Investigations in the Pryský brook experimental catchment revealed that the vegetation of the stream channel stabilizes water level depth in the measured profile. The explored brook has been heavily overgrown by algae of the genus Cladophora due to a strong pollution by nitrates. It seems that if the algae average length exceeds the midsize of the stones paving the bed (ca. 30 ± 7 cm in diameter, escribed circle to pentagon or heptagon, the water level stagnates in the flowrate range of 60–180 l s−1. This totally blocks the streamflow daily oscillation (in summer months in a purely stone bed reaching up to 15%, along with tidal phenomena. The article analyzes one of possible explanations of this effect due to the dependence of the algae thickness layer modifying the channel bed cross-section on the speed of flowing water.

  1. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    Science.gov (United States)

    Huang, Xinping; Zhu, Xiaobin; Deng, Liping; Deng, Zhiwei; Lin, Wenhan

    2006-12-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2). cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5). cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, ID and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  2. Characteristics of Red Algae Bioplastics/Latex Blends under Tension

    Directory of Open Access Journals (Sweden)

    M. Nizar Machmud

    2013-10-01

    Full Text Available Cassava, corn, sago and the other food crops have been commonly used as raw materials to produce green plastics. However, plastics produced from such crops cannot be tailored to fit a particular requirement due to their poor water resistance and mechanical properties. Nowadays, researchers are hence looking to get alternative raw materials from the other sustainable resources to produce plastics. Their recent published studies have reported that marine red algae, that has been already widely used as a raw material for producing biofuels, is one of the potential algae crops that can be turned into plastics. In this work, Eucheuma Cottonii, that is one of the red alga crops, was used as raw material to produce plastics by using a filtration technique. Selected latex of Artocarpus altilis and Calostropis gigantea was separately then blended with bioplastics derived from the red algae, to replace use of glycerol as plasticizer. Role of the glycerol and the selected latex on physical and mechanical properties of the red algae bioplastics obtained under a tensile test performed at room temperature are discussed. Tensile strength of some starch-based plastics collected from some recent references is also presented in this paperDoi: 10.12777/ijse.5.2.81-88 [How to cite this article: Machmud, M.N., Fahmi, R.,  Abdullah, R., and Kokarkin, C.  (2013. Characteristics of Red Algae Bioplastics/Latex Blends under Tension. International Journal of Science and Engineering, 5(2,81-88. Doi: 10.12777/ijse.5.2.81-88

  3. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  4. Using the marine unicellular algae in biological monitoring

    Directory of Open Access Journals (Sweden)

    Kapkov V. I.

    2017-06-01

    Full Text Available The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb in the form of chloride salts on the growth of axenic algae culture has been studied in the modelling experiments. The unicellular marine algae have a very short life cycle, therefore it is possible to use them in the experiments of studying the effect of anthropogenic factors at cellular and population levels on the test-object. With biomonitoring pollution of marine environment by heavy metals and others dangerous toxicants, the major indicators of algae community condition are the cellular cycle and the condition of the photosynthetic apparatus of the cell. The subsequent lysis of cells under the influence of heavy metals leads to the excretion of secondary metabolites which can essentially affect the metal toxicity. The established scales of threshold and lethal concentration of heavy metals for algae of different taxon make it possible to use the ratio of sensitive and resistant species to heavy metals as biological markers when forecasting ecological consequences of pollution of the marine environment by heavy metals. Distinctions in the resistance of different taxon to heavy metals can result in implementing the strategy of selection of test-objects depending on the purposes of the research.

  5. [Genetic control of the sensitivity of Aspergillus nidulans to mutagenic factors. VII. Inheritance of cross-sensitivity to different mutagenic factors by uvs-mutants].

    Science.gov (United States)

    Evseeva, G V; Kameneva, S V

    1977-01-01

    To study the inheritance of the sensitivity to UV, X-rays, methylmethanesulphonate (MMS), nitrosoguanidine (NG) and nitrous acid (NA) in five uvs mutants of Aspergillus nidulans, having multiple sensitivity to these factors, the sensitivity of recombinants obtained from crossing uvs mutants with uvs+ strain, resistant to all the factors analysed, and uvs leads to uvs+ revertants is investigated. Four uvs mutants (15, 17, 19 and 26) are found to have a nomogenic control of sensitivity to different mutagens. In one mutant (uvs11) the sensitivity to five factors is controlled by two non-linked mutations, one of them determining the sensitivity to UV, NG, NA, and the other--to X-rays and MMC. Phenotypic manifestations of uvs mutations is modified by cell genotype, both chromosomal and cytoplasmic factors being responsible for the modification. Phenotypic modification of uvs mutation results in the change to some (but not to all) mutagenic factors. It suggests, that not the product of uvs gene, but some other components of the reparation complex are modified. Otherwise, reparation of different DNA damages can be carried out by a single enzyme acting in different reparation complexes.

  6. Modelling and mutational analysis of Aspergillus nidulans UreA, a member of the subfamily of urea/H+ transporters in fungi and plants

    Science.gov (United States)

    Sanguinetti, Manuel; Amillis, Sotiris; Pantano, Sergio; Scazzocchio, Claudio; Ramón, Ana

    2014-01-01

    We present the first account of the structure–function relationships of a protein of the subfamily of urea/H+ membrane transporters of fungi and plants, using Aspergillus nidulans UreA as a study model. Based on the crystal structures of the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT) and of the Nucleobase-Cation-Symport-1 benzylhydantoin transporter from Microbacterium liquefaciens (Mhp1), we constructed a three-dimensional model of UreA which, combined with site-directed and classical random mutagenesis, led to the identification of amino acids important for UreA function. Our approach allowed us to suggest roles for these residues in the binding, recognition and translocation of urea, and in the sorting of UreA to the membrane. Residues W82, Y106, A110, T133, N275, D286, Y388, Y437 and S446, located in transmembrane helixes 2, 3, 7 and 11, were found to be involved in the binding, recognition and/or translocation of urea and the sorting of UreA to the membrane. Y106, A110, T133 and Y437 seem to play a role in substrate selectivity, while S446 is necessary for proper sorting of UreA to the membrane. Other amino acids identified by random classical mutagenesis (G99, R141, A163, G168 and P639) may be important for the basic transporter's structure, its proper folding or its correct traffic to the membrane. PMID:24966243

  7. Transcriptome-Based Modeling Reveals that Oxidative Stress Induces Modulation of the AtfA-Dependent Signaling Networks in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Erzsébet Orosz

    2017-01-01

    Full Text Available To better understand the molecular functions of the master stress-response regulator AtfA in Aspergillus nidulans, transcriptomic analyses of the atfA null mutant and the appropriate control strains exposed to menadione sodium bisulfite- (MSB-, t-butylhydroperoxide- and diamide-induced oxidative stresses were performed. Several elements of oxidative stress response were differentially expressed. Many of them, including the downregulation of the mitotic cell cycle, as the MSB stress-specific upregulation of FeS cluster assembly and the MSB stress-specific downregulation of nitrate reduction, tricarboxylic acid cycle, and ER to Golgi vesicle-mediated transport, showed AtfA dependence. To elucidate the potential global regulatory role of AtfA governing expression of a high number of genes with very versatile biological functions, we devised a model based on the comprehensive transcriptomic data. Our model suggests that an important function of AtfA is to modulate the transduction of stress signals. Although it may regulate directly only a limited number of genes, these include elements of the signaling network, for example, members of the two-component signal transduction systems. AtfA acts in a stress-specific manner, which may increase further the number and diversity of AtfA-dependent genes. Our model sheds light on the versatility of the physiological functions of AtfA and its orthologs in fungi.

  8. Microtubule plus end-tracking proteins play critical roles in directional growth of hyphae by regulating the dynamics of cytoplasmic microtubules in Aspergillus nidulans.

    Science.gov (United States)

    Zeng, Cui J Tracy; Kim, Hye-Ryun; Vargas Arispuro, Irasema; Kim, Jung-Mi; Huang, An-Chi; Liu, Bo

    2014-11-01

    Cytoplasmic microtubules (MTs) serve as a rate-limiting factor for hyphal tip growth in the filamentous fungus Aspergillus nidulans. We hypothesized that this function depended on the MT plus end-tracking proteins (+TIPs) including the EB1 family protein EBA that decorated the MT plus ends undergoing polymerization. The ebAΔ mutation reduced colony growth and the mutant hyphae appeared in an undulating pattern instead of exhibiting unidirectional growth in the control. These phenotypes were enhanced by a mutation in another +TIP gene clipA. EBA was required for plus end-tracking of CLIPA, the Kinesin-7 motor KipA, and the XMAP215 homologue AlpA. In addition, cytoplasmic dynein also depended on EBA to track on most polymerizing MT plus ends, but not for its conspicuous appearance at the MT ends near the hyphal apex. The loss of EBA reduced the number of cytoplasmic MTs and prolonged dwelling times for MTs after reaching the hyphal apex. Finally, we found that colonies were formed in the absence of EBA, CLIPA, and NUDA together, suggesting that they were dispensable for fundamental functions of MTs. This study provided a comprehensive delineation of the relationship among different +TIPs and their contributions to MT dynamics and unidirectional hyphal expansion in filamentous fungi. © 2014 John Wiley & Sons Ltd.

  9. Arabidopsis and Brachypodium distachyon Transgenic Plants Expressing Aspergillus nidulans Acetylesterases Have Decreased Degree of Polysaccharide Acetylation and Increased Resistance to Pathogens1[C][W][OA

    Science.gov (United States)

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M.; Qi, Mingsheng; Whitham, Steven A.; Bogdanove, Adam J.; Bellincampi, Daniela; Zabotina, Olga A.

    2013-01-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens. PMID:23463782

  10. nuvA, an Aspergillus nidulans gene involved in DNA repair and recombination, is a homologue of Saccharomyces cerevisiae RAD18 and Neurospora crassa uvs-2.

    Science.gov (United States)

    Iwanejko, L; Cotton, C; Jones, G; Tomsett, B; Strike, P

    1996-03-01

    A 40 kb genomic clone and 2.3 kb EcoRI subclone that rescued the DNA repair and recombination defects of the Aspergillus nidulans nuvA11 mutant were isolated and the subclone sequenced. The subclone hybridized to a cosmid in a chromosome-specific library confirming the assignment of nuvA to linkage group IV and indicating its closeness to bimD. Amplification by PCR clarified the relative positions of nuvA and bimD. A region identified within the subclone, encoding a C3HC4 zinc finger motif, was used as a probe to retrieve a cDNA clone. Sequencing of this clone showed that the nuvA gene has an ORF of 1329 bp with two introns of 51 bp and 60 bp. Expression of nuvA appears to be extremely low. The putative NUVA polypeptide has two zinc finger motifs, a molecular mass of 48906 Da and has 39% identity with the Neurospora crassa uvs-2 and 25% identity with the Saccharomyces cerevisiae RAD18 translation products. Although mutations in nuvA, uvs-2 and RAD18 produce similar phenotypes, only the nuvA11 mutation affects meiotic recombination. A role for nuvA in both DNA repair and genetic recombination is proposed.

  11. Uptake of americium-241 by algae and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Giesy, Jr, J P; Paine, D [Savannah River Ecology Lab., Aiken, S.C. (USA)

    1978-01-01

    The uptake of americium by three algae, Scenedesmus obliguus, Selenastrum capricomutum and Chlorella pyrenosdosa and a bacterium Aeromonas hydrophila was studied. Live and fixed cells of each algal species and live bacterial cells were used. It is shown that algae and bacteria concentrate americium 241 to a high degree which makes them important links in the biomagnification phenomenon which may ultimately lead to a human hazard and be potentially important in recycling Am /sup 241/ in the water column and mobilization from sediments. Chemical fixation of algal cells caused increased uptake which indicated that uptake is by passive diffusion and probably due to chemical alteration of surface binding sites.

  12. The attached algae community near Pickering GS: III

    International Nuclear Information System (INIS)

    McKinley, S.R.

    1982-01-01

    The relationship between attached algae and macro-invertebrates in the nearshore zone of Lake Ontario was investigated in the vicinity of the Pickering 'A' NGS. Measures of faunal density, richness, evenness, and biomass were generally higher from areas which supported attached algae. Gammarus fasciatus, Cricotopus bicinctus, Dicrotendipes spp., Orthocladius obumbratus, Cladotanytarsus spp., Orthocladius spp., and Parakiefferiella spp., were significantly correlated with algal standing crop. All of the above dominant invertebrates ingested epiphytes associated with Cladophora glomerata. Attempts to explain the distribution of the zoobenthic assemblages using the physical/biological characteristics of the study area indicated algal cover, substrate size, wind velocity and water temperature were most important

  13. Synthetic algae and cyanobacteria: Great potential but what is the exposure risk?

    Science.gov (United States)

    Green algae and cyanobacteria (hereafter, algae) have the attractive properties of relatively simple genomes, rapid growth rates, and an ability to synthesize useful compounds using solar energy and carbon dioxide. They are attractive targets for applications of synthetic biology...

  14. Bioecology of an articulated coralline alga Amphiroa fragilissima from Anjuna, Goa, Central Western Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ambiye, V.; Untawale, A.G

    An articulated coralline alga Amphiroa fragilissima L. Lam. was found to exhibit spasmogenic and hypotensive activities due to the presence of a biogenic amine. This biologically active alga was studied for its bioecology. Its thallus is multiaxial...

  15. Cultivation Strategy for Freshwater Macro- and Micro-Algae as Biomass Stock for Lipid Production

    OpenAIRE

    Verawaty, Marieska; Melwita, Elda; Apsari, Putri; Mayumi, Mayumi

    2017-01-01

    In this research, an algae cultivation strategy was studied. Integrating algae cultivation with wastewater treatment is currently seen as one of the most economical ways of producing algae biomass. A combination of an anaerobic baffled reactor (ABR) and a constructed wetland (CW) was applied for treating domestic wastewater with an additional collection tank for improving effluent quality. The effluent produced from the three stages was used as algae cultivation media and suplemented with 10%...

  16. New methodologies for the integration of power plants with algae ponds

    NARCIS (Netherlands)

    Schipper, K.; Gijp, S. van der; Stel, R.W van der; Goetheer, E.L.V.

