WorldWideScience

Sample records for alfven wave reflection

  1. Alfven wave

    International Nuclear Information System (INIS)

    Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7

  2. Alfven wave heating

    International Nuclear Information System (INIS)

    The physics of Alfven-wave heating is particularly sensitive to the character of the linear mode conversion which occurs at the Alfven resonance layer. Parameter changes can profoundly affect both the location within the plasma and the mechanism for the power absorption. Under optimal conditions the heating power may be absorbed by electron Landau damping and by electron transit-time magnetic pumping in the plasma interior, or by the same processes acting near the resonance layer on the mode-converted kinetic Alfven wave. The method is outlined for computing the coefficients for reflection, transmission and absorption at the resonance layer and some representative results are offered

  3. Reflection and dissipation of Alfv\\'en waves in interstellar clouds

    OpenAIRE

    Pinto, C.; A. Verdini; Galli, D.; Velli, M.

    2012-01-01

    Context: Supersonic nonthermal motions in molecular clouds are often interpreted as long-lived magnetohydrodynamic (MHD) waves. The propagation and amplitude of these waves is affected by local physical characteristics, most importantly the gas density and the ionization fraction. Aims: We study the propagation, reflection and dissipation of Alfv\\'en waves in molecular clouds deriving the behavior of observable quantities such as the amplitudes of velocity fluctuations and the rate of energy ...

  4. Reflection and dissipation of Alfv\\'en waves in interstellar clouds

    CERN Document Server

    Pinto, C; Galli, D; Velli, M

    2012-01-01

    Context: Supersonic nonthermal motions in molecular clouds are often interpreted as long-lived magnetohydrodynamic (MHD) waves. The propagation and amplitude of these waves is affected by local physical characteristics, most importantly the gas density and the ionization fraction. Aims: We study the propagation, reflection and dissipation of Alfv\\'en waves in molecular clouds deriving the behavior of observable quantities such as the amplitudes of velocity fluctuations and the rate of energy dissipation. Methods: We formulated the problem in terms of Els\\"asser variables for transverse MHD waves propagating in a one-dimensional inhomogeneous medium, including the dissipation due to collisions between ions and neutrals and to a nonlinear turbulent cascade treated in a phenomenological way. We considered both steady-state and time-dependent situations and solved the equations of the problem numerically with an iterative method and a Lax-Wendroff scheme, respectively. Results: Alfv\\'en waves incident on overdens...

  5. On the reflection of Alfv\\'en waves and its implication for Earth's core modeling

    CERN Document Server

    Schaeffer, Nathanaël; Cardin, Philippe; Marie, Drouard

    2011-01-01

    Alfv\\'en waves propagate in electrically conducting fluids in the presence of a magnetic field. Their reflection properties depend on the ratio between the kinematic viscosity and the magnetic diffusivity of the fluid, also known as the magnetic Prandtl number Pm. In the special case Pm=1, there is no reflection on an insulating, no-slip boundary, and the wave energy is entirely dissipated in the boundary layer. We investigate the consequences of this remarkable behaviour for the numerical modeling of torsional Alfv\\'en waves (also known as torsional oscillations), which represent a special class of Alfv\\'en waves, in rapidly rotating spherical shells. They consist of geostrophic motions and are thought to exist in the fluid cores of planets with internal magnetic field. In the geophysical limit Pm 0.3, which is the range of values for which geodynamo numerical models operate. As a result, geodynamo models with no-slip boundary conditions cannot exhibit torsional oscillation normal modes.

  6. Nonlinear reflection process of linearly-polarized, broadband Alfv\\'en waves in the fast solar wind

    CERN Document Server

    Shoda, Munehito

    2016-01-01

    Using one-dimensional numerical simulations, we study the elementary process of Alfv\\'{e}n wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfv\\'{e}n wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave-wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfv\\'{e}n wave. In this study we consider a linearly polarized Alfv\\'en wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfv\\...

  7. Turbulence in the sub-Alfv\\'enic solar wind driven by reflection of low-frequency Alfv\\'en waves

    CERN Document Server

    Verdini, A; Buchlin, E

    2009-01-01

    We study the formation and evolution of a turbulent spectrum of Alfv\\'en waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfv\\'enic critical point. The background solar wind is assigned and 2D shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature of reflected waves. Close to the base, these give rise to a flatter and steeper spectrum for the outgoing and reflected waves respectively. At higher heliocentric distance both spectra evolve toward an asymptotic Kolmogorov spectrum. The turbulent dissipation is found to account for at least half of the heating required to sustain the background imposed solar wind and its shape is found to be determined by the reflection-determined turbulent heating below 1.5 solar radii. Therefore reflection and reflection-driven turbulence are shown to play a key role in the accelerationof the fast solar wind and origin of the tur...

  8. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  9. Alfven wave heating and stability

    International Nuclear Information System (INIS)

    Alfven waves in fusion plasmas play an important role in a number of situations. First, in Alfven Wave Heating (AWH) schemes. Second, both theory and experiment have demonstrated the existence of Global Alfven Eigenmodes (GAEs). GAEs have been observed in different tokamaks (PRETEXT, TCA, TEXTOR, etc.) and, more recently, in a stellarator (Wendelstein 7-AS) where they were shown to become unstable under intense Neutral Beam injection. Third, the existence and possible destabilization by fast ions of Toroidicity induced Alfven Eigenmodes (TAEs) has been evidenced both theoretically and experimentally. This destabilization could hamper the operation of a magnetically confined fusion reactor by setting a limit on the number of fusion alpha particles in the plasma. It is therefore crucial to understand the mechanisms leading to the occurrence of the instability and also those that can stabilize the TAEs by increasing the strength of the damping. The aim is to be able to devise possible ways to avoid the instability of Alfven eigenmodes in a region of parameter space that is compatible with the functioning of a fusion reactor. A global perturbative approach is presented to tackle the problem of the linear stability of TAEs. Our model computes the overall wave particle power transfers to the different species and thus could also be applied to the study of alpha power extraction in the presence of Alfven waves. We indicate also how to go beyond the perturbative approach. (author) 15 figs., 38 refs

  10. A new way to convert Alfven waves into heat in solar coronal holes - Intermittent magnetic levitation

    Science.gov (United States)

    Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.

    1992-01-01

    In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.

  11. Dissipation of Alfven wave pulses propagating along dipole magnetic tubes with reflections at the ionosphere

    NARCIS (Netherlands)

    Erkaev, NV; Shaidurov, VA; Semenov, VS; Biernat, HK; Heidorn, D; Lakhina, GS

    2006-01-01

    A ratio of the maximal and minimal cross sections of the magnetic tube (contraction ratio) is a crucial parameter which affects very strongly on reflections of MHD wave pulses propagating along a narrowing magnetic flux tube. In cases of large contraction ratios of magnetospheric magnetic tubes, the

  12. Rogue waves in Alfvenic turbulence

    International Nuclear Information System (INIS)

    Rogue waves, in the form of giant breathers, are shown to develop in the Alfven wave (AW) turbulence regime described by the randomly driven derivative nonlinear Schroedinger equation in the presence of a weak dissipation. The distribution of the instantaneous global maxima of the AW intensity fluctuations is seen to be accurately fitted by power laws, which contrasts with the integrable regime (absence of dissipation and forcing) where the behavior is rather exponential. As the dissipation is reduced, freak waves form less frequently but reach larger amplitudes. -- Highlights: → Rogue wave formation in long-wavelength Alfvenic turbulence. → Huge waves form by quasi-collapse of breathers in presence of weak dissipation. → Amplitude distribution of rogue waves is fitted by power laws. → Possible relation with SLAMS pulses observed near the Earth bow shock.

  13. Spectrum of compressional Alfven waves

    International Nuclear Information System (INIS)

    The spectrum of compressional Alfven eigenmodes localized in the potential well created by a combination of the variation in plasma density and the wave number k/sub perpendicular to/ = m/r, is obtained, and its importance for ratio frequency current drive is discussed. It is found that modes with small parallel wave numbers and frequencies below the ion cyclotron frequency are attractive for current drive

  14. CHROMOSPHERIC EVAPORATION VIA ALFVEN WAVES

    International Nuclear Information System (INIS)

    This paper presents a scenario for the chromospheric evaporation during solar flares, which is inspired by the chain of events leading to the formation of auroral arcs and ionospheric evacuation during magnetospheric substorms. The plasma, ejected from high coronal altitudes during a flare reconnection event, accumulates at the tops of coronal loops by braking of the reconnection flow, possibly by fast shock formation. A high-beta layer forms and distorts the magnetic field. Energy contained in magnetic shear stresses is transported as Alfven waves from the loop-top toward the chromosphere. It is shown that under these conditions the Alfven waves carry enough energy to feed the chromospheric evaporation process. The second subject of this investigation is identification of the most effective energy dumping or wave dissipation process. Several processes are being analyzed: ion-neutral collisions, classical and anomalous field-aligned current dissipation, and critical velocity ionization. All of them are being discarded, either because they turn out to be insufficient or imply very unlikely physical properties of the wave modes. It is finally concluded that turbulent fragmentation of the Alfven waves entering the chromosphere can generate the required damping. The basic process would be phase mixing caused by a strongly inhomogeneous distribution of Alfvenic phase speed and laminar flow breakup by Kelvin-Helmholtz (K-H) instability. The filamentary (fibril) structure of the chromosphere thus appears to be essential for the energy conversion, in which the K-H instability is the first step in a chain of processes leading to ion thermalization, electron heating, and neutral particle ionization. Quantitative estimates suggest that a transverse structure with scales not far below 100 km suffices to produce strong wave damping within a few seconds. Nonthermal broadening of some metallic ion lines observed during the pre-impulsive rise phase of a flare might be a residue of

  15. Toroidal Alfven wave stability in ignited tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.

    1989-01-01

    The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.

  16. Interchange Reconnection Alfven Wave Generation

    CERN Document Server

    Lynch, B J; Li, Y

    2014-01-01

    Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we present further analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfven waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly-open field lines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high frequency component associated with the current sheet/reconnection site and an extended low frequency component associ...

  17. Nonlinear standing Alfven wave current system at Io: Theory

    International Nuclear Information System (INIS)

    We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance Σ/sub A/=1/(μ0V/sub A/(1+M/sub A/2+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance Σ/sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions

  18. Spheromak heating with Alfven waves

    International Nuclear Information System (INIS)

    The temperature of present spheromak plasmas will need to be raised in order to test the feasibility of the confinement concept. In addition, a spatially-selective rf heating pulse can be used to study transport. As the ohmic heating power within a spheromak can be quite large (6-MW), low frequencies where large amounts of power are available are preferred. For the Los Alamos spheromak experiment CTX, we propose to add heating energy via a shear Alfven wave resonance. This resonance can be made to occur upon a particular flux surface, thus depositing most of the energy locally. A 2-dimensional equilibrium code (toroidally symmetric) is used to establish flux surfaces and magnetic field values for the desired configuration, either with or without plasma pressure

  19. Alfven Wave Tomography for Cold MHD Plasmas

    International Nuclear Information System (INIS)

    Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD spectrum is shown to be governed by a matrix linear differential equation with constant coefficients determined by the spectrum of quasi-static plasma density perturbations. The Alfven waves are shown not to affect the plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum evolution equation to the inverse scattering problem allows tomographic measurements of the plasma density profile by scanning the plasma volume with Alfven radiation

  20. Alfven wave. DOE Critical Review Series

    International Nuclear Information System (INIS)

    This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves

  1. Alfven wave. DOE Critical Review Series

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A.; Uberoi, C.

    1982-01-01

    This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)

  2. Alfvenic waves in solar spicules

    Science.gov (United States)

    Ebadi, Hossein

    2016-07-01

    We analyzed O VI (1031.93 A) and O VI (1037.61 A line profiles from the time series of SOHO/SUMER data. The wavelet analysis is used to determine the fundamental mode and its first harmonic periods and their ratio. The period ratio, P_1/P_2 is obtained as 2.1 based on our calculations. To model the spicule oscillations, we consider an equilibrium configuration in the form of an expanding straight magnetic flux tube with varying density along tube. We used cylindrical coordinates r, phi, and z with the z-axis along tube axis. Standing Alfvenic waves with steady flows are studied. More realistic background magnetic field, plasma density, and spicule radios inferred from the actual magnetoseismology of observations are used. It is found that the oscillation periods and their ratio are shifted because of the steady flows. The observational values are reached in P_1/P_2, when the steady flows are 0.2-0.3, the values which are reported for classical spicules.

  3. Plasma heating by kinetic Alfven wave

    International Nuclear Information System (INIS)

    The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author)

  4. On Alfven waves in the solar breeze

    International Nuclear Information System (INIS)

    The application to the solar wind motivates the consideration of Alfven waves in a radial background magnetic field and radial mean flow, in two cases, viz., with velocity and magnetic field perturbations along parallels, or also with perturbations along meridians, combined in the radial components of vorticity and electric current. In both cases the same second-order Alfven wave equation is obtained; it has, in general, two singularities. If the mean flow velocity is taken to be a power of radial distance, with exponent other than zero or unity, there is a transition layer. In general there is a second singularity, viz., a critical layer, where the Alfven speed equals the mean flow velocity. There is one exceptional case in which the critical layer does not exist, namely a homogeneous medium, for which the mean flow velocity decays on the inverse square of the radial distance, and then Alfven speed also decays in the same way, so that their ratio is a constant, leading to two possibilities: (i) the ratio is not unity, and the wave equation remains of the second-order; (ii) the wave equation becomes of first-order in the case the mean flow velocity and Alfven speed are equal everywhere, because then the waves can propagate only in one direction. Case (i) corresponds to Alfven waves in the solar breeze. Exact solutions of the wave equations are obtained for all values of the radius, as a single expression for the first-order wave equation, whereas for the second-order wave equation it is possible to obtain solutions for small and large radius; the transition level limits the radius of convergence of one of these solutions, but the two solutions together cover the full range of radial distances. The choices of boundary conditions are discussed and the wavefields plotted vs dimensionless distance for several values of the two dimensionless parameters of the problem, viz., the Alfven number and dimensionless frequency, which appear in one combination only. The

  5. Current generation by the Kinetic Alfven wave

    International Nuclear Information System (INIS)

    The current generated and the efficiency of the shear Kinetic Alfven wave are obtained using a self-consistent quasilinear formulation. Also, the current generation by the monochromatic shear Kinetic Alfven wave introduced by Hasegawa is re-examined taking into account the nonresonant electrons. To obtain the RF current density at the level of the ohmic heating current density in a tokamak, the required external magnetic field is smaller than 0.1% of the DC magnetic field, and the parallel electric field (E2), using the Lausanne-TCA-Tokamak parameters is of the order of 0.01 V cm-1. (author)

  6. Alfven wave heating of a theta pinch

    International Nuclear Information System (INIS)

    The process of shear Alfven wave resonant absorption for plasma heating has been applied to a theta pinch. The m=1 mode is excited by means of a helical launching structure with a given wavelength, at a number of different frequencies. When the frequency lies in the continuous Alfven spectrum the kink energy is transferred to the Alfven wave and then is rapidly thermalized. The heating power is measured by a diamagnetic probe. It is shown that the probe signal can be treated as a thermodynamic variable permitting an exact energy balance to be deduced. The measured resonance curve of the heating power is in agreement with the predicted behaviour. A 50% efficiency is achieved and the coupling between the plasma and the external circuit is strong, in spite of the high compression ratio. (author)

  7. Stationary nonlinear Alfven waves and solitons

    Science.gov (United States)

    Hada, T.; Kennel, C. F.; Buti, B.

    1989-01-01

    Stationary solutions of the derivative nonlinear Schroedinger equation are discussed and classified by using a pseudopotential formulation. The solutions consist of a rich family of nonlinear Alfven waves and solitons with parallel and oblique propagation directions. Expressions for the envelope and the phase of nonlinear waves with periodic envelope modulation, and 'hyperbolic' and 'algebraic' solitons are given. The propagation angle for the slightly modulated elliptic, periodic waves and for oblique solitons is evaluated.

  8. The use of Alfven waves in NET

    International Nuclear Information System (INIS)

    A number of features of Alfven wave heating make it potentially attractive for use in large tokamac reactors. Among them are the availability and relatively low cost of the power supplies, the potential ability to act selectively on the current profile, and the probable absence of operational limits in size, fields or density. (author) 26 figs., 10 tabs., 54 refs

  9. The nonlinear compressional Alfven wave equation

    International Nuclear Information System (INIS)

    The nonlinear wave equation of the compressional Alfven mode is derived in Lagrangian fluid coordinate. The nonlinearity attributes unequal weight to the terms of temporal and spatial derivatives. Two specific solutions relevant to transit-time magnetic pumping plasma heating and theta-pinch implosions are given. (Author)

  10. Effects of small wavenumber Alfven waves on particle acceleration

    International Nuclear Information System (INIS)

    Energetic charged particles are accelerated by turbulent Alfven waves via resonant interaction. We discuss effects of nonresonant Alfven waves on energy diffusion by using test particle simulations. When the Alfven waves are given at wavenumbers larger than the resonant wavenumber with small amplitude, simulated diffusion coefficient is similar to that by the quasi-linear theory. If the Alfven waves are added at wavenumbers smaller than the resonant wavenumber, it is found that the simulated diffusion coefficient exceeds the quasi-linear one and becomes larger with increasing the energy density of the nonresonant Alfven waves. (author)

  11. Alfven wave studies on a tokamak

    International Nuclear Information System (INIS)

    The continuum modes of the shear Alfven resonance are studied on the Tokapole II device, a small tokamak operated in a four node poloidal divertor configuration. A variety of antenna designs and the efficiency with which they deliver energy to the resonant layer are discussed. The spatial structure of the driven waves is studied by means of magnetic probes inserted into the current channel. In an attempt to optimize the coupling of energy in to the resonant layer, the angle of antenna currents with respect to the equilibrium field, antenna size, and plasma-to-antenna distance are varied. The usefulness of Faraday shields, particle shields, and local limiters are investigated. Antennas should be well shielded, either a dense Faraday shield or particle shield being satisfactory. The antenna should be large and very near to the plasma. The wave magnetic fields measured show a spatial resonance, the position of which varies with the value of the equilibrium field and mass density. They are polarized perpendicular to the equilibrium field. A wave propagates radially in to the resonant surface where it is converted to the shear Alfven wave. The signal has a short risetime and does not propagate far toroidally. These points are all consistent with a strongly damped shear Alfven wave. Comparisons of this work to theoretical predictions and results from other tokamaks are made

  12. Effect of longitudinal modulation of Alfven wave filamentation

    International Nuclear Information System (INIS)

    The modulation of circularly polarized Alfven waves due to quasitransverse perturbations is addressed, and the nonlinear dynamics simulated numerically. In some instances, radial collapse (filamentation) of Alfven waves can be arrested by the magnetosonic waves stirred by the ponderomotive force. Such waves may, however, develop sharp fronts leading to strong hydrodynamic effects

  13. Excitation of Alfven Waves and Pulsar Radio Emission

    OpenAIRE

    Lyutikov, Maxim

    1999-01-01

    We analyze mechanisms of the excitation of Alfv\\'{e}n wave in pulsar magnetospheres as a possible source of pulsar radio emission generation. We find that Cherenkov excitation of obliquely propagating Alfv\\'{e}n waves is inefficient, while excitation at the anomalous cyclotron resonance by the particles from the primary beam and from the tail of the bulk distribution function may have a considerable growth rate. The cyclotron instability on Alfv\\'{e}n waves occurs in the kinetic regime still ...

  14. Alfven waves: a journey between space and fusion plasmas

    International Nuclear Information System (INIS)

    Alfven waves discovered by Hannes Alfven (1942 Nature 150 405) are fundamental electromagnetic oscillations in magnetized plasmas existing in the nature and laboratories. Alfven waves play important roles in the heating, stability and transport of plasmas. The anisotropic nearly incompressible shear Alfven wave is particularly interesting since, in realistic non-uniform plasmas, its wave spectra consist of both the regular discrete and the singular continuous components. In this Alfven lecture, I will discuss these spectral properties and examine their significant linear and nonlinear physics implications. These discussions will be based on perspectives from my own research in both space and laboratory fusion plasmas, and will demonstrate the positive feedback and cross-fertilization between these two important sub-disciplines of plasma physics research. Some open issues of nonlinear Alfven wave physics in burning fusion as well as magnetospheric space plasmas will also be explored.

  15. Solitary kinetic Alfven waves in adiabatic process

    International Nuclear Information System (INIS)

    Solitary kinetic Alfven waves (SKAWs) have been an important subject in the field of space plasma physics because of their nonzero parallel electrical field and density fluctuations. Under different thermodynamic processes, SKAWs, within the limit of small amplitude, are studied analytically and numerically using the Sagdeev potential method. The results show that the width of the solitary structures is larger and the amplitude of the density humps is smaller under constant entropy than those under constant temperature with other relevant parameters being the same. The perturbed electromagnetic fields Ex, By, and Ez are also studied further.

  16. Nonlinear propagation of short wavelength drift-Alfven waves

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...

  17. HLL Riemann Solvers and Alfven Waves in Black Hole Magnetospheres

    CERN Document Server

    Punsly, Brian; Kim, Jinho; Garain, Sudip

    2016-01-01

    In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. However, numerical simulations of black hole magnetospheres are often based on 1-D HLL Riemann solvers that readily dissipate Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, it is unclear how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. The HLL Riemann solver is also notorious for producing large recurring...

  18. Development of Alfven wave antenna system for TCABR Tokamak

    International Nuclear Information System (INIS)

    The advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak is presented. The antenna system is capable of exciting the travelling waves M=- 1, N=-4, -6 with single helicity and provides the possibility to improve Alfven wave plasma heating efficiency and to increase RF power input up 1 MW, without an uncontrolled density rise. The basic features of the antenna design and the results of preliminary tests are analyzed. (author)

  19. Inertial Alfven waves in an inhomogeneous bi-Maxwellian plasma

    International Nuclear Information System (INIS)

    The Vlasov kinetic equation is solved using gyrokinetic theory and the dielectric tensor for non-relativistic, magnetized, bi-Maxwellian plasmas is calculated. A generalized dispersion relation for kinetic Alfven waves is derived taking into account the density inhomogeneity and temperature anisotropy. The modified dispersion relation thus obtained is then used to examine the propagation characteristics of the kinetic Alfven waves in the inertial regime. The importance of density inhomogeneity and temperature anisotropy for Solar corona is highlighted. The growth rate of the inertial Alfven wave proves that density inhomogeneity acts as a source of free energy.

  20. A laboratory search for plasma erosion by Alfven waves

    Science.gov (United States)

    Vincena, S.; Gekelman, W.; Pribyl, P.

    2007-12-01

    Obliquely propagating shear Alfven waves with transverse wavelengths on the order of the electron inertial length or even the ion gyro-radius are commonly observed in the earth's low-altitude auroral zones. These regions are also replete with observations of electron beams and transversely heated ions. A kinetic treatment of shear Alfven wave-particle interaction reveals how these waves can be responsible for some of the observed particle acceleration. The auroral plasma environment is further enriched by the presence of field-aligned depletions in plasma density, and it has been suggested* that the Alfven waves may, in fact, be the cause of the erosion of ionospheric density. In this laboratory experiment, shear waves will be launched using a variety of proven antennas, and also allowed to grow spontaneously as Drift-Alfven modes in seeded density depletions**. Detailed measurements of the wave magnetic fields in the perpendicular density gradient regions will be presented which demonstrate the generation of short perpendicular wave scales due to the perpendicular gradient in parallel wave phase speed. Miniature in-situ particle diagnostics will also be used to look for electron and ion acceleration. The waves will also be launched into an increasing region of background magnetic field in an attempt to model the ratios of Alfven speed to electron thermal speed, and density gradient scale length to electron inertial length appropriate to the earth's auroral zone. Preliminary results will be presented on the efficacy of shear Alfven waves to self-generate plasma density depletions, or deepen ambient density inhomogeneities. The experiments are conducted at UCLA's Basic Plasma Science Facility in the Large Plasma Device. *Chaston, et al., "Ionospheric erosion by Alfven Waves," JGR, V 111, A03206, 2006. **Penano, et al., "Drift-Alfven fluctuations associated with a narrow pressure striation," Phys. Plasmas, V 7, Issue 1, pp. 144-157 (2000).

  1. The Source of Alfven Waves That Heat the Solar Corona

    Science.gov (United States)

    Ruzmaikin, A.; Berger, M. A.

    1998-01-01

    We suggest a source for high-frequency Alfven waves invoked in coronal heating and acceleration of the solar wind. The source is associated with small-scale magnetic loops in the chromospheric network.

  2. Alfven wave cascades in a tokamak

    International Nuclear Information System (INIS)

    Experiments designed for generating internal transport barriers in the plasmas of the Joint European Torus [JET, P. H. Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11] reveal cascades of Alfven perturbations with predominantly upward frequency sweeping. These experiments are characterized by a hollow plasma current profile, created by lower hybrid heating and current drive before the main heating power phase. The cascades are driven by ions accelerated with ion cyclotron resonance heating (ICRH). Each cascade consists of many modes with different toroidal mode numbers and different frequencies. The toroidal mode numbers vary from n=1 to n=6. The frequency starts from 20 to 90 kHz and increases up to the frequency range of toroidal Alfven eigenmodes. In the framework of ideal magnetohydrodynamics (MHD) model, a close correlation is found between the time evolution of the Alfven cascades and the evolution of the Alfven continuum frequency at the point of zero magnetic shear. This correlation facilitates the study of the time evolution of both the Alfven continuum and the safety factor, q(r), at the point of zero magnetic shear and makes it possible to use Alfven spectroscopy for studying q(r). Modeling shows that the Alfven cascade occurs when the Alfven continuum frequency has a maximum at the zero shear point. Interpretation of the Alfven cascades is given in terms of a novel-type of energetic particle mode localized at the point where q(r) has a minimum. This interpretation explains the key experimental observations: simultaneous generation of many modes, preferred direction of frequency sweeping, and the absence of strong continuum damping

  3. Alfven wave heating of current-carrying plasmas

    International Nuclear Information System (INIS)

    Alfven wave heating involves the excitation, by antenna currents, of MHD waves which mode convert to short wavelength quasi-electrostatic waves (QEW) at the Alfven resonance position. Over the past few years the authors developed the computer code ANTENNA which solves the kinetic theory equations that describe this process for a cylindrical model of a tokamak. Recently, the following improvements have been made to the code: Antennas with radial current elements can now be treated; arbitrary density and temperature profiles can be analysed; the kinetic theory wave equations have been formulated for arbitrary force-free plasma-current distributions

  4. Interplanetary Alfven waves and auroral (substorm) activity: IMP 8

    International Nuclear Information System (INIS)

    Almost year of IMP 8 interplanetary magnetic field and plasma data (Days 1-312, 1979) have been examined to determine the interplanetary causes of geomagnetic AE activity. The nature of the interplanetary medium (Alfvenic or non-Alfvenic) and the B2 correlation with AE were examined over 12-hour increments throughout the study. It is found that Alfvenic wave intervals (defined as Vx-Bx cross-correlation coefficients of >0.6) are present over 60% of the time and the southward component of the Alfven waves is well correlated with AE (average peak correlation coefficient 0.62), with a median lag of 43 min. The most probable delay of AE from Bs is considerably shorter, about 20-25 min. Southward magnetic fields during non-Alfvenic intervals (Vx-Bx cross-correlation coefficients of s were variable from event to event (and at different times within the Alfven wave train), ranging from 45 min to as little as 0 min. The cause of this variable delay is somewhat surprising and is not presently well understood

  5. Stable Alfven wave dynamo action in the reversed field pinch

    International Nuclear Information System (INIS)

    Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. Static quasi-linear Alfven wave calculations have shown that dynamo emfs on the order of eta vector J are possible. This suggested a possible explanation of RFP behavior and a new (externally driven) mechanism for extending operation and controlling field profiles (possibly reducing plasma transport). This thesis demonstrates that the dynamo emf can quickly induce plasma currents whose emf cancels the dynamo effect. This thesis also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  6. Ion temperature in plasmas with intrinsic Alfven waves

    Science.gov (United States)

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2014-10-01

    This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.

  7. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  8. Nonlinear Alfven waves and solitons in cold plasma

    International Nuclear Information System (INIS)

    A finite-zone sector for the derivative nonlinear Schroedinger equation, which describes nonlinear small-amplitude. Alfven waves in the long-wave approximation, is investigated. The formulas for periodic one-phase and one-soliton solutions and the general formula for an n-soliton solution envelope are obtained

  9. KINETIC ALFVEN WAVES EXCITED BY OBLIQUE MAGNETOHYDRODYNAMIC ALFVEN WAVES IN CORONAL HOLES

    International Nuclear Information System (INIS)

    Kinetic Alfven waves (KAWs) are small-scale dispersive AWs that can play an important role in particle heating and acceleration of space and solar plasmas. An excitation mechanism for KAWs created by the coupling between large-scale oblique AWs and small-scale KAWs is presented in this paper. Taking into account both the collisional and Landau damping dissipations, the results show that the net growth rate of the excited KAWs increases with their perpendicular wavenumber kperpendicular and reaches maximum at λe kperpendicular ∼ 0.3, where λe is the electron inertial length. However, for KAWs with shorter perpendicular wavelengths, the net growth rate decreases rapidly due to dissipative effects. The evaluation of the threshold amplitude of the AW implies that for KAWs with λe kperpendicular e kperpendicular < 0.3 can be not only efficiently excited in the interplume region but also strongly dissipated in the dense plume due to the Landau damping.

  10. First Results of PIC Modeling of Kinetic Alfven Wave Dissipation

    Science.gov (United States)

    Chulaki, Anna; Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.

  11. Resonant Alfven wave instabilities driven by streaming fast particles

    International Nuclear Information System (INIS)

    A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs

  12. Quantum effects on compressional Alfven waves in compensated semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Amin, M. R. [Department of Electronics and Communications Engineering, East West University, Aftabnagar, Dhaka 1212 (Bangladesh)

    2015-03-15

    Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.

  13. Heating and Acceleration of the Fast Solar Wind by Alfv\\'{e}n Wave Turbulence

    CERN Document Server

    van Ballegooijen, A A

    2016-01-01

    We present numerical simulations of reduced magnetohydrodynamic (RMHD) turbulence in a magnetic flux tube at the center of a polar coronal hole. The model for the background atmosphere is a solution of the momentum equation, and includes the effects of wave pressure on the solar wind outflow. Alfv\\'{e}n waves are launched at the coronal base, and reflect at various heights due to variations in Alfv\\'{e}n speed and outflow velocity. The turbulence is driven by nonlinear interactions between the counter-propagating Alfv\\'{e}n waves. Results are presented for two models of the background atmosphere. In the first model the plasma density and Alfv\\'{e}n speed vary smoothly with height, resulting in minimal wave reflections and low energy dissipation rates. We find that the dissipation rate is insufficient to maintain the temperature of the background atmosphere. The standard phenomenological formula for the dissipation rate significantly overestimates the rate derived from our RMHD simulations, and a revised formu...

  14. Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion

    International Nuclear Information System (INIS)

    Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs

  15. The Modulation of Ionospheric Alfven Resonator on Heating HF Waves and the Doppler Effect

    Institute of Scientific and Technical Information of China (English)

    NiBin-bin; ZhaoZheng-yu; XieShu-guo

    2003-01-01

    The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature varia-tions on the Alfven resonant field, We discuss the mechanism of the modulation effect and lucubrate possible reasons for the Doppler effect. The results show that the Alfven resonant field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR on HF waves has a quasi-quadratic relation with the Alfven field, which directly inspires the formation of cross-spectrum between ULF waves and HF waves and results in spectral peaks at some gyro-frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high-speed flyer and the drifting electrons and the frequency shift from the phase vari-ation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.

  16. Nonlinear absorption of Alfven wave in dissipative plasma

    Energy Technology Data Exchange (ETDEWEB)

    Taiurskii, A. A., E-mail: tayurskiy2001@mail.ru; Gavrikov, M. B., E-mail: nadya-p@cognitive.ru [Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 4 Miusskaya sq. Moscow 125047 (Russian Federation)

    2015-10-28

    We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.

  17. Nonlinear absorption of Alfven wave in dissipative plasma

    International Nuclear Information System (INIS)

    We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations

  18. Simulation of the interaction between Alfven waves and fast particles

    International Nuclear Information System (INIS)

    There is a wide variety of Alfven waves in tokamak and stellarator plasmas. While most of them are damped, some of the global eigenmodes can be driven unstable when they interact with energetic particles. By coupling the MHD code CKA with the gyrokinetic code EUTERPE, a hybrid kinetic-MHD model is created to describe this wave-particle interaction in stellarator geometry. In this thesis, the CKA-EUTERPE code package is presented. This numerical tool can be used for linear perturbative stability analysis of Alfven waves in the presence of energetic particles. The equations for the hybrid model are based on the gyrokinetic equations. The fast particles are described with linearized gyrokinetic equations. The reduced MHD equations are derived by taking velocity moments of the gyrokinetic equations. An equation for describing the Alfven waves is derived by combining the reduced MHD equations. The Alfven wave equation can retain kinetic corrections. Considering the energy transfer between the particles and the waves, the stability of the waves can be calculated. Numerically, the Alfven waves are calculated using the CKA code. The equations are solved as an eigenvalue problem to determine the frequency spectrum and the mode structure of the waves. The results of the MHD model are in good agreement with other sophisticated MHD codes. CKA results are shown for a JET and a W7-AS example. The linear version of the EUTERPE code is used to study the motion of energetic particles in the wavefield with fixed spatial structure, and harmonic oscillations in time. In EUTERPE, the gyrokinetic equations are discretized with a PIC scheme using the delta-f method, and both full orbit width and finite Larmor radius effects are included. The code is modified to be able to use the wavefield calculated externally by CKA. Different slowing-down distribution functions are also implemented. The work done by the electric field on the particles is measured to calculate the energy transfer

  19. Looking for Cosmological Alfven Waves in WMAP Data

    OpenAIRE

    Chen, Gang; Mukherjee, Pia; Kahniashvili, Tina; Ratra, Bharat; Wang, Yun

    2004-01-01

    A primordial cosmological magnetic field induces and supports vorticity or Alfven waves, which in turn generate cosmic microwave background (CMB) anisotropies. A homogeneous primordial magnetic field with fixed direction induces correlations between the $a_{l-1,m}$ and $a_{l+1,m}$ multipole coefficients of the CMB temperature anisotropy field. We discuss the constraints that can be placed on the strength of such a primordial magnetic field using CMB anisotropy data from the WMAP experiment. W...

  20. Resonant energy conversion of 3-minute intensity oscillations into Alfven waves in the solar atmosphere

    CERN Document Server

    Kuridze, D

    2007-01-01

    Nonlinear coupling between 3-minute oscillations and Alfven waves in the solar lower atmosphere is studied. 3-minute oscillations are considered as acoustic waves trapped in a chromospheric cavity and oscillating along transversally inhomogeneous vertical magnetic field. It is shown that under the action of the oscillations the temporal dynamics of Alfven waves is governed by Mathieu equation. Consequently, the harmonics of Alfven waves with twice period and wavelength of 3-minute oscillations grow exponentially in time near the layer where the sound and Alfven speeds equal. Thus the 3-minute oscillations are resonantly absorbed by pure Alfven waves near this resonant layer. The resonant Alfven waves may penetrate into the solar corona taking energy from the chromosphere. Therefore the layer c_s=v_A may play a role of energy channel for otherwise trapped acoustic oscillations.

  1. Torsional Alfv\\'en waves in solar partially ionized plasma: effects of neutral helium and stratification

    OpenAIRE

    Zaqarashvili, T. V.; Khodachenko, M. L.; Soler, R.

    2012-01-01

    Ion-neutral collisions may lead to the damping of Alfven waves in chromospheric and prominence plasmas. Neutral helium atoms enhance the damping in certain temperature interval, where the ratio of neutral helium and neutral hydrogen atoms is increased. Therefore, the height-dependence of ionization degrees of hydrogen and helium may influence the damping rate of Alfven waves. We aim to study the effect of neutral helium in the damping of Alfven waves in stratified partially ionized plasma of ...

  2. Enhanced phase mixing of Alfv\\'en waves propagating in stratified and divergent coronal structures

    OpenAIRE

    Smith, P. D.; Tsiklauri, D.; Ruderman, M. S.

    2007-01-01

    Corrected analytical solutions describing the enhanced phase mixing of Alfven waves propagating in divergent stratified coronal structures are presented. These show that the enhanced phase mixing mechanism can dissipate Alfven waves at heights less than half that is predicted by the previous analytical solutions. The enhanced phase mixing of 0.1 Hz harmonic Alfven waves propagating in strongly divergent, H_b=5 Mm, stratified coronal structures, H_rho=50 Mm, can fulfill 100% of an active regio...

  3. Alfv\\'en waves in simulations of solar photospheric vortices

    CERN Document Server

    Shelyag, S; Reid, A; Mathioudakis, M

    2013-01-01

    Using advanced numerical magneto-hydrodynamic simulations of the magnetised solar photosphere, including non-grey radiative transport and a non-ideal equation of state, we analyse plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit "tornado"-like behaviour or a "bath-tub" effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetised intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfv\\'en perturbations propagating along the nearly vertical magnetic field lines with local Alfv\\'en speed.

  4. Analysis of Alfven Wave Activity in KSTAR Plasmas

    International Nuclear Information System (INIS)

    Full text: We report on evidence of neutral beam driven wave activity in KSTAR plasmas. In 2010 and 2011 campaigns KSTAR plasmas included 1MW of neutral beam heating, which provided drive for Alfvenic wave activity modes. Data from the 2010 campaign, which was fully analysed during 2011, identifies the 40 kHz magnetic fluctuations as a β-induced Alfven eignemode resonant with the q = 1 surface. Evidence is multiple fold: a Fourier mode analysis identifies the mode as n = 1. Electron cyclotron emission chords identify the q = 1 inversion radius. These constrain equilibrium reconstruction, and permit detailed MHD calculations using the global MHD stability code MISHKA. A scan of mode frequency near the q = 1 minimum of the continuum identifies a core localised n = 1 mode separated from the continuum. A complementary kinetic analysis, when coupled with ion and electron temperature measurements ratios obtain from crystallography, enables calculation of the frequency evolution - which is in agreement with observations. In 2011 a series of experiments were conducted to scope Alfven excitation using NBI and ECRH heating as a function of field strength and plasma current. In these experiments plasmas with toroidal current up to 600 kA were generated with 1.5 MW of NBI heating and up to 120 kW of co or counter ECRH, and the field strength varied from 1.7 T to 2 T. Spectral and mode number analysis of the magnetics data identifies 150 - 250 kHz coherent activity with a toroidal mode number of n = 1. Assuming a poloidal mode number of m = 1, we have computed the evolution of the toroidal Alfven eigenmode (TAE) middle of the gap frequency, and compared the frequency evolution to magnetic spectrograms. While the frequency of the mode is above the Nyquist frequency, the aliased frequency tracks the observations to within 20%, providing some confidence of a TAE interpretation. Finally, we also report evidence of ion fishbone activity. (author)

  5. Modulational instability of finite-amplitude, circularly polarized Alfven waves

    Science.gov (United States)

    Derby, N. F., Jr.

    1978-01-01

    The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.

  6. Characteristics of Short-wavelength Oblique Alfven and Slow waves

    CERN Document Server

    Zhao, J S; Yu, M Y; Lu, J Y; Wu, D J

    2014-01-01

    Linear properties of kinetic Alfv\\'en waves (KAWs) and kinetic slow waves (KSWs) are studied in the framework of two-fluid magnetohydrodynamics. We obtain the wave dispersion relations that are valid in a wide range of the wave frequency {\\omega} and plasma-to-magnetic pressure ratio {\\beta}. The KAW frequency can reach and exceed the ion cyclotron frequency at ion kinetic scales, whereas the KSW frequency remains sub-cyclotron. At {\\beta}\\sim1, the plasma and magnetic pressure perturbations of both modes are in anti-phase, so that there is nearly no total pressure perturbations. However, these modes exhibit several different properties. At high {\\beta}, the electric field polarization of KAW and KSW is opposite at the ion gyroradius scale, where KAWs are polarized in sense of electron gyration (right-hand polarized) and KSWs are left-hand polarized. The magnetic helicity {\\sigma}\\sim1 for KAWs and {\\sigma}\\sim-1 for KSWs, and the ion Alfv\\'en ratio R_{Ai}\\ll 1 for KAWs and R_{Ai}\\gg 1 for KSWs. We also found...

  7. Emission of Alfven Waves by Planets in Close Orbits

    Science.gov (United States)

    MacGregor, Keith B.; Pinsonneault, M. H.

    2011-01-01

    We examine the electrodynamics of a conducting planet orbiting within a magnetized wind that emanates from its parent star. When the orbital motion differs from corotation with the star, an electric field exists in the rest frame of the planet, inducing a charge separation in its ionosphere. Because the planet is immersed in a plasma, this charge can flow away from it along the stellar magnetic field lines it successively contacts in its orbit. For sufficiently rapid orbital motion, a current system can be formed that is closed by Alfvenic disturbances that propagate along field lines away from the planet. Using a simple model for the wind from a Sun-like star, we survey the conditions under which Alfven wave emission can occur, and estimate the power radiated in the form of linear waves for a range of stellar, planetary, and wind properties. For a Jupiter-like planet in a close (a type star, the emitted wave power can be as large as 1027 erg/s. While only a small influence on the planet's orbit, a wave power of this magnitude may have consequences for wind dynamics and localized heating of the stellar atmosphere. NCAR is sponsored by the NSF.

  8. Interplanetary Alfven waves inducing ionospheric disturbances observed by GPS data

    International Nuclear Information System (INIS)

    Complete text of publication follows. Interplanetary Alfven waves appear in satellite data as high-amplitude, fast oscillations in the interplanetary magnetic field and solar wind velocity components. The waves are more often present in high speed solar wind streams emanating from coronal holes. For a long time, these Alfven waves were not believed as able to produce geomagnetic responses due to the absence of a strong and sustained southward Bz (Bs) interplanetary magnetic field. But in 1987, Tsurutani and Gonzalez showed that these structures were responsible by intense and long-lasting auroral activity (observable through the AE index). However, these phenomena were not strong enough to produce significant ring current intensification (measured by the middle/low latitude Dst index). In this work we analyze three intervals of strong auroral activity related to interplanetary Alfven waves outside main phases of geomagnetic storms. These events occurred in the years 2002, 2003, and 2005. The ionospheric effects were observed through the vertical Total Electron Content (TEC) data from GPS receivers. Data from three GPS stations were employed in this study: Porto Alegre (POAL, Brazil, Lat. 30.1deg S, Long. 51.1deg W, Dip Lat. 20.7deg S, LT=UT-3 h), Bahia Blanca (VBCA, Argentina, Lat 38.7deg S, Long. 62.3deg W, Dip Lat. 22.4deg S, LT=UT-4 h), and Rio Grande (RIOG, Argentina, Lat. 53.6deg S, Long. 67.8deg W, Dip Lat. 43.6deg S, LT=UT-4 h). For each event three quiet days around the date were used to calculate the VTEC average and standard deviation. These values were assumed as reference for disturbed intervals comparisons. For the three selected intervals we observed VTEC increases in all the analyzed stations. The VTEC values may reach over 50% increases compared to quiet day values. Another remarkable observation is that the POAL station (the most equatorward station) always presents higher increases than the other stations. This effect is reduced as the latitude

  9. Nonlinear astrophysical Alfven waves - Onset and outcome of the modulational instability

    Science.gov (United States)

    Spangler, S. R.

    1985-01-01

    The nonlinear development of Alfven waves is numerically studied, with applications to Alfven waves in astrophysical plasmas. It is found that amplitude-modulated Alfven wave packets undergo a collapse instability in which the wave packets become more intense and of smaller spatial extent. The wave packet steepening is eventually halted in a process most aptly described as soliton formation. A simple analytic model based on the method of characteristics can account for many of the results of the numerical calculations. The instability probably cannot prevent particle pitch angle isotropization due to self-generated Alfven waves. Nonlinear effects of the collapse may modify the process by which energetic electrons are reaccelerated by plasma turbulence. The model calculations can semiquantitatively account for properties of shock-associated Alfven waves in the solar system.

