WorldWideScience

Sample records for aleph silicon vertex

  1. Aleph silicon microstrip vertex detector

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This microstrip vertex locator was located at the heart of the ALEPH experiment, one of the four experiments at the Large Electron-Positron (LEP) collider. In the experiments at CERN's LEP, which ran from 1989 to 2000, modern silicon microvertex detectors, such as those used at ALEPH, monitored the production of short-lived particles close to the beam pipe.

  2. The design, construction and performance of the ALEPH silicon vertex detector

    International Nuclear Information System (INIS)

    Mours, B.

    1996-03-01

    The ALEPH silicon vertex detector is the first detector operating in a colliding beam environment that uses silicon strip detectors which provide readout on both sides and hence a three-dimensional point measurement for the trajectory of charged particles. The detector system was commissioned successfully at the e + e - collider LEP at the research centre CERN, Switzerland, during the year 1991 while taking data at the Z 0 resonance. The achieved spatial resolution of the complete 73 728 channel device (intrinsic plus alignment) in 12 μm in the r.φ view and 12 μm in the z view. The design and construction of the entire detector system are discussed in detail and the experience gained in running the detector is described with special emphasis on the uses of this novel tracking device for the physics of short-lived heavy particles produced in the decays of the Z 0 resonance. (orig.)

  3. The ARGUS silicon vertex detector

    International Nuclear Information System (INIS)

    Michel, E.; Ball, S.; Ehret, K.; Geyer, C.; Hesselbarth, J.; Hoelscher, A.; Hofmann, W.; Holzer, B.; Huepper, A.; Khan, S.; Knoepfle, K.T.; Seeger, M.; Spengler, J.; Brogle, M.; Horisberger, R.

    1994-01-01

    A silicon microstrip vertex detector has been built as an upgrade to the ARGUS detector for increased precision and efficiency in the reconstruction of decay vertices. This paper discusses the mechanical and electronic design of this device and presents first results from its successful test operation yielding an impact parameter resolution of about 18 μm. ((orig.))

  4. The CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Tkaczyk, S.; Carter, H.; Flaugher, B.

    1993-01-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the

  5. The CDF Silicon Vertex Trigger

    International Nuclear Information System (INIS)

    Dell'Orso, Mauro

    2006-01-01

    Motivations, design, performance and ongoing upgrade of the CDF Silicon Vertex Trigger are presented. The system provides CDF with a powerful tool for online tracking with offline quality in order to enhance the reach on B-physics and large P t -physics coupled to b quarks

  6. Belle II silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Università di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); and others

    2016-09-21

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  7. The BELLE silicon vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Alimonti, G.; Aihara, H.; Alexander, J.; Asano, Y.; Bakich, A.; Bozek, A.; Banas, E.; Browder, T.; Dragic, J.; Fukunaga, C.; Gordon, A.; Guler, H.; Everton, C.; Heenan, E.; Haba, J.; Hazumi, M.; Hastings, N.; Hara, T.; Hojo, T.; Higuchi, T.; Iwai, G.; Ishino, H.; Jalocha, P.; Korotuschenko, K.; Kaneko, J.; Kapusta, P.; Kawasaki, T.; Lange, J.S.; Li, Y.; Marlow, D.; Moloney, G.; Moffitt, L.; Mori, S.; Matsubara, T.; Nakadaira, T.; Nakamura, T.; Natkaniec, Z.; Okuno, S.; Olsen, S.; Ostrowicz, W.; Palka, H.; Peak, L.S.; Ryuko, J.; Rozanska, M.; Sevior, M.; Shimada, J.; Sumisawa, K.; Stock, R.; Stanic, S.; Swain, S.; Taylor, G.; Takasaki, F.; Tajima, H.; Trabelsi, K.; Tamura, N.; Tanaka, J.; Tanaka, M. E-mail: tanakam@post.kek.jp; Takahashi, S.; Tomura, T.; Tsuboyama, T.; Tsujita, Y.; Varner, G.; Varvell, K.E.; Watanabe, Y.; Yamamoto, H.; Yamada, Y.; Yokoyama, M.; Zhao, H.; Zontar, D

    2000-10-11

    A silicon vertex detector has been developed for the BELLE experiment at the KEK B-factory to be used to determine the relative displacements of B-meson decay vertices for CP violation measurements. The device has been successfully installed and operated with high-luminosity beam conditions. The average strip yield is larger than 96%, including the preamplifier electronics yield and the detector is currently working stably with a signal-to-noise ratio of 17-40. The measured impact parameter resolution agrees with expectations based on Monte Carlo simulations, and the measured D{sup 0} lifetime is in good agreement with the particle data group's average of other measurements. Several B{yields}J/{psi}K events produced at the {upsilon}(4S) resonance have been detected and separate decay vertices have been found.

  8. Silicon vertex detector for superheavy elements identification

    Directory of Open Access Journals (Sweden)

    Bednarek A.

    2012-07-01

    Full Text Available Silicon vertex detector for superheavy elements (SHE identification has been proposed. It will be constructed using very thin silicon detectors about 5 μm thickness. Results of test of 7.3 μm four inch silicon strip detector (SSD with fission fragments and α particles emitted by 252Cf source are presented

  9. The BaBar silicon vertex tracker

    International Nuclear Information System (INIS)

    Bozzi, C.; Carassiti, V.; Ramusino, A. Cotta; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B.K.; Breon, A.B.; Clark, A.R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L.T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N.A.; Zizka, G.; Roberts, D.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P.F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Dutra, F.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Girolamo, B. Di; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Ricca, G. Della; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E.P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Walsh, J.; Zobernig, H.

    2000-01-01

    The BaBar Silicon Vertex Tracker (SVT) is designed to provide the high-precision vertexing necessary for making measurements of CP violation at the SLAC B-Factory PEP-II. The instrument consists of five layers of double-sided silicon strip detectors and has been installed in the BaBar experiment and taking colliding beam data since May 1999. An overview of the design as well as performance and experience from the initial running will be presented

  10. ALEPH in 1991

    International Nuclear Information System (INIS)

    Settles, R.

    1992-10-01

    A selection of ALEPH activities in 1991 is presented. ALEPH took ≅ 12pb -1 of good data around the Z 0 peak in that year to bring the total up to a half a million events. The silicon-strip vertex detector was commissioned successfully and performed to design specifications for all of the 1991 running. The examples of physics reviewed include an update on electroweak results, N ν counting with the single photon events, τ-branching ratio and -lifetime measurements, measurement of the B-hadron lifetime, evidence for the Λ b baryon, existence of the triple gluon vertex, the understanding of intermittency, and an update on the Higgs search. These analyses were done in 1991 and include the 1989-90 data. (orig.)

  11. The H1 silicon vertex detector

    International Nuclear Information System (INIS)

    Pitzl, D.; Behnke, O.; Biddulph, M.; Boesiger, K.; Eichler, R.; Erdmann, W.; Gabathuler, K.; Gassner, J.; Haynes, W.J..; Horisberger, R.; Kausch, M.; Lindstroem, M.; Niggli, H.; Noyes, G.; Pollet, P.; Steiner, S.; Streuli, S.; Szeker, K.; Truoel, P.

    2000-01-01

    The design, construction and performance of the H1 silicon vertex detector is described. It consists of two cylindrical layers of double-sided, double-metal silicon sensors read out by a custom designed analog pipeline chip. The analog signals are transmitted by optical fibres to a custom-designed ADC board and are reduced on PowerPC processors. Details of the design and construction are given and performance figures from the first data-taking periods are presented

  12. The CDF online silicon vertex tracker

    International Nuclear Information System (INIS)

    Ashmanskas, W.

    2001-01-01

    The CDF Online Silicon Vertex Tracker reconstructs 2-D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker. The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II

  13. The CDF online Silicon Vertex Tracker

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Bardi, A.; Bari, M.; Belforte, S.; Berryhill, J.; Bogdan, M.; Carosi, R.; Cerri, A.; Chlachidze, G.; Culbertson, R.; Dell'Orso, M.; Donati, S.; Fiori, I.; Frisch, H.J.; Galeotti, S.; Giannetti, P.; Glagolev, V.; Moneta, L.; Morsani, F.; Nakaya, T.; Passuello, D.; Punzi, G.; Rescigno, M.; Ristori, L.; Sanders, H.; Sarkar, S.; Semenov, A.; Shochet, M.; Speer, T.; Spinella, F.; Wu, X.; Yang, U.; Zanello, L.; Zanetti, A.M.

    2002-01-01

    The CDF Online Silicon Vertex Tracker (SVT) reconstructs 2D tracks by linking hit positions measured by the Silicon Vertex Detector to the Central Outer Chamber tracks found by the eXtremely Fast Tracker (XFT). The system has been completely built and assembled and it is now being commissioned using the first CDF run II data. The precision measurement of the track impact parameter will allow triggering on B hadron decay vertices and thus investigating important areas in the B sector, like CP violation and B s mixing. In this paper we briefly review the architecture and the tracking algorithms implemented in the SVT and we report on the performance of the system achieved in the early phase of CDF run II

  14. Construction of the CDF silicon vertex detector

    International Nuclear Information System (INIS)

    Skarha, J.; Barnett, B.; Boswell, C.; Snider, F.; Spies, A.; Tseng, J.; Vejcik, S.; Carter, H.; Flaugher, B.; Gonzales, B.; Hrycyk, M.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.; Carithers, W.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Amidei, D.; Derwent, P.; Gold, M.; Matthews, J.; Bacchetta, N.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Bedeschi, F.; Bolognesi, V.; Dell'Agnello, S.; Galeotti, S.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Risotri, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F.; Bailey, M.; Garfinkel, A.; Shaw, N.; Tipton, P.; Watts, G.

    1992-04-01

    Technical details and methods used in constructing the CDF silicon vertex detector are presented. This description includes a discussion of the foam-carbon fiber composite structure used to silicon microstrip detectors and the procedure for achievement of 5 μm detector alignment. The construction of the beryllium barrel structure, which houses the detector assemblies, is also described. In addition, the 10 μm placement accuracy of the detectors in the barrel structure is discussed and the detector cooling and mounting systems are described. 12 refs

  15. Silicon vertex tracker for RHIC PHENIX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Taketani, A [RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama, Japan; Cianciolo, Vince [ORNL; Enokizono, Akitomo [Oak Ridge National Laboratory (ORNL); PHENIX, Collaboration [The

    2010-01-01

    The PHENIX experiment at Relativistic Heavy Ion Collider will be equipped with Silicon Vertex tracker to enhance its physics capability. There are four layers of silicon sensor to reconstruct charged tracks with 50 {micro}m resolution of decay length measurement. The VTX surrounds the collision point. The inner two layers and the outer two layers are composed of 30 pixel ladders and 44 stripixel ladders, respectively. We have been developing these detectors and done a performance test with 120 GeV proton beam.

  16. The Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M., E-mail: markus.friedl@oeaw.ac.at [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ackermann, K. [MPI Munich, Föhringer Ring 6, 80805 München (Germany); Aihara, H. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aziz, T. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Bergauer, T. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Bozek, A. [Institute of Nuclear Physics, Division of Particle Physics and Astrophysics, ul. Radzikowskiego 152, 31 342 Krakow (Poland); Campbell, A. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Dingfelder, J. [University of Bonn, Department of Physics and Astronomy, Nussallee 12, 53115 Bonn (Germany); Drasal, Z. [Charles University, Institute of Particle and Nuclear Physics, Ke Karlovu 3, 121 16 Praha 2 (Czech Republic); Frankenberger, A. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Gadow, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Gfall, I. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Haba, J.; Hara, K.; Hara, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Himori, S. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Irmler, C. [HEPHY – Institute of High Energy Physics, Nikolsdorfer Gasse 18, 1050 Vienna (Austria); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); and others

    2013-12-21

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10{sup 35}cm{sup −2}s{sup −1} in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m{sup 2} and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.

  17. The Belle II Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Friedl, M.; Ackermann, K.; Aihara, H.; Aziz, T.; Bergauer, T.; Bozek, A.; Campbell, A.; Dingfelder, J.; Drasal, Z.; Frankenberger, A.; Gadow, K.; Gfall, I.; Haba, J.; Hara, K.; Hara, T.; Higuchi, T.; Himori, S.; Irmler, C.; Ishikawa, A.; Joo, C.

    2013-01-01

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×10 35 cm −2 s −1 in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13m 2 and 223,744 channels—twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics

  18. Silicon detectors for tracking and vertexing

    International Nuclear Information System (INIS)

    Nomerotski, Andrei

    2009-01-01

    This review covers recent developments in silicon detectors used for particle physics experiments for the tracking and vertexing systems. After a general introduction the main focus of the report is on new challenges for this field posed by requirements of the future generation machines. Technologies reviewed in more detail are column parallel CCDs, DEPFET, vertical integration of sensors and electronics and several others which allow fast readout and low mass design. Important system issues such as mechanical arrangements for the sensors and power distribution, which are critical for the low mass design, are also discussed.

  19. Mechanical design of the CDF SVX II silicon vertex detector

    International Nuclear Information System (INIS)

    Skarha, J.E.

    1994-08-01

    A next generation silicon vertex detector is planned at CDF for the 1998 Tevatron collider run with the Main Injector. The SVX II silicon vertex detector will allow high luminosity data-taking, enable online triggering of secondary vertex production, and greatly increase the acceptance for heavy flavor physics at CDF. The design specifications, geometric layout, and early mechanical prototyping work for this detector are discussed

  20. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  1. Silicon technologies for the CLIC vertex detector

    Science.gov (United States)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  2. Silicon Technologies for the CLIC Vertex Detector

    CERN Document Server

    Spannagel, Simon

    2017-01-01

    CLIC is a proposed linear e$^+$e$^−$ collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2%$~X_0$ per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50–150$~\\mu$m, including different active edge designs, are evaluated using Timepix3 A...

  3. SVT: an online silicon vertex tracker for the CDF upgrade

    International Nuclear Information System (INIS)

    Bardi, A.; Belforte, S.; Berryhill, J.

    1997-07-01

    The SVT is an online tracker for the CDF upgrade which will reconstruct 2D tracks using information from the Silicon VerteX detector (SVXII) and Central Outer Tracker (COT). The precision measurement of the track impact parameter will then be used to select and record large samples of B hadrons. We discuss the overall architecture, algorithms, and hardware implementation of the system

  4. Performance of the CDF Silicon VerteX detector

    International Nuclear Information System (INIS)

    Schneider, O.

    1992-11-01

    The current status of the online and offline performance of the CDF Silicon VerteX detector is presented. So far, at low radiation dose, the device delivers good quality data. After the latest alignment using collision data, a spatial resolution of 13 pm is achieved in the transverse plane, demonstrating that CDF has a powerful tool to detect b decay vertices

  5. The silicon vertex locator for the LHCb upgrade

    CERN Document Server

    Head, Tim

    2014-01-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a triggerless system being read out at 40 MHz. The upgraded silicon vertex detector (VELO) must be light weight, radiation hard, and compatible with LHC vacuum requirements. It must be capable of fast pattern recognition, fast track reconstruction and high precision vertexing. This challenge is being met with a new VELO design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The detector will be shielded from the beam by a View the MathML source~300μm thick aluminium foil. Evaporative CO2 coolant circulating in micro-channels embedded in a thin silicon substrate will be used for cooling.

  6. The CDF silicon vertex detector SVX and its upgrades

    International Nuclear Information System (INIS)

    Seidel, S.; Univ. of New Mexico, Albuquerque, NM

    1994-11-01

    The three generations of CDF silicon vertex detectors, SVX, SVX', and SVX II, are described. SVX, which operated during Tevatron run Ia, achieved 10.6 μm resolution in r - φ. SVX' is a radiation-hard device for run Ib with a similar but improved mechanical design and improved signal/noise. SVX II, which will be installed for run II, will track in three dimensions with radiation tolerance and electronics appropriate to a Main Injector environment

  7. Silicon vertex detector upgrade in the ALPHA experiment

    CERN Document Server

    Amole, C; Ashkezari, M.D; Baquero-Ruiz, M; Bertsche, W; Burrows, C; Butler, E; Capra, A; Cesar, C.L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M.C; Gill, D.R; Gutierrez, A; Hangst, J.S; Hardy, W.N; Hayden, M.E; Humphries, A.J; Isaac, C.A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J.T.K; Menary, S; Napoli, S.C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C.Ø; Robicheaux, F; Sacramento, R.L; Sampson, J.A; Sarid, E; Seddon, D; Silveira, D.M; So, C; Stracka, S; Tharp, T; Thompson, R.I; Thornhill, J; Tooley, M.P; Van Der Werf, D.P; Wells, D

    2013-01-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA ' s analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA ' s new neutral atom trap.

  8. Silicon vertex detector upgrade in the ALPHA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, WA4 4AD Warrington (United Kingdom); Burrows, C. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3 (Canada); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Fujiwara, M.C. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); and others

    2013-12-21

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.

  9. Fine pitch and low material readout bus in the Silicon Pixel Vertex Tracker for the PHENIX Vertex Tracker upgrade

    International Nuclear Information System (INIS)

    Fujiwara, Kohei

    2010-01-01

    The construction of the Silicon Pixel Detector is starting in spring 2009 as project of the RHIC-PHENIX Silicon Vertex Tracker (VTX) upgrade at the Brookhaven National Laboratory. For the construction, we have developed a fine pitch and low material readout bus as the backbone parts of the VTX. In this article, we report the development and production of the readout bus.

  10. The silicon vertex tracker for star and future applications of silicon drift detectors

    International Nuclear Information System (INIS)

    Bellwied, Rene

    2001-01-01

    The Silicon Vertex Tracker (SVT) for the STAR experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory has recently been completed and installed. First data were taken in July 2001. The SVT is based on a novel semi-conductor technology called Silicon Drift Detectors. 216 large area (6 by 6 cm) Silicon wafers were employed to build a three barrel device capable of vertexing and tracking in a high occupancy environment. Its intrinsic radiation hardness, its operation at room temperature and its excellent position resolution (better than 20 micron) in two dimensions with a one dimensional detector readout, make this technology very robust and inexpensive and thus a viable alternative to CCD, Silicon pixel and Silicon strip detectors in a variety of applications from fundamental research in high-energy and nuclear physics to astrophysics to medical imaging. I will describe the development that led to the STAR-SVT, its performance and possible applications for the near future

  11. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, T. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Universitá di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); Bozek, A. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); and others

    2016-07-11

    The silicon vertex detector of the Belle II experiment, structured in a lantern shape, consists of four layers of ladders, fabricated from two to five silicon sensors. The APV25 readout ASIC chips are mounted on one side of the ladder to minimize the signal path for reducing the capacitive noise; signals from the sensor backside are transmitted to the chip by bent flexible fan-out circuits. The ladder is assembled using several dedicated jigs. Sensor motion on the jig is minimized by vacuum chucking. The gluing procedure provides such a rigid foundation that later leads to the desired wire bonding performance. The full ladder with electrically functional sensors is consistently completed with a fully developed assembly procedure, and its sensor offsets from the design values are found to be less than 200 μm. The potential functionality of the ladder is also demonstrated by the radioactive source test.

  12. The Belle II silicon vertex detector assembly and mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, Ti.; Baroncelli, To. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S., E-mail: stefano.bettarini@pi.infn.it [Dipartimento di Fisica, Università di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); Bilka, T. [Faculty of Mathematics and Physics, Charles University, 121 16 Prague (Czech Republic); Bosi, F. [INFN Sezione di Pisa, I-56127 Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Università di Trieste, I-34127 Trieste (Italy); INFN Sezione di Trieste, I-34127 Trieste (Italy); and others

    2017-02-11

    The Belle II experiment at the asymmetric SuperKEKB collider in Japan will operate at an instantaneous luminosity approximately 50 times greater than its predecessor (Belle). The central feature of the experiment is a vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is CP violation asymmetry in the decays of beauty and charm hadrons, which hinges on a precise charged-track vertex determination and low-momentum track measurement. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision 3D coordinate measurements of the final SVD modules. Finally, some results from the latest test-beam are reported.

  13. The silicon vertex detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, Markus, E-mail: friedl@hephy.a [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred [Institute of High Energy Physics, Nikolsdorfergasse 18, A-1050 Vienna (Austria)

    2011-02-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10{sup 35} cm{sup -2} s{sup -1}, which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  14. The silicon vertex detector of the Belle II experiment

    International Nuclear Information System (INIS)

    Friedl, Markus; Bergauer, Thomas; Gfall, Immanuel; Irmler, Christian; Valentan, Manfred

    2011-01-01

    After 10 years of successful operation, the Belle experiment at KEK (Tsukuba, Japan) will be completed in 2010. Thereafter, a major upgrade of the KEK-B machine is foreseen until 2014, aiming at a final luminosity of 8x10 35 cm -2 s -1 , which is about 40 times higher than the present peak value. Consequently, also the Belle experiment needs to be changed and the Silicon Vertex Detector (SVD) in particular will be completely replaced as it already operates close to its limits in the present system. The future SVD (a.k.a. SuperSVD) will consist of four layers of double-sided silicon strip detectors like the present one, but at larger radii, because it will be complemented by a two-layer pixel detector as the innermost sensing device. The SuperSVD will be entirely composed of silicon sensors made from 6 in. wafers read out by APV25 front-end chips that were originally developed for the CMS experiment at the LHC. Several years of R and D effort led to innovations such as the Origami chip-on-sensor concept and readout electronics with hit time finding which were successfully demonstrated on prototypes. These features will be included in the final system which is presently being designed. This paper will give an overview of the SuperSVD and present results from prototype tests ranging from detector modules to back-end electronics.

  15. System software design for the CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Tkaczyk, S. (Fermi National Accelerator Lab., Batavia, IL (United States)); Bailey, M. (Purdue Univ., Lafayette, IN (United States))

    1991-11-01

    An automated system for testing and performance evaluation of the CDF Silicon Vertex Detector (SVX) data acquisition electronics is described. The SVX data acquisition chain includes the Fastbus Sequencer and the Rabbit Crate Controller and Digitizers. The Sequencer is a programmable device for which we developed a high level assembly language. Diagnostic, calibration and data acquisition programs have been developed. A distributed software package was developed in order to operate the modules. The package includes programs written in assembly and Fortran languages that are executed concurrently on the SVX Sequencer modules and either a microvax or an SSP. Test software was included to assist technical personnel during the production and maintenance of the modules. Details of the design of different components of the package are reported.

  16. System software design for the CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Tkaczyk, S.; Bailey, M.

    1991-11-01

    An automated system for testing and performance evaluation of the CDF Silicon Vertex Detector (SVX) data acquisition electronics is described. The SVX data acquisition chain includes the Fastbus Sequencer and the Rabbit Crate Controller and Digitizers. The Sequencer is a programmable device for which we developed a high level assembly language. Diagnostic, calibration and data acquisition programs have been developed. A distributed software package was developed in order to operate the modules. The package includes programs written in assembly and Fortran languages that are executed concurrently on the SVX Sequencer modules and either a microvax or an SSP. Test software was included to assist technical personnel during the production and maintenance of the modules. Details of the design of different components of the package are reported

  17. CDF silicon vertex tracker: tevatron run II preliminary results

    International Nuclear Information System (INIS)

    Ashmanskas, W.; Belforte, S.; Budagov, Yu.

    2002-01-01

    The Online Silicon Vertex Tracker (SVT) is the unique new trigger processor dedicated to the 2-D reconstruction of charged particle trajectories at Level 2 of the CDF trigger. The SVT has been successfully built, installed and operated during the 2000 and 20001 CDF data taking runs. The performance of the SVT is already very close to the design. The SVT is able to find tracks and calculate their impact parameter with high precision (σ d = 35 μm). It is possible to correct the beam position offset and give the beam position feedback to accelerator in real time. In fact, the beam position is calculated online every few seconds with an accuracy of 1 to 5 μm. The beam position is continuously sent to the accelerator control. By using trigger tracks, parent particles such as K S 's and D 0 's are reconstructed, proving that the SVT is ready to be used for physics studies

  18. Silicon micro-vertex detector for Belle II

    International Nuclear Information System (INIS)

    Mohanty, Gagan

    2013-01-01

    The Belle experiment at the KEK B-factory is Japan provided the landmark experimental confirmation of CP violation mechanism within the standard model that led to the physics Nobel prize in 2008. In its second phase, called Belle II, it would seek for the holy-grail of new physics using rare decays of B and D mesons and tau leptons as a probe, in complimentary to the direct searches carried out with the LHC experiments. An important component of this upgrade is to replace the innermost subdetector, namely the silicon micro-vertex detector (SVD). The new SVD will, like the old one, consist of four layers of double-sided silicon strip detector, but made from 6âĂİ wafers and located at higher radii as a novel, two-layer DEPFET pixel detector will be inserted very dose to the beam- pipe. Starting with the physics motivation, we discuss the design concept, fabrication and the Indian contributions toward the Belle II SVD. (author)

  19. Characterisation of silicon detectors for the LHCb Vertex Locator Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00401830

    The LHCb Vertex Locator must be upgraded in the next long shutdown of the LHC, starting at the end of 2018. This is due to the increased occupancy. The current silicon strip detector is being upgraded to a silicon pixel detector. The prototype sensors for this detector were tested thoroughly before a final design will be chosen. The testing was done with the Timepix3 Telescope, which was commissioned in the summer of 2014. The charge collected by the sensors and efficiency of the sensors were investigated. After maximum irradiation, of 8$\\times$10$^{15}$ 1 MeV n$_{eq}$/cm$^{2}$, the sensors must have a most probable value of collected charge of 6000 electrons before 1000 V or breakdown, whichever comes first. The sensors must also have a high efficiency at maximum irradiation of 8$\\times$10$^{15}$ 1 MeV n$_{eq}$/cm$^{2}$. All tested sensors reach these criteria. All sensors reach 6000 electrons between 600 V and 800 V and have a cluster finding efficiency of over 95\\% at the respective voltages. Overall, a 15...

  20. Global VDET pattern recognition for ALEPH

    International Nuclear Information System (INIS)

    Bazarko, Andrew; Pusztaszeri, Jean-Francois; Rensing, Paul E.; Brown, David; Gay, Pascal

    1996-01-01

    With the current reliance on high-precision vertex detectors to provide very accurate information about the primary and secondary vertices in an event, the accuracy and efficiency of the assignment of vertex detectors hits to tracks has become crucial. This paper discusses new software written for ALEPH which attempts to make this assignment in a global manner using interger programming techniques. (author)

  1. Error handling for the CDF online silicon vertex tracker

    CERN Document Server

    Bari, M; Cerri, A; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2001-01-01

    The online silicon vertex tracker (SVT) is composed of 104 VME 9U digital boards (of eight different types). Since the data output from the SVT (few MB/s) are a small fraction of the input data (200 MB/s), it is extremely difficult to track possible internal errors by using only the output stream. For this reason, several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams, and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named spy buffers, which act as built-in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be frozen at any time (e.g., on error detection) to take a snapshot of all data flowing through each SVT board. The spy buffers are coordinated at system level by the Spy Control Board. The architecture, design, and implementation of this system are described. (4 refs).

  2. Error handling for the CDF Silicon Vertex Tracker

    CERN Document Server

    Belforte, S; Dell'Orso, Mauro; Donati, S; Galeotti, S; Giannetti, P; Morsani, F; Punzi, G; Ristori, L; Spinella, F; Zanetti, A M

    2000-01-01

    The SVT online tracker for the CDF upgrade reconstructs two- dimensional tracks using information from the Silicon Vertex detector (SVXII) and the Central Outer Tracker (COT). The SVT has an event rate of 100 kHz and a latency time of 10 mu s. The system is composed of 104 VME 9U digital boards (of 8 different types) and it is implemented as a data driven architecture. Each board runs on its own 30 MHz clock. Since the data output from the SVT (few Mbytes/sec) are a small fraction of the input data (200 Mbytes/sec), it is extremely difficult to track possible internal errors by using only the output stream. For this reason several diagnostic tools have been implemented: local error registers, error bits propagated through the data streams and the Spy Buffer system. Data flowing through each input and output stream of every board are continuously copied to memory banks named Spy Buffers which act as built in logic state analyzers hooked continuously to internal data streams. The contents of all buffers can be ...

  3. ALEPH model

    CERN Multimedia

    1989-01-01

    A wooden model of the ALEPH experiment and its cavern. ALEPH was one of 4 experiments at CERN's 27km Large Electron Positron collider (LEP) that ran from 1989 to 2000. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel. The cavern and detector are in separate locations - the cavern is stored at CERN and the detector is temporarily on display in Glasgow physics department. Both are available for loan.

  4. TECHNICAL DESIGN REPORT OF THE FORWARD SILICON VERTEX (FVTX)

    Energy Technology Data Exchange (ETDEWEB)

    PHENIX EXPERIMENT; OBRIEN,E.; PAK, R.; DREES, K.A.; (PHENIX EXPERIMENT COLLABORATORS)

    2007-08-01

    The main goal of the RHIC heavy ion program is the discovery of the novel ultra-hot high-density state of matter predicted by the fundamental theory of strong interactions and created in collisions of heavy nuclei, the Quark-Gluon Plasma (QGP). From measurements of the large elliptic flow of light mesons and baryons and their large suppression at high transverse momentum pT that have been made at RHIC, there is evidence that new degrees of freedom, characteristic of a deconfined QCD medium, drive the dynamics of nucleus-nucleus collisions. It has been recognized, however, that the potential of light quarks and gluons to characterize the properties of the QGP medium is limited and the next phase of the RHIC program calls for the precise determination of its density, temperature, opacity and viscosity using qualitatively new probes, such as heavy quarks. We propose the construction of two Forward Silicon Vertex Trackers (FVTX) for the PHENIX experiment that will directly identify and distinguish charm and beauty decays within the acceptance of the muon spectrometers. The FVTX will provide this essential coverage over a range of forward and backward rapidities (1.2 < |y| < 2.4)--a rapidity range coverage which not only brings significantly larger acceptance to PHENIX but which is critical for separating cold nuclear matter effects from QGP effects and is critical for measuring the proton spin contributions over a significant fraction of the kinematic range of interest. In addition, the FVTX will provide greatly reduced background and improved mass resolution for dimuon events, culminating in the first measurements of the {upsilon}{prime} and Drell-Yan at RHIC. These same heavy flavor and dimuon measurements in p+p collisions will allow us to place significant constraints on the gluon and sea quark contributions to the proton's spin and to make fundamentally new tests of the Sivers function universality.

  5. TECHNICAL DESIGN REPORT OF THE FORWARD SILICON VERTEX (FVTX)

    International Nuclear Information System (INIS)

    PHENIX EXPERIMENT; OBRIEN, E.; PAK, R.; DREES, K.A.

    2007-01-01

    The main goal of the RHIC heavy ion program is the discovery of the novel ultra-hot high-density state of matter predicted by the fundamental theory of strong interactions and created in collisions of heavy nuclei, the Quark-Gluon Plasma (QGP). From measurements of the large elliptic flow of light mesons and baryons and their large suppression at high transverse momentum pT that have been made at RHIC, there is evidence that new degrees of freedom, characteristic of a deconfined QCD medium, drive the dynamics of nucleus-nucleus collisions. It has been recognized, however, that the potential of light quarks and gluons to characterize the properties of the QGP medium is limited and the next phase of the RHIC program calls for the precise determination of its density, temperature, opacity and viscosity using qualitatively new probes, such as heavy quarks. We propose the construction of two Forward Silicon Vertex Trackers (FVTX) for the PHENIX experiment that will directly identify and distinguish charm and beauty decays within the acceptance of the muon spectrometers. The FVTX will provide this essential coverage over a range of forward and backward rapidities (1.2 < |y| < 2.4)--a rapidity range coverage which not only brings significantly larger acceptance to PHENIX but which is critical for separating cold nuclear matter effects from QGP effects and is critical for measuring the proton spin contributions over a significant fraction of the kinematic range of interest. In addition, the FVTX will provide greatly reduced background and improved mass resolution for dimuon events, culminating in the first measurements of the υ(prime) and Drell-Yan at RHIC. These same heavy flavor and dimuon measurements in p+p collisions will allow us to place significant constraints on the gluon and sea quark contributions to the proton's spin and to make fundamentally new tests of the Sivers function universality

  6. Proposed method of assembly for the BCD silicon strip vertex detector modules

    International Nuclear Information System (INIS)

    Lindenmeyer, C.

    1989-01-01

    The BCD Silicon strip Vertex Detector is constructed of 10 identical central region modules and 18 similar forward region modules. This memo describes a method of assembling these modules from individual silicon wafers. Each wafer is fitted with associated front end electronics and cables and has been tested to insure that only good wafers reach the final assembly stage. 5 figs

  7. Control and data acquisition electronics for the CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1991-11-01

    A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs.

  8. Control and data acquisition electronics for the CDF silicon vertex detector

    International Nuclear Information System (INIS)

    urner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1992-01-01

    This paper reports on a control and data acquisition system that has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules

  9. Control and data acquisition electronics for the CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.

    1991-11-01

    A control and data acquisition system has been designed for the CDF Silicon Vertex Detector (SVX) at Fermilab. The system controls the operation of the SVX Rev D integrated circuit (SVX IC) that is used to instrument a 46,000 microstrip silicon detector. The system consists of a Fastbus Sequencer, a Crate Controller and Digitizer modules. 11 refs., 6 figs., 3 tabs

  10. Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker

    International Nuclear Information System (INIS)

    Onuki, Y.; Akiba, Y.; En'yo, H.; Fujiwara, K.; Haki, Y.; Hashimoto, K.; Ichimiya, R.; Kasai, M.; Kawashima, M.; Kurita, K.; Kurosawa, M.; Mannel, E.J.; Nakano, K.; Pak, R.; Sekimoto, M.; Sondheim, W.E.; Taketani, A.; Togawa, M.; Yamamoto, Y.

    2009-01-01

    The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.

  11. Development of new assembly techniques for a silicon micro-vertex detector unit using the flip-chip bonding method

    International Nuclear Information System (INIS)

    Saitoh, Y.; Takeuchi, H.; Mandai, M.; Kanazawa, H.; Yamanaka, J.; Miyahara, S.; Kamiya, M.; Fujita, Y.; Higashi, Y.; Ikeda, H.; Ikeda, M.; Koike, S.; Matsuda, T.; Ozaki, H.; Tanaka, M.; Tsuboyama, T.; Avrillon, S.; Okuno, S.; Haba, J.; Hanai, H.; Mori, S.; Yusa, K.; Fukunaga, C.

    1994-01-01

    Full-size models of a detector unit for a silicon micro-vertex detector were built for the KEK B factory. The Flip-Chip Bonding (FCB) method using a new type anisotropic conductive film was examined. The structure using the FCB method successfully provides a new architecture for the silicon micro-vertex detector unit. (orig.)

  12. SVX II a silicon vertex detector for run II of the tevatron

    International Nuclear Information System (INIS)

    Bortoletto, D.

    1994-11-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of the vertex detector of the CDF experiment to be installed for run II of the Tevatron in 1998. Three barrels of four layers of double sided detectors will cover the interaction region. The requirement of the silicon tracker and the specification of the sensors are discussed together with the proposed R ampersand D to verify the performance of the prototypes detectors produced by Sintef, Micron and Hamamatsu

  13. The BaBar silicon vertex tracker, performance and running experience

    International Nuclear Information System (INIS)

    Re, V.; Borean, C.; Bozzi, C.; Carassiti, V.; Cotta Ramusino, A.; Piemontese, L.; Breon, A.B.; Brown, D.; Clark, A.R.; Goozen, F.; Hernikl, C.; Kerth, L.T.; Gritsan, A.; Lynch, G.; Perazzo, A.; Roe, N.A.; Zizka, G.; Roberts, D.; Schieck, J.; Brenna, E.; Citterio, M.; Lanni, F.; Palombo, F.; Ratti, L.; Manfredi, P.F.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Bucci, F.; Calderini, G.; Carpinelli, M.; Ceccanti, M.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Neri, N.; Paoloni, E.; Profeti, A.; Rama, M.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Walsh, J.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.I.; Roat, C.; Bona, M.; Bianchi, F.; Gamba, D.; Trapani, P.; Bosisio, L.; Della Ricca, G.; Dittongo, S.; Lanceri, L.; Pompili, A.; Poropat, P.; Rashevskaia, I.; Vuagnin, G.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Hale, D.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Mazur, M.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.A.; Grothe, M.; Johnson, R.P.; Kroeger, W.; Lockman, W.S.; Pulliam, T.; Rowe, W.; Schmitz, R.E.; Seiden, A.; Spencer, E.N.; Turri, M.; Walkowiak, W.; Wilder, M.; Wilson, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Zobernig, H.

    2002-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory is a five-layer double-sided, AC-coupled silicon microstrip detector. It represents the crucial element to precisely measure the decay position of B mesons and extract time-dependent CP asymmetries. The SVT architecture is shown and its performance is described, with emphasis on hit resolutions and efficiencies

  14. Design and Tests of the Silicon Sensors for the ZEUS Micro Vertex Detector

    OpenAIRE

    Dannheim, D.; Koetz, U.; Coldewey, C.; Fretwurst, E.; Garfagnini, A.; Klanner, R.; Martens, J.; Koffeman, E.; Tiecke, H.; Carlin, R.

    2002-01-01

    To fully exploit the HERA-II upgrade,the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 micrometers, with five intermediate strips (20 micrometer strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sen...

  15. The BaBar silicon vertex tracker, performance and running experience

    CERN Document Server

    Re, V; Bozzi, C; Carassiti, V; Cotta-Ramusino, A; Piemontese, L; Breon, A B; Brown, D; Clark, A R; Goozen, F; Hernikl, C; Kerth, L T; Gritsan, A; Lynch, G; Perazzo, A; Roe, N A; Zizka, G; Roberts, D; Schieck, J; Brenna, E; Citterio, M; Lanni, F; Palombo, F; Ratti, L; Manfredi, P F; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bosi, F; Bucci, F; Calderini, G; Carpinelli, M; Ceccanti, M; Forti, F; Gagliardi, D J; Giorgi, M A; Lusiani, A; Mammini, P; Morganti, M; Morsani, F; Neri, N; Paoloni, E; Profeti, A; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Burchat, Patricia R; Cheng, C; Kirkby, D; Meyer, T I; Roat, C; Bóna, M; Bianchi, F; Gamba, D; Trapani, P; Bosisio, L; Della Ricca, G; Dittongo, S; Lanceri, L; Pompili, A; Poropat, P; Rashevskaia, I; Vuagnin, G; Burke, S; Callahan, D; Campagnari, C; Dahmes, B; Hale, D; Hart, P; Kuznetsova, N; Kyre, S; Levy, S; Long, O; May, J; Mazur, M; Richman, J; Verkerke, W; Witherell, M; Beringer, J; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Johnson, R P; Kröger, W; Lockman, W S; Pulliam, T; Rowe, W; Schmitz, R E; Seiden, A; Spencer, E N; Turri, M; Walkowiak, W; Wilder, M; Wilson, M; Charles, E; Elmer, P; Nielsen, J; Orejudos, W; Scott, I; Zobernig, H

    2002-01-01

    The Silicon Vertex Tracker (SVT) of the BaBar experiment at the PEP-II asymmetric B factory is a five-layer double-sided, AC-coupled silicon microstrip detector. It represents the crucial element to precisely measure the decay position of B mesons and extract time-dependent CP asymmetries. The SVT architecture is shown and its performance is described, with emphasis on hit resolutions and efficiencies.

  16. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    International Nuclear Information System (INIS)

    Bedeschi, F.; Bolognesi, V.; Dell'Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F.; Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M.; Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Yao, W.; Carter, H.; Flaugher, B.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.R.; Barnett, B.; Boswell, C.; Skarha, J.; Snider, F.D.; Spies, A.; Tseng, J.; Vejcik, S.; Amidei, D.; Derwent, P.F.; Song, T.Y.; Dunn, A.; Gold, M.; Matthews, J.; Bacchetta, N.; Azzi, P.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Tipton, P.; Watts, G.

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given

  17. The SuperB Silicon Vertex Tracker and 3D vertical integration

    CERN Document Server

    Re, Valerio

    2011-01-01

    The construction of the SuperB high luminosity collider was approved and funded by the Italian government in 2011. The performance specifications set by the target luminosity of this machine (> 10^36 cm^-2 s^-1) ask for the development of a Silicon Vertex Tracker with high resolution, high tolerance to radiation and excellent capability of handling high data rates. This paper reviews the R&D activity that is being carried out for the SuperB SVT. Special emphasis is given to the option of exploiting 3D vertical integration to build advanced pixel sensors and readout electronics that are able to comply with SuperB vertexing requirements.

  18. The upgrade of the vertex detector to form the central part of the silicon tracker in DELPHI

    International Nuclear Information System (INIS)

    Brenner, R.

    1997-01-01

    The DELPHI vertex detector has undergone a final upgrade to meet the physics requirements at LEP200. The old vertex detector has been made longer by 24 cm and is now the barrel part of the silicon tracker with a very forward part at both ends. The configuration and first results on the stability and performance of the barrel part is reported. (orig.)

  19. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    AUTHOR|(INSPIRE)INSPIRE-00714258

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  20. The ALEPH Detector (Apparatus for LEp PHysics)

    CERN Multimedia

    2002-01-01

    ALEPH is a 4$\\pi$ detector designed to give as much detailed information as possible about the complex events produced in high energy $\\mathrm{e}^+\\mathrm{e}^-$ collisions. A superconducting coil 5 metres in diameter and 6 metres long produces a 1.5 Tesla field in the beam direction. Particle detection is accomplished in layers, with each layer performing a particular function.\\\\ \\\\A high resolution vertex detector layers of silicon with double-sided readout provides $r$, $\\phi$ and $z$ coordinates and identifies decay vertices of tau leptons, charm and beauty hadrons. \\\\ \\\\The Inner Tracking Chamber (ITC) is a cylindrical drift chamber with eight axial layers. It gives a high spatial resolution and good track separation, and is also an essential part of the trigger system.\\\\ \\\\The Time Projection Chamber (TPC), 3.6 metres in diameter and 4.4 metres long, measures track momenta and directions. It also provides up to 338 energy loss measurements per track for particle identification. The momentum resolution of...

  1. Silicon Drift Detectors - A Novel Technology for Vertex Detectors

    Science.gov (United States)

    Lynn, D.

    1996-10-01

    Silicon Drift Detectors (SDD) are novel position sensing silicon detectors which operate in a manner analogous to gas drift detectors. Single SDD's were shown in the CERN NA45 experiment to permit excellent spatial resolution (pseudo-rapidity. Over the last three years we undertook a concentrated R+D effort to optimize the performance of the detector by minimizing the inactive area, the operating voltage and the data volume. We will present test results from several wafer prototypes. The charge produced by the passage of ionizing particles through the bulk of the detectors is collected on segmented anodes, with a pitch of 250 μm, on the far edges of the detector. The anodes are wire-bonded to a thick film multi-chip module which contains preamplifier/shaper chips and CMOS based switched capacitor arrays used as an analog memory pipeline. The ADC is located off-detector. The complete readout chain from the wafer to the DAQ will be presented. Finally we will show physics performance simulations based on the resolution achieved by the SVT prototypes.

  2. Operation and performance of the silicon vertex detector (SVX') at CDF

    International Nuclear Information System (INIS)

    Singh, P.P.

    1994-10-01

    The authors describe the operation and performance of the Silicon Vertex Detector (SVX'), which replaced the CDF SVX detector for run lb of the Fermilab Tevatron Collider. The new features of the SVX' include AC coupled readout, Field OXide Field Effect Transistor (FOXFET) biasing and radiation hard front end electronics. The authors expect the detector to survive beyond the 100 pb -1 of data taking anticipated for the present CDF physics run. Preliminary results from the collider data show that the detector has a resolution of about 12 μm. This provides a powerful tool to do top and bottom physics

  3. Electronics and mechanics for the Silicon Vertex Detector of the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C; Bergauer, T; Friedl, M; Gfall, I; Valentan, M, E-mail: irmler@hephy.oeaw.ac.a [Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2010-12-15

    A major upgrade of the KEK-B factory (Tsukuba, Japan), aiming at a peak luminosity of 8 x 10{sup 35}cm{sup -2}s{sup -1}, which is 40 times the present value, is foreseen until 2014. Consequently an upgrade of the Belle detector and in particular its Silicon Vertex Detector (SVD) is required. We will introduce the concept and prototypes of the full readout chain of the Belle II SVD. Its APV25 based front-end utilizes the Origami chip-on-sensor concept, while the back-end VME system provides online data processing as well as hit time finding using FPGAs. Furthermore, the design of the double-sided silicon detectors and the mechanics will be discussed.

  4. The CDF silicon vertex trigger for B-mesons physics study

    International Nuclear Information System (INIS)

    Belforte, S.; Donati, S.; Ristori, L.; Spinella, F.; Budagov, Yu.; Chlachidze, G.; Glagolev, V.; Semenov, A.; Sisakyan, A.; Punzi, G.

    2001-01-01

    The CDF scientific program includes particularly the study of some key topics of the Standard Model: 1) constraint of the CKM matrix: CP violation in B sector (B 0 → π + π - ) and B s mixing (B s 0 → D s - π + , B s 0 → D s - π + π - π + ); 2) t-quark physics (t → Wb); and processes beyond the Standard Model - e.g., Higgs searching (MSSM) in the H → b bar b mode. All the above processes have the common feature - the presence of b-quarks (B-mesons). B hadrons of sufficiently high transverse momentum are characterized by a large mean value of distribution of the impact parameter with respect to the beam axis. That means events containing this kind of particles can be recognized and separated from non-long-lived background simply by cutting on the track's impact parameter. The upgraded CDF is equipped by the so-called Silicon Vertex Tracker (SVT), a unique electronic device for real time track reconstruction using the data from two CDF track detectors: the silicon strip vertex detector and drift chamber. The SVT is a level-2 trigger which within 10 μs reconstructs the tracks and obtains the transverse momentum (p t ), azimuthal angle (φ) and impact parameter (d) with 30 μm precision. The simulation studies show the background reduction by factor 1000 for B 0 π + π - by demand d > 100 μm for at least two tracks. This trigger is the first one of this sort ever used for hadron collider experiments: it enables to trigger on the secondary vertex, which opens the unique new opportunities in the heavy quark physics study. The basic logic, architecture and perspectives of SVT application are briefly described

  5. First-year experience with the Ba Bar silicon vertex tracker

    International Nuclear Information System (INIS)

    Bozzi, C.; Carassiti, V.; Cotta Ramusino, A.; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B.K.; Breon, A.B.; Clark, A.R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L.T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N.A.; Zizka, G.; Roberts, D.; Schieck, J.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P.F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Forti, F.; Gagliardi, D.; Giorgi, M.A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Neri, N.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Walsh, J.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Di Girolamo, B.; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Della Ricca, G.; Rashevskaia, I.; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E.P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A.M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Walkowiak, W.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Zobernig, H.

    2001-01-01

    Within its first year of operation, the BaBar Silicon Vertex Tracker (SVT) has accomplished its primary design goal, measuring the z vertex coordinate with sufficient accuracy as to allow the measurement of the time-dependent CP asymmetry in the neutral B-meson system. The SVT consists of five layers of double-sided, AC-coupled silicon-strip detectors of 300 μm thickness with a readout strip pitch of 50-210 μm and a stereo angle of 90 deg. between the strips on the two sides. Detector alignment and performance with respect to spatial resolution and efficiency in the reconstruction of single hits are discussed. In the day-to-day operation of the SVT, radiation damage and protection issues were of primary concern. The SVT is equipped with a dedicated system (SVTRAD) for radiation monitoring and protection, using reverse-biased photodiodes. The evolution of the SVTRAD thresholds on the tolerated radiation level is described. Results on the first-year radiation exposure as measured with the SVTRAD system and on the so far accumulated damage are presented. The implications of test-irradiation results and possible future PEP-II luminosity upgrades on the radiation limited lifetime of the SVT are discussed

  6. The ALEPH detector

    CERN Multimedia

    1988-01-01

    For detecting the direction and momenta of charged particles with extreme accuracy, the ALEPH detector had at its core a time projection chamber, for years the world's largest. In the foreground from the left, Jacques Lefrancois, Jack Steinberger, Lorenzo Foa and Pierre Lazeyras. ALEPH was an experiment on the LEP accelerator, which studied high-energy collisions between electrons and positrons from 1989 to 2000.