    2013-01-01

    It is generally recognized that algae could be an interesting option for reducing CO2 emissions. Based on light and CO2, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient

  17. Treatment Failure Due to Emergence of Resistance to Carbapenem during Therapy for Shewanella algae Bacteremia

    OpenAIRE

    Kim, Dong-Min; Kang, Cheol-In; Lee, Chang Seop; Kim, Hong-Bin; Kim, Eui-Chong; Kim, Nam Joong; Oh, Myoung-don; Choe, Kang-Won

    2006-01-01

    We describe a case of bacteremia due to imipenem-susceptible Shewanella algae. Despite treatment with imipenem, the patient developed a spinal epidural abscess, from which imipenem-resistant S. algae was isolated. The development of resistance should be monitored when S. algae infection is treated with imipenem, even though the strain is initially susceptible to imipenem.

  18. A review of the taxonomical and ecological studies on Netherlands’ Algae

    NARCIS (Netherlands)

    Koster, Joséphine Th.

    1939-01-01

    The earliest account of the Netherlands’ Algae appeared in 1781 in D. de Gorter, Flora VII Prov. Belgii foederati indigen. Here, however, in the Algae lichens and liverworts have been incorporated. The true Algae, of which 35 are enumerated, are principally marine, though also aërophytical and

  19. Distribution and biomass estimation of shell-boring algae in the intertidal area at Goa India

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Sharma, S.; Lande, V.

    The distribution and frequency of shell-boring green and blue-green algae in the intertidal at Goa, India were studied. The green alga Gomontia sp. and the blue green algae Hyella caespitosa Bornet et Flahault, H. gigas Lucas et Golubic...

  20. Biological removal of algae in an integrated pond system

    CSIR Research Space (South Africa)

    Meiring, PGJ

    1995-01-01

    Full Text Available A system of oxidation ponds in series with a biological trickling filter is described. It was known that this arrangement was incapable of reducing effectively the levels of algae present in the pond liquid even though nitrification was effected...

  1. The alga Trachydiscus minutus (Pseudostaurastrum minutum): growth and composition

    Czech Academy of Sciences Publication Activity Database

    Iliev, I.; Petkov, G.; Lukavský, Jaromír; Furnadzhieva, S.; Andreeva, R.; Bankova, V.

    2011-01-01

    Roč. 36, 3-4 (2011), 222-231 ISSN 1312-8183 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : algae, * fatty acids * pilot plant cultivation Subject RIV: EF - Botanics

  2. Algas vene kirjanduse nädal / Raimu Hanson

    Index Scriptorium Estoniae

    Hanson, Raimu, 1957-

    2008-01-01

    22. septembril algas Tartu Linnaraamatukogus vene kirjanduse nädal Inga Ivanova raamatu "Kadunud koerte saladus" esitlusega; 24. sept. toimub Igor Kotjuhi autoriõhtu; 26.-28. toimub Tartu Ülikoolis vene kirjandusele pühendatud rahvusvaheline teaduskonverents. Raamatukogust saab osta ka venekeelseid raamatuid

  3. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... algae Gracilaria for the biosorption of Cu(II) from aqueous ... adsorbent dose, and metal ions concentration, were considered. ... precipitation, membrane separation, adsorption and ion exchange processes which are being used to remove copper ... Copper solutions of different concentration (50-180 ppm).

  4. Lab on a chip technologies for algae detection : a review

    NARCIS (Netherlands)

    Schaap, A.M.; Rohrlack, T.; Bellouard, Y.J.

    2012-01-01

    Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae

  5. Experimental analysis of the competition between algae and duckweed

    NARCIS (Netherlands)

    Roijackers, R.M.M.; Szabo, S.; Scheffer, M.

    2004-01-01

    We performed indoor competition experiments between algae and Lemna gibba L. in order to unravel mechanisms of competition. To separate effects of shading and physical interference from nutrient competition we grew the two groups physically separated while sharing the same water. A multifactorial

  6. Switchable photosystem-II designer algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  7. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    Science.gov (United States)

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  8. New bromotriterpene polyethers from the Indian alga Chondria armata

    Digital Repository Service at National Institute of Oceanography (India)

    Ciavatta, M.L.; Wahidullah, S.; DeSouza, L.; Scognamiglio, G.; Cimino, G.

    Six new bromotriterpene polyethers, armatol A-F (1-6), with a rearranged carbon skeleton, were isolated from the Indian Ocean red alga Chondria armata. The structures were characterized by spectroscopic techniques, in particular 1D- and 2D-NMR...

  9. Meteorological effects on variation of airborne algae in Mexico

    Science.gov (United States)

    Rosas, Irma; Roy-Ocotla, Guadalupe; Mosiño, Pedro

    1989-09-01

    Sixteen species of algae were collected from 73.8 m3 of air. Eleven were obtained in Minatitlán and eleven in México City. The data show that similar diversity occurred between the two localities, in spite of the difference in altitude. This suggests that cosmopolitan airborne microorganisms might have been released from different sources. Three major algal divisions (Chlorophyta, Cyanophyta and Chrysophyta) formed the airborne algal group. Also, a large concentration of 2220 algae m-3 was found near sea-level, while lower amounts were recorded at the high altitude of México City. The genera Scenedesmus, Chlorella and Chlorococcum dominated. Striking relationships were noted between the concentration of airborne green and blue-green algae, and meteorological conditions such as rain, vapour pressure, temperature and winds for different altitudes. In Minatitlán a linear relationship was established between concentration of algae and both vapour pressure (mbar) and temperature (° C), while in México City the wind (m s-1) was associated with variations in the algal count.

  10. EFFECT OF BLUE GREEN ALGAE ON SOIL NITROGEN

    African Journals Online (AJOL)

    Yagya Prasad Paudel

    2012-07-31

    Jul 31, 2012 ... associated with soil dessication at the end of the cultivation cycle and algal growth ... blue-green algae (BGA) on soil nitrogen was carried out from June to December 2005. .... Nitrogen fixation by free living Micro-organisms.

  11. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    Science.gov (United States)

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  12. Enhanced high energy efficient steam drying of algae

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2013-01-01

    Highlights: • Brown algae drying processes based on heat circulation technology (HC) were proposed. • HC was developed on exergy recovery through exergy elevation and heat pairing. • The energy efficiency of the proposed drying processes was evaluated. • Significant reduction of energy input and CO 2 emission in drying is readily achieved. - Abstract: State-of-the-art brown algae drying processes based on heat circulation technology were proposed, and their performance with respect to energy consumption was evaluated. Heat circulation technology was developed using the principle of exergy recovery performed through exergy elevation and effective heat pairing for both sensible and latent heat. Two steam drying processes based on heat circulation technology for algae drying were proposed, involving heat circulation with or without steam recirculation. The proposed processes were compared with the conventional heat recovery system employing heat cascade technology. Brown algae Laminaria japonica was selected as the test sample. From the results, it is very clear that both proposed drying processes can reduce the required drying energy significantly by up to 90% of that required in conventional heat recovery drying. Furthermore, the temperature–enthalpy diagram for each process shows that in heat circulation technology based drying, the curves of both hot and cold streams are almost parallel, resulting in the minimization of exergy losses

  13. Uptake of tritiated lysine by fresh water alga, Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Gogate, S.S.; Krishnamoorthy, T.M.

    1983-01-01

    Tritium uptake by fresh water alga. S.obliquus was studied using tritium labelled lysine, and a sequential solvent extraction procedure was used to study the distribution of tritium in different organic constituents of the algal cells. The accumulation of tritium in the algal cells was found to be 3-4 orders of magnitude more than that obtained for tritiated water. (author)

  14. Seasonal abundance of epipelic algae and sediment parameters of ...

    African Journals Online (AJOL)

    Amadi-Ama creek is located close to sources of wastes which are introduced into the creek thus altering the physico-chemical parameters and the aquatic biota of the creek due to variation in nutrient load of the water. The seasonal abundance of epipelic algae and sediment parameters of Amadi-Ama Creek were ...

  15. Evaluation of Algae from the effluent of Dandot cement company ...

    African Journals Online (AJOL)

    Twenty genera and fifty species of algae have been reported from the effluent water of Dandot Cement Company. They include thirteen genera and thirty five species from Chlorophyceae; three genera and six species from Cyanophyceae and four genera and nine species from Bacillariophyceae. Camera Lucida drawings ...

  16. Preliminary Studies on the Occurrence of Freshwater Epipelic Algae ...

    African Journals Online (AJOL)

    The occurrence and composition of the freshwater algae in the epipelon were determined at three sites, namely Machigeni, Manhean and Weija, located in the coastal savanna thicket and grassland vegetation zone of the River Densu basin in southern Ghana. Samples of sediments from the water-substratum interface ...

  17. Prospective effect of red algae, Actinotrichia fragilis, against some ...

    African Journals Online (AJOL)

    Most of the current treatment strategies for OA are effective for symptoms relief but are accompanied with adverse side effect. Thus, the present investigation aims to evaluate the potential influence of red algae, Actinotrichia fragilis, in the dry powder form (AFP) or gel form (AFG) on some relevant factors of OA progression as ...

  18. Effects of UV-B irradiated algae on zooplankton grazing

    NARCIS (Netherlands)

    Lange, de H.J.; Lürling, M.F.L.L.W.

    2003-01-01

    We tested the effects of UV-B stressed algae on grazing rates of zooplankton. Four algal species ( Chlamydomonas reinhardtii, Cryptomonas sp., Scenedesmus obliquus and Microcystis aeruginosa) were used as food and fed to three zooplankton species ( Daphnia galeata, Bosmina longirostris and

  19. Epiphytic Algae study from pool of Ammiq (Bekaa, Lebanon)

    International Nuclear Information System (INIS)

    SLIM, K.

    1984-01-01

    In this particular place which constitutes the pool of Ammiq, 104 species and varieties have been collected. The diatoms constitute in themselves 85% of the algae population. This is an epiphytic microflora which is attached to the immerged macrophytics on this above mentioned place . (author)

  20. The occurrence of hormesis in plants and algae

    DEFF Research Database (Denmark)

    Cedergreen, Nina; Streibig, Jens Carl; Kudsk, Per

    2007-01-01

    This paper evaluated the frequency, magnitude and dose/concentration range of hormesis in four species: The aquatic plant Lemna minor, the micro-alga Pseudokirchneriella subcapitata and the two terrestrial plants Tripleurospermum inodorum and Stellaria media exposed to nine herbicides and one...

  1. Chemical constituents of the red alga @iAcanthophora spicifera@@

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    Analysis of the petroleum-wither and chloroform extracts of the marine red alga @iAcanthophora spicifera@@ led to the isolation of a sterol, cholesterol, fatty acids, stearic, palmitic, behenic (C@d22@@) and arachidic acids (C@d20@@) and a fatty...

  2. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  3. Bioremediation of acid mine drainage using algae strains: A review

    Directory of Open Access Journals (Sweden)

    J.K. Bwapwa

    2017-12-01

    Full Text Available Acid mine drainage (AMD causes massive environmental concerns worldwide. It is highly acidic and contains high levels of heavy metals causing environmental damage. Conventional treatment methods may not be effective for AMD. The need for environmental remediation requires cost effective technologies for efficient removal of heavy metals. In this study, algae based systems were reviewed and analyzed to point out the potentials and gaps for future studies. Algae strains such as Spirulina sp., Chlorella, Scenedesmus, Cladophora, Oscillatoria, Anabaena, Phaeodactylum tricornutum have showed the capacity to remove a considerable volume of heavy metals from AMD. They act as “hyper-accumulators” and “hyper-adsorbents” with a high selectivity for different elements. In addition, they generate high alkalinity which is essential for precipitation of heavy metals during treatment. However, algae based methods of abating AMD are not the ultimate solution to the problem and there is room for more studies. : The bioremediation of acid mine drainage is achievable with the use of microalgae. Keywords: Acid mine drainage, Algae strains, Contamination, Heavy metals, Bioremediation

  4. Exchange of certain radionuclides between environment and freshwater algae

    International Nuclear Information System (INIS)

    Marchyulenene, E. D.P.

    1978-01-01

    Data on the dynamics and levels of accumulation of strontium, cesium, cerium and ruthenium radionuclides by Charophyta and Cladophora fresh-water algae are presented. An attempt has been made to investigate some processes that accompany the accumulation of radionuclides by plants. Under experimental conditions, the intensity and levels of radionuclide accumulation can be presented in the following order: 144 Ce> 106 Ru> 90 Sr> 137 Cs. The dynamics of radionuclide accumulation varied greatly with the radionuclide and the algae species studied. The 144 Ce accumulation coefficients (AC) in the course of experiment (from 3 hours to 16 days) increased 8-, 9-, 23.4-, 27-, 14.3- and 20.4-fold for Cladophora glomerata, Nitella syncarpa, Nitellopsis obtusa, Chara vulgaris, Ch. rudis, and Ch. aspera, respectively. In the case of 106 Ru, AC for C.glomerata, N. syncarapa, Ch. vulgaris and Ch. rudis increased 34-, 18-,24- and 23-fold, respectively. In all algae species studied the equilibrium of radionuclide accumulation was attained after 2-4 days of experiment. Levels of accumulated 90 Sr and 137 Cs in most species depended on the season while that of 144 Cs and 106 Ru remained constant throughout the vegetation period. The levels of radionuclide elimination, like the accumulation levels, are shown to depend on both isotopes and algae species

  5. Biochar production from freshwater algae by slow pyrolysis

    Directory of Open Access Journals (Sweden)

    Tanongkiat Kiatsiriroat

    2012-05-01

    Full Text Available A study on the feasibility of biochar production from 3 kinds of freshwateralgae, viz. Spirulina, Spirogyra and Cladophora, was undertaken. Using a slow pyrolysis process in a specially designed reactor, biochar could be generated at 550oC under nitrogen atmosphere. The yields of biochar were between 28-31% of the dry algae.

  6. Homogeneity of Danish environmental and clinical isolates of Shewanella algae

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Holt, H.M.; Gerner-Smidt, P.

    2000-01-01

    amplified polymorphic DNA analysis, no clonal relationship between infective strains was found. From several patients, clonally identical strains of S. algae were reisolated up to 8 months after the primary isolation, indicating that the same strain may be able to maintain the infection....