  10. Drift-Kinetic Alfven Waves Observed near a Reconnection X Line in the Earth's Magnetopause

    International Nuclear Information System (INIS)

    We identify drift-kinetic Alfven waves in the vicinity of a reconnection X line on the Earth's magnetopause. The dispersive properties of these waves have been determined using wavelet interferometric techniques applied to multipoint observations from the Cluster spacecraft. Comparison of the observed wave dispersion with that expected for drift-kinetic Alfven waves shows close agreement. The waves propagate outwards from the X line suggesting that reconnection is a kinetic Alfven wave source. Energetic O+ ions observed in these waves indicate that reconnection is a driver of auroral ion outflow

  11. Density Limit in TCABR Plasmas With Alfven Wave Heating

    International Nuclear Information System (INIS)

    Alfven Waves (AW) were launched in tokamak (TCABR) density limit plasmas for the first time. Experimental evidence of plasma heating is backed up by calculations from an 1-D numerical cylindrical code, based on the toroidal electric field diffusion. Simultaneously, increase in the density limit and plasma pressure with negligible impurities level launched by the AW antennas were also observed, without major appearance of a resistive disruption. The increase in the density limit and the heating might be related to the expected edge and off-axis AW power deposition, respectively, in agreement with the calculation performed by an 1-D numerical code linked to ASTRA

  12. Effect of the radial electric field, induced by Alfven waves, on transport processes in tokamaks

    International Nuclear Information System (INIS)

    We demonstrate that Alfven waves may be the convenient trigger for the formation and maintenance of edge and internal transport barriers due to their small radial localizations. Kinetic Alfven waves can also provide a mechanism for squeezing the banana orbits of ions in collisional plasmas of tokamaks. It is shown that the radial electric field, induced by Alfven waves, at some conditions has a nonlinear dependence on the radio-frequency absorbed power. The dependence of the ion heat conductivity and of the ion poloidal viscosity oil the radio-frequency absorbed power is obtained in this paper for tokamak plasmas with ion banana orbits squeezed by Alfven waves. Estimations of the proper absorbed power of Alfven waves in some tokamaks is about the level of absorbed power to be used in early fulfilled experiments. (author)

  13. Effect of the radial electric field, induced by Alfven waves, on transport processes in tokamaks

    International Nuclear Information System (INIS)

    We demonstrate that Alfven waves may be the convenient trigger for the formation and maintenance of edge and internal transport barriers due to their small radial localizations. Kinetic Alfven waves can also provide a mechanism for squeezing the banana orbits of ions in weekly collisional plasmas of tokamaks. It is shown that the radial electric field, induced by Alfven waves, at some conditions has a nonlinear dependence on the radio-frequency absorbed power. The dependence of the ion heat conductivity and of the ion poloidal viscosity on the radio-frequency absorbed power is obtained in this paper for tokamak plasmas with ion banana orbit squeezed by Alfven waves. Estimations of the proper absorbed power of Alfven waves in some tokamaks is about the level of absorbed power to be used in early fulfilled experiments. (author)

  14. Preliminary results on Alfven wave system in the TCABR tokamak

    International Nuclear Information System (INIS)

    A brief review of the Alfven Wave Excitation System (AWES) designed for the TCABR tokamak and the first experimental results on RF plasma heating are presented. One of four antenna modules has been completely installed in the vacuum chamber and the initial experiments were carried out in the low power regime using the four-phase RF generator. The main objectives were the antenna tuning according to the typical plasma parameters of TCABR and the evaluation of the antenna parasitic loading, as well as the calibration of the RF diagnostic tools in real discharge conditions. The first results have been obtained with standard diagnostics and with the RF signals measured using high sampling rate digital oscilloscopes. They showed that daily antenna cleaning and correct wave helicity excitation reduce significantly the parasitic loading and are crucial for efficient plasma coupling

  15. Nonlinear coherent structures of Alfven wave in a collisional plasma

    International Nuclear Information System (INIS)

    Low-frequency Magneto Hydrodynamic waves in general and Alfv´en wave, in particular, occurs in various physical problems starting from laboratory to space plasma. These low frequency disturbances make the magnetic fluctuations large enough so that nonlinear coupling becomes finite. Among these low-frequency waves, nonlinear Alfv´en wave has become a topic of intense research due to its applications in various physical processes, related to particle energization in magnetized plasma, self-modulation in strongly magnetized plasma, tokamak plasma heating, interplanetary shocks, turbulence etc. In the present work, we have investigated weakly nonlinear Alfv´en wave dynamics in the framework of Lagrangian two-fluid theory in a compressible cold magnetized plasma in presence of finite electron inertia effect. The electron-ion collision induced dissipation effect is also taken into account. In the finite amplitude limit, we have shown that the collisionless Alfv´en wave is governed by a modified Korteweg-de Vries (mKdV) equation. In presence of collision it becomes a modified Korteweg-de Vries -Burgers (mKdVB) equation, where the electron inertia is found to act as a dispersive effect and the electron-ion collision serves as a dissipation which is responsible for the Burgers term. In the long wavelength limit, we have also investigated another important physical phenomenon, known as the wave modulation instability. The dynamics of this modulated wave is shown to be governed by a nonlinear Schrödinger equation (NLSE) with a linear damping term arising due to electron-ion collision. These two nonlinear equations are analyzed by means of analytical and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Both the results reveal that nonlinear Alfven wave exhibits shock, dissipative envelope and breather like structures. Numerical simulation also predicts the formation of Alv´enic rogue wave and giant breathers

  16. Exact Analytical Solution of Alfven Waves in Nonuniform Plasmas

    International Nuclear Information System (INIS)

    Full text: The propagation of Alfven waves in non-uniform plasmas is described through linear second-order differential equations, governing the total pressure and radial plasma velocity. In general, these two differential equations only admit numerical solutions, whose behavior is very much complicated especially near resonance surfaces which encompass essential degeneracies. It is well-known that most existing analytical methods, including the famous Wentzel-Karmers-Brillouin (WKB) approximation fail near such singularities. In this paper, a power analytical method, which is recently developed and named the Differential Transfer Matrix Method (DTMM), is applied to find a rigorously exact solution to the problem of interest. We also present an approximate solution based on the Airy functions. (author)

  17. Modulational instability and envelope-solitons for nonlinear Alfven waves propagating along the magnetic field in plasmas

    International Nuclear Information System (INIS)

    The modulational instability and envelope-solitons are analyzed for the Alfven waves propagating along the static magnetic field in cold collisionless plasmas, using the modified nonlinear Schroedinger equation previously derived by the authors. The modulational instability occurs in the left-hand circularly polarized Alfven wave (left Alfven wave) for a small amplitude but does not for an amplitude larger than the critical value. On the other hand, the instability never occurs in the right-hand circularly polarized Alfven wave (right Alfven wave). When the modulational instability does not occur, the rarefactive and compressive envelope-solitons exist in the left Alfven wave and the two types of the rarefactive envelope-solitons exist in the right Alfven wave. (auth.)

  18. Multiple-gap theory of toroidal Alfven waves with kinetic effects

    International Nuclear Information System (INIS)

    The stability of kinetic toroidal Alfven waves with multi-gap coupling is analyzed by using the two-dimensional ballooning transform. An alternate convergence scheme, based on the smallness of the inverse aspect ratio, is devised. The resulting wave functions are oscillatory and do not balloon in contrast to the wave functions of conventional ballooning theory. It is shown that the single-gap theory is a special, weak shear (s → 0) limit of the formalism. Analytical and numerical results for the two fundamental branches, the ideal toroidal Alfven eigenmode (TAE), and the kinetic toroidal Alfven eigenmode (KTAE) are presented and discussed

  19. An experimental study of the harmonics generated during Alfven wave heating in TCA

    International Nuclear Information System (INIS)

    During plasma excitation by high power Alfven waves in TCA, signals at harmonics of the generator frequency are observed in the plasma scrape-off layer. In this paper we report experimental investigations of the sheath effect and the excitation efficiency and dispersion properties of these harmonics. The results indicate that the harmonics arise either directly or indirectly through the driven Alfven waves and not the sheath effect at the exciting antenna. The RF ion saturation current is observed a non-negligible peak amplitude in comparison to the time averaged ion saturation current and may provide evidence of non-linear evolution of the driven Alfven waves. (author) 8 figs., 8 refs

  20. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    Science.gov (United States)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  1. Alfven Waves in a Plasma Sheet Boundary Layer Associated with Near-Tail Magnetic Reconnection

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhi-Gang; DENG Xiao-Hua; PANG Ye; LI Shi-You; WANG Jing-Fang

    2007-01-01

    We report observations from Geotail satellite showing that large Poynting fluxes associated with Alfven waves in the plasma sheet boundary layer(PSBL) occur in the vicinity of the near-tail reconnection region on 10 December 1996.During the period of large Poynting fluxex,Geotail also observed strong tailward plasma flws.These observations demonstrate the importance of near-tail reconnection process as the energy source of Alfven waves in the PSBL.Strong tailward(Earthward)plasma flows ought to be an important candidate in generating Alfven waves.Furthermore,the strong pertutbations not only of the magnetic field but also of the electric field observed in the PSBL indicate that the PSBL plays an important role in the generation and propagation of the energy flux associated with Alfven waves.

  2. Alfven Wave Collisions, The Fundamental Building Block of Plasma Turbulence IV: Laboratory Experiment

    CERN Document Server

    Drake, D J; Howes, G G; Kletzing, C A; Skiff, F; Carter, T A; Auerbach, D W

    2013-01-01

    Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfven waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfven waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfven wave generated nonlinearly by a collision between counterpropagating Alfven waves.

  3. Formation of convective cells by modulational instability of drift Alfven waves

    International Nuclear Information System (INIS)

    A model equation describing drift Alfven wave with E X B nonlinearity is derived. For a special ordering a nonlinear Schroedinger equation is derived, which governs modulational instability of the drift Alfven wave. Translational invariance is assumed along the magnetic field. The relation between the characteristic scale lengths parallel and perpendicular to the drift flow for the onset of cell formation has been found. The influence of perpendicular ion viscosity is also discussed. (Auth.)

  4. Recent Results of Alfven Wave Studies in TCABR

    International Nuclear Information System (INIS)

    The results on comparative studies of Alfven wave plasma heating by two different antenna types in TCABR are presented. Emphasis is placed on the excited wave spectra and parasitic coupling with the edge plasma. The antenna modules have two groups of RF current-carrying straps separated by a toroidal angle of approximately 22 deg. In type I antenna, each group consists of two circular loops that are cut in two half-turn windings. The feeders of each loop pair are rotated 90 deg. in the poloidal direction with respect to each other, to decrease the mutual coupling between them and make it possible to excite single helicity plasma modes (M=+1 or M=-1). In type II antenna, each group consists of two poloidal straps located at the low-magnetic-field side of the vacuum chamber. The poloidal extension of each strap is around 90 deg. and the angle between straps is also of the same value. In both antenna types, the straps have side protectors of boron nitride. Initial experiments indicate that the parasitic interaction with the edge plasma is quite different for the two antennae. Also the first type has larger self-inductance, making it more difficult to deliver high currents to the antenna without increasing the dynamic polarization voltage up to breakdown limits. Results on the excited spectrum and floating potential at the plasma edge are presented

  5. Observation of an Alfv\\'en Wave Parametric Instability in a Laboratory Plasma

    CERN Document Server

    Dorfman, S

    2016-01-01

    A shear Alfv\\'en wave parametric instability is observed for the first time in the laboratory. When a single finite $\\omega/\\Omega_i$ kinetic Alfv\\'en wave (KAW) is launched in the Large Plasma Device above a threshold amplitude, three daughter modes are produced. These daughter modes have frequencies and parallel wave numbers that are consistent with copropagating KAW sidebands and a low frequency nonresonant mode. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump wave amplitude. The daughter modes are spatially localized on a gradient of the pump wave magnetic field amplitude in the plane perpendicular to the background field, suggesting that perpendicular nonlinear forces (and therefore $k_{\\perp}$ of the pump wave) play an important role in the instability process. Despite this, modulational instability theory with $k_{\\perp}=0$ has several features in common with the observed nonresonant mode and Alfv\\'en wave sidebands.

  6. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  7. Solar off-limb line widths: Alfven waves, ion-cyclotron waves, and preferential heating

    CERN Document Server

    Dolla, L

    2008-01-01

    Alfven waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind (HELIOS spacecrafts) and, recently, in the upper corona (UVCS/SOHO remote-sensing results). We propose a method to constrain both the Alfven wave amplitude and the preferential heating induced by ion-cyclotron resonance, above a partially developed polar coronal hole observed with the SUMER/SOHO spectrometer. The instrumental stray light contribution is first substracted from the spectra. By supposing that the non-thermal velocity is related to the Alfven wave amplitude, it is constrained through a density diagnostic and the gradient of the width of the Mg X 625 A line. The temperatures of several coronal ions, as functions of the distance above the limb, are then determined by substracting the non-thermal component to the observed line widths. The effect of st...

  8. Ionospheric Ion Upflows Associated with the Alfven Wave Heating

    Science.gov (United States)

    Song, P.; Tu, J.

    2014-12-01

    In this study we present the simulation results from a self-consistent inductive-dynamic ionosphere-thermosphere model. In a 2-D numerical simulation (noon-midnight meridian plane), we solve the continuity, momentum, and energy equations for multiple species of ions and neutrals and Maxwell's equations. In particular, the model retains Faraday's law, inertial term in the ion momentum equations and photochemistry. The code is based on an implicit algorithm and simulates a region from 80 km to 5000 km above the Earth. The system is driven by an antisunward motion at the upper boundary of the dayside cusp latitude in both hemispheres. We show that the frictional heating, which can produce upflows of the light (H+ and He+) and heave (O+) ions, is driven by the Alfven wave-induced ion motion relative to the neutrals. The variations of the upflows along a noon-midnight magnetic meridian are examined in association with given driving conditions imposed by the magnetosphere convection.

  9. Generation of coherent wave packets of kinetic Alfven waves in solar plasmas

    International Nuclear Information System (INIS)

    This work presents the numerical simulations to study the filamentation of kinetic Alfven waves in solar plasmas. Using the modified nonlinear Schroedinger equation model, we study the effect of changing the initial perturbation on filament formation and their nonlinear dynamics. The spectral indices of the power spectrum are calculated with different initial conditions of the simulations. The relevance of the present investigation in coronal heating and solar wind acceleration/turbulence is also pointed out

  10. Kinetic effects on Alfven wave nonlinearity. II. The modified nonlinear wave equation

    International Nuclear Information System (INIS)

    The study of kinetic effects on Alfven wave nonlinearity is continued. Previously obtained expressions for the perturbed (by an Alfven wave) ion and electron distribution functions are used to obtain a nonlinear wave equation for parallel-propagating, circularly polarized waves. The results are cast in the form of a modified version of the familiar derivative nonlinear Schroedinger equation. The approach in obtaining this equation is a hybrid one; fluid theory is used to the greatest extent possible, and kinetic theory is introduced where the correction is believed to be most important. Fluid theory at two levels of sophistication is employed. The first uses a simple scalar pressure term. This approach yields physical insight and illuminates the field-aligned fluid flow and the associated plasma density perturbation as a major contributor to Alfven wave nonlinearity. The second approach employs a tensor pressure term that in general will be necessary. The results indicate that kinetic effects in general produce a nonlinear wave equation that is of a different functional form than the derivative nonlinear Schroedinger equation, as previously reported by Mjolhus and Wyller [Phys. Scr. 33, 442 (1986); J. Plasma Phys. 40, 229 (1988)]. The coefficient of the derivative cubic term depends on the plasma beta in a way which, in general, is quite different from the fluid expression. In addition, a functionally novel term appears in the modified equation. The magnitude of this term, named the ''nonlocal term'' by Mjolhus and Wyller, can be large when the plasma beta is comparable to unity. The susceptibility of the modified equation to modulational instability is studied. Kinetic effects cause modulational instability of wave packets, even when fluid theory would predict modulational stability. This modulational instability occurs for both right- and left-hand polarized waves

  11. AMPTE/CCE observations of substorm-associated standing Alfven waves in the midnight sector

    Science.gov (United States)

    Takahashi, K.; Mcentire, R. W.; Potemra, T. A.; Kokubun, S.; Sakurai, T.

    1988-01-01

    Magnetic-field and medium-energy particle data from the AMPTE/CCE spacecraft are used to study substorm-associated ULF pulsations in the midnight sector at a radial distance of 8 to 9 earth radii. The particle data are used to identify ion injections and to detect the electric field of ULF waves. A case study of the events on May 23, 1985 shows that the waves have the properties of a fundamental-mode standing Alfven wave. It is suggested that these observations are evidence of substorm-associated standing Alfven waves in the nightside magnetosphere.

  12. Long-Alfven-wave trains in collisionless plasmas. I. Kinetic theory

    International Nuclear Information System (INIS)

    A generalized kinetic derivative nonlinear Schroedinger equation for the multidimensional dynamics of Alfven wave trains propagating along an ambient magnetic field is derived from the Vlasov-Maxwell equations by a reductive perturbative expansion. It retains in addition to the Landau damping, the coupling to longitudinally averaged fields driven by both transverse gradients and kinetic effects. These mean fields that modulate the propagation speed of the wave play a main role in transverse instabilities of extended Alfven wave packets and in the filamentation phenomenon. This long-wave model also provides a benchmark for Landau-fluid descriptions of collisionless plasmas

  13. On the origin of solar wind. Alfven waves induced jump of coronal temperature

    CERN Document Server

    Mishonov, T M; Maneva, Y G

    2007-01-01

    Absorbtion of Alfven waves is considered as the main mechanism of heating of solar corona. It is concluded that the sharp increase of the plasma temperature by two orders of magnitude is related to a self-induced opacity with respect to Alfven waves. The maximal frequency for propagation of Alfven waves is determined by the strongly temperature dependent kinematic viscosity. In such a way the temperature jump is due to absorption of high frequency Alfven waves in a narrow layer above the solar surface. There is calculated the dissipated in this layer power, which blows up the plasma and gives birth to the solar wind. A model short wave-length (WKB) evaluation takes into account the 1/f^2 frequency dependance of the transversal magnetic field and velocity spectral densities. Such spectral densities agree with an old magnetometer's data taken by Voyager 1 and recent theoretical calculations in the framework of Langevin-Burgers MHD. The present theory predicts existence of intensive high frequency Alfven waves i...

  14. Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer

    International Nuclear Information System (INIS)

    The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (Ti/Te), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave

  15. Alfven wave. [Book on linear and nonlinear properties for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A.; Uberoi, C.

    1978-11-01

    Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7.

  16. Destabilization of hydromagnetic drift-Alfven waves in a finite pressure, collisional plasma

    International Nuclear Information System (INIS)

    The hydromagnetic drift mode of the coupled drift-Alfven wave is destabilized as a standing wave in a dense, current-free plasma in the presence of a density gradient. When an axial electron current is drawn, a localized Alfven mode propagating against the current is destabilized, in addition to the unstable drift mode now propagating along the current. The measured wave properties, dispersion, and dependence on plasma parameters are found to agree with the theory derived for a finite β, collisional plasma

  17. Quantum Treatment of Kinetic Alfv\\'en Waves instability in a dusty plasma: Magnetized ions

    CERN Document Server

    Rubab, N

    2016-01-01

    The dispersion relation of kinetic Alfv\\'en wave in inertial regime is studied in a three component non-degenerate streaming plasma. A lin- ear dispersion relation using fluid- Vlasov equation for quantum plasma is also derived. The quantum correction CQ raised due to the insertion of Bohm potential in Vlasov model causes the suppression in the Alfven wave frequency and the growth rates of instability. A number of analytical expressions are derived for various modes of propagation. It is also found that many system parameters, i.e, streaming velocity, dust charge, num- ber density and quantum correction significantly influence the dispersion relation and the growth rate of instability.

  18. Alfven Wave Collisions, The Fundamental Building Block of Plasma Turbulence II: Numerical Solution

    CERN Document Server

    Nielson, Kevin D; Dorland, William

    2013-01-01

    This paper presents the numerical verification of an asymptotic analytical solution for the nonlinear interaction between counterpropagating Alfven waves, the fundamental building block of astrophysical plasma turbulence. The analytical solution, derived in the weak turbulence limit using the equations of incompressible MHD, is compared to a nonlinear gyrokinetic simulation of an Alfven wave collision. The agreement between these methods signifies that the incompressible solution satisfactorily describes the essential dynamics of the nonlinear energy transfer, even under the weakly collisional plasma conditions relevant to many astrophysical environments.

  19. The soliton transform and a possible application to nonlinear Alfven waves in space

    Science.gov (United States)

    Hada, T.; Hamilton, R. L.; Kennel, C. F.

    1993-01-01

    The inverse scattering transform (IST) based on the derivative nonlinear Schroedinger (DNLS) equation is applied to a complex time series of nonlinear Alfven wave data generated by numerical simulation. The IST describes the long-time evolution of quasi-parallel Alfven waves more efficiently than the Fourier transform, which is adapted to linear rather than nonlinear problems. When dissipation is added, so the conditions for the validity of the DNLS are not strictly satisfied, the IST continues to provide a compact description of the wavefield in terms of a small number of decaying envelope solitons.

  20. On the coronal heating mechanism by the resonant absorption of Alfven waves

    Directory of Open Access Journals (Sweden)

    H. Y. Alkahby

    1993-12-01

    Full Text Available In this paper, we will investigate the heating of the solar corona by the resonant absorption of Alfven waves in a viscous and isothermal atmosphere permeated by a horizontal magnetic field. It is shown that if the viscosity dominates the motion in a high (low- β plasma, it creates an absorbing and reflecting layer and the heating process is acoustic (magnetoacoustic. When the magnetic field dominates the oscillatory process it creates a non-absorbing reflecting layer. Consequently, the heating process is magnetohydrodynamic. An equation for resonance is derived. It shows that resonances may occur for many values of the frequency and of the magnetic field if the wavelength is matched with the strength of the magnetic field. At the resonance frequencies, magnetic and kinetic energies will increase to very large values which may account for the heating process. When the motion is dominated by the combined effects of the viscosity and the magnetic field, the nature of the reflecting layer and the magnitude of the reflection coefficient depend on the relative strengths of the magnetic field and the viscosity.

  1. Kinetic Alfven Waves at the Magnetopause-Mode Conversion, Transport and Formation of LLBL; TOPICAL

    International Nuclear Information System (INIS)

    At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity[Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D(approx) 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 and gt; 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in

  2. Magnetohydrodynamics in the Early Universe and the Damping of Non-linear Alfven Waves

    CERN Document Server

    Subramanian, K; Subramanian, Kandaswamy; Barrow, John D.

    1998-01-01

    The evolution and viscous damping of cosmic magnetic fields in the early universe, is analysed. Using the fact that the fluid, electromagnetic, and shear viscous energy-momentum tensors are all conformally invariant, the evolution is transformed from the expanding universe setting into that in flat spacetime. Particular attention is paid to the evolution of nonlinear Alfven modes. For a small enough magnetic field, which satisfies our observational constraints, these wave modes either oscillate negligibly or, when they do oscillate, become overdamped. Hence they do not suffer Silk damping on galactic and subgalactic scales. The smallest scale which survives damping depends on the field strength and is of order a dimensionless Alfven velocity times the usual baryon-photon Silk damping scale. After recombination, nonlinear effects can convert the Alfven mode into compressional, gravitationally unstable waves and seed cosmic structures if the cosmic magnetic field is sufficiently strong.

  3. Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks

    International Nuclear Information System (INIS)

    An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE's in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles

  4. Threaded-Field-Lines Model for the Low Solar Corona Powered by the Alfven Wave Turbulence

    CERN Document Server

    Sokolov, Igor V; Manchester, Ward B; Ozturk, Doga Can Su; Szente, Judit; Taktakishvili, Aleksandre; Tóth, Gabor; Jin, Meng; Gombosi, Tamas I

    2016-01-01

    We present an updated global model of the solar corona, including the transition region. We simulate the realistic tree-dimensional (3D) magnetic field using the data from the photospheric magnetic field measurements and assume the magnetohydrodynamic (MHD) Alfv\\'en wave turbulence and its non-linear dissipation to be the only source for heating the coronal plasma and driving the solar wind. In closed field regions the dissipation efficiency in a balanced turbulence is enhanced. In the coronal holes we account for a reflection of the outward propagating waves, which is accompanied by generation of weaker counter-propagating waves. The non-linear cascade rate degrades in strongly imbalanced turbulence, thus resulting in colder coronal holes. The distinctive feature of the presented model is the description of the low corona as almost-steady-state low-beta plasma motion and heat flux transfer along the magnetic field lines. We trace the magnetic field lines through each grid point of the lower boundary of the g...

  5. Wave Reflection Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Larsen, Brian Juul

    The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...

  6. Kinetic structures of shear Alfven and acoustic wave spectra in burning plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zonca, F; Biancalani, A; Chavdarovski, I; Chen, L; Di Troia, C; Wang, X, E-mail: fulvio.zonca@enea.it

    2010-11-01

    We present a general theoretical framework for discussing the physics of low frequency fluctuation spectra of shear Alfven and acoustic waves in toroidal plasmas of fusion interest. This framework helps identifying the relevant dynamics and, thus, interpreting experimental observations. We also discuss the roles of such general theoretical framework for verification and validation of numerical simulation codes vs. analytic predictions and experimental results.

  7. Kinetic structures of shear Alfven and acoustic wave spectra in burning plasmas

    International Nuclear Information System (INIS)

    We present a general theoretical framework for discussing the physics of low frequency fluctuation spectra of shear Alfven and acoustic waves in toroidal plasmas of fusion interest. This framework helps identifying the relevant dynamics and, thus, interpreting experimental observations. We also discuss the roles of such general theoretical framework for verification and validation of numerical simulation codes vs. analytic predictions and experimental results.

  8. Overdamped Alfven waves due to ion-neutral collisions in the solar chromosphere

    CERN Document Server

    Soler, R; Zaqarashvili, T V

    2014-01-01

    Alfvenic waves are ubiquitous in the solar atmosphere and their dissipation may play an important role in atmospheric heating. In the partially ionized solar chromosphere, collisions between ions and neutrals are an efficient dissipative mechanism for Alfven waves with frequencies near the ion-neutral collision frequency. The collision frequency is proportional to the ion-neutral collision cross section for momentum transfer. Here, we investigate Alfven wave damping as a function of height in a simplified chromospheric model and compare the results for two sets of collision cross sections, namely those of the classic hard-sphere model and those based on recent quantum-mechanical computations. We find important differences between the results for the two sets of cross sections. There is a critical interval of wavelengths for which impulsively excited Alfven waves are overdamped as a result of the strong ion-neutral dissipation. The critical wavelengths are in the range from 1 km to 50 km for the hard-sphere cr...

  9. Effects of ion-neutral collisions on Alfven waves: The presence of forbidden zone and heavy damping zone

    Energy Technology Data Exchange (ETDEWEB)

    Weng, C. J. [Department of Physics, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Space Science, National Central University, Jhongli 320, Taiwan (China); Lee, L. C. [Institute of Space Science, National Central University, Jhongli 320, Taiwan (China); Institute of Earth Science, Academia Sinica, Nankang 115, Taiwan (China); Kuo, C. L. [Institute of Space Science, National Central University, Jhongli 320, Taiwan (China); Wang, C. B. [CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei (China)

    2013-03-15

    Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.

  10. Experimental evidence of Alfv\\'en wave propagation in a Gallium alloy

    CERN Document Server

    Alboussiere, Thierry; Debray, François; La Rizza, Patrick; Masson, Jean-Paul; Plunian, Franck; Ribeiro, Adolfo; Schmitt, Denys

    2011-01-01

    Experiments with a liquid metal alloy, galinstan, are reported and show clear evidence of Alfv\\'en wave propagation as well as resonance of Alfv\\'en modes. Galinstan is liquid at room temperature, and although its electrical conductivity is not as large as that of liquid sodium or NaK, it has still been possible to study Alfv\\'en waves, thanks to the use of intense magnetic fi elds, up to 13 teslas. The maximal values of Lundquist number, around 60, are similar to that of the reference experimental study by Jameson [1]. The generation mechanism for Alfv\\'en waves and their refl ection is studied carefully. Numerical simulations have been performed and have been able to reproduce the experimental results despite the fact that the simulated magnetic Prandtl number was much larger than that of galinstan. An originality of the present study is that a poloidal disturbance (magnetic and velocity fields) is generated, allowing us to track its propagation from outside the conducting domain, hence without interfering.

  11. Alfven wave coupled with flow-driven fluid instability in interpenetrating plasmas

    CERN Document Server

    Vranjes, J

    2015-01-01

    The Alfven wave is analyzed in case of one quasineutral plasma propagating with some constant speed $v_0$ through another static quasineutral plasma. A dispersion equation is derived describing the Alfven wave coupled with the flow driven mode $\\omega= k v_0$ and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfv\\'en waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfven speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate...

  12. Alfven wave spectrum control in the heating and current drive experiments

    International Nuclear Information System (INIS)

    In this report we present the diagnostic system that has been developed for wave field spectrum analysis and control during Alfven wave heating and current drive experiments in the TCABR tokamak The system permits to register simultaneously the phase and the amplitude of the toroidal Β-tilde φ and poloidal Β-tildeθ magnetic field components of the waves with M ±1, N = ±, N = ±(2+6) in the frequency range ∫ = 2-8 MHz and RF pulse duration τ = 20-50 ms and to generate a feedback signal for plasma parameters control. The wave mode and frequency selectivity are ensured by the adjustment of the magnetic probe position and by utilization of specially designed 'lock-in' amplifiers that use 'sin' and 'cos' reference signals produced on the basis of the Alfven antenna feeding current. (author)

  13. Nonlinear coupling of O- and X-mode radio emission and Alfven waves in the solar corona

    International Nuclear Information System (INIS)

    The nonlinear coupling of extraordinary and ordinary waves via kinetic Alfven waves (KAWs) is investigated on the basis of two fluid magnetohydrodynamics. The equation governing the time dependence of electric field of excited O-mode is found. We estimate the time of effective coupling between modes and corresponding interaction distance in solar corona. Our theoretical results show that the X- and O-mode couplings via Alfven waves can be efficient depolarization mechanism for the coronal radioemission

  14. Magnetosphere--Ionosphere Coupling: Effects of Plasma Alfven Wave Relative Motion

    Science.gov (United States)

    Christiansen, P. J.; Dum, C. T.

    1989-06-01

    The introduction of relative perpendicular motion between a flux-tube supporting shear Alfven wave activity and the background plasma is studied in the context of the coupling of a wave generating region with a distant ionosphere. The results of a representative simulation, using an extended version of the code developed by Lysak & Dum (J. geophys. Res. 88, 365 (1983)), are used as a basis for interpreting some aspects of recent satellite observations.

  15. Propagation of Alfv\\'enic Waves From Corona to Chromosphere and Consequences for Solar Flares

    OpenAIRE

    Russell, A. J. B.; Fletcher, L.

    2013-01-01

    How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a 2-fluid model (of plasma and neutrals) and used it to perform 1D simulations of Alfv\\'en waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra and umbra) show that energy transmis...

  16. Transverse dynamics of dispersive Alfven waves. II. Driving of a reduced magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    The nonlinear dynamics resulting from transverse and quasi-transverse instabilities of a finite-amplitude dispersive Alfven wave propagating along an ambient magnetic field is studied by direct numerical simulations of the three-dimensional Hall-magnetohydrodynamic (Hall-MHD) equations. When the pump wave has a moderate amplitude and a long enough wavelength, one observes the generation of nonlinear structures in the form of helical filaments for the transverse magnetic field intensity and the density fluctuations. An interesting feature is the development of a quasi-incompressible turbulent flow, with a longitudinal characteristic scale large compared to the Alfven wavelength, that remains spectrally well separated from the wave throughout the evolution. The coexistence of this 'reduced MHD' flow with nonlinear Alfven waves was predicted on the basis of an asymptotic analysis [A. Gazol, T. Passot, and P. L. Sulem, Phys. Plasmas 6, 3114 (1999)] carried out in the long-wavelength limit. Whereas in this regime the generation of the reduced MHD flow is negligible, it becomes significant on a time scale of a few wave periods when dispersion is increased. Increasing the dispersion also leads to a faster destabilization of the wave and to a more rapid dissipation, a remarkable effect due to enhanced instability growth rates. In the case of a larger amplitude pump, or of an Alfven wavelength close to the ion-inertial length, the helical structures get fragmented and the spectral gap observed at early times between the large-scale flow and the waves rapidly disappears, leading to a fully three-dimensional MHD turbulent flow

  17. Modification and damping of Alfven waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlation. It is found that in addition to the usual Landau damping which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field. (author)

  18. Supergranulation-driven Alfven waves in the solar chromosphere and related phenomena.

    Science.gov (United States)

    Hollweg, J. V.

    1972-01-01

    It has recently been recognized that Alfven waves frequently dominate the microstructure of the solar wind at the orbit of the earth. We seek a solar source for these waves, and consider here their excitation by the supergranular motions. The wave equation is solved in a horizontally stratified, bi-exponential solar atmosphere. The interaction of Alfven wave motions associated with adjacent supergranules is discussed qualitatively. The Alfven wave effectively conveys the supergranular motions to great heights in the chromosphere. These motions are oppositely directed above intersupergranule boundaries, and compress the magnetic field there. A naive calculation of the compression, based on balancing dynamic and magnetic pressures, leads to adequate agreement with observations of the chromospheric network. We find that the magnetic field is appreciably compressed only below about 1500 km, and on this basis we reject theories of spicule formation which require large vertical magnetic fields at the heights reached by spicules. We advance a theory for spicule formation, in which spicules form as a result of matter being squeezed upward, out of the compression region between adjacent supergranules.

  19. Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves

    International Nuclear Information System (INIS)

    The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the ponderomotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width. 9 refs

  20. Electrostatic Wave Generation and Transverse Ion Acceleration by Alfvenic Wave Components of BBELF Turbulence

    Science.gov (United States)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2007-01-01

    We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.

  1. Kinetic Alfv\\'en waves generation by large-scale phase-mixing

    CERN Document Server

    Vasconez, C L; Valentini, F; Servidio, S; Matthaeus, W H; Malara, F

    2015-01-01

    One view of the solar-wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length $d_p$ may be considered as Kinetic Alfv\\'en waves (KAWs). In the present paper, we show how phase-mixing of large-scale parallel propagating Alfv\\'en waves is an efficient mechanism for the production of KAWs at wavelengths close to $d_p$ and at large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall-Magnetohydrodynamic (HMHD), and hybrid Vlasov-Maxwell (HVM) simulations modeling the propagation of Alfv\\'en waves in inhomogeneous plasmas are performed. In linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase-mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave group velocity with analytical linear predictions. In the nonlinear regime, comparison of HMHD and HVM simulations allows to point out the role of kinetic effe...

  2. Torsional Alfven Waves in Solar Magnetic Flux Tubes of Axial Symmetry

    CERN Document Server

    Murawski, K; Musielak, Z E; Srivastava, A K; Kraskiewicz, J

    2015-01-01

    Aims: Propagation and energy transfer of torsional Alfv\\'en waves in solar magnetic flux tubes of axial symmetry is studied. Methods: An analytical model of a solar magnetic flux tube of axial symmetry is developed by specifying a magnetic flux and deriving general analytical formulae for the equilibrium mass density and a gas pressure. The main advantage of this model is that it can be easily adopted to any axisymmetric magnetic structure. The model is used to simulate numerically the propagation of nonlinear Alfv\\'en waves in such 2D flux tubes of axial symmetry embedded in the solar atmosphere. The waves are excited by a localized pulse in the azimuthal component of velocity and launched at the top of the solar photosphere, and they propagate through the solar chromosphere, transition region, and into the solar corona. Results: The results of our numerical simulations reveal a complex scenario of twisted magnetic field lines and flows associated with torsional Alfv\\'en waves as well as energy transfer to t...

  3. Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium

    Science.gov (United States)

    Belcher, J. W.; Burchsted, R.

    1974-01-01

    Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.

  4. Inbound waves in the solar corona: a direct indicator of Alfv\\'en Surface location

    CERN Document Server

    DeForest, C E; McComas, D J

    2014-01-01

    The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary -- the Alfv\\'en surface -- that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfv\\'en surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfv\\'en speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona, and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer corona beyond 6 solar radii for the first time, and used it to determine that the Alfv\\'en surface is at least 12.5 solar radii from the Sun over the polar coronal holes and 17 solar radii in the streamer belt, well beyond ...

  5. Kinetic effects in Alfven wave heating Part 2 propagation and absorption with a single minority species

    International Nuclear Information System (INIS)

    Kinetic effects of Alfven wave spatial resonances near the plasma edge are investigated numerically and analytically in a cylindrical tokamak model. In Part 1, cold plasma surface Alfven eigenmodes (SAE's) in a pure plasma are examined. Numerical calculations of antenna-driven waves exhibiting absorption resonances at certain discrete frequencies are first reviewed. From a simplified kinetic equation, an analytical dispersion relation is then obtained with the antenna current set equal to zero. The real and imaginary parts of its roots, which are the complex eigenfrequencies, agree with the central frequencies and widths, respectively, of the numerical antenna-driven resonances. These results serve as an introduction to the companion paper, in which it is shown that, in the presence of a minority species, certain SAE's, instead of heating the plasma exterior, can dissipate substantial energy in the two-ion hybrid layer near the plasma center. 11 refs., 8 figs., 1 tab

  6. Experimental investigations of driven Alfven wave resonances in a tokamak plasma using carbon dioxide laser interferometry

    International Nuclear Information System (INIS)

    The first direct observation of the internal structure of driven global Alfven eigenmodes in a tokamak plasma is presented. A carbon dioxide laser scattering/interferometer has been designed, built, and installed on the PRETEXT tokamak. By using this diagnostic system in the interferometer configuration, we have for the first time, thoroughly investigated the resonance conditions required for, and the spatial wave field structure of, driven plasma eigenmodes at frequencies below the ion cyclotron frequency in a confined, high temperature, tokamak plasma

  7. Magnetohydrodynamics in the Early Universe and the Damping of Non-linear Alfven Waves

    OpenAIRE

    Subramanian, Kandaswamy; Barrow, John D.

    1997-01-01

    The evolution and viscous damping of cosmic magnetic fields in the early universe, is analysed. Using the fact that the fluid, electromagnetic, and shear viscous energy-momentum tensors are all conformally invariant, the evolution is transformed from the expanding universe setting into that in flat spacetime. Particular attention is paid to the evolution of nonlinear Alfven modes. For a small enough magnetic field, which satisfies our observational constraints, these wave modes either oscilla...

  8. Plasma acceleration by the interaction of parallel propagating Alfv\\'en waves

    OpenAIRE

    Mottez, Fabrice

    2014-01-01

    It is shown that two circularly polarised Alfv\\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic wa...

  9. Theory of heating of hot magnetized plasma by Alfven waves. Application for solar corona

    OpenAIRE

    Mishonov, T. M.; Stoev, M. V.; Maneva, Y. G.

    2007-01-01

    The heating of magnetized plasma by propagation of Alfven waves is calculated as a function of the magnetic field spectral density. The results can be applied to evaluate the heating power of the solar corona at known data from satellites' magnetometers. This heating rate can be incorporated in global models for heating of the solar corona and creation of the solar wind. The final formula for the heating power is illustrated with a model spectral density of the magnetic field obtained by anal...

  10. Effect of Rossby and Alfv\\'{e}n waves on the dynamics of the tachocline

    OpenAIRE

    Leprovost, Nicolas; Kim, Eun-Jin

    2006-01-01

    To understand magnetic diffusion, momentum transport, and mixing in the interior of the sun, we consider an idealized model of the tachocline, namely magnetohydrodynamics (MHD) turbulence on a $\\beta$ plane subject to a large scale shear (provided by the latitudinal differential rotation). This model enables us to self-consistently derive the influence of shear, Rossby and Alfv\\'{e}n waves on the transport properties of turbulence. In the strong magnetic field regime, we find that the turbule...

  11. Spectroscopic Observations and Modelling of Impulsive Alfv\\'en Waves Along a Polar Coronal Jet

    CERN Document Server

    Jelínek, P; Murawski, K; Kayshap, P; Dwivedi, B N

    2015-01-01

    Using the Hinode/EIS 2$"$ spectroscopic observations, we study the intensity, velocity, and FWHM variations of the strongest Fe XII 195.12 \\AA\\ line along the jet to find the signature of Alfv\\'en waves. We simulate numerically the impulsively generated Alfv\\'en waves within the vertical Harris current-sheet, forming the jet plasma flows, and mimicking their observational signatures. Using the FLASH code and the atmospheric model with embedded weakly expanding magnetic field configuration within a vertical Harris current-sheet, we solve the two and half-dimensional (2.5-D) ideal magnetohydrodynamic (MHD) equations to study the evolution of Alfv\\'en waves and vertical flows forming the plasma jet. At a height of $\\sim 5~\\mathrm{Mm}$ from the base of the jet, the red-shifted velocity component of Fe XII 195.12 \\AA\\ line attains its maximum ($5~\\mathrm{km\\,s}^{-1}$) which converts into a blue-shifted one between the altitude of $5-10~\\mathrm{Mm}$. The spectral intensity continously increases up to $10~\\mathrm{Mm...

  12. The role of Alfv\\'en wave heating in solar prominences

    CERN Document Server

    Soler, Roberto; Oliver, Ramon; Ballester, Jose Luis

    2016-01-01

    Observations have shown that magnetohydrodynamic waves over a large frequency range are ubiquitous in solar prominences. The waves are probably driven by photospheric motions and may transport energy up to prominences suspended in the corona. Dissipation of wave energy can lead to heating of the cool prominence plasma, so contributing to the local energy balance within the prominence. Here we discuss the role of Alfv\\'en wave dissipation as a heating mechanism for the prominence plasma. We consider a slab-like quiescent prominence model with a transverse magnetic field embedded in the solar corona. The prominence medium is modelled as a partially ionized plasma composed of a charged ion-electron single fluid and two separate neutral fluids corresponding to neutral hydrogen and neutral helium. Friction between the three fluids acts as a dissipative mechanism for the waves. The heating caused by externally-driven Alfv\\'en waves incident on the prominence slab is analytically explored. We find that the dense pro...

  13. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    International Nuclear Information System (INIS)

    The Doppler-shifted cyclotron resonance (ω-kzvz=Ωf) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; kz, axial wavenumber; vz, fast-ion axial speed; Ωf, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li+ source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ωci. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  14. Stimulated emission of fast Alfv\\'en waves within magnetically confined fusion plasmas

    CERN Document Server

    Cook, J W S; Chapman, S C

    2016-01-01

    A fast Alfv\\'en wave with finite amplitude is shown to grow by a stimulated emission process that we propose for exploitation in toroidal magnetically confined fusion plasmas. Stimulated emission occurs while the wave propagates inward through the outer mid-plane plasma, where a population inversion of the energy distribution of fusion-born ions is observed to arise naturally. Fully nonlinear first principles simulations, which self-consistently evolve particles and fields under the Maxwell-Lorentz system, demonstrate this novel "alpha-particle channelling" scenario for the first time.

  15. Plastic damping of Alfv\\'en waves in magnetar flares and delayed afterglow emission

    CERN Document Server

    Li, Xinyu

    2015-01-01

    Magnetar flares generate Alfv\\'en waves bouncing in the closed magnetosphere with energy up to $\\sim 10^{46}$ erg. We show that on a 10-ms timescale the waves are transmitted into the star and form a compressed packet of high energy density. This packet strongly shears the stellar crust and initiates a plastic flow, heating the crust and melting it hundreds of meters below the surface. A fraction of the deposited plastic heat is eventually conducted to the stellar surface, contributing to the surface afterglow months to years after the flare. A large fraction of heat is lost to neutrino emission or conducted into the core of the neutron star.

  16. Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind

    OpenAIRE

    Xiong, Ming; Li, Xing

    2012-01-01

    Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave-particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfven waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. We assume that (1) low-frequency Alfven and fast waves have the same spectral shape and the same amplitude of power s...

  17. Alfvenic tornadoes

    CERN Document Server

    Shukla, P K

    2012-01-01

    It is shown that a three-dimensional (3D) modified-kinetic Alfv\\'en waves (m-KAWs) can propagate in the form of Alfv\\'enic tornadoes characterized by plasma density whirls or magnetic flux ropes carrying orbital angular momentum (OAM). By using the two fluid model, together with Amp\\`ere's law, we derive the wave equation for a 3D m-KAWs in a magnetoplasma with $m_e/m_i \\ll \\beta \\ll 1$, where $m_e$ $(m_i)$ is the electron (ion) mass, $\\beta =4 \\pi n_0 k_B (T_e + T_i)/B_0^2$, $n_0$ the unperturbed plasma number density, $k_B$ the Boltzmann constant, $T_e (T_e)$ the electron (ion) temperature, and $B_0$ the strength of the ambient magnetic field. The 3D m-KAW equation admits solutions in the form of a Laguerre-Gauss (LG) Alfv\\'enic vortex beam or Alfv\\'enic tornadoes with plasma density whirls that support the dynamics of Alfv\\'en magnetic flux ropes.

  18. Alfven waves and current relaxation: attenuation at high frequencies and large resistivity

    International Nuclear Information System (INIS)

    The dispersion relations of Alfven waves propagating in a resistive plasma are explored by assuming a finite relaxation time for the current density. It is shown that the proposed approach is consistent with the hydromagnetic approximation. An extension for the equation governing the space and time evolution of Alfven waves is provided. New results are found at high values of the wave frequency ω: for a small resistivity, the wavelength increases as the cube of the equilibrium magnetic field but decreases with the cube of ω; for a large resistivity, the wave attenuation does not depend on ω, saturating to a finite value which is fully determined by the relaxation time of the current density. A transition frequency, ωt, between two sharply distinct regimes of the perturbation is identified: for ω t, the disturbance propagates in the resistive plasma as an attenuated oscillation; for ω > ωt the wave ceases very rapidly to oscillate (in space), its amplitude saturating to a finite value. The results presented here may be relevant for investigations of some transient phenomena in plasma physics such as the reconnection of magnetic field lines.

  19. Non-inductive electric current generation with the Alfven waves

    International Nuclear Information System (INIS)

    Non-inductive current generation by means of radio frequency waves is studied using one-dimensional (1D) quasilinear equations. The main results obtained in this thesis are the general expressions for the current generated, for the efficiency of current generation and for the critical power - the lowest power required for current saturation. (M.W.O.)

  20. Plasma acceleration by the interaction of parallel propagating Alfv\\'en waves

    CERN Document Server

    Mottez, Fabrice

    2014-01-01

    It is shown that two circularly polarised Alfv\\'en waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic waves. The simulations are done with monochromatic waves and with wave packets. The simulations show parallel electromagnetic fields consistent with the theory, and they show that the particle acceleration result in plasma cavities and, if the waves amplitudes are high enough, in ion beams. These acceleration processes could be relevant in space plasmas. For instance, they could be at work in the auroral zone and in the radiation belts of the Earth magnetosphere. In particular, they may explain the origin of the deep plasma...

  1. Reflection and Conversion of Magneto-Gravity Waves in the Solar Chromosphere: Windows to the Upper Atmosphere

    CERN Document Server

    Newington, Marie

    2009-01-01

    The detection of upward propagating internal gravity waves in the Sun's chromosphere has recently been reported by Straus et al., who postulated that these may efficiently couple to Alfven waves in magnetic regions. This may be important in transporting energy to higher levels. Here we explore the propagation, reflection and mode conversion of linear gravity waves in a VAL C atmosphere, and find that even weak magnetic fields usually reflect gravity waves back downward as slow magnetoacoustic waves well before they reach the Alfven/acoustic equipartition height at which mode conversion might occur. However, for certain highly inclined magnetic field orientations in which the gravity waves manage to penetrate near or through the equipartition level, there can be substantial conversion to either or both upgoing Alfven and acoustic waves. Wave energy fluxes comparable to the chromospheric radiative losses are expected.

  2. Effects of heavy ion temperature on low-frequency kinetic Alfven waves

    International Nuclear Information System (INIS)

    Heavy ion-electron (or proton) temperature ratio varies in a wide range in the solar and space environment. In this paper, proton and heavy ion temperatures are included in a three-fluid plasma model. For the specified parameters, low-frequency (<< heavy ion gyrofrequency) kinetic Alfven waves (KAWs) with sub- and super-Alfvenic speeds are found to coexist in the same plasma environment. Our results show that the temperature ratio of heavy ions to electrons can considerably affect the dispersion, propagation, and electromagnetic polarizations of the KAWs. In particular, the temperature ratio can increase the ratio of parallel to perpendicular electric fields and the normalized electric to magnetic field ratio, the variations of which are greatly different in regions with a high heavy ion temperature and with a low one. The results may help to understand the physical mechanism of some energization processes of heavy ions in the solar and space plasma environment. Effects of the ratio of electron thermal to Alfven speeds and the heavy ion abundance on these parameters are also discussed.

  3. Kinetic Alfv\\'{e}n solitary and rogue waves in superthermal plasmas

    CERN Document Server

    Bains, A; Xia, L -D

    2014-01-01

    We investigate the small but finite amplitude solitary Kinetic Alfv\\'{e}n waves (KAWs) in low $\\beta$ plasmas with superthermal electrons modeled by a kappa-type distribution. A nonlinear Korteweg-de Vries (KdV) equation describing the evolution of KAWs is derived by using the standard reductive perturbation method. Examining the dependence of the nonlinear and dispersion coefficients of the KdV equation on the superthermal parameter $\\kappa$, plasma $\\beta$ and obliqueness of propagation, we show that these parameters may change substantially the shape and size of solitary KAW pulses. Only sub-Alfv\\'enic, compressive solitons are supported. We then extend the study to examine kinetic Alfv\\'en rogue waves by deriving a nonlinear Schr\\"{o}dinger equation from {the KdV} equation. Rational solutions that form rogue wave envelopes are obtained. We examine how the behavior of rogue waves depends on the plasma parameters in question, finding that the rogue envelopes are lowered with increasing electron superthermal...