  7. The ALEPH event builder

    International Nuclear Information System (INIS)

    Benetta, R.; Marchioro, A.; McPherson, G.; Rueden, W. von

    1986-01-01

    The data acquisition system for the ALEPH experiment at CERN is organised in a hierarchical fashion within FASTBUS. The detector consists of a number of sub-detectors whose data must be individually assembled and formatted in real time. This task of 'event building' will be performed by a FASTBUS module in which a powerful microprocessor running high level software is embedded. Such a module, called an Event Builder, has been constructed by the ALEPH Online Group at CERN. (Auth.)

  8. Study of gluing and wire bonding for the Belle II Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Kang, K.H.; Hara, K.; Higuchi, T.; Hyun, H.J.; Jeon, H.B.; Joo, C.W.; Kah, D.H.; Kim, H.J.; Mibe, T.; Onuki, Y.; Park, H.; Rao, K.K.; Sato, N.; Shimizu, N.; Tanida, K.; Tsuboyama, T.; Uozumi, S.

    2014-01-01

    This paper describes an investigation into gluing and wire bonding for assembling the Silicon Vertex Detector (SVD) for the Belle II experiment at KEK in Japan. Optimizing the gluing of the silicon microstrip sensors, the support frame, and the readout flex cables is important for achieving the required mechanical precision. The wire bonding between the sensors and the readout electronic chips also needs special care to maximize the physics capability of the SVD. The silicon sensors and signal fan out flex circuits (pitch adapters) are glued and connected using wire bonding. We determine that gluing quality is important for achieving good bonding efficiency. The standard deviation in the glue thickness for the best result is measured to be 3.11 μm. Optimal machine parameters for wire bonding are determined to be 70 mW power, 20 gf force, and 20 ms for the pitch adapter and 60 mW power, 20 gf force, and 20 ms for the silicon strip sensors; these parameters provide a pull force of (10.92±0.72) gf. With these settings, 75% of the pitch adapters and 25% of the strip sensors experience the neck-broken type of break

  9. Thermal simulations of the new design for the BELLE silicon vertex detector

    International Nuclear Information System (INIS)

    Dragic, J.

    2000-01-01

    Full text: The experienced imperfections of the BELLE silicon vertex detector, SVD1 motioned the design of a new detector, SVD2, which targets on improving the main weaknesses encountered in the old design. In this report we focus on tile thermal aspects of the SVD2 ladder, whereby sufficient cooling of the detector is necessary in order to minimise the detector leakage currents. It is estimated that reducing the temperature of the silicon detector from 25 deg C to 15 deg C would result in a 50% reduction in leak current. Further, cooling the detector would help minimize mechanical stresses from the thermal cycling. Our task is to ensure that the heat generated by the readout chips is conducted down the SVD hybrid unit effectively, such that the chip and the hybrid temperature does not overbear the SVD silicon sensor temperature. We considered the performance of two materials to act as a heat spreading plate which is glued between the two hybrids in order to improve the heat conductivity of the hybrid unit, namely Copper and Thermal Pyrolytic Graphite (TPG). The effects of other ladder components were also considered in order to enhance the cooling of the silicon detectors. Finite element analysis with ANSYS software was used to simulate the thermal conditions of the SVD2 hybrid unit, in accordance with the baseline design for the mechanical structure of the ladder. It was found that Cu was a preferred material as it achieved equivalent silicon sensor cooling (3.6 deg C above cooling point), while its mechanical properties rendered it a lot more practical. Suppressing, the thermal path via a rib support block, by increasing its thermal resistivity, as well as increasing thermal conductivity of the ribs in the hybrid region, were deemed essential in the effective cooling of the silicon sensors

  10. The rad-hard readout system of the BaBar silicon vertex tracker

    Science.gov (United States)

    Re, V.; DeWitt, J.; Dow, S.; Frey, A.; Johnson, R. P.; Kroeger, W.; Kipnis, I.; Leona, A.; Luo, L.; Mandelli, E.; Manfredi, P. F.; Nyman, M.; Pedrali-Noy, M.; Poplevin, P.; Perazzo, A.; Roe, N.; Spencer, N.

    1998-02-01

    This paper discusses the behaviour of a prototype rad-hard version of the chip developed for the readout of the BaBar silicon vertex tracker. A previous version of the chip, implemented in the 0.8 μm HP rad-soft version has been thoroughly tested in the recent times. It featured outstanding noise characteristics and showed that the specifications assumed as target for the tracker readout were met to a very good extent. The next step was the realization of a chip prototype in the rad-hard process that will be employed in the actual chip production. Such a prototype is structurally and functionally identical to its rad-soft predecessor. However, the process parameters being different, and not fully mastered at the time of design, some deviations in the behaviour were to be expected. The reasons for such deviations have been identified and some of them were removed by acting on the points that were left accessible on the chip. Other required small circuit modifications that will not affect the production schedule. The tests done so far on the rad-hard chip have shown that the noise behaviour is very close to that of the rad-soft version, that is fully adequate for the vertex detector readout.

  11. Thin pixel development for the SuperB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F.; Neri, N. [INFN-Pisa and Universita di Pisa (Italy); and others

    2011-09-11

    The high luminosity SuperB asymmetric e{sup +}e{sup -} collider, to be built near the INFN National Frascati Laboratory in Italy, has been designed to deliver a luminosity greater than 10{sup 36} cm{sup -2} s{sup -1} with moderate beam currents and a reduced center of mass boost with respect to earlier B-Factories. An improved vertex resolution is required for precise time-dependent measurements and the SuperB Silicon Vertex Tracker will be equipped with an innermost layer of small radius (about 1.5 cm), resolution of 10-15{mu}m in both coordinates, low material budget (<1% X0), and able to withstand a background rate of several tens of MHz/cm{sup 2}. The ambitious goal of designing a thin pixel device with these stringent requirements is being pursued with specific R and D programs on different technologies: hybrid pixels, CMOS MAPS and pixel sensors developed with vertical integration technology. The latest results on the various pixel options for the SuperB SVT will be presented.

  12. Development of a silicon tracking and vertex detection system for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2007-01-01

    The compressed baryonic matter (CBM) experiment is a fixed-target heavy-ion spectrometer planned at the future international Facility for Antiproton and Ion Research (FAIR) at GSI. The CBM research program will explore the phase diagram of Quantum Chromo Dynamics (QCD) in the region of high baryon chemical potentials, in other words nuclear matter at extreme densities. Matter of such forms is believed to exist in the interior of neutron stars and in the cores of certain types of supernovae. In the laboratory, the dense nuclear medium is created in collisions of heavy-ion beams with nuclear targets. With beam intensities of up to 10 12 ions per pulse, beam energies up to 45 GeV/nucleon, and high availability the SIS-300 synchrotron of FAIR will offer unique opportunities for this research. The CBM detector will identify hadrons and leptons in nuclear collisions with up to 1000 charged particles at event rates up to 10 MHz. The experiment will be optimized in particular for the detection of rare probes, like hadronic decays of D mesons and leptonic decays of light vector mesons, that can yield information on the initial dense phase of the collisions. The challenge is to accomplish in this environment high-resolution charged particle tracking, momentum measurement and secondary vertex selection with a silicon tracking and vertex detection system, the central component of the CBM detector. The system requirements include a very low material budget, radiation tolerant sensors with high spatial resolution, and a fast readout compatible with high-level-only triggers. The paper discusses the concept of the silicon detection system, the optimization of its layout, and the R and D on micro-strip and pixel sensors as well as front-end electronics for the building blocks of the detector stations

  13. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    International Nuclear Information System (INIS)

    Kang, K.H.; Jeon, H.B.; Park, H.; Uozumi, S.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A.K.; Batignani, G.; Bauer, A.; Behera, P.K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.

    2016-01-01

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor “Origami” method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. - Highlights: • Gluing and wire binding for Belle-II SVD are studied. • Gluing robot and Origami module are used. • QA are satisfied in terms of the achieved bonding throughput and the pull force. • Result will be applied for L6 ladder assembly.

  14. A bonding study toward the quality assurance of Belle-II silicon vertex detector modules

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.H.; Jeon, H.B. [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Park, H., E-mail: sunshine@knu.ac.kr [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Uozumi, S. [RSRI, Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Adamczyk, K. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Aihara, H. [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Angelini, C. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Aziz, T.; Babu, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bacher, S. [H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342 (Poland); Bahinipati, S. [Indian Institute of Technology Bhubaneswar, Satya Nagar (India); Barberio, E.; Baroncelli, T. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia); Basith, A.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Batignani, G. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bauer, A. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Behera, P.K. [Indian Institute of Technology Madras, Chennai 600036 (India); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, 1050 Vienna (Austria); Bettarini, S. [Dipartimento di Fisica, Universitá di Pisa, I-56127 Pisa (Italy); INFN Sezione di Pisa, I-56127 Pisa (Italy); Bhuyan, B. [Indian Institute of Technology Guwahati, Assam 781039 (India); and others

    2016-09-21

    A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor “Origami” method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force. - Highlights: • Gluing and wire binding for Belle-II SVD are studied. • Gluing robot and Origami module are used. • QA are satisfied in terms of the achieved bonding throughput and the pull force. • Result will be applied for L6 ladder assembly.

  15. Design and tests of the silicon sensors for the ZEUS micro vertex detector

    International Nuclear Information System (INIS)

    Dannheim, D.; Koetz, U.; Coldewey, C.; Fretwurst, E.; Garfagnini, A.; Klanner, R.; Martens, J.; Koffeman, E.; Tiecke, H.; Carlin, R.

    2003-01-01

    To fully exploit the HERA-II upgrade, the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon μ-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 μm, with five intermediate strips (20 μm strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sensors with three different geometries have been produced by Hamamatsu Photonics K.K. Irradiation tests with reactor neutrons and 60 Co photons have been performed for a small sample of sensors. The results on neutron irradiation (with a fluence of 1x10 13 1 MeV equivalent neutrons/cm 2 ) are well described by empirical formulae for bulk damage. The 60 Co photons (with doses up to 2.9 kGy) show the presence of generation currents in the SiO 2 -Si interface, a large shift of the flatband voltage and a decrease of the hole mobility

  16. Mechanical and thermal behavior of a prototype support structure for a large silicon vertex detector (BCD)

    International Nuclear Information System (INIS)

    Mulderink, H.; Michels, N.; Joestlein, H.

    1989-01-01

    The Bottom Collider Detector (BCD) has been proposed as a device to study large numbers of events containing B mesons. To identify secondary vertices in hadronic events it will employ the most ambitious silicon strip tracking detector proposed to-date. This report will discuss results from measurements on a first mechanical/thermal model of the vertex detector support structure. The model that was built and used for the studies described here is made of brass. Brass was used because it is readily available and easily assembled by soft soldering, and, for appropriate thicknesses, it will behave similarly to the beryllium that will be used in the actual detector. The trough was built to full scale with the reinforcement webbing and the cooling channels in place. There were no detector modules in place. We plan, however, to install modules in the trough in the future. The purpose of the model was to address two concerns that have arisen about the proposed structure of the detector. The first is whether or not the trough will be stable enough. The trough must be very light in weight yet have a high degree of rigidity. Because of the 3m length of the detector there is question as to the stiffness of the proposed trough. The main concern is that there will sagging or movement of the trough in the middle region. The second problem is the heat load. There will be a great deal of heat generated by the electronics attached to the detector modules. So the question arises as to whether or not the silicon detectors can be kept cool enough so that when the actual experiment is run the readings will be valid. The heat may also induce motion by differential expansion of support components. 26 figs

  17. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    AKIBA,Y.

    2004-10-01

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--(a) Potential enhancement of charm production, (b) Open beauty production, (c) Flavor dependence of jet quenching and QCD energy loss, (d) Accurate charm reference for quarkonium, (e) Thermal dilepton radiation, (f) High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}, and (g) Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--(a) {Delta}G/G with charm, (b) {Delta}G/G with beauty, and (c) x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range.

  18. Recent developments on CMOS MAPS for the SuperB Silicon Vertex Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: rizzo@pi.infn.it [Università degli Studi di Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa (Italy); Comott, D. [Università degli Studi di Bergamo (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Università degli Studi di Bergamo (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia (Italy); Fabbri, L.; Gabrielli, A. [Università degli Studi di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Giorgi, F.; Pellegrini, G.; Sbarra, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A. [Università degli Studi di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Berra, A.; Lietti, D.; Prest, M. [Università dell' Insubria, Como (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca (Italy); Bevan, A. [School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS (United Kingdom); Wilson, F. [STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Beck, G. [School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS (United Kingdom); and others

    2013-08-01

    In the design of the Silicon Vertex Tracker for the high luminosity SuperB collider, very challenging requirements are set by physics and background conditions on its innermost Layer0: small radius (about 1.5 cm), resolution of 10–15μm in both coordinates, low material budget <1%X{sub 0}, and the ability to withstand a background hit rate of several tens of MHz/cm{sup 2}. Thanks to an intense R and D program the development of Deep NWell CMOS MAPS (with the ST Microelectronics 130 nm process) has reached a good level of maturity and allowed for the first time the implementation of thin CMOS sensors with similar functionalities as in hybrid pixels, such as pixel-level sparsification and fast time stamping. Further MAPS performance improvements are currently under investigation with two different approaches: the INMAPS CMOS process, featuring a quadruple well and a high resistivity substrate, and 3D CMOS MAPS, realized with vertical integration technology. In both cases specific features of the processes chosen can improve charge collection efficiency, with respect to a standard DNW MAPS design, and allow to implement a more complex in-pixel logic in order to develop a faster readout architecture. Prototypes of MAPS matrix, suitable for application in the SuperB Layer0, have been realized with the INMAPS 180 nm process and the 130 nm Chartered/Tezzaron 3D process and results of their characterization will be presented in this paper.

  19. Advances in the development of pixel detector for the SuperB Silicon Vertex Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Paoloni, E., E-mail: eugenio.paoloni@pi.infn.it [Università degli Studi di Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa (Italy); Comotti, D. [Università degli Studi di Bergamo (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Università degli Studi di Bergamo (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pavia (Italy); Fabbri, L.; Gabrielli, A. [Università degli Studi di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Giorgi, F.; Pellegrini, G.; Sbarra, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A. [Università degli Studi di Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy); Berra, A.; Lietti, D.; Prest, M. [Università dell' Insubria, Como (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca (Italy); Bevan, A. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); Wilson, F. [STFC Rutherford Appleton Laboratory, Harwell, Oxford Didcot OX11 0QX (United Kingdom); Beck, G. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); and others

    2013-12-11

    The latest advances in the design and characterization of several pixel sensors developed to satisfy the very demanding requirements of the innermost layer of the SuperB Silicon Vertex Tracker will be presented in this paper. The SuperB machine is an electron positron collider operating at the ϒ(4S) peak to be built in the very near future by the Cabibbo Lab consortium. A pixel detector based on extremely thin, radiation hard devices able to cope with rate in the tens of MHz/cm{sup 2} range will be the optimal solution for the upgrade of the inner layer of the SuperB tracking system. At present several options with different levels of maturity are being investigated to understand advantages and potential issues of the different technologies: thin hybrid pixels, Deep N-Well CMOS MAPS, INMAPS CMOS MAPS featuring a quadruple well and high resistivity substrates and CMOS MAPS realized with Vertical Integration technology. The newest results from beam test, the outcomes of the radiation damage studies and the laboratory characterization of the latest prototypes will be reported.

  20. Advances in the development of pixel detector for the SuperB Silicon Vertex Tracker

    International Nuclear Information System (INIS)

    Paoloni, E.; Comotti, D.; Manghisoni, M.; Re, V.; Traversi, G.; Fabbri, L.; Gabrielli, A.; Giorgi, F.; Pellegrini, G.; Sbarra, C.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.; Berra, A.; Lietti, D.; Prest, M.; Bevan, A.; Wilson, F.; Beck, G.

    2013-01-01

    The latest advances in the design and characterization of several pixel sensors developed to satisfy the very demanding requirements of the innermost layer of the SuperB Silicon Vertex Tracker will be presented in this paper. The SuperB machine is an electron positron collider operating at the ϒ(4S) peak to be built in the very near future by the Cabibbo Lab consortium. A pixel detector based on extremely thin, radiation hard devices able to cope with rate in the tens of MHz/cm 2 range will be the optimal solution for the upgrade of the inner layer of the SuperB tracking system. At present several options with different levels of maturity are being investigated to understand advantages and potential issues of the different technologies: thin hybrid pixels, Deep N-Well CMOS MAPS, INMAPS CMOS MAPS featuring a quadruple well and high resistivity substrates and CMOS MAPS realized with Vertical Integration technology. The newest results from beam test, the outcomes of the radiation damage studies and the laboratory characterization of the latest prototypes will be reported

  1. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT.

    Energy Technology Data Exchange (ETDEWEB)

    AKIBA,Y.

    2004-03-30

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--Potential enhancement of charm production; Open beauty production; Flavor dependence of jet quenching and QCD energy loss; Accurate charm reference for quarkonium; Thermal dilepton radiation; High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}; and Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--{Delta}G/G with charm; {Delta}G/G with beauty; and x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range. With the present PHENIX detector, heavy-quark production has been measured indirectly through the observation of single electrons. These measurements are inherently limited in accuracy by systematic uncertainties resulting from the large electron background from Dalitz decays and photon conversions. In particular, the statistical nature of the analysis does not allow for a model-independent separation of the charm and beauty contributions. The VTX detector will provide vertex tracking with a resolution of <50 {micro}m over a large coverage both in rapidity (|{eta}| < 1.2) and in azimuthal angle ({Delta}{phi} {approx

  2. The DELPHI Silicon Tracker in the global pattern recognition

    CERN Document Server

    Elsing, M

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI.

  3. The DELPHI Silicon Tracker in the global pattern recognition

    International Nuclear Information System (INIS)

    Elsing, M.

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI

  4. The Silicon Vertex Detector for b-tagging at Belle II

    International Nuclear Information System (INIS)

    Valentan, M.

    2013-01-01

    The Belle experiment at KEK (Tsukuba, Japan) was successfully operated from 1999 until 2010 and confirmed the theoretical predictions of CP violation. In order to increase the beam intensity, a major upgrade of the KEKB collider is foreseen until 2015. The final goal is to reach a luminosity of 8 x 10 35 cm -2 s -1 , which is about 40 times higher than the previous peak value. This also implies changes to the Belle detector and its innermost tracking subdetector, the SVD (Silicon Vertex Detector), in particular. The SVD will be completely replaced, as it had already operated close to its limits in the past. All other subsystems will also be upgraded. This leads to the new Belle II experiment. The aim of Belle II is to search for deviations from the Standard Model of particle physics by providing extremely precise measurements of rare particle decays, thus representing a complementary approach to the direct searches performed at high energy hadron colliders. The upgraded SuperKEKB machine will collide electrons and positrons at the center-of-mass energy of excited states of the Y-particle, which hereafter decays to a B meson and its anti-particle. The decay vertices of these mesons have to be precisely measured by the Belle II SVD, together with the PXD (PiXel Detector) and the CDC (Central Drift Chamber). This allows the measurement of time-dependent, mixing-induced CP asymmetry. In addition, the SVD measures vertex information in other decay channels involving D meson and tau lepton decays. Since the collision energy is quite low (around 10 GeV), the emerging particles have low momentum and are subject to strong multiple scattering when traversing material. Therefore, all sensors of the Belle II SVD have to be optimised in terms of material thickness, while preserving high signal yield and position measurement accuracy. This will be possible by the development of thin, double-sided silicon microstrip sensors. This PhD thesis includes the physics motivation for

  5. Recent progress in sensor- and mechanics-R and D for the Belle II Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, T., E-mail: thomas.bergauer@oeaw.ac.at [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Doljeschi, P.; Frankenberger, A.; Friedl, M.; Gfall, I.; Irmler, C. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Onuki, Y. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Smiljic, D. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Tsuboyama, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Valentan, M. [Institute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2013-08-01

    The Belle experiment at the KEKB electron/positron collider in Tsukuba (Japan) was successfully running for more than ten years. A major update of the machine to SuperKEKB is now foreseen until 2015, aiming a peak luminosity which is 40 times the peak value of the previous system. This also requires a redesign of the Belle detector (leading to Belle II) and especially its Silicon Vertex Detector (SVD), which surrounds the beam pipe. The future Belle II SVD will consist of four layers of double-sided silicon strip sensors based on 6 in. silicon wafers. Three of the four layers will be equipped with trapezoidal sensors in the slanted forward region. Moreover, two inner layers with pixel detectors based on DEPFET technology will complement the SVD as innermost detector. Since the KEKB-factory operates at relatively low energy, material inside the active volume has to be minimized in order to reduce multiple scattering. This can be achieved by arranging the sensors in the so-called “Origami chip-on-sensor concept”, and a very light-weight mechanical support structure made from carbon fiber reinforced Airex foam. Moreover, CO{sub 2} cooling for the front-end chips will ensure high efficiency at minimum material budget. In this paper, an overview of the future Belle II SVD design will be given, covering the silicon sensors, the readout electronics and the mechanics. A strong emphasis will be given to our R and D work on double-sided sensors where different p-stop layouts for the n-side of the detectors were compared. Moreover, this paper gives updated numbers for the mechanical dimensions of the ladders and their radii.

  6. Recent progress in sensor- and mechanics-R and D for the Belle II Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Bergauer, T.; Doljeschi, P.; Frankenberger, A.; Friedl, M.; Gfall, I.; Irmler, C.; Onuki, Y.; Smiljic, D.; Tsuboyama, T.; Valentan, M.

    2013-01-01

    The Belle experiment at the KEKB electron/positron collider in Tsukuba (Japan) was successfully running for more than ten years. A major update of the machine to SuperKEKB is now foreseen until 2015, aiming a peak luminosity which is 40 times the peak value of the previous system. This also requires a redesign of the Belle detector (leading to Belle II) and especially its Silicon Vertex Detector (SVD), which surrounds the beam pipe. The future Belle II SVD will consist of four layers of double-sided silicon strip sensors based on 6 in. silicon wafers. Three of the four layers will be equipped with trapezoidal sensors in the slanted forward region. Moreover, two inner layers with pixel detectors based on DEPFET technology will complement the SVD as innermost detector. Since the KEKB-factory operates at relatively low energy, material inside the active volume has to be minimized in order to reduce multiple scattering. This can be achieved by arranging the sensors in the so-called “Origami chip-on-sensor concept”, and a very light-weight mechanical support structure made from carbon fiber reinforced Airex foam. Moreover, CO 2 cooling for the front-end chips will ensure high efficiency at minimum material budget. In this paper, an overview of the future Belle II SVD design will be given, covering the silicon sensors, the readout electronics and the mechanics. A strong emphasis will be given to our R and D work on double-sided sensors where different p-stop layouts for the n-side of the detectors were compared. Moreover, this paper gives updated numbers for the mechanical dimensions of the ladders and their radii

  7. CATS: a cellular automaton for tracking in silicon for the HERA-B vertex detector

    International Nuclear Information System (INIS)

    Abt, I.; Emeliyanov, D.; Kisel, I.; Masciocchi, S.

    2002-01-01

    The new track reconstruction program CATS developed for the Vertex Detector System of the HERA-B experiment at DESY is presented. It employs a cellular automaton for track searching and the Kalman filter for track fitting. This results in a very fast algorithm that combines highly efficient track recognition with accurate and reliable track parameter estimation. To reduce the computational cost of the fit an optimized numerical implementation of the Kalman filter is used. Alternative approaches to the track reconstruction in the VDS are also discussed. Since 1999, after extensive tests on simulated data, CATS has been employed to reconstruct experimental data collected in HERA-B. Results regarding tracking performance, the accuracy of track parameter estimates and CPU time consumption are presented

  8. View of the ALEPH detector

    CERN Multimedia

    1996-01-01

    The inner workings of the ALEPH detector on the LEP accelerator can be seen. Cranes and hydraulics are located around the experimental cavern so that these sections can be accessed for upgrades and maintenance. The LEP accelerator and its four experiments studied high-energy collisions between electrons and positrons from 1989 to 2000.

  9. Operational Experience, Improvements, and Performance of the CDF Run II Silicon Vertex Detector

    CERN Document Server

    Aaltonen, T; Boveia, A.; Brau, B.; Bolla, G; Bortoletto, D; Calancha, C; Carron, S.; Cihangir, S.; Corbo, M.; Clark, D.; Di Ruzza, B.; Eusebi, R.; Fernandez, J.P.; Freeman, J.C.; Garcia, J.E.; Garcia-Sciveres, M.; Gonzalez, O.; Grinstein, S.; Hartz, M.; Herndon, M.; Hill, C.; Hocker, A.; Husemann, U.; Incandela, J.; Issever, C.; Jindariani, S.; Junk, T.R.; Knoepfel, K.; Lewis, J.D.; Martinez-Ballarin, R.; Mathis, M.; Mattson, M.; Merkel, P; Mondragon, M.N.; Moore, R.; Mumford, J.R.; Nahn, S.; Nielsen, J.; Nelson, T.K.; Pavlicek, V.; Pursley, J.; Redondo, I.; Roser, R.; Schultz, K.; Spalding, J.; Stancari, M.; Stanitzki, M.; Stuart, D.; Sukhanov, A.; Tesarek, R.; Treptow, K.; Wallny, R.; Worm, S.

    2013-01-01

    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, an...

  10. Aleph Field Solver Challenge Problem Results Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element method. Much work has gone into expanding the core solver capability to support enriched modeling consisting of multiple interacting fields, special boundary conditions and two-way interfacial coupling with particles modeled using Aleph's complementary particle-in-cell capability. This report provides quantitative evidence for correct implementation of Aleph's field solver via order- of-convergence assessments on a collection of problems of increasing complexity. It is intended to provide Aleph with a pedigree and to establish a basis for confidence in results for more challenging problems important to Sandia's mission that Aleph was specifically designed to address.

  11. Aleph

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-01-15

    This is the second in a series of articles on the four experiments at CERN's LEP electron-positron collider. Although only having completed several data-taking runs, these mighty collaborations have over ten years of history behind them. They involve over 2,000 physicists from CERN's Member States, plus Brazil, Bulgaria, Canada, China, Czechoslovakia, Finland, Hungary, India, Israel, Japan, Poland, the USA, the USSR, and the Joint Institute for Nuclear Research, Dubna.

  12. Evaluation of the data of the HERA-B vertex detector with regards to the physical properties of the applied silicon strip counters

    International Nuclear Information System (INIS)

    Wagner, W.

    1999-01-01

    The HERA-B experiment at the DESY laboratory in Hamburg is dedicated to measuring CP-violation in the decays of neutral B-mesons. The primary purpose of the experiment in the measurement of the CP-asymmetry in the decay channel B 0 → J/ψK S 0 . In order to identify the B-mesons and to determine the time-dependent asymmetry, the decay length anti Δ anti l of the B-mesons must be measured to an accuracy of σ Δl ≤ 500 μm. To achieve this aim, HERA-B has a vertex detector which is based on double-sided silicon strip detectors mounted in a Roman pot system. One important specification of the vertex detector is to allow independent tracking with an efficiency above 95%. Therefore, it is required to select hits on the strip detectors with an efficiency above 99% and optimize the suppression of noise. This thesis describes a detailed investigation of the behaviour of the silicon strip detectors used in the vertex detector. The first part presents measurements performed in the laboratory using a tunable infrared dye laser to simulate the passage of charged particles through the detector. This includes measurements of the charge division between adjacent readout strips and mapping of the detector depletion. The results of the measurements agree excellently with the predictions from a detailed model calculation carried out in this thesis. The second part of the thesis the analysis of data recorded with the HERA-B vertex detector during the commissioning run of spring 1999. The analysis focusses on the investigation of cluster shapes and cluster sizes. In particular, the dependence of these distributions from the selection cuts is analyzed. Additionally, the differences between the two detector designs used, p-spray and p-stop detectors with intermediate strip or without respectively, are worked out. The measured distributions agree very well with the predictions from a model calculation taking all relevant detector parameters into account. The results of the data

  13. Universal graphs at $\\aleph_{\\omega_1+1}$

    OpenAIRE

    Davis, Jacob

    2016-01-01

    Starting from a supercompact cardinal we build a model in which $2^{\\aleph_{\\omega_1}}=2^{\\aleph_{\\omega_1+1}}=\\aleph_{\\omega_1+3}$ but there is a jointly universal family of size $\\aleph_{\\omega_1+2}$ of graphs on $\\aleph_{\\omega_1+1}$. The same technique will work for any uncountable cardinal in place of $\\omega_1$.

  14. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC)

    International Nuclear Information System (INIS)

    Moreau, St.

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  15. Implementation of the ALEPH detector simulation code using UNIX with on-line graphics display

    International Nuclear Information System (INIS)

    Corden, M.J.; Georgiopoulos, C.H.; Mermikides, M.E.; Streets, J.

    1989-01-01

    GALEPH, the detector simulation program of the ALEPH detector was ported to an ETA10 running under ATandT UNIX System 5. The program on the ETA10 can be driven using standard UNIX socket connections between the ETA and a Silicon Graphics Iris-3020 workstation. The simulated data on the ETA are transferred, using the machine independent binary format EPIO, and displayed on the workstation using a locally developed software package for the visualization of the ALEPH detector. The client (Iris-3020) can also pass parameters to the server (ETA10) and thus interactively change the type of events produced using the same socket connection. (orig.)

  16. Vertex detectors

    International Nuclear Information System (INIS)

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation

  17. Prototype for the ALEPH Time Projection Chamber

    CERN Multimedia

    1980-01-01

    This is a prototype endplate piece constructed during R&D for the ALEPH Time Projection Chamber (TPC). ALEPH was one of 4 experiments at CERN's 27km Large Electron Positron collider (LEP) that ran from 1989 to 2000. ALEPH's TPC was a large-volume tracking chamber, 4.4 metres long and 3.6 metres in diameter - the largest TPC in existance at the time. This object is one of the endplates of a “Kind” sector, the smallest of the three types of sectors. The patterns etched into the copper form the cathode pads that measured particle track coordinates in the r-phi direction. It included a laser calibration system, a gating system to prevent space charge buildup, and a new radial pad geometry to improve resolution. the ALEPH TPC allowed for precise momentum measurements of the high-momentum particles from W and Z decays. The following institutes participated: CERN, Athens, Glasgow, Mainz, MPI Munich, INFN-Pisa, INFN-Trieste, Wisconsin.

  18. A time-based front-end ASIC for the silicon micro strip sensors of the P-bar ANDA Micro Vertex Detector

    International Nuclear Information System (INIS)

    Pietro, V. Di; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Stockmanns, T.; Zambanini, A.; Rivetti, A.; Rolo, M.D.

    2016-01-01

    The P-bar ANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA ( P-bar ANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels

  19. A time-based front-end ASIC for the silicon micro strip sensors of the bar PANDA Micro Vertex Detector

    Science.gov (United States)

    Di Pietro, V.; Brinkmann, K.-Th.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Zambanini, A.

    2016-03-01

    The bar PANDA (Antiproton Annihilation at Darmstadt) experiment foresees many detectors for tracking, particle identification and calorimetry. Among them, the innermost is the MVD (Micro Vertex Detector) responsible for a precise tracking and the reconstruction of secondary vertices. This detector will be built from both hybrid pixel (two inner barrels and six forward disks) and double-sided micro strip (two outer barrels and outer rim of the last two disks) silicon sensors. A time-based approach has been chosen for the readout ASIC of the strip sensors. The PASTA (bar PANDA Strip ASIC) chip aims at high resolution time-stamping and charge information through the Time over Threshold (ToT) technique. It benefits from a Time to Digital Converter (TDC) allowing a time bin width down to 50 ps. The analog front-end was designed to serve both n-type and p-type strips and the performed simulations show remarkable performances in terms of linearity and electronic noise. The TDC consists of an analog interpolator, a digital local controller, and a digital global controller as the common back-end for all of the 64 channels.

  20. OPAC systému ALEPH

    OpenAIRE

    Pačísková, Jana

    2010-01-01

    This bachelor thesis presents analysis and evaluation of online catalog of integrated library system ALEPH, which was made after studying Web OPAC manual of this system and gathering information from practical testing of catalogs of National Library of Czech Republic and Regional Library of Karlovy Vary. In the first chapter, there is introduced and defined Online Public Access Catalog and its main principles and also its history is presented. In next chapters, there are described features an...

  1. Cosmic Ray Results from the CosmoALEPH Experiment

    CERN Document Server

    Grupen, C; Jost, B; Maciuc, F; Luitz, S; Mailov, A; Müller, A S; Putzer, A; Rensch, B; Sander, H G; Schmeling, S; Schmelling, M; Tcaciuc, R; Wachsmuth, H; Ziegler, T; Zuber, K

    2008-01-01

    CosmoALEPH is an experiment operated in conjunction with the ALEPH detector. The ALEPH experiment took data from 1989 until the year 2000 at the Large Electron Positron Collider (LEP) at CERN. It provides, among others, high resolution tracking and calorimetry. CosmoALEPH used this e+e− detector for cosmic ray studies. In addition, six scintillator telescopes were installed in the ALEPH pit and the LEP tunnel. The whole experiment operated underground at a vertical depth of 320 meter water equivalent. Data from ALEPH and the scintillator telescopes provide informaton on the lateral distribution of energetic cosmic ray muons in extensive air showers. The decoherence curve of these remnant air shower muons is sensitive to the chemical composition of primary cosmic rays and to the interaction characteristics of energetic hadrons in the atmosphere. An attempt is made to extract the various interdependencies in describing the propagation of primary and secondary cosmic rays through the atmosphere and the rock ov...

  2. Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC

    International Nuclear Information System (INIS)

    Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

    1989-05-01

    Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs

  3. Measurements of hadronic B decays to excited-charm mesons, observation of a new charm resonance and construction of a silicon vertex detector for CLEO II.V

    Science.gov (United States)

    Nelson, Timothy Knight

    We describe measurements of the branching ratiosmath> B(B --->D*+p- p-total) =(29.2+/-4.5+/-3.8+/-3.1) ×10-4 B(B- --> D*+p- p -non- res)=( 9.7+/-3.6+/-1.5+/-1.9)× 10- 4 B(B---> D1(2420) 0p-) B(D1( 2420)0--> D*+p- )= (6.9+1.8-1.4 +/-1.1+/-0.4)× 10-4 B(B---> D01( j= / )p- ) B(D01 (j= /) -->D* +p-) = ( 10.6+/-1.9+/-1.7+/-2.3)× 10-4 B(B---> D*2( 2460)0p- )B(D *2( 2460)0--> D*+p- )= (3.1+/- 0.84+/-0.46+/-0.28)×10 -4, using data collected by the CLEO II detector. These measurements provide the first observation of the D01(j=/) with a mass and width of 2.461+0.053- 0.049GeV and 290+110 - 91MeV respectively. The mixing angles between the partial waves and strong phase shifts among the resonances are also measured assuming one possible parameterization of the amplitude. A method allowing full reconstruction of the signal without reconstruction of the D meson in the final state is used. The measurements are extracted using an four-dimensional, unbinned, maximum- likelihood fit to the distributions of the D*+p- mass and the decay angles. The primary element of the CLEO II.V upgrade was the installation of a three-layer Silicon Vertexing Detector. The design and construction of this detector are described in detail.

  4. Tagging b quark events in ALEPH with neural networks

    International Nuclear Information System (INIS)

    Proriol, J.; Jousset, J.; Guicheney, C.; Falvard, A.; Henrard, P.; Pallin, D.; Perret, P.; Brandl, B.

    1991-01-01

    Comparison of different methods to tag b quark events are presented: multilayered perceptron (MLP), Learning Vector Quantization (LVQ), discriminant analysis, combination of any two of the above methods. The sample events come from the ALEPH Monte Carlo and data, from the 1990 ALEPH runs. (authors) 12 refs., 16 figs., 5 tabs

  5. Design and development of a vertex reconstruction for the CMS (Compact Muon Solenoid) data. Study of gaseous and silicon micro-strips detectors (MSGC); Conception d'un algorithme de reconstruction de vertex pour les donnees de CMS. Etude de detecteurs gazeux (MSGC) et silicium a micropistes

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, St

    2002-12-01

    The work presented in this thesis has contributed to the development of the Compact Muon Solenoid detector (CMS) that will be installed at the future Large Hadron Collider (LHC) which will start running in summer 2007. This report is organised in three parts: the study of gaseous detectors and silicon micro-strips detectors, and a development of a software for the reconstruction and analysis of CMS data in the framework of ORCA. First, the micro-strips gaseous detectors (MSGC) study was on the ultimate critical irradiation test before their substitution in the CMS tracker. This test showed a really small number of lost anodes and a stable signal to noise ratio. This test proved that the described MSGC fulfill all the requirements to be integrated in the CMS tracker. The following contribution described a study of silicon micro-strips detectors and its electronics exposed to a 40 MHz bunched LHC like beam. These tests indicated a good behaviour of the data acquisition and control system. The signal to noise ratio, the bunch crossing identification and the cluster finding efficiency had also be analysed. The last study concern the design and the development of an ORCA algorithm dedicates to secondary vertex reconstruction. This iterative algorithm aims to be use for b tagging. This part analyse also primary vertex reconstruction in events without and with pile up. (author)

  6. A cut-away diagram of the ALEPH detector

    CERN Multimedia

    1988-01-01

    The ALEPH detector ran on the LEP accelerator between 1989 and 2000. Detectors are made up of many layers to detect types of particles or to analyse different aspects of the results of a particle collision.

  7. Vertex reconstruction in CMS

    International Nuclear Information System (INIS)

    Chabanat, E.; D'Hondt, J.; Estre, N.; Fruehwirth, R.; Prokofiev, K.; Speer, T.; Vanlaer, P.; Waltenberger, W.

    2005-01-01

    Due to the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ('vertex finding') and an estimation problem ('vertex fitting'). Starting from least-squares methods, robustifications of the classical algorithms are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels

  8. Vertex Reconstruction in CMS

    CERN Document Server

    Chabanat, E; D'Hondt, J; Vanlaer, P; Prokofiev, K; Speer, T; Frühwirth, R; Waltenberger, W

    2005-01-01

    Because of the high track multiplicity in the final states expected in proton collisions at the LHC experiments, novel vertex reconstruction algorithms are required. The vertex reconstruction problem can be decomposed into a pattern recognition problem ("vertex finding") and an estimation problem ("vertex fitting"). Starting from least-square methods, ways to render the classical algorithms more robust are discussed and the statistical properties of the novel methods are shown. A whole set of different approaches for the vertex finding problem is presented and compared in relevant physics channels.

  9. Tracking and vertexing with the ATLAS detector at the LHC

    International Nuclear Information System (INIS)

    Hirsch, F.

    2011-01-01

    The Inner Detector of the ATLAS experiment at the Large Hadron Collider at CERN contains three tracking systems: The silicon Pixel Detector, the Silicon Microstrip Tracker and the Transition Radiation Tracker. In combination these detectors provide excellent track and vertex reconstruction efficiencies and resolutions. This paper describes studies which show the performance of track and vertex reconstruction on data collected at 7 TeV center-of-mass energy.

  10. ALEPH Tau Spectral Functions and QCD

    CERN Document Server

    Davier, M; Zhang, Z; Davier, Michel; Hoecker, Andreas; Zhang, Zhiqing

    2007-01-01

    Hadronic $\\tau$ decays provide a clean laboratory for the precise study of quantum chromodynamics (QCD). Observables based on the spectral functions of hadronic $\\tau$ decays can be related to QCD quark-level calculations to determine fundamental quantities like the strong coupling constant, quark and gluon condensates. Using the ALEPH spectral functions and branching ratios, complemented by some other available measurements, and a revisited analysis of the theoretical framework, the value $\\asm = 0.345 \\pm 0.004_{\\rm exp} \\pm 0.009_{\\rm th}$ is obtained. Taken together with the determination of \\asZ from the global electroweak fit, this result leads to the most accurate test of asymptotic freedom: the value of the logarithmic slope of $\\alpha_s^{-1}(s)$ is found to agree with QCD at a precision of 4%. The value of \\asZ obtained from $\\tau$ decays is $\\asZ = 0.1215 \\pm 0.0004_{\\rm exp} \\pm 0.0010_{\\rm th} \\pm 0.0005_{\\rm evol} = 0.1215 \\pm 0.0012$.

  11. Study of heavy quarks production with ALEPH

    International Nuclear Information System (INIS)

    Perret, P.

    1990-05-01

    The first data collected by the ALEPH detector at LEP have provided the matter of this study concerning the measure of the partial widths of the Z boson decay into heavy quarks from an analysis of inclusive leptons spectrum. After a presentation of the expected Z decay width into bantib, we explain the phase during which the b quark becomes observable as a beautiful hadron and discuss the present model validity describing this transition by a comparison with the data. Come afterwards the beautiful mesons semileptonic decays description. A more specific work, the possibility of testing the B mesons semileptonic decay model with the D * polarisation measure, is also presented. By fitting the momentum-transverse momentum spectrum of the electrons observed in the hadronic Z decays, we measure the partial widths. We extract Z → bantib, first in an ample dominated by leptons coming from b decays, and then Z → bantib and Z → cantic simultaneously by a global fit of the electron spectrum, including also a determination of the heavy quarks fragmentation parameters in the Peterson framework. We have measured the ratio of the b partial width and the total hadronic width (0.212 ± 0.024) and that of the c (0.182 ± 0.070) in good agreement with the Standard Model. Statistic and systematic errors have comparable values [fr

  12. Performance of the LHCb Vertex Locator

    CERN Document Server

    Bjørnstad, Pal Marius

    2011-01-01

    The Vertex Locator is a silicon microstrip detector which provides the LHCb experiment with high precision measurements of tracks and decay vertices. The VELO sensors are exposed to a radiation dose of (2.5-6.5) x 10$^{13}n_{eq}$/cm$^2$ per fb$^{-1}$ in the area which is most irradiated. A best hit resolution of 4$mu$ is obtained for angled tracks, in agreement with expectations. The VELO has a vertex position resolution down to 11$mu$m in the transverse direction and an excellent momentum dependent performance.

  13. CCD-based vertex detectors

    CERN Document Server

    Damerell, C J S

    2005-01-01

    Over the past 20 years, CCD-based vertex detectors have been used to construct some of the most precise 'tracking microscopes' in particle physics. They were initially used by the ACCMOR collaboration for fixed target experiments in CERN, where they enabled the lifetimes of some of the shortest-lived charm particles to be measured precisely. The migration to collider experiments was accomplished in the SLD experiment, where the original 120 Mpixel detector was later upgraded to one with 307 Mpixels. This detector was used in a range of physics studies which exceeded the capability of the LEP detectors, including the most precise limit to date on the Bs mixing parameter. This success, and the high background hit densities that will inevitably be encountered at the future TeV-scale linear collider, have established the need for a silicon pixel-based vertex detector at this machine. The technical options have now been broadened to include a wide range of possible silicon imaging technologies as well as CCDs (mon...

  14. The design and performance of the ZEUS micro vertex detector

    International Nuclear Information System (INIS)

    Polini, A.; Brock, I.; Goers, S.

    2007-08-01

    In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using 2.9 m 2 of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed. (orig.)

  15. Measurement of the triple gauge-boson couplings {gamma}WW and ZWW in ALEPH and at LEP; Mesure des couplages {gamma}WW et ZWW dans ALEPH et au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Jezequel, St

    2005-03-15

    This document deals with the couplings between the W boson and Z and gamma particles. WWZ and WW{gamma} vertex are predicted by the electroweak theory based on the symmetry group SU(2){sub L}*U(1){sub Y}, their existence is confirmed by the measurement of the production cross-section of W pairs at LEP. The effective values of the couplings are modified by the introduction of standard model particle loops at the vertex level, the impact on the coupling value is assessed to reach 10{sup -3}. These loops can also include beyond-the-standard-model particles, their impact is in the magnitude order of 10{sup -3} for most models. The fully description of these loops requires the values of 14 complex parameters whose measurement will give information about the existence of new particles. Nevertheless the number of events at LEP is not sufficient to measure all the parameters simultaneously. As a consequence the analysis is limited to the 3 most promising parameters: g{sub 1}{sup Z}, {kappa}{sub {gamma}} and {lambda}{sub {gamma}}. At LEP the events sensitive to these couplings are the final states WW and We{nu}. Their differential and total production cross-sections are the variables used to compute the value of couplings. The uncertainties on these measurements mainly stem from the angular distribution analysis of the final state WW {yields} {nu}qq. All the data collected by the ALEPH experiment has been processed. The combination of the measurement of the 4 LEP experiments (ALEPH, DELPHI, L3 and OPAL) leads to an uncertainty cut by half: g{sub 1}{sup Z} = 0.991 (+0.022-0.021); {kappa}{sub {gamma}} 0.984 (+0.042-0.047) and {lambda}{sub {gamma}} = -0.016 (+0.021-0.023). (A.C.)

  16. ALEPH: Decay of Z0 to two jets

    CERN Multimedia

    1991-01-01

    This track is an example of real data collected from the ALEPH detector on the Large Electron-Positron (LEP) collider at CERN. Here a Z0 particle is produced in the collision between an electron and positron, which then decays into a quark-antiquark pair. The quark pair is seen as a pair of hadron jets in the detector.

  17. Hadronic final state interactions at ALEPH and OPAL

    CERN Document Server

    Ghete, V.M.

    2000-01-01

    The studies of Fermi-Dirac correlations of $\\Lambda\\Lambda$ and Bose-Einstein correlations and colour reconnection in $\\mathrm{W}$-pairs decays performed by the ALEPH collaboration in $\\mathrm{e^+e^-}$ annihilation at LEP are presented. The OPAL analysis of Bose-Einstein correlations in

  18. The LHCb VERTEX LOCATOR performance and VERTEX LOCATOR upgrade

    International Nuclear Information System (INIS)

    Rodríguez Pérez, P

    2012-01-01

    LHCb is an experiment dedicated to the study of new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is the silicon detector surrounding the LHCb interaction point. The detector operates in a severe and highly non-uniform radiation environment. The small pitch and analogue readout result in a best single hit precision of 4 μm. The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz event rate. The vertex detector will have to cope with radiation levels up to 10 16 1 MeVn eq /cm 2 , more than an order of magnitude higher than those expected at the current experiment. A solution is under development with a pixel detector, based on the Timepix/Medipix family of chips with 55 x 55 μm pixels. In addition a micro-strip solution is also under development, with finer pitch, higher granularity and lower mass than the current detector. The current status of the VELO will be described together with recent testbeam results.

  19. Measurement of the triple gauge-boson couplings γWW and ZWW in ALEPH and at LEP

    International Nuclear Information System (INIS)

    Jezequel, St.

    2005-03-01

    This document deals with the couplings between the W boson and Z and gamma particles. WWZ and WWγ vertex are predicted by the electroweak theory based on the symmetry group SU(2) L *U(1) Y , their existence is confirmed by the measurement of the production cross-section of W pairs at LEP. The effective values of the couplings are modified by the introduction of standard model particle loops at the vertex level, the impact on the coupling value is assessed to reach 10 -3 . These loops can also include beyond-the-standard-model particles, their impact is in the magnitude order of 10 -3 for most models. The fully description of these loops requires the values of 14 complex parameters whose measurement will give information about the existence of new particles. Nevertheless the number of events at LEP is not sufficient to measure all the parameters simultaneously. As a consequence the analysis is limited to the 3 most promising parameters: g 1 Z , κ γ and λ γ . At LEP the events sensitive to these couplings are the final states WW and Weν. Their differential and total production cross-sections are the variables used to compute the value of couplings. The uncertainties on these measurements mainly stem from the angular distribution analysis of the final state WW → νqq. All the data collected by the ALEPH experiment has been processed. The combination of the measurement of the 4 LEP experiments (ALEPH, DELPHI, L3 and OPAL) leads to an uncertainty cut by half: g 1 Z = 0.991 (+0.022-0.021); κ γ 0.984 (+0.042-0.047) and λ γ = -0.016 (+0.021-0.023). (A.C.)