  7. Two-Step Evolution of Endosymbiosis between Hydra and Algae

    KAUST Repository

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor

  8. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    Science.gov (United States)

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Potential of wastewater grown algae for biodiesel production and CO

    African Journals Online (AJOL)

    Algae have been proposed as a potential renewable fuel source. Photosynthetic CO2 fixation to substrates that can be converted to biodiesel by microalgae is thought to be a feasible technology with energy-saving and environment-friendly approach. In the present study, potential of microalgae, from wastewater ...

  10. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Carbon Partitioning in Green Algae (Chlorophyta and the Enolase Enzyme

    Directory of Open Access Journals (Sweden)

    Jürgen E. W. Polle

    2014-08-01

    Full Text Available The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.

  12. Oxytocic principle of red alga @iAmphiroa fragilissima@@

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; De; Das, B.; Patnaik, G.K.

    The crude aqueous methanolic extract of the marine red alga @iAmphiroa fragilissima@@ has been reported as exhibiting oxytocic and spasmogenic activity at a dose of 50 ~kg/ml. The activity is located in the water soluble fraction and has been found...

  13. Halogenated terpenoids from the brown alga Padina tetrastromatica (HAUCK)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Bhat, K.L.; Das, B.; Kamat, S.Y.; Harnos, S.

    ranging from 14:0 to 22:0 with palmitic acid (16:0, 67.4%) and oleic acid (18:1, 17.1%) being the major constituents, have been isolated from the pet, ether soluble fraction of the methanol extract of the brown alga Padina tetrastromatica...

  14. Ionizing radiation and photosynthetic ability of cyanobacteria

    International Nuclear Information System (INIS)

    Agarwal, Rachna; Sainis, Jayashree K.

    2006-01-01

    Unicellular photoautotrophic cyanobacteria, Anacystis nidulans when exposed to lethal dose of 1.5 kGy of 60 Co γ- radiation (D 10 = 257.32 Gy) were as effective photosynthetical as unirradiated controls immediately after irradiation although level of ROS was higher by several magnitudes in these irradiated cells. The results suggested the preservation of the functional integrity of thylakoids even after exposure to lethal dose of ionizing radiation. (author)

  15. MORPHOLOGICAL ANATOMICAL AND PHITOCHEMICAL CHARACTERISTICS OF SOME ALGAE

    Directory of Open Access Journals (Sweden)

    N. S. Kaysheva

    2014-01-01

    Full Text Available Morphological and anatomical features of thalluses of brown (Laminaria saccharina, Fucus vesiculosus and red (Ahnfeltia plicata algae, procured at a coastal strip of the Northern basin in gulfs of Ura-Guba and Palkina-Guba at different depths. Compliance of Fucus and Ahnfeltia with pharmacopoeial norms and merchandising indices for Laminaria was established, except for high concentration of sand in Ahnfeltia thalluses. The identity of algae between each other was shown based on the results of qualitative analysis on polysaccharides, alginic acids, reducing sugars, iodine, mannitol, amino acids presence. Quantitative content of polysaccharides, alginic acids, reducing sugars, pentosans, iodine, cellulose, mannitol, proteins, lipids, agar was determined. In comparison with Fucus and Ahnfeltia higher concentration of the following content was noted in Laminaria: alginic acids (1.4 and 5.75 times higher, polysaccharides (1.3 and 1.4 times, iodine (4.5 and 1.8 times, mannatol (1.5 and 2.5 times (data received is statistically reliable. Impropriety of storm algae for processing was shown as law quality raw material. The highest concentration of active substances was revealed in Laminaria thalluses which were procured at the depth of 10 m in a period from September to October. Active accumulation of sodium, potassium, calcium, iron, magnesium, manganese corresponding to similar sea water composition was established in algae. Mathematical equations of regression between protein and manganese, protein and iron content in algae were deduced. Under proper conditions of drying and storage high quality of the materials can be preserved during 3 years. Based on the findings of photochemical researches, taking into account squares of plantations and possible exploitation stocks, the possibility and prospectivity of industrial processing of Fucus vesiculosus and Ahnfeltia plicata together with Laminaria saccharina as plant sources of polysaccharides (mainly

  16. Biodegradation of an oily bilge waste using algae

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.J.

    1987-01-01

    A mixed community of microogranisms was collected from the harbor at the North Island Navy Base and was monitored in a test ecosystem containing an oily bilge waste obtained from off-loading ships. Cultures were examined in the presence and absence of the algae. It was thought that the algae might enhance the degradation of the oil waste by providing oxygen and possibly a nutrient source from dying phytoplankton for the bacterial community. The change in community structure was monitored by isolating the various groups of organisms and determining the biomass change over time for the algae, bacteria and yeasts/fungi subjected to the bilge waste. The biomass (i.e., colony forming units) of the yeasts and fungi increased 100 fold in a 6 week test period. The community containing only the bacteria and fungi/yeasts lost the fungal component of the population, although active bacteria biomass increased more than 10 fold during exposure to the waste. The test ecosystem was subjected to a radiolabeled compound (/sup 14/C-phenol) and bilge waste mixture to ascertain the ability of the communities to mineralize the phenol and/or assimilate the labeled hydrocarbon. The community containing the algae started mineralizing the phenol (measure by /sup 14/CO/sub 2/ production) 24 hours after exposure to the waste/phenol mixture. The bacteria/yeast-fungi community had a lag period of 384 hours before extensive catabolism of the labeled compound occurred. Current data indicate algae may enhance the biodegradation rate of oil bilge waste in a mixed microbial community.

  17. Algae viability over time in a ballast water sample

    Science.gov (United States)

    Gollasch, Stephan; David, Matej

    2018-03-01

    The biology of vessels' ballast water needs to be analysed for several reasons, one of these being performance tests of ballast water management systems. This analysis includes a viability assessment of phytoplankton. To overcome logistical problems to get algae sample processing gear on board of a vessel to document algae viability, samples may be transported to land-based laboratories. Concerns were raised how the storage conditions of the sample may impact algae viability over time and what the most appropriate storage conditions were. Here we answer these questions with a long-term algae viability study with daily sample analysis using Pulse-Amplitude Modulated (PAM) fluorometry. The sample was analysed over 79 days. We tested different storage conditions: fridge and room temperature with and without light. It seems that during the first two weeks of the experiment the viability remains almost unchanged with a slight downwards trend. In the continuing period, before the sample was split, a slightly stronger downwards viability trend was observed, which occurred at a similar rate towards the end of the experiment. After the sample was split, the strongest viability reduction was measured for the sample stored without light at room temperature. We concluded that the storage conditions, especially regarding temperature and light exposure, have a stronger impact on algae viability compared to the storage duration and that inappropriate storage conditions reduce algal viability. A sample storage time of up to two weeks in a dark and cool environment has little influence on the organism viability. This indicates that a two week time duration between sample taking on board a vessel and the viability measurement in a land-based laboratory may not be very critical.

  18. L-rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake.

    Science.gov (United States)

    Tamayo-Ramos, Juan A; Flipphi, Michel; Pardo, Ester; Manzanares, Paloma; Orejas, Margarita

    2012-02-21

    Little is known about the structure and regulation of fungal α-L-rhamnosidase genes despite increasing interest in the biotechnological potential of the enzymes that they encode. Whilst the paradigmatic filamentous fungus Aspergillus nidulans growing on L-rhamnose produces an α-L-rhamnosidase suitable for oenological applications, at least eight genes encoding putative α-L-rhamnosidases have been found in its genome. In the current work we have identified the gene (rhaE) encoding the former activity, and characterization of its expression has revealed a novel regulatory mechanism. A shared pattern of expression has also been observed for a second α-L-rhamnosidase gene, (AN10277/rhaA). Amino acid sequence data for the oenological α-L-rhamnosidase were determined using MALDI-TOF mass spectrometry and correspond to the amino acid sequence deduced from AN7151 (rhaE). The cDNA of rhaE was expressed in Saccharomyces cerevisiae and yielded pNP-rhamnohydrolase activity. Phylogenetic analysis has revealed this eukaryotic α-L-rhamnosidase to be the first such enzyme found to be more closely related to bacterial rhamnosidases than other α-L-rhamnosidases of fungal origin. Northern analyses of diverse A. nidulans strains cultivated under different growth conditions indicate that rhaA and rhaE are induced by L-rhamnose and repressed by D-glucose as well as other carbon sources, some of which are considered to be non-repressive growth substrates. Interestingly, the transcriptional repression is independent of the wide domain carbon catabolite repressor CreA. Gene induction and glucose repression of these rha genes correlate with the uptake, or lack of it, of the inducing carbon source L-rhamnose, suggesting a prominent role for inducer exclusion in repression. The A. nidulans rhaE gene encodes an α-L-rhamnosidase phylogenetically distant to those described in filamentous fungi, and its expression is regulated by a novel CreA-independent mechanism. The identification of

  19. L-Rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake

    Directory of Open Access Journals (Sweden)

    Tamayo-Ramos Juan A

    2012-02-01

    Full Text Available Abstract Background Little is known about the structure and regulation of fungal α-L-rhamnosidase genes despite increasing interest in the biotechnological potential of the enzymes that they encode. Whilst the paradigmatic filamentous fungus Aspergillus nidulans growing on L-rhamnose produces an α-L-rhamnosidase suitable for oenological applications, at least eight genes encoding putative α-L-rhamnosidases have been found in its genome. In the current work we have identified the gene (rhaE encoding the former activity, and characterization of its expression has revealed a novel regulatory mechanism. A shared pattern of expression has also been observed for a second α-L-rhamnosidase gene, (AN10277/rhaA. Results Amino acid sequence data for the oenological α-L-rhamnosidase were determined using MALDI-TOF mass spectrometry and correspond to the amino acid sequence deduced from AN7151 (rhaE. The cDNA of rhaE was expressed in Saccharomyces cerevisiae and yielded pNP-rhamnohydrolase activity. Phylogenetic analysis has revealed this eukaryotic α-L-rhamnosidase to be the first such enzyme found to be more closely related to bacterial rhamnosidases than other α-L-rhamnosidases of fungal origin. Northern analyses of diverse A. nidulans strains cultivated under different growth conditions indicate that rhaA and rhaE are induced by L-rhamnose and repressed by D-glucose as well as other carbon sources, some of which are considered to be non-repressive growth substrates. Interestingly, the transcriptional repression is independent of the wide domain carbon catabolite repressor CreA. Gene induction and glucose repression of these rha genes correlate with the uptake, or lack of it, of the inducing carbon source L-rhamnose, suggesting a prominent role for inducer exclusion in repression. Conclusions The A. nidulans rhaE gene encodes an α-L-rhamnosidase phylogenetically distant to those described in filamentous fungi, and its expression is regulated by a

  20. Inativação fotodinâmica de conídios dos fungos Aspergillus nidulans, Colletotrichum acutatum e Colletotrichum gloeosporioides com fotossensibilizadores fenotiazínicos e cumarínicos

    OpenAIRE

    Henrique Dantas de Menezes

    2012-01-01

    O tratamento fotodinâmico antifúngico (APDT) é um método promissor que combina um fotossensibilizador não tóxico (FS), oxigênio e luz visível para provocar a morte seletiva das células microbianas. O desenvolvimento do APDT depende da identificação de FS que sejam eficazes para as diferentes espécies de patógenos. No presente estudo, as suscetibilidades, in vitro, de conídios de Colletotrichum acutatum, C. gloeosporioides (ambas são espécies fitopatogênicas) e Aspergillus nidulans ao APDT com...

  1. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Yan, X.J.

    1998-01-01

    The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than...... those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae...

  2. An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom

    Directory of Open Access Journals (Sweden)

    Yao Junyang

    2014-06-01

    Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.

  3. The effects of ProAlgaZyme novel algae infusion on metabolic syndrome and markers of cardiovascular health

    Directory of Open Access Journals (Sweden)

    Hildreth DeWall J

    2007-09-01

    Full Text Available Abstract Background Metabolic Syndrome, or Syndrome X, is characterized by a set of metabolic and lipid imbalances that greatly increases the risk of developing diabetes and cardiovascular disease. The syndrome is highly prevalent in the United States and worldwide, and treatments are in high demand. ProAlgaZyme, a novel and proprietary freshwater algae infusion in purified water, has been the subject of several animal studies and has demonstrated low toxicity even with chronic administration at elevated doses. The infusion has been used historically for the treatment of several inflammatory and immune disorders in humans and is considered well-tolerated. Here, the infusion is evaluated for its effects on the cardiovascular risk factors present in metabolic syndrome in a randomized double-blind placebo-controlled study involving 60 overweight and obese persons, ages 25–60. All participants received four daily oral doses (1 fl oz of ProAlgaZyme (N = 22 or water placebo (N = 30 for a total of 10 weeks, and were encouraged to maintain their normal levels of physical activity. Blood sampling and anthropometric measurements were taken at the beginning of the study period and after 4, 8 and 10 weeks of treatment. Eight participants did not complete the study. Results ProAlgaZyme brought about statistically significant (p Conclusion ProAlgaZyme (4 fl oz daily consumption resulted in significant reductions in weight and blood glucose levels, while significantly improving serum lipid profiles and reducing markers of inflammation, thus improving cardiovascular risk factors in overweight and obese subjects over a course of 10 weeks with an absence of adverse side effects. Trial Registration US ClinicalTrials.gov NCT00489333

  4. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    International Nuclear Information System (INIS)

    Deng Lin; Wang Hongli; Deng Nansheng

    2006-01-01

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps (λ=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL -1 and initial algae concentration ranged from ABS algae (the absorbency of algae)=0.025 to ABS algae =0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V 0 =kC 0 0.1718 A algae 0.5235 (C 0 was initial concentration of Cr(VI); A algae was initial concentration of algae) under the condition of pH 4

  5. Influence of Algae Age and Population on the Response to TiO₂ Nanoparticles.

    Science.gov (United States)

    Metzler, David M; Erdem, Ayca; Huang, Chin Pao

    2018-03-25

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO₂ NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3-4.2 × 10⁶ cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO₂ NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae.