  4. Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak

    International Nuclear Information System (INIS)

    An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=ZR+ZI is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active ZR and reactive ZI impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)

  5. Design of the RF system for Alfven wave heating and current drive in a TCA/BR tokamak

    International Nuclear Information System (INIS)

    The advanced RF system for Alfven wave plasma heating and current drive in TCA/BR tokamak is presented. The antenna system is capable of exciting the standing and travelling wave M = -1,N = 1,N =-4,-6 with single helicity and thus provides the possibility to improve Alfven wave plasma heating efficiency in TCA/BR tokamak and to increase input power level up to P ≅ 1 MW, without the uncontrolled density rise which was encountered in previous TCA (Switzerland) experiments. (author). 4 refs., 3 figs

  6. Transverse dynamics of dispersive Alfven waves. I. Direct numerical evidence of filamentation

    International Nuclear Information System (INIS)

    The three-dimensional dynamics of a small-amplitude monochromatic Alfven wave propagating along an ambient magnetic field is simulated by direct numerical integration of the Hall-magnetohydrodynamics equations. As predicted by the two-dimensional nonlinear Schroedinger equation or by more general amplitude equations retaining the coupling to low-frequency magnetosonic waves, the transverse instability of the pump leads to wave collapse and formation of intense magnetic filaments, in spite of the presence of competing, possibly linearly dominant, instabilities that in some instances distort the above structures. In computational boxes, including a large number of pump wavelengths, an early arrest of the collapse is possible under the effect of quasi-transverse instabilities that drive magnetosonic waves and also prescribe the directions of the filaments

  7. Preliminary experimental study of the antenna module for Alfven wave excitation system in TCABR Tokamak

    International Nuclear Information System (INIS)

    The results of the initial experimental studies of the Alfven wave antenna module, which is destined to be a part of the advanced antenna system of TCABR tokamak, are presented. The tests were carried out in a specially constructed vacuum chamber and included the measurement of antenna electrical parameters and testing of the power diagnostic tools. The complex impedances and inductive mutual coupling of antenna loops were measured and results were compared with theoretical calculations. The tests have shown that the parameters of the antenna module have values according to the design. (author)

  8. Damping of Alfven waves by Turbulence and its Consequences: from Cosmic-Rays Streaming to Launching Winds

    CERN Document Server

    Lazarian, A

    2016-01-01

    This paper considers turbulent damping of Alfven waves in magnetized plasmas. We identify two cases of damping, one related to damping of cosmic rays streaming instability, the other related to damping of Alfven waves emitted by a macroscopic wave source, e.g. stellar atmosphere. The physical difference between the two cases is that in the former case the generated waves are emitted in respect to the local direction of magnetic field, in the latter in respect to the mean field. The scaling of damping is different in the two cases. We the regimes of turbulence ranging from subAlfvenic to superAlfvenic we obtain analytical expressions for the damping rates and define the ranges of applicability of these expressions. Describing the damping of the streaming instability, we find that for subAlfvenic turbulence the range of cosmic ray energies influenced by weak turbulence is unproportionally large compared to the range of scales that the weak turbulence is present. On the contrary, the range of cosmic ray energies...

  9. The Spatial and Temporal Dependence of Coronal Heating by Alfven Wave Turbulence

    CERN Document Server

    Asgari-Targhi, M; Cranmer, S R; DeLuca, E E

    2013-01-01

    The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magneto-hydrodynamics (MHD) code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.

  10. Filamentation of dispersive Alfven waves in density channels: Hall magnetohydrodynamics description

    International Nuclear Information System (INIS)

    Filamentation of dispersive Alfven waves initiated by low or high density channels (depending on the plasma beta) is simulated numerically in the framework of ideal Hall magnetohydrodynamics, and asymptotically modeled with a two-dimensional nonlinear Schroedinger equation including a linear attracting potential. Compared with the dynamics in a homogeneous plasma, the phenomenon is accelerated and occurs for a broader range of parameters. In the case of an isolated channel with a width comparable to the pump wavelength, the transverse wave collapse can be replaced by a moderate amplification. In many cases, a relatively complex dynamics takes place, characterized by an oscillation between magnetic filaments and magnetic ribbons, leading to the formation of small scales at which dissipative effects could become relevant. Alfven vortices, governed by the equations of the reduced magnetohydrodynamics, are also identified in the simulations, in spite of their small amplitude relative to the wave. The formation of structures under the effect of periodic or random distributions of low and high density channels is also discussed

  11. Integrated campaign to study the stationary inertial Alfven wave in the laboratory and space regimes

    International Nuclear Information System (INIS)

    A small, off-axis mesh-anode electrode at one plasma-column end is used to create a paraxial channel of electron current and depleted density in the large plasma device upgrade at UCLA. We show that the on-axis, larger, surrounding-plasma column rotates about its cylindrical axis because a radial electric field is imposed by a multiple-segmented-disc termination electrode on the same end as the mesh-anode electrode. The radial profile of azimuthal velocity is shown to be consistent with predictions of rigid-body rotation. Launched inertial Alfven waves are shown to concentrate in the off-axis channel of electron current and depleted plasma density. In the absence of launched waves, time varying boundary conditions, or spatially structured boundary conditions, a non-fluctuating, non-traveling pattern in the plasma density is shown to arise spontaneously in the channel, but only in the combined presence of electron current, density depletion, and spontaneously in the channel, cross-field convection (i.e. rotation). These results may be relevant to the stationary Alfven wave in the inertial regime in space and laboratory plasmas

  12. Studies of the Jet in BL Lacertae. II. Superluminal Alfv\\'en Waves

    CERN Document Server

    Cohen, M H; Arshakian, T G; Clausen-Brown, E; Homan, D C; Hovatta, T; Kovalev, Y Y; Lister, M L; Pushkarev, A B; Richards, J L; Savolainen, T

    2014-01-01

    Ridge lines on the pc-scale jet of the active galactic nucleus BL Lac display transverse patterns that move superluminally downstream. The patterns are not ballistic, but are analogous to waves on a whip. Their apparent speeds $\\beta_\\mathrm{app}$ (units of $c$) range from 4.2 to 13.5, corresponding to $\\beta_\\mathrm{wave}^\\mathrm{gal}= 0.981 - 0.998$ in the galaxy frame. We show that the magnetic field in the jet is well-ordered with a strong transverse component, and assume that it is helical and that the transverse patterns are longitudinal Alfv\\'en waves. The wave-induced transverse speed of the jet is non-relativistic ($\\beta_\\mathrm{tr}^\\mathrm{gal}\\sim 0.09$) and in agreement with our assumption of low-amplitude waves. In 2010 the wave activity subsided and the jet displayed a mild wiggle that had a complex oscillatory behavior. The waves are excited by changes in the position angle of the recollimation shock, in analogy to exciting a wave on a whip by shaking it. Simple models of the system are presen...

  13. Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, A., E-mail: anurajrajput@gmail.com, E-mail: ryu201@postech.ac.kr, E-mail: bainsphysics@yahoo.co.in; Ryu, C. M., E-mail: anurajrajput@gmail.com, E-mail: ryu201@postech.ac.kr, E-mail: bainsphysics@yahoo.co.in [POSTECH, Hyoja-Dong San 31, KyungBuk, Pohang 790-784 (Korea, Republic of); Bains, A. S., E-mail: anurajrajput@gmail.com, E-mail: ryu201@postech.ac.kr, E-mail: bainsphysics@yahoo.co.in [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatchewan S7N5E2 (Canada)

    2015-09-15

    A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature.

  14. Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons

    International Nuclear Information System (INIS)

    A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature

  15. Doppler-shifted cyclotron resonance of fast ions with circularly polarized shear Alfven waves

    International Nuclear Information System (INIS)

    The Doppler-shifted cyclotron resonance between fast ions and shear Alfven waves (SAWs) has been experimentally investigated with a test-particle fast-ion (Li+) beam launched in the helium plasma of the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. Left- or right-hand circularly polarized SAWs are launched by an antenna with four current channels. A collimated fast-ion energy analyzer characterizes the resonance by measuring the nonclassical spreading of the averaged beam signal. Left-hand circularly polarized SAWs resonate with the fast ions but right-hand circularly polarized SAWs do not. The measured fast-ion profiles are compared with simulations by a Monte Carlo Lorentz code that uses the measured wave field data.

  16. Alfvenic tornadoes

    OpenAIRE

    Shukla, P. K.

    2012-01-01

    It is shown that a three-dimensional (3D) modified-kinetic Alfv\\'en waves (m-KAWs) can propagate in the form of Alfv\\'enic tornadoes characterized by plasma density whirls or magnetic flux ropes carrying orbital angular momentum (OAM). By using the two fluid model, together with Amp\\`ere's law, we derive the wave equation for a 3D m-KAWs in a magnetoplasma with $m_e/m_i \\ll \\beta \\ll 1$, where $m_e$ $(m_i)$ is the electron (ion) mass, $\\beta =4 \\pi n_0 k_B (T_e + T_i)/B_0^2$, $n_0$ the unpert...

  17. Final report for DOE-FG02-02ER54688: Study of nonlinear interactions between counterpropagating shear Alfven waves

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T A

    2006-11-16

    Final report for DOE Plasma Physics Junior Faculty Development award DOE-FG02-02ER54688. Reports on research undertaken from 8/1/2002 until 5/15/2006, investigating nonlinear interactions between Alfven waves in a laboratory experiment.

  18. A search for evidence of the evolution of rotational discontinuities in the solar wind from nonlinear Alfven waves

    Science.gov (United States)

    Neugebauer, M.; Buti, B.

    1990-01-01

    Results are presented of a study designed to confirm the suspected relation between Alfven solitons (steepened Afven waves) and rotational discontinuities (RDs) in the solar wind. The ISEE 3 data were used to search for the predicted correlations between the beta value of plasma, the sense of polarization of the discontinuity, and changes of the magnetic field strength and plasma density across the discontinuity. No statistically significant evidence was found for the evolution of RDs from Alfven solitons. A possibility is suggested that the observations made could have been far from the regions in which the RDs were formed.

  19. Solitary Kinetic Alfven Waves in a Low-β Dusty Plasma

    Institute of Scientific and Technical Information of China (English)

    CHEN Yin-Hua; LU Wei

    2000-01-01

    The nonlinear kinetic Alfven waves in a low-β(0<β<1)dusty plasma have been investigated with the fluid model of three-component plasma. The nonlinear equation governing the perturbation density of electrons in a form of the energy integral has been derived. In the approximation of small amplitude, the soliton solution for the perturbation density of electrons is found, and the characteristics of solitons in different range of plasma parameters is studied numerically. The results show that the density dip or hump can be formed in a dusty plasma for different ranges of parameters, the amplitude of density dip is enhanced and the amplitude of density hump is reduced with increasing dust grain content.

  20. PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVEN-WAVE TURBULENCE IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    We consider ion heating by turbulent Alfven waves (AWs) and kinetic Alfven waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies ω smaller than the ion cyclotron frequency Ω. We focus on plasmas in which β ∼ρ/vperpendicular, where vperpendicular (v ||) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B 0, and δv ρ (δB ρ) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when ε crit, where εcrit is a constant, a proton's magnetic moment is nearly conserved and stochastic heating is extremely weak. However, when ε>εcrit, the proton heating rate exceeds half the cascade power that would be present in strong balanced KAW turbulence with the same value of δv ρ, and magnetic-moment conservation is violated even when ω crit = 0.19. For protons in low-β plasmas, ε ≅ β-1/2δBρ/B 0, and ε can exceed εcrit even when δBρ/B 0 crit. The heating is anisotropic, increasing v 2perpendicular much more than v 2|| when β 1 Landau damping and transit-time damping of KAWs lead to strong parallel heating of protons.) At comparable temperatures, alpha particles and minor ions have larger values of ε than protons and are heated more efficiently as a result. We discuss the implications of our results for ion heating in coronal holes and the solar wind.

  1. Damping of Alfven waves in solar partially ionized plasmas: effect of neutral helium in multi-fluid approach

    OpenAIRE

    Zaqarashvili, T. V.; Khodachenko, M. L.; Rucker, H.O.

    2011-01-01

    Chromospheric and prominence plasmas contain neutral atoms, which may change the plasma dynamics through collision with ions. Most of the atoms are neutral hydrogen, but a significant amount of neutral helium may also be present in the plasma with a particular temperature. Damping of MHD waves due to ion collision with neutral hydrogen is well studied, but the effects of neutral helium are largely unknown. We aim to study the effect of neutral helium in the damping of Alfven waves in solar pa...

  2. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  3. Generation of kinetic Alfven waves in the high-latitude near-Earth magnetotail: A global hybrid simulation

    International Nuclear Information System (INIS)

    In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5RE,0.3RE), where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )∼ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet

  4. Generation of kinetic Alfven waves in the high-latitude near-Earth magnetotail: A global hybrid simulation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhifang [Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hong, Minghua; Du, Aimin [Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); Lin, Yu; Wang, Xueyi [CAS Key Lab of Geoscience Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Physics Department, Auburn University, 206 Allison Laboratory, Auburn, Alabama 36849-5311 (United States); Wu, Mingyu; Lu, Quanming, E-mail: qmlu@ustc.edu.cn [CAS Key Lab of Geoscience Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Collaborative Innovation Center of Astronautical Science and Technology (China)

    2015-02-15

    In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R{sub E},0.3R{sub E}), where R{sub E} is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k{sub ⊥}≫k{sub ∥} are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE{sub z})/(δB{sub y} )∼ω/k{sub ∥} of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.

  5. Generation of kinetic Alfven waves in the high-latitude near-Earth magnetotail: A global hybrid simulation

    Science.gov (United States)

    Guo, Zhifang; Hong, Minghua; Lin, Yu; Du, Aimin; Wang, Xueyi; Wu, Mingyu; Lu, Quanming

    2015-02-01

    In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E ×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x ,z ) =(-10.5 RE,0.3 RE) , where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )˜ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.

  6. James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves

    Science.gov (United States)

    Chen, Liu

    2012-10-01

    Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.

  7. Scattering of fast magnetoacoustic waves on a ionosphere perturbed by Alfven waves

    International Nuclear Information System (INIS)

    Scattering of fast magnetoacoustic waves on an ionospheric plasma layer is emphasized. The mathematical calculations consider that the magnetoacoustic wave, scattered on the plasma layer with periodical inhomogeneities is the result of some partial wave superposition. The expressions for 0 and +-1 order partial waves and also the corrections to the zeroth order approximation are estimated. The dependence of the amplitude of the +1 order partial waves on the incidence angle THETA and the distance from the boundary of the perturbed plasma layer is studied. With this end in view the analytical form of the amplitudes is expressed. As a rule a periodical dependence of the +1 order partial wave amplitude on THETA and on the distance from the boundary of the pertubed layer occurs. For THETA = 35 deg, it is worth noting a marked maximum for all small perturbations of the +1 order partial wave

  8. Alfven solitons in the solar wind

    Science.gov (United States)

    Ovenden, C.; Schwartz, S. J.

    1983-01-01

    A nonlinear Alfven soliton solution of the MHD equations is presented. This solution represents the final state of modulationally unstable Alfven waves. A model of the expected turbulent spectrum due to a collection of such solitons is briefly described.

  9. Stability of global Alfven waves (TAE, EAE) in JET tritium discharges

    International Nuclear Information System (INIS)

    The study of MHD modes driven unstable by energetic particles due to additional heating and, in particular, by alpha particles is crucial for the prediction of α-confinement for future JET D-T discharges aiming at QDT≅1. In this paper we analyse the toroidicity and elongation induced Alfven eigenmodes (TAE, EAE), their damping and their destabilisation by energetic particles. The spectral code CASTOR (Complex Alfven Spectrum for Toroidal Plasmas) together with the equilibrium solver HELENA provides the tool for the analysis of the ideal and dissipative MHD spectrum. (author) 3 refs., 3 figs

  10. Finite amplitude solitary Alfven waves in a low-β plasma

    International Nuclear Information System (INIS)

    Different exact forms of Alfven solitons were found recently in low-beta plasmas by different assumptions. The present paper studies the case of parallel ion inertia and current density. Both super and sub-Alfvenian rarefactive solitons were found to exist depending on the angle of inclination of the propagation vector with the magnetic field. (D.Gy.)

  11. Observational Quantification of the Energy Dissipated by Alfv\\'en Waves in a Polar Coronal Hole: Evidence that Waves Drive the Fast Solar Wind

    CERN Document Server

    Hahn, Michael

    2013-01-01

    We present a measurement of the energy carried and dissipated by Alfv\\'en waves in a polar coronal hole. Alfv\\'en waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decrease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity v_nt and the ion temperature T_i. We have implemented a means to separate the T_i and v_nt contributions using the observation that at low heights the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to v_nt. We find the initial energy flux density present was 6.7 +/- 0.7 x 10^5 erg cm^-2 s^-1, which is sufficient to heat the coronal hole and acccelerate the solar wind during the 2007 - 2009 solar minimum. Additionally, we find tha...

  12. OBLIQUE SHOCK WAVE REFLECTION FROM THE WALL

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available Regular and Mach (irregular reflection of an oblique shock wave from the wall is considered. Criteria for the transition from regular to irregular reflection are described: von Neumann criterion and the criterion for fixed Mach configuration. Specific incident shock wave intensities corresponding to the two criteria for the transition from regular to irregular reflection were plotted. The area of ambiguity solutions was demonstrated in which both regular and Mach reflection is not prohibited by the conditions of dynamic compatibility. Areas in which the transition from one type of reflection to another is possible only by a shock wave were described, as well as areas of a possible smooth transition. Dependence of the magnitude of this abrupt change in reflected discontinuity intensity from the intensity of the incident shock wave was plotted. Intensity dependences of the reflected discontinuity from the intensity of the shock wave incident on the wall for all types of reflections were shown.

  13. An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfven waves in burning plasmas

    International Nuclear Information System (INIS)

    Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an extended version of hybrid magnetohydrodynamics gyrokinetic code (XHMGC) to study thermal ion kinetic effects on Alfvenic modes driven by energetic particles, such as kinetic beta induced Alfven eigenmodes in tokamak fusion plasmas. The XHMGC nonlinear model can be used to address a number of problems, where kinetic treatments of both thermal and supra-thermal plasma components are necessary, as theoretically predicted, or where it is desirable to investigate the phenomena connected with the presence of two supra-thermal particle species with different radial profiles and velocity space distributions.

  14. Reappraising Transition Region Line Widths in light of Recent Alfv\\'{e}n Wave Discoveries

    CERN Document Server

    McIntosh, Scott W; Tarbell, Theodore D

    2008-01-01

    We provide a new interpretation of ultraviolet transition region emission line widths observed by the SUMER instrument on the Solar and Heliospheric Observatory (SOHO). This investigation is prompted by observations of the chromosphere at unprecedented spatial and temporal resolution from the Solar Optical Telescope (SOT) on Hinode revealing that all chromospheric structures above the limb display significant transverse (Alfvenic) perturbations. We demonstrate that the magnitude, network sensitivity and apparent center-to-limb isotropy of the measured line widths (formed below 250,000K) can be explained by an observationally constrained forward-model in which the line width is caused by the line-of-sight superposition of longitudinal and Alfvenic motions on the small-scale (spicular) structures that dominate the chromosphere and low transition region.

  15. Effects of the stratification of two diffusive component and the magnetic field on the existence of internal Alfven gravity waves in a turbulent flow

    International Nuclear Information System (INIS)

    The mechanism of momentum and energy transfer by internal Alfven-gravity waves is studied in a turbulent plasma flow, modelling astrophysical and geophysical situations. The difficulty of the indeterminate system of equations is solved by using gradient diffusion model as a suitable closure. It is found that the weak stratification and the magnetic field decrease the intensity of the turbulence. (D.Gy.)

  16. Wave Reflection in 3D Conditions

    DEFF Research Database (Denmark)

    Zanuttigh, Barbara; Andersen, Thomas Lykke

    2010-01-01

    Based on recent experiments carried out in wave basin on breakwaters with armour layer of rocks and cubes, this paper examines the dependence of the reflection coefficient on wave directional spreading and obliquity. Results suggest that long-crested and short-crested waves give similar reflectio...

  17. Three Dimensional MHD Wave Propagation and Conversion to Alfven Waves near the Solar Surface. I. Direct Numerical Solution

    OpenAIRE

    Cally, P. S.; Goossens, M

    2007-01-01

    The efficacy of fast/slow MHD mode conversion in the surface layers of sunspots has been demonstrated over recent years using a number of modelling techniques, including ray theory, perturbation theory, differential eigensystem analysis, and direct numerical simulation. These show that significant energy may be transferred between the fast and slow modes in the neighbourhood of the equipartition layer where the Alfven and sound speeds coincide. However, most of the models so far have been two...

  18. The Alfven wave spectrum of analytic high-beta tokamak equilibria

    International Nuclear Information System (INIS)

    This thesis addresses a number of problems regarding the equilibrium and stability of a tokamak plasma under fusion conditions. To get insight into the geometric effects on the behaviour of the most prominent global modes, a spectral study was carried out on a class of analytic, noncircular plasma equilibria. Parallel to this work, extending a previous high-beta energy principle a variational principle is developed for the numerical determination of the Alfven spectrum of a high-beta tokamak with arbitrary cross-section. Based on the Lagrangian formalism, representations were derived for the potential and kinetic energy in terms of arbitrary, non-orthogonal flux coordinates, which can be readily implemented in a numerical programme. The method is then tested by using the analytic equilibrium as input. 85 refs.; 32 figs.; 2 tabs

  19. Alfv\\'en wave phase mixing in flows -- why over-dense solar coronal open magnetic field structures are cool?

    CERN Document Server

    Tsiklauri, D

    2015-01-01

    Our magnetohydrodynamic (MHD) simulations and analytical calculations show that, when a background flow is present, mathematical expressions for the Alfv\\'en wave (AW) damping via phase mixing are modified by a following substitution $C_A^\\prime(x) \\to C_A^\\prime(x)+V_0^\\prime(x)$, where $C_A$ and $V_0$ are AW phase and the flow speeds and prime denotes derivative in the direction across the background magnetic field. In uniform magnetic field and over-dense plasma structures, in which $C_A$ is smaller compared to surrounding plasma, the flow, that is confined to the structure, in the same direction as the AW, reduces the effect of phase mixing, because on the edges of the structure $C_A^\\prime$ and $V_0^\\prime$ have opposite sign. Thus, the wave damps via phase mixing {\\it slower} compared to the case without the flow. This is the consequence of the co-directional flow reducing the wave front stretching in the transverse direction. Although, the result is generic and is applicable to different laboratory or ...

  20. Three-dimensional numerical simulations of fast-to-Alfven conversion in sunspots

    CERN Document Server

    Felipe, T

    2012-01-01

    The conversion of fast waves to the Alfven mode in a realistic sunspot atmosphere is studied through three-dimensional numerical simulations. An upward propagating fast acoustic wave is excited in the high-beta region of the model. The new wave modes generated at the conversion layer are analyzed from the projections of the velocity and magnetic field in their characteristic directions, and the computation of their wave energy and fluxes. The analysis reveals that the maximum efficiency of the conversion to the slow mode is obtained for inclinations of 25 degrees and low azimuths, while the Alfven wave conversions peaks at high inclinations and azimuths between 50 and 120 degrees. Downward propagating Alfven waves appear at the regions of the sunspot where the orientation of the magnetic field is in the direction opposite to the wave propagation, since at these locations the Alfven wave couples better with the downgoing fast magnetic wave which are reflected due to the gradients of the Alfven speed. The simul...

  1. Three dimensional magnetohydrodynamic simulation of linearly polarised Alfven wave dynamics in Arnold-Beltrami-Childress magnetic field

    Science.gov (United States)

    Tsiklauri, David

    2015-04-01

    Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1/3 and in the latter as log(S) , where S is the Lundquist number. In this work [1], linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed

  2. Trapped particle instability and flute instability in tandem mirror; scale separation closure in Alfven wave turbulence

    International Nuclear Information System (INIS)

    We have constructed a quadratic dispersion relation, in which various MHD and kinetic effects like ion diamagnetism, electron diamagnetism, electron-electron electron-ion collisions, ion Landau-damping, E x B drift and energetic particles are included and treated in a systematic way. The numerical study in which we use the formalism to investigate the two most likely instabilities in tandem mirror machines produced many quantitative and qualitative results about the two modes. We have proposed a physically motivated, non-perturbative closure scheme to deal with some problems in plasma or fluid turbulence. After discussing a few simple analytically tractable applications, we have applied our formalism to a model problem: the shear-Alfven turbulence. The problem is readily solved numerically to obtain the turbulent spectrum with the following features: the calculated spectrum has explicit frequency shift from the linear theory as well as explicit band-broadening in k, ω space; the frequency integrated spectrum obeys a power law in the intermediate k range, i.e., I/sub k/ /approximately/ K/sup -α/, where α approaches the value 2 in the case we studied; and the form of the power law is hardly influenced by changing low-k, high-k damping effects, or by changing the strength of the turbulence. It is very encouraging that this closure scheme is capable of producing essential features associated with a turbulence spectrum. 66 refs., 38 figs

  3. Computing the damping and destabilization of global Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    The role of ideal MHD in magnetic fusion is in the first place to discover magnetic geometries with favourable equilibrium and stability properties. Non-ideal effects cause slower and weaker instabilities leading to enhanced transport and often to violent disruptions. MHD spectroscopy, i.e. the identification of ideal and dissipative MHD modes for the purpose of diagnosing tokamaks and optimising their stability properties, requires a numerical tool which accurately calculates the dissipative MHD spectra for measured equilibria. The new spectral code CASTOR (Complex Alfven Spectrum for TORoidal Plasmas), together with the equilibrium solver HELENA, provides such a tool. In CASTOR, the fluid variables ρ, v, T, and b are discretized by means of a combination of cubic Hermite and quadratic finite elements for the radial direction and Fourier modes for the poloidal coordinate. The equilibrium in non-orthogonal flux coordinates ψ, θ, φ with straight field lines is computed using isoparametric bicubic Hermite elements, resulting in a very accurate representation of the metric elements. Finally, for analysis of JET discharges the equilibrium solver HELENA is interfaced with the equilibrium identification code IDENTC(D). (author) 5 refs., 5 figs

  4. Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvenic Waves in ITER

    CERN Document Server

    Schneller, Mirjam; Briguglio, Sergio

    2015-01-01

    This work presents the results of a multi mode ITER study on Toroidal Alfven Eigenmodes, using the nonlinear hybrid HAGIS-LIGKA model. It is found that main conclusions from earlier studies of ASDEX Upgrade discharges can be transferred to the ITER scenario: global, nonlinear effects are crucial for the evolution of the multi mode scenario. This work focuses on the ITER 15 MA baseline scenario with with a safety factor at the magnetic axis of $q_0 =$ 0.986. The least damped eigenmodes of the system are identified with the gyrokinetic, non-perturbative LIGKA solver, concerning mode structure, frequency and damping. Taking into account all weakly damped modes that can be identified linearly, nonlinear simulations with HAGIS reveal strong multi mode behavior: while in some parameter range, quasi-linear estimates turn out to be reasonable approximations for the nonlinearly relaxed energetic particle profile, under certain conditions low-n TAE branches can be excited. As a consequence, not only grow amplitudes of ...

  5. Benchmarking Fast-to-Alfven Mode Conversion in a Cold MHD Plasma

    OpenAIRE

    Cally, Paul S.; Hansen, Shelley C.

    2011-01-01

    Alfv\\'en waves may be generated via mode conversion from fast magneto-acoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helio-seismology. In active regions this reflection typically occurs high enough that the Alfv\\'en speed $a$ greatly exceeds the sound speed $c$, well above the $a=c$ level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfv\\'en conver...

  6. Kinetic effects in Alfven and ion-cyclotron-wave propagation: Surface eigenmodes and impurity effects

    International Nuclear Information System (INIS)

    In a circular cylindrical geometry, the author solves a fourth-order set of differential equations numerically for the perturbed fields Eτ and Eperpendicular. The model takes into account the equilibrium current, magnetic shear, finite ω/ωc1 effect, mode conversion effects like finite ion gyroradius and electron inertia, and various dissipative mechanisms such as electron Landau and collisional damping, and minority fundamental and majority second harmonic cyclotron absorption. To illustrate the results, the author plots the perturbed electric fields and the energy absorbed by each species. He first examines cold plasma surface Alfven eigenmodes analytically and numerically in a pure plasma. The motivation for this work is to investigate how to avoid the undesirable edge absorption and introduce the methods for the study of impurity effects. In the two-species plasmas, he considers three special examples: (1) minority oxygen in hydrogen in PRETEXT, (2) minority T or H in deuterium in TFTR. He adopts two models: (i) a radially varying minority charge, or (ii) a radially varying magnetic field to investigate the minority gyroresonance heating. The model (ii) is used to examine these three examples. But the model (i) is only applied to the first one. In model (i), it is found that surface modes can induce the eigenmodes and dissipate substantial energy near the hybrid layer in the interior. Some cases analytically manageable are given an interpretation of why there is large or small energy deposition in this layer. It is shown that this strongly depends on poloidal mode numbers, minority concentrations, and minority charge profiles

  7. Fracture diagnostics with tube wave reflection logs

    International Nuclear Information System (INIS)

    This paper reports on the Tube Wave Reflection Log (TWRL) which is acoustic logging method which provides information about the height, location and conductivity of hydraulically induced fractures behind perforated casing. The TWRL tool consists of a transmitter and closely spaced receiver. The transmitter is driven with a short, low frequency tone burst to generate long wavelength tube waves which are little attenuated in unperforated casing. They are partially reflected when they pass perforated intervals communicating with a hydraulically induced fracture. The tool listens for such reflections for 0.1 seconds following each excitation burst. As the tool is moved uphole at logging speed, the transmitter is excited at each foot of depth. VDL displays of the TWRL records provide reflection traces whose projections define the uppermost and lower-most perforations communicating with the fracture. The strength of the reflections depends on the ease of fluid flow into the fracture and thus, is an indicator of fracture conductivity

  8. Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles

    CERN Document Server

    Franklin, F R

    1999-01-01

    In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode- Converted Ion Bernstein Waves (MCIBWs) and Alfvé n Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control...

  9. Asymptotic dynamics of reflecting spiral waves

    OpenAIRE

    Langham, Jacob; Biktasheva, Irina; Barkley, Dwight

    2014-01-01

    Resonantly forced spiral waves in excitable media drift in straight-line paths, their rotation centers behaving as point-like objects moving along trajectories with a constant velocity. Interaction with medium boundaries alters this velocity and may often result in a reflection of the drift trajectory. Such reflections have diverse characteristics and are known to be highly nonspecular in general. In this context we apply the theory of response functions, which via numerically computable inte...

  10. Cascade and Dissipation of Solar Wind Turbulence at Electron Scales: Whistlers or Kinetic Alfv\\'en Waves?

    Science.gov (United States)

    Sahraoui, Fouad; Goldstein, Melvyn L.

    2010-01-01

    Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \\sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\\rho i}$ a new inertial range with a scaling $\\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.

  11. Alfv\\'en Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-Induced Emission Line Broadening

    CERN Document Server

    Oran, R; van der Holst, B; Sokolov, I V; Gombosi, T I

    2014-01-01

    In the present work, we test the predictions of the AWSoM model, a global extended-MHD model capable of calculating the propagation and turbulent dissipation of Alfv\\'en waves in any magnetic topology, against high resolution spectra of the quiescent off-disk solar corona. Wave dissipation is the only heating mechanism assumed in this model. Combining 3D model results with the CHIANTI atomic database, we were able to create synthetic line-of-sight spectra which include the effects of emission line broadening due to both thermal and wave-related non-thermal motions. To the best of our knowledge this is the first time a global model is used to obtain synthetic non-thermal line broadening. We obtained a steady-state solution driven by a synoptic magnetogram and compared the synthetic spectra with SUMER observations of a quiescent area above the solar west limb extending between 1.04 and 1.34 solar radii at the equator. Both the predicted line widths and the total line fluxes were consistent with the observations...

  12. Alfven solitary waves in nonrelativistic, relativistic, and ultra-relativistic degenerate quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)

    2015-10-15

    Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.

  13. Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles

    CERN Document Server

    Heeter, R F

    1999-01-01

    In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode-Converted Ion Bernstein Waves (MCIBWs) and Alfvén Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control. A reasonable reactor power scaling is derived. To study AEs, existing magnetic fluctuation probes at the Joint European Torus (JET) have been absolutely calibrated from 30–500 kHz for the first time, allowing fluctuation measurements with &vbm0;dBpol&vbm0;/B0&am...

  14. Alfven wave structure and resonant dissipation in cylindrical stability and heating problems

    International Nuclear Information System (INIS)

    For /ω/ approximately equal to epsilonsup(1/3)tausub(A)sup(-1), we obtain the general solution of the resistive differential equation for the radial M.H.D. displacement in cylindrical geometry, under the assumption of incompressibility. Here: ω is the wave frequency, Tausub(A) = r0 Vsub(Atheta)sup(-1), r = r0 is the surface at which q(r) = 1, Vsub(Atheta) = Btheta0/√4πrho[r0 dq0/dr] (subscript zero indicates evaluation at r0), epsilon = tausub(A) tausub(R)sup(-1) and tausub(R) is the resistive diffusion time. By using a flux function, we write the expression of the electromagnetic field and current density in the resistive layer. Finally, we discuss power dissipated in this layer by an external wave and the limit when the resistivity vanishes

  15. Wave-equation reflection traveltime inversion

    KAUST Repository

    Zhang, Sanzong

    2011-01-01

    The main difficulty with iterative waveform inversion using a gradient optimization method is that it tends to get stuck in local minima associated within the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. No travel-time picking is needed and no high-frequency approximation is assumed. The mathematical derivation and the numerical examples are presented to partly demonstrate its efficiency and robustness. © 2011 Society of Exploration Geophysicists.

  16. Asymptotic dynamics of reflecting spiral waves.

    Science.gov (United States)

    Langham, Jacob; Biktasheva, Irina; Barkley, Dwight

    2014-12-01

    Resonantly forced spiral waves in excitable media drift in straight-line paths, their rotation centers behaving as pointlike objects moving along trajectories with a constant velocity. Interaction with medium boundaries alters this velocity and may often result in a reflection of the drift trajectory. Such reflections have diverse characteristics and are known to be highly nonspecular in general. In this context we apply the theory of response functions, which via numerically computable integrals, reduces the reaction-diffusion equations governing the whole excitable medium to the dynamics of just the rotation center and rotation phase of a spiral wave. Spiral reflection trajectories are computed by this method for both small- and large-core spiral waves in the Barkley model. Such calculations provide insight into the process of reflection as well as explanations for differences in trajectories across parameters, including the effects of incidence angle and forcing amplitude. Qualitative aspects of these results are preserved far beyond the asymptotic limit of weak boundary effects and slow resonant drift. PMID:25615159

  17. An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfv\\'en waves in burning plasmas

    CERN Document Server

    Wang, X; Chen, L; Di Troia, C; Fogaccia, G; Vlad, G; Zonca, F

    2010-01-01

    Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to study thermal ion kinetic effects on Alfv\\'enic modes driven by energetic particles, such as kinetic beta induced Alfv\\'en eigenmodes in tokamak fusion plasmas.

  18. Ultrabroadband reflective polarization convertor for terahertz waves

    Science.gov (United States)

    Cheng, Yong Zhi; Withayachumnankul, Withawat; Upadhyay, Aditi; Headland, Daniel; Nie, Yan; Gong, Rong Zhou; Bhaskaran, Madhu; Sriram, Sharath; Abbott, Derek

    2014-11-01

    We design and experimentally demonstrate an ultrathin, ultrabroadband, and highly efficient reflective linear polarization convertor or half-wave retarder operating at terahertz frequencies. The metamaterial-inspired convertor is composed of metallic disks and split-ring resonators placed over a ground plane. The structure exhibits three neighboring resonances, by which the linear polarization of incident waves can be converted to its orthogonal counterpart upon reflection. For an optimal design, a measured polarization conversion ratio for normal incidence is greater than 80% in the range of 0.65-1.45 THz, equivalent to 76% relative bandwidth. The mechanism for polarization conversion is explained via decomposed electric field components that couple with different resonance modes of the structure. The proposed metamaterial design for enhancing efficiency of polarization conversion has potential applications in the area of terahertz spectroscopy, imaging, and communications.

  19. On Alfvenic Waves and Stochastic Ion Heating with 1Re Observations of Strong Field-aligned Currents, Electric Fields, and O+ ions

    Science.gov (United States)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra

    2008-01-01

    The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.

  20. Simulations of Alfven wave driving of the solar chromosphere - efficient heating and spicule launching

    CERN Document Server

    Brady, C S

    2016-01-01

    Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estmates of the required chromospheric heating, based on radiative and conductive losses suggest a rate of $\\sim 0.1 \\mathrm{\\:erg\\:cm^{-3}\\:s^{-1}}$ in the lower chromosphere dropping to $\\sim 10^{-3} \\mathrm{\\:erg\\:cm^{-3}\\:s^{-1}}$ in the upper chromosphere (\\citet{Avrett1981}). The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of $\\sim 10-20 \\mathrm{\\:km\\:s^{-1}}$, for so called Type-I spicules (\\citet{Pereira2012,Zhang2012}, reaching heights of $\\sim 3000-5000 \\mathrm{\\:km}$ above the photosphere. A clearer understanding of chromospheric dynamics, its heating and the formation of spicules, is thus of central importance to solar atmospheric science. For over thirty years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This ...

  1. Simulations of the Mg II k and Ca II 8542 lines from an Alfv\\'en Wave-heated flare chromosphere

    CERN Document Server

    Kerr, Graham S; Russell, Alexander J B; Allred, Joel C

    2016-01-01

    We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfv\\'en wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chromospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg II k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca II 8542A profiles which are formed slightly deeper in the chromosphere. The Mg II k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with IRIS observations. The predicted differences between the Ca II 8542A in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-to-upper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating in flares.

  2. Reflection of internal waves by sand ripples

    Directory of Open Access Journals (Sweden)

    Uma Basu

    1995-03-01

    Full Text Available An investigation is made to study the diffraction of a train of time harmonic progressive waves propagating along the surface of separation of two superposed fluids which are laterally unbounded, the upper fluid being extended infinitely upwards, the lower fluid being of finite depth with sand ripples at the bottom. The first order correction to the velocity potential for the problem of diffraction of interface waves in the presence of bottom deformation is obtained by integral transform technique after introduction of a linear frictional term in the kinematic boundary condition at the surface of separation following Lamb (1932, and the reflection and transmission coefficients are estimated for a patch of sand ripples.

  3. Formation of quasiparallel Alfven solitons

    Science.gov (United States)

    Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.

    1992-01-01

    The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.

  4. Recent Observations of Plasma and Alfvenic Wave Energy Injection at the Base of the Fast Solar Wind

    CERN Document Server

    McIntosh, Scott W

    2012-01-01

    We take stock of recent observations that identify the episodic plasma heating and injection of Alfvenic energy at the base of fast solar wind (in coronal holes). The plasma heating is associated with the occurrence of chromospheric spicules that leave the lower solar atmosphere at speeds of order 100km/s, the hotter coronal counterpart of the spicule emits radiation characteristic of root heating that rapidly reaches temperatures of the order of 1MK. Furthermore, the same spicules and their coronal counterparts ("Propagating Coronal Disturbances"; PCD) exhibit large amplitude, high speed, Alfvenic (transverse) motion of sufficient energy content to accelerate the material to high speeds. We propose that these (disjointed) heating and accelerating components form a one-two punch to supply, and then accelerate, the fast solar wind. We consider some compositional constraints on this concept, extend the premise to the slow solar wind, and identify future avenues of exploration.

  5. An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfv\\'en waves in burning plasmas

    OpenAIRE

    Wang, X.; Briguglio, S.; Chen, L.; Di Troia, C; Fogaccia, G.; Vlad, G.; Zonca, F.

    2010-01-01

    Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to study thermal ion kinetic effects on Alfv\\'enic...

  6. Theory of reflection reflection and transmission of electromagnetic, particle and acoustic waves

    CERN Document Server

    Lekner, John

    2016-01-01

    This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods,  reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle...

  7. Long Wave Reflection and Transmission over A Sloping Step

    Institute of Scientific and Technical Information of China (English)

    Hsien-Kuo CHANG; Jin-Cheng LIOU

    2004-01-01

    This investigation examines long wave reflection and transmission induced by a sloping step. Bellman and Kalaba's(1959) invariant imbedding is introduced to find wave reflection. An alternative method matching both the surface elevation and its surface slope of each region at the junction is applied to the determination of wave reflection and transmission.The proposed methods are compared with the accurate numerical results of Porter and Porter (2000) and those of Mei(1983) for a vertical step. The wave reflection obtained for a mildly sloping step differs significantly from the result of Mei. The wave reflection is found to fluctuate owing to wave trapping for the mild sloping step. The height and the face slope of the step are important for determining wave reflection and transmission coefficients.

  8. The Configuration of Shock Wave Reflection for the TSD Equation

    Institute of Scientific and Technical Information of China (English)

    Li WANG

    2013-01-01

    In this paper,we mainly study the nonlinear wave configuration caused by shock wave reflection for the TSD (Transonic Small Disturbance) equation and specify the existence and nonexistence of various nonlinear wave configurations.We give a condition under which the solution of the RR (Regular reflection) for the TSD equation exists.We also prove that there exists no wave configuration of shock wave reflection for the TSD equation which consists of three or four shock waves.In phase space,we prove that the TSD equation has an IR (Irregular reflection) configuration containing a centered simple wave.Furthermore,we also prove the stability of RR configuration and the wave configuration containing a centered simple wave by solving a free boundary value problem of the TSD equation.

  9. Kinetic Damping of Toroidal Alfven Eigenmodes

    Energy Technology Data Exchange (ETDEWEB)

    G.Y. Fu; H.L. Berk; A. Pletzer

    2005-05-03

    The damping of Toroidal Alfven Eigenmodes in JET plasmas is investigated by using a reduced kinetic model. Typically no significant damping is found to occur near the center of the plasma due to mode conversion to kinetic Alfven waves. In contrast, continuum damping from resonance near the plasma edge may be significant, and when it is, it gives rise to damping rates that are compatible with the experimental observations.

  10. Phase conjugate reflection of electromagnetic waves from plasma

    International Nuclear Information System (INIS)

    The interaction of an incoming electromagnetic (EM) wave with two or more EM waves inside a plasma can give rise to a fourth EM wave which is a phase conjugate reflection of the incoming wave. This occurs resonantly if ωa -ωb, the difference frequency of two of the EM waves, along with Ka - kb, the difference wave vector, conforms to one of the plasma dispersion relations, such as that for ion acoustic or Langmuir oscillations. In this case an internal eigenstate of the plasma is excited, and the phase conjugate wave is produced by scattering of the third wave by the density perturbation. (author)

  11. Analysis of Directional Spectra and Reflection Coefficients in Incident and Reflected Wave Field

    Institute of Scientific and Technical Information of China (English)

    柳淑学; 俞聿修

    2001-01-01

    In this paper, the modified Bayesian method for the analysis of directional wave spectra and reflection coefficients is verified by numerical and physical simulation of waves. The results show that the method can basically separate the incident and reflected directional spectra. In addition, the effect of the type of wave gage arrays, the number of measured wave properties, and the distance between the wave gage array and the reflection line on the resolution of the method are investigated. Some suggestions are proposed for practical application.

  12. Benchmarking Fast-to-Alfven Mode Conversion in a Cold MHD Plasma

    CERN Document Server

    Cally, Paul S

    2011-01-01

    Alfv\\'en waves may be generated via mode conversion from fast magneto-acoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helio-seismology. In active regions this reflection typically occurs high enough that the Alfv\\'en speed $a$ greatly exceeds the sound speed $c$, well above the $a=c$ level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfv\\'en conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold MHD model $c\\to0$. This provides a benchmark for fast-to-Alfv\\'en mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfv\\'en speed profile with density scale height $h$, the Alfv\\'en conversion coefficient depends on three variables only; the dimensionless transverse-to-the-stratification wavenumber $\\kappa=kh$, the magnetic field ...

  13. Reflection of internal gravity waves from the mesospheric waveguide

    International Nuclear Information System (INIS)

    Frequency spectrum of internal gravity waves formed at their incidence at the plane atmospheric layer with Brent increased frequency representing a wave guide for IGW, is studied. The amplitude of reflection (passing) coefficient oscillations increases when frequency of incident wave approaches Brent Frequency. 3 refs

  14. SH-wave refraction/reflection and site characterization

    Science.gov (United States)

    Wang, Z.; Street, R.L.; Woolery, E.W.; Madin, I.P.

    2000-01-01

    Traditionally, nonintrusive techniques used to characterize soils have been based on P-wave refraction/reflection methods. However, near-surface unconsolidated soils are oftentimes water-saturated, and when groundwater is present at a site, the velocity of the P-waves is more related to the compressibility of the pore water than to the matrix of the unconsolidated soils. Conversely, SH-waves are directly relatable to the soil matrix. This makes SH-wave refraction/reflection methods effective in site characterizations where groundwater is present. SH-wave methods have been used extensively in site characterization and subsurface imaging for earthquake hazard assessments in the central United States and western Oregon. Comparison of SH-wave investigations with geotechnical investigations shows that SH-wave refraction/reflection techniques are viable and cost-effective for engineering site characterization.

  15. Negative reflections of electromagnetic waves in chiral media

    CERN Document Server

    Zhang, C; Cui, Tie Jun; Zhang, Chao

    2006-01-01

    We investigate the reflection properties of electromagnetic/optical waves in isotropic chiral media. When the chiral parameter is strong enough, we show that an unusual \\emph{negative reflection} occurs at the interface of the chiral medium and a perfectly conducting plane, where the incident wave and one of reflected eigenwaves lie in the same side of the boundary normal. Using such a property, we further demonstrate that such a conducting plane can be used for focusing in the strong chiral medium. The related equations under paraxial optics approximation are deduced. In a special case of chiral medium, the chiral nihility, one of the bi-reflections disappears and only single reflected eigenwave exists, which goes exactly opposite to the incident wave. Hence the incident and reflected electric fields will cancel each other to yield a zero total electric field. In another word, any electromagnetic waves entering the chiral nihility with perfectly conducting plane will disappear.

  16. Conversion from surface wave to surface wave on reflection

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2010-01-01

    can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves....

  17. Wave Reflection Caused by Wave Overtopping and Sloping Top of Spructure

    Institute of Scientific and Technical Information of China (English)

    李炎保; 谷汉斌; 张绍松

    2002-01-01

    In this paper, the theoretical analysis and experimental studies are employed to investigate the reflection characteris-tics of partial standing waves caused by wave overtopping and sloping top of structures. Based on the principle of conser-vation of wave energy flux, the third-order Stokes wave theory is used to formulate the reflection coefficient at wave over-topping; the calculation results are regressed into an applied expression. A series of experiments of wave reflection for avertical-wall structure with chanffered and overhanging upper sections are carried out to investigate the influence of topslope on wave reflection. The regularity of variation of wave reflection in this ease is analysed based on the experimentalresults.

  18. The Plausibility of the Stationary Inertial Alfven Wave in Explaining Important Morphological and Temporal Signatures of Auroral Arcs based on Laboratory Experiments and Auroral Observations

    Science.gov (United States)

    Nogami, S. H.; Koepke, M. E.; Gillies, D. M.; Knudsen, D. J.; Vincena, S. T.; Van Compernolle, B.; Donovan, E.