  20. Vertical integration technologies for vertex detectors

    International Nuclear Information System (INIS)

    Ratti, L.

    2011-01-01

    This work is focused on the use of vertical integration (3D) technologies in the design of hybrid or monolithic pixel detectors in view of applications to silicon vertex trackers (SVTs) at the future high luminosity colliders. After a short introduction on the specifications of next-generation SVTs, the paper will discuss the general features of 3D microelectronic processes and the benefits they can provide to the design of pixel detectors for high energy physics experiments.

  1. Testing the electroweak Standard Model through the study of beauty with ALEPH

    International Nuclear Information System (INIS)

    Henrard, P.

    1992-01-01

    Among all the hadronic decay channels of the Z, the b anti-b final state offers the opportunity to study the radiative corrections, not only to the gauge boson propagator but also to the Z b anti b vertex. This additional information allows to discriminate the effects of the top and Higgs mass from the effect of a possible Z-Z' mixing as predicted in some Grand Unified inspired theories. It is important in this context to measure the ratio R(b) = Γ Z→ba nti b/Γ Z→had with a relative accuracy of at most 1 pc. Two methods have been developed within ALEPH at LEP, to tag the Z → b anti b decays, which both are using the fact that the b quark is heavy: one of the two tags is based on the momentum and transverse momentum of the leptons (electrons and muons) produced in the semileptonic decays of the B-hadrons, and the other one is based on the shape of the hadronic events

  2. Precise measurement of tau lifetime in ALEPH experiment at the LEP; Mesure precise de la duree de vie du tau dans l`experience ALEPH au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Park, I

    1995-02-01

    A new method is presented for the measurement of the tau lifetime using tau decays to hadrons. Precise measurements ({sigma} {approx} 20{mu}m) of impact parameters (d{sub o} and z{sub o}) of charged tracks using full vertex detector informations allow the reconstruction of the 3-dimensional point of minimum approach of the track to the beam axis. On the other hand, it is shown that an axis perpendicular to the tau axis can be precisely determined ({sigma} {approx} 10 mrad) in the hadronic-hadronic {tau}{sup +}{tau}{sup -} decay events using kinematics and the back-to-back nature of tau pairs in e{sup +}e{sup -} colliders. Combination of both quantities yields a generalized IPS relation in 3D space which is not affected by the beam size nor by the tau direction uncertainty. The experimental resolution can be fitted together with lifetime due to the small smearing. The method allows, therefore, a self-consistent and self-calibrating analysis of tau lifetime. The method has good stability against systematical uncertainties like tracking resolution, non-gaussian tails, etc...The method has been applied to the data collected by the ALEPH detector at LEP in 1992. From 2840 {tau}{sup +} + {sup {tau}-} {yields} hadron + hadron (1-1) decay events and 794 hadron + 3 hadrons (1-3) decay events, the tau lifetimes of 292.9 {+-} 5.9 {+-} 2.7fs and 284.6 {+-} 11.9 {+-} 5.1fs are obtained respectively. The combined {tau} lifetimes is 290.8 {+-} 5.3 {+-} 2.7fs. Statistical uncertainty corresponds to 1.1/{radical}N{sub {tau}}{tau}. This result has low statistical correlation with other precision methods. (author). 70 refs., 80 figs., 21 tabs., 7 ann.

  3. ALEPH: Decay of Z0 to two jets

    CERN Multimedia

    1991-01-01

    This track is an example of real data collected from the ALEPH detector on the Large Electron-Positron (LEP) collider at CERN, which ran between 1989 and 2000. Here a Z0 particle is produced in the collision between an electron and positron, which then decays into a quark-antiquark pair. The quark pair is seen as a pair of hadron jets in the detector.

  4. ALEPH: Decay of Z0 to two jets

    CERN Multimedia

    1991-01-01

    This track is an example of real data collected from the ALEPH detector on the Large Electron-Positron (LEP) collider at CERN, which ran between 1989 and 2000. Here a Z0 particle in the collision between an electron and positron, which then decays into a quark-antiquark pair. The quark pair is seen as a pair of hadron jets in the detector.

  5. Charm and beauty decays in the ALEPH experiment

    International Nuclear Information System (INIS)

    Boucrot, J.

    1992-05-01

    Results of the ALEPH experiment at LEP are presented on charm and beauty decays, from data taken in 1990 and 1991. Several exclusive channels of charm and beauty mesons are seen. Evidence is given for the production of beauty baryons from correlations between a high Pt lepton and a Λ 0 or a Λ c baryon. Finally, first evidence is given for the production of the strange B meson, from Ds-lepton correlations. (author) 7 refs., 7 figs

  6. Charm and beauty decays in the ALEPH experiment

    International Nuclear Information System (INIS)

    Boucrot, J.

    1992-01-01

    Results of the ALEPH experiment at LEP are presented on charm and beauty decays, from data taken in 1990 and 1991. Several exclusive channels of charm and beauty mesons are seen. Evidence is given for the production of beauty baryons from correlations between a high Pt lepton and a Λ 0 or a Λ c baryon. Finally, first evidence is given for the production of the strange B meson, from Ds-lepton correlations. (author) 7 refs.; 7 figs

  7. Vertex routing models

    International Nuclear Information System (INIS)

    Markovic, D; Gros, C

    2009-01-01

    A class of models describing the flow of information within networks via routing processes is proposed and investigated, concentrating on the effects of memory traces on the global properties. The long-term flow of information is governed by cyclic attractors, allowing to define a measure for the information centrality of a vertex given by the number of attractors passing through this vertex. We find the number of vertices having a nonzero information centrality to be extensive/subextensive for models with/without a memory trace in the thermodynamic limit. We evaluate the distribution of the number of cycles, of the cycle length and of the maximal basins of attraction, finding a complete scaling collapse in the thermodynamic limit for the latter. Possible implications of our results for the information flow in social networks are discussed.

  8. Jet Vertex Charge Reconstruction

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    A newly developed algorithm called the jet vertex charge tagger, aimed at identifying the sign of the charge of jets containing $b$-hadrons, referred to as $b$-jets, is presented. In addition to the well established track-based jet charge determination, this algorithm introduces the so-called \\emph{jet vertex charge} reconstruction, which exploits the charge information associated to the displaced vertices within the jet. Furthermore, the charge of a soft muon contained in the jet is taken into account when available. All available information is combined into a multivariate discriminator. The algorithm has been developed on jets matched to generator level $b$-hadrons provided by $t\\bar{t}$ events simulated at $\\sqrt{s}$=13~TeV using the full ATLAS detector simulation and reconstruction.

  9. The ARGUS vertex trigger

    International Nuclear Information System (INIS)

    Koch, N.; Kolander, M.; Kolanoski, H.; Siegmund, T.; Bergter, J.; Eckstein, P.; Schubert, K.R.; Waldi, R.; Imhof, M.; Ressing, D.; Weiss, U.; Weseler, S.

    1995-09-01

    A fast second level trigger has been developed for the ARGUS experiment which recognizes tracks originating from the interaction region. The processor compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks stored in random access memories. The masks which are fully defined in three dimensions are able to reject tracks originating in the wall of the narrow beampipe of 10.5 mm radius. (orig.)

  10. Biricodar. Vertex Pharmaceuticals.

    Science.gov (United States)

    Dey, Saibal

    2002-05-01

    Vertex is developing biricodar as a chemosensitizing agent designed to restore the effectiveness of chemotherapeutic agents in tumor multidrug resistance. By November 1998, phase II trials had commenced for biricodar, in combination with chemotherapy, for five common cancer indications: breast, ovarian, soft-tissue sarcomas, small cell lung cancer and prostate cancer. Phase II trials were ongoing in January 2002. By March 2000, Vertex was the sole developer of biricodar, as an agreement made in 1996 with BioChem Pharma (now Shire Pharmaceuticals), for the development and marketing of biricodar in Canada was terminated. Biricodar is the free base compound, which also has a citrate salt analog known as VX-710-3. Vertex has published three patents, WO-09615101, WO-09636630 and WO-09736869, disclosing derivatives of biricodar that are claimed for the treatment of multidrug resistant protein and P-glycoprotein-mediated multidrug resistant tumors. In January 2002, a Banc of America analyst report forecast that biricodar had a 30% chance of reaching the market with a launch date in the second half of 2005, with peak sales estimated at $250 million.

  11. Studies of quantum chromodynamics with the ALEPH detector

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lohse, T; Lutters, G; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Becker, U; Buchmüller, O L; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Barczewski, T; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmidt, H; Steeg, F; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Dawson, I; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1998-01-01

    Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.

  12. Precise measurement of tau lifetime in ALEPH experiment at the LEP

    International Nuclear Information System (INIS)

    Park, I.

    1995-02-01

    A new method is presented for the measurement of the tau lifetime using tau decays to hadrons. Precise measurements (σ ∼ 20μm) of impact parameters (d o and z o ) of charged tracks using full vertex detector informations allow the reconstruction of the 3-dimensional point of minimum approach of the track to the beam axis. On the other hand, it is shown that an axis perpendicular to the tau axis can be precisely determined (σ ∼ 10 mrad) in the hadronic-hadronic τ + τ - decay events using kinematics and the back-to-back nature of tau pairs in e + e - colliders. Combination of both quantities yields a generalized IPS relation in 3D space which is not affected by the beam size nor by the tau direction uncertainty. The experimental resolution can be fitted together with lifetime due to the small smearing. The method allows, therefore, a self-consistent and self-calibrating analysis of tau lifetime. The method has good stability against systematical uncertainties like tracking resolution, non-gaussian tails, etc...The method has been applied to the data collected by the ALEPH detector at LEP in 1992. From 2840 τ + + τ- → hadron + hadron (1-1) decay events and 794 hadron + 3 hadrons (1-3) decay events, the tau lifetimes of 292.9 ± 5.9 ± 2.7fs and 284.6 ± 11.9 ± 5.1fs are obtained respectively. The combined τ lifetimes is 290.8 ± 5.3 ± 2.7fs. Statistical uncertainty corresponds to 1.1/√N τ τ. This result has low statistical correlation with other precision methods. (author). 70 refs., 80 figs., 21 tabs., 7 ann

  13. Developments in solid state vertex detectors

    International Nuclear Information System (INIS)

    Damerell, C.J.S.

    1984-12-01

    Since the discovery of the J/psi in November 1974, there has been a strong interest in the physics of particles containing higher-flavour quarks (charm, bottom, top, ...). High precision vertex detectors can be used to identify the decay products of parent particles which have lifetimes of the order 10 -13 s. The paper surveys the progress which is being made in developing silicon detectors with the necessary tracking precision (< approx. 5 μm) to be used for this purpose in fixed target experiments and also in colliders such as SLC and LEP. (author)

  14. Vertex algebras and algebraic curves

    CERN Document Server

    Frenkel, Edward

    2004-01-01

    Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...

  15. Preserving access to ALEPH computing environment via virtual machines

    International Nuclear Information System (INIS)

    Coscetti, Simone; Boccali, Tommaso; Arezzini, Silvia; Maggi, Marcello

    2014-01-01

    The ALEPH Collaboration [1] took data at the LEP (CERN) electron-positron collider in the period 1989-2000, producing more than 300 scientific papers. While most of the Collaboration activities stopped in the last years, the data collected still has physics potential, with new theoretical models emerging, which ask checks with data at the Z and WW production energies. An attempt to revive and preserve the ALEPH Computing Environment is presented; the aim is not only the preservation of the data files (usually called bit preservation), but of the full environment a physicist would need to perform brand new analyses. Technically, a Virtual Machine approach has been chosen, using the VirtualBox platform. Concerning simulated events, the full chain from event generators to physics plots is possible, and reprocessing of data events is also functioning. Interactive tools like the DALI event display can be used on both data and simulated events. The Virtual Machine approach is suited for both interactive usage, and for massive computing using Cloud like approaches.

  16. The design and performance of the ZEUS micro vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Polini, A. [Bologna Univ. (Italy)]|[INFN Bologna (Italy); Brock, I.; Goers, S. [Bonn Univ. (DE). Physikalisches Institut] (and others)

    2007-08-15

    In order to extend the tracking acceptance, to improve the primary and secondary vertex reconstruction and thus enhancing the tagging capabilities for short lived particles, the ZEUS experiment at the HERA Collider at DESY installed a silicon strip vertex detector. The barrel part of the detector is a 63 cm long cylinder with silicon sensors arranged around an elliptical beampipe. The forward part consists of four circular shaped disks. In total just over 200k channels are read out using 2.9 m{sup 2} of silicon. In this report a detailed overview of the design and construction of the detector is given and the performance of the completed system is reviewed. (orig.)

  17. Preliminary studies for the LHCb vertex detector vacuum system

    CERN Document Server

    Doets, M; Van Bakel, N; Van den Brand, J F J; van den Brand, Jo

    2000-01-01

    We lay down some general considerations which will serve as a starting point for design studies of a realistic LHCb vertex detector vacuum system. Based on these considerations, we propose a design strategy and identify issues to be further studied. In particular we try to outline some boundary conditions imposed by LHC and LHCb on the vacuum system. We discuss two possibilities for the LHCb vertex detector vacuum system. The preferred strategy uses a differentially pumped vacuum system with the silicon detectors separated from the beam line vacuum. Some estimations on static vacuum pressures and gas flows are presented.

  18. First Results from the LHCb Vertex Locator

    CERN Multimedia

    Borghi, S

    2010-01-01

    LHCb is a dedicated experiment to study new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The beauty and charm hadrons are identified through their flight distance in the Vertex Locator (VELO), and hence the detector is critical for both the trigger and offline physics analyses. The VELO is the silicon detector surrounding the interaction point, and is the closest LHC vertex detector to the interaction point, located only 7 mm from the LHC beam during normal operation. The detector will operate in an extreme and highly non-uniform radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n+-on-n 300 micron thick half disc sensors with R-measuring and Phi-measuring micro-strip geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 $\\mu$m. The detector is also equipped with one n-on-p module. The detectors are operated in vacuum and a...

  19. The three-photon vertex

    International Nuclear Information System (INIS)

    Delbourgo, R.

    1976-01-01

    Owing to weak interactions, the three-photon vertex is non-zero. From gauge invariance and symmetry requirements, it is proved that the C = -1P = - 1 vertex amplitudes are at least of order q 7 in the limit of soft photon momentum q and that if any two photons are placed on mass shell the form factors vanish identically. (author)

  20. Topologische Verzweigungsverhltnisse des $\\tau$-Leptons bei ALEPH

    CERN Document Server

    Schmidt, M

    1996-01-01

    The inclusive production of the omega(782) vector meson in hadronic Z decays is studied and compared to model predictions. The analysis is based on 1,005,535 hadronic Z decays recorded by the ALEPH detector in the 1992 and 1993 running periods of LEP. Decays of the omega -> pi^+ pi^- pi^0 are reconstructed for x_p > 0.05, where x_p = p/p_{beam}. For this momentum range the omega production rate is measured to be 0.633 +- 0.025(stat) +- 0.056(sys) per event. An extrapolation to x_p = 0 yields a total production rate of 1.061 +- 0.041(stat) +- 0.093(sys) +- 0.042(extrap) per event.

  1. A study of composite models at LEP with ALEPH

    International Nuclear Information System (INIS)

    Badaud, F.

    1992-04-01

    Tests of composite models are performed in e + e - collisions in the vicinity of the Z 0 pole using the ALEPH detector. Two kinds of substructure effects are searched for: deviations of differential cross section for reactions e + e - → l + l - and e + e - → γ γ from standard model predictions, and direct search for excited neutrino. A new interaction, parametrized by a 4-fermion contact term, cell, is studied in lepton pair production reactions, assuming different chiralities of the currents. Lower limits on the compositeness scale Λ are obtained by fitting model predictions to the data. They are in the range from 1 to a few TeV depending on model and lepton flavour. Researches for the lightest excited particle that could be the excited neutrino, are presented

  2. Track and Vertex Reconstruction in the ATLAS Experiment

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2012-01-01

    The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increas- ing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors provides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are cru- cial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.

  3. Track and Vertex Reconstruction in the ATLAS Experiment

    CERN Document Server

    Lacuesta, V; The ATLAS collaboration

    2012-01-01

    The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increas- ing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors pro- vides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are cru- cial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.

  4. Track and vertex reconstruction in the ATLAS experiment

    International Nuclear Information System (INIS)

    Lacuesta, V

    2013-01-01

    The track and vertex reconstruction algorithms of the ATLAS Inner Detector have demonstrated excellent performance in the early data from the LHC. However, the rapidly increasing number of interactions per bunch crossing introduces new challenges both in computational aspects and physics performance. The combination of both silicon and gas based detectors provides high precision impact parameter and momentum measurement of charged particles, with high efficiency and small fake rate. Vertex reconstruction is used to identify with high efficiency the hard scattering process and to measure the amount of pile-up interactions, both aspects are crucial for many physics analyses. The performance of track and vertex reconstruction efficiency and resolution achieved in the 2011 and 2012 data-taking period are presented.

  5. The STAR Vertex Position Detector

    Energy Technology Data Exchange (ETDEWEB)

    Llope, W.J., E-mail: llope@rice.edu [Rice University, Houston, TX 77005 (United States); Zhou, J.; Nussbaum, T. [Rice University, Houston, TX 77005 (United States); Hoffmann, G.W. [University of Texas, Austin, TX 78712 (United States); Asselta, K. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brandenburg, J.D.; Butterworth, J. [Rice University, Houston, TX 77005 (United States); Camarda, T.; Christie, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Crawford, H.J. [University of California, Berkeley, CA 94720 (United States); Dong, X. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Engelage, J. [University of California, Berkeley, CA 94720 (United States); Eppley, G.; Geurts, F. [Rice University, Houston, TX 77005 (United States); Hammond, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Judd, E. [University of California, Berkeley, CA 94720 (United States); McDonald, D.L. [Rice University, Houston, TX 77005 (United States); Perkins, C. [University of California, Berkeley, CA 94720 (United States); Ruan, L.; Scheblein, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-09-21

    The 2×3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2×19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event “start time” needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ∼100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ∼1 cm.

  6. Study of the Bs meson and measurement of its half-life with the ALEPH detector

    International Nuclear Information System (INIS)

    Duarte, H.

    1994-01-01

    The B s 0 meson is the bound state of a quark anti-quark pair made up of a beauty particle and a strange particle. In the first chapter we review different experimental results leading to the existence of B S 0 meson and we draw the theoretical framework of the concept of beauty particles. The second chapter deals with the probability of the formation of a meson containing a strange quark during the fragmentation. This chapter also contains a re-analysis of the whole data constraining the mixing parameter B s 0 -B s 0 -bar. The relevancy of the analysis relies on the assumption that the B s 0 meson decays only into one D s , one lepton and one neutrino. The ALEPH detector is described in chapter 3, this four-pi, multi-particle detector is installed on the e + e - LEP (Large Electron Positron Collider). The signature selected for the measurement of the half-life is the combination of one D s in the decay modes: φπ, K *0 K with a lepton having opposite charge. This measurement implies the knowledge of the B s 0 momentum and of its flight length. In order to assess the momentum of the neutrino, a technique of measuring missing energy is presented in the chapter 4. The selection of B s 0 events is detailed in the chapter 5. A cutting limit on the energy of B s 0 based on the missing energy is used to deduce the production rate of B s 0 . In the chapter 6 we present the measurement of the half-life of B s 0 , the method used for the reconstruction of decay vertices and of the event main vertex is detailed. The validity of the method has been tested on Monte-Carlo simulations. The final result concerning the measurement of the half-life is: τ(B s )=[1.92(+0.45-0.35)±0.04] ps [fr

  7. Vertex detectors: The state of the art and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, C.J.S. [Rutherford Appleton Laboratory, Didcot (United Kingdom)

    1997-01-01

    We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD`s and APS`s) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now.

  8. Vertex detectors: The state of the art and future prospects

    International Nuclear Information System (INIS)

    Damerell, C.J.S.

    1997-01-01

    We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD's and APS's) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now

  9. Study of Tau lepton decays with ALEPH detector at LEP

    International Nuclear Information System (INIS)

    Zhang, Z.

    1992-04-01

    Using the data accumulated at LEP in 1989 and 1990 with the ALEPH detector, the inclusive and exclusive branching ratios of the τ lepton have been measured assuming lepton universality in Z 0 decays. The inclusive branching fractions for the τ decay into one, three, and five charged particles have been determined to be (85.45±0.97)%, (14.35±0.48)%, and (0.10± 0.05)% respectively, in agreement with the world averages. New undetected decay modes are determined to have a branching fraction of less than 2.1% at 95% CL. The measured branching ratios for quasi-exclusive channels are slightly larger than, but consistent with the world averages, except for the modes τ→3 hadrons+ν τ and τ→hadron+2π 0 ν τ , which are significantly larger. These latter branching ratios have been found to be (9.5±0.7)% and (10.2±1.1)%, respectively. The sum of all the measured quasi-exclusive branching ratios is (100.4±1.8)%. A fully exclusive analysis of modes with neutral pions shows no evidence for new photonic decay modes with a branching fraction limit of 3.4% at 95% CL

  10. A search for GMSB sleptons with lifetime at ALEPH

    International Nuclear Information System (INIS)

    Jones, Luke Timothy

    2002-01-01

    A search for slepton production via the decay of pair-produced neutralinos has been performed under the assumption that the sleptons have observable lifetime in the detector before each decaying to a lepton and a gravitino. Sleptons, neutralinos and gravitinos are particles predicted by the theory of supersymmetry, and are the supersymmetric partners of the Standard Model leptons, neutral bosons and of the graviton respectively. The search was performed in 628 pb -1 of data taken by the ALEPH detector at LEP centre-of-mass energies from 189 to 208 GeV. It was motivated by general predictions of Gauge-Mediated Supersymmetry Breaking (GMSB) models in which the lightest supersymmetric particle is always the gravitino. No evidence of the process was found. Model-independent cross-section limits are quoted as a function of neutralino mass, slepton mass and slepton lifetime in the case that the neutralino branching ratios to each slepton are equal at 1/3 (the so-called slepton co-NLSP scenario) and in the case that the neutralino decays exclusively to the stau (the stau-NLSP scenario). Excluded regions in the neutralino-stau mass plane are shown for four gravitino masses under model-specific assumptions. (author)

  11. A search for GMSB sleptons with lifetime at ALEPH

    CERN Document Server

    Jones, Luke Timothy

    2001-01-01

    A search for slepton production via the decay of pair-produced neutralinos has been performed under the assumption that the sleptons have observable lifetime in the detector before each decaying to a lepton and a gravitino. Sleptons, neutralinos and gravitinos are particles predicted by the theory of supersymmetry, and are the supersymmetric partners of the Standard Model leptons, neutral bosons and of the graviton respectively. The search was performed in 628 inverse picobarns of data taken by the ALEPH detector at LEP centre-of-mass energies from 189 to 208 GeV. It was motivated by general predictions of Gauge-Mediated Supersymmetry Breaking (GMSB) models in which the lightest supersymmetric particle is always the gravitino. No evidence of the process was found. Model-independent cross-section limits are quoted as a function of neutralino mass, slepton mass and slepton lifetime in the case that the neutralino branching ratios to each slepton are equal at one third (the so-called slepton co-NLSP scenario) an...

  12. Development and validation of ALEPH Monte Carlo burn-up code

    International Nuclear Information System (INIS)

    Stankovskiy, A.; Van den Eynde, G.; Vidmar, T.

    2011-01-01

    The Monte-Carlo burn-up code ALEPH is being developed in SCK-CEN since 2004. Belonging to the category of shells coupling Monte Carlo transport (MCNP or MCNPX) and 'deterministic' depletion codes (ORIGEN-2.2), ALEPH possess some unique features that distinguish it from other codes. The most important feature is full data consistency between steady-state Monte Carlo and time-dependent depletion calculations. Recent improvements of ALEPH concern full implementation of general-purpose nuclear data libraries (JEFF-3.1.1, ENDF/B-VII, JENDL-3.3). The upgraded version of the code is capable to treat isomeric branching ratios, neutron induced fission product yields, spontaneous fission yields and energy release per fission recorded in ENDF-formatted data files. The alternative algorithm for time evolution of nuclide concentrations is added. A predictor-corrector mechanism and the calculation of nuclear heating are available as well. The validation of the code on REBUS experimental programme results has been performed. The upgraded version of ALEPH has shown better agreement with measured data than other codes, including previous version of ALEPH. (authors)

  13. The Mark III vertex chamber

    International Nuclear Information System (INIS)

    Adler, J.; Bolton, T.; Bunnell, K.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 μm at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 μm using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin

  14. A search for Higgs bosons h and A of a two doublet model is performed using ALEPH; Recherche des bosons de Higgs neutres d`un modele a deux doublets avec le detecteur ALEPH au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Simion, S.

    1995-04-01

    A search of Higgs bosons h and A of a two-doublet model is performed. We analyse the data collected by ALEPH till 1993, corresponding to a luminosity of 63.4 pb{sup 1} at the Z peak. The {tau}{sup +}{tau}{sup -}q anti q and b anti b b anti b final states are mainly considered. The section criteria are available, thus improving the sensitivity of the analysis. Assuming m{sub h} = m{sub A} = 45 GeV, an upper limit of O.324 pb on the {pi}{sup +}{pi}{sup -}q anti q cross section is derived. The four-b final state selection is based on b-hadron lifetime, using the two-dimensional readout from the vertex detector. We analyse 1.53 million hadronic Z`s without any evidence for a signal (313 events seen, 270+-17 expected from the background, with 24% efficiency for m{sub h} = m{sub A} = 45 GeV.). Searches for the standard Model Higgs boson are interpreted in the framework of a two-doublet model. The decay of the lightest scalar h into a AA pair is also considered. No signal is found and the regions excluded in the (m{sub h} -m{sub A}) and (m{sub A} - tan {beta}) planes of the MSSM are presented. Influence of stop mixing is discussed. Assuming m{sub top} 170 GeV, universal quark masses m{sub Q} = 1 TeV, no stop mixing, and tan {beta} > 1, a 95% lower limit on m{sub A} equal to 45.5 GeV is derived. (authors). 60 refs., 93 figs., 15 tabs.

  15. Performance-Optimization Studies for the CLIC Vertex Detector

    CERN Document Server

    AUTHOR|(CDS)2085406; Roloff, Philipp

    The Compact Linear Collider (CLIC) is a mutli-TeV linear e+e- collider currently under development at CERN. In the post-LHC era, CLIC will allow to explore a great number of searches for New Physics such as the precise measurements of the Higgs boson. In this master thesis, we mainly focus on the development and the improvement of the vertex detector. The vertex detector requires excellent spatial resolution, low mass, geometrical coverage down to low polar angles, high rate readout for the sensors and new cooling technologies for heat removal. Considering such requirements, the CLIC vertex detector technology is far more advanced in comparison to the technologies currently used in particle physics. This project consists of two main parts. In the first part, we study the vertex detector and optimize its geometry for the use of airflow cooling techniques and also for flavor tagging. In the second part, we implement a decoder which can respect the timing constraints for the CLICpix chip, a silicon pixel detect...

  16. The cosmic ray muon spectrum and charge ratio in CosmoALEPH

    CERN Document Server

    Zimmermann, D; Kotaidis, V; Luitz, S; Mailov, A; Müller, A S; Putzer, A; Rensch, B; Sander, H G; Schmeling, S; Schmelling, M; Wachsmuth, H W; Tcaciuc, R; Ziegler, T; Zuber, K

    2004-01-01

    The ALEPH experiment at the LEP e**+e**- storage ring at CERN has been used to measure the momentum spectrum of cosmic ray muons. ALEPH is located at a vertical depth of 320 m.w.e. underground close to the Jura mountains. The high resolution of the time projection chamber (TPC) of ALEPH allows to reconstruct muon tracks with momenta up to the TeV region. The measured muon momentum spectrum and the charge ratio in the range from 80 to 2500 GeV are presented. After corrections for energy loss in the overburden the sea level muon spectrum at nearly vertical incidence is obtained. The experimental data are compared to theoretical expectations and results from other experiments.

  17. Connections for Small Vertex Models

    Indian Academy of Sciences (India)

    This paper is a first attempt at calssifying connections on small vertex models i.e., commuting squares of the form displayed in (1.2) below. ... obtain necessary conditions for two such `model connections' in (2, ) to be ... Current Issue : Vol.

  18. A Macdonald refined topological vertex

    Science.gov (United States)

    Foda, Omar; Wu, Jian-Feng

    2017-07-01

    We consider the refined topological vertex of Iqbal et al (2009 J. High Energy Phys. JHEP10(2009)069), as a function of two parameters ≤ft\\lgroup x, y \\right\\rgroup , and deform it by introducing the Macdonald parameters ≤ft\\lgroup q, t \\right\\rgroup , as in the work of Vuletić on plane partitions (Vuletić M 2009 Trans. Am. Math. Soc. 361 2789-804), to obtain ‘a Macdonald refined topological vertex’. In the limit q → t , we recover the refined topological vertex of Iqbal et al and in the limit x → y , we obtain a qt-deformation of the original topological vertex of Aganagic et al (2005 Commun. Math. Phys. 25 425-78). Copies of the vertex can be glued to obtain qt-deformed 5D instanton partition functions that have well-defined 4D limits and, for generic values of ≤ft\\lgroup q, t\\right\\rgroup , contain infinite-towers of poles for every pole present in the limit q → t .

  19. Vertex algebras and mirror symmetry

    International Nuclear Information System (INIS)

    Borisov, L.A.

    2001-01-01

    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)

  20. Vertex operators and Jordan fields

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1988-01-01

    The construction of Lie algebras in terms of Jordan algebras generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. (author) [pt

  1. Process to process communication over Fastbus in the data acquisition system of the ALEPH TPC

    International Nuclear Information System (INIS)

    Lusiani, A.

    1994-01-01

    The data acquisition system of the ALEPH TPC includes a VAX/VMS computer cluster and 36 intelligent Fastbus modules (ALEPH TPPS) running the OS9 multitasking real-time operating system. Dedicated software has been written in order to reliably exchange information over Fastbus between the VAX/VMS cluster and the 36 TPPs to initialize and co-ordinate the microprocessors, and to monitor and debug their operation. The functionality and the performance of this software will be presented together with an overview of the application that rely on it

  2. Technologies for Future Vertex and Tracking Detectors at CLIC

    CERN Document Server

    Spannagel, Simon

    2018-01-01

    CLIC is a proposed linear e$^{+}$e$^{-}$ collider with center-of-mass energies of up to 3 TeV. Its main objectives are precise top quark and Higgs boson measurements, as well as searches for Beyond Standard Model physics. To meet the physics goals, the vertex and tracking detectors require not only a spatial resolution of a few micrometers and a very low material budget, but also timing capabilities with a precision of a few nanoseconds to allow suppression of beam-induced backgrounds. Different technologies using hybrid silicon detectors are explored for the vertex detectors, such as dedicated readout ASICs, small-pitch active edge sensors as well as capacitively coupled High-Voltage CMOS sensors. Monolithic sensors are considered as an option for the tracking detector, and a prototype using a CMOS process with a high-resistivity epitaxial layer is being designed. Different designs using a silicon-on-insulator process are under investigation for both vertex and tracking detector. All prototypes are evaluate...

  3. Charged Particle Tracking and Vertex Detection Group summary report

    International Nuclear Information System (INIS)

    Hanson, G.; Meyer, D.

    1984-09-01

    Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tracking Group studied radiation damage and rate limitations to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10 33 cm -2 sec -1 ; however, the presently designed electronics for silicon strip vertex detectors can withstand a luminosity of only 10 31 cm -2 sec -1 . Wire chambers at a radius of less than about 25 cm can withstand a luminosity of less than or equal to 10 32 cm -2 sec -1 only. Actual tracking and pattern recognition in central tracking chambers at a luminosity of 10 33 cm -2 sec -1 will be very difficult because of multiple interactions within the resolving time of the chambers; detailed simulations are needed in order to decide whether tracking is indeed possible at this luminosity. Scintillating glass fibers are an interesting possibility both for vertex detectors and for central trackers, but much research and development is still needed both on the fibers themselves and on the readout

  4. Status and prospects of the LHCb Vertex Locator

    CERN Document Server

    van Beuzekom, Martin

    2007-01-01

    The Vertex Locator of the LHCb experiment is a dedicated subdetector for the reconstruction of primary and secondary vertices in b-hadron decays. The vertex detector features two halves with 21 modules each, mounted on retractable bases. Each module consists of two half-disk silicon micro-strip sensors measuring hits in R and $\\Phi$ coordinates. The strip pitch ranges from 40 to about 100 $\\mu$m. A vacuum boy with a 300 $\\mu$m thick aluminium foil shields the sensors from the wakefields of the proton beams which are passing at a distance of 8 mm from the active area of the sensors. Because of the harsh non-uniform radiation environment we opted for n-on-n strips in diffusion oxygenated float zone silicon. The current status of the vertex detector, which has recently entered the commissioning phase, will be discussed. Given the limited lifetime of the detector due to the radiation environment, developments for a detector replacement with n-on-p type modules have already started. Possible upgrade scenarios fo...

  5. OPAL Central Detector (Including vertex, jet and Z chambers)

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the different parts of the tracking system. (This piece includes the vertex, jet and Z chambers) In the picture above, the central detector is the piece being removed to the right.

  6. Silicon Tracking Upgrade at CDF

    International Nuclear Information System (INIS)

    Kruse, M.C.

    1998-04-01

    The Collider Detector at Fermilab (CDF) is scheduled to begin recording data from Run II of the Fermilab Tevatron in early 2000. The silicon tracking upgrade constitutes both the upgrade to the CDF silicon vertex detector (SVX II) and the new Intermediate Silicon Layers (ISL) located at radii just beyond the SVX II. Here we review the design and prototyping of all aspects of these detectors including mechanical design, data acquisition, and a trigger based on silicon tracking

  7. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  8. A nonperturbative fermion-boson vertex

    International Nuclear Information System (INIS)

    Bashir, A.; Raya, A.

    2002-01-01

    We calculate the massive fermion propagator at one-loop order in QED3. The Ward-Takahashi identity (WTI) relates the propagator to the vertex. This allows us to split the vertex into its longitudinal and transverse parts. The former is fixed by the WTI. Following the scheme of Ball and Chiu later modified by Kizilersue et. al., we calculate the full vertex at one-loop order. A mere subtraction of the longitudinal part of the vertex gives us the transverse part. The α dependence in the transverse vertex can be eliminated by making use of the perturbative expressions for the wavefunction renormalization function and the mass function of complicated arguments of the incoming and outgoing fermion momenta. This leads us to a vertex which is nonperturbative in nature. We also calculate an effective vertex for which the arguments of the unknown functions have no angular dependence, making it particularly suitable for numerical studies of dynamical symmetry breaking

  9. STAR Vertex Detector Upgrade Development

    International Nuclear Information System (INIS)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu, Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-01

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented

  10. The OPAL vertex drift chamber

    International Nuclear Information System (INIS)

    Carter, J.R.; Elcombe, P.A.; Hill, J.C.; Roach, C.M.; Armitage, J.C.; Carnegie, R.K.; Estabrooks, P.; Hemingway, R.; Karlen, D.; McPherson, A.; Pinfold, J.; Roney, J.M.; Routenburg, P.; Waterhouse, J.; Hargrove, C.K.; Klem, D.; Oakham, F.G.; Carter, A.A.; Jones, R.W.L.; Lasota, M.M.B.; Lloyd, S.L.; Pritchard, T.W.; Wyatt, T.R.

    1990-01-01

    A high precision vertex drift chamber has been installed in the OPAL experiment at LEP. The design of the chamber and the associated readout electronics is described. The performance of the system has been studied using cosmic ray muons and the results of these studies are presented. A space resolution of 50 μm in the drift direction is obtained using the OPAL central detector gas mixture at 4 bar. (orig.)

  11. Lectures on the Topological Vertex

    CERN Document Server

    Mariño, M

    2008-01-01

    In this lectures, I will summarize the approach to Gromov–Witten invariants on toric Calabi–Yau threefolds based on large N dualities. Since the large N duality/topological vertex approach computes Gromov–Witten invariants in terms of Chern–Simons knot and link invariants, Sect. 2 is devoted to a review of these. Section 3 reviews topological strings and Gromov–Witten invariants, and gives some information about the open string case. Section 4 introduces the class of geometries we will deal with, namely toric (noncompact) Calabi–Yau manifolds, and we present a useful graphical way to represent these manifolds which constitutes the geometric core of the theory of the topological vertex. Finally, in Sect. 5, we define the vertex and present some explicit formulae for it and some simple applications. A brief Appendix contains useful information about symmetric polynomials. It has not been possible to present all the relevant background and physical derivations in this set of lectures. However, these...

  12. Electronics cooling of Phenix multiplicity and vertex detector

    International Nuclear Information System (INIS)

    Chen, Z.; Gregory, W.S.

    1996-08-01

    The Multiplicity and Vertex Detector (MVD) uses silicon strip sensors arranged in two concentric barrels around the beam pipe of the PHENIX detector that will be installed at Brookhaven National Laboratory. Each silicon sensor is connected by a flexible kapton cable to its own front-end electronics printed circuit board that is a multi-chip module or MCM. The MCMs are the main heat source in the system. To maintain the MVD at optimized operational status, the maximum temperature of the multi-chip modules must be below 40 C. Using COSMOS/M HSTAR for the Heat Transfer analysis, a finite element model of a typical MCM plate was created to simulate a 9m/s airflow and 9m/s mixed flow composed of 50% helium and 50% air respectively, with convective heat transfer on both sides of the plate. The results using a mixed flow of helium and air show that the average maximum temperature reached by the MCMs is 37.5 C. The maximum temperature which is represented by the hot spots on the MCM is 39.43 C for the helium and air mixture which meets the design temperature requirement 40 C. To maintain the Multiplicity and Vertex Detector at optimized operational status, the configuration of the plenum chamber, the power dissipated by the silicon chips, the fluid flow velocity and comparison on the MCM design parameters will be discussed

  13. The LHCb vertex locator and level-1 trigger

    CERN Document Server

    Dijkstra, H

    2000-01-01

    LHCb will study CP violation and other rare phenomena in B-decays with a forward detector at the LHC. One of the challenges is to design a fast and efficient trigger. The design of the silicon Vertex Locator (VELO) has been driven by the requirements of one of the most selective triggers of the experiment. The VELO trigger is designed to work at an input rate of 1 MHz. The requirements and implementation of the VELO and the associated trigger are summarised, followed by a description of an upgrade which improves the trigger performance significantly. (3 refs).

  14. Vertex trigger implementation using shared memory technology

    CERN Document Server

    Müller, H

    1998-01-01

    The implementation of a 1 st level vertex trigger for LHC-B is particularly difficult due to the high ( 1 MHz ) input data rate. With ca. 350 silicon hits per event, both the R strips and Phi strips of the detectors produce a total of ca 2 Gbyte/s zero-suppressed da ta.1 note succeeds to the ideas to use R-phi coordinates for fast integer linefinding in programmable hardware, as described in LHB note 97-006. For an implementation we propose a FPGA preprocessing stage operating at 1 MHz with the benefit to substantially reduce the amount of data to be transmitted to the CPUs and to liberate a large fraction of CPU time. Interconnected via 4 Gbit/s SCI technol-ogy 2 , a shared memory system can be built which allows to perform data driven eventbuilding with, or without preprocessing. A fully data driven architecture between source modules and destination memories provides a highly reliable memory-to-memory transfer mechanism of very low latency. The eventbuilding is performed via associating events at the sourc...

  15. Performance of the LHCb Vertex Locator

    CERN Document Server

    Aaij, R.; Akiba, K.; Alexander, M.; Ali, S.; Appleby, R.B.; Artuso, M.; Bates, A.; Bay, A.; Behrendt, O.; Benton, J.; van Beuzekom, M.; Bjornstad, P.M.; Bogdanova, G.; Borghi, S.; Borgia, A.; Bowcock, T.J.V.; van den Brand, J.; Brown, H.; Buytaert, J.; Callot, O.; Carroll, J.; Casse, G.; Collins, P.; De Capua, S.; Doets, M.; Donleavy, S.; Dossett, D.; Dumps, R.; Eckstein, D.; Eklund, L.; Farinelli, C.; Farry, S.; Ferro-Luzzi, M.; Frei, R.; Garofoli, J.; Gersabeck, M.; Gershon, T.; Gong, A.; Gong, H.; Gordon, H.; Haefeli, G.; Harrison, J.; Heijne, V.; Hennessy, K.; Hulsbergen, W.; Huse, T.; Hutchcroft, D.; Jaeger, A.; Jalocha, P.; Jans, E.; John, M.; Keaveney, J.; Ketel, T.; Korolev, M.; Kraan, M.; Lastovicka, T.; Lafferty, G.; Latham, T.; Lefeuvre, G.; Leflat, A.; Liles, M.; van Lysebetten, A.; MacGregor, G.; Marinho, F.; McNulty, R.; Merkin, M.; Moran, D.; Mountain, R.; Mous, I.; Mylroie-Smith, J.; Needham, M.; Nikitin, N.; Noor, A.; Oblakowska-Mucha, A.; Papadelis, A.; Pappagallo, M.; Parkes, C.; Patel, G.D.; Rakotomiaramanana, B.; Redford, S.; Reid, M.; Rinnert, K.; Rodrigues, E.; Saavedra, A.F.; Schiller, M.; Schneider, O.; Shears, T.; Silva Coutinho, R.; Smith, N.A.; Szumlak, T.; Thomas, C.; van Tilburg, J.; Tobin, M.; Velthuis, J.; Verlaat, B.; Viret, S.; Volkov, V.; Wallace, C.; Wang, J.; Webber, A.; Whitehead, M.; Zverev, E.

    2014-01-01

    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 microns is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means ...

  16. Vertex and Tracker Research and Development for CLIC

    CERN Document Server

    Munker, M

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e− Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2%X0 per layer in the vertex detector and 1 - 2%X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D; effort. Various hybrid planar sensor assemblies with a pixel size of 25 × 25 μm2 and 55 × 55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm- 500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  17. Data driven processor 'Vertex Trigger' for B experiments

    International Nuclear Information System (INIS)

    Hartouni, E.P.

    1993-01-01

    Data Driven Processors (DDP's) are specialized computation engines configured to solve specific numerical problems, such as vertex reconstruction. The architecture of the DDP which is the subject of this talk was designed and implemented by W. Sippach and B.C. Knapp at Nevis Lab. in the early 1980's. This particular implementation allows multiple parallel streams of data to provide input to a heterogenous collection of simple operators whose interconnection form an algorithm. The local data flow control allows this device to execute algorithms extremely quickly provided that care is taken in the layout of the algorithm. I/O rates of several hundred megabytes/second are routinely achieved thus making DDP's attractive candidates for complex online calculations. The original question was open-quote can a DDP reconstruct tracks in a Silicon Vertex Detector, find events with a separated vertex and do it fast enough to be used as an online trigger?close-quote Restating this inquiry as three questions and describing the answers to the questions will be the subject of this talk. The three specific questions are: (1) Can an algorithm be found which reconstructs tracks in a planar geometry and no magnetic field; (2) Can separated vertices be recognized in some way; (3) Can the algorithm be implemented in the Nevis-UMass and DDP and execute in 10-20 μs?

  18. String bits and the spin vertex

    OpenAIRE

    Jiang, YunfengInstitut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France; Kostov, Ivan(Institut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France); Petrovskii, Andrei(Institut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France); Serban, Didina(Institut de Physique Théorique, DSM, CEA, URA2306 CNRS Saclay, F-91191 Gif-sur-Yvette, France)

    2015-01-01

    We initiate a novel formalism for computing correlation functions of trace operators in the planar N=4 SYM theory. The central object in our formalism is the spin vertex, which is the weak coupling analogy of the string vertex in string field theory. We construct the spin vertex explicitly for all sectors at the leading order using a set of bosonic and fermionic oscillators. We prove that the vertex has trivial monodromy, or put in other words, it is a Yangian invariant. Since the monodromy o...

  19. The OPAL vertex detector prototype

    International Nuclear Information System (INIS)

    Roney, J.M.; Armitage, J.C.; Carnegie, R.K.; Giles, G.L.; Hemingway, R.J.; McPherson, A.C.; Pinfold, J.L.; Waterhouse, J.; Godfrey, L.; Hargrove, C.K.

    1989-01-01

    The prototype test results of a high resolution charged particle tracking detector are reported. The detector is designed to measure vertex topologies of particles produced in the e + e - collisions of the OPAL experiment at LEP. The OPAL vertex detector is a 1 m long, 0.46 m diameter cylindrical drift chamber consisting of an axial and stereo layer each of which is divided into 36 jet cells. A prototype chamber containing four axial and two stereo cells was studied using a pion test beam at CERN. The studies examined the prototype under a variety of operating conditions. An r-Φ resolution of 60 μm was obtained when the chamber was operated with argon (50%)-ethane (50%) at 3.75 bar, and when CO 2 (80%)-isobutane (20%) at 2.5 bar was used a 25 μm resolution was achieved. A z measurement using end-to-end time difference has a resolution of 3.5 cm. The details of these prototype studies are discussed in this paper. (orig.)

  20. Lateral distribution of cosmic ray muons underground. Results from the CosmoALEPH experiment

    International Nuclear Information System (INIS)

    Tcaciuc, R.

    2006-01-01

    The CosmoALEPH experiment, located underground at the LEP e + e - storage ring at CERN at a depth of 320 m water equivalent, was used to study the chemical composition of primary cosmic rays up to 10 PeV energies from the measurement of high energy muons, created in extensive air showers by interactions of primary nuclei in the atmosphere. The Time Projection Chamber (TPC) and the Hadron Calorimeter of the ALEPH detector and six scintillator stations located at distances up to 1 km from each other were used to analyse the decoherence curve, multiplicity and transverse momentum distributions of energetic cosmic muons. The experimental data were compared with predictions from different Monte Carlo (MC) models and mass composition approaches. From a comparison between the measured decoherence distribution with CosmoALEPH and the MC predicted decoherence curves for proton, helium and iron, a primary composition of (77±11) % protons and (23±11) % iron nuclei with a χ 2 -probability of 84 % was determined, based on the predictions of the VENUS model with the constant mass composition approach. The analysis of the decoherence curve, with consideration of correlations between the measured CosmoALEPH parameters, leads to a composition of (88±8) % protons and (12±8) % iron nuclei for cosmic rays with a χ 2 -probability of 53 %. The absolute comparison between the measured multiplicity and transverse momentum distributions in the TPC and those predicted by different Monte Carlo models results also in a dominant light composition. The experimental data are in a good agreement with MC data lying between proton and helium primaries. The results obtained for the primary composition of cosmic rays up to the knee region are consistent with the results from other experiments. (orig.)

  1. Lateral distribution of cosmic ray muons underground. Results from the CosmoALEPH experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tcaciuc, R.

    2006-07-01

    The CosmoALEPH experiment, located underground at the LEP e{sup +}e{sup -} storage ring at CERN at a depth of 320 m water equivalent, was used to study the chemical composition of primary cosmic rays up to 10 PeV energies from the measurement of high energy muons, created in extensive air showers by interactions of primary nuclei in the atmosphere. The Time Projection Chamber (TPC) and the Hadron Calorimeter of the ALEPH detector and six scintillator stations located at distances up to 1 km from each other were used to analyse the decoherence curve, multiplicity and transverse momentum distributions of energetic cosmic muons. The experimental data were compared with predictions from different Monte Carlo (MC) models and mass composition approaches. From a comparison between the measured decoherence distribution with CosmoALEPH and the MC predicted decoherence curves for proton, helium and iron, a primary composition of (77{+-}11) % protons and (23{+-}11) % iron nuclei with a {chi}{sup 2}-probability of 84 % was determined, based on the predictions of the VENUS model with the constant mass composition approach. The analysis of the decoherence curve, with consideration of correlations between the measured CosmoALEPH parameters, leads to a composition of (88{+-}8) % protons and (12{+-}8) % iron nuclei for cosmic rays with a {chi}{sup 2} -probability of 53 %. The absolute comparison between the measured multiplicity and transverse momentum distributions in the TPC and those predicted by different Monte Carlo models results also in a dominant light composition. The experimental data are in a good agreement with MC data lying between proton and helium primaries. The results obtained for the primary composition of cosmic rays up to the knee region are consistent with the results from other experiments. (orig.)