  6. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Deng Lin [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang Hongli [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China); Deng Nansheng [School of Resources and Environmental Science, Wuhan University, Wuhan 430072 (China)]. E-mail: nsdengwhu@163.com

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps ({lambda}=365nm, 250W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0mgL{sup -1} and initial algae concentration ranged from ABS{sub algae} (the absorbency of algae)=0.025 to ABS{sub algae}=0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250W metal halide lamps was V{sub 0}=kC{sub 0}{sup 0.1718}A{sub algae}{sup 0.5235} (C{sub 0} was initial concentration of Cr(VI); A{sub algae} was initial concentration of algae) under the condition of pH 4.

  7. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    David M. Metzler

    2018-03-01

    Full Text Available This work shows the influence of algae age (at the time of the exposure and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs. The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 cells/mL at a constant NP concentration (100 mg/L caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO2 NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae.

  8. Influence of Algae Age and Population on the Response to TiO2 Nanoparticles

    Science.gov (United States)

    Metzler, David M.; Erdem, Ayca; Huang, Chin Pao

    2018-01-01

    This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO2 NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae. PMID:29587381

  9. Cultivation Strategy for Freshwater Macro- and Micro-Algae as Biomass Stock for Lipid Production

    Directory of Open Access Journals (Sweden)

    Marieska Verawaty

    2017-07-01

    Full Text Available In this research, an algae cultivation strategy was studied. Integrating algae cultivation with wastewater treatment is currently seen as one of the most economical ways of producing algae biomass. A combination of an anaerobic baffled reactor (ABR and a constructed wetland (CW was applied for treating domestic wastewater with an additional collection tank for improving effluent quality. The effluent produced from the three stages was used as algae cultivation media and suplemented with 10% bold basal medium (BBM. The results showed both micro- and macro-algae growth and their lipid contents were higher when they were grown in effluent-BBM (9:1 v/v media. The lipid content of the micro-algae mixed culture was 16.5% while for macro-algae Oedogonium sp and Cladophora sp it was 6.90% and 6.75% respectively.

  10. The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans.

    Science.gov (United States)

    Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H; Osmani, Stephen A

    2014-08-01

    Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. Copyright © 2014 by the Genetics Society of America.

  11. Biomass production and secretion of hydrolytic enzymes are influenced by the structural complexity of the nitrogen source in Fusarium oxysporum and Aspergillus nidulans.

    Science.gov (United States)

    da Silva, M C; Bertolini, M C; Ernandes, J R

    2001-01-01

    The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.

  12. A p53-like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans [v1; ref status: indexed, http://f1000r.es/y2

    Directory of Open Access Journals (Sweden)

    Margaret E Katz

    2013-03-01

    Full Text Available The Aspergillus nidulans xprG gene encodes a putative transcriptional activator that is a member of the Ndt80 family in the p53-like superfamily of proteins. Previous studies have shown that XprG controls the production of extracellular proteases in response to starvation. We undertook transcriptional profiling to investigate whether XprG has a wider role as a global regulator of the carbon nutrient stress response. Our microarray data showed that the expression of a large number of genes, including genes involved in secondary metabolism, development, high-affinity glucose uptake and autolysis, were altered in an xprGΔ null mutant. Many of these genes are known to be regulated in response to carbon starvation. We confirmed that sterigmatocystin and penicillin production is reduced in xprG- mutants. The loss of fungal mass and secretion of pigments that accompanies fungal autolysis in response to nutrient depletion was accelerated in an xprG1 gain-of-function mutant and decreased or absent in an xprG- mutant. The results support the hypothesis that XprG plays a major role in the response to carbon limitation and that nutrient sensing may represent one of the ancestral roles for the p53-like superfamily. Disruption of the AN6015 gene, which encodes a second Ndt80-like protein, showed that it is required for sexual reproduction in A. nidulans.

  13. Effect of algae and water on water color shift

    Science.gov (United States)

    Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun

    1991-03-01

    This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.

  14. Green Algae as Model Organisms for Biological Fluid Dynamics

    Science.gov (United States)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  15. Accumulation and loss of technetium by macrophytic algae

    International Nuclear Information System (INIS)

    Benco, C.; Cannarsa, S.; Ceppodomo, I.; Zattera, A.

    1986-01-01

    Preliminary results are presented of a study of the accumulation of Tc by four species of brown algae (Sargassum vulgare, Cystoseira complexa, Dictyopteris membranacea, Dictyota dichotama implexa) and one species of green algae (Chlorophyta, Ulva rigida). With the exception of Cystoseira complexa, the accumulation was very rapid, and concentration factors decreased from Sargassum vulgare to Ulva rigida. Young stipes of Cystoseira complexa concentrated twice as much more Tc than cylindrical main axes. Attempts were made to understand the mechanism of Tc accumulation by brown seaweed. Fucoidan, a pool of high molecular weight polysaccharides extracted from Fucus sp. was put with sup(95m)Tc in seawater for 48 h and then dialysed, but no activity was retained by Fucoidan. (UK)

  16. Algae as nutritional and functional food sources: revisiting our understanding

    OpenAIRE

    Wells, Mark L.; Potin, Philippe; Craigie, James S.; Raven, John A.; Merchant, Sabeeha S.; Helliwell, Katherine E.; Smith, Alison G.; Camire, Mary Ellen; Brawley, Susan H.

    2016-01-01

    Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, ...

  17. Rare species of fungi parasitizing on algae. IV

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The following parasites of the genera Spirogyra Link, Mougeotia Agardh and Oedogonium Link are desribed: Myzocyutium irregulare, Woroninu glomerata, Harpochytrium tenuissimum, Woronina polycystis, Chytridium acuminatu, Myzocytium irregulare and Chytridumm acuminatum are new to Poland. Also, the first information on Woronina polycystis as a parasite on algae is presented. The figure of cystosori in a cell of Mougeotia mysorensis is the first graphic documentation of this species.

  18. Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    Science.gov (United States)

    1981-05-01

    well as long term effects on specific water bodies such as lakes and groundwater basins. Both the hydrazine propellants and the alternative jet fuels... freshwater bioassays was S. capricornutum. Initial investigations of marine waters used Dunaliella tertiolecta as the test organism but the differences in...AFAMRL-TR-80-85 USE OF UNICELLUAR ALGAE FOR EVALUATION OF POTENTIAL AQUATIC CONTAMINANTS JAN SCHERFIG PETER S. DIXON CAROL A. JUSTICE ALBERTO ACEVEDO

  19. DNA barcode of coastal alga ( Chlorella sorokiniana ) from Ago ...

    African Journals Online (AJOL)

    Five different loci 18S, UPA, rbcl, ITS and tufA were tested for their use as deoxyribonucleic acid (DNA) barcode in this study. Although the UPA primers were designed to amplify all phototrophic algae and cyanobacteria, UPA and 18S did not amplified at all for the genus Chlorella while ITS1, ITS2 rDNA and rbcL markers ...

  20. Adsorption of copper onto char derived macro alga, Undaria pinnatifida

    International Nuclear Information System (INIS)

    Cho, Hye Jung; Ko, Jeong Huy; Heo, Hyeon Su; Park, Hye Jin; BAe, Yoon Ju; Kim, Jung Hwan; Park, Young-Kwon

    2010-01-01

    Full text: A release of heavy metals into the environment by industrial activities raises much environmental problems because they tend to remain indefinitely, circulating and eventually accumulating throughout the food chain. Copper is essential to human life and health but, like all heavy metals, is potentially toxic as well. The excessive intakes of copper result in its accumulation in the liver and produce gastrointestinal problems, kidney damage, anemia, and continued inhalation of copper-containing sprays is linked with an increase in lung cancer among exposed people. Consequently, we need to eliminate the copper in drinking water. Also, growth rates of marine macro algae far exceed those of terrestrial biomass, without water limitations, so annual primary production rates are higher for the major marine macro algae than for most terrestrial biomass. According to these reasons, we try to use the macro alga, Undaria pinnatifida. Adsorption of heavy metals is one of the possible technologies involved in the removal of toxic metals from industrial waste streams and mining waste water using low-cost adsorbents. In recent years, many low-cost adsorbents such as seaweeds, activated carbon, etc. have been investigated, but the char by macro alga, Undaria pinnatifida, have not proven to be the most effective and promising substrates. The aim of this study is to remove copper from its aqueous solution by Undaria pinnatifida char for various parameters like pH, contact time, and Cu(II) concentration. The adsorption capacity of Cu(II) by Undaria pinnatifida char was investigated as a function of pH, contact time, and Cu(II) concentration at room temperature. And it was verified using equilibrium studies. (author)

  1. Evidence of ancient genome reduction in red algae (Rhodophyta).

    Science.gov (United States)

    Qiu, Huan; Price, Dana C; Yang, Eun Chan; Yoon, Hwan Su; Bhattacharya, Debashish

    2015-08-01

    Red algae (Rhodophyta) comprise a monophyletic eukaryotic lineage of ~6,500 species with a fossil record that extends back 1.2 billion years. A surprising aspect of red algal evolution is that sequenced genomes encode a relatively limited gene inventory (~5-10 thousand genes) when compared with other free-living algae or to other eukaryotes. This suggests that the common ancestor of red algae may have undergone extensive genome reduction, which can result from lineage specialization to a symbiotic or parasitic lifestyle or adaptation to an extreme or oligotrophic environment. We gathered genome and transcriptome data from a total of 14 red algal genera that represent the major branches of this phylum to study genome evolution in Rhodophyta. Analysis of orthologous gene gains and losses identifies two putative major phases of genome reduction: (i) in the stem lineage leading to all red algae resulting in the loss of major functions such as flagellae and basal bodies, the glycosyl-phosphatidylinositol anchor biosynthesis pathway, and the autophagy regulation pathway; and (ii) in the common ancestor of the extremophilic Cyanidiophytina. Red algal genomes are also characterized by the recruitment of hundreds of bacterial genes through horizontal gene transfer that have taken on multiple functions in shared pathways and have replaced eukaryotic gene homologs. Our results suggest that Rhodophyta may trace their origin to a gene depauperate ancestor. Unlike plants, it appears that a limited gene inventory is sufficient to support the diversification of a major eukaryote lineage that possesses sophisticated multicellular reproductive structures and an elaborate triphasic sexual cycle. © 2015 Phycological Society of America.

  2. Techno-Economic Assessment of Micro-Algae Production Systems

    OpenAIRE

    Hoffman, Justin

    2016-01-01

    Global oil consumption is rising at an unprecedented rate renewing interest in alternative fuels. Micro-algae represents a promising feedstock due to inherent advantages such as high solar energy efficiencies, large lipid fractions, and utilization of various waste streams including industrial flue gas. Current technological challenges have limited the commercial viability of microalgae based biofuel production systems. This study directly evaluates and compares the economic viability of biom...

  3. Nitrogen and sulfur assimilation in plants and algae

    Czech Academy of Sciences Publication Activity Database

    Giordano, Mario; Raven, John A.

    2014-01-01

    Roč. 118, č. 2 (2014), s. 45-61 ISSN 0304-3770 Grant - others:University of Dundee(GB) SC 015096; Italian Ministry for Agriculture(IT) MIPAF, Bioforme project; Italian Ministry of Foreign Affairs(IT) MAE. Joint Italian-Israel Cooperation Program Institutional support: RVO:61388971 Keywords : nitrogen * sulfur * assimilation * algae Subject RIV: EE - Microbiology, Virology Impact factor: 1.608, year: 2014

  4. Distributionand Diversity of Macro Algae Communities in the Ambon Bay

    OpenAIRE

    Litaay, Christina

    2014-01-01

    Water conditions affected by natural and anthropogenic parameters such as sedimentation and solid waste disposal can influence the growth and distribution of macro algae. Sustainable management efforts can reduce damage on the Gulf coast of Ambon due to human activities and land clearing. This study was conducted in October 2008 using the transect method with 3 replicates in five locations i.e., Tantui, Air Salobar, Hative Besar, Halong, and Lateri. The interior and exterior waters of Ambon B...

  5. Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution.

    Science.gov (United States)

    García-Florentino, Cristina; Maguregui, Maite; Morillas, Héctor; Marcaida, Iker; Salcedo, Isabel; Madariaga, Juan Manuel

    2018-06-01

    In this work, a reddish biocolonization composed mainly by Trentepohlia algae affecting a synthetic building material from a modern building from the 90s located in the Bizkaia Science and Technology Park (Zamudio, North of Spain) was characterized and its ability to accumulate metals coming from the surrounding atmosphere was evaluated. To asses if these biofilms can act as bioindicators of the surrounding metal pollution, a fast non-invasive in situ methodology based on the use of hand-held energy dispersive X-ray fluorescence (HH-ED-XRF) was used. In order to corroborate the in situ obtained conclusions, some fragments from the affected material were taken to analyze the metal distribution by means of micro-energy dispersive X-ray fluorescence spectroscopy (μ-ED-XRF) and to confirm the presence of metal particles deposited on it using Scanning Electron Microscopy coupled to an Energy Dispersive Spectrometer (SEM-EDS). In order to confirm if Trentepohlia algae biofilms growing on the surface of building materials could be a fast way to in situ provide information about the surrounding metal pollution, a second Trentepohlia algae biofilm growing on a different kind of material (sandstone) was analyzed from an older historical building, La Galea Fortress (Getxo, North of Spain). Copyright © 2018. Published by Elsevier B.V.

  6. Boron-containing organic pigments from a Jurassic red alga.

    Science.gov (United States)

    Wolkenstein, Klaus; Gross, Jürgen H; Falk, Heinz

    2010-11-09

    Organic biomolecules that have retained their basic chemical structures over geological periods (molecular fossils) occur in a wide range of geological samples and provide valuable paleobiological, paleoenvironmental, and geochemical information not attainable from other sources. In rare cases, such compounds are even preserved with their specific functional groups and still occur within the organisms that produced them, providing direct information on the biochemical inventory of extinct organisms and their possible evolutionary relationships. Here we report the discovery of an exceptional group of boron-containing compounds, the borolithochromes, causing the distinct pink coloration of well-preserved specimens of the Jurassic red alga Solenopora jurassica. The borolithochromes are characterized as complicated spiroborates (boric acid esters) with two phenolic moieties as boron ligands, representing a unique class of fossil organic pigments. The chiroptical properties of the pigments unequivocally demonstrate a biogenic origin, at least of their ligands. However, although the borolithochromes originated from a fossil red alga, no analogy with hitherto known present-day red algal pigments was found. The occurrence of the borolithochromes or their possible diagenetic products in the fossil record may provide additional information on the classification and phylogeny of fossil calcareous algae.