    2015-12-01

    The Stationary Inertial Alfven Wave (StIAW) [Knudsen J. Geophys. Res., 101, 10761 (1996)] is a non-fluctuating, non-travelling, spatially periodic pattern in electromagnetic field and fluid quantities that arises in the simultaneous presence of a magnetic-field-aligned current channel and cross-magnetic field plasma flow. Theory predicts [Finnegan et al., Nonlin. Proc. Geophys., 15, 957 (2008)] that the wave appears as an ion density perturbation that is static in the laboratory frame and that the wave electric field can accelerate electrons parallel to a background magnetic field. For experiments in the afterglow plasma in LAPD-U, results of which are reported on in this poster, the necessary conditions for the stationary wave are generated by a biased segmented electrode that creates a convective flow and a planar-mesh electrode that draws current parallel to the background magnetic field. An electrostatic probe and a retarding field energy analyzer measure fixed (in the laboratory frame) patterns in the ion density and electron energy. Spatial patterns of electron acceleration are reminiscent of the patterns present during the formation of discrete auroral arcs. Observation of long-lived discrete arcs indicates that some arcs require a generation mechanism that supports electron acceleration parallel to auroral field lines for tens of minutes. We present arc lifetime statistics to emphasize the paucity of physical models that explain these observations. *Support from NSF grant PHY-130-1896 and grants from the Canadian Space Agency is gratefully acknowledged. We also thank the THEMIS ASI Teams at U Calgary and UC Berkeley.

  19. Electric Field Observations of Plasma Convection, Shear, Alfven Waves, and other Phenomena Observed on Sounding Rockets in the Cusp and Boundary Layer

    Science.gov (United States)

    Pfaff, R. F.

    2009-01-01

    On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.

  20. Experiments on linear high beta helical axis stellarators to study simulated toroidal effects and Alfven-wave heating: [Annual] progress report No. 1, February 16, 1987-November 15, 1987

    International Nuclear Information System (INIS)

    This paper discusses experiments on linear high beta helical axis stellarators. Experiments considered are: formation of linear high beta heliac plasma configurations; Alfven wave heating in a straight tube and in a linear high beat stellarator; shifted hardcore heliac studies; a system for measuring the timing of high-current switches in a pulsed high voltage fusion experiment; HBQM general refurbishment; and proposed experiment on excitation of the m = 1 tilt mode in field-reversed configurations

  1. Reflection of bending Waves from Border of the Plate

    Directory of Open Access Journals (Sweden)

    Belubekyan M.V.

    2010-03-01

    Full Text Available To problems of the reflection of the bending waves from flat border of the ambience dedicated to the multiple studies. Relatively little works are connected with questions of the reflection curved waves from flat edge of the thin plate. In this work happen to the decisions of the problem of the plate under different border condition. For partial case of the free edge, as limiting case of the absence of the reflected wave, is got decision of the problem localized curved variations.

  2. Alfvenic Heating of Protostellar Accretion Disks

    OpenAIRE

    Vasconcelos, M. J.; Jatenco-Pereira, V.; R. Opher

    1999-01-01

    We investigate the effects of heating generated by damping of Alfven waves on protostellar accretion disks. Two mechanisms of damping are investigated, nonlinear and turbulent, which were previously studied in stellar winds (Jatenco-Pereira & Opher 1989a, b). For the nominal values studied, f=delta v/v_{A}=0.002 and F=varpi/Omega_{i}=0.1, where delta v, v_{A} and varpi are the amplitude, velocity and average frequency of the Alfven wave, respectively, and Omega_{i} is the ion cyclotron freque...

  3. Reflection and Transmission of Acoustic Waves at Semiconductor - Liquid Interface

    Directory of Open Access Journals (Sweden)

    J. N. Sharma

    2011-09-01

    Full Text Available The study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace underlying an inviscid liquid has been carried out. The reflection and transmission coefficients of reflected and transmitted waves have been obtained for quasi-longitudinal (qP wave incident at the interface from fluid to semiconductor. The numerical computations of reflection and transmission coefficients have been carried out with the help of Gauss elimination method by using MATLAB programming for silicon (Si, germanium (Ge and silicon nitride (Si3N4 semiconductors. In order to interpret and compare, the computer simulated results are plotted graphically. The study may be useful in semiconductors, seismology and surface acoustic wave (SAW devices in addition to engines of the space shuttles.

  4. Reflection and Ducting of Gravity Waves Inside the Sun

    OpenAIRE

    MacGregor, K. B.; Rogers, T.M.

    2011-01-01

    Internal gravity waves excited by overshoot at the bottom of the convection zone can be influenced by rotation and by the strong toroidal magnetic field that is likely to be present in the solar tachocline. Using a simple Cartesian model, we show how waves with a vertical component of propagation can be reflected when traveling through a layer containing a horizontal magnetic field with a strength that varies with depth. This interaction can prevent a portion of the downward-traveling wave en...

  5. Reflection of radio waves by sporadic-E layers

    Science.gov (United States)

    Miller, K. L.; Smith, L. G.

    1977-01-01

    A full-wave analysis of the reflection coefficient is developed and applied to electron-density profiles of midlatitude sporadic-E layers observed by rocket-borne probes. It is shown that partial reflection from the large electron-density gradients at the upper and lower boundaries of sporadic-E layers does not account for the partial transparency observed by ionosondes.

  6. Doppler-shifted self-reflected wave from a semiconductor

    Science.gov (United States)

    Schuelzgen, Alex; Hughes, S.; Peyghambarian, Nasser

    1997-06-01

    We report the first experimental observation of a self- reflected wave inside a very dense saturable absorber. An intense femtosecond pulse saturates the absorption and causes a density front moving into the semiconductor sample. Due to the motion of the boundary between saturated and unsaturated areas of the sample the light reflected at this boundary is red-shifted by the Doppler effect. The spectrally shifted reflection makes it possible to distinguish between surface reflection and self-reflection and is used to proof the concept of the dynamic nonlinear skin effect experimentally. Quite well agreement with model calculations is found.

  7. The high resolution shear wave seismic reflection technique

    International Nuclear Information System (INIS)

    This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions

  8. Self-reflection of intense electromagnetic waves in plasmas

    International Nuclear Information System (INIS)

    A uniform electromagnetic wave of high power density, propagating in a collisional plasma gives rise to a modification in temperature-dependent collision frequency and in turn induces a gradient in the complex refractive index of the medium. A WKB solution of the problem predicts a backward propagating wave on account of the self-induced inhomogeneity. The amplitude of the backward (i.e. reflected) wave increases with increasing power density of the wave. This is a volume nonlinear effect and is appreciable for usually employed power densities. (orig.)

  9. High resolution shear wave reflection surveying for hydrogeological investigations

    International Nuclear Information System (INIS)

    The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones

  10. Bragg Reflection of Waves by Different Shapes of Artificial Bars

    Institute of Scientific and Technical Information of China (English)

    许泰文; 张宪国; 蔡立宏

    2002-01-01

    Experiments are performed in a wave flume to demonstrate the Bragg reflection of linear gravity waves by artificialbars. Three different artificial bars with rectangular, triangular and rectified cosinoidal shapes are placed discretely on theseabed for measurement of the Bragg reflection. A series of experimental conditions including the number of bars, the pe-riodic bar spacing, the water depth and various wave conditions are tested. Key parameters influencing the Bragg reso-nances are investigated. The experimental data are compared with the values from both theoretical and numerical models.Some key parameters have proved to be effective in describing the primary resonances. Predictive equations of the charac-teristics for the Bragg reflection are proposed in this paper.

  11. Kinetic Alfven solitons in a low-beta plasma

    International Nuclear Information System (INIS)

    Kinetic Alfven solitons with hot electrons and finite electron inertia in a low beta (β=8πnoT/B2G, the ratio of the kinetic to the magnetic pressure) plasma is studied analytically, with the ion motion being considered dominant through the polarization drift. Both compressive and rarefactive kinetic Alfven solitons are found to exist within a definite range of kz (the direction of propagation of the kinetic Alfven solitary waves with respect to the direction of the magnetic field) for each pair of assigned values of β and M (Mach number). Unlike in previous theoretical investigations, β appears as an explicit parameter for the kinetic Alfven solitons in this case. In addition, consideration of the electron pressure gradient is found to suppress the speed of both the Alfven solitons considerably for A (=2QM2 / βk2z, with Q the electron-to-ion mass ratio) less than unity. (Author)

  12. WAVE TRANSMISSION AND REFLECTION DUE TO A THIN VERTICAL BARRIER

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A numerical method, the boundary fitted coordinate method (BFC),was used to investigate the transmission and reflection of water waves due to a rigid thin vertical barrier descending from the water surface to a depth, i. e. , a curtain-wall type breakwater. A comparison between the present computed results and previous experimental and analytical results was carried out which verifies the prediction of the BFC method. Wave transmission and reflection due to the barrier were computed, and the transmission and refiection coefficients were given in a figure.

  13. Is VHF Fresnel reflectivity due to low frequency buoyancy waves?

    Science.gov (United States)

    Vanzandt, T. E.; Vincent, R. A.

    1983-01-01

    VHF radar echoes are greatly enhanced near the zenith relative to other directions. This enhancement must be due to reflection from horizontally stratified laminate of refractive index. The refractivity laminate are due to the displacements of low frequency buoyancy (internal gravity) waves acting on the background vertical gradient of refractivity. VANZANDT (1982) has shown that the observed spectra of mesoscale wind fluctuations in the troposphere and lower stratosphere are modeled by a universal spectrum of buoyancy (internal gravity) waves. Since the observed frequency spectrum is red, the buoyancy wave model of the vertical displacement spectrum is strongly enhanced near the zenith. In other terms, the resulting refractivity irregularities are strongly stratified.

  14. Full-wave reflection of lightning long-wave radio pulses from the ionospheric D- region

    Science.gov (United States)

    Jacobson, A. R.; Shao, X.; Holzworth, R.

    2008-12-01

    A model is developed for calculating ionospheric reflection of electromagnetic pulses emitted by lightning, with most energy in the long-wave spectral region (f = 3 - 100 kHz). The building-block of the calculation is a differential-equation full-wave solution of Maxwell's Equations for the complex reflection of individual plane waves incident from below, by the anisotropic, dissipative, diffuse dielectric profile of the lower ionosphere. This full-wave solution is then put into a summation over plane waves in an angular Direct Fourier Transform to obtain the reflection properties of curved wavefronts. This step models also the diffraction effects of long- wave ionospheric reflections observed at short or medium range (200 - 500 km). The calculation can be done with any arbitrary but smooth dielectric profile versus altitude. For an initial test, we use the classic D- region exponential profiles of electron density and collision rate given by Wait. With even these simple profiles, our model of full-wave reflection of curved wavefronts captures some of the basic attributes of observed reflected waveforms recorded with the Los Alamos Sferic Array.

  15. Profile of a wave reflected on a plasma

    International Nuclear Information System (INIS)

    The profile of a normal incident electromagnetic wave reflected by a linear gradient of plasma has been calculated using numerical and analytical methods. The absorption is taken into account by introducing a collision frequency, which is either constant or porportionnal to the density

  16. Data-Domain Wave Equation Reflection Traveltime Tomography

    Institute of Scientific and Technical Information of China (English)

    Bo Feng; Huazhong Wang

    2015-01-01

    Estimation of an accurate macro velocity model plays an important role in seismic imag-ing and model parameter inversion. Full waveform inversion (FWI) is the classical data-domain inver-sion method. However, the misfit function of FWI is highly nonlinear, and the local optimization cannot prevent convergence of the misfit function toward local minima. To converge to the global minimum, FWI needs a good initial model or reliable low frequency component and long offset data. In this article, we present a wave-equation-based reflection traveltime tomography (WERTT) method, which can pro-vide a good background model (initial model) for FWI and (least-square) pre-stack depth migration (LS-PSDM). First, the velocity model is decomposed into a low-wavenumber component (background velocity) and a high-wavenumber component (reflectivity). Second, the primary reflection wave is pre-dicted by wave-equation demigration, and the reflection traveltime is calculated by an automatic pick-ing method. Finally, the misfit function of the l2-norm of the reflection traveltime residuals is mini-mized by a gradient-based method. Numerical tests show that the proposed method can invert a good background model, which can be used as an initial model for LS-PSDM or FWI.

  17. Wave dynamic processes in cellular detonation reflection from wedges

    Institute of Scientific and Technical Information of China (English)

    Zongmin Hu; Zonglin Jiang

    2007-01-01

    When the cell width of the incident deto-nation wave (IDW) is comparable to or larger than theMach stem height,self-similarity will fail during IDWreflection from a wedge surface.In this paper,the det-onation reflection from wedges is investigated for thewave dynamic processes occurring in the wave front,including transverse shock motion and detonation cellvariations behind the Mach stem.A detailed reactionmodel is implemented to simulate two-dimensional cel-lular detonations in stoichiometric mixtures of H2/O2diluted by Argon.The numerical results show that thetransverse waves,which cross the triple point trajec-tory of Mach reflection,travel along the Mach stem andreflect back from the wedge surface,control the size ofthe cells in the region swept by the Mach stem.It is theenergy carried by these transverse waves that sustainsthe triple-wave-collision with a higher frequency withinthe over-driven Mach stem.In some cases,local wavedynamic processes and wave structures play a dominantrole in determining the pattern of cellular record,lead-ing to the fact that the cellular patterns after the Machstem exhibit some peculiar modes.

  18. Over-reflection of slow magnetosonic waves by homogeneous shear flow: Analytical solution

    International Nuclear Information System (INIS)

    We have analyzed the amplification of slow magnetosonic (or pseudo-Alfvenic) waves (SMW) in incompressible shear flow. As found here, the amplification depends on the component of the wave-vector perpendicular to the direction of the shear flow. Earlier numerical results are consistent with the general analytic solution for the linearized magnetohydrodynamic equations, derived here for the model case of pure homogeneous shear (without Coriolis force). An asymptotically exact analytical formula for the amplification coefficient is derived for the case when the amplification is sufficiently large.

  19. TEMPERATURE MEASUREMENT OF REFLECTED SHOCK WAVE BY USING CHEMICAL INDICATOR

    Institute of Scientific and Technical Information of China (English)

    Cui Jiping; He Yuzhong; Wang Su; Wang Jing; Fan Bingcheng

    2000-01-01

    This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube,corresponding to the reservoir temperature of a shock tunnel,based on the chemical reaction of small amount of CF4 premixed in the test gas.The final product C2F4 is used as the temperature indicator,which is sampled and detected by a gas chromatography in the experiment.The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P1 and test time γas parameters in the temperature range 3300K<T<5600K,pressure range 5kPa<P1<12kPa andγ≈0.4ms.

  20. Analytical computation of reflection and transmission coefficients for love waves

    International Nuclear Information System (INIS)

    The computation of the transmission and reflection coefficients is an important step in the construction, if modal summation technique is used, of synthetic seismograms for 2-D or 3-D media. These coupling coefficients for Love waves at a vertical discontinuity are computed analytically. Numerical test for realistic structures show how the energy carried by an incoming mode is redistributed on the various modes existing on both sides of the vertical interface. (author). 15 refs, 8 figs

  1. Crack depth profiling using guided wave angle dependent reflectivity

    International Nuclear Information System (INIS)

    Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of an inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm

  2. A Three-Point Method for Separating Incident and Reflected Waves over A Sloping Bed

    Institute of Scientific and Technical Information of China (English)

    CHANG Hsien-Kuo

    2002-01-01

    This study presents a three-point method for separating incident and reflected waves to explain normally incident waves' propagating over a sloping bed. Linear wave shoaling is used to determine changes in wave amplitude and phase in response to variations of bathymetry. The wave reflection coefficient and incident amplitude are estimated from wave heights measured at three fixed wave gauges with unequal spacing. Sensitivity analysis demonstrates that the proposed method can predict the reflection and amplitude of waves over a sloping bed more accurately than the two-point method.

  3. Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling

    Science.gov (United States)

    Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.

    2011-01-01

    The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.

  4. Analysis of Wave Reflection from Wave Energy Converters Installed as Breakwaters in Harbour

    DEFF Research Database (Denmark)

    Zanuttigh, B.; Margheritini, Lucia; Gambles, L.; Martinelli, L.

    loads on the structure, i.e. better survivability. Nevertheless these devices must comply with the requirements of harbour protection structures and thus cope with problems due to reflection of incoming waves, i.e. dangerous sea states close to harbors entrances and intensified sediment scour, which can...

  5. Tests and Applications of An Approach to Absorbing Reflected Waves Towards Incident Boundary

    Institute of Scientific and Technical Information of China (English)

    张洪生; 王炎; 许春辉; 商辉; 于小伟

    2013-01-01

    If the upstream boundary conditions are prescribed based on the incident wave only, the time-dependent numerical models cannot effectively simulate the wave field when the physical or spurious reflected waves become significant. This paper describes carefully an approach to specifying the incident wave boundary conditions combined with a set sponge layer to absorb the reflected waves towards the incident boundary. Incorporated into a time-dependent numerical model, whose governing equations are the Boussinesq-type ones, the effectiveness of the approach is studied in detail. The general boundary conditions, describing the down-wave boundary conditions are also generalized to the case of random waves. The numerical model is in detail examined. The test cases include both the normal one-dimensional incident regular or random waves and the two-dimensional oblique incident regular waves. The calculated results show that the present approach is effective on damping the reflected waves towards the incident wave boundary.

  6. Alfven cyclotron instability and ion cyclotron emission

    International Nuclear Information System (INIS)

    Two-dimensional solutions of compressional Alfven eigenmodes (CAE) are studied in the cold plasma approximation. For finite inverse aspect ratio tokamak plasmas the two-dimensional eigenmode envelope is localized at the low magnetic field side with the radial and poloidal localization on the order of a/√m and a/(fourth root of m), respectively, where m is the dominant poloidal mode number. Charged fusion product driven Alfven Cyclotron Instability (ACI) of the compressional Alfven eigenmodes provides the explanation for the ion cyclotron emission (ICE) spectrum observed in tokamak experiments. The ACI is excited by fast charged fusion products via Doppler shifted cyclotron wave-particle resonances. The ion cyclotron and electron Landau dampings and fast particle instability drive are calculated perturbatively for deuterium-deuterium (DD) and deuterium-tritium (DT) plasmas. Near the plasma edge at the low field side the velocity distribution function of charged fusion products is localized in both pitch angle and velocity. The poloidal localization of the eigenmode enhances the ACI growth rates by a factor of √m in comparison with the previous results without poloidal envelope. The thermal ion cyclotron damping determines that only modes with eigenfrequencies at multiples of the edge cyclotron frequency of the background ions can be easily excited and form an ICE spectrum similar to the experimental observations. Theoretical understanding is given for the results of TFTR DD and DT experiments with υα0/υA α0/υA > 1

  7. Photon reflection by a quantum mirror: a wave function approach

    CERN Document Server

    Corrêa, Raul

    2016-01-01

    We derive from first principles the momentum exchange between a photon and a quantum mirror upon reflection, by considering the boundary conditions imposed by the mirror surface on the photon wave equation. We show that the system generally ends up in an entangled state, unless the mirror position uncertainty is much smaller than the photon wavelength, when the mirror behaves classically. Our treatment leads us directly to the conclusion that the photon momentum has the known value hk/2{\\pi}. This implies that when the mirror is immersed in a dielectric medium the photon radiation pressure is proportional to the medium refractive index n. Our work thus contributes to the longstanding Abraham-Minkowski debate about the momentum of light in a medium. We interpret the result by associating the Minkowski momentum (which is proportional to n) with the canonical momentum of light, which appears naturally in quantum formulations.

  8. Reflective coating optimization for interferometric detectors of gravitational waves.

    Science.gov (United States)

    Principe, Maria

    2015-05-01

    Brownian fluctuations in the highly reflective test-mass coatings are the dominant noise source, in a frequency band from a few tens to a few hundreds Hz, for Earth-bound detectors of Gravitational Waves. Minimizing such noise is mandatory to increase the visibility distance of these instruments, and eventually reach their quantum-limited sensitivity. Several strategies exist to achieve this goal. Layer thickness and material properties optimization have been proposed and effectively implemented, and are reviewed in this paper, together with other, so far less well developed, options. The former is the simplest option, yielding a sensible noise reduction with limited technological challenges; the latter is more technologically demanding, but is needed for future (cryogenic) detectors. PMID:25969189

  9. Reflection and transmission of electromagnetic waves in planarly stratified media

    International Nuclear Information System (INIS)

    Propagation of time-harmonic electromagnetic waves in planarly stratified multilayers is investigated. Each layer is allowed to be inhomogeneous and the layers are separated by interfaces. The procedure is based on the representation of the electromagnetic field in the basis of the eigenvectors of the matrix characterizing the first-order system. Hence the local reflection and transmission matrices are defined and the corresponding differential equations, in the pertinent space variable are determined. The jump conditions at interfaces are also established. The present model incorporates dissipative materials and the procedure holds without any restrictions to material symmetries. Differential equations appeared in the literature are shown to hold in particular (one-dimensional) cases or to represent homogeneous layers only

  10. The combined toroidicity, ellipticity and triangularity effects on the energy deposition of Alfven modes in pre-heated, low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    The combined plasma non-uniformity effects on the energy deposition of Alfven waves launched by an external antenna in pre-heated spherical tokamaks are investigated. The following relevant physical processes are here possible: (a) the emergence of gaps in the shear Alfven continuum spectrum and the generation of discrete global Alfven eigenmodes with frequencies inside the gaps; (b) multi-wave interactions, interactions of gaps of the same kind (e.g., toroidicity induced) and of different kinds (toroidicity, ellipticity and triangularity induced) as well as of secondary order gaps arising when a pair of modes is coupled to one or more modes through other coupling parameters; (c) basic wave-plasma interactions as propagation, reflection, mode-conversion, tunneling and deposition. Thus, we solved numerically the full 2D wave equations for the vector and scalar potentials, using a quite general two-fluid resistive tensor-operator, without any geometrical limitations. The results obtained indicate the existence of antenna-launched wave characteristics for which the power is most efficiently coupled in outer regions of plasmas, which is of special interest for low aspect ratio tokamaks, e.g., for the generation of non-inductive current drive as well as for turbulence suppression and transport barriers formation

  11. Experimental observation of the shear Alfven resonance in a tokamak

    International Nuclear Information System (INIS)

    Experiments in Tokapole II have demonstrated the shear Alfven resonance in a tokamak by direct probe measurement of the wave magnetic field within the plasma. The resonance is driven by external antennas and is identified as radially localized enhancements of the poloidal wave magnetic field. The radial location agrees with calculations which include toroidicity and noncircularity of the plasma cross-section. Other properties such as polarization, radial width, risetime, and wave enhancement also agree with MHD theory

  12. A Time-Domain Method for Separating Incident and Reflected Irregular Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter; Brorsen, Michael

    In the hydraulic laboratory environment a seperation of an irregular wave field into incident waves propagating towards a structure, and reflected waves propagating away from the structure is often wanted. This is due to the fact that the response of the structure to the incident waves is target of...... the model test. Goda and Suzuki (1976) presented a frequency method for estimation of irregular incident and reflected waves in random waves. Mansard and Funke (1980) improved this method uaing a least squares technique. In the following, a time-domain method for seperating the incident waves and the...

  13. A Kind of Discrete Non-Reflecting Boundary Conditions for Varieties of Wave Equations

    Institute of Scientific and Technical Information of China (English)

    Xiu-min Shao; Zhi-ling Lan

    2002-01-01

    In this paper, a new kind of discrete non-reflecting boundary conditions is developed. It can be used for a variety of wave equations such as the acoustic wave equation, the isotropic and anisotropic elastic wave equations and the equations for wave propagation in multi-phase media and so on. In this kind of boundary conditions, the composition of all artificial reflected waves, but not the individual reflected ones, is considered and eliminated. Thus, it has a uniform formula for different wave equations. The velocity CA of the composed reflected wave is determined in the way to make the reflection coefficients minimal, the value of which depends on equations. In this paper, the construction of the boundary conditions is illustrated and CA is found, numerical results are presented to illustrate the effectiveness of the boundary conditions.

  14. Characteristics of Wave Reflection for Vertical and Slit Caissons with Porous Structures

    OpenAIRE

    Tae-Hwa Jung; Sung-Jae Lee; Yong-Sik Cho

    2012-01-01

    Offshore structures are occasionally located at a relatively deep water region, the outside of breakwater. In this case, these structures may be damaged by the supposition of incident and reflected waves from a vertical breakwater. To prevent the damage, the reflected waves are controlled by installing porous structures at the face of the vertical breakwater. In this study, numerical experiments are carried out to identify the characteristics of wave reflection from the porous structures inst...

  15. Global structures of Alfven-ballooning modes in magnetospheric plasmas

    International Nuclear Information System (INIS)

    The authors show that a steep plasma pressure gradient can lead to radially localized Alfven modes, which are damped through coupling to filed line resonances. These have been called drift Alfven balloning modes (DABM) and are the prime candidates to explain Pc4-Pc5 geomagnetic pulsations observed during storms. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode number can be found for the DABM to be radially trapped. The authors find that higher m DABMs are better localized, which is consistent with high-m observations

  16. Nonlinear hybrid simulation of toroidicity-induced alfven eigenmode

    International Nuclear Information System (INIS)

    Gyrokinetic/Magnetohydrodynamics hybrid simulations have been carried out using MH3D-K code to study the nonlinear saturation of the toroidicity-induced Alfven eigenmode driven by energetic particles in a tokamak plasma. It is shown that the wave particle trapping is the nonlinear saturation mechanism for the parameters considered. The corresponding density profile flattening of hot particles is observed. The saturation amplitude is proportional to the square of linear growth rate. In addition to TAE modes, a new n = 1, m = 0 global Alfven eigenmode is shown to be excited by the energetic particles

  17. High and low frequency Alfven modes in tokamaks

    International Nuclear Information System (INIS)

    We present an analysis of the typical features of shear Alfven waves in tokamak plasmas in a frequency domain ranging from the ''high'' frequencies (ω ≅ νA/2qR0; νA being the Alfven speed and qR0 the tokamak connection length) of the toroidal gap to the ''low'' frequencies, comparable with the thermal ion diamagnetic frequency, ω*pi and/or the thermal ion transit frequency ωti = νti/qR0 (νti being the ion thermal speed). (author)

  18. Reflection of plane electromagnetic waves from the surface of a perfect conductor moving in an arbitrary direction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The reflection of plane electromagnetic waves (TE wave and TM wave) from a perfect conductor which moves in an arbitrary direction is investigated. Based on Maxwell's equations and the boundary conditions for moving boundary, the relation between the field vectors of reflected and incident waves, and the reflection coefficient are derived. The energy balance between incident and reflected waves, the force exerted by electromagnetic waves to the moving conductor are also discussed and some new conclusions are suggested for notice.

  19. Conditions for ion reflection in a large-amplitude magnetosonic wave

    International Nuclear Information System (INIS)

    Ion orbits in a large-amplitude magnetosonic wave are studied numerically and analytically. The orbits are classified into three basic types. In the first type, ion pass through the wave without reflection and do not gain much energy. In the second type, they are reflected once and are accelerated in the direction of the wave normal; after the reflection they return to the wave front by the Lorentz force and pass through the wave. In the third type, they are reflected several times and are accelerated along the wave front; when they reach their maximum speeds, they are detrapped. Conditions for these types of reflection are discussed and the energies of accelerated ions are evaluated. (author)

  20. Alfven QPOs in magnetars in the anelastic approximation

    CERN Document Server

    Cerdá-Durán, Pablo; Font, José A

    2009-01-01

    We perform two-dimensional simulations of Alfven oscillations in magnetars, modeled as relativistic stars with a dipolar magnetic field. We use the anelastic approximation to general relativistic magnetohydrodynamics, which allows for an effective suppression of fluid modes and an accurate description of Alfven waves. In addition, we compute Alfven oscillation frequencies along individual magnetic field lines with a semi-analytic approach, employing a short-wavelength approximation. Our main findings are as follows: a) we confirm the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency, as was found in the linear study of Sotani, Kokkotas & Stergioulas (2008); b) the QPOs appearing near the magnetic axis are split into two groups, depending on their symmetry across the equatorial plane. The antisymmetric QPOs have only odd integer-multiple harmonics; c) the continuum obtained with our semi-analytic approach agrees remarkably well...

  1. Diffusive shock acceleration with magnetic field amplification and Alfvenic drift

    CERN Document Server

    Kang, Hyesung

    2012-01-01

    We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfvenic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is greater than 2x10^{-4}, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfven speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfvenic drift predicts that the postshock CR pressure saturates roughly at 10 % of the shock ram pressure for strong shocks...

  2. Observations and modeling of forward and reflected chorus waves captured by THEMIS

    Directory of Open Access Journals (Sweden)

    O. Agapitov

    2011-03-01

    Full Text Available Discrete ELF/VLF chorus emissions are the most intense electromagnetic plasma waves observed in the radiation belts of the Earth's magnetosphere. Chorus emissions, whistler-mode wave packets propagating roughly along magnetic field lines from a well-localized source in the vicinity of the magnetic equator to polar regions, can be reflected at low altitudes. After reflection, wave packets can return to the equatorial plane region. Understanding of whistler wave propagation and reflection is critical to a correct description of wave-particle interaction in the radiation belts. We focus on properties of reflected chorus emissions observed by the THEMIS (Time History of Events and Macroscale Interactions During Substorms spacecraft Search Coil Magnetometer (SCM and Electric Field Instrument (EFI at ELF/VLF frequencies up to 4 kHz at L≥8. We determine the direction of the Poynting flux and wave vector distribution for forward and reflected chorus waves. Although both types of chorus waves were detected near the magnetic equator and have similar, discrete structure and rising tones, reflected waves are attenuated by a factor of 10–30 and have 10% higher frequency than concurrently-observed forward waves. Modeling of wave propagation and reflection using geometrical optics ray-tracing allowed us to determine the chorus source region location and explain observed propagation characteristics. We find that reflected wave attenuation at a certain spatial region is caused by divergence of the ray paths of these non-ducted emissions, and that the frequency shift is caused by generation of the reflected waves at lower L-shells where the local equatorial gyrofrequency is larger.

  3. Numerical Simulated Study on the Separation of Oblique Incident and Reflected Waves

    Institute of Scientific and Technical Information of China (English)

    邵利民; 俞聿修

    2001-01-01

    The Goda's method of separating the frequency spectrum of the unidirectional incident and reflected waves is improved. The proposed method can be applied to the separation of oblique incident and reflected waves and the two wave gauges can be arranged in an arbitrary angle in front of a structure. When the projected distance of the two probes on the incident wave direction is the multiple ofthe half length of the incident waves, the singular problem will emerge by using the method. It is advised that when the projected distance of the two measured points on the incident wave direction is 0.05~0.45 times the wave length of peak frequency wave, good results can be obtained. The simulated resultant waves are separated by the method of numerical simulation and the separated wave spectra are basically corresponding to the target spectra input. The wave trains calculated by the separated incident and reflected wave frequency spectrum are approximated to the input wave trains and the reflected coefficient can be derived correctly. Therefore, the method proposed in this paper is reliable.

  4. Full-wave reflection of lightning long-wave radio pulses from the ionospheric D region: Numerical model

    Science.gov (United States)

    Jacobson, Abram R.; Shao, Xuan-Min; Holzworth, Robert

    2009-03-01

    A model is developed for calculating ionospheric reflection of electromagnetic pulses emitted by lightning, with most energy in the long-wave spectral region (f ~ 3-100 kHz). The building block of the calculation is a differential equation full-wave solution of Maxwell's equations for the complex reflection of individual plane waves incident from below, by the anisotropic, dissipative, diffuse dielectric profile of the lower ionosphere. This full-wave solution is then put into a summation over plane waves in an angular direct Fourier transform to obtain the reflection properties of curved wavefronts. This step models also the diffraction effects of long-wave ionospheric reflections observed at short or medium range (~200-500 km). The calculation can be done with any arbitrary but smooth dielectric profile versus altitude. For an initial test, this article uses the classic D region exponential profiles of electron density and collision rate given by Volland. With even these simple profiles, our model of full-wave reflection of curved wavefronts captures some of the basic attributes of observed reflected waveforms recorded with the Los Alamos Sferic Array. A follow-on article will present a detailed comparison with data in order to retrieve ionospheric parameters.

  5. Reflection of plane waves from free surface of a microstretch elastic solid

    Indian Academy of Sciences (India)

    Baljeet Singh

    2002-03-01

    In the present investigation, it is shown that there exists five basic waves in a microstretch elastic solid half-space. The problem of reflection of plane waves from free surface of a microstretch elastic solid half-space is studied. The energy ratios for various reflected waves are obtained for aluminium- epoxy composite as a microstretch elastic solid half-space. The variations of the energy ratios with the angle of incidence are shown graphically. The microstretch effect is shown on various reflected waves.

  6. Reflection and transmission of full-vector X-waves normally incident on dielectric half spaces

    KAUST Repository

    Salem, Mohamed

    2011-08-01

    The reflection and transmission of full-vector X-Waves incident normally on a planar interface between two lossless dielectric half-spaces are investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of transmission and reflection is carried out via a straightforward but yet effective method: First, the X-Wave is decomposed into vector Bessel beams via the Bessel-Fourier transform. Then, the reflection and transmission coefficients of the beams are obtained in the spectral domain. Finally, the transmitted and reflected X-Waves are obtained via the inverse Bessel-Fourier transform carried out on the X-wave spectrum weighted with the corresponding coefficient. © 2011 IEEE.

  7. Reflection of plane waves in an initially stressed perfectly conducting transversely isotropic solid half-space

    Indian Academy of Sciences (India)

    Baljeet Singh; Anand Kumar Yadav

    2013-08-01

    Reflection of plane waves is studied at a free surface of a perfectly conducting transversely isotropic elastic solid half-space with initial stress. The governing equations are solved to obtain the velocity equation which indicates the existence of two quasi planar waves in the medium. Reflection coefficients and energy ratios for reflected qP and qSV waves are derived and computed numerically for a particular material. Effects of the initial stress and magnetic field are shown graphically on these reflection coefficients and energy ratios.

  8. Alfvenic Turbulence from the Sun to 65 Solar Radii: Numerical predictions.

    Science.gov (United States)

    Perez, J. C.; Chandran, B. D. G.

    2015-12-01

    The upcoming NASA Solar Probe Plus (SPP) mission will fly to within 9 solar radii from the solar surface, about 7 times closer to the Sun than any previous spacecraft has ever reached. This historic mission will gather unprecedented remote-sensing data and the first in-situ measurements of the plasma in the solar atmosphere, which will revolutionize our knowledge and understanding of turbulence and other processes that heat the solar corona and accelerate the solar wind. This close to the Sun the background solar-wind properties are highly inhomogeneous. As a result, outward-propagating Alfven waves (AWs) arising from the random motions of the photospheric magnetic-field footpoints undergo strong non-WKB reflections and trigger a vigorous turbulent cascade. In this talk I will discuss recent progress in the understanding of reflection-driven Alfven turbulence in this scenario by means of high-resolution numerical simulations, with the goal of predicting the detailed nature of the velocity and magnetic field fluctuations that the SPP mission will measure. In particular, I will place special emphasis on relating the simulations to relevant physical mechanisms that might govern the radial evolution of the turbulence spectra of outward/inward-propagating fluctuations and discuss the conditions that lead to universal power-laws.

  9. Reflection of acoustic wave from the elastic seabed with an overlying gassy poroelastic layer

    Science.gov (United States)

    Chen, Weiyun; Wang, Zhihua; Zhao, Kai; Chen, Guoxing; Li, Xiaojun

    2015-10-01

    Based on the multiphase poroelasticity theory, the reflection characteristics of an obliquely incident acoustic wave upon a plane interface between overlying water and a gassy marine sediment layer with underlying elastic solid seabed are investigated. The sandwiched gassy layer is modelled as a porous material with finite thickness, which is saturated by two compressible and viscous fluids (liquid and gas). The closed-form expression for the amplitude ratio of the reflected wave, called reflection coefficient, is derived theoretically according to the boundary conditions at the upper and lower interfaces in our proposed model. Using numerical calculation, the influences of layer thickness, incident angle, wave frequency and liquid saturation of sandwiched porous layer on the reflection coefficient are analysed, respectively. It is revealed that the reflection coefficient is closely associated with incident angle and sandwiched layer thickness. Moreover, in different frequency ranges, the dependence of the wave reflection characteristics on moisture (or gas) variations in the intermediate marine sediment layer is distinguishing.

  10. Alfven cyclotron instability and ion cyclotron emission

    International Nuclear Information System (INIS)

    Two-dimensional solutions of compressional Alfven eigenmodes (CAEs) are studied in the cold plasma approximation. For finite inverse aspect ratio tokamak plasmas the two-dimensional eigenmode envelope is localized at the low magnetic field side with the radial and poloidal localization on the order of a/√m and a/4√m, respectively, where m is the dominant poloidal mode number. Charged fusion product driven Alfven cyclotron instability (ACI) of the compressional Alfven eigenmodes provides the explanation for the ion cyclotron emission (ICE) spectrum observed in tokamak experiments. The ACI is excited by fast charged fusion products via Doppler shifted cyclotron wave-particle resonances. The ion cyclotron and electron Landau damping and fast particle instability drive are calculated perturbatively for deuterium-deuterium (DD) and deuterium-tritium (DT) plasmas. Near the plasma edge at the low field side the velocity distribution function of charged fusion products is localized in both pitch angle and velocity. The poloidal localization of the eigenmode enhances the ACI growth rates by a factor of √m in comparison with the previous results without poloidal envelope. The thermal ion cyclotron damping determines that only modes with eigenfrequencies at multiples of the edge cyclotron frequency of the background ions can be easily excited and form an ICE spectrum similar to the experimental observations. Theoretical understanding is given for the results of TFTR DD and DT experiments with υα0/υA ≅ 1 and JET experiments with υα0/υA > 1. (author). 15 refs, 7 figs

  11. Reflection of P and SV waves from free surface of an elastic solid with generalized thermodiffusion

    Indian Academy of Sciences (India)

    Baljeet Singh

    2005-04-01

    The governing equations for generalized thermodiffusion in an elastic solid are solved. There exists three kinds of dilatational waves and a Shear Vertical (SV) wave in a two-dimensional model of the solid. The reflection phenomena of P and SV waves from free surface of an elastic solid with thermodiffusion is considered. The boundary conditions are solved to obtain a system of four non-homogeneous equations for reflection coefficients. These reflection coefficients are found to depend upon the angle of incidence of P and SV waves, thermodiffusion parameters and other material constants. The numerical values of modulus of the reflection coefficients are presented graphically for different values of thermodiffusion parameters. The dimensional velocities of various plane waves are also computed for different material constants.

  12. Propagation, reflection, and transmission of SH-waves in slightly compressible, finitely deformed elastic media

    Institute of Scientific and Technical Information of China (English)

    M. CHATTERJEE; A. CHATTOPADHYAY

    2015-01-01

    The propagation, reflection, and transmission of SH waves in slightly com-pressible, finitely deformed elastic media are considered in this paper. The dispersion relation for SH-wave propagation in slightly compressible, finitely deformed layer over-lying a slightly compressible, finitely deformed half-space is derived. The present paper also deals with the reflection and refraction (transmission) phenomena due to the SH wave incident at the plane interface between two distinct slightly compressible, finitely deformed elastic media. The closed form expressions for the amplitude ratios of reflection and refraction coefficients of the reflected and refracted SH waves are obtained from suit-able boundary conditions. For the numerical discussions, we consider the Neo-Hookean form of a strain energy function. The phase speed curves, the variations of reflection, and transmission coefficients with the angle of incidence, and the plots of the slowness sections are presented by means of graphs.

  13. Incidence and reflection of internal waves and wave-induced currents at a jump in buoyancy frequency

    Science.gov (United States)

    McHugh, J. P.

    2015-05-01

    Weakly nonlinear internal gravity waves are treated in a two-layer fluid with a set of nonlinear Schrodinger equations. The layers have a sharp interface with a jump in buoyancy frequency approximately modeling the tropopause. The waves are periodic in the horizontal but modulated in the vertical and Boussinesq flow is assumed. The equation governing the incident wave packet is directly coupled to the equation for the reflected packet, while the equation governing transmitted waves is only coupled at the interface. Solutions are obtained numerically. The results indicate that the waves create a mean flow that is strong near and underneath the interface, and discontinuous at the interface. Furthermore, the mean flow has an oscillatory component that can contaminate the wave envelope and has a vertical wavelength that decreases as the wave packet interacts with the interface.

  14. Characteristics of Wave Reflection for Vertical and Slit Caissons with Porous Structures

    Directory of Open Access Journals (Sweden)

    Tae-Hwa Jung

    2012-01-01

    Full Text Available Offshore structures are occasionally located at a relatively deep water region, the outside of breakwater. In this case, these structures may be damaged by the supposition of incident and reflected waves from a vertical breakwater. To prevent the damage, the reflected waves are controlled by installing porous structures at the face of the vertical breakwater. In this study, numerical experiments are carried out to identify the characteristics of wave reflection from the porous structures installing in front of a vertical or slit caisson.

  15. A universal number for wave reflection optimization of the mammalian cardiovascular system.

    Science.gov (United States)

    Pahlevan, Niema; Gharib, Morteza

    2015-11-01

    Quantifying the optimum arterial wave reflection and systemic arterial function is essential to the evaluation of optimal cardiovascular system (CVS) operation. The CVS function depends on both the dynamics of the heart and wave dynamics of the arterial network. Here, we are introducing a universal dimensionless number, called wave condition number (α) that quantifies the arterial wave reflection. An in-vitro experimental approach, utilizing a unique hydraulic model was used to quantify α in human aortas with a wide range of aortic rigidities. Our results indicate that the optimum value of the wave condition number is 0.1 at each level of aortic rigidity. Looking into mammals of various size (from mice to elephant), our results show that the optimum wave condition number remains 0.1 and is universal among all mammals. Clinical applications and the relevancy of the wave condition number will also be discussed.

  16. Three-wave mixing of ordinary and backward electromagnetic waves: extraordinary transients in the nonlinear reflectivity and parametric amplification.

    Science.gov (United States)

    Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A

    2016-09-01

    Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings. PMID:27607951

  17. Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity

    Science.gov (United States)

    Abd-alla, Abo-el-nour; Giorgio, Ivan; Galantucci, Luca; Hamdan, Abdelmonam M.; Vescovo, Dionisio Del

    2016-03-01

    In this paper, the well-established two-dimensional mathematical model for linear pyroelectric materials is employed to investigate the reflection of waves at the boundary between a vacuum and an elastic, transversely isotropic, pyroelectric material. A comparative study between the solutions of (a) classical thermoelasticity, (b) Cattaneo-Lord-Shulman theory and (c) Green-Lindsay theory equations, characterised by none, one and two relaxation times, respectively, is presented. Suitable boundary conditions are considered in order to determine the reflection coefficients when incident elasto-electro-thermal waves impinge the free interface. It is established that, in the quasi-electrostatic approximation, three different classes of waves: (1) two principally elastic waves, namely a quasi-longitudinal Primary ( qP) wave and a quasi-transverse Secondary ( qS) wave; and (2) a mainly thermal ( qT) wave. The observed electrical effects are, on the other hand, a direct consequence of mechanical and thermal phenomena due to pyroelectric coupling. The computed reflection coefficients of plane qP waves are found to depend upon the angle of incidence, the elastic, electric and thermal parameters of the medium, as well as the thermal relaxation times. The special cases of normal and grazing incidence are also derived and discussed. Finally, the reflection coefficients are computed for cadmium selenide observing the influence of (1) the anisotropy of the material, (2) the electrical potential and (3) temperature variations and (4) the thermal relaxation times on the reflection coefficients.

  18. Ultrasonic testing using transmission and reflection waves of weld defect in thick steel plete

    International Nuclear Information System (INIS)

    Study on the sizing of weld defects of thick steel plate (thickness: 100 mm) with an automatic ultrasonic testing system was undertaken. This system is capable to detect the defect by three methods, the tandem method, the angle beam reflection method and the method using transmission and reflection waves. With the method using transmission and reflection waves, the defects are detected by presenting the ultrasonic transmission wave information and the reflection wave echo information relating their locations. The graphic display of defect by the method using transmission and reflection waves was carried out in off-line, using these informations, while the other two methods presented B and C scope of the defects on-line. Although the test results of obtained by each method are influenced by the type, size and location of defect, the results of this experiment showed that the method using transmission and reflection waves gave the best sizing of defect, followed by the tandem method and the angle beam reflection method. (author)

  19. Reflectivity scaling with fluence in picosecond four-wave mixing

    International Nuclear Information System (INIS)

    An active-passive mode-locked Nd:YAG laser oscillator and amplifier were used to produce a pulse train of about fourteen pulses under a Gaussian envelope. Each pulse was split into pump and signal pulses and used in the usual geometry to obtain a phase-conjugate reflection. In pulse average reflectivity measurements, the integrated pulse train reflectivity was observed to depend linearly on the pulse train fluence. In a single-pulse measurements, reflectivities were obtained from fast photodiode traces of the probe and phase-conjugate reflection with scaling by pulse train energy measurements. The pulse reflectivities were potted against pump pulse fluence to produce a graph. From the linearity of the log-log plot, it is apparent that the reflectivity has a power dependence on the fluence given by the slope of the line, which is close to unity. Until now, analytical solutions have been obtained only if the pump fields were cw or the pulses were much longer than the length of the interaction medium. In the case of the authors' experiments, the interaction was well confined within the medium. To analyze these short-pulse experiments, they have reformulated the coupled equations and redefined proper boundary conditions. By transforming the coordinates of the equations to a pulse fuence coordinate, an analytic solution was obtained for pulses of arbitrary shape. The results showed that reflectivity is a monotonically increasing function of the pump fluence. Unlike the solutions in the cw regime, there is no oscillation condition which gives infinite reflectivity for finite input. The linear dependence was observed in both pulse train average and single-pulse experiments

  20. Background velocity inversion by phase along reflection wave paths

    KAUST Repository

    Yu, Han

    2014-08-05

    A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.

  1. Partial reflections of radio waves from the lower ionosphere

    Science.gov (United States)

    Connolly, D. J.; Tanenbaum, S. B.

    1972-01-01

    The addition of phase difference measurements to partial reflection experiments is discussed, and some advantages of measuring electron density this way are pointed out. The additional information obtained reduces the requirement for an accurate predetermination of collision frequency. Calculations are also made to estimate the errors expected in partial-reflection experiments due to the assumption of Fresnel reflection and to the neglect of coupling between modes. In both cases, the errors are found to be of the same order as known errors in the measurements due to current instrumental limitations.

  2. New imaging method for seismic reflection wave and its theoretical basis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some new imaging formulas for seismic reflection wave and theirtheoretical basis are given. Phenomena of wave propagation should be characterized by instantaneous spectrum and expressed by complex function of three variables (time, space and frequency) in mathematics. Various physical parameters of medium are also complex functions of two variables (space and frequency). The relationship between reflection coefficient of medium and spectrum of reflected wave is given. Multi-reflection and filter of formations are considered in inversion formulas. Prob-lems in classical convolution model and wave equation are illustrated. All these inversion formulas can be used to image underground medium by wavelet transform and method of "3-basic colors". Different colors mean different media.