  2. Observation of an Excess in the Search for the Standard Model Higgs Boson at ALEPH

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, John; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Lemaitre, V.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Ward, J.J.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Halley, A.W.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Sedgbeer, J.K.; Thompson, J.C.; Thomson, Evelyn J.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Muller, A.S.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Gilardoni, Simone S.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Heister, A.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Stenzel, H.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Yuan, C.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Coles, J.; Cowan, G.; Green, M.G.; Jones, L.T.; Medcalf, T.; Strong, J.A.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Loomis, C.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; Gobbo, B.; He, H.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Shao, N.; von Wimmersperg-Toeller, J.H.; Walsh, J.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2000-01-01

    A search has been performed for the Standard Model Higgs boson in the data sample collected with the ALEPH detector at LEP, at centre-of-mass energies up to 209 GeV. An excess of 3 $\\sigma$ beyond the background expectation is found, consistent with the production of the Higgs boson with a mass near 114 GeV=c^2 . Much of this excess is seen in the four-jet analyses, where three high purity events are selected.

  3. Branching Ratios and Spectral Functions of $\\tau$ Decays final ALEPH measurements and physics implications

    CERN Document Server

    Schael, S.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Phys., Kirchhoff Inst.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Muller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Hocker, Andreas; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Yuan, C.Z.; Zhang, Z.Q.; Azzurri, P.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, G.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Bohrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2005-01-01

    The full LEP-1 data set collected with the ALEPH detector at the $Z$ pole during 1991-1995 is analysed in order to measure the $\\tau$ decay branching fractions. The analysis follows the global method used in the published study based on 1991-1993 data, but several improvements are introduced, especially concerning the treatment of photons and $\\pi^0$'s. Extensive systematic studies are performed, in order to match the large statistics of the data sample corresponding to over 300\\,000 measured and identified $\\tau$ decays. Branching fractions are obtained for the two leptonic channels and eleven hadronic channels defined by their respective numbers of charged particles and $\\pi^0$'s. Using previously published ALEPH results on final states with charged and neutral kaons, corrections are applied to the hadronic channels to derive branching ratios for exclusive final states without kaons. Thus the analyses of the full LEP-1 ALEPH data are combined to yield a complete description of $\\tau$ decays, encompassing 22...

  4. Lateral distribution of cosmic ray muons underground: Results from the CosmoALEPH experiment

    CERN Document Server

    Tcaciuc, Rodica

    2006-01-01

    The CosmoALEPH experiment, located underground at the LEP e + e − storage ring at CERN at a depth of 320 m water equivalent, was used to study the chemical composition of primary cosmic rays up to 10 PeV e nergies from the measurement of high energy muons, created in extensive a ir showers by interactions of primary nuclei in the atmosphere. The Time Projection Chamber (TPC) and the Hadron Calorimete r of the ALEPH detector and six scintillator stations located at dis tances up to 1 km from each other were used to analyse the decoherence curve, m ultiplicity and transverse momentum distributions of energetic cosmic muo ns. The experimental data were compared with predictions from d ifferent Monte Carlo (MC) models and mass composition approaches. From a comparison between the measured decoherence distrib ution with CosmoALEPH and the MC predicted decoherence curves for prot on, helium and iron, a primary composition of (77 ± 11) % protons and (23 ± 11) % iron nuclei with a χ 2 - probability of 84 % was d...

  5. New vertex reconstruction algorithms for CMS

    CERN Document Server

    Frühwirth, R; Prokofiev, Kirill; Speer, T.; Vanlaer, P.; Chabanat, E.; Estre, N.

    2003-01-01

    The reconstruction of interaction vertices can be decomposed into a pattern recognition problem (``vertex finding'') and a statistical problem (``vertex fitting''). We briefly review classical methods. We introduce novel approaches and motivate them in the framework of high-luminosity experiments like at the LHC. We then show comparisons with the classical methods in relevant physics channels

  6. Vertex Reconstruction in ATLAS Run II

    CERN Document Server

    Zhang, Matt; The ATLAS collaboration

    2016-01-01

    Vertex reconstruction is the process of taking reconstructed tracks and using them to determine the locations of proton collisions. In this poster we present the performance of our current vertex reconstruction algorithm, and look at investigations into potential improvements from a new seed finding method.

  7. Proposal for a CLEO precision vertex detector

    International Nuclear Information System (INIS)

    1991-01-01

    Fermilab experiment E691 and CERN experiment NA32 have demonstrated the enormous power of precision vertexing for studying heavy quark physics. Nearly all collider experiments now have or are installing precision vertex detectors. This is a proposal for a precision vertex detector for CLEO, which will be the pre-eminent heavy quark experiment for at least the next 5 years. The purpose of a precision vertex detector for CLEO is to enhance the capabilities for isolating B, charm, and tau decays and to make it possible to measure the decay time. The precision vertex detector will also significantly improve strange particle identification and help with the tracking. The installation and use of this detector at CLEO is an important step in developing a vertex detector for an asymmetric B factory and therefore in observing CP violation in B decays. The CLEO environment imposes a number of unique conditions and challenges. The machine will be operating near the γ (4S) in energy. This means that B's are produced with a very small velocity and travel a distance about 1/2 that of the expected vertex position resolution. As a consequence B decay time information will not be useful for most physics. On the other hand, the charm products of B decays have a higher velocity. For the long lived D + in particular, vertex information can be used to isolate the charm particle on an event-by-event basis. This helps significantly in reconstructing B's. The vertex resolution for D's from B's is limited by multiple Coulomb scattering of the necessarily rather low momentum tracks. As a consequence it is essential to minimize the material, as measured in radiation lengths, in the beam pip and the vertex detector itself. It is also essential to build the beam pipe and detector with the smallest possible radius

  8. Comparison of forward collider vertex detectors for B physics at hadron accelerators

    International Nuclear Information System (INIS)

    Harr, R.F.; Karchin, P.E.; Kennedy, C.J.

    1993-01-01

    Two silicon vertex detector designs have been proposed for a forward collider B physics experiment at the SSC: in one the silicon system is put outside the beampipe (like in the forward part of the proposed BCD detector); and in the other the silicon system is put inside the beampipe, close to the circulating beams, with the use of open-quote roman pots close-quote (as in the COBEX proposal). In what follows these will be referred to as the inside and outside designs. The two designs are significantly different in their construction and impact on the rest of the experiment. The authors would like to understand how the designs compare for doing B physics and what are the factors that most greatly influence the results. Two measurements relying on the vertex detector and of particular importance for B physics are the reconstructed vertex position and B mass. They have analyzed the resolution achievable in these 2 quantities for open-quote models close-quote of the two forward collider vertex detector designs. The design parameters - beampipe radius and thickness, silicon position and resolution, etc. - have been varied about their normal values to observe their effect on these resolutions. They find very little difference between the two designs; both give nearly the same decay length error, impact parameter error, and reconstructed B mass error, for a large range of geometrical parameters. The design parameter having the most significant impact on the errors of B decay vertices is found to be the point resolution of the silicon detectors

  9. Search for supersymmetric Higgs bosons in the Aleph experiment; Recherche de bosons de higgs supersymetriques dans l'experience ALEPH

    Energy Technology Data Exchange (ETDEWEB)

    Tuchming, B

    2000-04-25

    A search for the neutral Higgs bosons of the standard model and its minimal supersymmetric extension (MSSM) is performed in the four-jet channels, e{sup +}e{sup -} {yields} hZ {yields} qq-bar bb-bar and e{sup +}e{sup -} {yields} hA {yields} bb-bar bb-bar. To this end, the data collected in the ALEPH detector at LEP in 1998 and 1999 at centre-of-mass energies from 189 GeV up to 202 GeV is analyzed. Both selections rely upon the tagging of b quarks which is performed with the help of a neural network which combines the accurate reconstruction of the charged particle tracks, the lepton transverse momentum and the jet kinematics. Topological and kinematical variables which characterize the production of four jets are combined with the b content of the events to define the bb-bar bb-bar and the qq-bar bb-bar selections. When these analyses are applied on the ALEPH data, no evidence for a signal is observed. Therefore constraints are obtained on the mass of the standard model Higgs and on the MSSM parameter space. The following limit at 95% confidence level are established: m{sub h} > 107.4 GeV/c{sup 2} in the standard model and m{sub h} > 91.4 GeV/c{sup 2} in the MSSM. Moreover, for the benchmark set of MSSM parameters, the range 0.8 < tan {beta} < 1.9 and the infrared fixed point scenario at low tan {beta} are excluded. (author)

  10. Vertex operators for a bosonic string

    International Nuclear Information System (INIS)

    Sasaki, Ryu; Yamanaka, Itaru.

    1985-09-01

    Based on the operator formalism and the Virasoro algebra, we present a simple method of constructing vertex operators describing the emission and absorption of general particles in bosonic string theories. (author)

  11. Measurement of heavy flavour production at LEP by their electron decay in ALEPH experiment

    International Nuclear Information System (INIS)

    Monnier, E.

    1991-12-01

    In a first theoretical part, this thesis presents the main results about the Z o decays in heavy flavours, deduced from the Standard Model. Quark fragmentation are briefly developed. Semileptonic decays are explained and finally, the main models that are used to describe decay processes. In the experimental second part, ALEPH detector is described, electron identification means and methods, presented and the electromagnetic calorimeter calibration, studied. In the last part, the bidimensional distribution of momentum-transverse momentum of selected electrons is analysed and simulated. The monitoring of background noise and systematic errors are also presented. Finally, the physical results that have been obtained in this study, are given and discussed

  12. Mass Limit for the standard model Higgs boson with the full LEP I ALEPH data sample

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    background from the electroweak process e+e- --> l+ l- q qbar. This search results in a 95% C.L. lower limit on the Higgs boson mass of $63.9$~\\Gcs. The reaction e+e- --> HZ* is used to search for the standard model Higgs boson in the H nu nubar and the H l+ l- channels. The data sample corresponds to about 4.5 million hadronic Z decays collected by the ALEPH experiment at LEP from 1989 to 1995 at centre-of-mass energies at and around the Z peak. Three candidate events are found in the H mu+ mu- channel, in agreement with the expected

  13. First results with prototype ISIS devices for ILC vertex detector

    International Nuclear Information System (INIS)

    Damerell, C.; Zhang, Z.; Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A.; Holland, A.; Seabroke, G.; Havranek, M.; Stefanov, K.; Kar-Roy, A.; Bell, R.; Burt, D.; Pool, P.

    2010-01-01

    The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R and D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 μm square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 μm imaging CMOS process, instead of a conventional CCD process.

  14. First results with prototype ISIS devices for ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, C., E-mail: c.damerell@rl.ac.u [RAL, Oxon OX11 0QX (United Kingdom); Zhang, Z. [RAL, Oxon OX11 0QX (United Kingdom); Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A. [Oxford U (United Kingdom); Holland, A.; Seabroke, G. [Centre for Electronic Imaging, Open U (United Kingdom); Havranek, M. [Czech Technical University in Prague (Czech Republic); Stefanov, K. [Sentec Ltd, Cambridge (United Kingdom); Kar-Roy, A. [Jazz Semiconductors, California (United States); Bell, R.; Burt, D.; Pool, P. [e2V Technologies, Chelmsford (United Kingdom)

    2010-12-11

    The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R and D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 {mu}m square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 {mu}m imaging CMOS process, instead of a conventional CCD process.

  15. The Mark II vertex detectors: Status and prospects

    International Nuclear Information System (INIS)

    Jaros, J.A.

    1987-03-01

    The art of detecting the decay vertices from heavy quarks and leptons is comparatively new at electron-positron storage rings. So far, drift chambers positioned just outside the vacuum pipes which surround the interfaction region have provided the first accurate determinations of the tau and bottom lifetimes, and confirmed earlier measurements of charmed particle lifetimes. ''Second generation'' vertex detectors have demonstrated the feasibility of tagging heavy flavors by observing decay vertices, and are being used to search for anomalous decay topologies. These chambers have modest resolution on the scale of the effects they seek to measure, but are now well-understood and reliable tools. A generation of vertex detectors, considerably more ambitious, is under construction for experiments at SLC and LEP. They boast impact parameter resolution improved by a factor of four or more over previous detectors, and sub-millimeter track-pair resolution. The Mark II collaboration hopes to reach these goals with a high pressure precision drift chamber, and eventually surpass them with the addition of a silicon microstrip detector

  16. The Mark II vertex detectors: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jaros, J.A.

    1987-03-01

    The art of detecting the decay vertices from heavy quarks and leptons is comparatively new at electron-positron storage rings. So far, drift chambers positioned just outside the vacuum pipes which surround the interfaction region have provided the first accurate determinations of the tau and bottom lifetimes, and confirmed earlier measurements of charmed particle lifetimes. ''Second generation'' vertex detectors have demonstrated the feasibility of tagging heavy flavors by observing decay vertices, and are being used to search for anomalous decay topologies. These chambers have modest resolution on the scale of the effects they seek to measure, but are now well-understood and reliable tools. A generation of vertex detectors, considerably more ambitious, is under construction for experiments at SLC and LEP. They boast impact parameter resolution improved by a factor of four or more over previous detectors, and sub-millimeter track-pair resolution. The Mark II collaboration hopes to reach these goals with a high pressure precision drift chamber, and eventually surpass them with the addition of a silicon microstrip detector.

  17. The LHCb VELO (VErtex LOcator) and the LHCb VELO upgrade

    International Nuclear Information System (INIS)

    Collins, P.

    2013-01-01

    LHCb is a forward spectrometer experiment dedicated to the study of new physics in the decays of beauty and charm hadrons produced in proton collisions at the Large Hadron Collider (LHC) at CERN. The VErtex LOcator (VELO) is the silicon detector surrounding the LHCb interaction point. The beauty and charm hadrons are identified through their flight distance in the Vertex Locator (VELO), and hence the detector is critical for both the trigger and the offline physics analyses. The sensors, which have an inner radius of ∼7mm from the beam axis at the edge, and the first sensitive strips at a radius of ∼8.2mm are exposed to maximum radiation doses of ∼0.6×10 14 1MeVn eq /cm 2 per integrated luminosity of fb −1 . The performance of the VELO during the first two years of LHC running is described, together with the methods used to monitor radiation damage. The detector so far shows no significant performance degradation, however many interesting effects have been observed in the sensors, including a coupling of charge to the second metal routing line layer after irradiation. In 2018 the VELO will be upgraded together with the rest of the LHCb detector to a 40 MHz readout. The modules together with their front end electronics will be completely replaced with a radiation hard system capable of driving the signals out at the required rates. The current status of the R and D for the LHCb VELO Upgrade is outlined.

  18. Displaced vertex searches for sterile neutrinos at future lepton colliders

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Cazzato, Eros; Fischer, Oliver [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland)

    2016-12-02

    We investigate the sensitivity of future lepton colliders to displaced vertices from the decays of long-lived heavy (almost sterile) neutrinos with electroweak scale masses and detectable time of flight. As future lepton colliders we consider the FCC-ee, the CEPC, and the ILC, searching at the Z-pole and at the center-of-mass energies of 240, 350 and 500 GeV. For a realistic discussion of the detector response to the displaced vertex signal and the Standard Model background we consider the ILC’s Silicon Detector (SiD) as benchmark for the future lepton collider detectors. We find that displaced vertices constitute a powerful search channel for sterile neutrinos, sensitive to squared active-sterile mixing angles as small as 10{sup −11}.

  19. Measuring the mass of the W{sup {+-}} boson in the ALEPH experiment; Mesure de la masse du boson W{sup {+-}} dans l'experience ALEPH

    Energy Technology Data Exchange (ETDEWEB)

    Boumediene, D.E

    2002-05-01

    The W boson plays an important role in the standard model of weak interactions, its mass is predictable and its measurement is an efficient way to test the theory and to challenge experimental data. This thesis is dedicated to the measurement of the W mass (m{sub W}) through the ALEPH experiment. 3 important points are treated: measuring techniques, systematic effects and impact of the value measured on the standard model. As for measuring techniques: all the decay products of W have been reconstructed, this reconstruction is dependent on the decay way and has an impact on the determination of the mass. For the decay W{sup +}W{sup -} {yields} {tau}{nu}qq-bar, a specific reconstruction has been studied and used for every step of the measurement (selection, kinematic adjustment, adjustment of m{sub W}), this technique has improved the resolution of m{sub W}. For the leptonic decay W{sup +}W{sup -} {yields} l{nu}l{nu}, we have focused on the adjustment technique of m{sub W}, for the decays W{sup +}W{sup -} {yields} l{nu}qq-bar and W{sup +}W{sup -} {yields} qq-bar qq-bar, the standard measurement technique of ALEPH has been used. As for systematic effects, the statistical precision of the measurement campaign is high so it is necessary to understand the systematic effects that have an impact on the measured value. 2 effects have been thoroughly studied: the colour interconnection effect that concerns only the hadronic decay with 4 jets, the second effect appears in the simulation of showers in calorimeter-detectors. 2 values for m{sub W} are proposed, one that was obtained by only measuring the direction and the energy of the jet and the second one by discarding all the problematic events that were reconstructed in the detector. We obtain: m{sub W} = (80,392 {+-} 0,053) GeV/c{sup 2} and m{sub W} = (80,358 {+-} 0,050) GeV/c{sup 2}. By combining these values to the internationally agreed data, it has been possible to adjust the mass of the Higgs' boson and to give

  20. Exploitation of secondary vertex information at the CDF detector. Final report, 1991--1994

    International Nuclear Information System (INIS)

    Amidei, D.

    1995-01-01

    In the proposal for this work, submitted in November 1990, the author described the application of silicon micro-vertex tracking to hadron collider physics, and outlined a plan of involvement in the first such application, at the CDF Detector, studying p anti p collisions at √s = 1.8 TeV at the Fermilab Tevatron. The proposal included discussion on the use of silicon tracking in B physics measurements, and also some speculation on the ability of silicon tracking to aid in identification of the top quark. In the five years since this proposal, the author has played a significant role in the installation and commissioning of the first such silicon tracking device at a hadron collider, and the utilization of this device in the discovery of the top quark and the study of B production mechanisms. This paper is a summary of this work

  1. Quantum vertex model for reversible classical computing.

    Science.gov (United States)

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  2. A note on arbitrarily vertex decomposable graphs

    Directory of Open Access Journals (Sweden)

    Antoni Marczyk

    2006-01-01

    Full Text Available A graph \\(G\\ of order \\(n\\ is said to be arbitrarily vertex decomposable if for each sequence \\((n_{1},\\ldots,n_k\\ of positive integers such that \\(n_{1}+\\ldots+n_{k}=n\\ there exists a partition \\((V_{1},\\ldots,V_{k}\\ of the vertex set of \\(G\\ such that for each \\(i \\in \\{1,\\ldots,k\\}\\, \\(V_{i}\\ induces a connected subgraph of \\(G\\ on \\(n_i\\ vertices. In this paper we show that if \\(G\\ is a two-connected graph on \\(n\\ vertices with the independence number at most \\(\\lceil n/2\\rceil\\ and such that the degree sum of any pair of non-adjacent vertices is at least \\(n-3\\, then \\(G\\ is arbitrarily vertex decomposable. We present another result for connected graphs satisfying a similar condition, where the bound \\(n-3\\ is replaced by \\(n-2\\.

  3. Measurement of the W{+-} boson mass in the ALEPH experiment at LEP; Mesure de la masse du boson W{+-} dans l`experience ALEPH au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Trabelsi, A.

    1996-12-31

    A precise measurement of the W boson mass is a powerful test of the standard model (SM) and its possible extensions. The predictions for the value of W mass, including radiative corrections, from the SM and from the minimal supersymmetric model are different with a small overlap. A measurement of the W mass up to 30 MeV can favour one of these models. Such a precision constraint also the Higgs boson mass to 30 percent. In this study an invariant mass measurement method is developed, using the decay products of the W boson pairs produced in the electron-positron collider, LEP. The two main channels, hadronic and semileptonic, are used. By analyzing different jet algorithms, the on from DURHAM was found to give the highest correct assignment efficiency. To improve the jet momentum reconstruction, a constrained fit method is applied, taking into account the ALEPH detector resolution. The momentum resolution is improved by a factor. Combining the results from the two channels, a statistical error of 44 MeV on the W mass is achieved, the corresponding systematic error is 20 MeV. (author).

  4. Measurement of R{sub l} ratio by ALEPH experiment at LEP 1; Mesure du raport R{sub l} avec l`experience ALEPH a LEP 1

    Energy Technology Data Exchange (ETDEWEB)

    Tournefier, Edwige [Universite de Paris Sud, 91 - Orsay (France)

    1998-05-04

    The work described by this thesis ranges among the high precision measurements at LEP. The data recorded by the ALEPH experiment at energies near the mass of the gage Z boson were utilized. The accurate cross section measurements of e{sup +}e{sup -} {yields} ff-bar allows extracting the parameters describing the resonance of Z as well as to make a very accurate verification of the Standard Model. One of these parameters, the ratio R{sub l}, is defined by the ratio of the hadron and lepton widths of Z:R{sub l}{Gamma}{sub had}/{Gamma}{sub l}. For the measurement of R{sub l}, a global selection of di-lepton events without flavor discrimination (e, {mu} or {tau}) was developed. This selection allows tackling the problems raised by the migration of the events from one flavor to another, so that the systematic uncertainty of R{sub l} arising from the lepton channel is reduced at 0.08% while the statistical uncertainty is 0.15%. The value obtained through the measurements of cross section is R{sub l} = 20.735 {+-} 0.039. Given the R{sub l} dependence on {alpha}{sub s}, through the corrections introduced by the strong interaction, the value of {alpha}{sub s} can be extracted from this measurement of R{sub l}. One finds {alpha}{sub s} = 0.119 {+-} 0.007 59 refs., 73 figs., 58 tabs.

  5. Secondary vertex detection at the SLC

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The vertex topology of a high energy e + e - interaction contains a wealth of information. These interactions copiously produce the tau lepton and hadrons containing the c and b quarks; all these particles decay within a millimeter or so of the primary interaction point, giving these interactions a rich secondary vertex structure. With suitable detectors, one can hope to reconstruct these vertices and so tag events with tau's, c's and b's; measure lifetimes and mixing angles; and perhaps directly measure the flavor of c and b jets. The spatial resolution and track-pair resolution required of such detectors demand detector development, but several techniques, including solid state microstrip and CCD detectors, pressurized drift chambers, and holographic bubbble chambers look promising. Vertex detection in the colliding beam environment has already yielded a measurement of the tau lifetime. The SLC, with its micron-sized beam and one-centimeter sized beam pipe is uniquely suited for these studies. Compared to conventional storage rings, it offers a well-defined and minute primary interaction point, the possibility of locating a detector within a centimeter of the interaction (an order of magnitude improvement over LEP), negligibly thin beam pipes, and a repetition rate low enough to permit novel detectors and readout schemes. This report discusses the physics accessible with vertex detectors, depicts the physics environment at 100 GeV - particle multiplicities, momenta, angular correlations, and topologies of charm decays, sketches the elements of a vertex detector, and, through some model studies evaluates the spatial resolution and track-pair resolution requirements, and summarizes the detector technologies which seem most promising for vertex detection

  6. Random tree growth by vertex splitting

    International Nuclear Information System (INIS)

    David, F; Dukes, W M B; Jonsson, T; Stefánsson, S Ö

    2009-01-01

    We study a model of growing planar tree graphs where in each time step we separate the tree into two components by splitting a vertex and then connect the two pieces by inserting a new link between the daughter vertices. This model generalizes the preferential attachment model and Ford's α-model for phylogenetic trees. We develop a mean field theory for the vertex degree distribution, prove that the mean field theory is exact in some special cases and check that it agrees with numerical simulations in general. We calculate various correlation functions and show that the intrinsic Hausdorff dimension can vary from 1 to ∞, depending on the parameters of the model

  7. Vertex Reconstruction for AEGIS’ FACT Detector

    CERN Document Server

    Themistokleous, Neofytos

    2017-01-01

    My project dealt with the development of a vertex reconstruction technique to discriminate antihydrogen from background signals in the AEGIS apparatus. It involved the creation of a Toy Monte-Carlo to simulate particle annihilation events, and a vertex reconstruction utility based on the Bayesian theory of probability. The first results based on 107 generated events with single track in the detector are encouraging. For such events, the algorithm can reconstruct the z-coordinate accurately , while for the r-coordinate the result is less accurate.

  8. Primary vertex reconstruction at the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00301388; The ATLAS collaboration; Casper, D.; Hooberman, B.; Gui, B.; Lee, G.; Maurer, J.; Morley, A.; Pagan Griso, S.; Petersen, B.; Prokofiev, K.; Shan, L.; Shope, D.; Wharton, A.; Whitmore, B.; Zhang, M.

    2017-01-01

    These proceedings present the method and performance of primary vertex reconstruction at the ATLAS experiment during Runs 1 and 2 at the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of $\\sqrt{s} = 8$ TeV, and during 2015-2016 at $\\sqrt{s} = 13$ TeV. Some predictions toward future runs are also presented. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed.

  9. Study of a DEPFET vertex detector and of supersymmetric smuons at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xun

    2009-01-21

    This thesis is devoted to the study of the performance of a pixel vertex detector based on DEPFET technology at the International Linear Collider (ILC). The ILC is the proposed next generation e{sup +}e{sup -} collider to explore the physics at the Terascale. At the ILC with its well-defined initial state of collisions, possible discoveries at the Large Hadron Collider can be verified and studied more accurately. It is expected that the precision measurements of the ILC will answer many fundamental questions about the universe, such as the generation of particle masses and the origin of electroweak spontaneous symmetry breaking. The ambitious physics goals present challenges to the ILC detectors. Several detector concepts have been proposed in recent years. A crucial device for all these concepts is the pixel vertex detector. It provides precise impact parameter information of charged particles, jet flavor tagging and improves overall tracking efficiency. To meet the requirements of the ILC environment, the vertex detector will be arranged in a concentric multi-layer array around the interaction point to cover as large a solid angle as possible. Endcap disks are considered in some designs. Silicon pixel sensor technologies must be employed to provide excellent point resolution. The DEPFET technology, which integrates the first level of amplification into a depleted silicon bulk, is one of the promising candidates. The DEPFET sensor is very sensitive with a high signal-to-noise ratio. Power consumption is minimized due to the internal storage of signal charges. The good radiation tolerance makes it capable of working close to the interaction point. In this thesis, we discuss the detailed simulation of the DEPFET vertex detector, following the general vertex detector layout proposed by the TESLA collaboration. The simulation is used to evaluate the impact parameter resolution. We also discuss the DEPFET test beam analysis on two-track resolution. The whole analysis

  10. Study of a DEPFET vertex detector and of supersymmetric smuons at the ILC

    International Nuclear Information System (INIS)

    Chen, Xun

    2009-01-01

    This thesis is devoted to the study of the performance of a pixel vertex detector based on DEPFET technology at the International Linear Collider (ILC). The ILC is the proposed next generation e + e - collider to explore the physics at the Terascale. At the ILC with its well-defined initial state of collisions, possible discoveries at the Large Hadron Collider can be verified and studied more accurately. It is expected that the precision measurements of the ILC will answer many fundamental questions about the universe, such as the generation of particle masses and the origin of electroweak spontaneous symmetry breaking. The ambitious physics goals present challenges to the ILC detectors. Several detector concepts have been proposed in recent years. A crucial device for all these concepts is the pixel vertex detector. It provides precise impact parameter information of charged particles, jet flavor tagging and improves overall tracking efficiency. To meet the requirements of the ILC environment, the vertex detector will be arranged in a concentric multi-layer array around the interaction point to cover as large a solid angle as possible. Endcap disks are considered in some designs. Silicon pixel sensor technologies must be employed to provide excellent point resolution. The DEPFET technology, which integrates the first level of amplification into a depleted silicon bulk, is one of the promising candidates. The DEPFET sensor is very sensitive with a high signal-to-noise ratio. Power consumption is minimized due to the internal storage of signal charges. The good radiation tolerance makes it capable of working close to the interaction point. In this thesis, we discuss the detailed simulation of the DEPFET vertex detector, following the general vertex detector layout proposed by the TESLA collaboration. The simulation is used to evaluate the impact parameter resolution. We also discuss the DEPFET test beam analysis on two-track resolution. The whole analysis procedures

  11. The Micro-Vertex-Detector for the P-bar ANDA experiment

    International Nuclear Information System (INIS)

    Zotti, Laura

    2013-01-01

    P-bar ANDA is a fixed target experiment that will be carried out at the future FAIR facility. P-bar ANDA will provide an excellent tool to address fundamental question in the field of hadronic physics, with a physic program that extends from the investigation of QCD (providing insight in the mechanisms of mass generation and confinement) to the test of fundamental symmetries. The Micro-Vertex-Detector located in the innermost part of the central tracking system will be composed by hybrid pixel and double-sided micro-strip silicon detectors. The Micro-Vertex-Detector will play an important role for the P-bar ANDA physics goals. The possibility to reconstruct the secondary vertices and the applicability of a precise D meson tagging is essential for the spectroscopy in the open charm sector and the charmonium mass region. To this aim the Micro-Vertex-Detector features a spatial resolution better than 100μm, a time resolution better than 20ns, a limited material budget, and a high data rate capability in a triggerless environment. An overview of the Micro-Vertex-Detector related to the physics goals will be presented.

  12. Improving vertex position determination by using a kinematic fit

    International Nuclear Information System (INIS)

    Forden, G.E.; Saxon, D.H.

    1985-05-01

    A method is developed for improving decay vertex reconstruction by using kinematic fits. This is applied to generated charm meson decays. An improvement of 16% in the vertex position measurement along the flight path is achieved. (author)

  13. Bestimmung der Mas'se des neutralen Bs-Mesons mit dem ALEPH-Experiment

    CERN Document Server

    Stehle, M

    2001-01-01

    Gegenstand der vorliegenden Arbeit ist die Bestimmung der Masse des neutralen Bs-Mesons. Dazu wurden B~-Mesonen in den beiden Zerfallskanalen B~ -+ J/W P und B~ -+ W(2S) P rekonstruiert, wobei die Subresonanzen in den Zerfallsmoden J /w -+ l+ l-, W(2S) -+ l+ l- und P -+ K+ K- untersucht wurden. Diese beiden Kanale werden auf Grund ihrer eindeutigen Signatur auch als "goldene Kanale" bezeichnet und eignen sich deshalb sehr gut fur eine exklusive Rekonstruktion, wie sie hier angewendet wurde. Grundlage der Analyse waren ca. 4 Millionen hadronische ZO-Zerfalle, die in den Jahren 1991 1995 mit dem ALEPH-Detektor am e+e--Speicherring LEP am CERN aufgezeichnet wurden. Die zwischenzeitliche Reprozessierung der Daten ermoglichte eine prazisere und effizientere Rekonstruktion als das in fruheren Messungen der Fall war. Wegen der niedrigen Verzweigungsverhaltnisse der untersuchten Zerfallsmoden wurden nur wenige einzelne Ereignisse in den Daten erwartet. Die selektierten Kandidaten wurden durch Schnitte in mehreren Ere...

  14. Mass limit for the standard model Higgs boson with the full LEP I ALEPH data sample

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Lan Wu, Sau; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The reaction e +e - → HZ ∗ is used to search for the standard model Higgs boson in the Hν overlineν and the Hℓ +ℓ - channels. The data sample corresponds to about 4.5 million hadronic Z decays collected by the ALEPH experiment at LEP from 1989 to 1995 at centre-of-mass energies at and around the Z peak. Three candidate events are found in the H μ+μ- channel, in agreement with the expected background from the electroweak process e +e -ℓ +ℓ -q overlineq. This search results in a 95% C.L. lower limit on the Higgs boson mass of 63.9 GeV/ c2.

  15. The micro vertex detector for the anti PANDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Simone [Forschungszentrum Juelich (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    The anti PANDA detector is one of the main experiments at the upcoming Facility for Antiproton and Ion Research (FAIR), which is under construction in Darmstadt, Germany. The fixed-target experiment will explore anti pp annihilations with intense, phase space-cooled beams with momenta between 1.5 and 15 GeV/c. One aim of the detector is to perform high precision measurements of particles like excited charmonium and D mesons. Essential for background suppression is the tagging of D mesons by measuring their decay point. Therefore, a Micro Vertex Detector (MVD) is planned at anti PANDA as the innermost tracking detector. The MVD aims to reconstruct vertices with a resolution better than 100 μm to cope with the decay length of the D{sup ±} mesons (cτ=315 μm) produced with a mean βγ=2. The detector consists of silicon pixel and double-sided silicon strip detectors, arranged in four barrel layers and six disk layers. An overview of the MVD is given in this talk. Recent developments like laboratory and testbeam results of the current pixel front-end ASIC prototype ToPix 4 are shown. The concept of the newly developed strip front-end ASIC PASTA is presented.

  16. Independent search for neutral Higgs boson flavour with the ALEPH detector at LEP2

    International Nuclear Information System (INIS)

    Pascolo, J.M.

    2001-01-01

    A flavour independent search for the neutral Higgs boson is performed in the four jets channel, e + e - → h(hadrons)Z(qq-bar), in the channel with missing energy, e + e - → h(hadrons)Z(νν-bar) and in the leptonic channel e + e - → h(hadrons)Z(e + e - ,μ + μ - ). The analysed data have been collected by the ALEPH detector at LEP during the years 1998, 1999 and 2000, at center of mass energies from 189 to 210 GeV. The selections in four jets and missing energy channels are based on the artificial neural networks multivariate method. This allows the non-linear combining of the signal information. In order to obtain a selection independent of the flavour of the Higgs boson decay products, this information is brought through purely kinematic and topologic variables. The selection in the leptonic channel is performed by a set of cuts that benefit from the very good electron and muon identification. No evidence of signal has been seen in the data collected by ALEPH up to 189 GeV. This allows us to restrict the allowed values of the mass, cross section and branching ratio of the Higgs boson. The result is expressed by a excluded region at 95% of confidence level in a two-dimension space. With this, it is possible to verify if a particular model is excluded or not by the experiment. This result is interpreted in the Standard Model and the MSSM. In the Standard Model, a lower limit is derived on the Higgs boson mass, M(Higgs) > 109.5 GeV/c 2 , with a 95% of confidence level. (author) [fr

  17. Intertwiner dynamics in the flipped vertex

    Energy Technology Data Exchange (ETDEWEB)

    Alesci, Emanuele; Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio, E-mail: alesci@fis.uniroma3.i, E-mail: e.bianchi@sns.i, E-mail: elena.magliaro@gmail.co, E-mail: claude.perin@libero.i [Centre de Physique Theorique de Luminy, Case 907, F-13288 Marseille (France)

    2009-09-21

    We continue the semiclassical analysis, started in a previous paper, of the intertwiner sector of the flipped vertex spinfoam model. We use independently both a semi-analytical and a purely numerical approach, finding the correct behavior of wavepacket propagation and physical expectation values. In the end, we show preliminary results about correlation functions.

  18. Twisted Frobenius Identities from Vertex Operator Superalgebras

    Directory of Open Access Journals (Sweden)

    Alexander Zuevsky

    2017-01-01

    Full Text Available In consideration of the continuous orbifold partition function and a generating function for all n-point correlation functions for the rank two free fermion vertex operator superalgebra on the self-sewing torus, we introduce the twisted version of Frobenius identity.

  19. Twisted Frobenius identies from vertex operator superalgebras

    Czech Academy of Sciences Publication Activity Database

    Zuevsky, Alexander

    2017-01-01

    Roč. 2017, 9 November (2017), č. článku 2340410. ISSN 1687-9120 Institutional support: RVO:67985840 Keywords : vertex operator superalgebras * intertwining operators * Riemann surfaces Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.643, year: 2016 https://www.hindawi.com/journals/amp/2017/2340410/

  20. Algebraic characterization of the Witten vertex

    International Nuclear Information System (INIS)

    Embacher, F.

    1989-01-01

    The Witten vertex of open bosonic string field theory is characterized by a set of algebraic properties written down in the Fock-space operator formalism. The typical 3-string overlap structure as well as the correct ghost midpoint insertion are not required from the outset but arise as consequences. 20 refs. (Author)

  1. LHCb Vertex Locator Upgrade Work Report

    CERN Document Server

    Estrada, Michael

    2017-01-01

    As the LHCb prepares for the planned upgrade of its vertex locator, there is a great need for supporting work such as the design and testing of apparatus that will ensure the smooth implementation of new hardware and infrastructure. My work this summer consisted largely of tasks to support this process.

  2. Cluster algebras bases on vertex operator algebras

    Czech Academy of Sciences Publication Activity Database

    Zuevsky, Alexander

    2016-01-01

    Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300

  3. Primary Vertex Reconstruction at the ATLAS Experiment

    CERN Document Server

    Grimm, Kathryn; The ATLAS collaboration

    2016-01-01

    Efficient and precise reconstruction of the primary vertex in an LHC collision is essential in both the reconstruction of the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of primary vertices in the busy, high pile-up environment of Run-2 of the LHC is a challenging task. New methods have been developed by the ATLAS experiment to reconstruct vertices in such environments. Advances in vertex seeding include methods taken from medical imaging, which allow for reconstruction of multiple vertices with small spatial separation. The adoption of this new seeding algorithm within the ATLAS adaptive vertex finding and fitting procedure will be discussed, and the first results of the new techniques from Run-2 data will be presented. Additionally, data-driven methods to evaluate vertex resolution will be presented with special focus on correct methods to evaluate the effect of the beam spot constraint; results from these methods in Ru...

  4. Lifetime tests for MAC vertex chamber

    International Nuclear Information System (INIS)

    Nelson, H.N.

    1986-07-01

    A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions

  5. Perturbative quantum field theory via vertex algebras

    International Nuclear Information System (INIS)

    Hollands, Stefan; Olbermann, Heiner

    2009-01-01

    In this paper, we explain how perturbative quantum field theory can be formulated in terms of (a version of) vertex algebras. Our starting point is the Wilson-Zimmermann operator product expansion (OPE). Following ideas of a previous paper (S. Hollands, e-print arXiv:0802.2198), we consider a consistency (essentially associativity) condition satisfied by the coefficients in this expansion. We observe that the information in the OPE coefficients can be repackaged straightforwardly into 'vertex operators' and that the consistency condition then has essentially the same form as the key condition in the theory of vertex algebras. We develop a general theory of perturbations of the algebras that we encounter, similar in nature to the Hochschild cohomology describing the deformation theory of ordinary algebras. The main part of the paper is devoted to the question how one can calculate the perturbations corresponding to a given interaction Lagrangian (such as λφ 4 ) in practice, using the consistency condition and the corresponding nonlinear field equation. We derive graphical rules, which display the vertex operators (i.e., OPE coefficients) in terms of certain multiple series of hypergeometric type.

  6. On fermionic representation of the framed topological vertex

    International Nuclear Information System (INIS)

    Deng, Fusheng; Zhou, Jian

    2015-01-01

    The Gromov-Witten invariants of ℂ"3 with branes is encoded in the topological vertex which has a very complicated combinatorial expression. A simple formula for the topological vertex was proposed by Aganagic et al. in the fermionic picture. We will propose a similar formula for the framed topological vertex and prove it in the case when there are one or two branes.

  7. The vertex Zagreb indices of some graph operations

    Directory of Open Access Journals (Sweden)

    N. De

    2016-12-01

    Full Text Available Recently, Tavakoli et al. introduced a new version of Zagreb indices, named as vertex Zagreb indices. In this paper explicit expressions of different graphs operations of vertex Zagreb indices are presented and also as an application, explicit formulas for vertex Zagreb indices of some chemical graphs are obtained.

  8. Certain extensions of vertex operator algebras of affine type

    International Nuclear Information System (INIS)

    Li Haisheng

    2001-01-01

    We generalize Feigin and Miwa's construction of extended vertex operator (super)algebras A k (sl(2)) for other types of simple Lie algebras. For all the constructed extended vertex operator (super)algebras, irreducible modules are classified, complete reducibility of every module is proved and fusion rules are determined modulo the fusion rules for vertex operator algebras of affine type. (orig.)

  9. Measurement of the double-vertex reconstruction efficiency of the inclusive vertex finder with accidentally overlapping b-jets in ttbar events

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, Ivan; Nowatschin, Dominik; Ott, Jochen; Schmidt, Alexander; Tholen, Heiner [University of Hamburg (Germany)

    2015-07-01

    In LHC Run II, CMS b-tagging algorithms will employ a new core algorithm, named Inclusive Vertex Finder (IVF). The IVF is designed to perform decay vertex reconstruction of long-lived particles, such as B hadrons. Using only tracks from the silicon tracker, it does not depend on jet clustering and allows for higher reconstruction efficiency of decay vertices, which particularly applies to topologies with two or more decay vertices at low distance. Thus, the IVF will offer increased sensitivity for SM measurements (e.g. angular correlations), but also for the search of BSM physics (e.g. final states with boosted Higgs bosons decaying into b-quarks). For the first time, the dependence of the IVF reconstruction efficiency on the distance of vertices in the η-φ plane is investigated with a data-driven approach. We use a clean set of top quark pair events, selected from data recorded in 2012 in pp-collisions at 8 TeV with the CMS detector, and perform a template fit to a 2D-distribution of the masses of the vertices in an event. Correction factors are derived for the application to simulated events. We conclude that our technique will enable precise calibration of double vertexing with the IVF in the LHC Run II.

  10. A Future Vertex Locator with Precise Timing for the LHCb Experiment

    CERN Multimedia

    Mitreska, Biljana

    2017-01-01

    The LHCb experiment is designed to perform high precision measurements of matter-antimatter asymmetries and searches for rare and forbidden decays, with the aim of discovering new and unexpected particles and forces. In 2030 the LHC beam intensity will increase by a factor of 50 compared to current operations. This means increased samples of the particles we need to study, but it also presents experimental challenges. In particular, with current technology it becomes impossible to differentiate the many (>50) separate proton-proton collisions which occur for each bunch crossing. A Monte Carlo simulation was developed to model the operation of a silicon pixel vertex detector surrounding the collision region at LHCb, under the conditions expected after 2030, after the second upgrade of the Vertex Locator (VELO). The main goal was studying the effect of adding '4D' detectors which save high-precision timing information, in addition to the usual three spatial coordinates, as charged particles pass through them. W...

  11. Use of a track and vertex processor in a fixed-target charm experiment

    International Nuclear Information System (INIS)

    Schub, M.H.; Carey, T.A.; Hsiung, Y.B.; Kaplan, D.M.; Lee, C.; Miller, G.; Sa, J.; Teng, P.K.

    1996-01-01

    We have constructed and operated a high-speed parallel-pipelined track and vertex processor and used it to trigger data acquisition in a high-rate charm and beauty experiment at Fermilab. The processor uses information from hodoscopes and wire chambers to reconstruct tracks in the bend view of a magnetic spectrometer, and uses these tracks to find the corresponding tracks in a set of silicon-strip detectors. The processor then forms vertices and triggers the experiment if at least one vertex is downstream of the target. Under typical charm running conditions, with an interaction rate of ∼5 MHz, the processor rejects 80-90% of lower-level triggers while maintaining efficiency of ∼70% for two-prong D-meson decays. (orig.)

  12. Vertex Reconstruction and Performance in ATLAS

    CERN Document Server

    Whitmore, Ben William; The ATLAS collaboration

    2017-01-01

    Efficient and precise reconstruction of the primary vertices in LHC collisions is essential in both the reconstruction of the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of the primary vertices in the busy, high pile up environment of the LHC is a challenging task. The challenges and novel methods developed by the ATLAS experiment to reconstruct vertices in such environments will be presented. The performance of the current vertexing algorithms using Run-2 data will be presented and compared to results from simulation. Additionally, data-driven methods to evaluate vertex resolution, and details of upgrades to the ATLAS inner detector will be presented.

  13. Inventory calculation and nuclear data uncertainty propagation on light water reactor fuel using ALEPH-2 and SCALE 6.2

    International Nuclear Information System (INIS)

    Fiorito, L.; Piedra, D.; Cabellos, O.; Diez, C.J.

    2015-01-01

    Highlights: • We performed burnup calculations of PWR and BWR benchmarks using ALEPH and SCALE. • We propagated nuclear data uncertainty and correlations using different procedures and code. • Decay data uncertainties have negligible impact on nuclide densities. • Uncorrelated fission yields play a major role on the uncertainties of fission products. • Fission yields impact is strongly reduced by the introduction of correlations. - Abstract: Two fuel assemblies, one belonging to the Takahama-3 PWR and the other to the Fukushima-Daini-2 BWR, were modelled and the fuel irradiation was simulated with the TRITON module of SCALE 6.2 and with the ALEPH-2 code. Our results were compared to the experimental measurements of four samples: SF95-4 and SF96-4 were taken from the Takahama-3 reactor, while samples SF98-6 and SF99-6 belonged to the Fukushima-Daini-2. Then, we propagated the uncertainties coming from the nuclear data to the isotopic inventory of sample SF95-4. We used the ALEPH-2 adjoint procedure to propagate the decay constant uncertainties. The impact was inappreciable. The cross-section covariance information was propagated with the SAMPLER module of the beta3 version of SCALE 6.2. This contribution mostly affected the uncertainties of the actinides. Finally, the uncertainties of the fission yields were propagated both through ALEPH-2 and TRITON with a Monte Carlo sampling approach and appeared to have the largest impact on the uncertainties of the fission products. However, the lack of fission yield correlations results is a serious overestimation of the response uncertainties

  14. On the two-dimensional Saigo-Maeda fractional calculus asociated with two-dimensional Aleph TRANSFORM

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2013-11-01

    Full Text Available This paper deals with the study of two-dimensional Saigo-Maeda operators of Weyl type associated with Aleph function defined in this paper. Two theorems on these defined operators are established. Some interesting results associated with the H-functions and generalized Mittag-Leffler functions are deduced from the derived results. One dimensional analog of the derived results is also obtained.

  15. Primary vertex reconstruction with the ATLAS detector

    International Nuclear Information System (INIS)

    Meloni, F.

    2016-01-01

    Efficient and precise reconstruction of the primary vertex in a LHC collision is essential for determining the full kinematic properties of a hard-scatter event and of soft interactions as a measure of the amount of pile-up. The reconstruction of primary vertices in the busy, high pile-up environment of Run-2 of the LHC is a challenging task. The algorithms developed by the ATLAS experiments to reconstruct multiple vertices with small spatial separation are presented.

  16. The three-gluon vertex of QCD

    International Nuclear Information System (INIS)

    Koller, K.; Zerwas, P.M.; Walsh, T.F.

    1978-12-01

    We show how the Q 2 evolution of gluon jets can be used to provide indirect but strong evidence for the 3 gluon vertex of QCD. We propose looking for this evolution in the QantiQ → 3G → hadrons decay of successive 1 3 S 1 quarkonium states. The results apply to other processes if G jets can be isolated. (orig.) [de

  17. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  18. The ZEUS vertex detector: Design and prototype

    International Nuclear Information System (INIS)

    Alvisi, C.; Anzivino, G.; Arzarello, F.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruni, P.; Camerini, U.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; Costa, M.; D'Auria, S.; Del Papa, C.; De Pasquale, S.; Fiori, F.; Forte, A.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; O'Shea, V.; Palmonari, F.; Pelfer, P.; Pilastrini, R.; Qian, S.; Sartorelli, G.; Schioppa, M.; Susinno, G.; Timellini, R.; Zichichi, A.; Bologna Univ.; Cosenza Univ.; Florence Univ.; Istituto Nazionale di Fisica Nucleare, Bologna; Istituto Nazionale di Fisica Nucleare, Florence; Istituto Nazionale di Fisica Nucleare, Frascati; Consiglio Nazionale delle Ricerche, Florence

    1991-01-01

    A gas vertex detector, operated with dimethylether (DME) at atmospheric pressure, is presently being built for the ZEUS experiment at HERA. Its main design features, together with the performances of a prototype measured at various operating voltages, particle rates and geometrical conditions on a CERN Proton Synchrotron test beam, are presented. A spatial resolution down to 35 μm and an average wire efficiency of 96% have been achieved, for a 3 mm gas gap relative to each sense wire. (orig.)