  7. Study of algae's adsorption to uranium ion in water solution

    International Nuclear Information System (INIS)

    Du Yang; Qiu Yongmei; Dan Guiping; Zhang Dong; Lei Jiarong

    2007-01-01

    The adsorption efficiencies of the algae to uranium ion were determined at various pH, uranium ion concentrations, adsorption temperatures and the species of coexisted metal ions, and the effect of coexisted metal ion on the adsorption efficiency was researched. The experimental results at pH= 5-8 are as follows. 1) the adsorption capacity is a constant to be about 1.40 μg/g for the Yantai red alga and the sea spinach, and is changeable in the range of 1.03-2.23 μg/g with pH for the sea edible fungus; 2) for the algae the adsorption efficiency and adsorption capacity are related to uranium ion concentration, and the maximum adsorption efficiency and capacity is 95.8% and 65.4 μg/g, respectively; 3) the adsorption process for 24 h is not dependent on the temperature; 4) the effect of the species of coexisted metal ions on the adsorption capacity of uranium ion is various with the time during adsorption process. (authors)

  8. Ecology of planktonic foraminifera and their symbiotic algae

    International Nuclear Information System (INIS)

    Gastrich, M.D.

    1986-01-01

    Two types of symbiotic algae occurred abundantly and persistently in the cytoplasm of several species of planktonic Foraminifera over a ten year period in different tropical and subtropical areas of the North Atlantic Ocean. These planktonic Foraminifera host species consistently harbored either dinoflagellates or a newly described minute coccoid algal type. There appeared to be a specific host-symbiont relationship in these species regardless of year, season or geographic locality. The larger ovoid dinoflagellates (Pyrrhophycophyta) occur in the spinose species Globigerinoides ruber, Globigerinoides sacculifer, G. conglobatus and Orbulina universa. The smaller alga, from 1.5 to 3.5 um in diameter, occurs in one spinose species Globigerinella aequilateralis and also in the non-spinose species Globigerinita glutinata, Globoquadrina dutertrei, Globorotalia menardii, Globorotalia cristata, Globorotalia inflata, Candeina nitida, in various juvenile specimens and at all seasons except the winter months in Pulleniatina obliquiloculata and Globorotalial hirsuta. Controlled laboratory studies indicated a significant C incorporation into the host cytoplasm and inorganic calcium carbonate test of Globigerinoides ruber. During incubation for up to two hours, the 14 C uptake into the cytoplasm and test in the light was significantly greater than uptake in the dark by living specimens or by dead foraminifers. There appears to be light-enhanced uptake of 14 C into the test with dinoflagellate photosynthesis contributing to host calcification. In culture, symbiotic algae were observed to survive for the duration of the lifespan of their hosts

  9. Controlling harmful algae blooms using aluminum-modified clay.

    Science.gov (United States)

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Extremophilic micro-algae and their potential contribution in biotechnology.

    Science.gov (United States)

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Cytotoxic Hydroperoxy Sterol from the Brown Alga, Nizamuddinia Zanardinii

    Directory of Open Access Journals (Sweden)

    Abdolhossein Rustaiyan

    2013-03-01

    Full Text Available Background:The marine environment is a unique source of bioactive natural products, of which Nizamuddinia zanardinii is an important brown algae distributed in Oman Sea. Literature revealed that there is no report on phytochemistry and pharmacology of this valuable algae.Methods:Bioguided fractionation of the methanolic extract of Nizamuddinia zanardinii, collected from Oman Sea, led to the isolation of a hydroperoxy sterol. Its structure was determined by analysis of the spectroscopic data as 24-hydroperoxy-24-vinyl cholesterol (HVC. In vitro cytotoxic activity of this compound was evaluated against HT29, MCF7, A549, HepG2 and MDBK cell lines.Results:Although 24(R-hydroproxy-24-vinylcholesterol has been previously reported from Sargassum and Padina species, it is the first report on the presence of this compound from N. zanardinii. This compound exhibited cytotoxicity in all cell lines (IC50, 3.62, 9.09, 17.96, 32.31 and 37.31 μg/mL respectively. HVC was also evaluated for apoptotic activity and demonstrated positive results in terminal deoxynucleotidyl transferase dUTP Nick End labeling (TUNEL assay suggesting it a candidate for further apoptotic studies.Conclusions:Nizamuddinia zanardinii, a remarkable brown algae of Oman Sea, is a good source of hydroproxy sterols with promising cytotoxic on various cell lines particularly human colon adenocarcinoma.

  12. An updated comprehensive techno-economic analysis of algae biodiesel.

    Science.gov (United States)

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Partitioning of monomethylmercury between freshwater algae and water.

    Science.gov (United States)

    Miles, C J; Moye, H A; Phlips, E J; Sargent, B

    2001-11-01

    Phytoplankton-water monomethylmercury (MeHg) partition constants (KpI) have been determined in the laboratory for two green algae Selenastrum capricornutum and Cosmarium botrytis, the blue-green algae Schizothrix calcicola, and the diatom Thallasiosira spp., algal species that are commonly found in natural surface waters. Two methods were used to determine KpI, the Freundlich isotherm method and the flow-through/dialysis bag method. Both methods yielded KpI values of about 10(6.6) for S. capricornutum and were not significantly different. The KpI for the four algae studied were similar except for Schizothrix, which was significantly lower than S. capricornutum. The KpI for MeHg and S. capricornutum (exponential growth) was not significantly different in systems with predominantly MeHgOH or MeHgCl species. This is consistent with other studies that show metal speciation controls uptake kinetics, but the reactivity with intracellular components controls steady-state concentrations. Partitioning constants determined with exponential and stationary phase S. capricornutum cells at the same conditions were not significantly different, while the partitioning constant for exponential phase, phosphorus-limited cells was significantly lower, suggesting that P-limitation alters the ecophysiology of S. capricornutum sufficiently to impact partitioning, which may then ultimately affect mercury levels in higher trophic species.

  14. Dinitrogen fixation by blue-green algae from paddy fields

    International Nuclear Information System (INIS)

    Thomas, J.

    1978-01-01

    Fluorescence emission spectra at 77K of isolated heterocysts of Anabaena L-31 do not show F685-695 but rather F715-730, thus confirming the absence of photosystem II and the presence of photosystem I. Recent work using radioactive nitrogen has been collated and a tentative scheme is outlined indicating the location of the enzymes and the pathways involved in the initial assimilation of nitrogen in blue-green algae. Glutamine synthetase extracted from heterocysts of Anabaena L-31 does not exhibit the adenylylation/deadenylylation phenomenon characteristic of the enzyme from bacteria. Our recent experiments suggest that nitrogenase in Anabaena is under dual control by glutamic acid and aspartic acid, the former inhibiting the enzyme synthesis and the latter relieving the inhibition. Two extracellular polypeptides have been obtained from this alga, one of which inhibits heterocyst formation whereas the other enhances heterocyst formation and partially relieves the inhibitory effect of the former. An extracellular substance, possibly a glycopeptide, has been obtained from A. torulosa, which stimulates sporulation. Studies with 24 Na and 22 Na indicate that A. torulosa, an alga from saline habitats, has an active photosynthesis-linked mechanism for the extrusion of sodium. Sodium is essential for optimum nitrogenase activity and growth. In field experiments inoculation with Nostoc 4 resulted in substantial increase in soil nitrogen. Paddy yield was comparable to those plots where 80kg N/ha of urea was used. (author)

  15. Algae as test organisms of harmful effects of various radiations

    International Nuclear Information System (INIS)

    Necas, J.

    1989-01-01

    The report describes a complex biotest in which algae serve as the test organisms and where a variety of algal characteristics are employed as indicators of the effects of harmful radiations on the cultures and single organisms. Rules for a successful choice of a suitable algal organism are discussed and the preparation of the latter for the test as well as the growth and morphogenic tests and some physiological responses of algae to harmful radiation are described. The survival and lethality are related to the interpretation of the test results particularly from the physiological and genetic points of view. The complex biotest concerns not only toxic but also mutagenic effects of the factors tested. Some easily detectable mutations in algae are mentioned and their spectra are recommended. The stability of the mutations and the possibility of their delayed manifestation are considered. The possibility of occurrence of teratogenic effects is also dealt with and the negative role of phenocopies in the correct evaluation of the mutation effects is mentioned. Advice for the breeding and laboratory maintenance of suitable algal strains for the biotest is given. Practical use of the biotest is demonstrated on the results of a test using modified samples of waste water from uranium industries. It is recommended that biotests confined to the evaluation of single characteristics of the test organism be replaced by this complex biotest whose results can be interpreted more extensively and exhibit a higher reliability. (author). 268 refs., 1 tab., 9 figs

  16. Influence of thermal loading on the ecology of intertidal algae

    International Nuclear Information System (INIS)

    Vadas, R.L.; Keser, M.; Rusanowski, P.c.

    1976-01-01

    Thermal effluents from the Maine Yankee Atomic Power Company (operating intermittently from October 1972 to December 1974) increased water temperatures in the discharge area by 7 to 15 0 C. Plant operation and the removal of a causeway increased mixing and salinities in Montsweag Bay. Four small red algae immigrated into the area, but no species were lost from the system. Distribution and abundance patterns of the dominant algae, Ascophyllum nodosum and Fucus vesiculosus, were altered by the thermal discharge. The cover of F. vesiculosus decreased, whereas that of A. nodosum increased in 1973 but declined significantly in 1974. Reductions in biomass and percent cover were accompanied by changes in the growth dynamics of A. nodosum. Growth and survival in the discharge area were enhanced in 1973 but reduced in 1974. Growth was initiated earlier at all sites affected by the warm water. Plants at experimental sites not directly in the discharge channel grew at accelerated rates during the two years, but stressed plants in the discharge produced few or no viable apexes in 1974. The net effect has been a compression and reduction of intertidal algae into a narrower and less dense band

  17. Microwave-enhanced pyrolysis of natural algae from water blooms.

    Science.gov (United States)

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Comparative phycoremediation of sewage water by various species of algae

    International Nuclear Information System (INIS)

    Ahmad, F.; Khan, A.U.; Yasar, A.

    2013-01-01

    In this study sewage water treatment efficiency of Chlorella vulgaris, Rhizoclonium hieroglyphicum And mixed algae culture (Microspora sp., Navicula sp., Lyngbya sp.,Cladophora sp.,Spirogyra sp. and Rhizoclonium sp.) was compared. Sampled wastewater was analyzed for various parameters (i.e., COD, BOD, TS, TSS, TDS, TC, FC, TKN, TP, NO/sub 3/-N, PO/sub 4/,SO/sub 4/and Cl-) and concentrations of all these parameters in the untreated water were above the permissible limits of National Environmental Quality Standards of Pakistan (2000). Various algal species were used to treat sewage water by varying pond size, treatment duration, seasonal variation and growth rate of algae to arrive at the optimum outcome. Maximum percent reductions of various parameters, attained with C. vulgaris, were: chemical oxygen demand (98.3%), biochemical oxygen demand (98.7%), total Kjeldahl nitrogen (93.1%), total phosphorus (98.0%), nitrate (98.3%), phosphate (98.6%), chloride (94.2%), total coliforms (99.0%), faecal coliforms (99.0%) and total dissolved solids (98.2%) while maximum reduction in total suspended solids (92.0%) was obtained with a mixed algae culture and maximum increase in biomass by R. hieroglyphicum (0.75 g L/sup -1/day/sup -1/). Reduction in the concentration of pollutants in sewage water was to such a low level that it can be thrown in water bodies without any further treatment. (author)

  19. Uptake and distribution of technetium in several marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO - 4 and the remainder is bound to small molecules. 8 references, 5 figures, 1 table

  20. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga.

    Science.gov (United States)

    Hiroishi, S; Sugie, K; Yoshida, T; Morimoto, J; Taniguchi, Y; Imai, S; Kurebayashi, J

    2001-06-26

    Marginisporum crassissimum (Yendo) Ganesan, a marine red alga found in the ordinal coastal sea around Japan, revealed antitumor (antimetastatic) effects in vitro and in vivo. In in vitro experiments, extracts of this alga inhibited not only the growth of several tumor cell lines, such as B16-BL6 (a mouse melanoma cell line), JYG-B (a mouse mammary carcinoma cell line) and KPL-1 (a human mammary carcinoma cell line), but also invasion of B16-BL6 cells in a culture system. In in vivo experiments, the lung metastasis of B16-BL6 cells inoculated to the tail vein of B57BL/6J mice was inhibited by intraperitoneal administration of an extract from the alga. In addition, life prolongation of B57BL/6J mice inoculated with B16-BL6 cells was also observed by the intraperitoneal administration of the extract. An effective substance showing B16-BL6 growth inhibition in vitro was partially purified by filtration and hydrophobic column chromatography, and was revealed to be sensitive to trypsin-digestion and heat-treatment. The molecular weight of the substance was greater than 100 kDa. This is the first study demonstrating antitumor (antimetastatic) effects of M. crassissimum.

  1. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  2. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing.