  3. Forward Modeling of Azimuthal Anisotropy to the Reflected P Wave of Coal Seam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-gong; DONG Shou-hua; YUE Jian-hua

    2006-01-01

    Under the condition of weak anisotropy, the relation of P-wave anisotropy in direction to fractures of coal seams was researched in order to forecast the density and the direction of the fractures. Although the approximate solution by Rüger is suitable for thick reservoirs, it has some limitations for the composite reflected wave from both roofs and floors of coal seams, as well as multiple reflections. So first, the phase velocity and group velocity as well as their travel time were calculated about the reflected P-wave of the coal seam. Then, the anisotropic coefficients of both roofs and floors were calculated by Rüger formulae and last, the section versus azimuth in fixed offset can be gotten by convolution. In addition, the relation of amplitude of the composite reflected wave to azimuth angle was discussed. The forward modelling results of the coal azimuth anisotropy show these: 1) the coal seam is the strong reflecting layer, but the change of the reflectivity caused by the azimuth anisotropy is smaller; 2) if the azimuth angle is parallel to the crack strike, the reflectivity reaches up to the maximum absolute value, however, if the azimuth angle is perpendicular to the crack strike, the absolute value of the reflection coefficient is minimum; and 3)the reflection coefficient is the cosine function of the azimuth angle and the period is π.

  4. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    Energy Technology Data Exchange (ETDEWEB)

    Erlangga, Mokhammad Puput [Geophysical Engineering, Institut Teknologi Bandung, Ganesha Street no.10 Basic Science B Buliding fl.2-3 Bandung, 40132, West Java Indonesia puput.erlangga@gmail.com (Indonesia)

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  5. Onto resolving spurious wave reflection problem with changing nonlocality among various length scales

    Science.gov (United States)

    Rahman, R.; Foster, J. T.

    2016-05-01

    In this work an effective method was proposed in order to resolve the wave reflection problems between local/nonlocal models as well as multiple nonlocal models with varying nonlocality. Spurious wave reflection has been a primary concern in developing a robust multiscale-multiresolution model. In the current work a power-law based nonlocal peridynamic model has been proposed in order to mitigate this issue in a versatile manner. The fractional power-law eliminates the spurious wave reflection at the interfaces between local/nonlocal regions or regions with different nonlocalities. By controlling the exponent of the power-law it is possible to vary the frequency components of short or long waves without requiring a large handshake region. Using this underlying idea, 1 | x - x‧/| 1 + α, ∀ 0 controlling α it is possible to change the nature of nonlocal interaction within any given cutoff range. Besides power law, Gaussian kernel is another good choice in minimizing the wave reflection issue. However, Gaussian function has some limitations with large variation in nonlocality or waves with higher frequency. In that context the proposed model demonstrated its effectiveness by removing any spurious wave reflections originated in various cases.

  6. Reflection of and SV waves at the free surface of a monoclinic elastic half-space

    Indian Academy of Sciences (India)

    Sarva Jit Singh; Sandhya Khurana

    2002-12-01

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for the phase velocity of qP and qSV waves propagating in the plane of elastic symmetry are obtained in terms of the direction cosines of the propagation vector. It is shown that, in general, qP waves are not longitudinal and qSV waves are not transverse. Pure longitudinal and pure transverse waves can propagate only in certain specific directions. Closed-form expressions for the reflection coefficients of qP and qSV waves incident at the free surface of a homogeneous monoclinic elastic half-space are obtained. These expressions are used for studying numerically the variation of the reflection coefficients with the angle of incidence. The present analysis corrects some fundamental errors appearing in recent papers on the subject.

  7. Reflection of P-Wave and Sv-Wave in a Generalized Two Temperature Thermoelastic Half-Space

    Directory of Open Access Journals (Sweden)

    Santra S.

    2014-11-01

    Full Text Available In this work the theory of two temperature generalized thermoelasticity has been used to investigate the problem of reflection of P-wave and SV-wave in a half space when the surface is i thermally insulated or ii isothermal. The ratios of the reflection coefficient to that of the incident coefficient for different cases are obtained for P-wave and SV-waves. The results for various cases for the conductive and dynamical temperature have been compared. The results arrived at in the absence of the thermal field (elastic case have also been compared with those in the existing literature. Finally, the results for various cases have been analyzed and depicted in graphs.

  8. Attractors of magnetohydrodynamic flows in an Alfvenic state

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    1999-08-13

    We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)

  9. New method for continuous determination of depth-dependent reflection coefficients of Rayleigh waves

    International Nuclear Information System (INIS)

    A new experimental method and principle were presented for the continuous measurement of the depth-dependant reflection coefficient of Rayleigh waves or their pulse interacting with various surface discontinuities. The method was to record the reflection-echo-amplitudes for varying depth during scanning the Rayleigh wave pulse with a small lateral beam width along a surface discontinuity with a small slope in depth. In the experiments using a declined slot and intensively focused Rayleigh waves, the coefficients were continuously measured with quite good reproducibility in the range of $0.05

  10. High-Order Non-Reflecting Boundary Scheme for Time-Dependent Waves

    OpenAIRE

    Givoli, Dan; Neta, Beny

    2002-01-01

    A new non-reflecting boundary scheme is proposed for time-dependent wave problems in unbounded domains. The linear time-dependent wave equation, with or without a disper- sive term, is considered outside of an obstacle or in a semi-infinite wave guide. The infinite domain is truncated via an artificial boundary B, and a high-order Non-Reflecting Boundary Condition (NRBC) is imposed on B. Then the problem is solved numerically in the finite domain bounded by B. The new boundary scheme is based...

  11. Source regions and reflection of infragravity waves offshore of the U.S.s Pacific Northwest

    Science.gov (United States)

    Neale, Jennifer; Harmon, Nicholas; Srokosz, Meric

    2015-09-01

    Infragravity waves are oceanic surface gravity waves but with wavelengths (tens of km) and periods (>30 s) much longer than wind waves and swell. Mostly studied in shallow water, knowledge of infragravity waves in deep water has remained limited. Recent interest in deep water infragravity waves has been motivated by the error they may contribute to future high-resolution satellite radar altimetry measurements of sea level. Here deep water infragravity waves offshore of the Pacific Northwest of the U.S. were studied using differential pressure gauges which were deployed as part of the Cascadia Initiative array from September 2012 to May 2013. Cross correlation of the records revealed direction of infragravity wave propagation across the array, from which source regions were inferred. The dominant source was found to be the coastline to the east, associated with large wind waves and swell incident on the eastern side of the basin. The source shifted southward during northern-hemisphere summer, and on several days in the record infragravity waves arrived from the western side of the Pacific. Asymmetry of cross-correlation functions for five of these westerly arrivals was used to calculate the ratio of seaward to shoreward propagating energy, and hence estimate the strength of infragravity wave reflection at periods of 100-200 s. Reflection of these remote arrivals from the west appeared to be strong, with a lower bound estimate of r = 0.49 ± 0.29 (reflection coefficient ± standard error) and an upper bound estimate of r = 0.74 ± 0.06. These results suggest that reflection at ocean boundaries may be an important consideration for infragravity waves in the deep ocean.

  12. Analysis of reflection phenomena of elastic waves in fiber composite materials

    International Nuclear Information System (INIS)

    As a fundamental approach to studying ultrasonic wave behaviors in fiber-reinforced composite, this paper introduces the analytical method to predict the modes, directions, and amplitudes of all reflected waves that are generated by free-surface reflection in fiber-reinforced composites. The paper also explores a new phenomenon where a reflected wave that is predicted to be generated in accordance with the slowness surface may disappear. This may occur when the angle of incidence of a quasi-shear wave exceeds a newly defined critical angle, named the third critical angle. It is hoped that the analytical approach introduced in this paper will provide an easy-to-follow guideline for researchers in the appropriate area.

  13. Reflection and transmission of normally incident full-vector X waves on planar interfaces

    KAUST Repository

    Salem, Mohamed

    2011-12-23

    The reflection and transmission of full-vector X waves normally incident on planar half-spaces and slabs are studied. For this purpose, X waves are expanded in terms of weighted vector Bessel beams; this new decomposition and reconstruction method offers a more lucid and intuitive interpretation of the physical phenomena observed upon the reflection or transmission of X waves when compared to the conventional plane-wave decomposition technique. Using the Bessel beam expansion approach, we have characterized changes in the field shape and the intensity distribution of the transmitted and reflected full-vector X waves. We have also identified a novel longitudinal shift, which is observed when a full-vector X wave is transmitted through a dielectric slab under frustrated total reflection condition. The results of our studies presented here are valuable in understanding the behavior of full-vector X waves when they are utilized in practical applications in electromagnetics, optics, and photonics, such as trap and tweezer setups, optical lithography, and immaterial probing. © 2011 Optical Society of America.

  14. Ultra-Broadband Acoustic Metasurface for Manipulating the Reflected Waves

    OpenAIRE

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2014-01-01

    We have designed and experimentally realized an ultra-broadband acoustic metasurface (UBAM) capable of going beyond the intrinsic limitation of bandwidth in existing designs of optical/acoustical metasurfaces. Both the numerical and experimental results demonstrate that the UBAM made of subwavelength gratings can manipulate the reflected phase-front within a bandwidth larger than 2 octaves. A simple physical model based on the phased array theory is developed for interpreting this extraordina...

  15. Reflection and absorption of electromagnetic waves obliquely incident on a half-space relativistic plasma

    International Nuclear Information System (INIS)

    Reflection and absorption characteristics of electromagnetic waves obliquely incident upon a half-space relativistic Vlasov plasma are investigated. Numerical results comparing the properties of the s- and p-polarized waves are given. It is shown that the response of plasma can be best understood by studying the locations of the roots kappa/sub t/ and kappa/sub l/ of the transversal and longitudinal dispersion functions in the complex wavenumber plane. In general, s-polarized waves are reflected and p-polarized waves are absorbed more efficiently by the plasma. Total reflection occurs when kappa/sub t/ becomes zero for the case of s-polarization and when kappa/sub l/ becomes zero for the case of p-polarization. Total penetration of p-waves is obtained for sufficiently large frequencies at the Brewster angle theta/sub B/. These waves exhibit a sharp absorption peak at the characteristic angle theta/sub c/ at which the transversal transmission terminates. For a given temperature, p-waves are totally absorbed in the plasma at a specific frequency at which theta/sub B/=theta/sub c/. Absorption peaks are broader at higher temperatures. If both transversal and longitudinal modes propagate undamped at some value of angle of incidence theta, there exists a secondary smooth and broad absorption peak at larger values of theta for the p-waves. The magnitude of the secondary peak can also be appreciable at the ultrarelativistic temperatures

  16. Acceleration of Alfven solitons

    International Nuclear Information System (INIS)

    We study the dynamics of solitons perturbed by an external harmonic driver. These are described by a derivative nonlinear Schroedinger equation (DNLSE) which we solve by pseudo-spectral simulations over a 1024 point grid. Under the action of the perturbation, low-amplitude non-linearly interacting wave modes develop, which eventually degenerate into chaotic oscillations characterized by a positive maximum Lyapunov exponent and a large dimension. After this stage (which lasts about 10 driver's periods), an initially injected soliton (the initial condition) sets down to a train of pulse-shaped structures. These pulses have all the same speed and move in the same direction of the original soliton, retaining its polarization. However, the number of pulses in the numerical box and the time interval between them point out a translation speed which is about 4 times the one of the original soliton; the amplitude and width of the pulses are respectively about 2 and 1/4 times the ones of the original soliton. This suggests that the observed structure is itself a soliton which in fact solves the DNLSE. In other words, it appears as if the DNLSE nonlinearly stored the energy intake out of the driver into more energetic, faster and narrower solitons, a phenomenon we refer to as soliton acceleration. In the meanwhile, the above reported chaotic oscillations have entered an energy-cascade regime, and they have generated a low-level turbulent background in which the solitary structure is embedded. These features are spectrally analyzed to produce power-law wave-number and frequency spectra. An inertial range exists where the spectral indexes are about -1.45 and -1.5 for the wave-number and the frequency spectrum respectively. (orig.)

  17. Quantification of wave reflection in the human aorta from pressure alone: a proof of principle.

    Science.gov (United States)

    Westerhof, Berend E; Guelen, Ilja; Westerhof, Nico; Karemaker, John M; Avolio, Alberto

    2006-10-01

    Wave reflections affect the proximal aortic pressure and flow waves and play a role in systolic hypertension. A measure of wave reflection, receiving much attention, is the augmentation index (AI), the ratio of the secondary rise in pressure and pulse pressure. AI can be limiting, because it depends not only on the magnitude of wave reflection but also on wave shapes and timing of incident and reflected waves. More accurate measures are obtainable after separation of pressure in its forward (P(f)) and reflected (P(b)) components. However, this calculation requires measurement of aortic flow. We explore the possibility of replacing the unknown flow by a triangular wave, with duration equal to ejection time, and peak flow at the inflection point of pressure (F(tIP)) and, for a second analysis, at 30% of ejection time (F(t30)). Wave form analysis gave forward and backward pressure waves. Reflection magnitude (RM) and reflection index (RI) were defined as RM=P(b)/P(f) and RI=P(b)/(P(f)+P(b)), respectively. Healthy subjects, including interventions such as exercise and Valsalva maneuvers, and patients with ischemic heart disease and failure were analyzed. RMs and RIs using F(tIP) and F(t30) were compared with those using measured flow (F(m)). Pressure and flow were recorded with high fidelity pressure and velocity sensors. Relations are: RM(tIP)=0.82RM(mf)+0.06 (R(2)=0.79; n=24), RM(t30)=0.79RM(mf)+0.08 (R(2)=0.85; n=29) and RI(tIP)=0.89RI(mf)+0.02 (R(2)=0.81; n=24), RI(t30)=0.83RI(mf)+0.05 (R(2)=0.88; n=29). We suggest that wave reflection can be derived from uncalibrated aortic pressure alone, even when no clear inflection point is distinguishable and AI cannot be obtained. Epidemiological studies should establish its clinical value. PMID:16940207

  18. Notes on Evanescent Wave Bragg-Reflection Waveguides

    CERN Document Server

    Pressl, Benedikt

    2013-01-01

    We investigate an extended version of the Bragg reflection waveguide (BRW) with air gaps as one of the layers. This design has the potential of drastically simplifying the epitaxial structure for integrated nonlinear optical elements at the expense of more complicated structuring. This approach would afford much more flexibility for designing and varying BRW structures. Here, we discuss an extension of the established theory for BRW slabs and report our results of applying Marcatili's method for rectangular waveguides to the BRW case. With this analytic approach we can estimate the effective index of the modes orders of magnitudes faster than with full numerical techniques such as finite-difference time-domain (FDTD) or finite elements. Initial results are mixed; while phase-matched designs have been found, they currently have no significant advantage over other schemes.

  19. Reflection and transmission of normal incidence SH0 waves at a lap joint

    International Nuclear Information System (INIS)

    The reflection and transmission properties of normal incidence SH0 waves at a lap joint consisting of two plates of same material and thickness have been investigated analytically and experimentally as functions of frequency and the joint width. The results shows that the one- dimensional transmission line model allows us to evaluate the guided-wave interaction at low frequencies, but with increasing frequency, the model prediction gradually deviates from the experiment measurement due to the guided-wave nature shifting the plane wave behavior to the geometrical ray behavior. It is also found that the maximum transmission through a lap joint occurs when the half wavelength of a guided wave is slightly smaller than the joint width, and the difference between these two parameters is attributed to the diffraction of guided waves at the edges of a lap joint.

  20. Numerical and Experimental Investigation of Oblique Shock Wave Reflection from a Water Wedge

    Science.gov (United States)

    Wan, Qian; Jeon, Hongjoo; Eliasson, Veronica

    2015-11-01

    Shock wave interaction with solid wedges at different inclination angles has been an area of much research studied in the past, but not many results have been obtained for shock wave reflection from liquid wedges. To find the transition angle from regular to irregular reflection of shock wave reflection over liquid wedges - both Newtonian and non-Newtonian liquids - we used a combination of experimental and numerical methods. In experiments, an inclined shock tube with adjustable inclination angle and a test section filled with the liquid of interest was used. Simulations were performed using a collection of CFD and CSD solvers to simulate the same situation as in the experiments. Results show that the transition angles for liquid wedges is different from smooth solid wedges, but agree fairly well if one assumes a certain surface roughness of the solid wedge.

  1. Spherical wave reflection in layered media with rough interfaces: Three-dimensional modeling.

    Science.gov (United States)

    Pinson, Samuel; Cordioli, Julio; Guillon, Laurent

    2016-08-01

    In the context of sediment characterization, layer interface roughnesses may be responsible for sound-speed profile measurement uncertainties. To study the roughness influence, a three-dimensional (3D) modeling of a layered seafloor with rough interfaces is necessary. Although roughness scattering has an abundant literature, 3D modeling of spherical wave reflection on rough interfaces is generally limited to a single interface (using Kirchhoff-Helmholtz integral) or computationally expensive techniques (finite difference or finite element method). In this work, it is demonstrated that the wave reflection over a layered medium with irregular interfaces can be modeled as a sum of integrals over each interface. The main approximations of the method are the tangent-plane approximation, the Born approximation (multiple reflection between interfaces are neglected) and flat-interface approximation for the transmitted waves into the sediment. The integration over layer interfaces results in a method with reasonable computation cost. PMID:27586741

  2. Computer Simulation of Multiple Reflection Waves for Thickness Measurement by Ultrasonic Spectroscopy

    International Nuclear Information System (INIS)

    Ultrasonic spectroscopy is likely to become a very powerful NDE method for detection of microfects and thickness measurement of thin film below the limit of ultrasonic distance resolution in the opaque materials, provides a useful information that cannot be obtained by a conventional ultrasonic measuring system. In this paper, we considered a thin film below the limit of ultrasonic distance resolution sandwitched between two substances as acoustical analysis model, demonstrated the usefulness of ultrasonic spectroscopic analysis technique using information of ultrasonic frequency for measurements of thin film thickness, regardless of interference phenomenon and phase reversion of ultrasonic waveform. By using frequency intervals(Δf) of periodic minima from the ratio of reference power spectrum of reflective waveform obtained a sample to power spectrum of multiple reflective waves obtained interference phenomenon caused by ultrasonic waves reflected at the upper and lower surfaces of a thin layer, can measured even dimensions of interest are smaller than the ultrasonic wave length with simplicity and accuracy

  3. Specific Features of Destabilization of the Wave Profile During Reflection of an Intense Acoustic Beam from a Soft Boundary

    Science.gov (United States)

    Deryabin, M. S.; Kasyanov, D. A.; Kurin, V. V.; Garasyov, M. A.

    2016-05-01

    We show that a significant energy redistribution occurs in the spectrum of reflected nonlinear waves, when an intense acoustic beam is reflected from an acoustically soft boundary, which manifests itself at short wave distances from a reflecting boundary. This effect leads to the appearance of extrema in the distributions of the amplitude and intensity of the field of the reflected acoustic beam near the reflecting boundary. The results of physical experiments are confirmed by numerical modeling of the process of transformation of nonlinear waves reflected from an acoustically soft boundary. Numerical modeling was performed by means of the Khokhlov—Zabolotskaya—Kuznetsov (KZK) equation.

  4. Anomalous Wave Reflection at the Interface of Two Strongly Nonlinear Granular Media

    OpenAIRE

    Nesterenko, V. F.; Daraio, C.; Herbold, E. B.; Jin, S.

    2005-01-01

    Granular materials exhibit a strongly nonlinear behavior affecting the propagation of energy and information. Dynamically self-organized strongly nonlinear solitary waves are the main information carriers in granular chains. We report the first experimental observation of the dramatic change of solitary wave reflectivity from the interface of two granular media triggered by a magnetically induced precompression. It may be appropriate to name this phenomenon the "acoustic diode" effect. We exp...

  5. Calculation of an axial temperature distribution using the reflection coefficient of an acoustic wave.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2015-10-01

    This work verifies the idea that in principle it is possible to reconstruct axial temperature distribution of fluid employing reflection or transmission of acoustic waves. It is assumed that the fluid is dissipationless and its density and speed of sound vary along the wave propagation direction because of the fluid temperature distribution. A numerical algorithm is proposed allowing for calculation of the temperature distribution on the basis of known frequency characteristics of reflection coefficient modulus. Functionality of the algorithm is illustrated on a few examples, its properties are discussed. PMID:26520344

  6. Numerical Study for Hysteresis Phenomena of Shock Wave Reflection in Overexpanded Axisymmetric Supersonic Jet

    Institute of Scientific and Technical Information of China (English)

    Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi

    2006-01-01

    When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.

  7. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  8. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    Science.gov (United States)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-01

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  9. Shot- and angle-domain wave-equation traveltime inversion of reflection data: Theory

    KAUST Repository

    Zhang, Sanzong

    2015-05-26

    The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we have developed a wave-equation method that inverts the traveltimes of reflection events, and so it is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function was a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag, which maximized the crosscorrelation amplitude, represented the reflection-traveltime residual (RTR) that was back projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions were introduced to estimate the RTR by semblance analysis and scanning. In theory, only the traveltime information was inverted and there was no need to precisely fit the amplitudes or assume a high-frequency approximation. Results with synthetic data and field records revealed the benefits and limitations of wave-equation reflection traveltime inversion.

  10. Wave interaction with a partially reflecting vertical wall protected by a submerged porous bar

    Science.gov (United States)

    Zhao, Yang; Liu, Yong; Li, Huajun

    2016-08-01

    This study gives an analytical solution for wave interaction with a partially reflecting vertical wall protected by a submerged porous bar based on linear potential theory. The whole study domain is divided into multiple sub-regions in relation to the structures. The velocity potential in each sub-region is written as a series solution by the separation of variables. A partially reflecting boundary condition is used to describe the partial reflection of a vertical wall. Unknown expansion coefficients in the series solutions are determined by matching velocity potentials among different sub-regions. The analytical solution is verified by an independently developed multi-domain boundary element method (BEM) solution and experimental data. The wave run-up and wave force on the partially reflecting vertical wall are estimated and examined, which can be effectively reduced by the submerged porous bar. The horizontal space between the vertical wall and the submerged porous bar is a key factor, which affects the sheltering function of the porous bar. The wave resonance between the porous bar and the vertical wall may disappear when the vertical wall has a low reflection coefficient. The present analytical solution may be used to determine the optimum parameters of structures at a preliminary engineering design stage.

  11. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    International Nuclear Information System (INIS)

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz

  12. Non-invasive wave reflection quantification in patients with reduced ejection fraction

    International Nuclear Information System (INIS)

    The non-invasive quantification of arterial wave reflection is an increasingly important concept in cardiovascular research. It is commonly based on pulse wave analysis (PWA) of aortic pressure. Alternatively, wave separation analysis (WSA) considering both aortic pressure and flow waveforms can be applied. Necessary estimates of aortic flow can be measured by Doppler ultrasound or provided by mathematical models. However, this approach has not been investigated intensively up to now in subjects developing systolic heart failure characterized by highly reduced ejection fraction (EF). We used non-invasively generated aortic pressure waveforms and Doppler flow measurements to derive wave reflection parameters in 61 patients with highly reduced and 122 patients with normal EF. Additionally we compared these readings with estimates from three different flow models known from literature (triangular, averaged, Windkessel). After correction for confounding factors, all parameters of wave reflection (PWA and WSA) were comparable for patients with reduced and normal EF. Wave separations assessed with the Windkessel based model were similar to those derived from Doppler flow in both groups. The averaged waveform performed poorer in reduced than in normal EF, whereas triangular flow represented a better approximation for reduced EF. Overall, the non-invasive assessment of WSA parameters based on mathematical models compared to ultrasound seems feasible in patients with reduced EF. (paper)

  13. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    Science.gov (United States)

    Zhou, Qi; Diamessis, Peter J.

    2015-12-01

    In this paper sequel to Zhou and Diamessis ["Reflection of an internal gravity wave beam off a horizontal free-slip surface," Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes drift cancels each other out completely at the second order in wave steepness A, i.e., O(A2), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A2) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A2) and thus particle dispersion on O(A4). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.

  14. Arrival-time fluctuations of coherent reflections from surface gravity water waves.

    Science.gov (United States)

    Badiey, Mohsen; Eickmeier, Justin; Song, Aijun

    2014-05-01

    Arrival time fluctuations of coherent reflections from surface gravity waves are examined. A two-dimensional ray model with an evolving rough sea surface is used to explain the mechanism and formation of the deterministic striation patterns due to the surface reflection. Arrival time predictions from the ray model match qualitatively well with the measurements from bidirectional acoustic transmissions in a water depth of 100 m. PMID:24815293

  15. Reflection and transmission of regular waves at a surface-pitching slotted barrier

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The interactions between regular surface waves and a surface-pitching slotted barrier are investigated both analytically and experimentally.A quasi-linear theory is developed using the eigenfunction expansion method.The energy dissipation within the barriers is modeled by a quadratic friction factor, and an equivalent linear dissipation coefficient, which is depth-varying, wave-height dependent, is introduced to linearize the matching condition at the surface-pitching barrier.By comparing the theoretical results with laboratory experiments, it is shown that the present method can satisfactorily predict the variation of the reflection and transmission coefficients with wave height.

  16. Nonlinearly Driven Second Harmonics of Alfven Cascades

    International Nuclear Information System (INIS)

    In recent experiments on Alcator C-Mod, measurements of density fluctuations with Phase Contrast Imaging through the plasma core show a second harmonic of the basic Alfven Cascade (AC) signal. The present work describes the perturbation at the second harmonic as a nonlinear sideband produced by the Alfven Cascade eigenmode via quadratic terms in the MHD equations. (author)

  17. A ray technique to calculate reflected and transmitted waves in layered media.

    Science.gov (United States)

    Sadler, J; Maev, R Gr

    2008-12-01

    This paper considers the problem of calculating the propagation of acoustic waves within an ideal isotropic multilayer plate structure. In such a situation the process of mode conversion as the wave interacts with each interface of the plate creates an ever increasing number of waves to track, and to perform calculations on, as the wave propagates within the layered media. Exploring this problem by examining the ray paths of the multiple reflections within the plate structure, it is possible to show that upon careful consideration many of these paths will travel equivalent distances in time and space becoming coincident. The principle of superposition can then be used to combine these coincident paths, this superposition reduces the number of waves to track, and simplifies the problem so that the necessary calculations can be performed in a time efficient manner. PMID:18471848

  18. Full Waveform Inversion of Diving & Reflected Waves based on Scale Separation for Velocity and Impedance Imaging

    Science.gov (United States)

    Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean

    2015-04-01

    Full Waveform Inversion (FWI) is an appealing method for quantitative high-resolution subsurface imaging (Virieux et al., 2009). For crustal-scales exploration from surface seismic, FWI generally succeeds in recovering a broadband of wavenumbers in the shallow part of the targeted medium taking advantage of the broad scattering-angle provided by both reflected and diving waves. In contrast, deeper targets are often only illuminated by short-spread reflections, which favor the reconstruction of the short wavelengths at the expense of the longer ones, leading to a possible notch in the intermediate part of the wavenumber spectrum. To update the velocity macromodel from reflection data, image-domain strategies (e.g., Symes & Carazzone, 1991) aim to maximize a semblance criterion in the migrated domain. Alternatively, recent data-domain strategies (e.g., Xu et al., 2012, Ma & Hale, 2013, Brossier et al., 2014), called Reflection FWI (RFWI), inspired by Chavent et al. (1994), rely on a scale separation between the velocity macromodel and prior knowledge of the reflectivity to emphasize the transmission regime in the sensitivity kernel of the inversion. However, all these strategies focus on reflected waves only, discarding the low-wavenumber information carried out by diving waves. With the current development of very long-offset and wide-azimuth acquisitions, a significant part of the recorded energy is provided by diving waves and subcritical reflections, and high-resolution tomographic methods should take advantage of all types of waves. In this presentation, we will first review the issues of classical FWI when applied to reflected waves and how RFWI is able to retrieve the long wavelength of the model. We then propose a unified formulation of FWI (Zhou et al., 2014) to update the low wavenumbers of the velocity model by the joint inversion of diving and reflected arrivals, while the impedance model is updated thanks to reflected wave only. An alternate inversion of

  19. Alfven Wave Propagation in Young Stellar Systems

    Science.gov (United States)

    Humienny, Ray; Fatuzzo, Marco

    Young stellar systems have disks that are threaded by magnetic field lines with an hourglass geometry. These fields funnel ionizing cosmic rays (CRs) into the system. However, the effect is offset by magnetic mirroring. An previous analysis considered how the presence of magnetic turbulence moving outward from the disk would effect the propagation of cosmic-rays, and in turn, change the cosmic-ray ionization fraction occurring within the disk. This work indicated that turbulence reduces the overall flux of cosmic-rays at the disk, which has important consequences for both chemical processes and planet formation that occur within these environments. However, the analysis assumed ideal MHD condition in which the gas is perfectly coupled to the magnetic field. We explore here the validity of this assumption by solving the full equations governing the motion of both ions and neutral within the system.

  20. Generation of Alfven Waves by Magnetic Reconnection

    OpenAIRE

    Kigure, Hiromitsu; Takahashi, Kunio; Shibata, Kazunari; Yokoyama, Takaaki; Nozawa, Satoshi

    2010-01-01

    In this paper, results of 2.5-dimensional magnetohydrodynamical simulations are reported for the magnetic reconnection of non-perfectly antiparallel magnetic fields. The magnetic field has a component perpendicular to the computational plane, that is, guide field. The angle theta between magnetic field lines in two half regions is a key parameter in our simulations whereas the initial distribution of the plasma is assumed to be simple; density and pressure are uniform except for the current s...

  1. A computational study of pressure wave reflections in the pulmonary arteries.

    Science.gov (United States)

    Qureshi, M Umar; Hill, N A

    2015-12-01

    Experiments using wave intensity analysis suggest that the pulmonary circulation in sheep and dogs is characterized by negative or open-end type wave reflections, that reduce the systolic pressure. Since the pulmonary physiology is similar in most mammals, including humans, we test and verify this hypothesis by using a subject specific one-dimensional model of the human pulmonary circulation and a conventional wave intensity analysis. Using the simulated pressure and velocity, we also analyse the performance of the P-U loop and sum of squares techniques for estimating the local pulse wave velocity in the pulmonary arteries, and then analyse the effects of these methods on linear wave separation in the main pulmonary artery. P-U loops are found to provide much better estimates than the sum of squares technique at proximal locations, but both techniques accumulate progressive error at distal locations away from heart, particularly near junctions. The pulse wave velocity estimated using the sum of squares method also gives rise to an artificial early systolic backward compression wave. Finally, we study the influence of three types of pulmonary hypertension viz. pulmonary arterial hypertension, chronic thromboembolic pulmonary hypertension and pulmonary hypertension associated with hypoxic lung disease. Simulating these conditions by changing the relevant parameters in the model and then applying the wave intensity analysis, we observe that for each group the early systolic backward decompression wave reflected from proximal junctions is maintained, whilst the initial forward compression and the late systolic backward compression waves amplify with increasing pathology and contribute significantly to increases in systolic pressure. PMID:25754476

  2. Inward Motions in the Outer Solar Corona Between 6 And 12 R : Evidence For Waves or Magnetic Reconnection Jets?

    Science.gov (United States)

    Velli, Marco; Tenerani, Anna; DeForest, Craig

    2016-05-01

    DeForest et al. (2014) used synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft to identify inbound wave motions in the outer corona beyond 6 solar radii and inferred, from the observation, that the Alfven surface separating the magnetically dominated corona from the ow dominated wind must be located at least 12 solar radii from the Sun over polar coronal holes and 15 solar radii in the streamer belt. Here we will discuss both this and previous observations of inflows further down and attempt identification of the observed inward signals. We will theoretically reconstruct height-speed diagrams and compare them to the observed profiles. Interpretation in terms of Alfven / magnetoacouatic modes or Alfvenic turbulence appears to be ruled out by the fact that the observed signal shows a deceleration of inward motion when approaching the Sun. Fast magnetoacoustic waves are not directly ruled out in this way, as it is possible for inward waves observed in quadrature, but not propagating exactly radially, to suffer total reflection as the Alfven speed rises close to the Sun. However, the reconstructed signal in the height speed diagram has the wrong concavity. A final possibility is decelerating reconnection jets, most probably from component reconnection, in the accelerating wind: the profile in this case appears to match the observations very well. This interpretation does not alter the conclusion that the Alfven surface must be at least 12 solar radii from the photosphere.

  3. Theoretical ultrasonic reflection at a wave/composite laminate/water interface

    International Nuclear Information System (INIS)

    This study describes analysis for ultrasonic leaky plate wave propagation in multidirectional composite laminates. Specifically, the analytical reflection coefficient is derived for a water/composite laminate/water interface. Theoretical predictions of reflected beam amplitudes are also presented. Four different composite laminates are investigated: T300/5208 graphite/epoxy [0]31T [45/90/-45/0]3s [45/-45]2-s, and S-2 glass/epoxy [0/90]4s. The analytical dispersion curves for the unidirectional laminate and other three laminates can be obtained by searching for the minimum magnitude of the reflection coefficient.

  4. Reflection of Electromagnetic Waves by a Nonuniform Plasma Layer Covering a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    GAO Hong-Mei; FA Peng-Ting

    2008-01-01

    Reflection coefficients of electromagnetic waves in a nonuniform plasma layer with electrons, positive ions and negative ions, covering a metal surface are investigated by using the finite-difference-time-domain method. It is shown that the reflection coefficients are influenced greatly by the density gradient on the layer edge, layer thickness and electron proportion, i.e., the effect of the negative ions. It is also found that low reflection or high attenuation can be reached by properly choosing high electron proportion, thick plasma layer, and smooth density gradient in the low frequency regime, but sharp density gradient in the high frequency regime.

  5. Global Solutions of Shock Reflection by Wedges for the Nonlinear Wave Equation

    Institute of Scientific and Technical Information of China (English)

    Xuemei DENG; Wei XIANG

    2011-01-01

    When a plane shock hits a wedge head on,it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time.In this paper,shock reflection by large-angle wedges for compressible flow modeled by the nonlinear wave equation is studied and a global theory of existence,stability and regularity is established.Moreover,C0,1 is the optimal regularity for the solutions across the degenerate sonic boundary.

  6. Frequency modulation at a moving material interface and a conservation law for wave number. [acoustic wave reflection and transmission

    Science.gov (United States)

    Kleinstein, G. G.; Gunzburger, M. D.

    1976-01-01

    An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.

  7. Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion

    KAUST Repository

    Zhang, Sanzong

    2012-11-04

    The main difficulty with an iterative waveform inversion is that it tends to get stuck in a local minima associated with the waveform misfit function. This is because the waveform misfit function is highly non-linear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity inversion. We present numerical examples to demonstrate its efficiency in inverting seismic data for complex velocity model.

  8. Capillary Waves on the Surface of Simple Liquids Measured by X-Ray Reflectivity

    OpenAIRE

    Braslau, A.; Pershan, Peter S.; Swislow, G.; Ocko, B.M.; Als-Nielsen, J.

    1988-01-01

    The properties of the liquid-vapor interface for three simple liquids (water, carbon tetrachloride, and methanol) have been measured using x-ray reflectivity. The measured surface roughness is interpreted using a model that combines the effects of thermally induced capillary waves and the dimensions of the constituent molecules.

  9. Magnetospherically reflected chorus waves revealed by ray tracing with CLUSTER data

    Directory of Open Access Journals (Sweden)

    M. Parrot

    Full Text Available This paper is related to the propagation characteristics of a chorus emission recorded simultaneously by the 4 satellites of the CLUSTER mission on 29 October 2001 between 01:00 and 05:00 UT. During this day, the spacecraft (SC 1, 2, and 4 are relatively close to each other but SC3 has been delayed by half an hour. We use the data recorded aboard CLUSTER by the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. Dedicated software processes this spectral matrix in order to determine the wave normal directions relative to the Earth’s magnetic field. This calculation is done for the 4 satellites at different times and different frequencies and allows us to check the directions of these waves. Measurements around the magnetic equator show that the parallel component of the Poynting vector changes its sign when the satellites cross the equator region. It indicates that the chorus waves propagate away from this region which is considered as the source area of these emissions. This is valid for the most intense waves observed on the magnetic and electric power spectrograms. But it is also observed on SC1, SC2, and SC4 that lower intensity waves propagate toward the equator simultaneously with the SC3 intense chorus waves propagating away from the equator. Both waves are at the same frequency. Using the wave normal directions of these waves, a ray tracing study shows that the waves observed by SC1, SC2, and SC4 cross the equatorial plane at the same location as the waves observed by SC3. SC3 which is 30 minutes late observes the waves that originate first from the equator; meanwhile, SC1, SC2, and SC4 observe the same waves that have suffered a Lower Hybrid Resonance (LHR reflection at low altitudes (based on the ray tracing analysis and now return to the equator at a different location with a lower intensity. Similar phenomenon is observed when all SC are on the other side

  10. Broadband reflective metasurface for focusing underwater ultrasonic waves with linearly tunable focal length

    Science.gov (United States)

    Wu, Xiaoxiao; Xia, Xiangxiang; Tian, Jingxuan; Liu, Zhengyou; Wen, Weijia

    2016-04-01

    We report a metasurface for focusing reflected ultrasonic waves over a wide frequency band of 0.45-0.55 MHz. The broadband focusing effect of the reflective metasurface is studied numerically and then confirmed experimentally using near-field scanning techniques. The focusing mechanism can be attributed to the hyperboloidal reflection phase profile imposed by different depths of concentric grooves on the metasurface. In particular, the focal lengths of the reflective metasurface are extracted from simulations and experiments, and both exhibit good linear dependence on frequency over the considered frequency band. The proposed broadband reflective metasurface with tunable focal length has potential applications in the broad field of ultrasonics, such as ultrasonic tomographic imaging, high intensity focused ultrasound treatment, etc.

  11. Multi-spectral Metasurface for Different Functional Control of Reflection Waves

    Science.gov (United States)

    Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang

    2016-03-01

    Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band.

  12. Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain.

    Science.gov (United States)

    Coloma, M; Schaffer, J D; Carare, R O; Chiarot, P R; Huang, P

    2016-08-01

    Beta-amyloid accumulation within arterial walls in cerebral amyloid angiopathy is associated with the onset of Alzheimer's disease. However, the mechanism of beta-amyloid clearance along peri-arterial pathways in the brain is not well understood. In this study, we investigate a transport mechanism in the arterial basement membrane consisting of forward-propagating waves and their reflections. The arterial basement membrane is modeled as a periodically deforming annulus filled with an incompressible single-phase Newtonian fluid. A reverse flow, which has been suggested in literature as a beta-amyloid clearance pathway, can be induced by the motion of reflected boundary waves along the annular walls. The wave amplitude and the volume of the annular region govern the flow magnitude and may have important implications for an aging brain. Magnitudes of transport obtained from control volume analysis and numerical solutions of the Navier-Stokes equations are presented. PMID:26729476

  13. A physical interpretation of elastic guided-wave reflection from normal ends of a waveguide.

    Science.gov (United States)

    Bian, Hongxin; Rose, Joseph L

    2004-07-01

    Studied in this paper are two-dimensional guided wave reflections from normal boundaries in an isotropic elastic media. By making use of the transverse resonance concept, the reflections of the waveguide modes from normal interfaces are interrogated. A general condition is obtained under which the guided waves in an isotropic medium will undergo no mode conversion when interaction occurs with a normal traction free or fixed end. Under some circumstances, similarities are obtained between waveguide modes and bulk-wave modes, for example, doubling of the displacement field at a free end and doubling of the stress field at a fixed end. The results obtained are applicable to all two-dimensional, guided-wave modes, along one waveguide direction with lossless boundaries on the surface(s) parallel to the waveguide direction, including all possible guided-wave modes, propagating and nonpropagating, in plates, one half space, interface of two different half spaces, layers on a half space, multilayer structures, and all axisymmetric modes in cylindrical structures. In addition, the function of displacement potentials is analyzed in the course of guided-wave mode conversion at a normal end. PMID:15301003

  14. Mode Converted Reflection of Torsional Guided Waves by a Magnetostrictive Sensor Technique

    International Nuclear Information System (INIS)

    The presence of damage or defects in pipes or tubes is one of the major problems in nuclear power plants. However, in many cases, it is difficult to inspect all of them by the conventional ultrasonic methods, because of their geometrical complexity and inaccessibility. The magnetostrictive guided wave technique has several advantages for practical applications, such as a 100- percent volumetric coverage of a long segment of a structure, a reduced inspection time and its cost effectiveness, as well as its' relatively simple structure. Among various vibration modes, the torsional guided wave T(0,1) mode has many advantages, such as no dispersion, no radial displacement, and low attenuation. One promising feature of the magnetostrictive transducer is that the wave patterns are relatively clear and simple compared to the conventional piezoelectric ultrasonic transducer. If we can characterize the evolution of the defect signals, it can be a promising tool for a structural health monitoring of pipes for a long period as well as the identification of flaws. In this paper, we report that a mode conversion from torsional vibration mode occurs in a guided wave examination. The guided wave signals were generated and received by a coil and a DC magnetized Fe-Co-V alloy strip. The wave patterns reflected from various ultrasonic reflectors, especially from the end of a pipe were analyzed and indexed. A spurious signals ahead of the main reflection were evaluated as the mode converted F(1,3) vibration mode

  15. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation

    KAUST Repository

    Liu, Yang

    2010-03-01

    We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.

  16. Reflection for three-dimensional plane waves in triclinic crystalline medium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The propagation of three-dimensional plane waves at a traction free boundary of a half-space composed of triclinic crystalline material is discussed. A method has been developed to find the analytical expressions of all the three phase velocities of quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH) in three dimensions. Closed form expressions in three dimensions for the amplitude ratios of reflection coefficients of qP, qSV and qSH waves in a triclinic medium are obtained. These expressions are used for numerically studying the variation of the reflection coefficients with the angle of incidence. The graphs are drawn for different polar angle and azimuth. Numerical results presented indicate that the anisotropy affect the reflection coefficients significantly in the three dimensional case compared to the two-dimensional case.

  17. Simulation of the reflected blast wave from a C-4 charge

    Science.gov (United States)

    Howard, W. Michael; Kuhl, Allen L.; Tringe, Joseph

    2012-03-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 μm per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 7 ranges (GR = 0, 5.08, 10.16, 15.24, 20.32, 25.4, and 30.48 cm) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 5 cm), which were dominated by jetting effects.

  18. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    Science.gov (United States)

    Vaz, Canute I.; Liu, Changze; Campbell, Jason P.; Ryan, Jason T.; Southwick, Richard G., III; Gundlach, David; Oates, Anthony S.; Huang, Ru; Cheung, Kin. P.

    2016-06-01

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger's equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.

  19. Wave Reflection

    DEFF Research Database (Denmark)

    Helm-Petersen, J.; Frigaard, Peter

    1994-01-01

    This report is Aalborg University's first contribution to the MAS2-CT92 project: Full scale dynamic load monitoring of rubble mound breakwaters.......This report is Aalborg University's first contribution to the MAS2-CT92 project: Full scale dynamic load monitoring of rubble mound breakwaters....

  20. Simulating Reflective Propagating Slow-wave/flow in a Flaring Loop

    Science.gov (United States)

    Fang, X.

    2015-12-01

    Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in EUV images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a post flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by our synthesized AIA 131, 94~Å~emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km/s in an 80 Mm length loop with an average temperature of 9 MK. With the synthesized Doppler shift velocity and intensity maps in SUMER Fe XIX line emission, we confirm that these reflected slow mode waves are propagating waves.

  1. Optical standing-wave artifacts in reflection-absorption FTIR microspectroscopy of biological materials

    International Nuclear Information System (INIS)

    Reflection-absorption spectra obtained with an infrared microscope should yield the same absorption coefficients as direct micro-transmission measurements as long as the correct effective sample thickness is used, but in practice, severe optical artifacts can complicate the spectra. Using deposited protein gel fdms as a homogenous model for biological cell-like samples, we demonstrate the effect of standing-wave interference of the IR beam at the reflective substrate surface which dramatically and systematically alters the absorbance intensity across the spectrum as a function of sample thickness. To explain the observed spectral artifacts, we simulate the optical standing-wave for the focussed IR beam, and insert the parameters into an existing standing-wave absorption theory. By introducing an additional term to the theory representing a component of the standing-wave resonant with the film thickness, the data are accurately reproduced, and the relative band intensities can be corrected to the direct transmission values. This approach may be generally applicable in reflection-absorption experiments to obtain reliable absorbance spectra of homogenous samples even when the sample thickness is larger than the IR wavelength.

  2. Numerical simulation of the reflected acoustic wave components in the near field of surface defects

    International Nuclear Information System (INIS)

    The interaction of a laser generated surface acoustic wave with a surface crack has been simulated in detail by the finite element method, where a surface notch of rectangular shape has been introduced to represent the fatigue crack for the convenience of modelling. It is shown that four distinct reflected components are present in the captured waveforms; the first component is the direct reflection of a compressive pulse from the left side of the notch, while the second one is assumed to be the Rayleigh wave converted from the laser generated compressive wave when it impacts the left face of the notch. The arrival time of the third peak has demonstrated clearly that it comes from the direct reflection of an initial Rayleigh wave on the near side of the notch. The origin of the last component has been assumed to be the mode conversion occurring at the base of the notch, which is based on the fact that the deeper the notch the longer the arrival time of the fourth peak

  3. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    Directory of Open Access Journals (Sweden)

    Leonhard Michael Reindl

    2013-02-01

    Full Text Available Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  4. Numerical Simulation of Bragg Reflection Based on Linear Waves Propagation over A Series of Rectangular Seabed

    Institute of Scientific and Technical Information of China (English)

    Chih-Chung WEN; Li-Hung TSAI

    2008-01-01

    A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key parameters of the Bragg reflection including the peak coefficient of primary Bragg reflection, its corresponding relative wavelength, and the bandwidth, have shown to be effective in describing the characteristics of the primary Bragg reflection. The characteristics of the Bragg reflection were investigated under the various conditions comprising number, height, and spacing interval of a series of rectangular seabed. The results reveal that the peak of Bragg reflection increases with the increase of rectangular seabed height and number, the bandwidth and the shift value of the Bragg reflection depend on the increase of the rectangular seabed height as well as the decrease of rectangular seabed number, and the relative rectangular seabed spacing in the rang of 3 and 4 could produce higher Bragg reflection. Finally, a correlative and regressive analysis is performed by use of the calculated data. Based on the results of the analysis, empirical equations were established. Our study results can provide an appropriate choice of a series of rectangular seabed field for a practical design.

  5. The Magnetic Coupling of Chromospheres and Winds From Late Type Evolved Stars: Role of MHD Waves

    Science.gov (United States)

    Airapetian, Vladimir; Leake, James; Carpenter, Kenneth

    2015-08-01

    Stellar chromospheres and winds represent universal attributes of stars on the cool portion of H-R diagram. In this paper we derive observational constrains for the chromospheric heating and wind acceleration from cool evolved stars and examine the role of Alfven waves as a viable source of energy dissipation and momentum deposition. We use a 1.5D magnetohydrodynamic code with a generalized Ohm's law to study propagation of Alfven waves generated along a diverging magnetic field in a stellar photosphere at a single frequency. We demonstrate that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere model due to resistive (Joule) dissipation of electric currents on Pedersen resistivity are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfven waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfven waves becomes significant in the outer chromosphere within 1 stellar radius from the photosphere that initiates a slow and massive winds from red giants and supergiants.