  19. Vertex chamber for the KEDR detector

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Chilingarov, A.G.; Kolachev, G.M.; Lazarenko, O.B.; Nagaslaev, V.P.; Romanov, L.V.

    1989-01-01

    The project and design of the vertex chamber for the KEDR detector is described. The chamber consists of 6 cylindrical layers of tubes with 10 mm diameter and 800 mm length. The tubes are made of 20 μm thick aluminized mylar. The prototype tests show that it is possible to achieve a resolution of 20-30 μm using the cool gas mixtures. (orig.)

  20. Flipped spinfoam vertex and loop gravity

    Energy Technology Data Exchange (ETDEWEB)

    Engle, Jonathan; Pereira, Roberto [CPT, CNRS Case 907, Universite de la Mediterranee, F-13288 Marseille (France); Rovelli, Carlo [CPT, CNRS Case 907, Universite de la Mediterranee, F-13288 Marseille (France)], E-mail: rovelli@cpt.univ-mrs.fr

    2008-07-21

    We introduce a vertex amplitude for 4d loop quantum gravity. We derive it from a conventional quantization of a Regge discretization of euclidean general relativity. This yields a spinfoam sum that corrects some difficulties of the Barrett-Crane theory. The second class simplicity constraints are imposed weakly, and not strongly as in Barrett-Crane theory. Thanks to a flip in the quantum algebra, the boundary states turn out to match those of SO(3) loop quantum gravity-the two can be identified as eigenstates of the same physical quantities-providing a solution to the problem of connecting the covariant SO(4) spinfoam formalism with the canonical SO(3) spin-network one. The vertex amplitude is SO(3) and SO(4)-covariant. It rectifies the triviality of the intertwiner dependence of the Barrett-Crane vertex, which is responsible for its failure to yield the correct propagator tensorial structure. The construction provides also an independent derivation of the kinematics of loop quantum gravity and of the result that geometry is quantized.

  1. Spin wave Feynman diagram vertex computation package

    Science.gov (United States)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  2. Markov branching in the vertex splitting model

    International Nuclear Information System (INIS)

    Stefánsson, Sigurdur Örn

    2012-01-01

    We study a special case of the vertex splitting model which is a recent model of randomly growing trees. For any finite maximum vertex degree D, we find a one parameter model, with parameter α element of [0,1] which has a so-called Markov branching property. When D=∞ we find a two parameter model with an additional parameter γ element of [0,1] which also has this feature. In the case D = 3, the model bears resemblance to Ford's α-model of phylogenetic trees and when D=∞ it is similar to its generalization, the αγ-model. For α = 0, the model reduces to the well known model of preferential attachment. In the case α > 0, we prove convergence of the finite volume probability measures, generated by the growth rules, to a measure on infinite trees which is concentrated on the set of trees with a single spine. We show that the annealed Hausdorff dimension with respect to the infinite volume measure is 1/α. When γ = 0 the model reduces to a model of growing caterpillar graphs in which case we prove that the Hausdorff dimension is almost surely 1/α and that the spectral dimension is almost surely 2/(1 + α). We comment briefly on the distribution of vertex degrees and correlations between degrees of neighbouring vertices

  3. Complex growing networks with intrinsic vertex fitness

    International Nuclear Information System (INIS)

    Bedogne, C.; Rodgers, G. J.

    2006-01-01

    One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution ρ(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a rate f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined

  4. Measuring the mass of the W± boson in the ALEPH experiment

    International Nuclear Information System (INIS)

    Boumediene, D.E.

    2002-05-01

    The W boson plays an important role in the standard model of weak interactions, its mass is predictable and its measurement is an efficient way to test the theory and to challenge experimental data. This thesis is dedicated to the measurement of the W mass (m W ) through the ALEPH experiment. 3 important points are treated: measuring techniques, systematic effects and impact of the value measured on the standard model. As for measuring techniques: all the decay products of W have been reconstructed, this reconstruction is dependent on the decay way and has an impact on the determination of the mass. For the decay W + W - → τνqq-bar, a specific reconstruction has been studied and used for every step of the measurement (selection, kinematic adjustment, adjustment of m W ), this technique has improved the resolution of m W . For the leptonic decay W + W - → lνlν, we have focused on the adjustment technique of m W , for the decays W + W - → lνqq-bar and W + W - → qq-bar qq-bar, the standard measurement technique of ALEPH has been used. As for systematic effects, the statistical precision of the measurement campaign is high so it is necessary to understand the systematic effects that have an impact on the measured value. 2 effects have been thoroughly studied: the colour interconnection effect that concerns only the hadronic decay with 4 jets, the second effect appears in the simulation of showers in calorimeter-detectors. 2 values for m W are proposed, one that was obtained by only measuring the direction and the energy of the jet and the second one by discarding all the problematic events that were reconstructed in the detector. We obtain: m W = (80,392 ± 0,053) GeV/c 2 and m W = (80,358 ± 0,050) GeV/c 2 . By combining these values to the internationally agreed data, it has been possible to adjust the mass of the Higgs' boson and to give an upper limit for its mass: m H 2 . (A.C.)

  5. Vertex detectors - lectures presented at the Advanced Study Institute on techniques and concepts of high energy physics, St. Croix, June 1986

    International Nuclear Information System (INIS)

    Damerell, C.J.S.

    1986-07-01

    High precision vertex detectors can be used to identify the decay products of parent particles which have lifetimes of the order 10 -13 seconds. The paper summarises the performance achieved by a variety of techniques, and proceeds to a detailed discussion of the current status and potential of silicon detectors for high precision tracking. (author)

  6. Study of WW decay of a Higgs boson with the ALEPH and CMS detectors

    CERN Document Server

    AUTHOR|(CDS)2068184; Lemaitre, Vincent

    The Standard Model is a mathematical description of the very nature of elementary particles and their interactions, now seen as relativistic quantum fields. A key feature of the theory is the Brout-Englert-Higgs mechanism, responsible for the spontaneous symmetry breaking of the underlying gauge symmetry, and which implies the existence of a neutral Higgs particle. Searches for the Higgs boson were conducted at the Large Electron Positron collider until 2000 and are still ongoing at the Tevatron collider, but the particle has not been not observed. In order to better constrain models with an exotic electroweak symmetry breaking sector, a search for a Higgs boson decaying into a W pair is carried out with the ALEPH detector on 453 pb-1 of data collected at center-of-mass energies up to 209 GeV. The analysis is optimized for the many topologies resulting from the six-fermion final state. A lower limit at 105.8 GeV/c² on the Higgs boson mass in a fermiophobic Higgs boson scenario is obtained. The ultimate mac...

  7. Heavy flavour production and decay with prompt leptons in the ALEPH detector

    Science.gov (United States)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Mattison, T.; Ortreu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Girone, M.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Johnson, S. D.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, B.; Fouque, G.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Levinthal, D.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Salomone, S.; Colrain, P.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Hassard, J. F.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; Payne, D. G.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Etienne, F.; Nicod, D.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foa, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Martin, E. B.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; Johnson, D. L.; March, P. V.; Medcalf, T.; Mir, Ll. M.; Quazi, I. S.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.

    1994-06-01

    In 431 000 hadronic Z decays recorded with the ALEPH detector at LEP, the yields of electrons and muons in events with one or more prompt leptons have been analysed to give information on the production and decay of heavy quarks. The fractions ofbbar b andcbar c events are measured to be 0.219±0.006±0.005 and 0.165±0.005±0.020, and the corresponding forward-backward asymmetries at the Z mass are measured to be 0.090±0.013±0.003 and 0.111±0.021±0.018, after QED and QCD corrections. Measurements for the semileptonic branching ratios BR(b to ell ^ - bar vX) and BR ( b→ cℓ+ vX) yield 0.114±0.003±0.004 and 0.082±0.003±0.012, respectively. The dilepton events enable measurement of the b mixing parameter, Χ=0.114±0.014±0.008. Results are also presented for the energy variation of thebbar b asymmetry and the parameters required to describe heavy quark fragmentation. From the asymmetry measurements, the effective electroweak mixing angle is sin2θ{/W eff}=0.2333±0.0022.

  8. Measurement of the uniformity of ALEPH electromagnetic calorimeter by using the cosmic ray

    International Nuclear Information System (INIS)

    Pignard, Bruno

    1990-01-01

    After a description of the ALEPH experiment and a detailed description of the electromagnetic calorimeter, the author of this research thesis indicates the requirements which this sensor must meet, presents the adopted solution, describes the operation principle, the structure and the construction method. A focus is made on factors which may impact uniformity. The general issue of calibration of such a sensor is addressed, and different methods of inhomogeneity measurement are described. The cosmic ray bench test and test procedure are described. After having indicated the expected muon spectrum, the author describes how these muons deposit their energy in the calorimeter, and introduces the simulation program which is used to study some systematic effects. The whole signal processing chain is described, from signal measurement to inhomogeneity mapping. Systematic effects which affect the signal are studied, and the author describes corrections to be introduced to obtain a measurement of inhomogeneity. Inhomogeneity maps are analysed. Results obtained by cosmic tests are presented and compared with other inhomogeneity measurement methods

  9. The upgrade of the LHCb Vertex Locator (VELO)

    CERN Document Server

    van Beuzekom, M

    2014-01-01

    The upgrade of the LHCb experiment, planned for 2018, will enable the detector to run at a luminosity of 2 x 10$^{33}$ cm$^{-22}$s$^{-1}$ and explore New Physics effects in the beauty and charm sector with unprecedented precision. To achieve this, the entire readout will be transformed into a triggerless system operating at 40 MHz, where the event selection algorithms will be executed by high-level software in the CPU farm. The upgraded silicon vertex detector (VELO) must be lightweight, radiation hard, vacuum compatible, and has to drive data to the data acquisition system at speeds of up to 3 Tbit/s. This challenge will be met with a new VELO design based on hybrid pixel detectors, positioned to within 5 mm of the LHC colliding beams. The sensors have 55 x 55 $\\mu$m$^2$ square pixels and the VeloPix ASIC, which is being developed for the readout, is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with integrated hit rates of up to 900 MHz which translates to a bandwidth of m...

  10. Automatised Data Quality Monitoring of the LHCb Vertex Locator

    CERN Multimedia

    Szumlak, Tomasz

    2016-01-01

    The LHCb Vertex Locator (VELO) is a silicon strip semiconductor detector operating at just 8mm distance to the LHC beams. Its 172,000 strips are read at a frequency of 1 MHz and processed by off-detector FPGAs followed by a PC cluster that reduces the event rate to about 10 kHz. During the second run of the LHC, which lasts from 2015 until 2018, the detector performance will undergo continued change due to radiation damage effects. This necessitates a detailed monitoring of the data quality to avoid adverse effects on the physics analysis performance. The VELO monitoring infrastructure has been re-designed compared to the first run of the LHC when it was based on manual checks. The new system is based around an automatic analysis framework, which monitors the performance of new data as well as long-term trends and flags issues whenever they arise. An unbiased subset of the detector data are processed about once per hour by monitoring algorithms. The new analysis framework then analyses the plots that are prod...

  11. Tracking and Vertexing with the ATLAS Inner Detector in the LHC Run2 and Beyond

    CERN Document Server

    Swift, Stewart Patrick; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  12. TRACKING AND VERTEXING WITH THE ATLAS INNER DETECTOR IN THE LHC RUN2 AND BEYOND

    CERN Document Server

    Choi, Kyungeon; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  13. An asynchronous data-driven readout prototype for CEPC vertex detector

    Science.gov (United States)

    Yang, Ping; Sun, Xiangming; Huang, Guangming; Xiao, Le; Gao, Chaosong; Huang, Xing; Zhou, Wei; Ren, Weiping; Li, Yashu; Liu, Jianchao; You, Bihui; Zhang, Li

    2017-12-01

    The Circular Electron Positron Collider (CEPC) is proposed as a Higgs boson and/or Z boson factory for high-precision measurements on the Higgs boson. The precision of secondary vertex impact parameter plays an important role in such measurements which typically rely on flavor-tagging. Thus silicon CMOS Pixel Sensors (CPS) are the most promising technology candidate for a CEPC vertex detector, which can most likely feature a high position resolution, a low power consumption and a fast readout simultaneously. For the R&D of the CEPC vertex detector, we have developed a prototype MIC4 in the Towerjazz 180 nm CMOS Image Sensor (CIS) process. We have proposed and implemented a new architecture of asynchronous zero-suppression data-driven readout inside the matrix combined with a binary front-end inside the pixel. The matrix contains 128 rows and 64 columns with a small pixel pitch of 25 μm. The readout architecture has implemented the traditional OR-gate chain inside a super pixel combined with a priority arbiter tree between the super pixels, only reading out relevant pixels. The MIC4 architecture will be introduced in more detail in this paper. It will be taped out in May and will be characterized when the chip comes back.

  14. Numerical indications on the semiclassical limit of the flipped vertex

    Energy Technology Data Exchange (ETDEWEB)

    Magliaro, Elena; Perini, Claudio; Rovelli, Carlo [Centre de Physique Theorique de Luminy , Case 907, F-13288 Marseille (France)

    2008-05-07

    We introduce a technique for testing the semiclassical limit of a quantum gravity vertex amplitude. The technique is based on the propagation of a semiclassical wave packet. We apply this technique to the newly introduced 'flipped' vertex in loop quantum gravity, in order to test the intertwiner dependence of the vertex. Under some drastic simplifications, we find very preliminary, but surprisingly good numerical evidence for the correct classical limit.

  15. Loop vertex expansion for higher-order interactions

    Science.gov (United States)

    Rivasseau, Vincent

    2018-05-01

    This note provides an extension of the constructive loop vertex expansion to stable interactions of arbitrarily high order, opening the way to many applications. We treat in detail the example of the (\\bar{φ } φ )^p field theory in zero dimension. We find that the important feature to extend the loop vertex expansion is not to use an intermediate field representation, but rather to force integration of exactly one particular field per vertex of the initial action.

  16. Pion-nucleon vertex function with one nucleon off shell

    International Nuclear Information System (INIS)

    Mizutani, T.; Rochus, P.

    1979-01-01

    The pion-nucleon vertex function with an off-mass-shell nucleon is obtained through sideways dispersion relations with the P 11 and S 11 pion-nucleon phase shifts as only input. Contrary to the recent calculation of Nutt and Shakin, we find that the proper and improper vertex functions behave quite differently, indicating the importance of the nucleon propagator dressing. In particular the proper vertex function is found to have two poles in the unphysical region

  17. Propagation of the trip behavior in the VENUS vertex chamber

    International Nuclear Information System (INIS)

    Ohama, Taro; Yamada, Yoshikazu.

    1995-03-01

    The high voltage system of the VENUS vertex chamber occasionally trips by a discharge somewhere among cathode electrodes during data taking. This trip behavior induces often additional trips at other electrodes such as the skin and the grid electrodes in the vertex chamber. This propagation mechanism of trips is so complicated in this system related with multi-electrodes. Although the vertex chamber is already installed inside the VENUS detector and consequently the discharge is not able to observe directly, a trial to estimate the propagation has been done using only the information which appears around the trip circuits and the power supply of the vertex chamber. (author)

  18. The Mark II Vertex Drift Chamber

    International Nuclear Information System (INIS)

    Alexander, J.P.; Baggs, R.; Fujino, D.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 μm spatial resolution and 2 gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO 2 mixtures are presented. 10 refs., 12 figs., 1 tab

  19. Loop-quantum-gravity vertex amplitude.

    Science.gov (United States)

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  20. Vertex ring-indexed Lie algebras

    International Nuclear Information System (INIS)

    Fairlie, David; Zachos, Cosmas

    2005-01-01

    Infinite-dimensional Lie algebras are introduced, which are only partially graded, and are specified by indices lying on cyclotomic rings. They may be thought of as generalizations of the Onsager algebra, but unlike it, or its sl(n) generalizations, they are not subalgebras of the loop algebras associated with sl(n). In a particular interesting case associated with sl(3), their indices lie on the Eisenstein integer triangular lattice, and these algebras are expected to underlie vertex operator combinations in CFT, brane physics, and graphite monolayers

  1. Quantum Vertex Model for Reversible Classical Computing

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng

    We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.

  2. The Construction of Spin Foam Vertex Amplitudes

    Directory of Open Access Journals (Sweden)

    Eugenio Bianchi

    2013-01-01

    Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  3. A hadron-quark vertex function

    International Nuclear Information System (INIS)

    Mitra, A.N.; Bhatnagar, S.

    1992-01-01

    This paper reports that the interrelation between the 4D and 3D forms of the Bethe-Salpeter equation (BSE) with a kernel K(q,q') which depends on the relative four-momenta, q μ = q μ - P · qP μ /P 2 , orthogonal to P μ is exploited to obtain a hadron-quark vertex function of the Lorentz-invariant form Γ(q) = D(q 2 ) circle time φ(q). The denominator function D(q 2 ) is universal and controls the 3D BSE, which provides the mass spectra with the eigenfunctions φ(q). The vertex function, directly related to the 4D wave function Ψ which satisfies a corresponding BSE, defines a natural off-shell extension over the whole of four-momentum space, and provides the basis for the evaluation of transition amplitudes via appropriate quark-loop diagrams. The key role of the quantity q 2 in this formalism is clarified in relation to earlier approaches, in which the applications of this quantity had mostly been limited to the mass shell (q · P = 0). Two applications (f p values for P → ell bar ell and F π for π 0 → γγ) are sketched as illustrations of this formalism, and attention is drawn to the problem of complex amplitudes for bigger quark loops with more hadrons, together with the role of the D(q) function in overcoming this problem

  4. Vertex models, TASEP and Grothendieck polynomials

    International Nuclear Information System (INIS)

    Motegi, Kohei; Sakai, Kazumitsu

    2013-01-01

    We examine the wavefunctions and their scalar products of a one-parameter family of integrable five-vertex models. At a special point of the parameter, the model investigated is related to an irreversible interacting stochastic particle system—the so-called totally asymmetric simple exclusion process (TASEP). By combining the quantum inverse scattering method with a matrix product representation of the wavefunctions, the on-/off-shell wavefunctions of the five-vertex models are represented as a certain determinant form. Up to some normalization factors, we find that the wavefunctions are given by Grothendieck polynomials, which are a one-parameter deformation of Schur polynomials. Introducing a dual version of the Grothendieck polynomials, and utilizing the determinant representation for the scalar products of the wavefunctions, we derive a generalized Cauchy identity satisfied by the Grothendieck polynomials and their duals. Several representation theoretical formulae for the Grothendieck polynomials are also presented. As a byproduct, the relaxation dynamics such as Green functions for the periodic TASEP are found to be described in terms of the Grothendieck polynomials. (paper)

  5. Status of the CBM micro vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Koziel, Michal [Goethe-Universitaet Frankfurt (Germany); Collaboration: CBM-MVD-Collaboration

    2015-07-01

    The fixed-target experiment CBM at FAIR will explore the phase diagram of strongly interacting matter in the regime of highest net baryon densities with numerous probes, among them open charm. For the reconstruction of open charm hadrons with the CBM experiment a Micro Vertex Detector (MVD) with an excellent spatial resolution of the secondary decay vertex is required. Hence, a material budget of a few 0.1% X0 is mandatory for the individual detector stations positioned downstream in close vicinity to the target. To reduce multiple scattering, the MVD operates in vacuum, which poses challenging requirements on both, the power dissipation of the sensors and the integration concept. Here one should mention the selection of high-performance materials providing the mechanical support and cooling for the 0.05 mm thin sensors, establishing the sensor quality assessment procedures as well as defining the sensor integration. In addition, a substantial progress with respect to sensor development will be reported, mainly to the studies on their radiation hardness. Also, the 2nd generation of the sensor control and read-out based on TRBv3 standard has been commissioned. In this contribution we highlight several activities that have been successfully accomplished, which enable us to define the start version of the CBM MVD.

  6. BTeV detached vertex trigger

    International Nuclear Information System (INIS)

    Gottschalk, E.E.

    2001-01-01

    BTeV is a collider experiment that has been approved to run in the Tevatron at Fermilab. The experiment will conduct precision studies of CP violation using a forward-geometry detector. The detector will be optimized for high-rate detection of beauty and charm particles produced in collisions between protons and anti-protons. BTeV will trigger on beauty and charm events by taking advantage of the main difference between these heavy quark events and more typical hadronic events - the presence of detached beauty and charm decay vertices. The first stage of the BTeV trigger will receive data from a pixel vertex detector at a rate of 100 gb s -1 , reconstruct tracks and vertices for every beam crossing, reject 99% of beam crossings that do not produce beauty or charm particles, and trigger on beauty events with high efficiency. An overview of the trigger design and its influence on the design of the pixel vertex detector is presented

  7. Multiplicity-Vertex Detector Electronics Development for Heavy-Ion Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L., Jr.; Bryan, W.L.; Emery, M.S. [and others

    1995-12-31

    This paper presents the electronics work performed to date for the Multiplicity-Vertex Detector (MVD) for the PHENIX collaboration at RHIC. The detector consists of approximately 34,000 channels of both silicon strips and silicon pads. The per-channel signal processing chain consists of a pre-amplifier gain stage, a current mode summed multiplicity discriminator, a 64 deep analog memory (simultaneous read/write), an analog correlator, and a 10-bit microsecs ADC. The system controller or Heap Manager, supplies all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Prototype performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 mu nwell CMOS process used for fabrication.

  8. B/B-bar flavour tagging and doubly charmed B decays in ALEPH

    International Nuclear Information System (INIS)

    Barate, R.

    1999-01-01

    This contribution concerns three contributed papers that share the common feature of analysing fully- (or almost fully-) reconstructed B decays coming from a sample of four million hadronic Z decays collected with the ALEPH detector at LEP. In the first paper, 404 charged and neutral B mesons decaying in standard modes are fully reconstructed and used to look for resonant structure in the Bπ ± system. In the framework of Heavy Quark Symmetry (HQS), the mass of the B 2 * state and the relative production rate of the B ** system are measured. In the same sample of B mesons, significant Bπ ± charge-flavour correlations are observed. In the second paper, a search for doubly-charmed B decays with both charmed mesons reconstructed is performed. A clear signal is observed in the channels b → D S D-bar(X) and b → DD-bar(X) providing the first direct evidence for doubly-charmed b decays involving no D S production. Evidence for associated K S 0 and K ± production in the decays B → DD-bar(X) is also presented and some candidates for completely reconstructed B meson decays B → D S D-bar(nπ), B → DD-bar K S 0 and B → DD-bar K ± are observed. Furthermore, candidates for the two-body Cabibbo suppressed decays B 0 → D *- D *+ and B - → D (*)0 D (*)- are also observed. One B S 0 → D S + D S - event is reconstructed, which can be only the short-lived CP even eigenstate. In the third paper, the B S decay to D S (*)+ D S (*)- (X) is observed, tagging the final state with two φ in the same hemisphere. It corresponds mostly to the short-lived CP even eigenstate. A preliminary value of the B S short lifetime is obtained. (author)

  9. VETRA - offline analysis and monitoring software platform for the LHCb Vertex Locator

    International Nuclear Information System (INIS)

    Szumlak, Tomasz

    2010-01-01

    The LHCb experiment is dedicated to studying CP violation and rare decay phenomena. In order to achieve these physics goals precise tracking and vertexing around the interaction point is crucial. This is provided by the VELO (VErtex LOcator) silicon detector. After digitization, FPGAs are employed to run several algorithms to suppress noise and reconstruct clusters. This is performed by an FPGA based processing board. An off-line software project, VETRA, has been developed which performs a bit perfect emulation of this complex processing in the FPGAs. This is a novel development as this hardware emulation is not standalone but rather is fully integrated into the LHCb software to allow the reconstruction of full data from the detector. This software platform facilitates the development and understanding of the behaviour of the processing algorithms, the optimization of the parameters of the algorithms that will be loaded into the FPGA and monitoring of the detector performance. This framework has also been adopted by the Silicon Tracker detector of LHCb. This processing framework was successfully used with the first 1500 tracks of data in the VELO obtained from the first LHC beam in September 2008. The software architecture and utilisation of the VETRA project will be discussed in detail.

  10. LHCb: Performance and Radiation Damage Effects in the LHCb Vertex Locator

    CERN Multimedia

    Carvalho Akiba, K

    2014-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the LHC. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO), hence the detector is critical for both the trigger and offline physics analyses. The VELO is the retractable silicon-strip detector surrounding the LHCb interaction point. It is located only 7 mm from the LHC beam during normal LHC operation, once moved into its closed position for each LHC fill when stable beams are obtained. During insertion the detector is centred around the LHC beam by the online reconstruction of the primary vertex position. Both VELO halves comprise 21 silicon micro-strip modules each. A module is made of two n-on-n 300 $\\mu$m thick half-disc sensors with R-measuring and $\\phi$-measuring micro-strip geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 $\\mu$m. The detector is also equipped with the only n-on-p sensors operating at the LHC. The detectors are operated in ...

  11. Performance, Radiation Damage Effects and Upgrade of the LHCb Vertex Locator

    CERN Document Server

    De Capua, S

    2013-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC). Heavy hadrons are identified through their flight distance in the VELO, the retractable silicon-strip vertex detector surrounding the LHCb interaction point at only 7 mm from the beam during normal LHC operation. Both VELO halves comprise 21 silicon micro-strip modules each. A module is made of two n-on-n 300 µm thick half-disc sensors with R- and phi-measuring geometry, mounted on a carbon fibre support paddle. The minimum pitch is approximately 40 µm. The detector is also equipped with the only n-on-p module operating at the LHC. The performance of the VELO in its three years of successful operation during the LHC physics runs will be presented. Highlights will include alignment, cluster finding efficiency, single hit resolution, and impact parameter and vertex resolutions. The VELO module sensors receive a large and non-uniform radiation dose having inner and outer radii of only 7 and 42...

  12. Design of a secondary-vertex trigger system

    International Nuclear Information System (INIS)

    Husby, D.; Chew, P.; Sterner, K.; Selove, W.

    1995-06-01

    For the selection of beauty and charm events with high efficiency at the Tevatron, a secondary-vertex trigger system is under design. It would operate on forward-geometry events. The system would use on-line tracking of all tracks in the vertex detector, to identify events with clearly detached secondary vertices

  13. BRST invariant mixed string vertex for the bosonic string

    International Nuclear Information System (INIS)

    Clarizia, A.; Pezzella, F.

    1987-09-01

    We construct a BRST invariant (N+M)-string vertex including both open and closed string states. When we saturate it with N open string and M closed string physical states it reproduces their corresponding scattering amplitude. As a particular case we obtain BRST invariant vertex for the open-closed string transition. (orig.)

  14. Drift chamber vertex detectors for SLC/LEP

    International Nuclear Information System (INIS)

    Hayes, K.G.

    1987-03-01

    The short but measurable lifetimes of the b and c quarks and the tau lepton have motivated the development of high precision tracking detectors capable of providing information on the decay vertex topology of events containing these particles. This paper reviews the OPAL, L3, and MARK II experiments vertex drift chambers

  15. Algebraic Bethe ansatz for 19-vertex models with reflection conditions

    International Nuclear Information System (INIS)

    Utiel, Wagner

    2003-01-01

    In this work we solve the 19-vertex models with the use of algebraic Bethe ansatz for diagonal reflection matrices (Sklyanin K-matrices). The eigenvectors, eigenvalues and Bethe equations are given in a general form. Quantum spin chains of spin one derived from the 19-vertex models were also discussed

  16. Graphs with No Induced Five-Vertex Path or Antipath

    DEFF Research Database (Denmark)

    Chudnovsky, Maria; Esperet, Louis; Lemoine, Laetitia

    2017-01-01

    We prove that a graph G contains no induced five-vertex path and no induced complement of a five-vertex path if and only if G is obtained from 5-cycles and split graphs by repeatedly applying the following operations: substitution, split unification, and split unification in the complement, where...

  17. Drift chamber vertex detectors for SLC/LEP

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, K G

    1988-03-01

    Factors influencing the design of drift chamber vertex detectors for SLC and LEP are discussed including global strategy, chamber gas, cell design, and signal processing. The designs of the vertex chambers for the L3 and OPAL experiments at LEP and the Mark II experiment at the SLC are described.

  18. Fermionic construction of vertex operators for twisted affine algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Sorba, P.; Sciarrino, A.

    1988-03-01

    We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators

  19. Vertex epidural haematoma manifesting with bilateral upper limb ...

    African Journals Online (AJOL)

    Vertex epidural haematomas (VEDH) are rare and difficulties are encountered in diagnosis and management. This is a case report of a patient with a vertex epidural haematoma who presented with signs of severe head injury with upper limb decerebrate posture. We discuss the challenges of radiological investigation and ...

  20. Subgraphs in vertex neighborhoods of K-free graphs

    DEFF Research Database (Denmark)

    Bang-Jensen, J.; Brandt, Stephan

    2004-01-01

    In a K-free graph, the neighborhood of every vertex induces a K-free subgraph. The K-free graphs with the converse property that every induced K-free subgraph is contained in the neighborhood of a vertex are characterized, based on the characterization in the case r = 3 due to Pach [8]....

  1. Multipole expansion of vertex functions with two final particles

    International Nuclear Information System (INIS)

    Daumens, Michel

    1977-01-01

    The expansions of the usual vertex functions are generalized to the vertex functions with two final particles. For four vector functions, expressions are similar to those of Chew, Goldberger, Low and Nambu, and of Adler and the consequences of the isobaric model are studied [fr

  2. The Mark III vertex chamber and prototype test results

    International Nuclear Information System (INIS)

    Grab, C.

    1987-07-01

    A vertex chamber has been constructed for use in the Mark III experiment. The chamber is positioned inside the current main drift chamber and will be used to trigger data collection, to aid in vertex reconstruction, and to improve the momentum resolution. This paper discusses the chamber's construction and performance and tests of the prototype

  3. On Pathos Adjacency Cut Vertex Jump Graph of a Tree

    OpenAIRE

    Nagesh.H.M; R.Chandrasekhar

    2014-01-01

    In this paper the concept of pathos adjacency cut vertex jump graph PJC(T) of a tree T is introduced. We also present a characterization of graphs whose pathos adjacency cut vertex jump graphs are planar, outerplanar, minimally non-outerplanar, Eulerian and Hamiltonian.

  4. Vertex Accentuation in Female Pattern Hair Loss in Asians

    Directory of Open Access Journals (Sweden)

    Chavalit Supsrisunjai

    2016-05-01

    Full Text Available Background: The most common cause of hair loss seen in women is female pattern hair loss (FPHL, also known as female androgenetic alopecia. It affects the central part of the scalp, but spares the frontal hairline. Frontal accentuation was also described by Olsen. In Asian women, vertex thinning patterns are frequently developed, but there has been no report about vertex thinning pattern in female pattern hair loss. Objective: To find prevalence of vertex accentuation in female pattern hair loss (FPHL in Asian women. Methods: Scalp hair counting (n/cm2 were measured at 3 different areas; vertex, mid scalp and frontal area respectively by digital dermoscope (Dino digital AM-413T. Visual counting and photography were performed. Outcomes were evaluated by gross appearance of vertex thinning and/or hair density <120 /cm2 in any of 3 areas. Results: 143 patients were evaluated. Mean age was 45.54 years. Of the hair loss type, 36.4% were mid-scalp, 33.6% were vertex accentuation and 30.1% were frontal accentuation, respectively. Age was not significantly different among the 3 types of hair loss (P- value 0.859. Conclusion: Although the most common female pattern hair loss type is diffuse type (Ludwig type, vertex accentuation pattern is the second most common pattern in this study. This study is the first to mention “Vertex accentuation” to be another pattern for FPHL.

  5. Genus Ranges of 4-Regular Rigid Vertex Graphs.

    Science.gov (United States)

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2015-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2 n vertices ( n > 1), we prove that all intervals [ a, b ] for all a genus ranges. For graphs with 2 n - 1 vertices ( n ≥ 1), we prove that all intervals [ a, b ] for all a genus ranges. We also provide constructions of graphs that realize these ranges.

  6. Twisted vertex algebras, bicharacter construction and boson-fermion correspondences

    International Nuclear Information System (INIS)

    Anguelova, Iana I.

    2013-01-01

    The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras

  7. Measurement of triple-gauge-boson couplings in the experiment ALEPH and at LEP; Mesure des couplages a trois bosons dans l'experience ALEPH et au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Bruneliere, R

    2003-04-01

    Precise measurements at LEP1 and SLD dramatically confirm the Standard Model predictions. Nevertheless, the most crucial consequence of a non-Abelian gauge theory, namely the specific form of the self-couplings of the W, Z and {gamma} was poorly tested. W pair production at LEP2 was a unique opportunity to measure accurately both W boson parameters and its gauge couplings. This thesis presents a study of WW events reconstruction on one hand, and a measurement of the anomalous couplings on the other hand. A precise measurement of the W mass (accuracy {approx} 10{sup -4}) is a major goal of the LEP2 program. The reconstruction of W mass disintegration products, used for this measurement, is very sensitive to the simulation defaults: an essential task is to understand and minimize their effects. This work presents a detailed study of the electromagnetic showers simulation in ALEPH. From this study, a new event reconstruction is proposed, which is tested on the LEP energy measurement obtained from Z return process. Triple gauge-boson couplings are measured from the data collected with the ALEPH detector between 1997 and 2000. Then, results are combined with the other three LEP experiments. This measurement directly confirms the non-Abelian nature of the electroweak sector. No deviation from the Standard Model is observed. (author)

  8. Resistance Distances in Vertex-Face Graphs

    Science.gov (United States)

    Shangguan, Yingmin; Chen, Haiyan

    2018-01-01

    The computation of two-point resistances in networks is a classical problem in electric circuit theory and graph theory. Let G be a triangulation graph with n vertices embedded on an orientable surface. Define K(G) to be the graph obtained from G by inserting a new vertex vϕ to each face ϕ of G and adding three new edges (u, vϕ), (v, vϕ) and (w, vϕ), where u, v and w are three vertices on the boundary of ϕ. In this paper, using star-triangle transformation and resistance local-sum rules, explicit relations between resistance distances in K(G) and those in G are obtained. These relations enable us to compute resistance distance between any two points of Kk(G) recursively. As explanation examples, some resistances in several networks are computed, including the modified Apollonian network and networks constructed from tetrahedron, octahedron and icosahedron, respectively.

  9. Report of the 'Vertex detector' working group

    International Nuclear Information System (INIS)

    Bellini, G.; Rancoita, P.G.

    1984-01-01

    An analysis, even rough, of the vertex detector performances, based on the pattern recognition and on currently available techniques (see below) makes clear that the high repetition rate option is strongly favoured. In this hypothesis, with a luminosity of approx.= 3 x 10 32 cm -2 s -1 and a time between bunch collision approx.= 25 ns, we expect = 1 as number of events per bunch collision, e.i. 36.8% of events with 0 interaction, 36.8% with 1 and 26.4% with more than 1 event. Two or three events per crossing bunch can be separated and 25 ns of repetition time does not appear to be a major problem. (orig./HSI)

  10. Quarkonium decays: Testing the 3-gluon vertex

    International Nuclear Information System (INIS)

    Koller, K.; Walsh, T.F.; Zerwas, P.M.; Technische Hochschule Aachen

    1980-12-01

    We study the 3-jet decays of S and P-wave quarkonia with C = +. If observed, some of these will offer a way of seeing the 3G vertex of QCD via 1 Ssub(o), 3 Psub(o), 3 P 2 (Qanti Q) → GGG + Gqanti q → 3 jets. (As is well-known, cancellations reduce 3 P 1 (anti Q) → GGG.) We elaborate in detail the S-wave decay as it is expected to show all the characteristic features of orthoquarkonium decays into 4 jets, 3 S 1 (Qanti Q) → GGGG + GGqanti q → 4 jets which we will comment upon. These quarkonium decays offer a very clear signal for QCD as a non-abelian local gauge field theory with color-charged gluons. (orig.)

  11. Primary Vertex Reconstruction for Upgrade at LHCb

    CERN Document Server

    Wanczyk, Joanna

    2016-01-01

    The aim of the LHCb experiment is the study of beauty and charm hadron decays with the main focus on CP violating phenomena and searches for physics beyond the Standard Model through rare decays. At the present, the second data taking period is ongoing, which is called Run II. After 2018 during the long shutdown, the replacement of signicant parts of the LHCb detector is planned. One of main changes is upgrade of the present software and hardware trigger to a more rapid full software trigger. Primary Vertex (PV) is a basis for the further tracking and it is sensitive to the LHC running conditions, which are going to change for the Upgrade. In particular, the center-of-mass collision energy should reach the maximum value of 14 TeV. As a result the quality of the reconstruction has to be studied and the reconstruction algorithms have to be optimized.

  12. Lifetime tests for MAC vertex chamber

    International Nuclear Information System (INIS)

    Nelson, H.

    1986-01-01

    A vertex chamber for MAC was proposed in fall 1983 to increase precision in the measurement of the B hadron and tau lepton lifetimes. The chamber had to be placed within the existing central drift chamber, making access for repairs difficult and costly. Therefore for detector elements thin-walled aluminized mylar drift tubes (straws) were used because of their simplicity and robustness. The diameter of the drift tubes was 6.9 mm. The radial extent of the proposed chamber was from 3 cm to 10 cm, the inner wall of the central drift. It was clear that radiation levels, from synchrotron x-rays and overfocussed electrons, were potentially high. Since the drift distance is short in the straws, it was desirable to operate them at the highest possible gas gain, to achieve the best spatial resolution. There was a likelihood of drawing large currents in the chamber and thus causing radiation damage. Therefore a study of radiation hardness under the conditions of their proposed design was undertaken. In tests, argon-hydrocarbon mixtures consistently became unusable at ∼0.05 C/cm collected charge, due to anode buildup. Argon-CO 2 mixtures, while underquenched, were operational to 0.25 C/cm, at which point loss of cathode material became intolerable. Argon-xenon-CO 2 proved to be quenched as well as argon-hydrocarbons, but was limited by cathode damage. The MAC vertex chamber has operated at a distance of 4.6 cm from the e + e - interaction point at PEP for two years and has shown no aging effects

  13. Measurement of Bose-Einstein correlations in the decays of W boson pairs by the ALEPH detector at LEP

    International Nuclear Information System (INIS)

    Martin, Franck

    1999-01-01

    The measurement of the W boson mass is a key issue of LEP2. In the W + W - → q 1 q 2 -bar q 3 q 4 -bar channel, a large systematic error comes from Bose-Einstein correlations, which could induce a non-independent fragmentation of the two W. This thesis deals with the measurements of these correlations in W boson pair decays. We will focus on the measurement of such correlations between points from different decaying W. The standard model theory and the ALEPH experiment are described in the two first chapters. The analysis requires a selection of W + W - → q 1 q 2 -bar lν l events, which is presented in chapter three. The W + W - → q 1 q 2 -bar q 3 q 4 -bar and W + W - → q 1 q 2 -bar τν event selections are also described in this part. The different phenomenological models of Bose-Einstein correlations are reviewed in chapter four, with their adjustment on the ALEPH data recorded at √s = 91 GeV. The model predictions are compared to results of measurements done in W + W - decays observed at energies of collisions of 172, 183 and 189 GeV. Bose-Einstein correlations between pions coming from different W in the W + W - → q 1 q 2 -bar q 3 q 4 -bar channel are disfavored by 2.7 standard deviations. (author)

  14. Locking mechanisms in degree-4 vertex origami structures

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.

    2016-04-01

    Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.

  15. The MAPS based PXL vertex detector for the STAR experiment

    Science.gov (United States)

    Contin, G.; Anderssen, E.; Greiner, L.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Vu, C.; Wieman, H.; Woodmansee, S.

    2015-03-01

    The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m2. Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ~ 3.8 cm2. The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector performance

  16. The MAPS based PXL vertex detector for the STAR experiment

    International Nuclear Information System (INIS)

    Contin, G.; Anderssen, E.; Greiner, L.; Silber, J.; Stezelberger, T.; Vu, C.; Wieman, H.; Woodmansee, S.; Schambach, J.; Sun, X.; Szelezniak, M.

    2015-01-01

    The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m 2 . Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ∼ 3.8 cm 2 . The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm 2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector

  17. A MAPS Based Micro-Vertex Detector for the STAR Experiment

    Science.gov (United States)

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; Greiner, Leo; Silber, Joe; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Videbaek, Flemming; Vu, Chinh; Wieman, Howard; Woodmansee, Sam

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector's vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensor (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m2. Each sensor of this PiXeL ("PXL") sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ˜3.8 cm2. This sensor architecture features 185.6 μs readout time and 170 mW/cm2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.

  18. Tracking and vertexing for B physics at hadron accelerators

    International Nuclear Information System (INIS)

    Johnson, R.; Purohit, M.; Weidemann, A.W.

    1993-01-01

    In this note, the authors report on some of the activities of the Tracking and Vertexing Working Group of this Workshop. Track and vertex finding is essential to exploit the high production rate of B-mesons at hadron accelerators, both for triggering and analysis. Here, they review the tracking and vertex-finding systems of some of the major existing and proposed collider and fixed-target experiments at existing and future hadron accelerators, with a view towards their usefulness for B-physics. The capabilities of both general-purpose detectors and those of dedicated B-physics experiments are considered

  19. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear e+e− collider pose challenging demands on the performance of the vertex and tracking detector system. In particular the detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A highly granular all- silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints.

  20. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang; Jiang, Caigui; Wallner, Johannes; Pottmann, Helmut

    2016-01-01

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals

  1. Graph Theory. 2. Vertex Descriptors and Graph Coloring

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2002-12-01

    Full Text Available This original work presents the construction of a set of ten sequence matrices and their applications for ordering vertices in graphs. For every sequence matrix three ordering criteria are applied: lexicographic ordering, based on strings of numbers, corresponding to every vertex, extracted as rows from sequence matrices; ordering by the sum of path lengths from a given vertex; and ordering by the sum of paths, starting from a given vertex. We also examine a graph that has different orderings for the above criteria. We then proceed to demonstrate that every criterion induced its own partition of graph vertex. We propose the following theoretical result: both LAVS and LVDS criteria generate identical partitioning of vertices in any graph. Finally, a coloring of graph vertices according to introduced ordering criteria was proposed.

  2. Vertex function of an electron in a constant electromagnetic field

    International Nuclear Information System (INIS)

    Morozov, D.A.; Narozhnyj, N.B.; Ritus, V.I.

    1981-01-01

    The third order with respect to radiation field vertex function for an electron located in a constant crossed field of arbitrary intensity is determined. It is shown that radiative interaction smears out the Airy function which describes the intensity of the interaction between electrons and photons in an external field as a function of the nonconserving momentum component. The qualitative relation Vsup((3)) approximately αchisup(2/3)Vsup((1)) between the third and first order vertex functions is found for large values of the dynamic parameter chi=((eFp)sup(2))sup(1/2)msup(-2). It is also shown that radiative interaction does not alter the order of magnitude of the squared mass of the system transferred at the vertex. The vertex function satisfies the Ward identity modified by the external field [ru

  3. The NA50 segmented target and vertex recognition system

    International Nuclear Information System (INIS)

    Bellaiche, F.; Cheynis, B.; Contardo, D.; Drapier, O.; Grossiord, J.Y.; Guichard, A.; Haroutunian, R.; Jacquin, M.; Ohlsson-Malek, F.; Pizzi, J.R.

    1997-01-01

    The NA50 segmented target and vertex recognition system is described. The segmented target consists of 7 sub-targets of 1-2 mm thickness. The vertex recognition system used to determine the sub-target where an interaction has occured is based upon quartz elements which produce Cerenkov light when traversed by charged particles from the interaction. The geometrical arrangement of the quartz elements has been optimized for vertex recognition in 208 Pb-Pb collisions at 158 GeV/nucleon. A simple algorithm provides a vertex recognition efficiency of better than 85% for dimuon trigger events collected with a 1 mm sub-target set-up. A method for recognizing interactions of projectile fragments (nuclei and/or groups of nucleons) is presented. The segmented target allows a large target thickness which together with a high beam intensity (∼10 7 ions/s) enables high statistics measurements. (orig.)

  4. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    Science.gov (United States)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  5. Uncovering the triple omeron vertex from Wilson line formalism

    International Nuclear Information System (INIS)

    Chirilli, G. A.; Szymanowski, L.; Wallon, S.

    2011-01-01

    We compute the triple omeron vertex from the Wilson line formalism, including both planar and nonplanar contributions, and get perfect agreement with the result obtained in the Extended Generalized Logarithmic Approximation based on Reggeon calculus.

  6. Vertex Reconstruction in the ATLAS Experiment at the LHC

    CERN Document Server

    Bouhova-Thacker, E; The ATLAS collaboration; Kostyukhin, V; Liebig, W; Limper, M; Piacquadio, G; Lichard, P; Weiser, C; Wildauer, A

    2009-01-01

    In the harsh environment of the Large Hadron Collider at CERN (design luminosity of $10^{34}$ cm$^{-2}$ s$^{-1}$) efficient reconstruction of vertices is crucial for many physics analyses. Described in this paper are the strategies for vertex reconstruction used in the ATLAS experiment and their implementation in the software framework Athena. The algorithms for the reconstruction of primary and secondary vertices as well as for finding of photon conversions and vertex reconstruction in jets are described. A special emphasis is made on the vertex fitting with application of additional constraints. The implementation of mentioned algorithms follows a very modular design based on object-oriented C++ and use of abstract interfaces. The user-friendly concept allows event reconstruction and physics analyses to compare and optimize their choice among different vertex reconstruction strategies. The performance of implemented algorithms has been studied on a variety of Monte Carlo samples and results are presented.

  7. Discussion on the electronic problems of straw vertex detector

    International Nuclear Information System (INIS)

    Xi Deming

    1992-01-01

    The measurement of the characteristic time of the output waveform of straw vertex detector, the design of its high resolution and high counting rate readout system and the problems of the charge and time calibrations are discussed

  8. A new method for computing the quark-gluon vertex

    International Nuclear Information System (INIS)

    Aguilar, A C

    2015-01-01

    In this talk we present a new method for determining the nonperturbative quark-gluon vertex, which constitutes a crucial ingredient for a variety of theoretical and phenomenological studies. This new method relies heavily on the exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of the background field method, which is Abelian-like. The longitudinal part of this latter quantity is fixed using the standard gauge technique, whereas the transverse is estimated with the help of the so-called transverse Ward identities. This method allows the approximate determination of the nonperturbative behavior of all twelve form factors comprising the quark-gluon vertex, for arbitrary values of the momenta. Numerical results are presented for the form factors in three special kinematical configurations (soft gluon and quark symmetric limit, zero quark momentum), and compared with the corresponding lattice data. (paper)

  9. Fluctuations in two-dimensional six-vertex systems

    International Nuclear Information System (INIS)

    Youngblood, R.W.; Axe, J.D.; McCoy, B.M.