    Science.gov (United States)

    Limayem, Alya; Micciche, Andrew; Nayak, Bina; Mohapatra, Shyam

    2018-01-01

    Algae biomass-fed wastewaters are a promising source of lipid and bioenergy manufacture, revealing substantial end-product investment returns. However, wastewaters would contain lytic pathogens carrying drug resistance detrimental to algae yield and environmental safety. This study was conducted to simultaneously decipher through high-throughput advanced Illumina 16S ribosomal RNA (rRNA) gene sequencing, the cultivable and uncultivable bacterial community profile found in a single sample that was directly recovered from the local wastewater systems. Samples were collected from two previously documented sources including anaerobically digested (AD) municipal wastewater and swine wastewater with algae namely Chlorella spp. in addition to control samples, swine wastewater, and municipal wastewater without algae. Results indicated the presence of a significant level of Bacteria in all samples with an average of approximately 95.49% followed by Archaea 2.34%, in local wastewaters designed for algae cultivation. Taxonomic genus identification indicated the presence of Calothrix, Pseudomonas, and Clostridium as the most prevalent strains in both local municipal and swine wastewater samples containing algae with an average of 17.37, 12.19, and 7.84%, respectively. Interestingly, swine wastewater without algae displayed the lowest level of Pseudomonas strains algae indicates potential coexistence between these strains and algae microenvironment, suggesting further investigations. This finding was particularly relevant for the earlier documented adverse effects of some nosocomial Pseudomonas strains on algae growth and their multidrug resistance potential, requiring the development of targeted bioremediation with regard to the beneficial flora.

  3. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  4. Bio sorption of copper ions with biomass of algae and dehydrated waste of olives; Biosorcion de iones cobre con biomasa de algas y orujos deshidratados

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, P.; Santander, M.; Pavez, O.; Valderrama, L.; Guzman, D.; Romero, L.

    2011-07-01

    They were carried out experiments of biosorption batch and in continuous to remove copper from aqueous solutions using as adsorbents green algae and olive residues under virgins conditions and chemically activated. The results of batch bio sorption indicate that the algae present mayor elimination capacities than the waste of olives, with uptakes of copper of the order of 96 % using activated algae with dissolution of Na{sub 2}SO{sub 4} under the optimum conditions. The results of the columns tests show that the virgin algae permits the removal of more copper ions than the activate algae, with removal efficiency of 98 % during the firth 20 min, a breakthrough time of 240 min and a saturation at time of 600 min. In the second cycle the regenerated biomass showed a best performance indicating that they can be used for another bio sorption cycle. (Author) 42 refs.

  5. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    Science.gov (United States)

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  6. Recomendations concerning technical research and development with the purpose to industrially exploit marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B.

    1980-10-01

    This report formulates a proposal for a program for technical research and development concerning use of Marine algae.The report is based on a retrospective literature search, an inquiry to potential algae users and producers in Sweden, visits to and correspondence with scientists and industries in Sweden and abroad. Technical research and development concerning marine algae is needed within the following fields: -Development of new sorts of algae offering resistance to parasite and disease adoptation to cultivation and har- vesting systems,and high-yielding concerning technically interesting components. -Development of suitable cultivation systems for Swedish conditions. -Co-cultivation of fish, mussels, oysters and crustaceans with algae. -Development of harvesting systems. -Methane rotting. -Fatty acid/hydrocarbon production as an alternative to methane rotting. -Physical-chemical properties of marine polysaccharides in relation to their technical properties. -Marine algae as fodder supplement.

  7. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions

    International Nuclear Information System (INIS)

    Peng Zhang'e; Wu Feng; Deng Nansheng

    2006-01-01

    The photodegradation of bisphenol A (BPA), a suspected endocrine disruptor (ED), in simulated lake water containing algae, humic acid and Fe 3+ ions was investigated. Algae, humic acid and Fe 3+ ions enhanced the photodegradation of BPA. Photodegradation efficiency of BPA was 36% after 4 h irradiation in the presence of 6.5 x 10 9 cells L -1 raw Chlorella vulgaris, 4 mg L -1 humic acid and 20 μmol L -1 Fe 3+ . The photodegradation efficiency of BPA was higher in the presence of algae treated with ultrasonic than that without ultrasonic. The photodegradation efficiency of BPA in the water only containing algae treated with ultrasonic was 37% after 4 h irradiation. The algae treated with heating can also enhance the photodegradation of BPA. This work helps environmental scientists to understand the photochemical behavior of BPA in lake water. - Algae, humic acid and ferric ions can induce the photodegradation of bisphenol A in an aqueous environment

  8. Chemical and radioactivity study of sea alga distribution along the Syrian coast

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Mamish, S.; Budeir, Y.

    2001-11-01

    Three types of sea alga distributed along the Syrian coast have been studied from the chemical and radioactivity point of view. Results have shown the metals that red alga contains the highest levels of Ca and Mg while brown alga were found to contain relatively high concentrations of other elements and non metals such as Cl, I and Br. In addition, 137 Cs concentrations in all the analyzed sample were low while the levels of naturally occurring radionuclides such as 210 Po, 210 Pb and radium isotopes were found to be high in red alga which indicates their selectivity to these isotopes. On the other hand, brown alga and especially Cysteseira has shown a clear selectivity for some trace elements such as As, Cr, Cd, Cu and Co, this selectivity may encourage the use of brown alga as biological indicator for trace elements pollution. (author)

  9. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  10. Physical characteristic of brown algae (Phaeophyta) from madura strait as irreversible hydrocolloid impression material

    OpenAIRE

    Prihartini Widiyanti; Siswanto Siswanto

    2012-01-01

    Background: Brown algae is a raw material for producing natrium alginates. One type of brown algae is Sargassum sp, a member of Phaeophyta division. Sargassum sp could be found in Madura strait Indonesia. Natrium alginate can be extracted from Sargassum sp. The demand of alginate in Indonesia is mainly fulfilled from abroad, meanwhile Sargassum sp is abundantly available. Purpose: The purpose of study were to explore the potency of brown alga Sargassum sp from Madura strait as hydrocolloid im...

  11. Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Burgess, K.; Delany, J.E.; Mesbahi, E.

    is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78 19-30 De Smet I and Beeckman T 2011 Asymmetric cell division in land plants and algae: the driving force for differentiation. Nature Rev. Mol. Cell Biol. 12 177... of Prasinophytes, but are as evolved as any other green alga or land plant. These organisms share several ultrastructural features with the other core Chlorophytes (Trebouxiophyceae, Ulvophyceae and Chlorophyceae). However, the role of Chlorodendrophycean algae...

  12. Screening of Various Herbicide Modes of Action for Selective Control of Algae Responsible for Harmful Blooms

    Science.gov (United States)

    2009-01-01

    included, Scenedesmus quadricauda and Selenastrum sp. After a two-week exposure period, all flasks were filtered. The planktonic algae were measured...activity against the various algal species tested (Figures 1 through 7). Aside from the reduction in biomass of the green alga Scenedesmus by...controls (Figures 1 through 7). Penoxsulam was highly active against the blue-greens Cylindrospermopsis and Anabaena, and the green alga Scenedesmus

  13. Gain and loss of polyadenylation signals during evolution of green algae

    OpenAIRE

    Wodniok, Sabina; Simon, Andreas; Glöckner, Gernot; Becker, Burkhard

    2007-01-01

    Abstract Background The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related seq...

  14. Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses

    OpenAIRE

    Nam, Sun-Hwa; Il Kwak, Jin; An, Youn-Joo

    2018-01-01

    Soil algae, which have received attention for their use in a novel bioassay to evaluate soil toxicity, expand the range of terrestrial test species. However, there is no information regarding the toxicity of nanomaterials to soil algae. Thus, we evaluated the effects of silver nanoparticles (0–50 mg AgNPs/kg dry weight soil) on the soil alga Chlamydomonas reinhardtii after six days, and assessed changes in biomass, photosynthetic activity, cellular morphology, membrane permeability, esterase ...

  15. Propiedades nutritivas y saludables de algas marinas y su potencialidad como ingrediente funcional

    OpenAIRE

    Quitral R, Vilma; Morales G, Carla; Sepúlveda L, Marcela; Schwartz M, Marco

    2012-01-01

    Las algas marinas se han consumido en Asia desde tiempos remotos, mientras que en países occidentales su principal aplicación ha sido como agente gelificante y coloide para la industria de alimentos, farmacéutica y cosmética. Las algas son buena fuente de nutrientes como proteínas, vitaminas, minerales y fibra dietética, al respecto, la fibra dietética de algas es particularmente rica en fracción soluble. Si se comparan las algas con vegetales terrestres, se encuentran más componentes benefic...

  16. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  17. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.

    Science.gov (United States)

    Marchand, Justine; Heydarizadeh, Parisa; Schoefs, Benoît; Spetea, Cornelia

    2018-06-01

    Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.

  18. Role of algae in water quality regulation in NPP water reservoirs

    International Nuclear Information System (INIS)

    Klenus, V.G.; Kuz'menko, M.I.; Nasvit, O.I.

    1985-01-01

    Investigations, carried out in Chernobyl NPP water reservoir, show that sewage water inflow, being not sufficiently purified, enriched by mineral and organic substances, is accompanied by a considerable increase of algae productivity. The algae play a determining role in accumulation of radionuclides and their transformation into bottom depositions. Comparative investigation of accumulation intensity in alga cells 12 C and 14 C gives evidence that the rate of radioactive nuclide inclusions is practically adequate to the rate of inclusions of their stable analogues. Bacterial destruction of organic contaminations occurs more intensively under aerobic conditions, which are mainly provided due to photosynthetizing activity of algae

  19. Biogas performance from co-digestion of Taihu algae and kitchen wastes

    International Nuclear Information System (INIS)

    Zhao, Ming-Xing; Ruan, Wen-Quan

    2013-01-01

    Highlights: • Co-digestion mode improves the biogas yield of Taihu algae and kitchen wastes. • Neutral protease enzyme reached maximum in algae only group. • The activity of dehydrogenase enzyme in mixed substrate groups was higher than that of algae and kitchen wastes only group. - Abstract: Co-digestion of Taihu algae with high carbon content substrate can balance the nutrients in the fermentation process. In this study, optimal mixing ratio for co-digestion of Taihu algae and kitchen wastes were investigated in order to improve biogas production potential. The results indicated that the biogas yield reached 388.6 mL/gTS at C/N15:1 group, which was 1.29 and 1.18 times of algae and kitchen wastes only. The maximum concentration of VFA reached 4239 mg/L on 8th day in kitchen wastes group, which was 1.21 times of algae group. Neutral protease enzyme activity in algae group reached maximum of 904.2 μg/(gTS h), while dehydrogenase enzyme at C/N 15:1 group reached maximum of 3402.2 μgTF/(gTS h). The feasibility of adjusting the C/N with co-digestion of Taihu algae and kitchen wastes to increase biogas production was demonstrated. Remarkably, the C/N of 15:1 was found to be the most appropriate ratio

  20. Application of Algae as Cosubstrate To Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Pedersen, Thomas Helmer; Zhao, Xueli

    2017-01-01

    This work proposes a novel strategy to improve the continuous processing of wood slurries in hydrothermal liquefaction systems by coprocessing with algae. Of all algae tested, brown seaweeds and microalgae perform best in preventing slurries dewatering, the main reason for pumpability issues...... with wood slurries. Rheological tests (viscosity–shear rate profile) indicate that the addition of these two algae to the wood slurry causes the highest increase in viscosity, which coincides with improved wood slurries stability and pumpability. Hydrothermal liquefaction of wood-algae slurries at 400 °C...

  1. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

    Science.gov (United States)

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-07-08

    Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants

  2. Bio-reduction of plutonyl and neptunyl by Shewanella alga

    International Nuclear Information System (INIS)

    Reed, D.T.; Lucchini, J.F; Rittmann, B.E.; Songkasiri, W.

    2005-01-01

    Full text of publication follows: The results of a concurrent experimental and modeling study to investigate the bio-reduction of higher-valent plutonium and neptunium by Shewanella alga strain BrY are presented. S. Alga, as a facultative metal reducer, is representative of bacteria that will be important in defining the mobility of plutonium and neptunium species as they migrate from oxic to anoxic zones. This is also an important consideration in defining the long-term stability of bio-precipitated 'immobilized' plutonium phases under changing redox conditions in biologically active systems and subsequently the effectiveness of remediation/containment approaches used for bio-remediation. Neptunium (VI) is readily reduced in groundwaters by many organics. In biologically active systems, it is unlikely, for this reason, that this oxidation state of neptunium will be important. Under all conditions investigated, neptunium (V) was reduced to neptunium (IV) when anaerobic conditions were established for a wide variety of electron donors. This was evidences by 3-4 orders of magnitude reduction in solution concentration and confirmed by XANES analysis. This led to high bio-association and/or precipitation of the neptunium. Plutonium (VI), as was the case with neptunium (VI) was reduced by the organics typically present in biologically active systems. Analogous bio-reduction experiments with plutonium (V) and plutonium (VI) are in progress and are expected to show that bio-reduction will predominate under anaerobic conditions, as was the case with neptunium. These results for neptunium and plutonium show S. Alga to be an effective microbe for the bio-reduction, and consequently the immobilization, of these important actinide contaminants. (authors)

  3. Biodiesel production from algae grown on food industry wastewater.

    Science.gov (United States)

    Mureed, Khadija; Kanwal, Shamsa; Hussain, Azhar; Noureen, Shamaila; Hussain, Sabir; Ahmad, Shakeel; Ahmad, Maqshoof; Waqas, Rashid

    2018-04-10

    Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater. This study was conducted to optimize the growth of microalgal strains and to assess biodiesel production potential of algae using untreated food industry wastewater as a source of nutrients. The food industry wastewater was collected and analyzed for its physicochemical characteristics. Different dilutions (10, 20, 40, 80, and 100%) of this wastewater were made with distilled water, and growth of two microalgal strains (Cladophora sp. and Spyrogyra sp.) was recorded. Each type of wastewater was inoculated with microalgae, and biomass was harvested after 7 days. The growth of both strains was also evaluated at varying temperatures, pH and light periods to optimize the algal growth for enhanced biodiesel production. After optimization, biodiesel production by Spyrogyra sp. was recorded in real food industry wastewater. The algal biomass increased with increasing level of food industry wastewater and was at maximum with 100% wastewater. Moreover, statistically similar results were found with algal growth on 100% wastewater and also on Bristol's media. The Cladophora sp. produced higher biomass than Spyrogyra sp. while growing on food industry wastewater. The optimal growth of both microalgal strains was observed at temperature 30 °C, pH: 8, light 24 h. Cladophora sp. was further evaluated for biodiesel production while growing on 100% wastewater and found that this strain produced high level of oil and biodiesel. Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater.