  6. Measurement of the viscosity-density product using multiple reflections of ultrasonic shear horizontal waves.

    Science.gov (United States)

    Greenwood, Margaret S; Adamson, Justus D; Bond, Leonard J

    2006-12-22

    We have developed an on-line computer-controlled sensor, based on ultrasound reflection measurements, to determine the product of the viscosity and density of a liquid or slurry for Newtonian fluids and the shear impedance of the liquid for non-Newtonian fluids. A 14 MHz shear wave transducer is bonded to one side of a 45-90 degrees fused silica wedge and the base is in contract with the liquid. Twenty-eight echoes were observed due to the multiple reflections of an ultrasonic shear horizontal (SH) wave within the wedge. The fast Fourier transform of each echo was obtained for a liquid and for water, which serves as the calibration fluid, and the reflection coefficient at the solid-liquid interface was obtained. Data were obtained for 11 sugar water solutions ranging in concentration from 10% to 66% by weight. The viscosity values are shown to be in good agreement with those obtained independently using a laboratory viscometer. The data acquisition time is 14s and this can be reduced by judicious selection of the echoes for determining the reflection coefficient. The measurement of the density results in a determination of the viscosity for Newtonian fluids or the shear wave velocity for non-Newtonian fluids. The sensor can be deployed for process control in a pipeline, with the base of the wedge as part of the pipeline wall, or immersed in a tank. PMID:16793108

  7. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    International Nuclear Information System (INIS)

    In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes drift cancels each other out completely at the second order in wave steepness A, i.e., O(A2), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A2) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A2) and thus particle dispersion on O(A4). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored

  8. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qi, E-mail: q.zhou@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom); Diamessis, Peter J. [School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2015-12-15

    In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes drift cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.

  9. An investigation of the structure of plasma produced by reflected shock waves

    International Nuclear Information System (INIS)

    Space and time resolved measurements of electron density and temperature have been made in the reflected-shock plasma produced by a Mach 20 incident shock wave propagating in argon at an initial pressure of 1.5 Torr. The peak electron density was found to decrease away from the reflecting wall in such a way that the plasma was fairly uniform at all times. Close to the reflecting wall (0.2 cm away) the measured peak electron density was close to (i.e. about 20% lower than) the predicted equilibrium value but further away (1.0 cm) it was lower by a factor 4. Possible reasons for this discrepancy are discussed. Calculations of reflected-shock plasma structure based on incident shock structure are only partially supported by available experimental evidence

  10. Quantum reflection of bright solitary matter waves from a narrow attractive potential

    Science.gov (United States)

    Marchant, A. L.; Billam, T. P.; Yu, M. M. H.; Rakonjac, A.; Helm, J. L.; Polo, J.; Weiss, C.; Gardiner, S. A.; Cornish, S. L.

    2016-02-01

    We report the observation of quantum reflection from a narrow attractive potential using bright solitary matter waves formed from a 85Rb Bose-Einstein condensate. We create the attractive potential using a tightly focused, red-detuned laser beam, and observe reflection of up to 25% of the atoms, along with the confinement of atoms at the position of the beam. We show that the observed reflected fraction is much larger than theoretical predictions for a simple Gaussian potential well. A more detailed model of bright soliton propagation, accounting for the generic presence of small subsidiary intensity maxima in the red-detuned beam, suggests that these small intensity maxima are the cause of this enhanced reflection.

  11. Quantum reflection of bright solitary matter-waves from a narrow attractive potential

    CERN Document Server

    Marchant, A L; Yu, M M H; Rakonjac, A; Helm, J L; Polo, J; Weiss, C; Gardiner, S A; Cornish, S L

    2015-01-01

    We report the observation of quantum reflection from a narrow, attractive, potential using bright solitary matter-waves formed from a 85Rb Bose-Einstein condensate. We create narrow potentials using a tightly focused, red-detuned laser beam, and observe reflection of up to 25% of the atoms, along with the trapping of atoms at the position of the beam. We show that the observed reflected fraction is much larger than theoretical predictions for a narrow Gaussian potential well; a more detailed model of bright soliton propagation, accounting for the generic presence of small subsidiary intensity maxima in the red-detuned beam, suggests that these small intensity maxima are the cause of this enhanced reflection.

  12. Ion Heating by Fast Particle Induced Alfven Turbulence

    International Nuclear Information System (INIS)

    A novel mechanism that directly transfers energy from Super-Alfvenic energetic ions to thermal ions in high-beta plasmas is described. The mechanism involves the excitation of compressional Alfvin eigenmodes (CAEs) in the frequency range with omega less than or approximately equal to omega(subscript ci). The broadband turbulence resulting from the large number of excited modes causes stochastic diffusion in velocity space, which transfers wave energy to thermal ions. This effect may be important on the National Spherical Torus Experiment (NSTX), and may scale up to reactor scenarios. This has important implications for low aspect ratio reactor concepts, since it potentially allows for the modification of the ignition criterion

  13. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise

    OpenAIRE

    Zhan, Zhongwen; Ni, Sidao; Helmberger, Don V.; Clayton, Robert W.

    2010-01-01

    Theoretical studies on ambient seismic noise (ASN) predict that complete Green's function between seismic stations can be retrieved from cross correlation. However, only fundamental mode surface waves emerge in most studies involving real data. Here we show that Moho-reflected body wave (SmS) and its multiples can be identified with ASN for station pairs near their critical distances in the short period band (1–5 s). We also show that an uneven distribution of noise sources, such as mining ac...

  14. Damage localization in metallic plate structures using edge-reflected lamb waves

    Science.gov (United States)

    Ebrahimkhanlou, A.; Dubuc, B.; Salamone, S.

    2016-08-01

    This paper presents a model-based guided ultrasonic waves imaging algorithm, in which multiple ultrasonic echoes caused by reflections from the plate’s boundaries are leveraged to enhance imaging performance. An analytical model is proposed to estimate the envelope of scattered waves. Correlation between the estimated and experimental data is used to generate images. The proposed method is validated through experimental tests on an aluminum plate instrumented with three low profile piezoelectric transducers. Different damage conditions are simulated including through-thickness holes. Results are compared with two other imaging localization methods, that is, delay and sum and minimum variance.

  15. Exact solution for the reflection and diffraction of atomic de Broglie waves by a travelling evanescent laser wave

    International Nuclear Information System (INIS)

    The exact solution to the problem of reflection and diffraction of atomic de Broglie waves by a travelling evanescent wave is found starting with a bare-state formulation. The solution for the wavefunctions, the tunnelling losses and the non-adiabatic losses are given exactly in terms of hyper-Bessel functions, and are valid for all detuning and Rabi frequencies, thus generalizing previous approximate methods. Furthermore we give the limiting cases of all amplitudes in the uniform semiclassical limit, which is valid in all regions including near the classical turning points, and in the large and weak coupling cases. Exact results for the zero detuning case are obtained in terms of Bessel functions. We find our uniform semiclassical limit to be closer to the exact result over the full range of parameter values than the previously reported calculations. The current knowledge of hyper-Bessel function properties is reviewed in order to apply this to the physical problems imposed

  16. Analysis of ocean internal waves imaged by multichannel reflection seismics, using ensemble empirical mode decomposition

    International Nuclear Information System (INIS)

    Research on ocean internal waves using seismic oceanography is a frontier issue both for marine geophysicists and physical oceanographers. Images of the ocean water layer obtained by conventional processing of multichannel seismic reflection data can show the overall patterns of internal waves. However, in order to extract more information from the seismic data, new tools need to be developed. Here, we use the ensemble empirical mode decomposition (EEMD) method to decompose vertical displacement data from seismic sections and apply this method to a seismic section from the northeastern South China Sea, where clear internal waves are observed. Compared with the conventional empirical mode decomposition method, EEMD has greatly reduced the scale mixing problems induced in the decomposition results. The results obtained show that the internal waves in this area are composed of different characteristic wavelengths at different depths. The depth range of 200–1050 m contains internal waves with a wavelength of 1.25 km that are very well coupled in the vertical direction. The internal waves with a wavelength of 3 km, in the depth range of 200–600 m, are also well coupled, but in an oblique direction; this suggests that the propagation speed of internal waves of this scale changes with depth in this area. Finally, the internal waves with a wavelength of 6.5 km, observed in the depth range of 200–800 m, are separated into two parts with a phase difference of about 90°, by a clear interface at a depth of 650 m; this allows us to infer an oblique propagation of wave energy of this scale. (paper)

  17. Experimental study of reflection coefficient and wave forces acting on perforated caisson

    Institute of Scientific and Technical Information of China (English)

    陈雪峰; 李玉成; 孙大鹏; 陈仁友

    2002-01-01

    -- The reflection coefficient and the total horizontal forces of regular waves acting on the perforated caisson are experimentally investigated. The empirical relationship between reflection coefficient and the ratio of the total horizontal forces acting on the perforated caisson to those on solid vertical walls with the relative chamber width, relative water depth and porosity of perforated wall, etc. are given. Moreover, the results of the ratio of the total horizontal forces are also compared with formulas given by Chinese Harbour Design Criteria and Takahashi, which may be useful for the practical engineering application.

  18. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.

    Science.gov (United States)

    Fan, Zichuan; Jiang, Wentao; Cai, Maolin; Wright, William M D

    2016-02-01

    Air-coupled ultrasonic inspection using leaky Lamb waves offers attractive possibilities for non-contact testing of plate materials and structures. A common method uses an air-coupled pitch-catch configuration, which comprises a transmitter and a receiver positioned at oblique angles to a thin plate. It is well known that the angle of incidence of the ultrasonic bulk wave in the air can be used to preferentially generate specific Lamb wave modes in the plate in a non-contact manner, depending on the plate dimensions and material properties. Multiple reflections of the ultrasonic waves in the air gap between the transmitter and the plate can produce additional delayed waves entering the plate at angles of incidence that are different to those of the original bulk wave source. Similarly, multiple reflections of the leaky Lamb waves in the air gap between the plate and an inclined receiver may then have different angles of incidence and propagation delays when arriving at the receiver and hence the signal analysis may become complex, potentially leading to confusion in the identification of the wave modes. To obtain a better understanding of the generation, propagation and detection of leaky Lamb waves and the effects of reflected waves within the air gaps, a multiphysics model using finite element methods was established. This model facilitated the visualisation of the propagation of the reflected waves between the transducers and the plate, the subsequent generation of additional Lamb wave signals within the plate itself, their leakage into the adjacent air, and the reflections of the leaky waves in the air gap between the plate and receiver. Multiple simulations were performed to evaluate the propagation and reflection of signals produced at different transducer incidence angles. Experimental measurements in air were in good agreement with simulation, which verified that the multiphysics model can provide a convenient and accurate way to interpret the signals in

  19. Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    KAUST Repository

    Hanson, Ronald K.

    2013-09-01

    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we demonstrate that this strategy eliminates the possibility of non-localized (remote) ignition in shock tubes. Furthermore, we show that this same strategy can also effectively eliminate or minimize pressure changes due to combustion heat release, thereby enabling quantitative modeling of the kinetics throughout the combustion event using a simple assumption of specified pressure and enthalpy. We measure temperature and OH radical time-histories during ethylene-oxygen combustion behind reflected shock waves in a constrained reaction volume and verify that the results can be accurately modeled using a detailed mechanism and a specified pressure and enthalpy constraint. © 2013 The Combustion Institute.

  20. Modelling of Reflective Propagating Slow-mode Wave in a Flaring Loop

    CERN Document Server

    Fang, X; Van Doorsselaere, T; Keppens, R; Xia, C

    2015-01-01

    Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in EUV images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by the synthesized \\textit{Solar Dynamics Observatory}/Atmospheric Imaging Assembly (AIA) 131, 94~\\AA~emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km/s in an 80 Mm length loop with an average temperatu...

  1. Infragravity Wave Generation and Reflection Off the Coast at Oregon, USA

    Science.gov (United States)

    Neale, J. F.; Harmon, N.; Srokosz, M. A.

    2014-12-01

    Extremely low frequency seismic noise, known as earth's "seismic hum", is generated by the very long wavelength, low frequency infragravity waves of the ocean which transfer their energy to the solid earth. Infragravity waves are generated along coastlines by the non-linear interaction of incoming ocean swells and can travel long distances across ocean basins with relatively little attenuation. They have been implicated in the break-up of ice shelves (Bromirski et al, Geophys. Res. Lett. 2010) and are important for coupling processes between the ocean, atmosphere, and earth (Rhie and Romanowicz, Nature 2004), but their spatial and temporal variably remains poorly studied. We investigate the characteristics of the infragravity wave band in the north-east Pacific using co-located ocean bottom seismometers and differential pressure gauges deployed in deep water as part of the Cascadia Initiative array. Using cross correlation techniques and backprojection of the noise correlation function (Harmon et al, Geophys. Res. Lett. 2012) we have found that infragravity wave energy propagates offshore for the majority of the year, indicating that the Oregon coastline is a net producer of infragravity waves. On rare occasions, infragravity wave energy is observed to propagate onshore. In January 2013, a particularly strong event occurred where energy propagated onshore with normal incidence to the coastline. We use this event to investigate the feasibility of estimating coastline reflection coefficients from cross correlation of differential pressure gauge records.

  2. Analysis of reflected blast wave pressure profiles in a confined room

    OpenAIRE

    Sochet, Isabelle; Sauvan, Pierre-Emmanuel; Trelat, Sophie

    2012-01-01

    To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the similitude between real...

  3. Internal-wave reflection from uniform slopes: higher harmonics and Coriolis effects

    Directory of Open Access Journals (Sweden)

    T. Gerkema

    2006-01-01

    Full Text Available Weakly nonlinear reflection of internal waves from uniform slopes produces higher harmonics and mean fields; the expressions are here derived for constant stratification and with Coriolis effects fully included, i.e. the horizontal component of the earth rotation vector (referred to as 'non-traditional'' is taken into account. Uniformity in one of the horizontal directions is assumed. It is shown that solutions can be as readily derived with as without ; hence there is no need to make the so-called Traditional Approximation. Examples of reflecting internal-wave beams are presented for super-inertial, inertial and sub-inertial frequencies. The problem of resonant and non-resonant forcing of the second harmonic is studied for single plane waves; unlike under the Traditional Approximation, the problem of reflection from a horizontal bottom no longer forms a singular case. Non-traditional effects are favourable to resonant forcing at near-tidal rather than near-inertial frequencies, and generally increase the intensity of the second harmonic. Strong stratification tends to suppress non-traditional effects, but a near-total suppression is only attained for high values of stratification that are characteristic of the seasonal thermocline; in most parts of the ocean, non-traditional effects can therefore be expected to be important.

  4. Linear gyrokinetic particle-in-cell simulations of Alfven instabilities in tokamaks

    CERN Document Server

    Biancalani, A; Briguglio, S; Koenies, A; Lauber, Ph; Mishchenko, A; Poli, E; Scott, B D; Zonca, F

    2015-01-01

    The linear dynamics of Alfven modes in tokamaks is investigated here by means of the global gyrokinetic particle-in-cell code NEMORB. The model equations are shown and the local shear Alfven wave dispersion relation is derived, recovering the continuous spectrum in the incompressible ideal MHD limit. A verification and benchmark analysis is performed for continuum modes in a cylinder and for toroidicity-induced Alfven Eigenmodes. Modes in a reversed-shear equilibrium are also investigated, and the dependence of the spatial structure in the poloidal plane on the equilibrium parameters is described. In particular, a phase-shift in the poloidal angle is found to be present for modes whose frequency touches the continuum, whereas a radial symmetry is found to be characteristic of modes in the continuum gap.

  5. Sdo/aia Observations of Reflecting Longitudinal Wave in Coronal Loops

    Science.gov (United States)

    Kumar, Pankaj; Inhester, Bernd; Innes, Davina

    We present high resolution observations from SDO/AIA of intensity oscillations in hot (T=8-10 MK) coronal loops. The AIA images show a large coronal loop that was rapidly heated following plasma ejection from one of the loop’s footpoints. A wave-like intensity enhancement, seen very clearly in the 131 and 94 Å channel images, propagated ahead of the ejecta along the loop, and was reflected at the opposite footpoint. The wave reflected four times before fading. It was only seen in the hot, 131 and 94 Å channels. The characteristic period and the decay time of the oscillation were about ~630 and ~440 s, respectively. The phase speed was about 460-510 km/s which roughly matches the sound speed of the loop (430-480 km/s). The observed properties of the oscillation are consistent with the observations of Dopper-shift oscillations discovered by SUMER and with their interpretation as slow magnetoacoustic waves. We suggest that the impulsive injection of plasma, following reconnection at one of the loop footpoints, led to rapid heating and the propagation of a longitudinal compressive wave along the loop.

  6. Analytic theory of Richtmyer endash Meshkov instability for the case of reflected rarefaction wave

    International Nuclear Information System (INIS)

    An analytic theory of the Richtmyer endash Meshkov (RM) instability for the case of reflected rarefaction wave is presented. The exact solutions of the linearized equations of compressible fluid dynamics are obtained by the method used previously for the reflected shock wave case of the RM instability and for stability analysis of a open-quote open-quote stand-alone close-quote close-quote rarefaction wave. The time histories of perturbations and asymptotic growth rates given by the analytic theory are shown to be in good agreement with earlier linear and nonlinear numerical results. Applicability of the prescriptions based on the impulsive model is discussed. The theory is applied to analyze stability of solutions of the Riemann problem, for the case of two rarefaction waves emerging after interaction. The RM instability is demonstrated to develop with fully symmetrical initial conditions of the unperturbed Riemann problem, identically zero density difference across the contact interface both before and after interaction, and zero normal acceleration of the interface. This confirms that the RM instability is not caused by the instant normal acceleration of the interface, and hence, is not a type of Rayleigh endash Taylor instability. The RM instability is related to the growth of initial transverse velocity perturbations at the interface, which may be either present initially as in symmetrical Riemann problem, or be induced by a shock passing a corrugated interface. copyright 1996 American Institute of Physics

  7. Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes

    International Nuclear Information System (INIS)

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. Satisfying the resonance condition requires that the α-particle birth speed vα ≥ vA/2|m-nq|, where vA is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the α-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the α-particle beta βα, α-particle pressure gradient parameter (ω*/ωA) (ω* is the α-particle diamagnetic drift frequency), and (vα/vA) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10-4. Typical growth rates of the n=1 TAE mode can be in the order of 10-2ωA, where ωA=vA/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects

  8. Bulk-acoustic-wave reflection-grating devices in Fe:LiNbO/sub 3/

    International Nuclear Information System (INIS)

    Reflections of bulk acoustic waves from optically generated holograms stored in iron-doped lithium niobate have been previously demonstrated. The reflection coefficients were shown to be large enough that practical signal-processing devices such as filters and resonators may be built utilizing this effect. Fabrication is simple and operation with bandwidths of several gigahertz and interaction times of tens of microseconds is feasible. This is an order of magnitude improvement in bandwidth over surface acoustic wave devices. Resonators, bandpass filters and dispersive delay lines are under development. Previous measurements of reflection coefficients for LiNbO/sub 3/ have been extended to several values of iron doping. The optimum doping has been found to be 0.015% by weight iron. The maximum reflection coefficient is approximately 10/sup -4/ per grating element which, because of the large number of reflectors in a typical grating, is sufficient for practical devices. Measurements of the effect of annealing in argon and oxygen are presented

  9. Back-reflection from a Cassegrain telescope for space-based interferometric gravitational-wave detectors

    International Nuclear Information System (INIS)

    The Laser Interferometer Space Antenna (Jennrich et al 2009 Class. Quantum Grav. 26 153001) is the best known proposed space-based gravitational-wave detector and continues to be a reference for many of the now evolving designs. All of these designs will exchange laser beams between three and more spacecraft over large distances. Reflecting telescopes are used to expand the outgoing and compress the incoming laser beams. One of the concerns of an on-axis telescope is the light back-reflected from the secondary mirror to the bench. This light can introduce phase noise due to changes in the distance between the secondary mirror and the optical bench. A possible solution to this problem is to modify the central part of the secondary to reduce the amount and spatial coherence of the back-reflected field. We studied several potential modifications and show that several of them can be used to overcome this problem. (paper)

  10. Epoxy-based broadband anti-reflection coating for millimeter-wave optics

    CERN Document Server

    Rosen, Darin; Keating, Brian; Krantz, William; Lee, Adrian T; Quealy, Erin; Richards, Paul L; Siritanasak, Praween; Walker, William

    2013-01-01

    We have developed epoxy-based, broadband anti-reflection coatings for millimeter-wave astrophysics experiments with cryogenic optics. By using multiple-layer coatings where each layer steps in dielectric constant, we achieved low reflection over a wide bandwidth. We suppressed the reflection from an alumina disk to 10% over fractional bandwidths of 92% and 104% using two-layer and three-layer coatings, respectively. The dielectric constants of epoxies were tuned between 2.06 and 7.44 by mixing three types of epoxy and doping with strontium titanate powder required for the high dielectric mixtures. At 140 Kelvin, the band-integrated absorption loss in the coatings was suppressed to less than 1% for the two-layer coating, and below 10% for the three-layer coating.

  11. Reflection and Transmission of the Level Step to the Waves in a Linear and Continuous Layer Liquid

    Institute of Scientific and Technical Information of China (English)

    TAN Xiao-ning; LI Qiang

    2006-01-01

    The reflection and transmission of the level step to the water waves in the linear and continuous layer liquid were studied in this paper. Based on the matching method of the eigenfunction and a Boussinesq approximation, the analytical expression of the diffraction was obtained and the computing methods of the reflection and transmission energy of the level step were proposed. For the incident wave with a frequency greater than that of the flotage, there is only one mode of plane traveling wave in the flow field. In the range of this greater frequency, the linear and continuous delamination effect will affect the reflection and transmission energy of the floating rectangular box. When the frequency of the incident wave is less than the flotage frequency, the energy of the plane traveling wave with infinite modes in the flow field will change into the energy of different modes for each incident wave of different modes.

  12. Reflection and diffraction phenomena of blast wave propagation in nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    Based on some recent explosion accidents in nuclear fuel cycle facilities, it is thought that the blast wave propagation which was caused by the explosion accident in nuclear fuel cycle facility and interactions between blast wave and complex media are ones of the important research topics of the safety. Then, in order to investigate the blast wave propagation in nuclear fuel cycle facility, optical experiments using the micro explosives and pressure measurements in scaled Plexiglas model are conducted. And, numerical simulation is performed to compare with the experimental results. As the results, typical wave propagation in closed model and time dependent tendency of pressure are confirmed. Effect by reflection on the walls and no attenuation of pressure are observed conspicuously in closed space. Diffracted wave attack the walls weakly, and it is confirmed that the pressure peaks appear at the corner of closed space. These results inform important data for safety to plan the performance of facility and to design the facility considering the mitigation of explosion accident. (author)

  13. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain

    Science.gov (United States)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan

    2016-03-01

    In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.

  14. Elemental compositions of high-energy ions produced by magnetosonic waves in quiescent plasmas

    International Nuclear Information System (INIS)

    The structure of a nonlinear magnetosonic wave in a multiple-ion-species plasma is analytically investigated, and the elemental composition of ions reflected by the magnetosonic wave is studied. Firstly, stationary solutions of magnetosonic waves propagating perpendicularly to a magnetic field in a plasma consisting of electrons and two-species ions are obtained from a fluid model. Secondly, on the basis of the solitary wave solution, conditions for ion reflection are discussed. Then, the fraction of high-energy ions produced by a magnetosonic wave is expressed in terms of the ion mass, charge, thermal speed, Alfven speed, and wave amplitude. It rapidly decreases with increasing mass. It is found that most of the light ions can be reflected in a multiple-ion-species plasma even for small-amplitude waves if the masses of the main component ions are sufficiently heavy. (author)

  15. Alfvenic reacceleration of relativistic particles in galaxy clusters in the presence of secondary electrons and positrons

    OpenAIRE

    Brunetti, G.; P. Blasi(INAF Arcetri)

    2005-01-01

    In a previous paper (Brunetti et al. 2004) we presented the first self-consistent calculations of the time-dependent coupled equations for the electrons, hadrons and Alfv\\'en waves in the intracluster medium, which describe the stochastic acceleration of the charged particles and the corresponding spectral modification of the waves. Under viable assumptions, this system of mutually interacting components was shown to accurately describe several observational findings related to the radio halo...

  16. Kinetic Thermal Ions Effects on Alfvenic Fluctuations in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Full text: The early observation of beta induced Alfven eigenmodes (BAE) and a variety of recent experimental observations have attracted attention on studying the low-frequency Alfvenic fluctuations in tokamaks. The generalized fishbone-like dispersion relation theoretical framework has been adopted for extending the hybrid model by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particles (EP) kinetic behaviours. The extended model has been used for implementing an eXtended version of HMGC (XHMGC). In general, the new version of HMGC can have two species of kinetic particles. On one hand, one can use XHMGC for investigating thermal ion kinetic effects on Alfvenic modes driven by EP. In this case, EP dynamics contribute in the ideal MHD region; while wave-particle resonances with core-plasma ions are important only in a narrow inertial layer centred about the mode rational surface, where the dynamics of EP can be neglected due to their large perpendicular orbits (compared to the layer width). On the other hand, it may be interesting to use XHMGC as a tool to simulate two coexisting EP species, generated e.g. by both ICRH and NBI heating, in order to study linear excitation of Alfvenic fluctuations and Energetic Particle Modes (EPM), as well as the interplay between the respective nonlinear physics. Results of initial-value simulations show that the observed frequency is always slightly higher than the BAE accumulation point and is the same at different radial positions; consistent with the characteristics of a discrete BAE-SAW eigenmode (termed as kinetic BAE or KBAE); however, no discrete eigenmode is found within the gap when MHD is ideally stable. Meanwhile, preliminary simulations of KBAE/EPM driven by purely circulating EP have also been done. So far, the results show that the mode frequency is higher than either theoretical BAE accumulation point frequency or EP transit frequency, and increases with

  17. Phenomenology of Compressional Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Coherent oscillations with frequency 0.3 (le) ω/ωci (le) 1, are seen in the National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y-K.M. Peng, (and others), Nucl. Fusion 40, 557 (2000)]. This paper presents new data and analysis comparing characteristics of the observed modes to the model of compressional Alfven eigenmodes (CAE). The toroidal mode number has been measured and is typically between 7 < n < 9. The polarization of the modes, measured using an array of four Mirnov coils, is found to be compressional. The frequency scaling of the modes agrees with the predictions of a numerical 2-D code, but the detailed structure of the spectrum is not captured with the simple model. The fast ion distribution function, as calculated with the beam deposition code in TRANSP [R.V. Budny, Nucl. Fusion 34, 1247 (1994)], is shown to be qualitatively consistent with the constraints of the Doppler-shifted cyclotron resonance drive model. This model also predicts the observed scaling of the low frequency limit for CAE

  18. SDO/AIA Observations of a Reflecting Longitudinal Wave in a Coronal Loop

    CERN Document Server

    Kumar, Pankaj; Inhester, B

    2014-01-01

    We report high resolution observations from the SDO/AIA of intensity oscillations in a hot, T~8-10 MK, loop. The AIA images show a large coronal loop that was rapidly heated following plasma ejection from one of the loop's footpoints. A wave-like intensity enhancement, seen very clearly in the 131 and 94 \\AA\\ channel images, propagated ahead of the ejecta along the loop, and was reflected at the opposite footpoint. The wave reflected four times before fading. It was only seen in the hot, 131 and 94 \\AA\\ channels. The characteristic period and the decay time of the oscillation was $\\sim$630 and $\\sim$440 s, respectively. The phase speed was about 460-510 km/s which roughly matches the sound speed of the loop (430-480 km/s). The observed properties of the oscillation are consistent with the observations of Doppler shift oscillations discovered by the SOHO/SUMER and with their interpretation as slow magnetoacoustic waves. We suggest that the impulsive injection of plasma, following reconnection at one of the loo...

  19. Nonlinear Reflection Process of Linearly Polarized, Broadband Alfvén Waves in the Fast Solar Wind

    Science.gov (United States)

    Shoda, M.; Yokoyama, T.

    2016-04-01

    Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave-wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.

  20. Fast computation of seabed spherical-wave reflection coefficients in geoacoustic inversion.

    Science.gov (United States)

    Quijano, Jorge E; Dosso, Stan E; Dettmer, Jan; Holland, Charles W

    2015-10-01

    This paper develops a fast numerical approach to computing spherical-wave reflection coefficients (SWRCs) for layered seabeds, which provides substantial savings in computation time when used as the forward model for geoacoustic inversion of broadband seabed reflectivity data. The approach exploits the Sommerfeld-integral representation of SWRCs as the Hankel transform of a function proportional to the plane-wave reflection coefficient (PWRC), and applies Levin integration to the rapidly oscillating integrand cast as the product of a (pre-computed) media-independent matrix and a vector involving PWRCs at a sparse sampling of integration angles. Compared to conventional Simpson's rule integration for computation of the SWRC, the Levin integration yields speed-up factors of an order of magnitude or more. Further, it results in reduced memory requirements for storage of pre-computed quantities, a desirable property when a graphics processing unit (GPU) is used for parallel computation of SWRCs. The paper applies trans-dimensional Bayesian inversion to investigate the impact of forward modeling in terms of PWRCs and SWRCs on the estimation of geoacoustic parameters and uncertainties. Model comparisons are quantified in simulated- and measured-data inversions by comparing the estimated geoacoustic parameters to the true parameters or core measurements, respectively, and by calculating the deviance information criterion for model selection. PMID:26520293

  1. Investigation on bragg reflection of surface water waves induced by a train of fixed floating pontoon breakwaters

    Directory of Open Access Journals (Sweden)

    Ouyang Huei-Tau

    2015-11-01

    Full Text Available The water wave characteristics of Bragg reflections from a train of fixed floating pontoon breakwaters was studied numerically. A numerical model of boundary discretization type was developed to calculate the wave field. The model was verified by comparing to analytical data in literature and good agreements were achieved. Series of parametric studies were conducted systematically to investigate the dependence of the reflected coefficients by the Bragg scattering on the design variables, including the spacing between the breakwaters, the total number of installed breakwaters, the draft and width do the breakwater, and wave length. Certain wave characteristics of the Bragg reflections were observed and discussed in details which might be of help for practical engineering applications in shoreline protection from incident waves.

  2. Visualizing substructure of Ca2+ waves by total internal reflection fluorescence microscopy

    Science.gov (United States)

    Bai, Yongqiang; Tang, Aihui; Wang, Shiqiang; Zhu, Xing

    2005-02-01

    Total internal reflection fluorescence microscope is a new optical microscopic system based on near-field optical theory. Its character of illumination by evanescent wave, together with the great signal-to-noise ratio and temporal resolution achieved by high quality CCD, allows us to analyze the spatiotemporal details of local Ca2+ dynamics within the nanoscale microdomain surrounding different Ca2+ channels. We have recently constructed a versatile objective TIRFM equipped with a high numerical aperture (NA=1.45) objective. Using fluo-4 as the Ca2+ indicator, we visualized the near-membrane profiles of Ca2+ waves and elementary Ca2+ sparks generated by Ca2+ release channels in rat ventricular myocytes. Different from those detected using conventional and confocal microscopy, Ca2+ waves observed with TIRFM exhibited fine inhomogenous substructures composed of fluctuating Ca2+ sparks. The anfractuous routes of spark recruitment suggested that the propagation of Ca2+ waves is much more complicated than previously imagined. We believe that TIRFM will provide a unique tool for dissecting the microscopic mechanisms of intracellular Ca2+ signaling.

  3. An analytical solution for stationary distribution of photon density in traveling-wave and reflective SOAs

    International Nuclear Information System (INIS)

    In this paper, we analyze two semiconductor optical amplifier (SOA) structures, traveling-wave and reflective, with the active region made of the bulk material. The model is based on the stationary traveling-wave equations for forward and backward propagating photon densities of the signal and the amplified spontaneous emission, along with the stationary carrier rate equation. We start by introducing linear approximation of the carrier density spatial distribution, which enables us to find solutions for the photon densities in a closed analytical form. An analytical approach ensures a low computational resource occupation and an easy analysis of the parameters influencing the SOA’s response. The comparison of the analytical and numerical results shows high agreement for a wide range of the input optical powers and bias currents. (paper)

  4. Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder

    Science.gov (United States)

    Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.

    2016-07-01

    Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.

  5. REFLECT: a program to integrate the wave equation through a plane stratified plasma

    International Nuclear Information System (INIS)

    A program was developed to integrate the wave equation through a plane stratified plasma with a general density distribution. The reflection and transmission of a plane wave are computed as a function of the angle of incidence. The polarization of the electric vector is assumed to be perpendicular to the plane of incidence. The model for absorption by classical inverse bremsstrahlung avoids the improper extrapolation of underdense formulae that are singular at the plasma critical surface. Surprisingly good agreement with the geometric-optics analysis of a linear layer was found. The system of ordinary differential equations is integrated by the variable-step, variable-order Adams method in the Lawrence Livermore Laboratory Gear package. Parametric studies of the absorption are summarized, and some possibilities for further development of the code are discussed. (auth)

  6. Longitudinal acoustic waves in layered media: Comparative study of Raman scattering and reflection delay time

    Energy Technology Data Exchange (ETDEWEB)

    El Boudouti, E H; Zelmat, R; Bailich, R [LDOM, Departement de Physique, Faculte des Sciences, Universite Mohamed I, 60000 Oujda (Morocco); Hassouani, Y El [Universite de Bordeaux, Laboratoire de Mecanique Physique, Talence F-33405 (France); Djafari-Rouhani, B, E-mail: elboudouti@yahoo.f [Institut d' Electronique, de Microelectronique et de Nanotechnologie, UMR CNRS 8520, UFR de Physique, Universite de Lille 1, 59655 Villeneuve d' Ascq (France)

    2010-03-01

    Using a Green's function method, we present a theoretical analysis of the propagation of acoustic waves in multilayer structures. The structure studied consists of a finite superlattice (SL) made of a periodic repetition of N unit cells deposited on a substrate. Such a structure exhibits extended modes constituting the allowed bands separated by forbidden bands where localized modes associated to free surfaces, defect layers, ... may exist. These modes can be observed either by Raman scattering when an incident light is launched from vacuum towards the multilayer, or by the reflection delay time when an incident acoustic wave is launched from the substrate. Specific applications of our results are given for some available experiments in the literature (e.g., Si/Ge{sub x}Si{sub 1-x}, GaSb-AlSb) and a good agreement has been obtained between our theoretical results and the experimental data.

  7. Longitudinal acoustic waves in layered media: Comparative study of Raman scattering and reflection delay time

    International Nuclear Information System (INIS)

    Using a Green's function method, we present a theoretical analysis of the propagation of acoustic waves in multilayer structures. The structure studied consists of a finite superlattice (SL) made of a periodic repetition of N unit cells deposited on a substrate. Such a structure exhibits extended modes constituting the allowed bands separated by forbidden bands where localized modes associated to free surfaces, defect layers, ... may exist. These modes can be observed either by Raman scattering when an incident light is launched from vacuum towards the multilayer, or by the reflection delay time when an incident acoustic wave is launched from the substrate. Specific applications of our results are given for some available experiments in the literature (e.g., Si/GexSi1-x, GaSb-AlSb) and a good agreement has been obtained between our theoretical results and the experimental data.

  8. Reflection and diffraction phenomena of blast wave propagation in nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    This paper presents the results of an optical experiment which is carried out to measure the pressure and to observe the wave propagations when an explosion occurs in a model of a nuclear facility for preventing and mitigating the serious damage of nuclear facility. Numerical simulation is also performed to compare the phenomena in a model of nuclear facility. Nuclear facility is simulated as the several closed rooms in these experiments and simulations, because the nuclear facility is composed of many closed rooms. As a result, typical tendencies of pressure history are obtained, and it is confirmed that the explosion which occurs in a closed space is reflected in the complexity at the walls and interfered mutually with progressing waves. Finally, experimental results are compared with a numerical simulation. It is confirmed that the results of a numerical simulation show a good agreement with experimental results. (author)

  9. Comparison of high-resolution P- and SH-wave reflection seismic data in alluvial and pyroclastic deposits in Indonesia

    Science.gov (United States)

    Wiyono, Wiyono; Polom, Ulrich; Krawczyk, Charlotte M.

    2013-04-01

    Seismic reflection is one of the stable methods to investigate subsurface conditions. However, there are still many unresolved issues, especially for areas with specific and complex geological environments. Here, each location has an own characteristic due to material compounds and the geological structure. We acquired high-resolution, P-and SH-wave seismic reflection profiles at two different locations in Indonesia. The first location was in Semarang (Central Java) and the second one was in Tiris (East Java). The first region is located on an alluvial plain with thick alluvial deposits of more than 100 m estimated thickness, and the second location was located on pyroclastic deposit material. The seismic measurements for both locations were carried out using a 48-channel recording system (14-Hz P-wave, 10-Hz SH-wave geophones) with geophone intervals of 5 m (P-waves) and 1 m (SH-waves), respectively. The seismic source for the P-wave was a ca. 4 kg sledge hammer which generated a seismic signal by by hitting on an aluminum plate of 30x30 cm, whereas the SH-wave source was a mini-vibrator ELVIS (Electrodynamic Vibrator System), version 3. Thirteen seismic profiles at Semarang and eighth profiles at Tiris were acquired. The results of seismic data in Semarang show fair to good seismic records for both P-and SH-waves. The raw data contain high signal-to-noise-ratio. Many clear reflectors can be detected. The P-wave data shows reflectors down to 250 ms two-way time while the SH-wave records show seismic events up to 600 ms two-way time. This result is in strong contrast to the seismic data result from the Tiris region. The P-wave data show very low signal to noise ratio, there is no reflection signal visible, only the surface waves and the ambient noise from the surrounding area are visible. The SH-waves give a fair to good result which enables reflector detection down to 300 ms two-way time. The results from the two seismic campaigns show that SH-wave reflection

  10. Shallow shear-wave reflection seismics in the tsunami struck Krueng Aceh River Basin, Sumatra

    Directory of Open Access Journals (Sweden)

    U. Polom

    2008-01-01

    Full Text Available As part of the project "Management of Georisk" (MANGEONAD of the Federal Institute for Geosciences and Natural Resources (BGR, Hanover, high resolution shallow shear-wave reflection seismics was applied in the Indonesian province Nanggroe Aceh Darussalam, North Sumatra in cooperation with the Government of Indonesia, local counterparts, and the Leibniz Institute for Applied Geosciences, Hanover. The investigations were expected to support classification of earthquake site effects for the reconstruction of buildings and infrastructure as well as for groundwater exploration. The study focussed on the city of Banda Aceh and the surroundings of Aceh Besar. The shear-wave seismic surveys were done parallel to standard geoengineering investigations like cone penetrometer tests to support subsequent site specific statistical calibration. They were also partly supplemented by shallow p-wave seismics for the identification of (a elastic subsurface parameters and (b zones with abundance of groundwater. Evaluation of seismic site effects based on shallow reflection seismics has in fact been found to be a highly useful method in Aceh province. In particular, use of a vibratory seismic source was essential for successful application of shear-wave seismics in the city of Banda Aceh and in areas with compacted ground like on farm tracks in the surroundings, presenting mostly agricultural land use areas. We thus were able to explore the mechanical stiffness of the subsurface down to 100 m depth, occasionally even deeper, with remarkably high resolution. The results were transferred into geotechnical site classification in terms of the International Building Code (IBC, 2003. The seismic images give also insights into the history of the basin sedimentation processes of the Krueng Aceh River delta, which is relevant for the exploration of new areas for construction of safe foundations of buildings and for identification of fresh water aquifers in the tsunami

  11. Mapping lithosphere thickness beneath the Southern Caribbean and Venezuela using body wave reflectivity and surface wave tomography

    Science.gov (United States)

    Masy, J.; Niu, F.; Levander, A.; Schmitz, M.

    2012-12-01

    The Caribbean (CAR) and South American (SA) plate boundary in Venezuela is a broad zone of diffuse deformation and faulting. GPS measurements indicate that the CAR is moving approximately 2 cm/yr respect to SA, parallel to the strike slip fault system in the east, but with an oblique convergence component in the west (Weber et al., 2001). Along the central and eastern Venezuela coast, most of the motion is accommodated by both transpression and transtension along the right lateral strike-slip San Sebastian- El Pilar fault system. The main tectonic features of the area include accretionary wedges and coastal thrust belts with their associated foreland basins (e.g. Sierra del Interior and Espino Graben). Southern of the plate boundary is located the Guayana Shield, which is part of the Amazonian Craton, and is an elevated plain consisting of Precambrian rocks. BOLIVAR (Broadband Onshore-Offshore Lithospheric Investigation of Venezuela and the Antilles Arc Region) was a multidisciplinary, international investigation to determine the evolution of the CAR-SA plate boundary (Levander et al., 2006) that included a 47 station broadband seismic array to complement the 40 station Venezuelan national array operated by FUNVISIS. The goal of this study is to map out lithosphere thickness across the region in order to understand its role for the various types of deformations observed at surface. We combined surface wave tomography and body wave reflectivity to locate the depth of the lithosphere-asthenosphere boundary (LAB). To generate a coherent 3D reflectivity volume of the study area, we used both P- and S-wave receiver-function data, as well as the ScS reverberation records of two deep earthquakes occurring in South America. We also measured Rayleigh phase velocities in the frequency range of 20-100 s using the two plane-wave method to remove multi-pathing effects (Forsyth and Li, 2005). Finite-frequency kernels were computed for a total of 63 teleseismic events to improve

  12. Suppress the Finger Reflection Error of Littlewood-pelay Wavelet Transformation Device of Surface Acoustic Wave

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2013-01-01

    Full Text Available In this study, a Wavelet Transformation (WT device of Surface Acoustic Wave (SAW technology is developed on the basis of acoustics, electronics, wavelet theory, applied mathematics and semiconductor planar technology. The Finger Reflection (FR error is the primary reason for this kind of device. To solve the problem, a mathematic model of Littlewood-pelay wavelet was established first, which is matched with the model of SAW. Using the methods of split finger and fake finger to design IDT of Littlewood-pelay WT device of SAW with L-edit software, the FR error can be reduced and the equivalent construction of IDT is simulated.

  13. On Mode Conversion, Reflection and Transmission of Magneto-Acoustic Waves from Above in an Isothermal Stratified Atmosphere

    CERN Document Server

    Hansen, Shelley; Donea, Alina

    2015-01-01

    We use the exact solutions for magnetoacoustic waves in a two dimensional isothermal atmosphere with uniform inclined magnetic field to calculate the wave reflection, transmission, and conversion of slow and fast waves incident from above ($z=\\infty$). This is relevant to the question of whether waves excited by flares in the solar atmosphere can penetrate the Alfv\\'en/acoustic equipartition layer (which we identify as the canopy) to reach the photosphere with sufficient energy to create sunquakes. It is found that slow waves above the acoustic cutoff frequency efficiently penetrate (transmit) as acoustic (fast) waves if directed at a small attack angle to the magnetic field, with the rest converting to magnetic (slow) waves, in accord with Generalized Ray Theory. This may help explain the compact nature of seismic sources of sunquakes identified using seismic holography. The incident slow waves can also efficiently transmit at low frequency in inclined field due to the reduction in acoustic cutoff frequency ...

  14. Ray Tracing Study of Magnetospheric ULF Wave Propagation.

    Science.gov (United States)

    Zhang, Xinbo

    1993-01-01

    ^+ . In the presence of O^+ concentrations, Pc 1-2 Alfven mode wave are reflected by the pseudo-cutoff introduced by O^+. The ray tracing results also reveal that Pc 1-2 waves generated at the magnetopause or outer magnetospheric regions are organized by a series of 'critical frequencies'. Recent AMPTE CCE observations reported by Anderson et al. (1990) show evidence for the existence of such 'critical frequencies'. The concept of the critical frequency for Pc 1-2 waves can also be well used to explain the observational 'slot' around the He^+ and O^+ gyrofrequencies in the Pc 1-2 wave spectrum at equatorial geosynchronous orbit.

  15. Electromagnetic waves reflection, transmission and absorption by graphene - magnetic semiconductor - graphene sandwich-structure in magnetic field: Faraday geometry

    OpenAIRE

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Vladimir G. Shavrov

    2014-01-01

    Electrodynamic properties of the graphene - magnetic semiconductor - graphene sandwich-structure have been investigated theoretically with taking into account the dissipation processes. Influence of graphene layers on electromagnetic waves propagation in graphene - semi-infinte magnetic semiconductor and graphene - magnetic semiconductor - graphene sandwich-structure has been analyzed. Frequency and field dependences of the reflectance, transmittance and absorbtance of electromagnetic waves b...

  16. Total transmission and total reflection of acoustic wave by zero index metamaterials loaded with general solid defects

    OpenAIRE

    Wang, Ziyu; Yang, Fan; Liu, Libing; Kang, Ming; Liu, Fengming

    2013-01-01

    This work investigates acoustic wave transmission property through a zero index metamaterials (ZIM) waveguide embedded with a general solid defect. Total transmission and total reflection can be achieved by adjusting the parameters of the solid defect. We comprehensively study how longitudinal/transverse wave speeds of the solid defect affect the acoustic wave propagation through the waveguide. A two-dimensional (2D) acoustic crystals (ACs) system with zero index is used to realize these intr...

  17. Reflection and Transmission Coefficients for an Incident Plane Shear Wave at an Interface Separating Two Dissimilar Poroelastic Solids

    Science.gov (United States)

    Liu, Xu; Greenhalgh, Stewart

    2014-09-01

    Using Biot's poroelasticity theory, we derive expressions for the reflection and transmission coefficients for a plane shear wave incident on an interface separating two different poroelastic solids. The coefficients are formulated as a function of the wave incidence angle, frequency and rock properties. Specific cases calculated include the boundary between water-saturated sand and water-saturated sandstone and the gas-water interface in sand. The results show a very different interface response to that of an incident P wave. Plane SV wave incidence does not significantly excite the Biot slow P wave if the frequency of the wave is below the transition frequency. Above this frequency, an incident plane SV wave can generate a mode-converted slow Biot P wave which is actually a normal propagating wave and not highly attenuating as in the usual (diffusive) case. For an incident SV wave onto a gas-water interface, even at very high frequency, there is no significant Biot second P wave produced. For small incident angles, the gas-water interface is essentially transparent. With increasing angles, there can arise an unusual "definitive angle" in the reflection/transmission coefficient curves which is related to the change of fluid viscosity on both sides of the interface and provides a possible new means for underground fluid assessment.