    1979-01-01

    The character of polarization correlations in six-vertex systems is discussed. With the aid of a connection between the 1-d Heisenberg--Ising chain and the six-vertex problem, existing results for the chain correlations are used to obtain information about long-wavelength polarization correlations in six-vertex models. These results are compared with a neutron scattering study of 2-d polarization correlations in the layered compound copper formate tetrahydrate. Because the six-vertex model is equivalent to a particular roughening model, these results also explicitly predict the critical behavior of that roughening model just above its roughening temperature. The results correspond to the predictions of Kosterlitz and Thouless for the phase transition in the 2-d Coulomb gas. 5 figures

  10. Ghost story. II. The midpoint ghost vertex

    International Nuclear Information System (INIS)

    Bonora, L; Maccaferri, C; Scherer Santos, R.J.; Tolla, D D

    2009-01-01

    We construct the ghost number 9 three strings vertex for OSFT in the natural normal ordering. We find two versions, one with a ghost insertion at z = i and a twist-conjugate one with insertion at z = -i. For this reason we call them midpoint vertices. We show that the relevant Neumann matrices commute among themselves and with the matrix G representing the operator K 1 . We analyze the spectrum of the latter and find that beside a continuous spectrum there is a (so far ignored) discrete one. We are able to write spectral formulas for all the Neumann matrices involved and clarify the important role of the integration contour over the continuous spectrum. We then pass to examine the (ghost) wedge states. We compute the discrete and continuous eigenvalues of the corresponding Neumann matrices and show that they satisfy the appropriate recursion relations. Using these results we show that the formulas for our vertices correctly define the star product in that, starting from the data of two ghost number 0 wedge states, they allow us to reconstruct a ghost number 3 state which is the expected wedge state with the ghost insertion at the midpoint, according to the star recursion relation.

  11. Dynamical Vertex Approximation for the Hubbard Model

    Science.gov (United States)

    Toschi, Alessandro

    A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.

  12. Functional imaging of sleep vertex sharp transients.

    Science.gov (United States)

    Stern, John M; Caporro, Matteo; Haneef, Zulfi; Yeh, Hsiang J; Buttinelli, Carla; Lenartowicz, Agatha; Mumford, Jeanette A; Parvizi, Josef; Poldrack, Russell A

    2011-07-01

    The vertex sharp transient (VST) is an electroencephalographic (EEG) discharge that is an early marker of non-REM sleep. It has been recognized since the beginning of sleep physiology research, but its source and function remain mostly unexplained. We investigated VST generation using functional MRI (fMRI). Simultaneous EEG and fMRI were recorded from seven individuals in drowsiness and light sleep. VST occurrences on EEG were modeled with fMRI using an impulse function convolved with a hemodynamic response function to identify cerebral regions correlating to the VSTs. A resulting statistical image was thresholded at Z>2.3. Two hundred VSTs were identified. Significantly increased signal was present bilaterally in medial central, lateral precentral, posterior superior temporal, and medial occipital cortex. No regions of decreased signal were present. The regions are consistent with electrophysiologic evidence from animal models and functional imaging of human sleep, but the results are specific to VSTs. The regions principally encompass the primary sensorimotor cortical regions for vision, hearing, and touch. The results depict a network comprising the presumed VST generator and its associated regions. The associated regions functional similarity for primary sensation suggests a role for VSTs in sensory experience during sleep. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Mirror of the refined topological vertex from a matrix model

    CERN Document Server

    Eynard, B

    2011-01-01

    We find an explicit matrix model computing the refined topological vertex, starting from its representation in terms of plane partitions. We then find the spectral curve of that matrix model, and thus the mirror symmetry of the refined vertex. With the same method we also find a matrix model for the strip geometry, and we find its mirror curve. The fact that there is a matrix model shows that the refined topological string amplitudes also satisfy the remodeling the B-model construction.

  14. Performance of the ATLAS primary vertex reconstruction algorithms

    CERN Document Server

    Zhang, Matt

    2017-01-01

    The reconstruction of primary vertices in the busy, high pile up environment of the LHC is a challenging task. The challenges and novel methods developed by the ATLAS experiment to reconstruct vertices in such environments will be presented. Such advances in vertex seeding include methods taken from medical imagining, which allow for reconstruction of very nearby vertices will be highlighted. The performance of the current vertexing algorithms using early Run-2 data will be presented and compared to results from simulation.

  15. The quintic interaction vertex in light-cone gravity

    International Nuclear Information System (INIS)

    Ananth, Sudarshan

    2008-01-01

    We consider pure gravity in light-cone gauge and derive the complete quintic interaction vertex. Up to quartic order, the Kawai-Lewellen-Tye (KLT) relations can be made manifest at the level of the Einstein-Hilbert Lagrangian. The quintic interaction vertex represents an essential first step in further extending the off-shell validity of the KLT relations to higher order vertices

  16. Stochastic higher spin six vertex model and Macdonald measures

    Science.gov (United States)

    Borodin, Alexei

    2018-02-01

    We prove an identity that relates the q-Laplace transform of the height function of a (higher spin inhomogeneous) stochastic six vertex model in a quadrant on one side and a multiplicative functional of a Macdonald measure on the other. The identity is used to prove the GUE Tracy-Widom asymptotics for two instances of the stochastic six vertex model via asymptotic analysis of the corresponding Schur measures.

  17. The vertex detector for the Lepton/Photon collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E. [Los Alamos National Lab., NM (United States)

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  18. Construction of vertex operators using operator formalism techniques

    International Nuclear Information System (INIS)

    Gato, B.; Massachusetts Inst. of Tech., Cambridge

    1989-01-01

    We derive vertex operators in oscillator form as an application of the conserved charges method developed by Vafa for the operator formalism in higher genus Riemann surfaces. This construction proves to be clear, direct and valid for the bosonic and fermionic strings as wells as for twisted strings on orbifolds. We discuss the method and construct vertex operators for the bosonic string moving on Z N orbifolds and for the fermionic string in the NSR formulation. (orig.)

  19. The vertex detector for the Lepton/Photon Collaboration

    International Nuclear Information System (INIS)

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-01-01

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity η distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed

  20. Measurement of Bose-Einstein correlations in the decays of W boson pairs by the ALEPH detector at LEP; Mesure des correlations de Bose-Einstein dans les desintegrations de paires de Bosons W avec le detecteur ALEPH au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Franck [Laboratoire d' Annecy-Le-Vieux de Physique des Particules, Grenoble-1 Univ., 74 Annecy (France)

    1999-04-16

    The measurement of the W boson mass is a key issue of LEP2. In the W{sup +}W{sup -} {yields} q{sub 1}q{sub 2}-bar q{sub 3}q{sub 4}-bar channel, a large systematic error comes from Bose-Einstein correlations, which could induce a non-independent fragmentation of the two W. This thesis deals with the measurements of these correlations in W boson pair decays. We will focus on the measurement of such correlations between points from different decaying W. The standard model theory and the ALEPH experiment are described in the two first chapters. The analysis requires a selection of W{sup +}W{sup -} {yields} q{sub 1}q{sub 2}-bar l{nu}{sub l} events, which is presented in chapter three. The W{sup +}W{sup -} {yields} q{sub 1}q{sub 2}-bar q{sub 3}q{sub 4}-bar and W{sup +}W{sup -} {yields} q{sub 1}q{sub 2}-bar {tau}{nu} event selections are also described in this part. The different phenomenological models of Bose-Einstein correlations are reviewed in chapter four, with their adjustment on the ALEPH data recorded at {radical}s = 91 GeV. The model predictions are compared to results of measurements done in W{sup +}W{sup -} decays observed at energies of collisions of 172, 183 and 189 GeV. Bose-Einstein correlations between pions coming from different W in the W{sup +}W{sup -} {yields} q{sub 1}q{sub 2}-bar q{sub 3}q{sub 4}-bar channel are disfavored by 2.7 standard deviations.

  1. Cross section and di-fermionic asymmetry measurements by ALEPH detector at LEP2 - Interpretations beyond Standard Model; Mesures des sections efficaces et des asymetries difermioniques avec le detecteur Aleph a LEP2 - Interpretations au-dela du Modele Standard

    Energy Technology Data Exchange (ETDEWEB)

    Merle, Elsa [Laboratoire d' Annecy-le-vieux de physique des particules, Grenoble-1 Univ., 74 Annecy (France)

    1999-04-22

    The present work is based on the selection of e{sup -}e{sup +} {yields} f f-bar events taken with the ALEPH detector from 1995 to 1998, for an integrated luminosity of 500 pb{sup -}. We first present the selection of dimuon, di-tau and di-electron events that we have been developed for this study. The hadronic selection used in ALEPH is also detailed in a devoted part. In each case, the estimation of systematic uncertainties is described. They are of the same order of magnitude as the statistical errors, ranging between 0.6% (di-electron) and 3.5% (dimuon). From these selections we derive the di-fermionic cross-sections as well as the asymmetries computed for the di-lepton channels. Measurements are found to be in reasonable agreement with the Standard Model expectations. Cross-sections and asymmetries are sensitive to the presence of possible new physics. In this document we use the context of the 4-fermion contact interactions to set limits on the energy scale of new physics. Such limits are found to range between 7 and 15 GeV depending on the modelling used. We also put lower limits on the mass of leptoquarks, 590 GeV/c{sup 2} for vector leptoquarks and 71 GeV/c{sup 2} for scalar leptoquarks. Eventually we also present the limits derived in the context of R-parity violated supersymmetry, putting constraint on the s-neutrino mass. Our study excludes such particles below a few hundred GeV/c{sup 2} mass for high values of their Yukawa coupling assumptions.

  2. Vertex Reconstruction at STAR: Overview and Performance Evaluation

    Science.gov (United States)

    Smirnov, D.; Lauret, J.; Perevoztchikov, V.; Van Buren, G.; Webb, J.

    2017-10-01

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) has a rich physics program ranging from studies of the Quark Gluon Plasma to the exploration of the spin structure of the proton. Many measurements carried out by the STAR collaboration rely on the efficient reconstruction and precise knowledge of the position of the primary-interaction vertex. Throughout the years two main vertex finders have been predominantly utilized in event reconstruction by the experiment: MinutVF and PPV with their application domains focusing on heavy ion and proton-proton events respectively. In this work we give a brief overview and discuss recent improvements to the vertex finding algorithms implemented in the STAR software library. In our studies we focus on the finding efficiency and the quality of the reconstructed primary vertex. We examine the effect of an additional constraint, imposed by an independent measurement of the beam line position, when it is applied during the fit. We evaluate the significance of the improved primary vertex resolution on identification of the secondary decay vertices occurring inside the beam pipe. Finally, we present a method and its software implementation developed to measure the performance of the primary vertex reconstruction algorithms.

  3. Smarandachely Adjacent-Vertex-Distinguishing Proper Edge Chromatic Number of Cm∨Kn

    OpenAIRE

    Shunqin Liu

    2016-01-01

    According to different conditions, researchers have defined a great deal of coloring problems and the corresponding chromatic numbers. Such as, adjacent-vertex-distinguishing total chromatic number, adjacent-vertex-distinguishing proper edge chromatic number, smarandachely-adjacent-vertex-distinguishing proper edge chromatic number, smarandachely-adjacent-vertex-distinguishing proper total chromatic number. And we focus on the smarandachely adjacent-vertex-distinguishing proper edge chromatic...

  4. Study of the CP asymmetry of $B^{0} \\rightarrow J/\\psi K^{0}_{s}$ decays in ALEPH

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Petersen, B.A.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Halley, A.W.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Marinelli, N.; Sedgbeer, J.K.; Thompson, J.C.; Thomson, Evelyn J.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C.K.; Buck, P.G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Giehl, I.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Wachsmuth, H.; Zeitnitz, C.; Bonissent, A.; Carr, J.; Coyle, P.; Leroy, O.; Payre, P.; Rousseau, D.; Talby, M.; Aleppo, M.; Ragusa, F.; Dietl, H.; Ganis, G.; Heister, A.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Schune, M.H.; Veillet, J.J.; Videau, I.; Yuan, C.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Johnson, R.P.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, S.L.; Wu, X.; Zobernig, G.

    2000-01-01

    The decay B0 -> J/psi K0_S is reconstructed with J/psi -> e+ e- or mu+ mu- and K0_S -> pi+ pi-. From the full ALEPH dataset at LEP1 of about 4 million hadronic Z decays, 23 candidates are selected with an estimated purity of 71%. They are used to measure the CP asymmetry of this decay, given by sin 2beta in the Standard Model, with the result sin 2beta = 0.84 +0.82-1.04 +-0.16. This is combined with existing measurements from other experiments, and increases the confidence level that CP violation has been observed in this channel to 98%.

  5. Online track and vertex reconstruction on GPUs for the Mu3e experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, Dorothea vom [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: Mu3e-Collaboration

    2016-07-01

    The Mu3e experiment searches for the lepton flavour violating decay μ → eee, aiming at a branching ratio sensitivity better than 10{sup -16}.To reach this sensitivity, muon rates above 10{sup 9} μ/s are required. A high precision silicon tracking detector combined with excellent timing resolution from scintillating fibers and tiles will measure the momenta, vertices and timing of the decay products of muons stopped in the target to suppress background. The trigger-less readout system will deliver about 100 GB/s of zero-suppressed data. A network of optical links and switching FPGAs sends the complete detector data for a time slice to one node of the filter farm. An FPGA inside the filter farm PC transfers the event data to the GPU via PCIe direct memory access. The GPU finds and fits tracks using a 3D tracking algorithm for multiple scattering dominated resolution. In a second step, a three track vertex fit is performed, allowing for a reduction of the output data rate to below 100 MB/s by removing combinatorial background. The talk discusses the data flow from the FPGA to the GPU as well as the implementation and performance of the track and vertex fits on the GPU.

  6. Cross section and di-fermionic asymmetry measurements by ALEPH detector at LEP2 - Interpretations beyond Standard Model

    International Nuclear Information System (INIS)

    Merle, Elsa

    1999-01-01

    The present work is based on the selection of e - e + → f f-bar events taken with the ALEPH detector from 1995 to 1998, for an integrated luminosity of 500 pb - . We first present the selection of dimuon, di-tau and di-electron events that we have been developed for this study. The hadronic selection used in ALEPH is also detailed in a devoted part. In each case, the estimation of systematic uncertainties is described. They are of the same order of magnitude as the statistical errors, ranging between 0.6% (di-electron) and 3.5% (dimuon). From these selections we derive the di-fermionic cross-sections as well as the asymmetries computed for the di-lepton channels. Measurements are found to be in reasonable agreement with the Standard Model expectations. Cross-sections and asymmetries are sensitive to the presence of possible new physics. In this document we use the context of the 4-fermion contact interactions to set limits on the energy scale of new physics. Such limits are found to range between 7 and 15 GeV depending on the modelling used. We also put lower limits on the mass of leptoquarks, 590 GeV/c 2 for vector leptoquarks and 71 GeV/c 2 for scalar leptoquarks. Eventually we also present the limits derived in the context of R-parity violated supersymmetry, putting constraint on the s-neutrino mass. Our study excludes such particles below a few hundred GeV/c 2 mass for high values of their Yukawa coupling assumptions. (author)

  7. SiCAL, a small-angle solid-state luminosity calorimeter for ALEPH

    International Nuclear Information System (INIS)

    Vallage, B.

    1991-01-01

    In order to increase the precision of the luminosity measurement and to benefit from the smaller diameter of the LEP beam pipe, a new luminometer is being built at Saclay, in collaboration with CERN and INFN-Pisa. We describe the design of this calorimeter consisting of 2 cylinders of 12 layers each. Each layer contains tungsten, used as converter, and silicon crystals, divided in pads, as sensitive medium. The expected performances are reviewed. Special attention is given to the systematic errors. A prototype of this detector has been exposed to a 50 GeV electron beam at CERN in order to check the behaviour of the silicon detectors, front-end electronics and full digitization and readout chain

  8. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    CERN Document Server

    Rescigno, R; Juliani, D; Spiriti, E; Baudot, J; Abou-Haidar, Z; Agodi, C; Alvarez, M A G; Aumann, T; Battistoni, G; Bocci, A; Böhlen, T T; Boudard, A; Brunetti, A; Carpinelli, M; Cirrone, G A P; Cortes-Giraldo, M A; Cuttone, G; De Napoli, M; Durante, M; Gallardo, M I; Golosio, B; Iarocci, E; Iazzi, F; Ickert, G; Introzzi, R; Krimmer, J; Kurz, N; Labalme, M; Leifels, Y; Le Fevre, A; Leray, S; Marchetto, F; Monaco, V; Morone, M C; Oliva, P; Paoloni, A; Patera, V; Piersanti, L; Pleskac, R; Quesada, J M; Randazzo, N; Romano, F; Rossi, D; Rousseau, M; Sacchi, R; Sala, P; Sarti, A; Scheidenberger, C; Schuy, C; Sciubba, A; Sfienti, C; Simon, H; Sipala, V; Tropea, S; Vanstalle, M; Younis, H

    2014-01-01

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different...

  9. Development of Data Processing Algorithms for the Upgraded LHCb Vertex Locator

    CERN Document Server

    AUTHOR|(CDS)2101352

    The LHCb detector will see a major upgrade during LHC Long Shutdown II, which is planned for 2019/20. The silicon Vertex Locator subdetector will be upgraded for operation under the new run conditions. The detector will be read out using a data acquisition board based on an FPGA. The work presented in this thesis is concerned with the development of the data processing algorithms to be used in this data acquisition board. In particular, work in three different areas of the FPGA is covered: the data processing block, the low level interface, and the post router block. The algorithms produced have been simulated and tested, and shown to provide the required performance. Errors in the initial implementation of the Gigabit Wireline Transmitter serialized data in the low level interface were discovered and corrected. The data scrambling algorithm and the post router block have been incorporated in the front end readout chip.

  10. Recent results with HV-CMOS and planar sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627

    2017-01-01

    The physics aims for the future multi-TeV e+e- Compact Linear Collider (CLIC) impose high precision requirements on the vertex detector which has to match the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of 3μm, 10 ns time stamping capabilities, low mass (⇠0.2% X0 per layer), low power dissipation and pulsed power operation. Recent results of test beam measurements and GEANT4 simulations for assemblies with Timepix3 ASICs and thin active-edge sensors are presented. The 65 nm CLICpix readout ASIC with 25μm pitch was bump bonded to planar silicon sensors and also capacitively coupled through a thin layer of glue to active HV-CMOS sensors. Test beam results for these two hybridisation concepts are presented.

  11. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    Lemarenko, Mikhail

    2013-11-01

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  12. Development of CMOS pixel sensors for tracking and vertexing in high energy physics experiments

    CERN Document Server

    Senyukov, Serhiy; Besson, Auguste; Claus, Giles; Cousin, Loic; Dulinski, Wojciech; Goffe, Mathieu; Hippolyte, Boris; Maria, Robert; Molnar, Levente; Sanchez Castro, Xitzel; Winter, Marc

    2014-01-01

    CMOS pixel sensors (CPS) represent a novel technological approach to building charged particle detectors. CMOS processes allow to integrate a sensing volume and readout electronics in a single silicon die allowing to build sensors with a small pixel pitch ($\\sim 20 \\mu m$) and low material budget ($\\sim 0.2-0.3\\% X_0$) per layer. These characteristics make CPS an attractive option for vertexing and tracking systems of high energy physics experiments. Moreover, thanks to the mass production industrial CMOS processes used for the manufacturing of CPS the fabrication construction cost can be significantly reduced in comparison to more standard semiconductor technologies. However, the attainable performance level of the CPS in terms of radiation hardness and readout speed is mostly determined by the fabrication parameters of the CMOS processes available on the market rather than by the CPS intrinsic potential. The permanent evolution of commercial CMOS processes towards smaller feature sizes and high resistivity ...

  13. Expected performance of tracking and vertexing with the HL-LHC ATLAS detector

    CERN Document Server

    Calace, Noemi; The ATLAS collaboration

    2018-01-01

    The High Luminosity LHC (HL-LHC) aims to increase the LHC data-set by an order of magnitude in order to increase its potential for discoveries. Starting from the middle of 2026, the HL-LHC is expected to reach the peak instantaneous luminosity of $7.5 \\cdot 10^{34} cm^{-2}s^{-1}$ which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pileup, the current ATLAS Inner Detector will be replaced with a new all-silicon Inner Tracker. In this talk the expected performance of tracking and vertexing with the HL-LHC tracker is presented. Comparison is made to the performance with the Run2 detector. Ongoing developments of the track reconstruction for the HL-LHC are also discussed.

  14. Détermination de l'énergie du faisceau du LEP à l'aide des événements $Z\\gamma$ et mesures de couplages à trois bosons de jauge neutres dans l'expérience ALEPH

    CERN Document Server

    Trocmé, B; Minard, M N

    2001-01-01

    After six years of data taking at Z0 peak, LEP beam energy continuously raised to finally reach 104.5 Gev, allowing notably W pairs production. Z0 resonance remains however important trough radiative return process; a hard photon being emitted in initial state, the centre of mass energy is reduced to an effective value close to Z0 mass. These events taken by Aleph experiment between 1998 and 2000 have been analysed following two distinct approaches, that are detailled in this thesis. With nearly 700 pb-1 taken by each experiment, it is obvious that final W mass measurement- one major goal of LEP2 program- will be dominated by systematic error, with a large contribution from the uncertainty on the LEP beam energy. A fit of the radiative return peak position allows an original determination of the latter. Being not only a single measurement, this method is also a powerful tool to check techniques used in W mass measurement. Moreover, Zgamma events final states are similar to processes with a vertex involving th...

  15. The silicon strip detector at the Mark 2

    International Nuclear Information System (INIS)

    Jacobsen, R.; Golubev, V.; Lueth, V.; Barnett, B.; Dauncey, P.; Matthews, J.; Adolphsen, C.; Burchat, P.; Gratta, G.; King, M.; Labarga, L.; Litke, A.; Turala, M.; Zaccardelli, C.

    1990-04-01

    We have installed a Silicon Strip Vertex Detector in the Mark II detector at the Stanford Linear Collider. We report on the performance of the detector during a recent test run, including backgrounds, stability and charged particle tracking. 10 refs., 9 figs

  16. Automatised data quality monitoring of the LHCb Vertex Locator

    Science.gov (United States)

    Bel, L.; Crocombe, A. Ch.; Gersabeck, M.; Pearce, A.; Majewski, M.; Szumlak, T.

    2017-10-01

    The LHCb Vertex Locator (VELO) is a silicon strip semiconductor detector operating at just 8mm distance to the LHC beams. Its 172,000 strips are read at a frequency of 1.1 MHz and processed by off-detector FPGAs followed by a PC cluster that reduces the event rate to about 10 kHz. During the second run of the LHC, which lasts from 2015 until 2018, the detector performance will undergo continued change due to radiation damage effects. This necessitates a detailed monitoring of the data quality to avoid adverse effects on the physics analysis performance. The VELO monitoring infrastructure has been re-designed compared to the first run of the LHC when it was based on manual checks. The new system is based around an automatic analysis framework, which monitors the performance of new data as well as long-term trends and using dedicated algorithms flags issues whenever they arise. The new analysis framework then analyses the plots that are produced by these algorithms. One of its tasks is to perform custom comparisons between the newly processed data and that from reference runs. The most-likely scenario in which this analysis would identify an issue is the parameters of the readout electronics no longer being optimal and requiring retuning. The data of the monitoring plots can be reduced further, e.g. by evaluating averages, and these quantities are input to long-term trending. This is used to detect slow variation of quantities, which are not detectable by the comparison of two nearby runs. Such gradual change is what is expected due to radiation damage effects. It is essential to detect these changes early such that measures can be taken, e.g. adjustments of the operating voltage, to prevent any impact on the quality of high-level quantities and thus on physics analyses. The plots as well as the analysis results and trends are made available through graphical user interfaces (GUIs). These GUIs are dynamically configured by a single configuration that determines the

  17. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Trimpl, M.

    2005-12-01

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  18. Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Trimpl, M.

    2005-12-15

    The future TeV-scale linear collider ILC (International Linear Collider) offers a large variety of precision measurements complementary to the discovery potential of the LHC (Large Hadron Collider). To fully exploit its physics potential, a vertex detector with unprecedented performance is needed. One proposed technology for the ILC vertex detector is the DEPFET active pixel sensor. The DEPFET sensor offers particle detection with in-pixel amplification by incorporating a field effect transistor into a fully depleted high-ohmic silicon substrate. The device provides an excellent signal-to-noise ratio and a good spatial resolution at the same time. To establish a very fast readout of a DEPFET pixel matrix with row rates of 20 MHz and more, the 128 channel CURO II ASIC has been designed and fabricated. The architecture of the chip is completely based on current mode techniques (SI) perfectly adapted to the current signal of the sensor. For the ILC vertex detector a prototype system with a 64 x 128 DEPFET pixel matrix read out by the CURO II chip has been developed. The design issues and the standalone performance of the readout chip as well as first results with the prototype system will be presented. (orig.)

  19. The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance

    Energy Technology Data Exchange (ETDEWEB)

    Contin, Giacomo, E-mail: gcontin@lbl.gov

    2016-09-21

    The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. The PXL, together with the Intermediate Silicon Tracker (IST) and the Silicon Strip Detector (SSD), form the Heavy Flavor Tracker (HFT), which has been designed to improve the vertex resolution and extend the STAR measurement capabilities in the heavy flavor domain, providing a clean probe for studying the Quark–Gluon Plasma. The two PXL layers are placed at a radius of 2.8 and 8 cm from the beam line, respectively, and is based on ultra-thin high resolution MAPS sensors. The sensor features 20.7 μm pixel pitch, 185.6 μs readout time and 170 mW/cm{sup 2} power dissipation. The detector is air-cooled, allowing a global material budget of 0.4% radiation length on the innermost layer. A novel mechanical approach to detector insertion allows for fast installation and integration of the pixel sub detector. The HFT took data in Au+Au collisions at 200 GeV during the 2014 RHIC run. Modified during the RHIC shutdown to improve its reliability, material budget, and tracking capabilities, the HFT took data in p+p and p+Au collisions at √s{sub NN}=200 GeV in the 2015 RHIC run. In this paper we present detector specifications, experience from the construction and operations, and lessons learned. We also show preliminary results from 2014 Au+Au data analyses, demonstrating the capabilities of charm reconstruction with the HFT. - Highlights: • First MAPS-based vertex detector in a collider experiment. • Achieved low material budget of 0.39% of radiation length per detector layer. • Track pointing resolution to the primary vertex better than 10⊕24 GeV/p×c μm. • Gain in significance for the topological reconstruction of the D{sup 0}−>K+π decay in STAR. • Observed latch-up induced damage of MAPS sensors.

  20. Calculation of track and vertex errors for detector design studies

    International Nuclear Information System (INIS)

    Harr, R.

    1995-01-01

    The Kalman Filter technique has come into wide use for charged track reconstruction in high-energy physics experiments. It is also well suited for detector design studies, allowing for the efficient estimation of optimal track covariance matrices without the need of a hit level Monte Carlo simulation. Although much has been published about the Kalman filter equations, there is a lack of previous literature explaining how to implement the equations. In this paper, the operators necessary to implement the Kalman filter equations for two common detector configurations are worked out: a central detector in a uniform solenoidal magnetic field, and a fixed-target detector with no magnetic field in the region of the interactions. With the track covariance matrices in hand, vertex and invariant mass errors are readily calculable. These quantities are particularly interesting for evaluating experiments designed to study weakly decaying particles which give rise to displaced vertices. The optimal vertex errors are obtained via a constrained vertex fit. Solutions are presented to the constrained vertex problem with and without kinematic constraints. Invariant mass errors are obtained via propagation of errors; the use of vertex constrained track parameters is discussed. Many of the derivations are new or previously unpublished

  1. A covariant representation of the Ball–Chiu vertex

    International Nuclear Information System (INIS)

    Ahmadiniaz, Naser; Schubert, Christian

    2013-01-01

    In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry

  2. A covariant representation of the Ball–Chiu vertex

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadiniaz, Naser, E-mail: naser@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán (Mexico); Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Schubert, Christian, E-mail: schubert@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán (Mexico); Dipartimento di Fisica, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Mühlenberg 1, D-14476 Potsdam (Germany)

    2013-04-21

    In nonabelian gauge theory the three-gluon vertex function contains important structural information, in particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations. Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit computations have been done, using various approaches. Here we use the string-inspired formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally continued form, so that it can be used as a building block for higher-loop calculations. We find that the Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We explain the relation of the structure of this representation to the low-energy effective action, and establish the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky, which leads to the vanishing of the one-loop vertex in N=4 SYM theory, in the present approach relates to worldline supersymmetry.

  3. Silicon Detectors-Tools for Discovery in Particle Physics

    International Nuclear Information System (INIS)

    Krammer, Manfred

    2009-01-01

    Since the first application of Silicon strip detectors in high energy physics in the early 1980ies these detectors have enabled the experiments to perform new challenging measurements. With these devices it became possible to determine the decay lengths of heavy quarks, for example in the fixed target experiment NA11 at CERN. In this experiment Silicon tracking detectors were used for the identification of particles containing a c-quark. Later on, the experiments at the Large Electron Positron collider at CERN used already larger and sophisticated assemblies of Silicon detectors to identify and study particles containing the b-quark. A very important contribution to the discovery of the last of the six quarks, the top quark, has been made by even larger Silicon vertex detectors inside the experiments CDF and D0 at Fermilab. Nowadays a mature detector technology, the use of Silicon detectors is no longer restricted to the vertex regions of collider experiments. The two multipurpose experiments ATLAS and CMS at the Large Hadron Collider at CERN contain large tracking detectors made of Silicon. The largest is the CMS Inner Tracker consisting of 200 m 2 of Silicon sensor area. These detectors will be very important for a possible discovery of the Higgs boson or of Super Symmetric particles. This paper explains the first applications of Silicon sensors in particle physics and describes the continuous development of this technology up to the construction of the state of the art Silicon detector of CMS.

  4. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  5. Performance characteristics and radiation damage results from the Fermilab E706 silicon microstrip detector system

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Orris, D; Shepard, P F; Weerasundara, P D; Choudhary, B C; Joshi, U; Kapoor, V; Shivpuri, R; Baker, W

    1989-07-01

    A charged particle spectrometer containing a 7120-channel silicon microstrip detector system, one component of Fermilab experiment E706 to study direct photon production in hadron-hadron collisions, was utilized in a run in which 6 million events were recorded. We describe the silicon system, provide early results of track and vertex reconstruction, and present data on the radiation damage to the silicon wafers resulting from the narrow high intensity beam. (orig.).

  6. Plethystic vertex operators and boson-fermion correspondences

    International Nuclear Information System (INIS)

    Fauser, Bertfried; Jarvis, Peter D; King, Ronald C

    2016-01-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π . Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π , the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms. (paper)

  7. Measurement of Rb Using a Vertex Mass Tag

    International Nuclear Information System (INIS)

    Steiner, R.; Benvenuti, A.C.; Coller, J.A.; Hedges, S.J.; Johnson, A.S.; Shank, J.T.; Whitaker, J.S.; Allen, N.J.; Cotton, R.; Dervan, P.J.; Hasan, A.; McKemey, A.K.; Watts, S.J.; Caldwell, D.O.; Lu, A.; Yellin, S.J.; Cavalli-Sforza, M.; Coyne, D.G.; Fernandez, J.P.; Liu, X.; Reinertsen, P.L.; Schalk, T.; Schumm, B.A.; DOliveira, A.; Johnson, R.A.; Meadows, B.T.; Nussbaum, M.; Dima, M.; Harton, J.L.; Smy, M.B.; Staengle, H.; Wilson, R.J.; Baranko, G.; Fahey, S.; Fan, C.; Krishna, N.M.; Lauber, J.A.; Nauenberg, U.; Wagner, D.L.; Bazarko, A.O.; Bolton, T.; Rowson, P.C.; Shaevitz, M.H.; Camanzi, B.; Mazzucato, E.; Piemontese, L.; Calcaterra, A.; De Sangro, R.; Peruzzi, I.; Piccolo, M.; Eisenstein, B.I.; Gladding, G.; Karliner, I.; Shapiro, G.; Steiner, H.; Bardon, O.; Burrows, P.N.; Busza, W.; Cowan, R.F.; Dong, D.N.; Fero, M.J.; Gonzalez, S.; Kendall, H.W.; Lath, A.; Lia, V.; Osborne, L.S.; Quigley, J.; Taylor, F.E.; Torrence, E.; Verdier, R.; Williams, D.C.

    1998-01-01

    We report a new measurement of R b =Γ Z 0 →bbar b /Γ Z 0 →hadrons using a double tag technique, where the b hemisphere selection is based on the reconstructed mass of the B hadron decay vertex. The measurement was performed using a sample of 130x10 3 hadronic Z 0 events, collected with the SLD detector at SLC. The method utilizes the 3D vertexing abilities of the CCD pixel vertex detector and the small stable SLC beams to obtain a high b -tagging efficiency and purity. We obtain R b =0.2142±0.0034(stat) ±0.0015(syst)±0.0002( R c ) . copyright 1998 The American Physical Society

  8. Plethystic vertex operators and boson-fermion correspondences

    Science.gov (United States)

    Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.

    2016-10-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.

  9. High speed digital TDC for D0 vertex reconstruction

    International Nuclear Information System (INIS)

    Gao Guosheng; Partridge, R.

    1992-01-01

    A high speed digital TDC has been built as part of the Level 0 trigger for the D0 experiment at Fermilab. The digital TDC is used to make a fast determination of the primary vertex position by timing the arrival time of beam jets detected in the Level 0 counters. The vertex position is then used by the Level 1 trigger to determine the proper sinθ weighting factors for calculation transverse energies. Commercial GaAs integrated circuits are used in the digital TDC to obtain a time resolution of σ t == 226 ps

  10. Simulations with the PANDA micro-vertex-detector

    International Nuclear Information System (INIS)

    Kliemt, Ralf

    2013-01-01

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  11. Vertex-Detector R&D for CLIC

    OpenAIRE

    Dannheim, Dominik

    2013-01-01

    A detector concept based on hybrid planar pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. In this paper the CLIC vertex-detector requirements are reviewed and the curr...

  12. RAVE-a Detector-independent vertex reconstruction toolkit

    International Nuclear Information System (INIS)

    Waltenberger, Wolfgang; Mitaroff, Winfried; Moser, Fabian

    2007-01-01

    A detector-independent toolkit for vertex reconstruction (RAVE) is being developed, along with a standalone framework (VERTIGO) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available

  13. The RAVE/VERTIGO vertex reconstruction toolkit and framework

    Science.gov (United States)

    Waltenberger, W.; Mitaroff, W.; Moser, F.; Pflugfelder, B.; Riedel, H. V.

    2008-07-01

    A detector-independent toolkit for vertex reconstruction (RAVE1) is being developed, along with a standalone framework (VERTIGO2) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.

  14. RAVE-a Detector-independent vertex reconstruction toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Waltenberger, Wolfgang [Institute of High Energy Physics, Austrian Academy of Sciences A-1050 Vienna (Austria)], E-mail: walten@hephy.oeaw.ac.at; Mitaroff, Winfried; Moser, Fabian [Institute of High Energy Physics, Austrian Academy of Sciences A-1050 Vienna (Austria)

    2007-10-21

    A detector-independent toolkit for vertex reconstruction (RAVE) is being developed, along with a standalone framework (VERTIGO) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.

  15. The RAVE/VERTIGO vertex reconstruction toolkit and framework

    Energy Technology Data Exchange (ETDEWEB)

    Waltenberger, W; Mitaroff, W; Moser, F; Pflugfelder, B; Riedel, H V [Austrian Academy of Sciences, Institute of High Energy Physics, A-1050 Vienna (Austria)], E-mail: walten@hephy.oeaw.ac.at

    2008-07-15

    A detector-independent toolkit for vertex reconstruction (RAVE{sup 1}) is being developed, along with a standalone framework (VERTIGO{sup 2}) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.

  16. Z H η vertex in the simplest little Higgs model

    Science.gov (United States)

    He, Shi-Ping; Mao, Ying-nan; Zhang, Chen; Zhu, Shou-hua

    2018-04-01

    The issue of deriving Z H η vertex in the simplest little Higgs (SLH) model is revisited. Special attention is paid to the treatment of noncanonically-normalized scalar kinetic matrix and vector-scalar two-point transitions. We elucidate a general procedure to diagonalize a general vector-scalar system in gauge theories and apply it to the case of SLH. The resultant Z H η vertex is found to be different from those which have already existed in the literature for a long time. We also present an understanding of this issue from an effective field theory viewpoint.

  17. Simulations with the PANDA micro-vertex-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kliemt, Ralf

    2013-07-17

    The PANDA experiment will be built at the upcoming FAIR facility at GSI in Darmstadt, featuring antiproton-proton reactions hadron physics in a medium energy range. Charm physics will play an important role and therefore secondary decays relatively close to the interaction zone as well. The MVD will be the detector closest to these and will provide high-quality vertex position measurements. Alongside the detector layout and hardware development a detailed detector simulation and reconstruction software is required. This work contains the detailed description and the performance studies of the software developed for the MVD. Furthermore, vertexing tools are introduced and their performance is studied for the MVD.

  18. Electromagnetic form factors and vertex constants for 6Li

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Shvarts, I.A.

    1977-01-01

    It has been assumed that the main contribution to the rapidly changing part of the charge form factor of 6 Li provides the amplitude of the triangle diagram containing virtual lines of deuteron and α particle. The vertex constant G 2 for the 6 Li→α+d decay is expressed through the nuclear charge radii for 6 Li, d, and α. Taking into account coulomb interaction in the vertex of the 6 Li→α+d reaction increases G 2 by about a factor of two. The account of virtuality of a deuteron cluster also leads to an increase in G 2

  19. Constraints on the standard model by measuring cross sections and asymmetries for Z → ff-bar with Aleph detector at LEP

    International Nuclear Information System (INIS)

    Lucotte, A.

    1996-01-01

    This work is devoted to the precision tests of the electro-week sector of the standard model via the determination of the Z-lineshape parameters M Z , Γ Z , σ had 0 and R had extracted from the fermionic cross-sections measured on 89 to 94 data in Aleph. The first section reminds the formalism and the observables used to describe the Z-resonance physics. In a second step, the LEP collider is presented with the procedures used to determine the beam energy, this parameter being the main source of uncertainty in M Z and Γ Z determination. In the following part, the Aleph experimental context is described, together with the measurement of the luminosity from Bhabha counting. Then the hadronic cross section measurements are presented, emphasizing on the improvement performed on the systematic bias evaluation to the hadrons selection. This leads to a precision at the per mille level in cross-sections. Leptonic cross-sections measured in Aleph are also reported. The Z-resonance parameters are then derived. A great agreement is observed with the prediction of the standard model of the EW interactions. The interpretation of such measurements within this model leads to the determination of the number of light neutrinos species and to the constraints on the top quark mass, compatible with direct measurements from Fermilab. (author)

  20. Determination of the mass of W boson at LEP2 with ALEPH detector by studying energy spectra of leptons

    International Nuclear Information System (INIS)

    Dessagne-Trescarte, S.

    2000-01-01

    One of the most significant goals of the LEP is to test with precision the Electroweak Standard Model. Whereas the first step was mainly centered on the study of the Z boson, the second phase, LEP200, allowed the study of the proprieties of the W boson. Thus, the mass of the W is a fundamental parameter of the Standard Model and its measurement is a very significant stake to test this model and to predict the mass of the Higgs boson through radiative corrections. LEP200 is well adapted to the study of the mass of the W boson, because the centre-of-mass energy is above the kinematic threshold, √S = 2M W , and thus makes it possible to produce W + W - pairs through the process e + e - → W + W - . The data collected by the ALEPH detector during the years 1997 and 1998 at the centre-of-mass energy of respectively 183 GeV and 189 GeV have been used in this thesis to perform a measurement of M W based on the comparison of distributions sensitive to M W , and built using the data and Monte Carlo samples generated at different W masses. Two types of methods can be used to estimate the W mass: the direct reconstruction of M W (using as estimator the invariant mass obtained after a 2C kinematic fit) or the measurement of M W through the WW cross section. This thesis proposes a new technique of direct reconstruction based on the use of the W → lν channel. The distributions used in the semileptonic channel are the energies of the lepton and of the neutrino calculated in the laboratory frame and in the centre-of-mass of the W, the lepton-neutrino invariant mass and the boost of the W. In the leptonic channel, the three distributions used are the energy of the most energetic lepton, the energy of the second lepton and the missing energy of the event. In the leptonic channel, WW → lνlν, one gets: M W = 81.409 ± 0.565(Stat) ± 0.125(Syst) GeV/c 2 . In the semileptonic channel WW → lνqq-bar, the result is: M W = 80.108 ± 0.186(Stat) ± 0.067(Syst) GeV/c 2 . These

  1. Development of carbon fiber staves for the strip part of the PANDA micro vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Quagli, Tommaso; Brinkmann, Kai-Thomas [II. Physikalisches Institut, Justus-Liebig Universitaet Giessen (Germany); Fracassi, Vincenzo; Grunwald, Dirk; Rosenthal, Eberhard [ZEA-1, Forschungszentrum Juelich GmbH, Juelich (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    PANDA is a key experiment of the future FAIR facility, under construction in Darmstadt, Germany. It will study the collisions between an antiproton beam and a fixed proton or nuclear target. The Micro Vertex Detector (MVD) is the innermost detector of the apparatus and is composed of four concentric barrels and six forward disks, instrumented with silicon hybrid pixel detectors and double-sided silicon microstrip detectors; its main task is the identification of primary and secondary vertices. The central requirements include high spatial and time resolution, trigger-less readout with high rate capability, good radiation tolerance and low material budget. Because of the compact layout of the system, its integration poses significant challenges. The detectors in the strip barrels will be supported by a composite structure of carbon fiber and carbon foam; a water-based cooling system embedded in the mechanical supports will be used to remove the excess heat from the readout electronics. In this contribution the design of the barrel stave and the ongoing development of some hardware components related to its integration will be presented.

  2. SVX/silicon detector studies

    International Nuclear Information System (INIS)

    Bagby, L.; Johnson, M.; Lipton, R.; Gu, W.

    1995-11-01

    AC coupled silicon detectors, being used for the DO upgrade, may have substantial voltage across the coupling capacitor. Failed capacitors can present ∼50 V to the input of the SVX, Silicon Vertex, device. We measured the effects that failed detector coupling capacitors have on the SVXD (rad soft 3μm), SVXH (rad hard 1.2μm), and SVXIIb (rad soft 1.2μm) amplifier / readout devices. The test results show that neighboring channels saturate when an excessive voltage is applied directly to a SVX channel. We believe that the effects are due to current diffusion within the SVX substrate rather than surface currents on the detectors. This paper discusses the magnitude of the saturation and a possible solution to the problem

  3. On the local vertex antimagic total coloring of some families tree

    Science.gov (United States)

    Febriani Putri, Desi; Dafik; Hesti Agustin, Ika; Alfarisi, Ridho

    2018-04-01

    Let G(V, E) be a graph of vertex set V and edge set E. Local vertex antimagic total coloring developed from local edge and local vertex antimagic coloring of graph. Local vertex antimagic total coloring is defined f:V(G)\\cup E(G)\\to \\{1,2,3,\\ldots,|V(G)|+|E(G)|\\} if for any two adjacent vertices v 1 and v 2, w({v}1)\

  4. Conservation laws, vertex corrections, and screening in Raman spectroscopy

    Science.gov (United States)

    Maiti, Saurabh; Chubukov, Andrey V.; Hirschfeld, P. J.

    2017-07-01

    We present a microscopic theory for the Raman response of a clean multiband superconductor, with emphasis on the effects of vertex corrections and long-range Coulomb interaction. The measured Raman intensity, R (Ω ) , is proportional to the imaginary part of the fully renormalized particle-hole correlator with Raman form factors γ (k ⃗) . In a BCS superconductor, a bare Raman bubble is nonzero for any γ (k ⃗) and diverges at Ω =2 Δmax , where Δmax is the largest gap along the Fermi surface. However, for γ (k ⃗) = constant, the full R (Ω ) is expected to vanish due to particle number conservation. It was sometimes stated that this vanishing is due to the singular screening by long-range Coulomb interaction. In our general approach, we show diagrammatically that this vanishing actually holds due to vertex corrections from the same short-range interaction that gives rise to superconductivity. We further argue that long-range Coulomb interaction does not affect the Raman signal for any γ (k ⃗) . We argue that vertex corrections eliminate the divergence at 2 Δmax . We also argue that vertex corrections give rise to sharp peaks in R (Ω ) at Ω <2 Δmin (the minimum gap along the Fermi surface), when Ω coincides with the frequency of one of the collective modes in a superconductor, e.g., Leggett and Bardasis-Schrieffer modes in the particle-particle channel, and an excitonic mode in the particle-hole channel.

  5. Fast simulation and topological vertex finding in JAVA

    International Nuclear Information System (INIS)

    Walkowiak, Wolfgang

    2001-01-01

    An overview of the fast Monte Carlo simulation for NLC detector studies as currently provided in the Java Analysis Studio environment is presented. Special emphasis is given to the simulation of tracks. In addition, the SLD collaboration's topological vertex finding algorithm (ZVTOP) has been implemented in the Java Analysis Studio framework

  6. Random matrices and the six-vertex model

    CERN Document Server

    Bleher, Pavel

    2013-01-01

    This book provides a detailed description of the Riemann-Hilbert approach (RH approach) to the asymptotic analysis of both continuous and discrete orthogonal polynomials, and applications to random matrix models as well as to the six-vertex model. The RH approach was an important ingredient in the proofs of universality in unitary matrix models. This book gives an introduction to the unitary matrix models and discusses bulk and edge universality. The six-vertex model is an exactly solvable two-dimensional model in statistical physics, and thanks to the Izergin-Korepin formula for the model with domain wall boundary conditions, its partition function matches that of a unitary matrix model with nonpolynomial interaction. The authors introduce in this book the six-vertex model and include a proof of the Izergin-Korepin formula. Using the RH approach, they explicitly calculate the leading and subleading terms in the thermodynamic asymptotic behavior of the partition function of the six-vertex model with domain wa...

  7. Self-locking degree-4 vertex origami structures.

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Wang, K W

    2016-11-01

    A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications.

  8. The role of geometry in 4-vertex origami mechanics

    Science.gov (United States)

    Waitukaitis, Scott; Dieleman, Peter; van Hecke, Martin

    Origami offers an interesting design platform metamaterials because it strongly couples mechanics with geometry. Even so, most research carried out so far has been limited to one or two particular patterns. I will discuss the full geometrical space of the most common origami building block, the 4-vertex, and show how exotic geometries can have dramatic effects on the mechanics.

  9. Multipole expansion of vertex functions in an arbitrary frame

    International Nuclear Information System (INIS)

    Daumens, Michel

    1977-01-01

    Vertex functions are expanded on the bases of tensor spherical harmonics and tensor multipoles. The coefficients of the expansions are rotational invariant form factors. The relations with those defined in particular frames by Durand, De Celles and Marr, and by De Rafael are exhibited. Finally multipolar form factors are built which are irreducible under pure Lorentz transformations [fr

  10. Tripartite connection condition for a quantum graph vertex

    Czech Academy of Sciences Publication Activity Database

    Cheon, T.; Exner, Pavel; Turek, Ondřej

    2010-01-01

    Roč. 375, č. 2 (2010), s. 113-118 ISSN 0375-9601 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : Schrodinger operator * Singular vertex * Boundary conditions Subject RIV: BA - General Mathematics Impact factor: 1.963, year: 2010

  11. Tests of track segment and vertex finding with neural networks

    International Nuclear Information System (INIS)

    Denby, B.; Lessner, E.; Lindsey, C.S.

    1990-04-01

    Feed forward neural networks have been trained, using back-propagation, to find the slopes of simulated track segments in a straw chamber and to find the vertex of tracks from both simulated and real events in a more conventional drift chamber geometry. Network architectures, training, and performance are presented. 12 refs., 7 figs

  12. Network Unfolding Map by Vertex-Edge Dynamics Modeling.

    Science.gov (United States)

    Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang

    2018-02-01

    The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.

  13. Recent developments in high precision vertex chambers at SLAC

    International Nuclear Information System (INIS)

    Rust, D.R.