  4. Shewanella alga bacteremia in two patients with lower leg ulcers

    DEFF Research Database (Denmark)

    Domínguez, H.; Vogel, Birte Fonnesbech; Gram, Lone

    1996-01-01

    of infection. Both patients survived; however, one of them had extensive myonecrosis, while the other patient had an uncomplicated course. The strains were initially believed to be Shewanella putrefaciens on the basis of key characteristics and results of the API 20NE identification system (bioMerieux, Marcy l......The first Danish cases of Shewanella alga bacteremia in two patients with chronic lower leg ulcers are reported. Both patients were admitted to the hospital during the same month of a very warm summer and had been exposed to the same marine environment, thereby suggesting the same source...

  5. Cadmium accumulation by the marine red alga Porphyra umbilicalis

    Energy Technology Data Exchange (ETDEWEB)

    McLean, M.W.; Williamson, F.B.

    1977-01-01

    The characteristics of cadmium accumulation by the marine red alga Porphyra umbilicalis L. in culture are reported. The time course of uptake under various light conditions shows that cadmium is concentrated as the result of an on-going anabolic process and not as a consequence of a pH gradient as provided by photosynthesis. The effect of cycloheximide is in agreement with de novo protein synthesis being a prerequisite for cadmium accumulation. Autoradiography suggests a specific intracellular location for bound cadmium--apparently the nucleus.

  6. [Epiphytic algae from Bajo Pepito, Isla Mujeres, Quintana Roo, Mexico].

    Science.gov (United States)

    Quan-Young, L I; Díaz-Martín, M A; Espinoza-Avalos, J

    2006-06-01

    A total of 96 epiphytic algae species were identified from Bajo Pepito, Quintana Roo, México. 60.4% (58) belonged to the Rhodophyta, 19.79% (19) to the Phaeophyta, 16.6% (16) to the Chlorophyta and 3.1% (3) to the Cyanophyta; 49 species (50.5%) were found only in one month, while Heterosiphonia crispella was found in all of the sampled months. That species provided the largest contribution to the biomass of epiphytes. During January we registered the greater biommass and richness of epiphytes species, coincidently with high values of host species cover and rainfall.

  7. Plutonium sorption by the green algae Scenedesmus obliquus (Tuerp) Kuetz

    International Nuclear Information System (INIS)

    Tkacik, M.F.; Giesy, J.P.; Corey, J.C.

    1978-01-01

    As part of the continuing study of the possible impact of released radioisotopes to the Savannah River Plant (SRP) environment, the interaction between a biological system and plutonium was investigated. Specifically, an algal culture, Scenedesmus obliquus, was exposed to the +4 and +6 oxidation states of 238 Pu and 239-240 Pu at three plutonium concentration levels. There was no significant different (p 3) 0.05) between 238 Pu and 239-240 Pu accumulation by the algae at equivalent concentrations or at different oxidation states

  8. Multi-scale Characterization of Improved Algae Strains

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Taraka T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This report relays the important role biofuels such as algae could have in the energy market. The report cites that problem of crude oil becoming less abundant while the demand for energy continues to rise. There are many benefits of producing energy with biofuels such as fewer carbon emissions as well as less land area to produce the same amount of energy compared to other sources of renewable fuels. One challenge that faces biofuels right now is the cost to produce it is high.

  9. A Fluorescence Based Miniaturized Detection Module for Toxin Producing Algae

    Science.gov (United States)

    Zieger, S. E.; Mistlberger, G.; Troi, L.; Lang, A.; Holly, C.; Klimant, I.

    2016-12-01

    Algal blooms are sensitive to external environmental conditions and may pose a serious threat to marine and human life having an adverse effect on the ecosystem. Harmful algal blooms can produce different toxins, which can lead to massive fish kills or to human disorders. Facing these problems, miniaturized and low-cost instrumentation for an early detection and identification of harmful algae classes has become more important over the last years. 1,2Based on the characteristic pigment pattern of different algae classes, we developed a miniaturized detection module, which is able to detect and identify algae classes after analyzing their spectral behavior. Our device combines features of a flow-cytometer and fluorimeter and is build up as a miniaturized and low-cost device of modular design. Similar to a fluorimeter, it excites cells in the capillary with up to 8 different excitation wavelengths recording the emitted fluorescence at 4 different emission channels. Furthermore, the device operates in a flow-through mode similar to a flow-cytometer, however, using only low-cost elements such as LEDs and photodiodes. Due to its miniaturized design, the sensitivity and selectivity increase, whereas background effects are reduced. With a sampling frequency of 140 Hz, we try to detect and count particular cell events even at a concentration of 2 cells / 7.3 µL illuminated volume. Using a self-learning multivariate algorithm, the data are evaluated autonomously on the device enabling an in-situ analysis. The flexibility in choosing excitation and emission wavelengths as well as the high sampling rate enables laboratory applications such as measuring induction kinetics. However, in its first application, the device is part of an open and modular monitoring system enabling the sensing of chemical compounds such as toxic and essential Hg, Cd, Pb, As and Cu trace metal species, nutrients and species related to the carbon cycle, VOCs and potentially toxic algae classes (FP7

  10. Microsatellite Primers in the Lichen Symbiotic Alga Trebouxia decolorans (Trebouxiophyceae

    Directory of Open Access Journals (Sweden)

    Francesco Dal Grande

    2013-03-01

    Full Text Available Premise of the study: Polymorphic microsatellite markers were developed for the symbiotic green alga Trebouxia decolorans to study fine-scale population structure and clonal diversity. Methods and Results: Using Illumina pyrosequencing, 20 microsatellite primer sets were developed for T. decolorans. The primer sets were tested on 43 individuals sampled from four subpopulations in Germany. The primers amplified di-, tri-, and tetranucleotide repeats with three to 15 alleles per locus, and the unbiased haploid diversity per locus ranged from 0.636 to 0.821. Conclusions: The identified microsatellite markers will be useful to study the genetic diversity, dispersal, and reproductive mode of this common lichen photobiont.

  11. Estudio de los galactanos del alga roja pterocladiella Capillacea

    OpenAIRE

    Errea, María Inés

    2001-01-01

    Existen dos familias de polisacáridos sintetizados por algas rojas, los carragenanos y el ágar, que, debido a sus propiedades reológicas, que les permiten estabilizar soluciones o emulsiones acuosas, son utilizados en la industria farmacéutica y alimentaria de todo el mundo. Este Trabajo de Tesis comprende los tópicos que se indican a continuación: a) Estudio de la estructura de los galactanos que componen el sistema de polisacáridos de la agarofita Plerocladíella capillacea (Gelidiales, Geli...

  12. Methane production by anaerobic digestion of algae. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nyns, E.J.; Naveau, H.P.

    Methane is produced experimentally by anaerobic fermentation of algae, principally of species Hydrodictyon and Cladophora, grown in cooling water from nuclear power plants. The accumulation of fatty acids, by-products of fermentation, is found to have an inhibitory effect on methane production. Methods to remove fatty acids and stabilise the reaction are investigated. An economic analysis is presented using a financial model processor based on data from experimental digesters. The experimental work is described and the results are presented in an Appendix (in French). Seven relevant papers, of which two are in French are also annexed.

  13. Evaluation of lipid extractability after flash hydrolysis of algae

    Energy Technology Data Exchange (ETDEWEB)

    Teymouri, Ali; Adams, Kameron J.; Dong, Tao; Kumar, Sandeep

    2018-07-01

    Microalgae is identified as a promising feedstock for producing renewable liquid transportation fuels; however, lipids extraction from microalgae for downstream processing to biofuels is one of the important challenges for algal based biorefineries. This work aims at evaluating the potential of applying flash hydrolysis (FH) as a chemical-free technique to increase the lipids extractability of algal biomass as well as its integration with the hydrothermal liquefaction (HTL) of microalgae to enhance the biocrude yields and characteristics for fuel production. To this aim, the FH process was performed on three different algal species (Scenedesmus sp., Nannochloropsis sp., and Chlorella vulgaris) at 280 degrees C and 10 s of residence time. Following FH, in addition to the nutrients rich hydrolysate, approximately, 40 wt% of solids containing almost all (>90 wt%) the lipids termed as biofuels intermediates (BI), were recovered. Kinetics study on lipids extractability from the BI and their lipid profile analyses were conducted for each algal species. The results showed that the FH process had significantly enhanced the lipids extractability. For all three algae species, lipid yields from BI were higher than that of the raw algae. Lipid yields of Chlorella vulgaris in the first 15 min were more than five times higher (52.3 +/- 0.8 vs. 10.7 +/- 0.9 wt%) than that of raw algae during n-hexane based solvent extraction. The kinetics of lipids extractability followed a zero-order reaction rate for all wet raw microalgae and the BI of Scenedesmus sp., while the BI recovered from the other two algal species were determined as a second-order reaction. Comparison of fatty acids profiles indicated the contribution of the FH process in saturating fatty acids. Subsequent to lipids extraction, a conventional hydrothermal liquefaction was performed at 350 degrees C and 1 h to compare the biocrude yields from raw versus BI of Chlorella vulgaris microalgae. The results showed that the

  14. Production of Biodiesel from Marine Algae to Mitigate Environmental Pollution

    International Nuclear Information System (INIS)

    Khan, A.M.; Obaid, M.; Sultana, R.

    2015-01-01

    This research article demonstrates the conversion of oily contents of marine macroalgae, namely Cystoseira indica and Scinia hatei to fatty acid methyl ester (FAME) through alkaline transesterification. The algae were dried, crushed and grinded into the powder form, which were analyzed for physical appearance, water content and particle size profile. The oily contents from these powdered algae were extracted by using different non-polar solvents like n-hexane, n-heptane, dichloromethane, diethyl ether and n-hexane: diethyl ether (1:1) mixture at small scale. The efficiency index of the solvent was developed based on the yield of the oily content and boiling point of these solvents, which showed that n-hexane: diethyl ether (1:1) mixture is the best solvent system for the extraction of oils. The yield of oily contents with respect to the dried algal weight was found to be 2.81 ± 0.43 percentage w/w and 3.10 ± 0.27 percentage w/w for C. indica and S. hatei respectively. These oily contents were subjected to physical and chemical analysis. The oily contents were converted into biodiesel by alkaline transesterification using potassium methoxide as catalyst which is prepared by dissolving KOH in methanol (0.5g/12 ml, 4.2 percentage w/v) in a separate flask. All the reactions were carried out under completely anhydrous conditions using silica as desiccant and with continuous stirring so that the reactants in two immiscible phases of oily contents and methanol were remain in contact. The yield of biodiesel was found to be 89.0 ± 0.51 percentage w/w (2.50 percentage w/w of dried alga) and 90.6 ± 0.36 percentage w/w (2.81 percentage w/w of dried alga) of biodiesel from C. indica and S. hatei respectively. Finally, biodiesel was characterized by gas chromatography and American Society for Testing and Materials (ASTM) as well as by European (EN) standards which were found to be in agreement with the standard values of biodiesel. (author)

  15. The uvsI gene of Aspergillus nidulans required for UV-mutagenesis encodes a homolog to REV3, a subunit of the DNA polymerase zeta of yeast involved in translesion DNA synthesis.

    Science.gov (United States)

    Han, K Y; Chae, S K; Han, D M

    1998-07-01

    Defects in the uvsI gene of Aspergillus nidulans resulted in high UV sensitivity and reductions of spontaneous and UV-induced reversion of certain alleles, uvsl;uvsA double mutants exhibited high methyl methane sulfonate (MMS)-sensitivity in contrast to the slight sensitivity of the component single mutants. Using such a double mutant as recipient, a clone complementing uvsI501 has been isolated from a chromosome III specific library. The deduced amino acid sequence from the 1.1-kb sequenced region, a part of the 5.2-kb DNA fragment showing uvsI-complementing activity, had a 62% identity with REV3 of yeast. Disruptants of the cloned gene demonstrated the same level of sensitivity to UV light as uvsI and failed to complement uvsI501 in heterozygous diploids.

  16. uvsF RFC1, the large subunit of replication factor C in Aspergillus nidulans, is essential for DNA replication, functions in UV repair and is upregulated in response to MMS-induced DNA damage.

    Science.gov (United States)

    Kafer, Etta; Chae, Suhn-Kee

    2008-09-01

    uvsF201 was the first highly UV-sensitive repair-defective mutation isolated in Aspergillus nidulans. It showed epistasis only with postreplication repair mutations, but caused lethal interactions with many other repair-defective strains. Unexpectedly, closest homology of uvsF was found to the large subunit of human DNA replication factor RFC that is essential for DNA replication. Sequencing of the uvsF201 region identified changes at two close base pairs and the corresponding amino acids in the 5'-region of uvsF(RFC1). This viable mutant represents a novel and possibly important type. Additional sequencing of the uvsF region confirmed a mitochondrial ribosomal protein gene, mrpA(L16), closely adjacent, head-to-head with a 0.2kb joint promoter region. MMS-induced transcription of both the genes, but especially uvsF(RFC1), providing evidence for a function in DNA damage response.

  17. Marine algae as attractive source to skin care.

    Science.gov (United States)

    Berthon, Jean-Yves; Nachat-Kappes, Rachida; Bey, Mathieu; Cadoret, Jean-Paul; Renimel, Isabelle; Filaire, Edith

    2017-06-01

    As the largest organ in the human body, the skin has multiple functions of which one of the most important is the protection against various harmful stressors. The keratinised stratified epidermis and an underlying thick layer of collagen-rich dermal connective tissues are important components of the skin. The environmental stressors such as ultraviolet radiation (UVR) and pollution increase the levels of reactive oxygen species (ROS), contributing to clinical manifestations such as wrinkle formation and skin aging. Skin aging is related to the reduction of collagen production and decrease of several enzymatic activities including matrix metalloproteinases (MMPs), which degrade collagen structure in the dermis; and tissue inhibitor of metalloproteinases (TIMPs), which inhibit the action of MMPs. In addition to alterations of DNA, signal transduction pathways, immunology, UVR, and pollution activate cell surface receptors of keratinocytes and fibroblasts in the skin. This action leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. Therefore, an efficient antioxidants strategy is of major importance in dermis and epidermis layers. Marine resources have been recognised for their biologically active substances. Among these, marine algae are rich-sources of metabolites, which can be used to fight against oxidative stress and hence skin aging. These metabolites include, among others, mycosporine-like amino acids (MAAs), polysaccharides, sulphated polysaccharides, glucosyl glycerols, pigments, and polyphenols. This paper reviews the role of oxidative processes in skin damage and the action of the compounds from algae on the physiological processes to maintain skin health.