  18. Damping of kinetic Alfven eigenmodes in tokamak plasmas

    International Nuclear Information System (INIS)

    The ability to predict the stability of fast-particle-driven Alfven eigenmodes in burning fusion plasmas requires a detailed understanding of the dissipative mechanisms that damp these modes. In order to address this question, the linear gyro-kinetic, electromagnetic code LIGKA is employed to investigate their behaviour in realistic tokamak geometry. LIGKA is based on an eigenvalue formulation and self-consistently calculates the coupling of large-scale MHD modes to gyro-radius scale length kinetic Alfven waves. It uses the drift-kinetic HAGIS code to accurately describe the unperturbed particle orbits in general geometry. In addition, a newly developed antenna-like version of LIGKA allows for a frequency scan, analogous to an external antenna. With these tools the properties of the kinetically modified TAE in or near the gap (KTAE, radiative damping or 'tunnelling') and its coupling to the continuum close to the edge are numerically analysed. The results are compared with previous calculations based on fluid and other gyro-kinetic models. Also first linear calculations on cascade modes are presented. (author)

  19. Simulations of direct and reflected waves trajectories for in situ GNSS-R experiments

    Directory of Open Access Journals (Sweden)

    N. Roussel

    2014-01-01

    Full Text Available The detection of Global Navigation Satellite System (GNSS signals that are reflected off the surface, together with the reception of direct GNSS signals offers a unique opportunity to monitor water level variations over land and ocean. The time delay between the reception of the direct and the reflected signal gives access to the altitude of the receiver over the reflecting surface. The field of view of the receiver is highly dependent on both the orbits of the GNSS satellites and the configuration of the study site geometries. A simulator has been developed to determine the accurate location of the reflection points on the surface by modelling the trajectories of GNSS electromagnetic waves that are reflected on the surface of the Earth. Only the geometric problem have been considered using a specular reflection assumption. The orbit of the GNSS constellations satellite (mainly GPS, GLONASS and Galileo, and the position of a fixed receiver are used as input. Three different simulation modes are proposed depending on the choice of the Earth surface (local sphere or ellipsoid and the consideration of topography likely to cause masking effects. Atmospheric delay effects derived from adaptive mapping functions are also taken into account. This simulator was developed to determine where the GNSS-R receivers should be located to monitor efficiently a given study area. In this study, two test sites were considered. The first one at the top of the Cordouan lighthouse (45°35'11'' N; 1°10'24'' W; 65 m and the second one in the shore of the Geneva lake (46°24'30'' N; 6°43'6'' E, with a 50 m receiver height. This site is hidden by mountains in the South (altitude up to 2000 m, and overlooking the lake in the North (altitude of 370 m. For this second test site configuration, reflections occur until 560 m from the receiver. The geometric differences between the positions of the specular reflection points obtained considering the Earth as a sphere or as an

  20. Simulations of direct and reflected waves trajectories for in situ GNSS-R experiments

    Science.gov (United States)

    Roussel, N.; Frappart, F.; Ramillien, G.; Desjardins, C.; Gegout, P.; Pérosanz, F.; Biancale, R.

    2014-01-01

    The detection of Global Navigation Satellite System (GNSS) signals that are reflected off the surface, together with the reception of direct GNSS signals offers a unique opportunity to monitor water level variations over land and ocean. The time delay between the reception of the direct and the reflected signal gives access to the altitude of the receiver over the reflecting surface. The field of view of the receiver is highly dependent on both the orbits of the GNSS satellites and the configuration of the study site geometries. A simulator has been developed to determine the accurate location of the reflection points on the surface by modelling the trajectories of GNSS electromagnetic waves that are reflected on the surface of the Earth. Only the geometric problem have been considered using a specular reflection assumption. The orbit of the GNSS constellations satellite (mainly GPS, GLONASS and Galileo), and the position of a fixed receiver are used as input. Three different simulation modes are proposed depending on the choice of the Earth surface (local sphere or ellipsoid) and the consideration of topography likely to cause masking effects. Atmospheric delay effects derived from adaptive mapping functions are also taken into account. This simulator was developed to determine where the GNSS-R receivers should be located to monitor efficiently a given study area. In this study, two test sites were considered. The first one at the top of the Cordouan lighthouse (45°35'11'' N; 1°10'24'' W; 65 m) and the second one in the shore of the Geneva lake (46°24'30'' N; 6°43'6'' E, with a 50 m receiver height). This site is hidden by mountains in the South (altitude up to 2000 m), and overlooking the lake in the North (altitude of 370 m). For this second test site configuration, reflections occur until 560 m from the receiver. The geometric differences between the positions of the specular reflection points obtained considering the Earth as a sphere or as an ellipsoid

  1. On the influence of low initial pressure and detonation stochastic nature on Mach reflection of gaseous detonation waves

    Science.gov (United States)

    Wang, C. J.; Guo, C. M.

    2014-09-01

    The two-dimensional, time-dependent and reactive Navier-Stokes equations were solved to obtain an insight into Mach reflection of gaseous detonation in a stoichiometric hydrogen-oxygen mixture diluted by 25 % argon. This mixture generates a mode-7 detonation wave under an initial pressure of 8.00 kPa. Chemical kinetics was simulated by an eight-species, forty-eight-reaction mechanism. It was found that a Mach reflection mode always occurs for a planar detonation wave or planar air shock wave sweeping over wedges with apex angles ranging from to . However, for cellular detonation waves, regular reflection always occurs first, which then transforms into Mach reflection. This phenomenon is more evident for detonations ignited under low initial pressure. Low initial pressure may lead to a curved wave front, that determines the reflection mode. The stochastic nature of boundary shape and transition distance, during deflagration-to-detonation transition, leads to relative disorder of detonation cell location and cell shape. Consequently, when a detonation wave hits the wedge apex, there appears a stochastic variation of triple point origin and variation of the angle between the triple point trajectory and the wedge surface. As the wedge apex angle increases, the distance between the triple point trajectory origin and the wedge apex increases, and the angle between the triple point trajectory and the wedge surface decreases exponentially.

  2. On the tunneling of full-vector X-Waves through a slab under frustrated total reflection condition

    KAUST Repository

    Salem, Mohamed

    2012-07-01

    Tunneling of full-vector X-Waves through a dielectric slab under frustrated total reflection condition is investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of reflection and transmission at the dielectric interfaces is carried out analytically in a straightforward fashion using vector Bessel beam expansion. Investigation of the fields propagating away from the farther end of the slab (transmitted fields) shows an advanced (superluminal) transmission of the X-Wave peak. Additionally, a similar advanced reflection is also observed. The apparent tunneling of the peak is shown to be due to the phase shift in the fields\\' spectra and not to be causally related to the incident peak. © 2012 IEEE.

  3. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    KAUST Repository

    Xu, Yanlong

    2015-01-21

    We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.

  4. High-resolution shear-wave reflection profiling to image offset in unconsolidated near-surface sediments

    Science.gov (United States)

    Bailey, Bevin L.

    S-wave reflection profiling has many theoretical advantages, when compared to P-wave profiling, such as high-resolution potential, greater sensitivities to lithologic changes and insensitivity to the water table and pore fluids, and could be particularly useful in near-surface settings. However, S-wave surveys can be plagued by processing pitfalls unique to near-surface studies such as interference of Love waves with reflections, and the stacking of Love waves as coherent noise, leading to possible misinterpretations of the subsurface. Two lines of S-wave data are processed and used to locate previously unknown faults in Quaternary sediments in a region where earthquake activity poses a threat to surface structures. This study provides clear examples of processing pitfalls such as Love waves with hyperbolic appearances on shot gathers, and a CMP section with coherent noise that is easily misinterpreted as reflections. This study demonstrates pros and cons of using SH reflection data in the near surface.

  5. STEREO-A and PROBA2 Quadrature Observations of Reflections of three EUV Waves from a Coronal Hole

    CERN Document Server

    Kienreich, Ines Waltraud; Veronig, Astrid; Berghmans, David; de Groof, Anik; Temmer, Manuela; Vršnak, Bojan; Seaton, Dan

    2012-01-01

    We investigate the interaction of three consecutive large-scale coronal waves with a polar coronal hole, simultaneously observed on-disk by the Solar TErrestrial Relations Observatory (STEREO)-A spacecraft and on the limb by the PRoject for On-Board Autonomy 2 (PROBA2) spacecraft on January 27, 2011. All three extreme-ultraviolet(EUV) waves originate from the same active region NOAA 11149 positioned at N30E15 in the STEREO-A field-of-view and on the limb in PROBA2. We derive for the three primary EUV waves start velocities in the range of ~310 km/s for the weakest up to ~500 km/s for the strongest event. Each large-scale wave is reflected at the border of the extended coronal hole at the southern polar region. The average velocities of the reflected waves are found to be smaller than the mean velocities of their associated direct waves. However, the kinematical study also reveals that in each case the end velocity of the primary wave matches the initial velocity of the reflected wave. In all three events the ...

  6. MEASUREMENTS OF RAIN DROP SIZE DISTRBUTION FROM RADAR REFLECTIVITY AND ASSOCIATED RAIN ATTENUATION OF RADIO WAVES

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya,

    2011-05-01

    Full Text Available Radar measurements of rainfall at different climatological conditions have been taken into account emphasizing rain rate and associated radar reflectivity. It is observed from the analysis that thereflectivity measurement is being consistent at high rain intensities. From the knowledge of radar reflectivity, the rain drop size distribution is examined. The most probable drop size diameter and rain rate have been calculated wherefrom it appears that the most probable rain drop size vary exponentially with radar reflectivity and also with rain rate. The theoretical model implemented by using the measured rain drop sizes over the tropical sites also show similar kind of variation. For estimating rain attenuation two important parameters, viz., the point rainfall rates and the vertical and horizontal structures of rain have been considered. The elevation angle we have chosen is ~ 560 as most of the stations in India havethat value of elevation angle with geostationary satellite. Taking the frequencies 11 to 14 GHz separately and 00 C isotherm height as 5.0 km, the effective rain height values are determined. The attenuation of radio waves due to rain are calculated for different rain rates assigning different γ-values. The attenuation is found to vary significantly with the γ-values. Also the attenuation curves are closer when the γ-values are of low order. An increase in attenuation with the γ-values is found to be more prominent for higher rain rates.

  7. Mutual transformation of light waves by reflection holograms in photorefractive crystals of the 4-bar 3m symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Naunyka, V. N.; Shepelevich, V. V., E-mail: vasshep@inbox.ru [Mozyr State Pedagogical University (Belarus)

    2011-05-15

    The mutual transformation of light waves in the case of their simultaneous diffraction from a bulk reflection phase hologram, which was formed in a cubic photorefractive crystal of the 4-bar 3m symmetry class, has been studied. The indicator surfaces of the polarization-optimized values of the relative intensity of the object wave, which make it possible to determine the amplification of this wave for any crystal cut, are constructed. The linear polarization azimuths at which the energy exchange between the light waves reaches a maximum are found numerically for crystals of different cuts.

  8. Waves in Space Plasmas

    International Nuclear Information System (INIS)

    Applications of linear mode conversion at Alfven/ion-ion hybrid resonances and at electron plasma frequency have been discussed. Alfven resonances play an important role on energy transport the outer to inner regions of magnetospheres. At Earth's magnetopause, the mode-converted kinetic Alfven waves also lead to solar wind particle entry and transverse ion heating. IIH resonant waves can explain of the generation of linearly polarized EMIC waves at Earth. Compressional waves can also interact with Mercury's magnetosphere exciting IIH resonances as global eigenmodes. Linear mode conversion (LMC) from Langmuir to electromagnetic waves is relevant to explain type II and III radio bursts. Through the LMC, both right- and left-hand polarized wave modes are produced and it provides the solutions for linear/partial polarized type II and III problems.

  9. Phase statistics of light wave reflected from one-dimensional optical disordered media and its effects on light transport properties

    CERN Document Server

    Pradhan, Prabhakar

    2015-01-01

    Light wave reflection from optical disordered media is always associate with its phase, and the phase statistics influence the reflection statistics. We report a detailed numerical study of the statistics of the reflection coefficient RR* and its associated phase(theta) for plane electromagnetic waves reflected from one dimensional (1D) Gaussian white-noise optical disordered media, ranging from weak to strong disordered regimes. We solve numerically the full Fokker-Planck (FP) equation for the joint probability distribution in the RR* - phase(theta) space for different lengths of the sample with different disorder strengths. The statistical optical transport properties of 1D optical disordered media are calculated using the full FP equation numerically. This constitutes a complete solution for the reflection phase statistics and its effects on light transport properties in a 1D Gaussian white-noise disordered optical potentials. Our results show the regime of the validation of the random phase approximations...

  10. Non-linear study of fast particle excitation of global Alfven eigenmodes during ICRH

    International Nuclear Information System (INIS)

    Full text: Fast ions created by ICRH have been proposed for simulating alpha particle heating. In order to extrapolate results regarding excitation of global Alfven eigenmodes to that of thermonuclear alpha particles it is important to understand the differences between excitation by ICRH and by thermonuclear alpha particles. ICRH does not only produce strong anisotropic distribution functions of the resonant ion species compared to the nearly isotropic one of thermonuclear alpha particles, but also decorrelates the interactions between the high-energy ions and the global Alfven eigenmode. In absence of decorrelation the resonant ions will make superadiabatic oscillations in energy. The decorrelation caused by collisions and RF interactions leads to an effective broadening of the MHD resonant region hence increasing the extent of the energy transport region in phase space. The decorrelations also affect the growth rate and the amplitude of the saturation level. ICRH decorrelates the MHD interactions and pushes ions in and out of resonance with the Alfven wave leading to enhanced excitation or damping of the mode. The decorrelation by Coulomb collisions decreases with energy and is more important for particles with low energy, whereas the decorrelation by ICRH becomes more important for high-energy particles. A method to calculate the distribution function of the resonant ions and amplitude of the global Alfven wave self-consistently during ICRH has been developed and implemented in the SELFO- code. The SELFO code consists of the orbit averaged Monte Carlo code FIDO for calculating the distribution function of the heated ions and the global wave code LION for calculating the wave field for ICRF heating. Self-consistent calculations of the ICRF wave field and distribution function is carried out by solving the wave field in LION with a dielectric tensor calculated from the global distribution function obtained with the FIDO code. The wave field of the global Alfven

  11. Alfven solitons in the coupled derivative nonlinear Schroedinger system with symbolic computation

    International Nuclear Information System (INIS)

    The propagation of nonlinear Alfven waves in magnetized plasmas with right and left circular polarizations is governed by the coupled derivative nonlinear Schroedinger (CDNLS) system. The integrability of this system is indicated by the existence of two gauge-equivalent Lax pairs and infinitely many independent conservation laws. With symbolic computation, the analytic one- and two-soliton solutions are obtained via the Hirota bilinear method. The propagation characteristics of the Alfven waves are discussed through qualitative analysis. The collision dynamics of the CDNLS solitons is found to be characterized by the invariance of the soliton velocities and widths, parameter-dependent changes of the soliton amplitudes and conservation of the total energy of right- and left-polarized components. The parametric condition for the amplitude-preserving collision occurring in each component is explicitly given.

  12. Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation

    Science.gov (United States)

    Zhou, Wei; Brossier, Romain; Operto, Stéphane; Virieux, Jean

    2015-09-01

    Full waveform inversion (FWI) aims to reconstruct high-resolution subsurface models from the full wavefield, which includes diving waves, post-critical reflections and short-spread reflections. Most successful applications of FWI are driven by the information carried by diving waves and post-critical reflections to build the long-to-intermediate wavelengths of the velocity structure. Alternative approaches, referred to as reflection waveform inversion (RWI), have been recently revisited to retrieve these long-to-intermediate wavelengths from short-spread reflections by using some prior knowledge of the reflectivity and a scale separation between the velocity macromodel and the reflectivity. This study presents a unified formalism of FWI, named as Joint FWI, whose aim is to efficiently combine the diving and reflected waves for velocity model building. The two key ingredients of Joint FWI are, on the data side, the explicit separation between the short-spread reflections and the wide-angle arrivals and, on the model side, the scale separation between the velocity macromodel and the short-scale impedance model. The velocity model and the impedance model are updated in an alternate way by Joint FWI and waveform inversion of the reflection data (least-squares migration), respectively. Starting from a crude velocity model, Joint FWI is applied to the streamer seismic data computed in the synthetic Valhall model. While the conventional FWI is stuck into a local minimum due to cycle skipping, Joint FWI succeeds in building a reliable velocity macromodel. Compared with RWI, the use of diving waves in Joint FWI improves the reconstruction of shallow velocities, which translates into an improved imaging at deeper depths. The smooth velocity model built by Joint FWI can be subsequently used as a reliable initial model for conventional FWI to increase the high-wavenumber content of the velocity model.

  13. Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments

    Science.gov (United States)

    Roussel, N.; Frappart, F.; Ramillien, G.; Darrozes, J.; Desjardins, C.; Gegout, P.; Pérosanz, F.; Biancale, R.

    2014-10-01

    The detection of Global Navigation Satellite System (GNSS) signals that are reflected off the surface, along with the reception of direct GNSS signals, offers a unique opportunity to monitor water level variations over land and ocean. The time delay between the reception of the direct and reflected signals gives access to the altitude of the receiver over the reflecting surface. The field of view of the receiver is highly dependent on both the orbits of the GNSS satellites and the configuration of the study site geometries. A simulator has been developed to determine the location of the reflection points on the surface accurately by modeling the trajectories of GNSS electromagnetic waves that are reflected by the surface of the Earth. Only the geometric problem was considered using a specular reflection assumption. The orbit of the GNSS constellation satellites (mainly GPS, GLONASS and Galileo), and the position of a fixed receiver, are used as inputs. Four different simulation modes are proposed, depending on the choice of the Earth surface model (local plane, osculating sphere or ellipsoid) and the consideration of topography likely to cause masking effects. Angular refraction effects derived from adaptive mapping functions are also taken into account. This simulator was developed to determine where the GNSS-R receivers should be located to monitor a given study area efficiently. In this study, two test sites were considered: the first one at the top of the 65 m Cordouan lighthouse in the Gironde estuary, France, and the second one on the shore of Lake Geneva (50 m above the reflecting surface), at the border between France and Switzerland. This site is hidden by mountains in the south (orthometric altitude up to 2000 m), and overlooking the lake in the north (orthometric altitude of 370 m). For this second test site configuration, reflections occur until 560 m from the receiver. The planimetric (arc length) differences (or altimetric difference as WGS84

  14. Goos-H\\"anchen shifts in frustrated total internal reflection studied with wave packet propagation

    CERN Document Server

    Chen, Xi; Wei, Rong-Rong; Zhang, Yan

    2009-01-01

    We have investigated that the Goos-H\\"anchen (GH) shifts in frustrated total internal reflection (FTIR) studied with wave packet propagation. In the first-order approximation of the transmission coefficient, the GH shift is exactly the expression given by stationary phase method, thus saturates an asymptotic constant in two different ways depending on the angle of incidence. Taking account into the second-order approximation, the GH shift always depends on the width of the air gap due to the modification of the beam width. It is further shown that the GH shift with second-order correction increases with decreasing the beam width at the small incidence angles, while for the large incidence angles it reveals a strong decrease with decreasing the beam width. These phenomena offers the better understanding of the tunneling delay time in FTIR.

  15. Global Alfven eigenmodes stability in thermonuclear tokamak plasmas

    International Nuclear Information System (INIS)

    Relying on the good agreement observed between the gyrokinetic PENN model and the low n damping measurements from JET, the stability of Alfven eigenmodes (AE) is here predicted for reactor relevant conditions. Full non-local wave-particle power transfers are computed for the α-particles in an ITER reference equilibrium, showing that low n ≅ 2 modes are strongly damped and intermediate n ≅ 12 with a global radial extension are stable with a damping rate γ/ω ≅ 0.02. Even though an excitation of α-particle driven instabilities remains in principle possible, this study suggests that realistic operation scenarii exist where all the AEs of global character are stable. (author)

  16. MHD-Vlasov simulation of the toroidal Alfven eigenmode

    International Nuclear Information System (INIS)

    A new simulation method has been developed to investigate the excitation and saturation processes of toroidal Alfven eigenmodes (TAE modes). The background plasma is described by a full-MHD fluid model, while the kinetic evolution of energetic alpha particles is followed by the drift kinetic equation. The magnetic fluctuation of n = 2 mode develops and saturates at the level of 1.8x10-3 of the equilibrium field when the initial beta of alpha particles is 2% at the magnetic axis. After saturation, the TAE mode amplitude shows an oscillatory behavior with a frequency corresponding to the bounce frequency of the alpha particles trapped by the TEA mode. The decrease of the power transfer rate from the alpha particles to the TAE mode, which is due to the trapped particle effect of a finite-amplitude wave, causes the saturation. From the linear growth rate the saturation level can be estimated. (author)

  17. 圆极化波反射聚焦超表面∗%Circularly p olarized wave reflection fo cusing metasurfaces

    Institute of Scientific and Technical Information of China (English)

    李勇峰; 张介秋; 屈绍波; 王甲富; 吴翔; 徐卓; 张安学

    2015-01-01

    The phase profiles of the reflected circularly polarized waves can be freely manipulated by virtue of a co-polarization reflective metasurface. Based on the co-polarization reflective metasurface, a circularly polarized wave reflection focusing metasurface can be achieved, it can make the reflected waves focus at a focal spot under the normal incidence of circularly polarized plane waves. In this paper, a reflection focusing metasurface is designed. It is found that around the central frequency f =16 GHz, the reflected waves focus on a focal spot above the metasurface with a focal distance L=200 mm under the normal incidence of right-handed circularly polarized waves. However, in the case of normal incidence of left-handed circularly waves, the reflected waves focus on an imaginary focal spot below the metasurface with the focal distance L=−200 mm. The beam-width at the focal spot and focal depth are also calculated by using CST Microwave Studio. The simulation results indicate that the beam-width at the focal spot is approximately equal to the operating wavelength. Therefore, the circularly polarized wave reflection focusing metasurface has a good performance for focusing the reflected waves. In addition, the proposed focusing metasurface displays the advantages of the long focal depth and the broad operating bandwidth.

  18. Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface.

    Science.gov (United States)

    D'Alimonte, Davide; Kajiyama, Tamito

    2016-04-18

    Above-water radiometry depends on estimates of the reflectance factor ρ of the sea surface to compute the in situ water-leaving radiance. The Monte Carlo code for ocean color simulations MOX is used in this study to analyze the effect of different environmental components on ρ values. A first aspect is examining the reflectance factor without and by accounting for the sky-radiance polarization. The influence of the sea-surface statistics at discrete grid points is then considered by presenting a new scheme to define the variance of the waves slope. Results at different sun elevations and sensor orientations indicate that the light polarization effect on ρ simulations reduces from ∼17 to ∼10% when the wind speed increases from 0 to 14m s-1. An opposite tendency characterizes the modeling of the sea-surface slope variance, with ρ differences up to ∼12% at a wind speed of 10m s-1. The joint effect of polarization and the the sea-surface statistics displays a less systematic dependence on the wind speed, with differences in the range ∼13 to ∼18%. The ρ changes due to the light polarization and the variance of the waves slope become more relevant at sky-viewing geometries respectively lower and higher than 40° with respect to the zenith. An overall compensation of positive and negative offsets due to light polarization is finally documented when considering different sun elevations. These results address additional investigations which, by combining the modeling and experimental components of marine optics, better evaluate specific measurement protocols for collecting above-water radiometric data in the field. PMID:27137234

  19. Nonlinear competition between the whistler and Alfven firehoses. Journal of Geophysical Research, 106, 13,215, 2001

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Matsumoto, H.

    2001-01-01

    Roč. 106, - (2001), s. 13,215-13,224. ISSN 0148-0227 R&D Projects: GA AV ČR IAB3042106 Institutional research plan: CEZ:AV0Z3042911 Keywords : instability * whistler * Alfven wave Subject RIV: BE - Theoretical Physics Impact factor: 2.609, year: 2001

  20. Broadband Plasma-Sprayed Anti-reflection Coating for Millimeter-Wave Astrophysics Experiments

    Science.gov (United States)

    Jeong, O.; Lee, A.; Raum, C.; Suzuki, A.

    2016-08-01

    We have developed a plasma-sprayed anti-reflection (AR) coating technology for millimeter-wave astrophysics experiments with cryogenic optics which achieves minimal dissipative loss and broad bandwidth and is easily and accurately applied. Plasma spraying is a coating process through which melted or heated materials are sprayed onto a substrate. The dielectric constants of the plasma-sprayed coatings were tuned between 2.7 and 7.9 by mixing hollow ceramic microspheres with alumina powder as the base material and varying the plasma energy of the spray. By spraying low loss ceramic materials with a tunable dielectric constant, we can apply multiple layers of AR coating for broadband millimeter-wave detection. At 300 K, we achieved a fractional bandwidth of 106 over 90% transmission using a three-layer AR coating. Applying ceramic coatings on ceramic lenses offers an additional benefit of preventing cryogenic delamination of the coatings. We report on methodology of coating application and measurement of uniformity, repeatability, transmission property, and cryogenic adhesion performance.

  1. Broadband Plasma-Sprayed Anti-reflection Coating for Millimeter-Wave Astrophysics Experiments

    Science.gov (United States)

    Jeong, O.; Lee, A.; Raum, C.; Suzuki, A.

    2016-02-01

    We have developed a plasma-sprayed anti-reflection (AR) coating technology for millimeter-wave astrophysics experiments with cryogenic optics which achieves minimal dissipative loss and broad bandwidth and is easily and accurately applied. Plasma spraying is a coating process through which melted or heated materials are sprayed onto a substrate. The dielectric constants of the plasma-sprayed coatings were tuned between 2.7 and 7.9 by mixing hollow ceramic microspheres with alumina powder as the base material and varying the plasma energy of the spray. By spraying low loss ceramic materials with a tunable dielectric constant, we can apply multiple layers of AR coating for broadband millimeter-wave detection. At 300 K, we achieved a fractional bandwidth of 106 over 90% transmission using a three-layer AR coating. Applying ceramic coatings on ceramic lenses offers an additional benefit of preventing cryogenic delamination of the coatings. We report on methodology of coating application and measurement of uniformity, repeatability, transmission property, and cryogenic adhesion performance.

  2. Serum Uric Acid Level and Diverse Impacts on Regional Arterial Stiffness and Wave Reflection

    Directory of Open Access Journals (Sweden)

    Suyan Bian

    2012-08-01

    Full Text Available Background: Both increased arterial stiffness and hyperuricaemia are associated with elevated cardiovascular risks. Little is known about the relations of serum uric acid (UA level to regional arterial stiffness and wave reflection. The aim of the study was to investigate the gender-specific association of serum UA and indices of arterial function in a community-based investigation in China.Methods: Cross-sectional data from 2374 adults (mean age 58.24 years who underwent routine laboratory tests, regional pulse wave velocity (PWV and pulse wave analysis measurements were analyzed in a gender-specific manner. None of the participants had atherosclerotic cardiovascular disease, chronic renal failure, systemic inflammatory disease, gout, or were under treatment which would affect serum UA level.Results: Men had higher serum UA level than women. Subjects with hyperuricaemia had significantly higher carotid-ankle PWV in both genders (P< 0.05, and the carotid-femoral PWV (PWVc-f was higher in women (P< 0.001 while the augmentation index was marginally lower in men (P = 0.049. Multiple regression analysis showed that serum UA was an independent determinant only for PWVc-f in women (β = 0.104, P = 0.027 when adjusted for atherogenic confounders. No other independent relationship was found between UA level and other surrogates of arterial stiffness.Conclusions: Serum UA levels are associated with alterations in systemic arterial stiffness that differ in men and women. Women might be more susceptible to large vascular damage associated with hyperuricaemia.

  3. Anisotropic Alfven-ballooning modes in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth's inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P perpendicular > P parallel. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value βoB ∼ 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P parallel > P perpendicular, or due to increased ballooning-mirror destabilization when P perpendicular > P parallel. We use a ''β-6 stability diagram'' to display the regions of instability with respect to the equatorial values of the parameters bar β and δ, where bar β = (1/3)(βparallel + 2 β perpendicular) is an average beta value and δ = 1 - P parallel/P perpendicular is a measure of the plasma anisotropy

  4. Experiment for 3-component S-wave reflection survey. Part 3; Sanseibun S ha hanshaho no kiso jikken. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kano, N.; Yamaguchi, K.; Yokota, T.; Kiguchi, T. [Geological Survey of Japan, Tsukuba (Japan)

    1996-10-01

    Anisotropy has been investigated using S-wave as a technique for detecting fractures. In this study, fundamental experiments were carried out with slightly changing the measuring conditions at a place where anisotropy was expected. This paper describes the fundamental data acquisition of anisotropy analysis using S-wave, and a part of the results. The experiments were conducted on the agricultural road in Yamadera district, Matsuyama-machi, Yamagata Prefecture. Two flat unpaved roads meeting at right angles were used as traverse lines. In this place, several reflection surfaces were certainly detected by P-wave, and anisotropy of S-wave was confirmed from the velocity of refracted wave of S-wave. Data were processed for individual traverse lines meeting at right angles. Firstly, signal sweeping, correlation, and vertical superposition were made. Six kinds of data were prepared, i.e., three-component receiving records of data at 0{degree} of generating direction and three-component receiving records of data at 90{degree} of generating direction. Records of T-component at 0{degree} and R-component at 90{degree} were used for processing of the seismic reflection method. These records would be considered to be data of SH-wave and SV-wave, respectively. 4 figs.

  5. Transmission, reflection and localization of waves in one-dimensional amplifying media with nonlinear gain

    Science.gov (United States)

    Nguyen, Ba Phi; Kim, Kihong

    2014-06-01

    We study theoretically the influence of nonlinear gain effects on the transmission and the Anderson localization of waves in both uniform and random one-dimensional amplifying media by using the discrete nonlinear Schrödinger equation. In uniform amplifying media with nonlinear gain, we find that the strong oscillatory behavior of the transmittance and the reflectance for odd and even values of the sample length disappears for large nonlinearities. The exponential decay rate of the transmittance in the asymptotic limit is found to be independent of nonlinear gain. In random amplifying media, we find that the maximum values of the disorder-averaged logarithmic transmittance and reflectance depend nonmonotonically on the strength of nonlinear gain. We also find that the localization length is independent of nonlinear gain. In other words, the Anderson localization is neither enhanced nor weakened due to nonlinear gain. In both the uniform and the random cases, the crossover length, which is the critical length for the amplification to be efficient, is strongly reduced by the nonlinear nature of the gain.

  6. Shot- and angle-domain wave-equation traveltime inversion of reflection data: Synthetic and field data examples

    KAUST Repository

    Zhang, Sanzong

    2015-05-26

    Full-waveform inversion requires the accurate simulation of the dynamics and kinematics of wave propagation. This is difficult in practice because the amplitudes cannot be precisely reproduced for seismic waves in the earth. Wave-equation reflection traveltime tomography (WT) is proposed to avoid this problem by directly inverting the reflection-traveltime residuals without the use of the high-frequency approximation. We inverted synthetic traces and recorded seismic data for the velocity model by WT. Our results demonstrated that the wave-equation solution overcame the high-frequency approximation of ray-based tomography, was largely insensitive to the accurate modeling of amplitudes, and mitigated problems with ambiguous event identification. The synthetic examples illustrated the effectiveness of the WT method in providing a highly resolved estimate of the velocity model. A real data example from the Gulf of Mexico demonstrated these benefits of WT, but also found the limitations in traveltime residual estimation for complex models.

  7. Statistical Evidence for the Existence of Alfv\\'enic Turbulence in Solar Coronal Loops

    CERN Document Server

    Liu, Jiajia; De Moortel, Ineke; Threlfall, James; Bethge, Christian

    2014-01-01

    Recent observations have demonstrated that waves which are capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which time and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that Alfv\\'enic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study [De Moortel et al., ApJL, 782:L34, 2014] by analyzing thirty-seven clearly isolated coronal loops using data from the Coronal Multi-channel Polarimeter (CoMP) instrument. We observe Alfv\\'enic perturbations with phase speeds which range from 250-750 km/s and periods from 140-270 s for the chosen loops. While excesses of high frequency wave-power are observed near the apex of some loops (tentatively supporting the onset of Alfv\\'enic turbu...

  8. Reflection of Propagating Slow Magneto-acoustic Waves in Hot Coronal Loops: Multi-instrument Observations and Numerical Modeling

    Science.gov (United States)

    Mandal, Sudip; Yuan, Ding; Fang, Xia; Banerjee, Dipankar; Pant, Vaibhav; Van Doorsselaere, Tom

    2016-09-01

    Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence. The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.

  9. Numerical analysis on the absorption, reflection and transmission of radar waves by a uniform magnetized plasma slab

    International Nuclear Information System (INIS)

    The absorption, reflection, and transmission of radar waves by a uniform and magnetized plasma slab are studied. The effect of various plasma parameters and different values of magnetic field intensity on the absorbed, reflected and transmitted power are discussed. The calculated results show that the effects of magnetic field on the absorbed power as well as the frequency band of resonant absorption are very significant. More than 90% of radar wave power can be absorbed and the resonant absorption band is about 2G Hz

  10. Reflection and transmission of plane harmonic waves at an interface between liquid and micropolar viscoelastic solid with stretch

    Indian Academy of Sciences (India)

    Baljeet Singh

    2000-12-01

    A solution of the field equations governing small motions of a micropolar viscoelastic solid half-space with stretch is employed to study the reflection and transmission at the interface between a liquid and a micropolar viscoelastic solid with stretch. The amplitude ratios for various reflected and refracted waves are computed and depicted graphically. Effects of axial stretch and viscosity on the amplitude ratios are discussed.

  11. Damping of Energetic-Particle-Driven Alfven Eigenmodes in Different Magnetic Equilibria in the MST Reversed-Field Pinch

    Science.gov (United States)

    Sears, Stephanie; Anderson, Jay; Capecchi, William; Bonofiglo, Phillip; Kim, Jungha

    2015-11-01

    Alfven wave dissipation is an important mechanism behind anomalous ion heating, both in astrophysical and reversed-field pinch (RFP) plasma systems. Additionally, the damping rate has implications for the stability of energetic particle driven modes (EPMs) and their associated nonlinear dynamics and fast ion transport, which are crucial topics for any burning plasma reactor. With a 1 MW neutral beam injector on the MST RFP, a controlled set of EPMs and Alfvenic eigenmodes can be driven in this never-before-probed region of strong magnetic shear and weak externally applied magnetic field. The decay time of the average of 100s of reproducible bursts is computed for different equilibrium profiles. In this work, we report initial measurements of Alfvenic damping rates with varied RFP equilibria (including magnetic shear and flow shear) and the effects on fast ion transport. This research is supported by DOE and NSF.

  12. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection.

    Science.gov (United States)

    Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke

    2016-01-01

    In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013. PMID:27051997

  13. Wave reflection leads to over- and underestimation of local wave speed by the PU- and QA-loop methods: theoretical basis and solution to the problem

    International Nuclear Information System (INIS)

    Single-point methods such as the PU- and QA-loop methods are used to estimate local pulse wave velocity (PWVPU and PWVQA) in arteries from a combination of pressure (P), flow (Q), velocity (U) or cross-sectional area (A) waveforms. Available data indicate that the PU-loop method tends to overestimate PWV, while the QA-loop method tends to underestimate. Wave reflection has been suggested as a factor playing a role in the agreement between different methods. In this work, we first provide a theoretical basis to (i) demonstrate the interference of wave reflection with the PU-loop method for both solitary sinusoidal waves as well as physiological waveforms; (ii) develop an operator-independent method to correct for the presence of reflections. Fluid–structure interaction simulations in a tube and carotid artery model with known mechanical properties confirm the theory. For the carotid artery model, PWVPU severely overestimates PWV, while PWVQA underestimates PWV. Correction (leading to an estimate termed PWV1–5) seems to eliminate the impact of reflections. Finally, methods are applied in vivo. Compared to PWVPU and PWVQA, PWV1–5 leads to significantly better correlations of carotid PWV with PWV derived from carotid distensibility based on the Bramwell–Hill equation (with r2 improving from about 0.25 to 0.91). We conclude that neither the PU-loop nor the QA-loop method provides reliable estimates of local PWV in settings where wave reflections are present—even when the PU- or QA-loops show a linear segment. They offer no alternative for the Bramwell–Hill based approach and their application should therefore be discouraged, especially for the carotid artery, although caution is probably warranted in general. (paper)

  14. Refined critical balance in strong Alfvenic turbulence

    OpenAIRE

    Mallet, A.; Schekochihin, A. A.; Chandran, B. D. G.

    2014-01-01

    We present numerical evidence that in strong Alfvenic turbulence, the critical balance principle---equality of the nonlinear decorrelation and linear propagation times---is scale invariant, in the sense that the probability distribution of the ratio of these times is independent of scale. This result only holds if the local alignment of the Elsasser fields is taken into account in calculating the nonlinear time. At any given scale, the degree of alignment is found to increase with fluctuation...

  15. Alfven eigenmodes in shear reversed plasmas

    International Nuclear Information System (INIS)

    Experiments on JT-60U and JET have shown that plasma configurations with shear reversal are prone to the excitation of unusual Alfven Eigenmodes by energetic particles. These modes emerge outside the TAE frequency gap, where one might expect them to be strongly damped. The modes often appear in bunches and they exhibit a quasi-periodic pattern of predominantly upward frequency sweeping (Alfven Cascades) as the safety factor q changes in time. This work presents a theory that explains the key features of the observed unusual modes including their connection to TAE's as well as the modifications of TAE's themselves near the shear reversal point. The developed theory has been incorporated into a reduced numerical model and verified with full geometry codes. JET experimental data on Alfven spectroscopy have been simulated to infer the mode numbers and the evolution of qmin in the discharge. This analysis confirms the values of q that characterize the internal transport barrier triggering in reversed shear plasmas. (author)

  16. Saturation of Alfven modes in tokamaks

    Science.gov (United States)

    White, Roscoe; Gorelenkov, Nikolai; Gorelenkova, Marina; Podesta, Mario; Chen, Yang

    2015-11-01

    The effect of Alfven modes on high energetic particles in tokamaks is important in general, and could be of significance for ITER. This work is a combination of analytic models and numerical simulation to find the saturation levels of unstable Alfven modes and the resulting effect on beam and alpha particle distributions. Solving the drift kinetic equation with a guiding center code in the presence of Alfven modes driven unstable by a distribution of high energy particles requires the use of a δf formalism, wherby the initial distribution f0 is assumed to be a steady state high energy particle distribution in the absense of the modes, and f =f0 + δf describes the particle distribution in the presence of the modes. The Hamiltonian is written as H =H0 +H1 with H0 giving the unperturbed motion, conserving particle energy E, toroidal canonical momentum Pζ, and magnetic moment μ. By writing the initial particle distribution in terms of these variables, a simple means of calculating mode-particle energy and momentum transfer results, giving a very accurate δf formalism.

  17. Characteristics of Short Wavelength Compressional Alfven Eigenmodes

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E D; Podesta, M; Bortolon, A; Crocker, N A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M

    2012-12-19

    Most Alfvenic activity in the frequency range between Toroidal Alfven Eigenmodes and roughly one half of the ion cyclotron frequency on NSTX [M. Ono, et al., Nucl. Fusion 40 (2000) 557], that is, approximately 0.3 MHz up to ≈ 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n=1 kink-like mode. In this paper we present measurements of the spectrum of these high frequency CAE (hfCAE), and their mode structure. We compare those measurements to a simple model of CAE and present evidence of a curious non-linear coupling of the hfCAE and the low frequency kink-like mode.

  18. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  19. Application Research on Nondestructive Testing Technology for Quality of Anchor Based on Elastic Wave Reflection Method

    Science.gov (United States)

    Xiao, G.; Zhou, L.

    2014-12-01

    Anchor technology has been widely used to reinforce slopes, underground caverns, deep excavations and the foundation of dams. It has attracted more and more attention of research worldwide on how to find a comfortable method to test the quality of anchoring systems. According to the characteristics of anchor systems, we set up the kinetic equations and mathematical models, then solved the models using ANSYS / LS-DYNA program. We found that the simulated mathematical models perfectly match the experimental data. By changing one of the parameters or the input conditions in the model, we were able to understand the characteristic response of excitation energy, excitation length, structural defects, rock quality, and different data acquisition methods. For short anchor systems (grouting density. The obtained values were consistent with the actual experimental data. We also demonstrated that the kinetic energy of the collected waves from the bottom of the anchor had very close relationship with the grouting density and the position of the structural defects. For long anchors (> 60 m), mostly cable anchors, since little research could be followed, we started our research from designing the instrument, writing the program for data acquisition and analysis. We designed and developed novel sensors and preamplifiers. We used vertical stack technology to effectively enhance the weak signals from the deeper interfaces. In data processing, in addition to the traditional filter method, we also explored the current technology of signal processing such as true amplitude recovery and deconvolution, which enabled us to obtain improved signal to noise ratio and sensing precision. Through the above mentioned systematical studies, we developed a reliable nondestructive test method for both short and long anchors based on elastic wave reflection. This research is funded by National Natural Science Foundation of China (Grant No. 41202223)

  20. Star of Lima - Overview and optical diagnostics of a barium Alfven critical velocity experiment

    Science.gov (United States)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.

    1986-01-01

    The Alfven critical velocity mechanism for ionization of a neutral gas streaming across the magnetic field has been demonstrated in laboratory experiments. In March 1983, two rocket-borne experiments with Ba and Sr tested the effect in the wall-less laboratory of space from Punto Lobos, Peru, near 430 km altitude. 'Star of Lima' used a conical Ba shaped charge aimed at an instrument payload about 2 km away. Because of rocket overperformance the detonation occurred in partial sunlight, so that less than 21.6 percent of the ionizing UV was present. Particle and field measurements indicate the production of hot electrons and waves in the energy and frequency range that are respectively predicted to produce a cascade of ionization by the Alfven mechanism. However, the ionization fluxes and wave energy density did not reach cascade levels, and optical observations indicate that only 2.5 to 5 x 10 to the 20th Ba ions were produced. A substantial portion and perhaps all of the ionization could have been produced by solar UV. The failure of the Alfven process in this experiment is not well understood.

  1. Reflection Coefficients.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1994-01-01

    Discusses and provides an example of reflectivity approximation to determine whether reflection will occur. Provides a method to show thin-film interference on a projection screen. Also applies the reflectivity concepts to electromagnetic wave systems. (MVL)

  2. Electromagnetic internal gravity waves in the Earth's ionospheric E-layer

    International Nuclear Information System (INIS)

    In the Earth's ionospheric E-layer existence of the new waves connecting with the electromagnetic nature of internal gravity waves is shown. They represent the mixture of the ordinary internal gravity waves and the new type of dispersive Alfven waves. -- Highlights: ► Existence of electromagnetic internal gravity waves in the ionospheric E-layer is shown. ► Electromagnetic nature of internal gravity waves is described. ► Appearance of the new dispersive Alfven waves is shown.

  3. Observation of reflected waves on the SABRE positive polarity inductive adder MITL

    International Nuclear Information System (INIS)

    We are studying the coupling of extraction applied-B ion diodes to Magnetically Insulated Transmission Line (MITLs) on the SABRE (Sandia Accelerator and Beam Research Experiment, 6 MV, 300 kA) positive polarity inductive voltage adder. Our goal is to determine conditions under which efficient coupling occurs. The best total power efficiency for an ideal ion diode load (i.e., without parasitic losses) is obtained by maximizing the product of cathode current and gap voltage. MITLs require that the load impedance be undermatched to the self-limited line operating impedance for efficient transfer of power to ion diodes, independent of transit time isolation, and even in the case of multiple cathode system with significant vacuum electron flow. We observe that this undermatched condition results in a reflected wave which decreases the line voltage and gap electron sheath current, and increases the anode and cathode current in a time-dependent way. The MITL diode coupling is determined by the flow impedance at the adder exit. We also show that the flow impedance increases along the extension MITL on SABRE. Experimental measurements of current and peak voltage are compared to analytical models and TWOQUICK 2.5-D PIC code simulations

  4. FDTD Analysis of Reflection of Electromagnetic Wave From a Conductive Plane Covered with Inhomogeneous Time-Varying Plasma

    Institute of Scientific and Technical Information of China (English)

    刘少斌; 莫锦军; 袁乃昌

    2003-01-01

    A finite-difference time-domain (FDTD) algorithm is applied to study the electro-magnetic reflection of conduction plane covered with inhomogeneous time-varying plasma, homo-geneous plasma and inhomogeneous plasma. The collision frequency of plasma is a function ofelectron density and plasma temperature. The number density profile follows a parabolic func-tion. A discussion on the effect of various plasma parameters on the reflection coefficient is pre-sented. Under the one-dimensional case, transient electromagnetic propagation through variousplasmas has been obtained, and the reflection coefficients of EM wave through various plasmasare calculated under different conditions. The results illustrate that a plasma cloaking system cansuccessfully absorb the incident EM wave.

  5. Particle simulation of energetic particle driven Alfven modes in NBI heated DIII-D experiments

    International Nuclear Information System (INIS)

    The mutual nonlinear interactions of shear Alfven modes and alpha particles can enhance their transport in burning plasmas. Theoretical and numerical works have shown that rapid transport of energetic ions can take place because of fast growing Alfven modes (e.g. energetic particle driven modes, EPMs). This kind of transport has been observed in experiments as well as in numerical simulations. Hybrid MHD-gyrokinetic codes can investigate linear and nonlinear dynamics of energetic particle (EP) driven modes, retaining the mutual interaction between waves and EPs self-consistently. Self-consistent nonlinear wave-particle interactions (both in configuration and velocity space) are crucial for a correct description of the mode dynamics in the case of strongly driven modes; thus, a non-perturbative approach is mandatory. The knowledge of the threshold characterizing the transition from weakly to strongly driven regimes is of primary importance for burning plasma operations (e.g. for ITER), in order to avoid EPM enhanced EP transport regimes. The hybrid MHD-gyrokinetic code (HMGC) has been applied to the interpretation of phenomena observed in present experiments with neutral beam (NB) heating. In reversed-shear beam-heated DIII-D discharges, a large discrepancy between the expected and measured EP radial density profiles has been observed in the presence of large Alfvenic activity. HMGC simulations with EP radial profiles expected from classical NB deposition as input give rise to strong EPM activity, resulting in relaxed EP radial profiles at saturation level close to experimental measurements. The frequency spectra obtained from several simulations with different toroidal mode numbers, as calculated during the saturated phase when the strong EPMs transform in weak reversed-shear Alfven modes, are quite close to experimental observations both in absolute frequency and in radial localization. In this work, we discuss in particular the effects of nonlinear coupling

  6. Investigation on empowering one direction emission of guided waves to avoid undesired reflections from other pipe attachments

    Science.gov (United States)

    Tse, Peter W.; Zhou, Fang

    2016-02-01

    An in-service pipe always contains elbows and joints at the ends of the pipe. Since the emitted guided waves from a transducer array is bi-directional, any attachments located at both ends of the pipe will cause reflections. For building pipes that are partially covered by wall, the transducer array must be installed near one end of the pipe. If there is elbow or joint connected to that end of the pipe, high reflections generated from the elbow or joint are inevitable. Such reflections may interfere the detection of reflections caused by true defect exists along the pipe body. Hence, to minimize such undesired interference, one must employs some smart devices or algorithms so that it can reduce the emission of guided wave from one direction but enhance the emission from the other direction. To achieve such purpose, two identical transducer arrays must be installed on the same pipe but with a smartly and specially calculated distance apart from the mounting locations of these two arrays. The distance is to ensure there is a proper time delay for emitting the second array after the emission of the first array. The designed processes are listed as follow. Firstly, two identical transducer arrays that could emit L(0,1) guided waves were mounted on a pipe with a specific distance apart from their mounting locations. The distance was determined after calculating the necessary time delay. Secondly, the guided waves generated from the two arrays are combined together to create the desired superimposing effect. With the help of simulation and finite element analysis, such single direction guided wave was successfully generated and tested. By accurately adjusted the time delay, results showed that it is possible to minimize the emitted guided waves in one direction and then empower the guided waves in another direction. Hence, the reflections generated from elbows and joints at one end of the pipe has been minimized, whilst, the emission of guided wave in the other direction

  7. Hydromagnetic waves and cosmic ray diffusion theory

    Science.gov (United States)

    Lee, M. A.; Voelk, H. J.