    1984-04-01

    Three detectors MARK II, MAC, AND HRS are using or planning small drift chambers placed as close as possible to the interaction print at PEP. There is also a program of development for a gaseous vertex detector for MARK II at SLC. All these programs are reviewed. 13 references

  14. Search for Higgs Boson in the channel with missing energy with the detector ALEPH at LEP2

    International Nuclear Information System (INIS)

    Kado, Marumi

    1999-01-01

    A search for the Standard Model Higgs boson in the channel e + e - → Hνν-bar is presented. An event selection method using Neural Network techniques is developed. The analysis is based on a 254 pb -1 data sample taken at center-of-mass energies from √ s = 161 up to 189 GeV (from 1996 to 1998), by the ALEPH detector within the LEP2 program at CERN. The experimental systematic defects are studied and the corrections and uncertainties are evaluated. The study of this channel alone results in a mass lower limit of the Standard Model Higgs boson of 85.8 GeV/c 2 with a sensitivity of 89 GeV/c 2 at the 95% CL. Combined with all studied final states, the limit at 95% CL obtained is: m H > 90.2 GeV/c 2 (observed) and m H > 95.7 GeV/c 2 (expected). An interpolation of these results within the Minimal Supersymmetric Standard Model is presented along with the combination of all channels, including those originating from the associated production process (e + e - → hA, leading to an exclusion at the 95% CL, for any value of tanβ≥ 1, of the h and A neutral Higgs boson masses of: m H > 80.1 GeV/c 2 (observed) and m A > 81.7 GeV/c 2 (observed). (author)

  15. Investigation of the two-photon production of D*-mesons with the ALEPH detector at LEP

    CERN Document Server

    Sieler, Uwe; Brandt, S.

    2001-01-01

    The inclusive production of D∗± mesons in two-photon collisions has been measured with the ALEPH detector at center-of-mass energies in the range √s = 183 − 189 GeV. D∗+ mesons are reconstructed in the decay D∗+ → D0π+ and the D0’s in turn are identified in the decay channels (i) K−π+, (ii) K−π+π0, and (iii) K−π+π−π+, and analogously for D∗− modes. A total number of 113 ± 15 D∗ events was observed from an integrated luminosity of L = 23 6.3pb−1. Contributions from direct and single resolved processes have been separated using event shape variables. Differential cross sections of D∗ production as a function of the transverse momentum pD∗ t and of the pseudorapidity ηD∗ of the D∗ meson have been measured in the range 2 GeV < pD∗ t < 12 GeV and |ηD∗ | < 1.5 and have been compared to NLO calculations as well as to an OPAL measurement. An extrapolation of the integrated visible D∗ cross section to the total charm cross section has been performed using...

  16. The Bs0: measurement of the life time and study of the oscillations with the ALEPH experiment

    International Nuclear Information System (INIS)

    Schune, M.H.

    1997-01-01

    This work describes first the theoretical motivations for the study of the life time and the oscillation frequency of the B s 0 meson. After a brief presentation of the Cabbibo-Kobayashi-Maskawa matrix, the oscillation formalism is presented and the importance of the Δm d and Δm s pointed out in the frame of the Standard Model. The author explains the importance of measuring the B s 0 life time and the ΔΓ s , the width difference between the two states of B s 0 . The second chapter is devoted to the selection of events and the measurement of the proper time, taking the time resolution into account. The third chapter deals with the measurement of the life time and the analytical convolution used for this measurement and for the study of the oscillations. This chapter gives also the experimental result obtained for the measurement of ΔΓ s . The fourth chapter states the tagging method, the variables used for it and the systematic checking. Rapid simulations are presented in the fifth chapter as well as the procedure used to give a lower limit for Δm s . Finally, the last chapter shows the analysis of the B s 0 oscillation frequency, states the obtained limit in comparison to other results. The influence of this limit and a limit obtained by combining the results of the ALEPH and DELPHI collaborations are discussed with respect to the determination of the Standard Model parameters. (N.T.)

  17. Model analysis and experimental characterization of a microstrip vertex detector for a e+e- collider

    International Nuclear Information System (INIS)

    Walter, C.P.

    1989-09-01

    This thesis is constituted by several topics, apparently weakly correlated, but that are all addressed to improve the performances of the ALEPH microvertex detector both in the present version and in the upgraded one with JFET-CMOS electronics. A wide program of computer simulations about the upgraded JFET-CMOS version of the read-out electronics have been carried out to test its working principle and radiation hardness measurements have been performed on the prototypes of the same electronics to test its capability to stand the radiation environment foreseen in ALEPH. Extensive calculations of the capacitances in a microstrip detector are presented and their influence on the detector, both from the point of view of its noise performances and of the capacitive charge division method, has been analyzed theoretically, both through analytic calculations and numerical simulations; experimental measurements on the same relevant capacitances are discussed. Strictly connected to this point a computer code simulating the interaction of a minimum ionizing particle with the detector has been written and algorithms to determine the interaction point have been studied. This code has been later inserted in the Monte Carlo program of ALEPH. A point not strictly connected to ALEPH and still treated here is the analysis of the noise of two JFET devices, that is however interesting not as much for the results themselves, as for the analysis technique used that brought to identify noise sources that are usually difficult to detect and neglected. (orig.)

  18. Operator Product Formulas in the Algebraic Approach of the Refined Topological Vertex

    International Nuclear Information System (INIS)

    Cai Li-Qiang; Wang Li-Fang; Wu Ke; Yang Jie

    2013-01-01

    The refined topological vertex of Iqbal—Kozçaz—Vafa has been investigated from the viewpoint of the quantum algebra of type W 1+∞ by Awata, Feigin, and Shiraishi. They introduced the trivalent intertwining operator Φ which is normal ordered along with some prefactors. We manage to establish formulas from the infinite operator product of the vertex operators and the generalized ones to restore this prefactor, and obtain an explicit formula for the vertex realization of the topological vertex as well as the refined topological vertex

  19. Search for Higgs Boson in the channel with missing energy with the detector ALEPH at LEP2; Recherche du Boson de Higgs dans le canal a energie manquante avec le detecteur ALEPH a LEP2

    Energy Technology Data Exchange (ETDEWEB)

    Kado, Marumi [Paris-6 Univ., 95 Paris (France)

    1999-04-20

    A search for the Standard Model Higgs boson in the channel e{sup +}e{sup -} {yields} H{nu}{nu}-bar is presented. An event selection method using Neural Network techniques is developed. The analysis is based on a 254 pb{sup -1} data sample taken at center-of-mass energies from {radical} s = 161 up to 189 GeV (from 1996 to 1998), by the ALEPH detector within the LEP2 program at CERN. The experimental systematic defects are studied and the corrections and uncertainties are evaluated. The study of this channel alone results in a mass lower limit of the Standard Model Higgs boson of 85.8 GeV/c{sup 2} with a sensitivity of 89 GeV/c{sup 2} at the 95% CL. Combined with all studied final states, the limit at 95% CL obtained is: m{sub H} > 90.2 GeV/c{sup 2} (observed) and m{sub H} > 95.7 GeV/c{sup 2} (expected). An interpolation of these results within the Minimal Supersymmetric Standard Model is presented along with the combination of all channels, including those originating from the associated production process (e{sup +}e{sup -} {yields} hA), leading to an exclusion at the 95% CL, for any value of tan{beta}{>=} 1, of the h and A neutral Higgs boson masses of: m{sub H} > 80.1 GeV/c{sup 2} (observed) and m{sub A} > 81.7 GeV/c{sup 2} (observed). (author)

  20. A Vertex and Tracking Detector System for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear $e^+e^−$ collider pose challenging demands on the performance of the detector system. In particular the vertex and tracking detectors have to combine precision measurements with robustness against the expected high rates of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A detector concept meeting these requirements has been developed and an integrated R&D program addressing the challenges is progressing in the areas of ultra-thin sensors and readout ASICs, interconnect technology, mechanical integration and cooling.

  1. Worldline calculation of the three-gluon vertex

    International Nuclear Information System (INIS)

    Ahmadiniaz, N.; Schubert, C.

    2012-01-01

    The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.

  2. The secondary vertex finding algorithm with the ATLAS detector

    CERN Document Server

    Heer, Sebastian; The ATLAS collaboration

    2017-01-01

    A high performance identification of jets, produced via fragmentation of bottom quarks, is crucial for the ATLAS physics program. These jets can be identified by exploiting the presence of cascade decay vertices from bottom hadrons. A general vertex-finding algorithm is introduced and its ap- plication to the search for secondary vertices inside jets is described. Kinematic properties of the reconstructed vertices are used to construct several b-jet identification algorithms. The features and performance of the secondary vertex finding algorithm in a jet, as well as the performance of the jet tagging algorithms, are studied using simulated $pp$ -> $t\\bar{t}$ events at a centre-of-mass energy of 13 TeV.

  3. Six-vertex model and Schramm-Loewner evolution

    Science.gov (United States)

    Kenyon, Richard; Miller, Jason; Sheffield, Scott; Wilson, David B.

    2017-05-01

    Square ice is a statistical mechanics model for two-dimensional ice, widely believed to have a conformally invariant scaling limit. We associate a Peano (space-filling) curve to a square ice configuration, and more generally to a so-called six-vertex model configuration, and argue that its scaling limit is a space-filling version of the random fractal curve SL E κ, Schramm-Loewner evolution with parameter κ , where 4 <κ ≤12 +8 √{2 } . For square ice, κ =12 . At the "free-fermion point" of the six-vertex model, κ =8 +4 √{3 } . These unusual values lie outside the classical interval 2 ≤κ ≤8 .

  4. Development of pixel detectors for SSC vertex tracking

    International Nuclear Information System (INIS)

    Kramer, G.; Shapiro, S.L.; Arens, J.F.; Jernigan, J.G.; Skubic, P.

    1991-04-01

    A description of hybrid PIN diode arrays and a readout architecture for their use as a vertex detector in the SSC environment is presented. Test results obtained with arrays having 256 x 256 pixels, each 30 μm square, are also presented. The development of a custom readout for the SSC will be discussed, which supports a mechanism for time stamping hit pixels, storing their xy coordinates, and storing the analog information within the pixel. The peripheral logic located on the array, permits the selection of those pixels containing interesting data and their coordinates to be selectively read out. This same logic also resolves ambiguous pixel ghost locations and controls the pixel neighbor read out necessary to achieve high spatial resolution. The thermal design of the vertex tracker and the proposed signal processing architecture will also be discussed. 5 refs., 13 figs., 3 tabs

  5. On the zero crossing of the three-gluon vertex

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, A. [Department of Physics, University of Cyprus, POB 20537, 1678 Nicosia (Cyprus); Binosi, D., E-mail: binosi@ectstar.eu [European Centre for Theoretical Studies in Nuclear Physics and Related Areas - ECT* and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38050 Villazzano (Italy); Boucaud, Ph. [Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); De Soto, F. [Dpto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla (Spain); Papavassiliou, J. [Department of Theoretical Physics and IFIC, University of Valencia-CSIC, E-46100, Valencia (Spain); Rodríguez-Quintero, J. [Department of Integrated Sciences, University of Huelva, E-21071 Huelva (Spain); Zafeiropoulos, S. [Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)

    2016-10-10

    We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as ‘zero crossing’, the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev–Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger–Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

  6. Analysis of bilinear relation of a six-vertex model

    International Nuclear Information System (INIS)

    Korepin, V.E.

    1982-01-01

    A problem of calculating all matrices of T(μ) monodromy satisfying certain commutation relations for the six-vertex model matrix is considered. The paper presents full description of all accurate L-operators (all monodromy-matrices per one lattice step). It is noted that the a/d function has the simpliest form for L operators, and the corresponding A, B, C, D operators act transitively in rather narrow subspace of the constructed space

  7. Edge union of networks on the same vertex set

    International Nuclear Information System (INIS)

    Loe, Chuan Wen; Jensen, Henrik Jeldtoft

    2013-01-01

    Random network generators such as Erdős–Rényi, Watts–Strogatz and Barabási–Albert models are used as models to study real-world networks. Let G 1 (V, E 1 ) and G 2 (V, E 2 ) be two such networks on the same vertex set V. This paper studies the degree distribution and clustering coefficient of the resultant networks, G(V, E 1 ∪E 2 ). (paper)

  8. Edge union of networks on the same vertex set

    Science.gov (United States)

    Loe, Chuan Wen; Jeldtoft Jensen, Henrik

    2013-06-01

    Random network generators such as Erdős-Rényi, Watts-Strogatz and Barabási-Albert models are used as models to study real-world networks. Let G1(V, E1) and G2(V, E2) be two such networks on the same vertex set V. This paper studies the degree distribution and clustering coefficient of the resultant networks, G(V, E1∪E2).

  9. Track fitting in the opal vertex detector with stereo wires

    Energy Technology Data Exchange (ETDEWEB)

    Shally, R; Hemingway, R J; McPherson, A C

    1987-10-01

    The geometry of the vertex chamber for the OPAL detector at LEP is reviewed and expressions for the coordinates of the hits are given in terms of the measured drift distance and z-coordinate. The tracks are fitted by a procedure based on the Lagrange multipliers method. The increase in the accuracy of the fit due to the use of the stereo wires is discussed.

  10. Technical Design Report for the: PANDA Micro Vertex Detector

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, Q; Xu, H; Albrecht, M; Becker, J; Eickel, K; Feldbauer, F; Fink, M; Friedel, P; Heinsius, F H; Held, T; Koch, H; Kopf, B; Leyhe, M; Motzko, C; Pelizäus, M; Pychy, J; Roth, B; Schröder, T; Schulze, J; Steinke, M; Trifterer, T; Wiedner, U; Zhong, J; Beck, R; Becker, M; Bianco, S; Brinkmann, K -Th; Hammann, C; Hinterberger, F; Jäkel, R; Kaiser, D; Kliemt, R; Koop, K; Schmidt, C; Schnell, R; Thoma, U; Vlasov, P; Wendel, C; Winnebeck, A; Würschig, Th; Zaunick, H -G; Bianconi, A; Bragadireanu, M; Caprini, M; Ciubancan, M; Pantea, D; Tarta, P -D; De Napoli, M; Giacoppo, F; Rapisarda, E; Sfienti, C; Fiutowski, T; Idzik, N; Mindur, B; Przyborowski, D; Swientek, K; Bialkowski, E; Budzanowski, A; Czech, B; Kliczewski, S; Kozela, A; Kulessa, P; Lebiedowicz, P; Malgorzata, K; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; Brandys, P; Czyzewski, T; Czyzycki, W; Domagala, M; Hawryluk, M; Filo, G; Kwiatkowski, D; Lisowski, E; Lisowski, F; Bardan, W; Gil, D; Kamys, B; Kistryn, St; Korcyl, K; Krzemieñ, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wroñska, A; Al-Turany, M; Arora, R; Augustin, I; Deppe, H; Dutta, D; Flemming, H; Götzen, K; Hohler, G; Karabowicz, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Orth, H; Peters, K; Saito, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Schwiening, J; Voss, B; Wieczorek, P; Wilms, A; Abazov, V M; Alexeev, G D; Arefiev, V A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigoryan, S; Karmokov, A; Koshurnikov, E K; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A G; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Glazier, D; Watts, D; Woods, P; Britting, A; Eyrich, W; Lehmann, A; Uhlig, F; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A; Bettoni, D; Carassiti, V; Dalpiaz, P; Drago, A; Fioravanti, E; Garzia, I; Negrini, M; Savriè, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Dormenev, V; Drexler, P; Düren, M; Eisner, T; Foehl, K; Hayrapetyan, A; Koch, P; Krïoch, B; Kühn, W; Lange, S; Liang, Y; Liu, M; Merle, O; Metag, V; Moritz, M; Nanova, M; Novotny, R; Spruck, B; Stenzel, H; Strackbein, C; Thiel, M; Wang, Q; Clarkson, T; Euan, C; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, P; MacGregor, D; McKinnon, B; Montgomery, R; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Glazenborg-Kluttig, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Lemmens, P; Löhner, H; Messchendorp, J; Poelman, T; Smit, H; van der Weele, J C; Sohlbach, H; Büscher, M; Dosdall, R; Dzhygadlo, R; Esch, S; Gillitzer, A; Goldenbaum, F; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Pohl, D L; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Sterzenbach, G; Stockmanns, T; Wintz, P; Wüstner, P; Xu, H; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, K; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Denig, A; Distler, M; Fritsch, M; Kangh, D; Karavdina, A; Lauth, W; Michel, M; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Sfienti, C; Weber, T; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Varma, R; Höppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Vandenbroucke, M; Zhang, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Hennino, T; Imre, M; Kunne, R; Galliard, C Le; Normand, J P Le; Marchand, D; Maroni, A; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Theneau, C; Tomasi-Gustafsson, E; Van de Wiele, J; Zerguerras, T; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Buda, V; Abramov, V V; Davidenko, A M; Derevschikov, A A; Goncharenko, Y M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Matulenko, Y A; Melnik, Y M; Meschanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasiliev, A N; Yakutin, A E; Belostotski, S; Gavrilov, G; Itzotov, A; Kisselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Y; Veretennikov, D; Vikhrov, V; Zhadanov, A; Bäck, T; Cederwall, B; Bargholtz, C; Gerén, L; Tegnér, P E; Thørngren, P; von Würtemberg, K M; Fava, L; Alberto, D; Amoroso, A; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Sosio, S; Spataro, S; Calvo, D; Coli, S; De Remigis, P; Filippi, A; Giraudo, G; Lusso, S; Mazza, G; Mignone, M; Rivetti, A; Wheadon, R; Zotti, L; Morra, O; Iazzi, F; Lavagno, A; Quarati, P; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A; Clement, H; Galnander, B; Calén, H; Fransson, K; Johansson, T; Kupsc, A; Marciniewski, P; Thomé, E; Wolke, M; Zlomanczuk, J; Díaz, J; Ortiz, A; Buda, P; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Borsuk, S; Chlopik, A; Guzik, Z; Kopec, J; Kozlowski, T; Melnychuk, D; Plominski, M; Szewinski, J; Traczyk, K; Zwieglinski, B; Bühler, P; Gruber, A; Kienle, P; Marton, J; Widmann, E; Zmeskal, J

    2012-01-01

    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined.

  11. General Vertex-Distinguishing Total Coloring of Graphs

    Directory of Open Access Journals (Sweden)

    Chanjuan Liu

    2014-01-01

    Full Text Available The general vertex-distinguishing total chromatic number of a graph G is the minimum integer k, for which the vertices and edges of G are colored using k colors such that any two vertices have distinct sets of colors of them and their incident edges. In this paper, we figure out the exact value of this chromatic number of some special graphs and propose a conjecture on the upper bound of this chromatic number.

  12. Edge-injective and edge-surjective vertex labellings

    DEFF Research Database (Denmark)

    Brandt, Stephan; Rautenbach, D.; Regen, F.

    2010-01-01

    For a graph G = (V, E) we consider vertex-k-labellings f : V → {1,2, ,k} for which the induced edge weighting w : E → {2, 3,., 2k} with w(uv) = f(u) + f(v) is injective or surjective or both. We study the relation between these labellings and the number theoretic notions of an additive basis and ...

  13. Fatigue crack shape prediction based on vertex singularity

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Náhlík, Luboš

    2008-01-01

    Roč. 2, č. 1 (2008), s. 45-52 ISSN 1802-680X R&D Projects: GA ČR GA101/08/1623; GA ČR GP106/06/P239 Institutional research plan: CEZ:AV0Z20410507 Keywords : 3D vertex singularity * crack shape * fatigue crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  14. Vertex maps on graphs -- Perron-Frobenius Theory

    OpenAIRE

    Bernhardt, Chris

    2015-01-01

    The goal of this paper is to describe the connections between Perron-Frobenius theory and vertex maps on graphs. In particular, it is shown how Perron-Frobenius theory gives results about the sets of integers that can arise as periods of periodic orbits, about the concepts of transitivity and topological mixing, and about horseshoes and topological entropy. This is a preprint. The final version will appear in the Journal of Difference Equations and Applications.

  15. Readout ASIC for ILC-FPCCD vertex detector

    International Nuclear Information System (INIS)

    Takubo, Yosuke; Miyamoto, Akiya; Ikeda, Hirokazu; Yamamoto, Hitoshi; Itagaki, Kennosuke; Nagamine, Tadashi; Sugimoto, Yasuhiro

    2010-01-01

    The concept of FPCCD (Fine Pixel CCD) whose pixel size is 5x5μm 2 has been proposed as vertex detector at ILC. Since FPCCD has 128 x20,000 pixels in one readout channel, its readout poses a considerable challenge. We have developed a prototype of readout ASIC to readout the large number of pixels during the inter-train gap of the ILC beam. In this paper, we report the design and performance of the readout ASIC.

  16. Track fitting in the opal vertex detector with stereo wires

    International Nuclear Information System (INIS)

    Shally, R.; Hemingway, R.J.; McPherson, A.C.

    1987-01-01

    The geometry of the vertex chamber for the OPAL detector at LEP is reviewed and expressions for the coordinates of the hits are given in terms of the measured drift distance and z-coordinate. The tracks are fitted by a procedure based on the Lagrange multipliers method. The increase in the accuracy of the fit due to the use of the stereo wires is discussed. (orig.)

  17. The Mark III vertex chamber: Studies using DME

    International Nuclear Information System (INIS)

    Pitman, D.

    1987-04-01

    Studies have been performed using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. A 35 μm spatial resolution using dimethyl ether (DME) at 1 bar and 30 μm using argon ethane (50/50 mixture) at 4 bar was obtained. Preliminary studies show the DME to adversely affect such materials as aluminized Mylar and Delrin

  18. Colour-independent partition functions in coloured vertex models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O., E-mail: omar.foda@unimelb.edu.au [Dept. of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010 (Australia); Wheeler, M., E-mail: mwheeler@lpthe.jussieu.fr [Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589 (France); Université Pierre et Marie Curie – Paris 6, 4 place Jussieu, 75252 Paris cedex 05 (France)

    2013-06-11

    We study lattice configurations related to S{sub n}, the scalar product of an off-shell state and an on-shell state in rational A{sub n} integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A{sub n} models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S{sub 2} (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S{sub 2}, which depends on two sets of Bethe roots, {b_1} and {b_2}, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b_1}→∞, and/or {b_2}→∞, into a product of determinants, 2. Each of the latter determinants is an A{sub 1} vertex-model partition function.

  19. Colour-independent partition functions in coloured vertex models

    International Nuclear Information System (INIS)

    Foda, O.; Wheeler, M.

    2013-01-01

    We study lattice configurations related to S n , the scalar product of an off-shell state and an on-shell state in rational A n integrable vertex models, n∈{1,2}. The lattice lines are colourless and oriented. The state variables are n conserved colours that flow along the line orientations, but do not necessarily cover every bond in the lattice. Choosing boundary conditions such that the positions where the colours flow into the lattice are fixed, and where they flow out are summed over, we show that the partition functions of these configurations, with these boundary conditions, are n-independent. Our results extend to trigonometric A n models, and to all n. This n-independence explains, in vertex-model terms, results from recent studies of S 2 (Caetano and Vieira, 2012, [1], Wheeler, (arXiv:1204.2089), [2]). Namely, 1.S 2 , which depends on two sets of Bethe roots, {b 1 } and {b 2 }, and cannot (as far as we know) be expressed in single determinant form, degenerates in the limit {b 1 }→∞, and/or {b 2 }→∞, into a product of determinants, 2. Each of the latter determinants is an A 1 vertex-model partition function

  20. Track and vertex reconstruction: From classical to adaptive methods

    International Nuclear Information System (INIS)

    Strandlie, Are; Fruehwirth, Rudolf

    2010-01-01

    This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.

  1. Constraints on the standard model by measuring cross sections and asymmetries for Z {yields} ff-bar with Aleph detector at LEP; Contraintes du modele standard par les mesures de sections efficaces et des asymetries Z {yields} ff-bar avec le detecteur Aleph au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Lucotte, A. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules Elementaires; Universite Claude Bernard, 69 - Lyon (France)

    1996-05-14

    This work is devoted to the precision tests of the electro-week sector of the standard model via the determination of the Z-lineshape parameters M{sub Z}, {gamma}{sub Z}, {sigma}{sub had}{sup 0} and R{sub had} extracted from the fermionic cross-sections measured on 89 to 94 data in Aleph. The first section reminds the formalism and the observables used to describe the Z-resonance physics. In a second step, the LEP collider is presented with the procedures used to determine the beam energy, this parameter being the main source of uncertainty in M{sub Z} and {gamma}{sub Z} determination. In the following part, the Aleph experimental context is described, together with the measurement of the luminosity from Bhabha counting. Then the hadronic cross section measurements are presented, emphasizing on the improvement performed on the systematic bias evaluation to the hadrons selection. This leads to a precision at the per mille level in cross-sections. Leptonic cross-sections measured in Aleph are also reported. The Z-resonance parameters are then derived. A great agreement is observed with the prediction of the standard model of the EW interactions. The interpretation of such measurements within this model leads to the determination of the number of light neutrinos species and to the constraints on the top quark mass, compatible with direct measurements from Fermilab. (author)

  2. The CMS all silicon Tracker simulation

    CERN Document Server

    Biasini, Maurizio

    2009-01-01

    The Compact Muon Solenoid (CMS) tracker detector is the world's largest silicon detector with about 201 m$^2$ of silicon strips detectors and 1 m$^2$ of silicon pixel detectors. It contains 66 millions pixels and 10 million individual sensing strips. The quality of the physics analysis is highly correlated with the precision of the Tracker detector simulation which is written on top of the GEANT4 and the CMS object-oriented framework. The hit position resolution in the Tracker detector depends on the ability to correctly model the CMS tracker geometry, the signal digitization and Lorentz drift, the calibration and inefficiency. In order to ensure high performance in track and vertex reconstruction, an accurate knowledge of the material budget is therefore necessary since the passive materials, involved in the readout, cooling or power systems, will create unwanted effects during the particle detection, such as multiple scattering, electron bremsstrahlung and photon conversion. In this paper, we present the CM...

  3. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  4. Silicon pixel R&D for the CLIC detector

    CERN Document Server

    AUTHOR|(SzGeCERN)674552

    2017-01-01

    The physics aims at the future CLIC high-energy linear $e^{+}e^{−}$ collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The main challenges are: a point resolution of a few microns, ultra-low mass (~0.2% X$_{0}$ per layer for the vertex region and ~1% X$_{0}$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analogue readout are explored. For the outer tra...

  5. Development and performance of double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Batignani, G.; Forti, F.; Moneta, L.; Triggiani, G.; Bosisio, L.; Focardi, E.; Giorgi, M.A.; Parrini, G.; Tonelli, G.

    1991-01-01

    Microstrip silicon detectors with orthogonal readout on opposite sides have been designed and fabricated. The active area of each device is 25 cm 2 and the strip pitch is 25 μm on the junction side and 50 μm on the opposite ohmic side. A space resolution of 15 μm on the junction side (100 μm readout pitch) and 24 μm on the ohmic side (200 μm readout pitch) has been measured. We also report on AC-coupling chips, designed and fabricated in order to allow AC connection of the strips to the amplifiers. These chips are 6.4x5.0 mm 2 and have 100 μm pitch. Both AC-couplers and detectors have been installed as part of the ALEPH minivertex. (orig.)

  6. New developments in double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Becker, H.; Boulos, T.; Cattaneo, P.; Dietl, H.; Hauff, D.; Holl, P.; Lange, E.; Lutz, G.; Moser, H.G.; Schwarz, A.S.; Settles, R.; Struder, L.; Kemmer, J.; Buttler, W.

    1990-01-01

    A new type of double sided silicon strip detector has been built and tested using highly density VLSI readout electronics connected to both sides. Capacitive coupling of the strips to the readout electronics has been achieved by integrating the capacitors into the detector design, which was made possible by introducing a new detector biasing concept. Schemes to simplify the technology of the fabrication of the detectors are discussed. The static performance properties of the devices as well as implications of the use of VLSI electronics in their readout are described. Prototype detectors of the described design equipped with high density readout electronics have been installed in the ALEPH detector at LEP. Test results on the performance are given

  7. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  8. Microscopic models for hadronic form factors and vertex functions

    International Nuclear Information System (INIS)

    Santhanam, I.; Bhatnagar, S.; Mitra, A.N.

    1990-01-01

    We review the status of nucleon (N) and few-nucleon form factors (f.f.'s) from the view-point of a gradual unfolding of successively inner degrees of freedom (d.o.f.) with increase in q 2 . To this end we focus attention on the problem of a microscopic formulation of hadronic vertex functions (v.f.) from the point of view of their key role in understanding the physics of a large variety of few-hadron reactions on the one hand, and their practical usefulness in articulating the internal dynamics of hadron and few-hadron systems on the other hand. The criterion of an integrated view from low-energy spectroscopy to high-q 2 amplitudes is employed to emphasize the desirability of formulations in terms of relativistic dynamical equations based on Lorentz and gauge invariance in preference to phenomenological models, which often require additional assumptions beyond their original premises to extend their applicability domains. In this respect, the practical possibilities of the Bethe-Salpeter equation (BSE) in articulating the necessary dynamical ingredients are emphasized on a two-tier basis, the basis constants (3) being pre-determined from the mass spectral data (1 st stage) in preparation for the construction of the hadron-quark vertex functions (2 nd stage). An explicit construction is outlined for meson-quark and baryon-quark vertex functions as well as of meson-nucleon vertex functions in a stepwise fashion. The role of the latter as basic parameter-free ingredients is discussed for possible use in the more serious treatment in the current literature of quark-meson level (α) and meson-isobar (β) d.o.f. in 2-N and 3-N form factor studies. Since most of these studies are characterized by the use of RGM techniques at the six-quark level, a comparative discussion is also given of several contemporary RGM based models. Finally, the concrete prospects for employing such hardon-quark vertex functions for evaluating pp-bar annihilation amplitudes are briefly indicated

  9. Development of vertexing and lifetime triggers and a study of B(s) mixing using hadronic decays at D0

    International Nuclear Information System (INIS)

    Barnes, Christopher P.

    2005-01-01

    The D0 detector underwent a major upgrade to maximize its ability to fully exploit Run II at the Fermilab Tevatron, the world's highest energy collider. The upgrade included a completely new central tracking system with an outer scintillating fiber tracker and an inner silicon vertex detector all within a 2T super conducting solenoid. This thesis describes the development of high level trigger algorithms including vertexing, impact parameter significance and invariant mass, that utilize tracks from these detectors. One of the main physics goals of Run II is the observation of B s oscillations. This measurement, which cannot be performed at the B factories, will significantly constrain the ''unitarity triangle'' associated with CP violation and so probe the Standard Model of particle physics. Furthermore this is an interesting measurement as the study of mixing in meson systems has a long history for revealing new physics. The second part of this thesis presents a study of the hadronic decay B s → D s π. This important mode provides the best proper time resolution for B s mixing and is reconstructed for the first time at D0. Projections on the sensitivity to B s oscillations are then presented

  10. Study of W boson decays and determination of Triple Gauge Couplings in the frame of ALEPH experiment; Etude des desintegrations des bosons W et determination des Auto-Couplages Trilineaires dans le cadre de l'experience ALEPH

    Energy Technology Data Exchange (ETDEWEB)

    Chazelle, Guy [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1999-07-02

    One of the most important consequence of the fundamental non-Abelian gauge structure of the Electroweak Standard Model is the existence of Triple Gauge-boson Couplings (TGC's). The start of LEP 2 has made it possible for the first time to test the least bound sector of the Standard Model, via the study of the {gamma}W{sup +}W{sup -} and Z{sup 0}W{sup +}W{sup -} vertices. The accuracy is limited by the ambiguities that exist on the different production angles of the quarks and the W{sup -} production angle. These ambiguities can be removed if one is able to distinguish between the up quark and the down quark in the hadronic decays of the W. A charm-jet tagger was therefore developed. It is based on a neural network with 12 variables as input, using mainly charm-lifetime, jet-shape properties, reconstruction of D-mesons and lepton identification. This study has lead to the measurement of one of the least well known CKM matrix element, |V{sub cs}| = 1.034 {+-} 0.051{sub stat} {+-} 0.029{sub syst}. The measurement of the TGC's with the ALEPH detector has led to a dedicated selection of the purely leptonic final states l{nu}-bar l-bar {nu} (l=e,{mu}). The potential sensitivity of this channel to the TGC's depends strongly on the kinematic reconstruction of the undetected neutrinos. A kinematic fitting procedure has thus been developed. The method used to measure the TGC's in this analysis is based on the definition of optimal observables which project out the information contained in the five-fold angular distribution to a set of one-dimensional distributions. The results obtained from the data collected at 183 GeV (1997) and 189 GeV (1998) combined with those obtained from the study of {nu}{nu}-bar {gamma} final states and single W events yield the following 95% confidence level limits: - 0.113 < {delta}g{sub 1}{sup Z} < 0.126; - 0.176 < {delta}{kappa}{sub {gamma}} < 0.467; - 0.163 < {lambda}{sub {gamma}} < 0.094, in agreement with SM expectation

  11. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Christoph

    2011-06-09

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few {mu}m), low material budget ({proportional_to}50 {mu}m Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the

  12. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Schrader, Christoph

    2011-01-01

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few μm), low material budget (∝50 μm Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the HADES data

  13. Development of a pixel sensor with fine space-time resolution based on SOI technology for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Shun, E-mail: s-ono@champ.hep.sci.osaka-u.ac.jp [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Togawa, Manabu; Tsuji, Ryoji; Mori, Teppei [Osaka University, 1-1 Machikaneyama, Toyonaka (Japan); Yamada, Miho; Arai, Yasuo; Tsuboyama, Toru; Hanagaki, Kazunori [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), 1-1 Oho, Tsukuba (Japan)

    2017-02-11

    We have been developing a new monolithic pixel sensor with silicon-on-insulator (SOI) technology for the International Linear Collider (ILC) vertex detector system. The SOI monolithic pixel detector is realized using standard CMOS circuits fabricated on a fully depleted sensor layer. The new SOI sensor SOFIST can store both the position and timing information of charged particles in each 20×20 μm{sup 2} pixel. The position resolution is further improved by the position weighted with the charges spread to multiple pixels. The pixel also records the hit timing with an embedded time-stamp circuit. The sensor chip has column-parallel analog-to-digital conversion (ADC) circuits and zero-suppression logic for high-speed data readout. We are designing and evaluating some prototype sensor chips for optimizing and minimizing the pixel circuit.

  14. A doublet of 3" cylindrical silicon drift detectors in the CERES/NA45 experiment

    CERN Document Server

    Faschingbauer, U; Baur, R; Ceretto, F; Drees, A; Fraenkel, Zeev; Fuchs, C; Gatti, E; Glässel, P; Hemberger, M; Pérez de los Heros, C; Hess, F; Holl, P; Irmscher, D; Jacob, C; Kemmer, J; Minaev, Yu I; Panebratsev, Yu A; Pfeiffer, A; Ravinovich, I; Razin, S V; Rehak, P; Sampietro, M; Schükraft, Jürgen; Shimansky, S S; Socol, E; Specht, H J; Tel-Zur, G; Tserruya, Itzhak; Ullrich, T S; Voigt, C A; Wurm, J P; Yurevich, V I

    1995-01-01

    We report on the performance of a doublet of 3" cylindrical silicon drift detectors installed as an upgrade of the CERES/NA45 electron pair spectrometer for the Pb-beam at the CERN SPS. The silicon detectors provide external particle tracking and background rejection of conversions and close Dalitz pairs. Results on vertex reconstruction and rejection from Pb test-run in 1994 are presented.

  15. Production and performance of the silicon sensor and custom readout electronics for the PHENIX FVTX tracker

    International Nuclear Information System (INIS)

    Kapustinsky, Jon S.

    2010-01-01

    The Forward Silicon Vertex Tracker (FVTX) upgrade for the PHENIX detector at RHIC will extend the vertex capability of the central PHENIX Silicon Vertex Tracker (VTX). The FVTX is designed with adequate spatial resolution to separate decay muons coming from the relatively long-lived heavy quark mesons (Charm and Beauty), from prompt particles and the longer-lived pion and kaon decays that originate at the primary collision vertex. These heavy quarks can be used to probe the high-density medium that is formed in Au+Au collisions at RHIC. The FVTX is designed as two endcaps. Each endcap comprises four silicon disks covering opening angles from 10 o to 35 o to match the existing muon arm acceptance. Each disk consists of p-on-n, silicon wedges, with ac-coupled mini-strips on 75 μm radial pitch and projective length in the phi direction that increases with radius. A custom front-end chip, the FPHX, has been designed for the FVTX. The chip combines fast trigger capability with data push architecture in a low-power design.

  16. Production and performance of the silicon sensor and readout electronics for the PHENIX FVTX tracker

    International Nuclear Information System (INIS)

    Kapustinsky, Jon Steven

    2009-01-01

    The Forward Silicon Vertex Tracker (FVTX) upgrade for the PHENIX detector at RHIC will extend the vertex capability of the central PHENIX Silicon Vertex Tracker (VTX). The FVTX is designed with adequate spatial resolution to separate decay muons coming from the relatively long-lived heavy quark mesons (Charm and Beauty), from prompt particles and the longer-lived pion and kaon decays that originate at the primary collision vertex. These heavy quarks can be used to probe the high density medium that is formed in Au+Au collisions at RHIC. The FVTX is designed as two endcaps. Each endcap is comprised of four silicon disks covering opening angles from 10 to 35 degrees to match the existing muon arm acceptance. Each disk consists of p-on-n, silicon wedges, with ac-coupled mini-strips on 75 (micro)m radial pitch and proj ective length in the phi direction that increases with radius. A custom front-end chip, the FPHX, has been designed for the FVTX. The chip combines fast trigger capability with data push architecture in a low power design.

  17. Production and performance of the silicon sensor and custom readout electronics for the PHENIX FVTX tracker

    Energy Technology Data Exchange (ETDEWEB)

    Kapustinsky, Jon S., E-mail: jonk@lanl.go [Los Alamos National Laboratory, Mailstop H846, PO Box 1663, Los Alamos, 87545 New Mexico (United States)

    2010-05-21

    The Forward Silicon Vertex Tracker (FVTX) upgrade for the PHENIX detector at RHIC will extend the vertex capability of the central PHENIX Silicon Vertex Tracker (VTX). The FVTX is designed with adequate spatial resolution to separate decay muons coming from the relatively long-lived heavy quark mesons (Charm and Beauty), from prompt particles and the longer-lived pion and kaon decays that originate at the primary collision vertex. These heavy quarks can be used to probe the high-density medium that is formed in Au+Au collisions at RHIC. The FVTX is designed as two endcaps. Each endcap comprises four silicon disks covering opening angles from 10{sup o} to 35{sup o} to match the existing muon arm acceptance. Each disk consists of p-on-n, silicon wedges, with ac-coupled mini-strips on 75 {mu}m radial pitch and projective length in the phi direction that increases with radius. A custom front-end chip, the FPHX, has been designed for the FVTX. The chip combines fast trigger capability with data push architecture in a low-power design.

  18. First-order corrections to random-phase approximation GW calculations in silicon and diamond

    NARCIS (Netherlands)

    Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.

    1998-01-01

    We report on ab initio calculations of the first-order corrections in the screened interaction W to the random-phase approximation polarizability and to the GW self-energy, using a noninteracting Green's function, for silicon and diamond. It is found that the first-order vertex and self-consistency

  19. Challenges for secondary vertex reconstruction in CBM at SIS100 and SIS300 at FAIR

    International Nuclear Information System (INIS)

    Lymanets, A.; Kotynia, A.; Heuser, J.

    2010-01-01

    Full text: The CBM experiment at FAIR will explore the QCD phase diagram in the region of highest baryon densities. In contrast to other experimental programs in the same energy domain, CBM will be able to explore rare probes such as charm and dileptons due to its capability of running at interaction rates as high as 10 MHz. In order to cope with the related experimental challenges detailed simulations studies as well as extensive R and D activities on the detector and readout systems are ongoing. In this contribution, the challenges of open charm measurement in pA collisions, e.g. already at SIS100, and in AA collisions at SIS300 will be investigated. In order to extract open charm decays from the large background of produced charged particles, secondary vertex reconstruction with a precision of less than 0.1 mm is required. The involved tracking and reconstruction procedures have to be fast in order to allow their implementation already on the trigger level. Prerequisite for this are ultra-low mass, fast and radiation tolerant silicon detectors. These two aspects of a finally successful measurement, hardware development and reconstruction routines, are being developed in close contact to each other and their status is demonstrated in this talk. (author)

  20. Study of the radiation induced effects in the LHCb Vertex Locator

    CERN Document Server

    Szumlak, Tomasz

    2016-01-01

    LHCb is a dedicated heavy-flavour physics experiment at the Large Hadron Collider at CERN. The VErtex LOcator (VELO) is a critical part of a LHCb tracking system, enabling the full topological reconstruction of beauty and charm mesons’ decays and providing essential input for the High Level Trigger (HLT) system used by the experiment to select events. The VELO comprises 42 modules made of two $n^{+}$-on-$n~300~\\mu$m thick half-disc silicon sensors with $R$- and ${\\mit\\Phi}$-measuring micro-strips, arranged in two retractable halves, operating only about 8 mm from the proton beams. In these paper, selected aspects of the VELO performance during the Run 1 data-taking period is shortly summarised along with the radiation damage studies. The track finding efficiency is typically greater than 98\\%. An impact parameter resolution of less than $35~\\mu$m is achieved for particles with transverse momentum greater than 1 GeV/$c$. An overview of all important performance parameters will be given. The VELO sensors have...

  1. Test-beam measurements and simulation studies of thin pixel sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00574329; Dannheim, Dominik

    The multi-$TeV$ $e^{+}e^{-}$ Compact Linear Collider (CLIC) is one of the options for a future high-energy collider for the post-LHC era. It would allow for searches of new physics and simultaneously offer the possibility for precision measurements of standard model processes. The physics goals and experimental conditions at CLIC set high precision requirements on the vertex detector made of pixel detectors: a high pointing resolution of 3 $\\mu m$, very low mass of 0.2% $X_{0}$ per layer, 10 ns time stamping capability and low power dissipation of 50 mW/$cm^{2}$ compatible with air-flow cooling. In this thesis, hybrid assemblies with thin active-edge planar sensors are characterised through calibrations, laboratory and test-beam measurements. Prototypes containing 50 $\\mu m$ to 150 $\\mu m$ thin planar silicon sensors bump-bonded to Timepix3 readout ASICs with 55 $\\mu m$ pitch are characterised in test beams at the CERN SPS in view of their detection efficiency and single-point resolution. A digitiser for AllP...

  2. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Rim [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung Hun; Park, Jong Hoon [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of); Jung, Won Gyun [Heavy-ion Clinical Research Division, Korean Institute of Radiological & Medical Sciences, Seoul 01812 (Korea, Republic of); Lim, Hansang [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897 (Korea, Republic of); Kim, Chan Hyeong, E-mail: chkim@hanyang.ac.kr [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2017-06-11

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a {sup 90}Sr beta source, a {sup 60}Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  3. Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Rescigno, R., E-mail: regina.rescigno@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Finck, Ch.; Juliani, D. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Spiriti, E. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati (Italy); Istituto Nazionale di Fisica Nucleare - Sezione di Roma 3 (Italy); Baudot, J. [Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Abou-Haidar, Z. [CNA, Sevilla (Spain); Agodi, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Alvarez, M.A.G. [CNA, Sevilla (Spain); Aumann, T. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Battistoni, G. [Istituto Nazionale di Fisica Nucleare - Sezione di Milano (Italy); Bocci, A. [CNA, Sevilla (Spain); Böhlen, T.T. [European Organization for Nuclear Research CERN, Geneva (Switzerland); Medical Radiation Physics, Karolinska Institutet and Stockholm University, Stockholm (Sweden); Boudard, A. [CEA-Saclay, IRFU/SPhN, Gif sur Yvette Cedex (France); Brunetti, A.; Carpinelli, M. [Istituto Nazionale di Fisica Nucleare - Sezione di Cagliari (Italy); Università di Sassari (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Cortes-Giraldo, M.A. [Departamento de Fisica Atomica, Molecular y Nuclear, University of Sevilla, 41080-Sevilla (Spain); Cuttone, G.; De Napoli, M. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (Italy); Durante, M. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); and others

    2014-12-11

    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data.

  4. Track and vertex reconstruction on GPUs for the Mu3e experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, Dorothea vom; Kozlinskiy, Alexandr [Physikalisches Institut, Universitaet Heidelberg (Germany); Berger, Niklaus [Institut fuer Kernphysik, Universitaet Mainz (Germany); Collaboration: Mu3e-Collaboration

    2015-07-01

    The Mu3e experiment searches for the lepton flavour violating decay μ → eee, aiming at a branching ratio sensitivity better than 10{sup -16}. To reach this sensitivity, muon rates above 10{sup 9} μ/s are required. A high precision silicon pixel tracking detector combined with excellent timing resolution from scintillating fibers and tiles will measure the momenta, vertices and timing of the decay products of muons stopped in the target to suppress background. The trigger-less readout system will deliver about 100 GB/s of zero-suppressed data. A network of optical links and switching FPGAs sends the complete detector data for a time slice to one node of the filter farm. An FPGA inside the filter farm PC transfers the event data to the GPU via PCIe direct memory access. The GPU finds and fits tracks using a 3D tracking algorithm for multiple scattering dominated resolution. In a second step, a three track vertex fit is performed, allowing for a reduction of the output data rate to below 100 MB/s by removing combinatorial background. The talk discusses the implementation of the fits on the GPU, which processes 10{sup 10} combinations of hits from three layers per second.

  5. Measurement of the semi-leptonic and hadronic branching ratios and mass of Bs0 with the ALEPH detector at LEP

    International Nuclear Information System (INIS)

    Nief, Jean-Yves

    1997-01-01

    Since the discovery of the b quark in 1977 the physics of the beauty has known an important development. Among the main aspects of this field, one can find the measurement of the branching ratios and the mass of the beauty mesons. This study allows a confrontation between the experimental results on one hand and predictions given by phenomenological models on the other hand. This thesis is dedicated to the study of the B s 0 meson, which contains both a beauty quark and a strange quark. This analysis uses 4 millions hadronic events taken by the ALEPH experiment between 1991 and 1995 on the electron-positron collider LEP located at CERN. From these events the B s 0 meson is searched in two types of decays: semi-leptonic and hadronic decays. This study allows to extract various branching ratios of B s 0 . From the fully reconstructed candidates in the hadronic channels a measurement of the B s 0 is carried out. The measurements are in agreement with the predictions of the phenomenological models available at present. This thesis is also on the tracking and identification upgrade of the charged particles in the ALEPH detector, especially the Kalman Filter (tracking part) at a complementary measurement of the specific ionization, dE/dx (identification part). Tests carried out in the field of B d 0 semi-leptonic decays shows that these improvements will be rewarding in the future. (author)

  6. Study of W boson decays and determination of Triple Gauge Couplings in the frame of ALEPH experiment

    International Nuclear Information System (INIS)

    Chazelle, Guy

    1999-01-01

    One of the most important consequence of the fundamental non-Abelian gauge structure of the Electroweak Standard Model is the existence of Triple Gauge-boson Couplings (TGC's). The start of LEP 2 has made it possible for the first time to test the least bound sector of the Standard Model, via the study of the γW + W - and Z 0 W + W - vertices. The accuracy is limited by the ambiguities that exist on the different production angles of the quarks and the W - production angle. These ambiguities can be removed if one is able to distinguish between the up quark and the down quark in the hadronic decays of the W. A charm-jet tagger was therefore developed. It is based on a neural network with 12 variables as input, using mainly charm-lifetime, jet-shape properties, reconstruction of D-mesons and lepton identification. This study has lead to the measurement of one of the least well known CKM matrix element, |V cs | = 1.034 ± 0.051 stat ± 0.029 syst . The measurement of the TGC's with the ALEPH detector has led to a dedicated selection of the purely leptonic final states lν-bar l-bar ν (l=e,μ). The potential sensitivity of this channel to the TGC's depends strongly on the kinematic reconstruction of the undetected neutrinos. A kinematic fitting procedure has thus been developed. The method used to measure the TGC's in this analysis is based on the definition of optimal observables which project out the information contained in the five-fold angular distribution to a set of one-dimensional distributions. The results obtained from the data collected at 183 GeV (1997) and 189 GeV (1998) combined with those obtained from the study of νν-bar γ final states and single W events yield the following 95% confidence level limits: - 0.113 1 Z γ γ NP = 1 TeV, confirming the previously published electroweak results from LEP 1 and SLC. (author)

  7. Silicon position sensitive detectors for the Helios (NA 34) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E Jr; Mani, S; Manns, T; Plants, D; Shepard, P F; Thompson, J A; Tosh, R; Chand, T; Shivpuri, R; Baker, W

    1987-01-15

    The design construction and testing of X-Y tracking modules for a silicon microstrip vertex detector for use in Fermilab experiment E706 is discussed. A successful adaptation of various technologies, essential for instrumenting this class of detectors at a university laboratory is described. Emphasis is placed on considerable cost reduction, design flexibiity and more rapid turnover with a view toward large detectors for the future.