  18. Algae as nutritional and functional food sources: revisiting our understanding.

    Science.gov (United States)

    Wells, Mark L; Potin, Philippe; Craigie, James S; Raven, John A; Merchant, Sabeeha S; Helliwell, Katherine E; Smith, Alison G; Camire, Mary Ellen; Brawley, Susan H

    2017-01-01

    Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, and seasons, all of which can substantially affect their dietary value. The second issue is quantifying which fractions of algal foods are bioavailable to humans, and which factors influence how food constituents are released, ranging from food preparation through genetic differentiation in the gut microbiome. Third is understanding how algal nutritional and functional constituents interact in human metabolism. Superimposed considerations are the effects of harvesting, storage, and food processing techniques that can dramatically influence the potential nutritive value of algal-derived foods. We highlight this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product. There are rich opportunities for phycologists in this emerging field, requiring exciting new experimental and collaborative approaches.

  19. Marine Algae: a Source of Biomass for Biotechnological Applications.

    Science.gov (United States)

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.

  20. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  1. Methane production from marine, green macro-algae

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, G.

    1983-01-01

    Fermentation studies have been carried out to produce methane from green algae native to Scandinavian water and suitable for large scale cultivation. Long term semi-continuous fermentations during mesophilic and thermophilic conditions were performed as well as batch fermentations in flasks and syringes. A mixed inoculum was prepared from sediments, rotting seaweed, sewage sludge and rumen contents. Methane production from the seaweed substrate, consisting of ground green algae without any nutrient additions, started immediately in this culture, mesophilicly as well as thermophilicly. Fermentations were carried out with retention times from 27 to 11 days and loading rates from 1.1 to 2.6 g volatile solids (VS added) per litre per day. In the mesophilic fermentation, gas yields were 250-350 ml CH/sub 4//g VS added and the VS-reduction was around 50-55% at all tested retention times and loading rates. The level of volatile fatty acids was very low in this system. In the thermophilic digestor, gas yields were somewhat lower although the VS-reduction was around 50% also in this systems. The VFA-levels were higher and the culture more sensitive to disturbances. Thus no advantages were found with the thermophilic fermentation. In mesophilic batch fermentations the gas production was rather rapid and almost completed after 12-15 days, in agreement with the continuous fermentations. The gas yields in batch experiments were high, 350-480 ml CH/sub 4//g VS added. (Refs. 20).

  2. [Food value of the spiruline algae to man].

    Science.gov (United States)

    Sautier, C; Tremolieres, J

    1975-01-01

    The acceptability of various culinary products based on the algae spirulina was tested by questionaire: formulas rich in proteins, soups, omelets, desserts. Spirulina are little appreciated in France due to offensive color, smell and taste. Tomato and chocolate are the most acceptable flavors. Lyophilisation is preferable to atomisation, and discoloration using alcohol is preferable to the acetone method. The hydrolysate obtained, having neither the smell nor the taste of algae, is excellent. Nitrogen, sodium and potassium balances were recorded in 5 undernourished subjects fed via a gastric tube. The spirulina provided respectively 15 p. 100 (1 subject), 30 p. 100 (2 subjects), and 50 p. 100 (2 subjects) of the protein ration. There were no intestinal problems. The spirulina did not modify the investigated balances. However, faecal nitrogen increased to 2.08 g (compared to control period values, 1.33 g and 1.51 g). The various coefficients: digestibility, nitrogen retention and protein utilization did not vary. In man as in animals, nitrogen retention is satisfactory, but digestibility is diminished. Uric acid did not vary in the urine, but serum values increased slightly. Ingestion of spirulina in small doses even over a long period should be tolerable in the normal subject.

  3. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.

    Science.gov (United States)

    Qin, Jie; Lehr, Corinne R; Yuan, Chungang; Le, X Chris; McDermott, Timothy R; Rosen, Barry P

    2009-03-31

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a T(opt) of 60-70 degrees C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases.

  4. ALGAE PROLIFERATION ON SUBSTRATES IMMERSED IN BIOLOGICALLY TREATED SEWAGE

    Directory of Open Access Journals (Sweden)

    Tomasz Garbowski

    2017-01-01

    Full Text Available Due fast biomass production, high affinity for N and P and possibilities to CO2 sequestration microalgae are currently in the spotlight, especially in renewable energy technologies sector. The majority of studies focus their attention on microalgae cultivation with respect to biomass production. Fuel produced from algal biomass can contribute to reducing consumption of conventional fossil fuels and be a remedy for a rising energy crisis and global warming induced by air pollution. Some authors opt for possibilities of using sewage as a nutrient medium in algae cultivation. Other scientists go one step further and present concepts to introduce microalgal systems as an integral part of wastewater treatment plants. High costs of different microalgal harvesting methods caused introduction of the idea of algae immobilization in a form of periphyton on artificial substrates. In the present study the attention has focused on possibilities of using waste materials as substrates to proliferation of periphyton in biologically treated sewage that contained certain amounts of nitrogen and phosphorus.

  5. Biokinetic aspects of tissue-bound tritium in algae

    International Nuclear Information System (INIS)

    Strack, S.; Kistner, G.

    1978-01-01

    For the estimate of the radiation exposure of man and for the calculation of the risk of artificial tritium from nuclear power plants, organic tissue-bound tritium is of decisive importance. In model experiments, a tritium incorporation of 61 to 71% was found from tritiated water (HTO) into organic matter of planctonic algae under reproducible conditions and this was related to the theoretical value. In further experiments the tritium release from these high tritiated algae was of interest. Kept in darkness in tritium-free, non-sterile river water, so that autolytic processes and bacterial decomposition could occur, the concentration of HTO was measured over a period of three weeks. A relatively long half-life of tissue-bound tritium was found under various temperature conditions. Therefore it must be considered that a significant retention of tritium in biological matter has to be taken into account in a natural ecosystem. In streams into which the cooling water of a nuclear reactor is released all conditions are found already for a long turnover and cycling of artificial tritium in living organisms as well as the conditions for a favourable transport of tritium by food chains to man. (Auth.)

  6. Short-term uptake of heavy metals by periphyton algae

    Energy Technology Data Exchange (ETDEWEB)

    Vymazal, J.

    1984-12-31

    The utilization of periphyton for the removal of heavy metals from enriched small streams has been examined. By means of short-term batch laboratory experiments the courses of metal uptake have been studied. For uptake study naturally growing periphyton community and periphytic filamentous algae Cladophora glomerata and Oedogonium rivulare have been used. Uptakes of nine heavy metals (Pb, Cd, Cu, Co, Cr, Ni, Zn, Fe and Mn) have been determined during four hours exposure. In addition the influence of humic substances on heavy metals uptake has been determined. Uptake of all metals increased during four hours exposure but not in the same way. Some metals were removed continuously (Ni, Cr, Fe and Mn), other metals were removed more rapidly during the first hour or first two hours of exposure and then only slight removal continued (Cu, Pb, Cd, Co). Uptake of Zn was rather unambiguous. Results of these experiments suggest that the course of uptake for individual metals could be similar for most periphyton algae. It was established that humic substances significantly reduce heavy metals uptake. The highest decrease of uptake was observed in Cu, Cr, Co and Cd. The results of model experiments are being tested in a pilot scale with respect to the demands of engineering practice. (J.R.)

  7. Antibacterial activity of extracts of marine algae from the Red Sea of ...

    African Journals Online (AJOL)

    Antibacterial activity of extracts of marine algae from the Red Sea of Jeddah, Saudi Arabia. ... African Journal of Biotechnology ... The antibacterial activities of petroleum ether, diethyl ether, ethyl acetate and methanol extracts of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta were studied.

  8. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation?

    Science.gov (United States)

    Vo Hoang Nhat, P; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Nguyen, P D; Bui, X T; Zhang, X B; Guo, J B

    2018-05-01

    Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L -1 ) compared to fossil fuel's price of $1 L -1 , it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis.

    Science.gov (United States)

    Loram, J E; Trapido-Rosenthal, H G; Douglas, A E

    2007-11-01

    The giant sea anemone Condylactis gigantea associates with members of two clades of the dinoflagellate alga Symbiodinium, either singly or in mixed infection, as revealed by clade-specific quantitative polymerase chain reaction of large subunit ribosomal DNA. To explore the functional significance of this molecular variation, the fate of photosynthetically fixed carbon was investigated by (14)C radiotracer experiments. Symbioses with algae of clades A and B released ca. 30-40% of fixed carbon to the animal tissues. Incorporation into the lipid fraction and the low molecular weight fraction dominated by amino acids was significantly higher in symbioses with algae of clade A than of clade B, suggesting that the genetically different algae in C. gigantea are not functionally equivalent. Symbioses with mixed infections yielded intermediate values, such that this functional trait of the symbiosis can be predicted from the traits of the contributing algae. Coral and sea anemone symbioses with Symbiodinium break down at elevated temperature, a process known as 'coral bleaching'. The functional response of the C. gigantea symbiosis to heat stress varied between the algae of clades A and B, with particularly depressed incorporation of photosynthetic carbon into lipid of the clade B algae, which are more susceptible to high temperature than the algae of clade A. This study provides a first exploration of how the core symbiotic function of photosynthate transfer to the host varies with the genotype of Symbiodinium, an algal symbiont which underpins corals and, hence, coral reef ecosystems.

  10. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    KAUST Repository

    Wild, Christian

    2014-09-16

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  11. Spatiotemporal associations of reservoir nutrient characteristics and the invasive, harmful alga Prymnesium parvum in West Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.

  12. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at

  13. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae.

    Science.gov (United States)

    Barott, Katie L; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L; Vermeij, Mark J A; Smith, Jennifer E; Rohwer, Forest L

    2012-04-22

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs.

  14. Can stormwater be detected by algae in an urban reef in Hawai‘i?

    International Nuclear Information System (INIS)

    Erin Cox, T.; Smith, Celia M.; Popp, Brian N.; Foster, Michael S.; Abbott, Isabella A.

    2013-01-01

    Highlights: • Invasive and native algae are a part of a reef assemblage located in an urban area. • Algal nitrogen (N) composition tested if N was enriched from storm-drain outlets. • Elevated N values indicated a mixed, high nutrient environment. • Storm-drains as plausible nitrogenous source was not supported. • Temporal and spatial values indicate algae incorporated terrestrial derived N. -- Abstract: Nitrogen (N) enrichment of tropical reefs can result in the dominance of invasive algae. The invasive alga Acanthophora spicifera and the native alga Laurencia nidifica are part of a diverse reef assemblage in ‘Ewa Beach, O‘ahu. Their N contents and δ 15 N values were investigated to determine if N was enriched and to evaluate potential nitrogenous sources near and removed from storm-drain outlets. δ 15 N values of algae (3.8–17.7‰) were within and above the range for algae around the island (1.9–11.9‰). Elevated algae N isotope values (δ 15 N > +7‰, [N] > 1.6%) and seawater nitrate + nitrite levels (0.59–7.93 μM) indicated a mixed, high nutrient environment. The overlap in δ 15 N values with multiple nitrogenous sources precluded identification. However, spatial and temporal patterns did not support stormwater as the dominant, nitrogenous source. Patterns were congruent with algal incorporation of terrestrial derived N, subjected to a high degree of biogeochemical cycling

  15. Competitive interactions between corals and turf algae depend on coral colony form.

    Science.gov (United States)

    Swierts, Thomas; Vermeij, Mark Ja

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral-turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship.

  16. Detection of viability of micro-algae cells by optofluidic hologram pattern.

    Science.gov (United States)

    Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.

  17. Turf algae-mediated coral damage in coastal reefs of Belize, Central America.

    Science.gov (United States)

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

  18. The blue water footprint and land use of biofuels from algae

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Xu, L.; de Vries, G.J.; Hoekstra, Arjen Ysbert

    2014-01-01

    Biofuels from microalgae are potentially important sources of liquid renewable energy. Algae are not yet produced on a large scale, but research shows promising results. This study assesses the blue water footprint (WF) and land use of algae-based biofuels. It combines the WF concept with an energy

  19. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?

    Science.gov (United States)

    de Vries, Jan; de Vries, Sophie; Slamovits, Claudio H; Rose, Laura E; Archibald, John M

    2017-05-01

    The origin of land plants from algae is a long-standing question in evolutionary biology. It is becoming increasingly clear that many characters that were once assumed to be 'embryophyte specific' can in fact be found in their closest algal relatives, the streptophyte algae. One such case is the phenylpropanoid pathway. While biochemical data indicate that streptophyte algae harbor lignin-like components, the phenylpropanoid core pathway, which serves as the backbone of lignin biosynthesis, has been proposed to have arisen at the base of the land plants. Here we revisit this hypothesis using a wealth of new sequence data from streptophyte algae. Tracing the biochemical pathway towards lignin biogenesis, we show that most of the genes required for phenylpropanoid synthesis and the precursors for lignin production were already present in streptophyte algae. Nevertheless, phylogenetic analyses and protein structure predictions of one of the key enzyme classes in lignin production, cinnamyl alcohol dehydrogenase (CAD), suggest that CADs of streptophyte algae are more similar to sinapyl alcohol dehydrogenases (SADs). This suggests that the end-products of the pathway leading to lignin biosynthesis in streptophyte algae may facilitate the production of lignin-like compounds and defense molecules. We hypothesize that streptophyte algae already possessed the genetic toolkit from which the capacity to produce lignin later evolved in vascular plants. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Photobiology of sea ice algae during initial spring growth in Kangerlussuaq, West Greenland

    DEFF Research Database (Denmark)

    Hawes, Ian; Lund-Hansen, Lars Chresten; Sorrell, Brian Keith

    2012-01-01

    We undertook a series of measurements of photophysiological parameters of sea ice algae over 12 days of early spring growth in a West Greenland Fjord, by variable chlorophyll fluorescence imaging. Imaging of the ice–water interface showed the development of ice algae in 0.3–0.4 mm wide brine...