    1975-01-01

    Pitch angle diffusion of cosmic rays in hydromagnetic wave fields is considered strictly within the quasilinear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since in this approximation also the Landau resonance does not lead to particle reflections a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well known difficulties of quasilinear scattering theory for cosmic rays near 90 degrees pitch angle.

  8. Reflection Of Propagating Slow Magneto-acoustic Waves In Hot Coronal Loops : Multi-instrument Observations and Numerical Modelling

    CERN Document Server

    Mandal, Sudip; Fang, Xia; Banerjee, Dipankar; Pant, Vaibhav; Van Doorsselaere, Tom

    2016-01-01

    Slow MHD waves are important tools for understanding the coronal structures and dynamics. In this paper, we report a number of observations, from X-Ray Telescope (XRT) on board HINODE and SDO/AIA of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and the temperature of the loop plasma by performing DEM analysis on the AIA image sequence. The estimated speed of propagation is comparable or lower than the local sound speed suggesting it to be a propagating slow wave. The intensity perturbation amplitudes, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observati...

  9. Black Tea Lowers Blood Pressure and Wave Reflections in Fasted and Postprandial Conditions in Hypertensive Patients: A Randomised Study

    Directory of Open Access Journals (Sweden)

    Davide Grassi

    2015-02-01

    Full Text Available Hypertension and arterial stiffening are independent predictors of cardiovascular mortality. Flavonoids may exert some vascular protection. We investigated the effects of black tea on blood pressure (BP and wave reflections before and after fat load in hypertensives. According to a randomized, double-blind, controlled, cross-over design, 19 patients were assigned to consume black tea (129 mg flavonoids or placebo twice a day for eight days (13 day wash-out period. Digital volume pulse and BP were measured before and 1, 2, 3 and 4 h after tea consumption. Measurements were performed in a fasted state and after a fat load. Compared to placebo, reflection index and stiffness index decreased after tea consumption (p < 0.0001. Fat challenge increased wave reflection, which was counteracted by tea consumption (p < 0.0001. Black tea decreased systolic and diastolic BP (−3.2 mmHg, p < 0.005 and −2.6 mmHg, p < 0.0001; respectively and prevented BP increase after a fat load (p < 0.0001. Black tea consumption lowers wave reflections and BP in the fasting state, and during the challenging haemodynamic conditions after a fat load in hypertensives. Considering lipemia-induced impairment of arterial function may occur frequently during the day, our findings suggest regular consumption of black tea may be relevant for cardiovascular protection.

  10. Formation and disruption of Alfvenic filaments in Hall magnetohydrodynamics

    International Nuclear Information System (INIS)

    In magnetohydrodynamics with Hall effect (Hall-MHD), weakly nonlinear quasimonochromatic dispersive Alfven waves propagating along an ambient magnetic field can develop to transverse instabilities leading to the formation of intense magnetic filaments. This phenomenon, described as a transverse collapse within the asymptotic approach provided by the nonlinear Schroedinger equation for the pump envelope, was also reproduced by spectral direct numerical simulations of the Hall-MHD system. We address here the dynamics at longer times, using a finite difference scheme with adaptive mesh refinement to reproduce a strong filamentation regime, supplemented by a shock capturing scheme in the final phase of the simulations. We observe a strong distortion of the early time cylindrical filaments, associated with flattening and twisting of the structures and the transition from nonlinear waves to a hydrodynamic regime, characterized by intense current sheets and a strong acceleration of the plasma. A configuration where the intensity of the magnetic filaments saturates while the velocity field is still growing is also identified in the spectral simulation of a regime with moderate scale separation

  11. Oxygen Ion Heat Rate within Alfvenic Turbulence in the Cusp

    Science.gov (United States)

    Coffey, Victoria N.; Singh, Nagendra; Chandler, Michael O.

    2009-01-01

    The role that the cleft/cusp has in ionosphere-magnetosphere coupling makes it a dynamic and important region. It is directly exposed to the solar wind, making it possible for the entry of electromagnetic energy and precipitating electrons and ions from dayside reconnection and other dayside events. It is also a significant source of ionospheric plasma, contributing largely to the mass loading of the magnetosphere with large fluxes of outflowing ions. Crossing the cusp/cleft near 5100 km, the Polar instruments observe the common correlation of downward Poynting flux, ion energization, soft electron precipitation, broadband extremely low-frequency (BB-ELF) emissions, and density depletions. The dominant power in the BB-ELF emissions is now identified to be from spatially broad, low frequency Alfv nic structures. For a cusp crossing, we determine using the Electric Field Investigation (EFI), that the electric and magnetic field fluctuations are Alfv nic and the electric field gradients satisfy the inequality for stochastic acceleration. With all the Polar 1996 horizontal crossings of the cusp, we determine the O+ heating rate using the Thermal Ion Dynamics Experiment (TIDE) and Plasma Wave Investigation (PWI). We then compare this heating rate to other heating rates assuming the electric field gradient criteria exceeds the limit for stochastic acceleration for the remaining crossings. The comparison suggests that a stochastic acceleration mechanism is operational and the heating is controlled by the transverse spatial scale of the Alfvenic waves.

  12. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    International Nuclear Information System (INIS)

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  13. Reflection and refraction of (magneto-)acoustic waves at the magnetic canopy: further evidences from multi-height seismic data

    CERN Document Server

    Rajaguru, S P; Hayashi, K; Couvidat, S

    2013-01-01

    We recently presented evidences (Rajaguru et al. 2012) that seismic halos around expanding magnetic structures in the lower solar atmosphere are related to the acoustic to magnetoacoustic wave conversions, using multi-height data from Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) (1700 and 1600 \\AA channels) onboard Solar Dynamics Observatory (SDO). Using the same data, we here present and discuss further evidences through analyses of maps of phase-shifts between observables from different heights and their correspondence with oscillation power. The phase shift maps provide more direct signatures of reflection and refraction of (magneto-)acoustic wave modes.

  14. Crystals with an Open Wave-Vector Surface: Peculiarities of Reflection and Possibilities of Designing Flat Lenses

    International Nuclear Information System (INIS)

    The frequency dependence of the reflection coefficient of MgF2 crystal in the frequency range of 200-800 cm-1 at different orientations of the optical axis has been investigated. The experimental data are compared with the calculation results. This comparison confirms that the wave vectors for the extraordinary wave have an open surface. This makes it possible to focus a divergent beam refracted at a flat boundary ori- ented perpendicularly to the optical crystal axis. The focusing effect of a plane-parallel MgF2 crystal plate is calculated.

  15. A study of Alfven's ionizing critical velocity

    International Nuclear Information System (INIS)

    Alfven's hypothesis of the ionizing critical velocity is investigated on the basis of observations with rotating plasma devices. The experimental fact is that the relative velocity between a neutral gas and a plasma perpendicular to a magnetic field does not exceed a critical velocity vc = √2eVi/m (eVi and m, the ionization energy and the atomic or molecular mass of the gas, respectively). It is interpreted from the standpoint of a current which generates in a process of plasma polarization. A final interpretation on the hypothesis is not given, but the structure and elementary process of the ionizing interaction is clarified. (author)

  16. Continuum damping of ideal toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    A perturbation theory based on the two dimensional (2D) ballooning transform is systematically developed for ideal toroidal Alfven eigenmodes (TAEs). A formula, similar to the Fermi golden rule for decaying systems in quantum mechanics, is derived for the continuum damping rate of the TAE; the decay (damping) rate is expressed explicitly in terms of the coupling of the TAE to the continuum spectrum. Numerical results are compared with previous calculations. It is found that in some narrow intervals of the parameter mε the damping rate varies very rapidly. These regions correspond precisely to the root missing intervals of the numerical solution by Rosenbluth et al

  17. 振荡管复合阻尼陷波%ELIMINATION OF REFLECT SHOCK WAVE IN OSCILLATORY TUBE

    Institute of Scientific and Technical Information of China (English)

    李学来; 朱彻

    2001-01-01

    A new concept,compound damp drip for absorbing shock wave in oscillatory tube,is developed in the present paper.The main idea of the concept is that the shock wave absorber must has the two functions,that is,it can not only exhaust the energy of the incident shock wave fully but also transfer the energy out promptly.In the experiment,the compound damp drip is structured with a multi-orifice for intensifying the energy dissipation of the shock wave and an internal cooling system for strengthening the heat transfer.The experimental results show that a strong reflect shock wave,whose strength is 66%of the incident shock wave ,is measured at the position of the relative tube length x/L=0.3 when the oscillatory tube without the compound damp drip.But,after the compound damp drip is amounted at the closed end of the tube,the reflect shock wave is eliminated effectively and the refrigerating efficiency η is increased by 4?%~10?% in case of the L/d ratio is 140 and the expansion ratio ε is changed from 2.0 to 6.0.What is more ,the refrigerating efficiency in case of L/d=140 and the tube is mounted with the compound damp drip is still higher by 2?%~6?% than that the tube without damp drip but L/d=300.The above result means that while the damp drip is used,the refrigerating efficiency can be increased and the size of the refrigerator can be decreased significantly.

  18. Excitation and conversion of electromagnetic waves in pulsar magnetospheres

    OpenAIRE

    Gogoberidze, G.; Machabeli, G. Z.; V. V. Usov

    2007-01-01

    We demonstrate that nonlinear decay of obliquely propagating Langmuir waves into Langmuir and Alfven waves (L --> L'+A) is possible in a one-dimensional, highly relativistic, streaming, pair plasma. Such a plasma may be in the magnetospheres of pulsars. It is shown that the characteristic frequency of generated Alfven waves is much less than the frequency of Langmuir waves and may be consistent with the observational data on the radio emission of pulsars.

  19. Bi-Directional Energy Cascades and the Origin of Kinetic Alfv\\'enic and Whistler Turbulence in the Solar Wind

    CERN Document Server

    Che, H; Viñas, A F

    2013-01-01

    The observed sub-proton scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quite-time suggest them as possible source of free energy to drive the turbulence. Using particle-in-cell simulations, we explore how free energy in energetic electrons, released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfv\\'enic and whistler waves are excited that evolve through inverse and forward magnetic energy cascades.

  20. 转换波AVO反演速度比各横波反射系数%Converted wave AVO inversion for average velocity ratio and shear wave reflection coefficient

    Institute of Scientific and Technical Information of China (English)

    魏修成; 陈天胜; 季玉新

    2008-01-01

    Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the relations between the extrema position and amplitude, average velocity ratio across the interface, and shear wave reflection coefficient are derived. The extrema position is a monotonically decreasing function of average velocity ratio, and the extrema amplitude is a function of average velocity ratio and shear wave reflection coefficient. For theoretical models, the average velocity ratio and shear wave reflection coefficient are inverted from the extrema position and amplitude obtained from fitting a power function to converted wave AVO curves. Shear wave reflection coefficient sections have clearer physical meaning than conventional converted wave stacked sections and establish the theoretical foundation for geological structural interpretation and event correlation. 'The method of inverting average velocity ratio and shear wave reflection coefficient from the extrema position and amplitude obtained from fitting a power function is applied to real CCP gathers. The inverted average velocity ratios are consistent with those computed from compressional and shear wave well logs.

  1. Effect of pump wave reflections on the excitation of a dual-wavelength vertical-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    The effect of pump wave reflections on the carrier generation rate and uniformity of carrier population in quantum wells (QWs) of a dual-wavelength vertical-cavity surface-emitting laser has been numerically analyzed. The laser's active region has been described within a mathematical model allowing any number of QWs and arbitrary distribution of carrier generation rate. It is shown that the optimal arrangement of blocking layers in the active region of a dual-wavelength vertical-cavity surface-emitting laser allows one to obtain a very uniform QW population. It is established that pump wave reflections significantly affect the local carrier generation rate and, therefore, the distribution of excited carriers in the laser structure.

  2. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    Energy Technology Data Exchange (ETDEWEB)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Yuldashev, P.; Khokhlova, V. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Ollivier, S.; Blanc-Benon, Ph. [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France)

    2015-10-28

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime.

  3. The research progress on lateral shift of reflected electromagnetic wave at the interface of two conductive media

    Institute of Scientific and Technical Information of China (English)

    LIU FuPing; WANG AnLing; CHEN Qiang; LI RuiZhong; CHEN HuiGuo; YANG ChangChun

    2008-01-01

    In this paper the research status of lateral shift of reflected electromagnetic wave at the interface of conductive media was reviewed, the lateral shift and the lateral delay were analyzed, and the charac-teristic of lateral shift curves varying with the angle of incidence was introduced in detail. For electro-magnetic wave logging, the error correction method of lateral shift was stressed in this paper, the magnitude of measured errors caused by the lateral shift was established. It is noticed that the longer wavelength, the larger error of measured results. With respect to the effect of lateral shift, the problem which still needs to be settled in the measurement of electromagnetic wave, as well as prospects on the further research and applications of lateral shift are described.

  4. Non-resonant nonlinear coupling of magnetohydrodynamic waves in inhomogeneous media

    CERN Document Server

    Nakariakov, V M; Arber, T D

    2001-01-01

    A new mechanism for the enhanced generation of compressible fluctuations by Alfven waves is presented. A strongly nonlinear regime of Alfven wave phase-mixing is numerically simulated in a one-dimensionally inhomogeneous plasma of finite temperature. It is found that the inhomogeneity of the medium determines the efficiency of nonlinear excitation of magnetoacoustic waves. The level of the compressible fluctuations is found to be higher (up to the factor of two) in inhomogeneous regions. The amplitude of the generated magnetoacoustic wave can reach up to 30% of the source Alfven wave amplitude, and this value is practically independent of the Alfven wave amplitude and the steepness of Alfven speed profile. The highest amplitudes of compressible disturbances are reached in plasmas with beta of about 0.5. The further growth of the amplitude of compressible fluctuations is depressed by saturation.

  5. Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics

    Science.gov (United States)

    Petronio, Lorenzo; Boaga, Jacopo; Cassiani, Giorgio

    2016-05-01

    The mechanisms of the disastrous Vajont rockslide (North-Eastern Italy, October 9, 1963) have been studied in great detail over the past five decades. Nevertheless, the reconstruction of the rockslide dynamics still presents several uncertainties, including those related to the accurate estimation of the actual landslide mass. This work presents the results of a geophysical characterization of the Vajont landslide body in terms of material properties and buried geometry. Both aspects add new information to the existing dataset and will help a better understanding of the rockslide failure mechanisms and dynamics. In addition, some general considerations concerning the intricacies of landslide characterization can be drawn, with due attention to potential pitfalls. The employed techniques are: (i) high resolution P-wave reflection, (ii) high resolution SH-wave reflection, (iii) controlled source surface wave analysis. We adopted as a seismic source a vibrator both for P waves and SH waves, using vertical and horizontal geophones respectively. For the surface wave seismic survey we used a heavy drop-weight source and low frequency receivers. Despite the high noise level caused by the fractured conditions of the large rock body, a common situation in landslide studies, we managed to achieve a satisfying imaging quality of the landslide structure thanks to the large number of active channels, the short receiver interval and the test of appropriate seismic sources. The joint use of different seismic techniques help focus the investigation on the rock mass mechanical properties. Results are in good agreement with the available borehole data, the geological sections and the mechanical properties of the rockmass estimated by other studies. In general the proposed approach is likely to be applicable successfully to similar situations where scattering and other noise sources are a typical bottleneck to geophysical data acquisition on landslide bodies.

  6. Interpretation of the distortion of ground-penetrating radar propagated and reflected waves - development of a multi-frequency tomography

    International Nuclear Information System (INIS)

    Within the framework of research for waste disposal in deep geological formations, the French agency for nuclear waste management (ANDRA) has to dispose of non-destructive investigation methods to characterize the medium. Ground penetrating radar (GPR) could be used for this purpose in the case of granitic sites. The work presented here deals with this geophysical method. The classical interpretation of GPR data consists in the localization of geological discontinuities by signal amplitude or arrival time analysis. The main objective of our studies is the interpretation of the radar wave distortion (due to propagation and reflection phenomena), not only to localize discontinuities but also to contribute to their identification. Three preliminary studies have been carried out in order to understand on the one hand, the complexity of the electromagnetic phenomena in the geological medium at radar frequency, and on the other hand, the radar equipment constraints. First, the dispersion and the attenuation characterized by a Q variable factor of the GPR waves are shown with the support of dielectric laboratory measurements. A model, which only requires three parameters, is proposed in order to describe this behavior. Second, the radiation patterns of borehole radar antenna are studied. We show that the amplitude and frequency content of the emitted signal are variable versus the emission angle. An analytical method is proposed to study these phenomena. Finally, instrumental drifts of GPR equipment are studied. Emission time, sampling frequency and amplitude fluctuations are described. These elements are taken into account for the processing of propagated signals by tomographic inversion. Medium anisotropy and borehole trajectory errors are inserted in algorithms in order to cancel artifacts which compromised the previous interpretation. A pre-processing method, based on wave separation algorithm, is applied on data in order to increase tomogram resolution. A new

  7. Simulations of direct and reflected waves trajectories for in situ GNSS-R experiments

    OpenAIRE

    N. Roussel; F. Frappart; Ramillien, G; Desjardins, C; GEGOUT, P; F. Pérosanz; Biancale, R.

    2014-01-01

    The detection of Global Navigation Satellite System (GNSS) signals that are reflected off the surface, together with the reception of direct GNSS signals offers a unique opportunity to monitor water level variations over land and ocean. The time delay between the reception of the direct and the reflected signal gives access to the altitude of the receiver over the reflecting surface. The field of view of the receiver is highly dependent on both the orbits of the ...

  8. Propagation and mode conversion for waves in nonuniform plasmas

    International Nuclear Information System (INIS)

    The following topics are described: (1) the hybrid resonance, (2) Alfven resonance, (3) the intermediate-frequency electromagnetic wave equation, (4) the standard equation, (5) the tunneling equation, (6) asymptotic solutions of the tunneling equation, (7) localized absorption, and (8) matched asymptotic expansions; the low-frequency Alfven resonance

  9. Predictions and observations of low-shear beta-induced shear Alfven-acoustic eigenmodes in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N.N. [Princeton Plasma Physics Laboratory, Princeton University (United States)], E-mail: ngorelen@pppl.gov; Berk, H.L. [IFS, Austin, Texas (United States); Fredrickson, E. [Princeton Plasma Physics Laboratory, Princeton University (United States); Sharapov, S.E. [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United States)

    2007-10-08

    New global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfven-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high-beta >20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfven coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.

  10. Numerical analysis of Alfven and acoustic eigen modes in toroidal plasmas

    International Nuclear Information System (INIS)

    Full text: Recently various kinds of low-frequency eigen modes have been experimentally observed in toroidal plasmas. Excitation of a set of Alfven eigen modes in a reversed-magnetic-shear configuration has been identified as reversed shear induced Alfven eigen modes (RSAE). Density fluctuations in a tens kHz range are believed to be geodesic acoustic modes (GAM). In order to systematically identify the low-frequency modes and study the mode structure, we have updated the full wave code TASK/WM and applied to the low-frequency modes. The TASK/WM codes solves three-dimensional Maxwell's equation for a wave electric field with a complex frequency and the eigen mode frequency is obtained by maximizing the wave electric field amplitude for given source current density proportional to the electron density. The new version of the TASK/WM code uses the finite element method and calculates the electromagnetic field in a local orthogonal coordinates to achieve higher accuracy compared with the old version. The gyro kinetic dielectric tensor for a plasma with spatial inhomogeneity was also implemented with the finite gyro radius effects, while previous analyses used the full kinetic dielectric tensor in a uniform plasma for electrons and bulk ions. The new version can describe low-frequency mode in the range of drift frequencies. First the new code was applied to the Alfven eigen modes in monotonic and reversed magnetic shear configuration of tokamak plasmas and the results were compared with those of the older version. Next mode structures of the eigen modes and destabilization by energetic ions were studied in tokamak and helical plasmas. The analysis of acoustic modes including GAM is under way and the result will be reported. (author)

  11. Novel physics involved in interpretation of Alfvenic activity accompanied by thermal crashes in W7-AS

    International Nuclear Information System (INIS)

    Alfven instabilities driven by fast ions have been observed in many experiments on tokamaks and stellarators. In tokamaks, they can strongly affect the fast ion confinement but not the bulk plasma. In contrast to this, experiments on the Wendelstein 7-AS (W7-AS) stellarator have shown that Alfvenic activity can strongly deteriorate the global energy confinement time: strong thermal crashes (the temperature dropped by up to 30%) were reported in Ref. [1] and observed also in the last series of experiments in 2002. To explain this phenomenon, recently a new mechanism of anomalous electron heat conductivity associated with Kinetic Alfven Waves (KAW) was suggested. In this work, we further develop theory required for the interpretation of experimental observations of Alfvenic activity in W7-AS and analyse a particular shot (No. 34723) where strong drops of the plasma energy content took place in details. As a result, (i) we identified the instability observed in the mentioned W7-AS shot as Non- conventional Global Alfven Eigenmode (NGAE), (ii) suggested an explanation of the frequency chirping (from ∼70 kHz to ∼45 kHz) during the instability bursts, (iii) showed why the instability was most strong at the end of the bursts when thermal crashes occurred, (iv) considered two possible mechanisms of thermal crashes (anomalous heat conductivity and instability-induced-loss of the injected ions), (v) made a modelling of oscillations of the plasma energy content. An important role of the finite orbit width of fast ions was revealed: it was found that finite orbits actually trigger the instability at ω≤ 70 kHz and weaken the mode destabilization at the end of the instability bursts (when ω≥ 40 kHz). It was concluded that the observed frequency chirping can be explained by the expulsion of fast ions from the plasma core and a concomitant local change of the rotational transform. In order to identify the instability, the Alfven continuum and Alfven eigenmodes were

  12. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part II: Pacific and Atlantic Oceans

    OpenAIRE

    Soares, J.; I. Wainer; N. C. Wells

    1999-01-01

    The effect of viscosity, non linearities, incident wave period and realistic eastern coastline geometry on energy fluxes are investigated using a shallow water model with a spatial resolution of 1/4 degree in both meridional and zonal directions. Equatorial and mid-latitude responses are considered. It is found that (1) the influence of the coastline geometry and the incident wave period is more important for the westward energy flux than for the poleward flux, and (2) the effect of the incli...

  13. Particle energization and current sheets in Alfvenic plasma turbulence

    Science.gov (United States)

    Makwana, Kirit; Li, Hui; Guo, Fan; Daughton, William; Cattaneo, Fausto

    2015-11-01

    Plasma turbulence is driven by injecting energy at large scales through stirring or instabilities. This energy cascades forward to smaller scales by nonlinear interactions, described by magnetohydrodynamics (MHD) at scales larger than the ion gyroradius. At smaller scales, the fluid description of MHD breaks down and kinetic mechanisms convert turbulent energy into particle energy. We investigate this entire process by simulating the cascade of strongly interacting Alfven waves using MHD and particle-in-cell (PIC) simulations. The plasma beta is varied and particle heating is analyzed. Anisotropic heating of particles is observed. We calculate the fraction of injected energy converted into non-thermal energy. At low beta we obtain a significant non-thermal component to the particle energy distribution function. We investigate the mechanisms behind this acceleration. The velocity distribution function is correlated with the sites of turbulent current sheets. The different dissipative terms due to curvature drift, gradB drift, polarization drifts, and parallel current density are also calculated. This has applications for understanding particle energization in turbulent space plasmas.

  14. Alfvenic fluctuations in the solar wind observed by Ulysses

    Science.gov (United States)

    Smith, E. J.; Neugebauer, M; Tsurutani, B. T.; Balogh, A.; McComas, D. J.

    1995-01-01

    One of the striking results of the Sun's south polar pass by Ulysses was the discovery of large amplitude, long period Alfvenic fluctuations that were continuously present in the solar wind flow from the polar coronal hole. The fluctuations dominate the variances and power spectra at periods greater than or equal to 1 hour and are evident as correlated fluctuations in the magnetic field and solar wind velocity components. Various properties of the fluctuations in the magnetic field, in the velocity, and in the electric field have been established. The waves appear to have important implications for galactic cosmic rays and for the solar wind, topics which have continued to be investigated. Their origin is also under study, specifically whether or not they represent motions of the ends of the field lines at the Sun. The resolution of these issues has benefited from the more recent observations as the spacecraft traveled northward toward the ecliptic and passed into the northern solar hemisphere. All these observations will be presented and their implications will be discussed.

  15. Observations of internal solitary wave reflection at a step-like submarine bank and strong oblique interaction at Race Point Channel, (Cape Cod).

    Science.gov (United States)

    da Silva, Jose C. B.; Grimshaw, Roger H. J.; Magalhaes, Jorge M.

    2010-05-01

    A recent study revealed that Race Point Channel (in Cape Cod, Massachusetts) is a hotspot of internal solitary wave generation. SAR images suggest that the waves are generated within the channel (which has a flat bottom) during the ebb phase of the tide (flowing offshore) and propagate upstream during the initial stages of their formation. Some of these waves propagate into Massachusetts Bay (further North) and interact with the well known Stellwagen Bank internal waves that are generated on the lee-side of the Bank. The southern flank of Stellwagen Bank has very sharp bathymetric gradients and can be considered as a vertical step. Here we discuss the results of analysis of 25 TerraSAR-X radar images (in very high spatial resolution, 3 meters) and a collection of ENVISAT/ERS tandem mission acquisitions (separated in time by approximately 30 minutes) that reveal details about internal wave reflection at the southern flank of Stellwagen Bank. The SAR data also show transmission of internal waves over the Bank and subsequent interaction with lee-waves generated at the eastern side of Stellwagen Bank. The radar backscatter profiles are compared with theory of the transformation of a weakly nonlinear interfacial solitary wave in a two-layer model over a step. The coefficients of wave reflection and transmission are calculated based on typical stratification of the region and assuming linear theory of long interfacial waves. In addition, collision of reflected waves from the Bank with internal waves generated at the Race Point channel (one tidal cycle after) has been occasionally observed. The radar backscatter profiles suggest that the total wave amplitude during the interaction is greater than that obtained by simply adding the individual solitary wave amplitudes, which is in agreement with the theory of obliquely interacting solitary waves at a near critical angle (150°). This may imply localized turbulent mixing as a result of internal solitary wave interaction at

  16. Measuring mass density and ultrasonic wave velocity: A wavelet-based method applied in ultrasonic reflection mode.

    Science.gov (United States)

    Metwally, Khaled; Lefevre, Emmanuelle; Baron, Cécile; Zheng, Rui; Pithioux, Martine; Lasaygues, Philippe

    2016-02-01

    When assessing ultrasonic measurements of material parameters, the signal processing is an important part of the inverse problem. Measurements of thickness, ultrasonic wave velocity and mass density are required for such assessments. This study investigates the feasibility and the robustness of a wavelet-based processing (WBP) method based on a Jaffard-Meyer algorithm for calculating these parameters simultaneously and independently, using one single ultrasonic signal in the reflection mode. The appropriate transmitted incident wave, correlated with the mathematical properties of the wavelet decomposition, was determined using a adapted identification procedure to build a mathematically equivalent model for the electro-acoustic system. The method was tested on three groups of samples (polyurethane resin, bone and wood) using one 1-MHz transducer. For thickness and velocity measurements, the WBP method gave a relative error lower than 1.5%. The relative errors in the mass density measurements ranged between 0.70% and 2.59%. Despite discrepancies between manufactured and biological samples, the results obtained on the three groups of samples using the WBP method in the reflection mode were remarkably consistent, indicating that it is a reliable and efficient means of simultaneously assessing the thickness and the velocity of the ultrasonic wave propagating in the medium, and the apparent mass density of material. PMID:26403278

  17. Evaluation stationariness of triaxial seismic while drilling and detection of reflected wave; Kosei kussaku ni tomonau danseiha no sanjiku kaiseki ni yoru hiteijo hyoka to hanshaha no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Asanuma, H.; Niitsuma, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-05-01

    This paper reports a method to detect reflected wave components contained in an elastic wave caused in association with well drilling. Measurement was made on an elastic wave caused in association with well drilling in an experimental field by using a triaxial elastic wave detector disposed in a measurement well. Analyzing the particle motion tracks in the derived elastic wave signals (to derive the main axial direction of a three-dimensional hologram) revealed that oscillation direction of the signals changes non-steadily by time centering around the S-wave oscillation direction. In addition, a sound source position was estimated during the drilling. Existence probability of the S-wave signal in the non-steady continuous signals was estimated by handling the particle motion tracks stochastically. In addition, this existence probability was used as a weighting function for a correlative analysis to detect a reflected wave from directly reaching wave components in the non-steady continuous signals. Thus, improvement in reliability of reflected wave detection was attempted. Effectiveness of this method was endorsed by the field data. 3 refs., 7 figs.

  18. Confinement relevant Alfven instabilities in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Bursting Alfvenic activity accompanied by strong thermal crashes and frequency chirping in a W7-AS shot is studied. A theory explaining the experimental observations is developed. A novel mechanism of anomalous electron thermal conductivity is found. In addition, a general consideration of the influence of the gap crossing on the Alfven continuum in stellarators is carried out and a phenomenon of gap annihilation is predicted. (author)

  19. Bow shock specularly reflected ions in the presence of low-frequency electromagnetic waves: a case study

    Directory of Open Access Journals (Sweden)

    K. Meziane

    2004-07-01

    Full Text Available An energetic ion (E≤40 event observed by the CLUSTER/CIS experiment upstream of the Earth's bow shock is studied in detail. The ion event is observed in association with quasi-monochromatic ULF MHD-like waves, which we show modulate the ion fluxes. According to three statistical bow shock position models, the Cluster spacecrafts are located at ~0.5 Re from the shock and the averaged bow shock θBn0 is about ~30°. The analysis of the three-dimensional angular distribution indicates that ions propagating roughly along the magnetic field direction are observed at the onset of the event. Later on, the angular distribution is gyrophase-bunched and the pitch-angle distribution is peaked at α0Bn0, consistent with the specular reflection production mechanism. The analysis of the waves shows that they are left-handed in the spacecraft frame of reference (right-handed in the solar wind frame and propagate roughly along the ambient magnetic field; we have found that they are in cyclotron-resonance with the field-aligned beam observed just upstream. Using properties of the waves and particles, we explain the observed particle flux-modulation in the context of θBn changes at the shock caused by the convected ULF waves. We have found that the high count rates coincide with particles leaving the shock when θBn angles are less than ~40°, consistent with the specular reflection hypothesis as the production mechanism of ions.

  20. Analytical determination of the reflection coefficient by the evanescent modes model during the wave-current-horizontal plate interaction

    Science.gov (United States)

    Errifaiy, Meriem; Naasse, Smail; Chahine, Chakib

    2016-07-01

    Our work presents an analytical study of the determination of the reflection coefficient during the interaction between the regular wave current and a horizontal plate. This study was done using the linearized potential flow theory with the evanescent modes model, while searching for complex solutions to the dispersion equation that are neither real pure nor imaginary pure. To validate the established model, it has been confronted with the experimental results of V. Rey and J. Touboul, in a first phase, and then compared to those of the numerical study by H.-X. Lin et al. Then, this model was used to study the effect of current on the reflection coefficient. xml:lang="fr"

  1. Relationship Between Alfvenic Fluctuations and Heavy Ion Heating in the Cusp at 1 Re

    Science.gov (United States)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra

    2008-01-01

    We look at the effect of heavy ion heating from their coupling with observed broadband (BB-ELF) emissions. These wave fluctuations are common to many regions of the ionosphere and magnetosphere and have been described as spatial turbulence of dispersive Alfven waves (DAW) with short perpendicular wavelengths. With Polar passing through the cusp at 1 Re in the Spring of 1996, we show the correlation of their wave power with mass-resolved O+ derived heating rates. This relationship lead to the study of the coupling of the thermal O+ ions and these bursty electric fields. We demonstrate the role of these measurements in the suggestion of DAW and stochastic ion heating and the observed density cavity characteristics.

  2. Assessment of autonomic nervous system by using empirical mode decomposition-based reflection wave analysis during non-stationary conditions

    International Nuclear Information System (INIS)

    Arterial blood pressure (ABP) is an important indicator of cardiovascular circulation and presents various intrinsic regulations. It has been found that the intrinsic characteristics of blood vessels can be assessed quantitatively by ABP analysis (called reflection wave analysis (RWA)), but conventional RWA is insufficient for assessment during non-stationary conditions, such as the Valsalva maneuver. Recently, a novel adaptive method called empirical mode decomposition (EMD) was proposed for non-stationary data analysis. This study proposed a RWA algorithm based on EMD (EMD-RWA). A total of 51 subjects participated in this study, including 39 healthy subjects and 12 patients with autonomic nervous system (ANS) dysfunction. The results showed that EMD-RWA provided a reliable estimation of reflection time in baseline and head-up tilt (HUT). Moreover, the estimated reflection time is able to assess the ANS function non-invasively, both in normal, healthy subjects and in the patients with ANS dysfunction. EMD-RWA provides a new approach for reflection time estimation in non-stationary conditions, and also helps with non-invasive ANS assessment. (paper)

  3. Statistical analysis of the reflectivity of ground clutter in the mm-wave band

    Science.gov (United States)

    Schimpf, H.

    Data from low-altitude airborne reflectivity measurements obtained at 95 and 35 GHz over different kinds of ground cover are compiled in tables and graphs and investigated statistically. The instrumentation for the flights is described; the reflectivity parameters are defined; and the statistical methods employed are explained. The fit of the observed frequency distributions to log-normal, log-Weibull, and Weibull distributions is assessed by applying a chi-squared test, and it is found that at low and moderate depression angles the clutter at both frequencies (and independent of polarization) from most ground-cover types is well represented by a log-normal distribution. At steep depression angles, however, no simple distribution can be determined. If the analysis is limited to the high reflectivities only (as in false-alarm-rate calculations), a log-Weibull distribution is shown to give superior results.

  4. Observations of wave run-up and groundwater seepage line motions on a reflective-to-intermediate, meso-tidal beach

    OpenAIRE

    VOUSDOUKAS MICHAIL

    2014-01-01

    Swash (SW) and ground water seepage line (GWSL) motions have been recorded at an exposed, meso-tidal, reflective-to-intermediate beach, using a coastal video monitoring system, during a 15-month period. The monitoring period allowed the collection of imagery under a wide variety of wave and beach-morphological conditions and SW and GWSL velocities were extracted on a wave-by-wave basis. The continuous, double-bounded Kumaraswamy (Kw) probability distribution is proposed to parameterize the SW...

  5. Transition of toroidal Alfven eigenmode to global Alfven eigenmode in CHS heliotron/torsatron plasmas heated by neutral beam injection

    International Nuclear Information System (INIS)

    A transition of a core localized type toroidal Alfven eigenmode with n 1 toroidal mode number to two n = 1 global Alfven eignemodes was observed in NBI-heated plasmas in the Compact Helical System (CHS) heliotron/torsatron. This transition phenomenon is interpreted based on the temporal evolution of the rotational transform near the plasma center caused by the increased in the beam-driven current. (author)

  6. Hydromagnetic waves and cosmic-ray diffusion theory

    Science.gov (United States)

    Lee, M. A.; Voelk, H. J.

    1975-01-01

    Pitch-angle (and energy) diffusion of cosmic rays in hydromagnetic wave fields is considered. The treatment remains strictly within the quasi-linear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch-angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since the Landau resonance in this approximation also does not lead to particle reflections, a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well-known difficulties of quasi-linear scattering theory for cosmic rays near 90 deg pitch angle.

  7. Numerical model of a stationary Alfven flow and magnetohydrodynamic flows close to it in coaxial canals in the presence of a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Stationary transonic super-Alfven, subsonic super-Alfven, supersonic sub-Alfven, and Alfven magnetohydrodynamic flows, obtained by numerical modeling of their build-up processes, in coaxial canals in the presence of longitudinal magnetic field have been considered

  8. Multi-spectral Metasurface for Different Functional Control of Reflection Waves

    OpenAIRE

    Cheng Huang; Wenbo Pan; Xiaoliang Ma; Xiangang Luo

    2016-01-01

    Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two dif...

  9. Semi-guided plane wave reflection by thin-film transitions for angled incidence

    OpenAIRE

    Çivitci, Fehmi; Hammer, Manfred; Hoekstra, Hugo J.W.M.

    2014-01-01

    The non-normal incidence of semi-guided plane waves on step-like or tapered transitions between thin film regions with different thicknesses, an early problem of integrated optics, is being reconsidered. As a step beyond the common effective index picture, we compare two approaches on how this problem can be tackled—at least approximately—by nowadays readily available simulation tools for integrated optics design. Accepting the scalar approximation, using an ansatz of harmonic field dependenc...

  10. Opposing Effects of Reflective and Nonreflective Planetary Wave Breaking on the NAO

    OpenAIRE

    Abatzoglou, John T.; Magnusdottir, Gudrun

    2006-01-01

    Planetary wave breaking (PWB) over the subtropical North Atlantic is observed over 45 winters (December 1958–March 2003) using NCEP–NCAR reanalysis data. PWB is manifested in the rapid, large-scale and irreversible overturning of potential vorticity (PV) contours on isentropic surfaces in the subtropical upper troposphere. As breaking occurs over the subtropical North Atlantic, an upper-tropospheric PV tripole anomaly forms with nodes over the subtropical, midlatitude, and subpolar North Atla...

  11. Transmission and reflection of acoustic and entropy waves through a stator-rotor stage

    Science.gov (United States)

    Bauerheim, Michael; Duran, Ignacio; Livebardon, Thomas; Wang, Gaofeng; Moreau, Stéphane; Poinsot, Thierry

    2016-07-01

    The propagation of acoustic, entropy and vorticity waves through turbine stages is of significant interest in the field of core noise. In particular, entropy spots have been shown to generate significant noise when accelerated through turbine stages: the so-called indirect combustion noise. Analytical models for the propagation of acoustic, vorticity and entropy waves through a stator vane, developed since the seventies, are generally based on restrictive assumptions such as low frequency waves. In order to analyze such assumptions, the theory of Cumpsty and Marble is extended to rotating rows and applied to a 2D stator-rotor turbine stage. The theoretical transfer functions are then compared with numerical predictions from forced compressible Large-Eddy Simulations of a 2D stator-rotor configuration, using a fluid-fluid coupling strategy with an overset-grid method. The comparisons between the analytical model and the simulations are in good agreement. To improve the analytical predictions, the attenuation due to the entropy spot deformation through the stator vane or the rotor blade is then included, modeled either analytically or extracted from the mean flow of the simulations. The complete analytical model reveals a good agreement with 2D simulations, which allows the prediction and minimization of both direct and indirect noise at the design-stage without computation.

  12. A hybrid non-reflective boundary technique for efficient simulation of guided waves using local interaction simulation approach

    Science.gov (United States)

    Zhang, Hui; Cesnik, Carlos E. S.

    2016-04-01

    Local interaction simulation approach (LISA) is a highly parallelizable numerical scheme for guided wave simulation in structural health monitoring (SHM). This paper addresses the issue of simulating wave propagation in unbounded domain through the implementation of non-reflective boundary (NRB) in LISA. In this study, two different categories of NRB, i.e., the non-reflective boundary condition (NRBC) and the absorbing boundary layer (ABL), have been investigated in the parallelized LISA scheme. For the implementation of NRBC, a set of general LISA equations considering the effect from boundary stress is obtained first. As a simple example, the Lysmer and Kuhlemeyer (L-K) model is applied here to demonstrate the easiness of NRBC implementation in LISA. As a representative of ABL implementation, the LISA scheme incorporating the absorbing layers with increasing damping (ALID) is also proposed, based on elasto-dynamic equations considering damping effect. Finally, an effective hybrid model combining L-K and ALID methods in LISA is developed, and guidelines for implementing the hybrid model is presented. Case studies on a three-dimensional plate model compares the performance of hybrid method to that of L-K and ALID acting independently. The simulation results demonstrate that best absorbing efficiency is achieved with the hybrid method.

  13. Electrical conductivity of the lowermost mantle explains absorption of core torsional waves at the equator

    CERN Document Server

    Schaeffer, Nathanaël

    2016-01-01

    Torsional Alfv{\\'e}n waves propagating in the Earth's core have been inferred by inversion techniques applied to geomagnetic models. They appear to propagate across the core but vanish at the equator, exchanging angular momentum between core and mantle. Assuming axial symmetry, we find that an electrically conducting layer at the bottom of the mantle can lead to total absorption of torsional waves that reach the equator. We show that the reflection coefficient depends on G Br , where Br is the strength of the radial magnetic field at the equator, and G the conductance of the lower mantle there. With Br = 7e-4 T., torsional waves are completely absorbed when they hit the equator if G = 1.3e8 S. For larger or smaller G, reflection occurs. As G is increased above this critical value, there is less attenuation and more angular momentum exchange. Our finding dissociates efficient core-mantle coupling from strong ohmic dissipation in the mantle.

  14. Neutrino induced vorticity, Alfven waves and the normal modes

    CERN Document Server

    Bhatt, Jitesh R

    2016-01-01

    We consider plasma consisting of electrons and ions in presence of a background neutrino gas and develop the magneto hydrodynamic equations for the system. We show that electron neutrino interaction can induce vorticity in the plasma even in the absence of any electromagnetic perturbations if the background neutrino density is left-right asymmetric. This induced vorticity support a new kind of mode which will vanish when the background neutrino asymmetry vanishes. The normal mode analysis of the equations is done to show that, in the presence of neutrino back-ground, the normal modes get modified and the corrections are proportional to the neutrino asymmetry parameter.

  15. Corotating light cylinders and Alfv\\'en waves

    OpenAIRE

    Gourgouliatos, K. N.; Lynden-Bell, D.

    2010-01-01

    Exact relativistic force free fields with cylindrical symmetry are explored. Such fields are generated in the interstellar gas via their connection to pulsar magnetospheres both inside and outside their light cylinders. The possibility of much enhanced interstellar fields wound on cylinders of Solar system dimensions is discussed but these are most likely unstable.

  16. Transmission, attenuation and reflection of shear waves in the human brain

    OpenAIRE

    Clayton, Erik H.; Guy M. Genin; Bayly, Philip V.

    2012-01-01

    Traumatic brain injuries (TBIs) are caused by acceleration of the skull or exposure to explosive blast, but the processes by which mechanical loads lead to neurological injury remain poorly understood. We adapted motion-sensitive magnetic resonance imaging methods to measure the motion of the human brain in vivo as the skull was exposed to harmonic pressure excitation (45, 60 and 80 Hz). We analysed displacement fields to quantify the transmission, attenuation and reflection of distortional (...

  17. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar

    International Nuclear Information System (INIS)

    Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO2 lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level. (c) 2000 Optical Society of America

  18. Pan-spectral observing system simulation experiments of shortwave reflectance and long-wave radiance for climate model evaluation

    Science.gov (United States)

    Feldman, D. R.; Collins, W. D.; Paige, J. L.

    2015-07-01

    Top-of-atmosphere (TOA) spectrally resolved shortwave reflectances and long-wave radiances describe the response of the Earth's surface and atmosphere to feedback processes and human-induced forcings. In order to evaluate proposed long-duration spectral measurements, we have projected 21st Century changes from the Community Climate System Model (CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and long-wave radiance spectra from 2000 to 200 cm-1 at 8 nm and 1 cm-1 resolution, respectively. The radiative transfer calculations have been rigorously validated against published standards and produce complementary signals describing the climate system forcings and feedbacks. Additional demonstration experiments were performed with the Model for Interdisciplinary Research on Climate (MIROC5) and Hadley Centre Global Environment Model version 2 Earth System (HadGEM2-ES) models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario. The calculations contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature gradients, and water vapour distributions. The goal of this effort is to understand both how climate change alters reflected solar and emitted infrared spectra of the Earth and determine whether spectral measurements enhance our detection and attribution of climate change. This effort also presents a path forward to understand the characteristics of hyperspectral observational records needed to confront models and inline instrument simulation. Such simulation will enable a diverse set of comparisons between model results from coupled model intercomparisons and existing and proposed satellite instrument measurement systems.

  19. Discrete compressional Alfven eigenmode spectrum in tokamaks

    International Nuclear Information System (INIS)

    The spectrum of Compressional Alfven Eigenmodes (CAE) is analyzed and shown to be discrete in tokamaks with low aspect ratio, such as the National Spherical Torus Experiment (NSTX), as well as in the conventional tokamaks, such as DIII-D. The study is focused on recent similarity experiments on NSTX and DIII-D in which sub-cyclotron frequency instabilities of CAEs were observed at similar plasma conditions [W.W. Heidbrink, et.al. Nuclear Fusion 46, 2006, in press]. The global ideal MHD code NOVA recovers the main properties of these modes predicted by theory and observed in both devices. The discrete spectrum of CAEs is characterized by three quantum mode numbers for each eigenmode, (M;S;n), where M, S, and n are poloidal, radial and toroidal mode numbers, respectively. The expected mode frequency splitting corresponding to each of these mode numbers seems to be observed in experiments and is consistent with our numerical analysis. The polarization of the observed magnetic field oscillations in NSTX was measured and is also consistent with the numerical analysis, which helps to identify them as CAE activity. CAE mode structure was obtained and shown to be localized in both radial and poloidal directions with typical radial localization toward the plasma edge and poloidal localization at the low field side of the plasma cross section. (author)

  20. Discrete compressional Alfven eigenmode spectrum in tokamaks

    International Nuclear Information System (INIS)

    The spectrum of compressional Alfven eigenmodes (CAE) is analysed and shown to be discrete in tokamaks with low aspect ratio, such as the National Spherical Torus Experiment (NSTX), as well as in conventional tokamaks, such as DIII-D. The study is focused on recent similarity experiments on NSTX and DIII-D in which sub-cyclotron frequency instabilities of CAEs were observed at similar plasma conditions (W.W. Heidbrink et al 2006 Nucl. Fusion 46 324). The global ideal MHD code NOVA recovers the main properties of these modes predicted by theory and observed in both devices. The discrete spectrum of CAEs is characterized by three quantum mode numbers for each eigenmode (M, S and n), where M, S and n are poloidal, radial and toroidal mode numbers, respectively. The expected mode frequency splitting corresponding to each of these mode numbers seems to be observed in experiments and is consistent with our numerical analysis. The polarization of the observed magnetic field oscillations in NSTX was measured and is also consistent with the numerical analysis, which helps to identify them as CAE activity. CAE mode structure was obtained and shown to be localized in both radial and poloidal directions with typical radial localization toward the plasma edge and poloidal localization at the low field side of the plasma cross section