  8. Gauge covariant fermion-photon vertex in quenched, massless three dimensional quantum electrodynamics

    International Nuclear Information System (INIS)

    Tjiang, P.C.; Burden, C.J.

    1998-01-01

    Full text: We consider the problem of designing an Ansatz for the transverse part of the fermion-photon vertex in QED 3 . Our work is based on that of Ball and Chiu, who consider restrictions placed on the vertex by the U(1) Ward identity, and on subsequent modifications which attempt to satisfy the Landau-Khalatnikov transformation rules. A class of vertex Ansaetze including that proposed by Dong et al is tested using the gauge invariance of the vacuum polarisation scalar

  9. Three-coloring graphs with no induced seven-vertex path II : using a triangle

    OpenAIRE

    Chudnovsky, Maria; Maceli, Peter; Zhong, Mingxian

    2015-01-01

    In this paper, we give a polynomial time algorithm which determines if a given graph containing a triangle and no induced seven-vertex path is 3-colorable, and gives an explicit coloring if one exists. In previous work, we gave a polynomial time algorithm for three-coloring triangle-free graphs with no induced seven-vertex path. Combined, our work shows that three-coloring a graph with no induced seven-vertex path can be done in polynomial time.

  10. Intrinsic-normal-ordered vertex operators from the multiloop N-tachyon amplitude

    International Nuclear Information System (INIS)

    Aldazabal, G.; Nunez, C.; Bonini, M.; Iengo, R.

    1987-09-01

    We construct vertex operators for arbitrary mass level states of the closed bosonic string. Starting from a generalization of the Koba-Nielsen amplitude which is suitable for an arbitrary genus Riemann surface, we read the vertex operators from the residues of the poles for the intermediate states. Since the original expression is metric independent and normal ordered without the need of inventing any regularization scheme, our vertex operators also possess these properties. We discuss their general features. (author). 17 refs

  11. cellGPU: Massively parallel simulations of dynamic vertex models

    Science.gov (United States)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  12. Effects of Vertex Activity and Self-organized Criticality Behavior on a Weighted Evolving Network

    International Nuclear Information System (INIS)

    Zhang Guiqing; Yang Qiuying; Chen Tianlun

    2008-01-01

    Effects of vertex activity have been analyzed on a weighted evolving network. The network is characterized by the probability distribution of vertex strength, each edge weight and evolution of the strength of vertices with different vertex activities. The model exhibits self-organized criticality behavior. The probability distribution of avalanche size for different network sizes is also shown. In addition, there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities

  13. Operadic formulation of topological vertex algebras and gerstenhaber or Batalin-Vilkovisky algebras

    International Nuclear Information System (INIS)

    Huang Yizhi

    1994-01-01

    We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak topological vertex algebra) by combining this operadic formulation with a theorem of Getzler (or of Cohen) which formulates Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in terms of the homology of the framed little disk operad (or of the little disk operad). (orig.)

  14. A NEW HYBRID GENETIC ALGORITHM FOR VERTEX COVER PROBLEM

    OpenAIRE

    UĞURLU, Onur

    2015-01-01

    The minimum vertex cover  problem belongs to the  class  of  NP-compl ete  graph  theoretical problems. This paper presents a hybrid genetic algorithm to solve minimum ver tex cover problem. In this paper, it has been shown that when local optimization technique is added t o genetic algorithm to form hybrid genetic algorithm, it gives more quality solution than simple genet ic algorithm. Also, anew mutation operator has been developed especially for minimum verte...

  15. Vertex operator construction of superconformal ghosts and string field theory

    International Nuclear Information System (INIS)

    Ezawa, Z.F.; Nakamura, S.; Tezuka, A.

    1987-01-01

    Superconformal ghosts in string theories are characterized by the SU(1,1) Kac-Moody algebra with central charge -1/2. These ghost fields are constructed as the vertex operators realizing spinor representations of the Kac-Moody algebra. Representations of the canonical commutation relations of the superconformal ghosts are analyzed extensively. All irreducible representations are found to possess only the trivial inner product but for one exceptional case. Consequently, in superstring field theory it is necessary to consider reducible representations in general. Hilbert spaces with a non-trivial inner product are explicitly obtained upon which second quantization of superstring may be carried out. (orig.)

  16. A new tool for constrained vertex fitting in ATLAS

    CERN Document Server

    Colijn, Auke Pieter; Limper, Maaike; Prokofiev, Kirill

    2009-01-01

    The precise reconstruction of trajectories of charged and neutral particles and their decay vertices is crucial for many physics analyses. Studying the tracking performance on well known benchmark channels helps to understand the properties of the ATLAS detector during the initial phase of the LHC. In order to exploit the correlations between reconstructed parameters of final state tracks having the same mother particle, a new tool for vertex fitting with possibility of simultaneous application of kinematic constraints has been developed. Using this tool on a benchmark channel such as J/psi to μ+μ− helps to correct shifts in the reconstructed curvature induced by systematic deformations of the detector.

  17. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang

    2016-08-12

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ʼnormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

  18. W-symmetry, topological vertex and affine Yangian

    Energy Technology Data Exchange (ETDEWEB)

    Procházka, Tomáš [Arnold Sommerfeld Center for Theoretical Physics, Ludwig Maximilian University of Munich,Theresienstr. 37, D-80333 München (Germany); Institute of Physics AS CR,Na Slovance 2, Prague 8 (Czech Republic)

    2016-10-14

    We discuss the representation theory of the non-linear chiral algebra W{sub 1+∞} of Gaberdiel and Gopakumar and its connection to the Yangian of (u(1))-hat whose presentation was given by Tsymbaliuk. The characters of completely degenerate representations of W{sub 1+∞} are given by the topological vertex. The Yangian picture provides an infinite number of commuting charges which can be explicitly diagonalized in W{sub 1+∞} highest weight representations. Many properties that are difficult to study in the W{sub 1+∞} picture turn out to have a simple combinatorial interpretation, once translated to the Yangian picture.

  19. 3D circuit integration for Vertex and other detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  20. Performance of the VTL PEPR vertex guidance system

    International Nuclear Information System (INIS)

    Dunn, L.A.; Harris, R.; Kenyon, R.G.; Lubatti, H.J.; Moriyasu, K.

    1975-01-01

    A PEPR vertex guidance system requiring no operator intervention has been operating at the University of Washington's Visual Techniques Laboratory since 1972. The measurement of 140 000 events consisting of 3, 4, 5, and 6-prong interactions of a 15 GeV/c π - beam with deuterium was recently completed. The system employs global transformations that reduce circular tracks to a point in a two-dimensional angle-curvature space. Noise reduction techniques are used to improve position and angle accuracy and thereby the system resolution and efficiency. Monitoring criteria were developed to ensure continuous peak performance over long production periods. (Auth.)

  1. [European particle accelerator conference, Rome, Italy, and visit to the LEP storage ring and LEP detectors L3 and ALEPH at CERN, Geneva, Switzerland, June 5-16, 1988]: Foreign trip report

    International Nuclear Information System (INIS)

    Blumberg, L.N.

    1988-01-01

    A selection of papers presented at the EPAC Conference relating to accelerator technology, facilities proposed, planned or under construction, and operating machines are discussed. Also noted are discussions at CERN with personnel from the LEP superconducting RF, the LEP L3 and ALEPH detectors, and the LHC superconducting magnet groups

  2. Recent results from ALEPH

    International Nuclear Information System (INIS)

    Grivaz, J.F.

    1990-07-01

    With a luminosity of more than 1 pb -1 corresponding to ∼ 25,000 hadronic Z decays collected during a scan around the Z peak, the parameters of the Z resonance have been measured. The mass, the full width and the hadronic, leptonic and invisible widths are found to be in agreement with the expectation from the Standard Model. Extensive searches for new particle production in Z decays have been performed. No signal is observed. In particular, the Standard Model Higgs boson is excluded in the whole mass range from 0 to 24 GeV, and the allowed domain in the parameter space of the gauge-Higgs sector of the Minimal Supersymmetric Standard Model is restricted

  3. Structure of the vertex function in finite quantum electrodynamics

    International Nuclear Information System (INIS)

    Mannheim, P.D.

    1975-01-01

    We study the structure of the renormalized electromagnetic current vertes, GAMMA-tilde/sub μ/(p,p+q,q), in finite quantum electrodynamics. Using conformal invariance we find that GAMMA-tilde/sub μ/(p,p,0) takes the simple form of Z 1 γ/sub μ/ when the external fermions are far off the mass shell. We interpret this result as an old theorem on the structure of the vertex function due to Gell--Mann and Zachariasen. We give the general structure of the vertex for arbitrary momentum transfer parametrically, and discuss how the Bethe--Salpeter equation and the Federbush--Johnson theorem are satisfied. We contrast the meaning of pointlike in a finite field theory with the meaning understood in the parton model. We discuss to what extent the condition Z 1 = 0, which may hold in conformal theories other than finite quantum electrodynamics, may be interpreted as a bootstrap condition. We show that the vanishing of Z 1 prevents their being bound states in the Migdal--Polyakov bootstrap

  4. SPARTex: A Vertex-Centric Framework for RDF Data Analytics

    KAUST Repository

    Abdelaziz, Ibrahim

    2015-08-31

    A growing number of applications require combining SPARQL queries with generic graph search on RDF data. However, the lack of procedural capabilities in SPARQL makes it inappropriate for graph analytics. Moreover, RDF engines focus on SPARQL query evaluation whereas graph management frameworks perform only generic graph computations. In this work, we bridge the gap by introducing SPARTex, an RDF analytics framework based on the vertex-centric computation model. In SPARTex, user-defined vertex centric programs can be invoked from SPARQL as stored procedures. SPARTex allows the execution of a pipeline of graph algorithms without the need for multiple reads/writes of input data and intermediate results. We use a cost-based optimizer for minimizing the communication cost. SPARTex evaluates queries that combine SPARQL and generic graph computations orders of magnitude faster than existing RDF engines. We demonstrate a real system prototype of SPARTex running on a local cluster using real and synthetic datasets. SPARTex has a real-time graphical user interface that allows the participants to write regular SPARQL queries, use our proposed SPARQL extension to declaratively invoke graph algorithms or combine/pipeline both SPARQL querying and generic graph analytics.

  5. Nonperturbative aspects of the quark-photon vertex

    International Nuclear Information System (INIS)

    Frank, M.R.

    1994-01-01

    The electromagnetic interaction with quarks is investigated through a relativistic, electromagnetic gauge-invariant treatment. Gluon dressing of the quark-photon vertex and the quark self-energy functions is described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger-Dyson equation in the rainbow approximation respectively. Results for the calculation of the quark-photon vertex are presented in both the time-like and space-like regions of photon momentum squared, however emphasis is placed on the space-like region relevant to electron scattering. The treatment presented here simultaneously addresses the role of dynamically generated q bar q vector bound states and the approach to asymptotic behavior. The resulting description is therefore applicable over the entire range of momentum transfers available in electron scattering experiments. Input parameters are limited to the model gluon two-point function which is chosen to reflect confinement and asymptotic freedom and are largely constrained by the obtained bound-state spectrum

  6. Commissioning of the control and data acquisition electronics for the CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    Tkaczyk, S.M.; Turner, K.J.; Nelson, C.A.; Shaw, T.M.; Wesson, T.R.; Bailey, M.W.; Kruse, M.C.; Castro, A.

    1991-11-01

    The SVX data acquisition system includes three components: a Fastbus Sequencer, an SVX Rabbit Crate Controller and a Digitizer. These modules are integrated into the CDF DAQ system and operate the readout chips. The results of the extensive functional tests of the SVX modules are reported. We discuss the stability of the Sequencers, systematic differences between them and methods of synchronization with the Tevatron beam crossings. The Digitizer ADC calibration procedure run on the microsequencer is described. The microsequencer code used for data taking and SVX chip calibration modes is described. Measurements of the SVX data scan time are discussed

  7. Measurement of the inclusive {pi}{sup 0} production in Z{sup 0} hadronic decays with the ALEPH detector at LEP; Mesure de la production inclusive de {pi}{sup 0} dans les desintegrations hadroniques du Z{sup 0} avec le detecteur ALEPH au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Odier, P

    1995-11-17

    This thesis presents a measurement of the {pi}{sup 0} production in the hadronic decays of the {Zeta}{sup 0} with the ALEPH detector at LEP. This measurement is part of the general study of hadron production in quark and gluon fragmentation. We make a short review of the state of the art on the two aspects of fragmentation: the perturbative part, which is described by quantum chromodynamics (QCD) and the non perturbative part, described by phenomenological models. The analysis presented here uses two million events, selected among the data taken by ALEPH in 1992, 93 and 94. {pi}{sup 0}`s are reconstructed from their decay into two photons. The photons are identified either by their energy deposit in the electromagnetic calorimeter, or by their conversion to an electron-positron pair, detected in the tracking system. During the various steps of the photon selection, efficiencies estimated from the Monte Carlo are controlled by the data themselves. The {pi}{sup 0} signal is then fitted from the photon/photon invariant mass distributions. The three possible combinations of photons are used: converted photon / calorimetric photon, calorimetric photon / calorimetric photon and converted photon/converted photon. Differential cross-sections with respect to energy, transverse momentum and rapidity are measured. The number of {pi}{sup 0}`s per event with E{sub {pi}{sup 0}} larger than 1.14 GeV is found to be : N ({pi}{sup 0}) = 5.24{+-}0.02(stat.){+-}0.29(syst.). These results are compared to the results obtained by other LEP experiments, to the measurement of ALEPH on the charged pions production, as well as to the predictions of various event generators. A reasonable agreement is observed, even if we measure a slightly higher cross-section, the discrepancy reaching two standard deviations at low energy. Finally, a brief topological study, using event shape variables, is presented. (author). 92 refs., 104 figs., 20 tabs.

  8. Effectiveness of Vertex Nomination via Seeded Graph Matching to Find Bijections Between Similar Networks

    Science.gov (United States)

    2018-02-01

    Information Directorate This report is published in the interest of scientific and technical information exchange, and its publication does not...the current prototype. 15. SUBJECT TERMS Vertex Nomination via Seeded Graph Matching (VN via SGM), Seeded Graph Matching (SGM), Vertex of Interest (VOI...Author’s Example ................................................................................................................. 4 4.2.2 Simple

  9. A momentum space analysis of the Triple Pomeron Vertex in pQCD

    International Nuclear Information System (INIS)

    Bartels, J.

    2007-10-01

    We study properties of the momentum space Triple Pomeron Vertex in perturbative QCD. Particular attention is given to the collinear limit where transverse momenta on one side of the vertex are much larger than on the other side. We also comment on the kernels in nonlinear evolution equations. (orig.)

  10. A vertex including emission of spin fields for an arbitrary bc system

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Madsen, R.A.; Roland, K.

    1990-01-01

    We construct the (N+2M) Point Vertex involving the emission of N Neveu-Schwarz and 2M Ramond states for a bosonic and fermionic bc system with a bockground charge Q. From it one can compute correlation functions on the sphere involving any number of spin fields. We show in detail that the vertex satisfies overlap conditions. (orig.)

  11. A momentum space analysis of the Triple Pomeron Vertex in pQCD

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kutak, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Instytut Fizyki Jadrowej Polskiej Akademii Nauk, Krakow (Poland)

    2007-10-15

    We study properties of the momentum space Triple Pomeron Vertex in perturbative QCD. Particular attention is given to the collinear limit where transverse momenta on one side of the vertex are much larger than on the other side. We also comment on the kernels in nonlinear evolution equations. (orig.)

  12. A quantum relativistic integrable model as the continuous limit of the six-vertex model

    International Nuclear Information System (INIS)

    Zhou, Y.K.

    1992-01-01

    The six-vertex model in two-dimensional statistical mechanics is used to construct the L-matrix of a one-dimensional quantum relativistic integrable model through a continuous limit. This is the first step to extend the method used earlier by the author to construct quantum completely integrable systems from other well-known two-dimensional vertex models. (orig.)

  13. A quantum hybrid with a thin antenna at the vertex of a wedge

    Energy Technology Data Exchange (ETDEWEB)

    Carlone, Raffaele, E-mail: raffaele.carlone@unina.it [Università “Federico II” di Napoli, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, MSA, via Cinthia, I-80126, Napoli (Italy); Posilicano, Andrea, E-mail: andrea.posilicano@uninsubria.it [DiSAT, Università dell' Insubria, via Valleggio 11, I-22100, Como (Italy)

    2017-03-26

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a “hybrid surface” consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex. - Highlights: • Spectral characterization of a quantum Hamiltonian on “hybrid surface” consisting of a halfline attached to the vertex of a concave planar wedge. • The system is tunable by varying the measure of the angle at the vertex. • Relation between the conduction properties inside the hybrid and formation of resonances. • Easy generalization of the results to more complicated structures.

  14. The scalar-photon 3-point vertex in massless quenched scalar QED

    International Nuclear Information System (INIS)

    Concha-Sánchez, Y; Gutiérrez-Guerrero, L X; Fernández-Rangel, L A

    2016-01-01

    Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex. (paper)

  15. The search for Higgs boson production in the four-jet channel at 192 < √s < 202 GeV with the ALEPH detector at LEP

    International Nuclear Information System (INIS)

    Smith, D.H.

    2001-12-01

    A search for neutral Higgs boson production in e + e - collisions using data collected by the ALEPH detector at the LEP accelerator is presented. Approximately 413 pb -1 of data collected at centre of mass energies between 188.6 and 201.6 GeV during 1998 and 1999 is used. The selection of candidates is described and the results of the search are presented and interpreted. Particular attention is given to the selection of the final states with four hadronic jets. No evidence of Higgs boson production is found. In the context of the Standard Model the lower limit on the Higgs boson mass is set at 105.2 GeV/c 2 at the 95% confidence level. (author)

  16. Search for the glueball candidates $f_{0}$(1500) and $f_{J}$(1710) in $\\gamma\\gamma$ collisions in ALEPH Detector

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Lees, J.P.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Alemany, R.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Riu, I.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Martin, E.B.; Marinelli, N.; Sciaba, A.; Sedgbeer, J.K.; Thomson, Evelyn J.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C.K.; Buck, P.G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Williams, M.I.; Giehl, I.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Wachsmuth, H.; Zeitnitz, C.; Aubert, J.J.; Bonissent, A.; Carr, J.; Coyle, P.; Payre, P.; Rousseau, D.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Le Diberder, F.; Lefrancois, J.; Lutz, A.M.; Schune, M.H.; Veillet, J.J.; Videau, I.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Foa, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Cowan, G.; Green, M.G.; Medcalf, T.; Strong, J.A.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Colas, P.; Emery, S.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S.N.; Dann, J.H.; Johnson, R.P.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; von Wimmersperg-Toeller, J.H.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2000-01-01

    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95\\-onfidence level.

  17. Study of muon-pair production at centre-of-mass energies from 20 to 136 GeV with the ALEPH detector

    Science.gov (United States)

    Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Buiosa, G.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Konstantinidis, N.; Leroy, O.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Sau, Lan Wu; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.

    1997-02-01

    The total cross section and the forward-backward asymmetry for the process e+e- -> μ+μ-(nγ) are measured in the energy range 20-136 GeV by reconstructing the effective centre-of-mass energy after initial state radiation. The analysis is based on the data recorded with the ALEPH detector at LEP between 1990 and 1995, corresponding to a total integrated luminosity of 143.5 pb-1. Two different approaches are used: in the first one an exclusive selection of events with hard initial state radiation in the energy range 20-88 GeV is directly compared with the Standard Model predictions showing good agreement. In the second one, all events are used to obtain a precise measurement of the energy dependence of σ0 and σ0 and A0FB from a model independent fit, enabling constraints to be placed on models with extra Z bosons.

  18. Study of the muon-pair production at centre-of-mass energies from 20 to 136 GeV with the ALEPH detector

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Konstantinidis, N P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1997-01-01

    The total cross section and the forward-backward asymmetry for the process $e^+ e^- \\rightarrow \\mu^+ \\mu^- (n \\gamma)$ are measured in the energy range 20-136 GeV by reconstructing the effective centre-of-mass energy after initial state radiation. The analysis is based on the data recorded with the ALEPH detector at LEP between 1990 and 1995, corresponding to a total integrated luminosity of 143.5 $\\mathrm{pb}^{-1}$. Two different approaches are used: in the first one an exclusive selection of events with hard initial state radiation in the energy range 20-88 GeV is directly compared with the Standard Model predictions showing good agreement. In the second one, all events are used to obtain a precise measurement of the energy dependence of $\\sigma^0$ and $A_{\\mathrm{FB}}^0$ from a model independent fit, enabling constraints to be placed on models with extra Z bosons.

  19. Vertex measurement at a hadron collider. The ATLAS pixel detector

    International Nuclear Information System (INIS)

    Grosse-Knetter, J.

    2008-03-01

    The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the Pixel Detector near the interaction point requires excellent radiation hardness, fast read-out, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The new design concepts used to meet the challenging requirements are discussed with their realisation in the Pixel Detector, followed by a description of a refined and extensive set of measurements to assess the detector performance during and after its construction. (orig.)

  20. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    Science.gov (United States)

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter

    2016-02-01

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.

  1. Greedy Local Search and Vertex Cover in Sparse Random Graphs

    DEFF Research Database (Denmark)

    Witt, Carsten

    2009-01-01

    . This work starts with a rigorous explanation for this claim based on the refined analysis of the Karp-Sipser algorithm by Aronson et al. Subsequently, theoretical supplements are given to experimental studies of search heuristics on random graphs. For c 1, a greedy and randomized local-search heuristic...... finds an optimal cover in polynomial time with a probability arbitrarily close to 1. This behavior relies on the absence of a giant component. As an additional insight into the randomized search, it is shown that the heuristic fails badly also on graphs consisting of a single tree component of maximum......Recently, various randomized search heuristics have been studied for the solution of the minimum vertex cover problem, in particular for sparse random instances according to the G(n, c/n) model, where c > 0 is a constant. Methods from statistical physics suggest that the problem is easy if c

  2. The Small Acceptance Vertex Detector of NA61/SHINE

    Directory of Open Access Journals (Sweden)

    Deveaux M.

    2018-01-01

    Full Text Available Charmonium production in heavy ion collisions is considered as an important diagnostic probe for studying the phase diagram of strongly interacting matter for potential phase transitions. The interpretation of existing data from the CERN SPS is hampered by a lack of knowledge on the properties of open charm particle production in the fireball. Moreover, open charm production in heavy ion collisions by itself is poorly understood. To overcome this obstacle, the NA61/SHINE was equipped with a Small Acceptance Vertex Detector (SAVD, which is predicted to make the experiment sensitive to open charm mesons produced in A-A collisions at the SPS top energy. This paper will introduce the concept and the hardware of the SAVD. Moreover, first running experience as obtained in a commissioning run with a 150 AGeV/c Pb+Pb collision system will be reported.

  3. Calculation of the Connected Dominating Set Considering Vertex Importance Metrics

    Directory of Open Access Journals (Sweden)

    Francisco Vazquez-Araujo

    2018-01-01

    Full Text Available The computation of a set constituted by few vertices to define a virtual backbone supporting information interchange is a problem that arises in many areas when analysing networks of different natures, like wireless, brain, or social networks. Recent papers propose obtaining such a set of vertices by computing the connected dominating set (CDS of a graph. In recent works, the CDS has been obtained by considering that all vertices exhibit similar characteristics. However, that assumption is not valid for complex networks in which their vertices can play different roles. Therefore, we propose finding the CDS by taking into account several metrics which measure the importance of each network vertex e.g., error probability, entropy, or entropy variation (EV.

  4. Waterbomb base: a symmetric single-vertex bistable origami mechanism

    International Nuclear Information System (INIS)

    Hanna, Brandon H; Lund, Jason M; Magleby, Spencer P; Howell, Larry L; Lang, Robert J

    2014-01-01

    The origami waterbomb base is a single-vertex bistable origami mechanism that has unique properties which may prove useful in a variety of applications. It also shows promise as a test bed for smart materials and actuation because of its straightforward geometry and multiple phases of motion, ranging from simple to more complex. This study develops a quantitative understanding of the symmetric waterbomb base's kinetic behavior. This is done by completing kinematic and potential energy analyses to understand and predict bistable behavior. A physical prototype is constructed and tested to validate the results of the analyses. Finite element and virtual work analyses based on the prototype are used to explore the locations of the stable equilibrium positions and the force–deflection response. The model results are verified through comparisons to measurements on a physical prototype. The resulting models describe waterbomb base behavior and provide an engineering tool for application development. (paper)

  5. Solving Vertex Cover Problem Using DNA Tile Assembly Model

    Directory of Open Access Journals (Sweden)

    Zhihua Chen

    2013-01-01

    Full Text Available DNA tile assembly models are a class of mathematically distributed and parallel biocomputing models in DNA tiles. In previous works, tile assembly models have been proved be Turing-universal; that is, the system can do what Turing machine can do. In this paper, we use tile systems to solve computational hard problem. Mathematically, we construct three tile subsystems, which can be combined together to solve vertex cover problem. As a result, each of the proposed tile subsystems consists of Θ(1 types of tiles, and the assembly process is executed in a parallel way (like DNA’s biological function in cells; thus the systems can generate the solution of the problem in linear time with respect to the size of the graph.

  6. A vertex similarity index for better personalized recommendation

    Science.gov (United States)

    Chen, Ling-Jiao; Zhang, Zi-Ke; Liu, Jin-Hu; Gao, Jian; Zhou, Tao

    2017-01-01

    Recommender systems benefit us in tackling the problem of information overload by predicting our potential choices among diverse niche objects. So far, a variety of personalized recommendation algorithms have been proposed and most of them are based on similarities, such as collaborative filtering and mass diffusion. Here, we propose a novel vertex similarity index named CosRA, which combines advantages of both the cosine index and the resource-allocation (RA) index. By applying the CosRA index to real recommender systems including MovieLens, Netflix and RYM, we show that the CosRA-based method has better performance in accuracy, diversity and novelty than some benchmark methods. Moreover, the CosRA index is free of parameters, which is a significant advantage in real applications. Further experiments show that the introduction of two turnable parameters cannot remarkably improve the overall performance of the CosRA index.

  7. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  8. vertex drift chamber construction and test results

    International Nuclear Information System (INIS)

    Clark, A.R.; Goozen, F.; Grudberg, P.; Klopfenstein, C.; Kerth, L.T.; Loken, S.C.; Oltman, E.; Strovink, M.; Trippe, T.G.

    1991-05-01

    A jet-cell based vertex chamber has been built for the D OE experiment at Fermilab and operated in a test beam there. Low drift velocity and diffusion properties were achieved using CO 2 (95%)-ethane(5%) at atmospheric pressure. The drift velocity is found to be consistent with [9.74+8.68(|E|-1.25)] μm/nsec where E is the electric field strength in (kV/cm < |E| z 1.6 kV/cm.) An intrinsic spatial resolution of 60 μm or better for drift distances greater than 2 mm is measured. The track pair efficiency is estimated to be better than 90% for separations greater than 630 μm. 8 refs., 6 figs., 1 tab

  9. Topological vertex, string amplitudes and spectral functions of hyperbolic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, M.E.X.; Rosa, T.O. [Universidade Federal Fluminense, Instituto de Fisica, Av. Gal. Milton Tavares de Souza, s/n, CEP 24210-346, Niteroi, RJ (Brazil); Luna, R.M. [Universidade Estadual de Londrina, Departamento de Fisica, Caixa Postal 6001, Londrina, Parana (Brazil)

    2014-05-15

    We discuss the homological aspects of the connection between quantum string generating function and the formal power series associated to the dimensions of chains and homologies of suitable Lie algebras. Our analysis can be considered as a new straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)) to the partition functions of Lagrangian branes, refined vertex and open string partition functions, represented by means of formal power series that encode Lie algebra properties. The common feature in our examples lies in the modular properties of the characters of certain representations of the pertinent affine Lie algebras and in the role of Selberg-type spectral functions of a hyperbolic three-geometry associated with q-series in the computation of the string amplitudes. (orig.)

  10. Performance of the ALICE secondary vertex b-tagging algorithm

    CERN Document Server

    INSPIRE-00262232

    2016-11-04

    The identification of jets originating from beauty quarks in heavy-ion collisions is important to study the properties of the hot and dense matter produced in such collisions. A variety of algorithms for b-jet tagging was elaborated at the LHC experiments. They rely on the properties of B hadrons, i.e. their long lifetime, large mass and large multiplicity of decay products. In this work, the b-tagging algorithm based on displaced secondary-vertex topologies is described. We present Monte Carlo based performance studies of the algorithm for charged jets reconstructed with the ALICE tracking system in p-Pb collisions at $\\sqrt{s_\\text{NN}}$ = 5.02 TeV. The tagging efficiency, rejection rate and the correction of the smearing effects of non-ideal detector response are presented.

  11. Quark jets, gluon jets and the three-gluon vertex

    International Nuclear Information System (INIS)

    Fodor, Z.

    1989-11-01

    Using hadronic jets in electron-positron annihilation, we suggest a simple and model-independent method to see the differences between quark and gluon jets. We define and analyse special energy dependent moments of jets and choose those which are the most characteristic to the jet type. The method handles the energy of a jet in an adequate way. We discuss new methods using jet flavor tagging, ordinary flavor tagging of a definite quark jet or discrimination between quark and gluon jets, to test the triple-gluon vertex in electron-positron annihilation. An enriched sample of gluon jets, jets with the smallest energy in four-jet events, as well as a continuous tagging variable are also studied. 21 refs., 6 figs. (Author)

  12. Statistical physics of hard combinatorial optimization: Vertex cover problem

    Science.gov (United States)

    Zhao, Jin-Hua; Zhou, Hai-Jun

    2014-07-01

    Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.

  13. A new vertex detector made of glass capillaries

    International Nuclear Information System (INIS)

    Annis, P.; Bonekaemper, D.; Buontempo, S.; Ereditato, A.; Fabre, J.D.; Fiorillo, G.; Frekers, D.; Frenkel, A.; Galeazzi, F.; Garufi, F.; Goldberg, J.; Golovkin, S.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Liberti, B.; Martellotti, G.; Medvedkov, A.; Mommaert, C.; Penso, G.; Petukhov, Y.; Rondeshagen, D.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Wilquet, G.; Wolff, T.; Wong, H.

    1997-01-01

    We have developed a new detector technique that allows high quality imaging of ionizing particle tracks with very high spatial and time resolution. Central to this technique are liquid-core fibres of about 20 μm diameter read out by an optoelectronic system including a CCD. The fibres act simultaneously as target, detector and light guides. A large-volume prototype, consisting of 5 x 10 5 capillaries of 20 μm diameter and 180 cm length, has been tested in the CERN wide-band neutrino beam. A sample of high-multiplicity neutrino interactions was recorded, demonstrating the imaging quality of this detector. First results from the reconstruction of these events are reported. A track residual of 28 μm and a vertex resolution of 30 μm has been achieved. Future applications of capillary detectors for neutrino and beauty physics are being investigated within the framework of the RD46 collaboration. (orig.)

  14. The development of two ASIC's for a fast silicon strip detector readout system

    International Nuclear Information System (INIS)

    Christain, D.; Haldeman, M.; Yarema, R.; Zimmerman, T.; Newcomer, F.M.; VanBerg, R.

    1989-01-01

    A high speed, low noise readout system for silicon strip detectors is being developed for Fermilab E771, which will begin taking data in 1989. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experimental apparatus consists of an open geometry magnetic spectrometer featuring good muon and electron identification and a 16000 channel silicon microstrip vertex detector. This paper reviews the design and prototyping of two application specific integrated circuits (ASIC's) an amplifier and a discriminator, which are being produced for the silicon strip detector readout system

  15. Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation

    International Nuclear Information System (INIS)

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Tandy, Peter C.

    2007-01-01

    We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light-quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three-gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. Within the current model, the more consistent dressed vertex limits the ladder-rainbow truncation error for vector mesons to be never more than 10% as the current quark mass is varied from the u/d region to the b region

  16. The performance of diphoton primary vertex reconstruction methods in H → γγ+Met channel of ATLAS experiment

    Science.gov (United States)

    Tomiwa, K. G.

    2017-09-01

    The search for new physics in the H → γγ+met relies on how well the missing transverse energy is reconstructed. The Met algorithm used by the ATLAS experiment in turns uses input variables like photon and jets which depend on the reconstruction of the primary vertex. This document presents the performance of di-photon vertex reconstruction algorithms (hardest vertex method and Neural Network method). Comparing the performance of these algorithms for the nominal Standard Model sample and the Beyond Standard Model sample, we see the overall performance of the Neural Network method of primary vertex selection performed better than the Hardest vertex method.

  17. Wrong vertex displacements due to Lee-Wick resonances at LHC

    International Nuclear Information System (INIS)

    Alvarez, E.; Schat, C.; Rold, L. da; Szynkman, A.

    2009-01-01

    We show how a resonance from the recently proposed Lee-Wick Standard Model could lead to wrong vertex displacements at LHCb. We study which could be the possible 'longest lived' Lee-Wick particle that could be created at LHC, and we study its possible decays and detections. We conclude that there is a region in the parameter space which would give wrong vertex displacements as a unique signature of the Lee-Wick Standard Model at LHCb. Further numerical simulation shows that LHC era could explore these wrong vertex displacements through Lee-Wick leptons below 500 GeV. (author)

  18. N-point g-loop vertex for free bosonic theory with vacuum charge Q

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Pezzella, F.; Frau, M.; Hornfeck, K.

    1988-12-01

    Starting from the N-Point Vertex on the sphere and using the sewing procedure we construct the N-Point g-Loop Vertex for a free bosonic theory with vacuum charge Q. We then show that, when this vertex is saturated with N highest weight states, it gives their correlation function on an arbitrary Riemann surface of genus g. We also extend our formalism to the case of a free scalar field compactified on a circle, which is related to the Coulomb gas description of minimal models. (orig.)

  19. arXiv Mapping the material in the LHCb vertex locator using secondary hadronic interactions

    CERN Document Server

    INSPIRE-00160626; Barter, W.; Bay, A.; Bel, L.J.; van Beuzekom, M.; Bogdanova, G.; Borghi, S.; Bowcock, T.J.V.; Buchanan, E.; Buytaert, J.; Carvalho Akiba, K.; Chen, S.; Coco, V.; Collins, P.; Crocombe, A.; Da Cunha Marinho, F.; Dall'Occo, E.; De Capua, S.; Dean, C.T.; Dettori, F.; Dossett, D.; Dreimanis, K.; Dujany, G.; Eklund, L.; Evans, T.; Ferro-Luzzi, M.; Gersabeck, M.; Gershon, T.; Hadavizadeh, T.; Harrison, J.; Hennessy, K.; Hulsbergen, W.; Hutchcroft, D.; Ilten, P.; Jans, E.; John, M.; Kopciewicz, P.; Koppenburg, P.; Lafferty, G.; Latham, T.; Leflat, A.; Majewski, M.W.; McNulty, R.; Mylroie-Smith, J.; Oblakowska-Mucha, A.; Parkes, C.; Pearce, A.; Poluektov, A.; Pritchard, A.; Qian, W.; Redford, S.; Richards, S.; Rinnert, K.; Rodrigues, E.; Sarpis, G.; Schiller, M.; Schindler, H.; Smith, M.; Smith, N.A.; Szumlak, T.; Velthuis, J.J.; Volkov, V.; Wallace, C.; Wark, H.M.; Webber, A.; Williams, M.R.J.; Williams, M.

    2018-06-13

    Precise knowledge of the location of the material in the LHCb vertex locator (VELO) is essential to reducing background in searches for long-lived exotic particles, and in identifying jets that originate from beauty and charm quarks. Secondary interactions of hadrons produced in beam-gas collisions are used to map the location of material in the VELO. Using this material map, along with properties of a reconstructed secondary vertex and its constituent tracks, a $p$-value can be assigned to the hypothesis that the secondary vertex originates from a material interaction. A validation of this procedure is presented using photon conversions to dimuons.

  20. On the Relation between Edge and Vertex Modelling in Shape Analysis

    DEFF Research Database (Denmark)

    Hobolth, Asger; Kent, John Thomas; Dryden, Ian L.

    2002-01-01

    Objects in the plane with no obvious landmarks can be described by either vertex transformation vectors or edge transformation vectors. In this paper we provide the relation between the two transformation vectors. Grenander & Miller (1994) use a multivariate normal distribution with a block...... circulant covariance matrix to model the edge transformation vector. This type of model is also feasible for the vertex transformation vector and in certain cases the free parameters of the two models match up in a simple way. A vertex model and an edge model are applied to a data set of sand particles...

  1. Developments in Silicon Detectors and their impact on LHCb Physics Measurements

    CERN Document Server

    Gouldwell-Bates, A

    2005-01-01

    The LHCb experiment is a high energy physics detector at the Large Hadron Collider (LHC) which will probe the current understanding of the Standard Model through precise measurements of CP violation and rare decays. The LHCb detector heavily depends on the silicon vertexing (VELO) sub-detector for excellent vertex and proper decay time resolutions. The VELO detector sits at a position of only 7 mm from the LHC proton beams. However, the proximity of the silicon sensors to the proton beams results in the detectors suffering radiation damage. Radiation damage results in three changes in the macroscopic properties of the silicon detector: an increase of the leakage current, a decrease in the charge collection efficiency, and changes in the operation voltage required to fully deplete the silicon detector of the free charge carriers. Due to this radiation damage, it is expected that a replacement or upgrade of the LHCb vertex detector will be required by 2010, only 3 years after the turn-on of the LHC. This thesis...

  2. Pion production and absorption in nuclear reactions. I. The vertex function

    International Nuclear Information System (INIS)

    Nutt, W.T.; Shakin, C.M.

    1977-01-01

    We have performed a model calculation of the pion-nucleon vertex function for the case in which one nucleon is allowed to go far off its mass shell. We discuss the relevance of this vertex function for the calculation of pion production and absorption in nuclear reactions, such as (π + ,p), (p,π + ), and for the pionic disintegration of the deuteron. The model used is based upon an approximation to an exact equation for the vertex function derived from a field-theoretic model with pseudoscalar coupling. Our calculations indicate a strong dependence of the vertex function on the invariant mass of the off-shell nucleon. The results are dominated by the presence of the 1470 MeV, P 11 resonance

  3. Transport coefficients of Dirac ferromagnet: Effects of vertex corrections

    Science.gov (United States)

    Fujimoto, Junji

    2018-03-01

    As a strongly spin-orbit-coupled metallic model with ferromagnetism, we have considered an extended Stoner model to the relativistic regime, named Dirac ferromagnet in three dimensions. In a previous paper [J. Fujimoto and H. Kohno, Phys. Rev. B 90, 214418 (2014), 10.1103/PhysRevB.90.214418], we studied the transport properties giving rise to the anisotropic magnetoresistance (AMR) and the anomalous Hall effect (AHE) with the impurity potential being taken into account only as the self-energy. The effects of the vertex corrections (VCs) to AMR and AHE are reported in this paper. AMR is found not to change quantitatively when the VCs are considered, although the transport lifetime is different from the one-electron lifetime and the charge current includes additional contributions from the correlation with spin currents. The side-jump and the skew-scattering contributions to AHE are also calculated. The skew-scattering contribution is dominant in the clean case as can be seen in the spin Hall effect in the nonmagnetic Dirac electron system.

  4. Statistical mechanics of the vertex-cover problem

    Science.gov (United States)

    Hartmann, Alexander K.; Weigt, Martin

    2003-10-01

    We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs.

  5. Statistical mechanics of the vertex-cover problem

    International Nuclear Information System (INIS)

    Hartmann, Alexander K; Weigt, Martin

    2003-01-01

    We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs

  6. Asymptotic normalization coefficients, nuclear vertex constants and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Yarmukhamedov, R.; Artemov, S.V.; Igamov, S.B.; Burtebaev, N.; Peterson, R.J.

    2007-01-01

    Full text: We will review the results of a comprehensive analysis of the experimental astrophysical S- factors S(E) for the t(α, γ ) 7 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 B, 12 C(p , γ) 13 N and 13 C(p,γ) 14 N reactions at extremely low energies, performed within a three-sided collaboration (Uzbekistan-Kazakhstan-USA). In the analysis, the new experimental data for the 12 C(p, γ) 13 N reaction are also included, as measured with the accelerator UKP-2-1 at the Institute of Nuclear Physics in Kazakhstan. The analysis is carried out within the framework of a new two-body potential approach and the R-matrix method, taking into account information about the asymptotic normalization coefficient (ANC) (or the respective nuclear vertex constant for virtual decay of the residual nuclei into two fragments of the initial states of the aforesaid reactions, which belong to the fundamental nuclear constants). Nowadays ANC's are obtained from analysis of peripheral one nucleon transfer reactions by method combining dispersion theory and DWBA (CM). It is shown that ANC can be also reliably obtained from analysis of proton capture reactions at astrophysical energies by new modified two-body potential method where the CM is used. A comparative analysis of the results obtained by different authors in the framework of different methods is also done

  7. Jet Vertex Charge Reconstruction Poster for LHCP 2015

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    B-jet reconstruction algorithms used so far in ATLAS data analyses do not provide the b-jet charge information, which could potentially play a major role in reducing the combinatorial backgrounds in final states with multiple b-jets. This missing point is addressed by the newly developed JetVertexCharge (JVC) algorithm presented in this poster. Inspired by the decay chain of B-hadrons, the JVC algorithm provides a multi-variate b-jet charge estimate relying on tracks, displaced vertices and muons contained in the jet. In this algorithm, the established concept of estimating jet charge as a transverse momentum weighted sum of track charges is used to reconstruct the charge of the jet as whole, as well as the charges of up to two displaced vertices in the jet, using the corresponding sets of associated tracks. The charge of the associated muon is interpreted as the same-sign or opposite-sign relative to the b-jet charge, according to its transverse momentum and geometrical match to vertices. Jets are divided in...

  8. A dynamic cellular vertex model of growing epithelial tissues

    Science.gov (United States)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  9. On the complexity of the balanced vertex ordering problem

    Directory of Open Access Journals (Sweden)

    Jan Kara

    2007-01-01

    Full Text Available We consider the problem of finding a balanced ordering of the vertices of a graph. More precisely, we want to minimise the sum, taken over all vertices v, of the difference between the number of neighbours to the left and right of v. This problem, which has applications in graph drawing, was recently introduced by Biedl et al. [Discrete Applied Math. 148:27--48, 2005]. They proved that the problem is solvable in polynomial time for graphs with maximum degree three, but NP-hard for graphs with maximum degree six. One of our main results is to close the gap in these results, by proving NP-hardness for graphs with maximum degree four. Furthermore, we prove that the problem remains NP-hard for planar graphs with maximum degree four and for 5-regular graphs. On the other hand, we introduce a polynomial time algorithm that determines whetherthere is a vertex ordering with total imbalance smaller than a fixed constant, and a polynomial time algorithm that determines whether a given multigraph with even degrees has an `almost balanced' ordering.

  10. Persistent magnetic vortex flow at a supergranular vertex

    Science.gov (United States)

    Requerey, Iker S.; Cobo, Basilio Ruiz; Gošić, Milan; Bellot Rubio, Luis R.

    2018-03-01

    Context. Photospheric vortex flows are thought to play a key role in the evolution of magnetic fields. Recent studies show that these swirling motions are ubiquitous in the solar surface convection and occur in a wide range of temporal and spatial scales. Their interplay with magnetic fields is poorly characterized, however. Aims: We study the relation between a persistent photospheric vortex flow and the evolution of a network magnetic element at a supergranular vertex. Methods: We used long-duration sequences of continuum intensity images acquired with Hinode and the local correlation-tracking method to derive the horizontal photospheric flows. Supergranular cells are detected as large-scale divergence structures in the flow maps. At their vertices, and cospatial with network magnetic elements, the velocity flows converge on a central point. Results: One of these converging flows is observed as a vortex during the whole 24 h time series. It consists of three consecutive vortices that appear nearly at the same location. At their core, a network magnetic element is also detected. Its evolution is strongly correlated to that of the vortices. The magnetic feature is concentrated and evacuated when it is caught by the vortices and is weakened and fragmented after the whirls disappear. Conclusions: This evolutionary behavior supports the picture presented previously, where a small flux tube becomes stable when it is surrounded by a vortex flow. A movie attached to Fig. 2 is available at http://https://www.aanda.org

  11. From vertex detectors to inner trackers with CMOS pixel sensors

    CERN Document Server

    Besson, A.

    2017-01-01

    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.

  12. Readout and trigger electronics for the TPC vertex chamber

    International Nuclear Information System (INIS)

    Ronan, M.T.; Jared, R.C.; McGathen, T.K.; Eisner, A.M.; Broeder, W.J.; Godfrey, G.L.

    1987-10-01

    The introduction of the vertex chamber required the addition of new front-end electronics and a new 1024-channel, high-accuracy TDC system. The preamplifier/discriminator should be capable of triggering on the first electrons and the time digitzer should preserve the measurement resolution. For the TDC's, in order to maintain compatibility with the existing TPC readout system, an upgrade of a previous inner drift chamber digitizer system has been chosen. Tests of the accuracy and stability of the original design indicated that the new design specifications would be met. The TPC detector requires a fast pretrigger to turn on its gating grid within 500 ns of the e/sup +/e/sup -/ beam crossing time, to minimize the loss of ionization information. A pretrigger based on the Straw Chamber signals, operating at a rate of about 2 K/sec, will be used for charged particle final states. In addition, in order to reject low mass Two-Photon events at the final trigger level, an accurate transverse momentum cutoff will be made by the Straw Chamber trigger logic. In this paper, we describe the readout and trigger electronics systems which have been built to satisfy the above requirements. 5 refs., 8 figs

  13. Charge Collection Efficiency Simulations of Irradiated Silicon Strip Detectors

    CERN Document Server

    Peltola, T.

    2014-01-01

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. Thus, to upgrade the tracker to required performance level, comprehensive measurements and simulations studies have already been carried out. Essential information of the performance of an irradiated silicon detector is obtained by monitoring its charge collection efficiency (CCE). From the evolution of CCE with fluence, it is possible to directly observe the effect of the radiation induced defects to the ability of the detector to collect charge carriers generated by traversing minimum ionizing particles (mip). In this paper the numerically simulated CCE and CCE loss between the strips of irradiated silicon strip detectors are presented. The simulations based on Synopsys Sentaurus TCAD framework were performed ...

  14. NLO Vertex for a Forward Jet plus a Rapidity Gap at High Energies

    CERN Document Server

    Hentschinski, Martin; Murdaca, Beatrice; Vera, Agustín Sabio

    2015-01-01

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov's effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green's function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).

  15. What can we learn from sum rules for vertex functions in QCD

    International Nuclear Information System (INIS)

    Craigie, N.S.; Stern, J.

    1982-04-01

    We demonstrate that the light cone sum rules for vertex functions based on the operator product expansion and QCD perturbation theory lead to interesting relationships between various non-perturbative parameters associated with hadronic bound states (e.g. vertex couplings and decay constants). We also show that such sum rules provide a valuable means of estimating the matrix elements of the higher spin operators in the meson wave function. (author)

  16. Pion-nucleon vertex function with an off-shell nucleon

    International Nuclear Information System (INIS)

    Nutt, W.T.; Shakin, C.M.

    1977-01-01

    A model calculation for the π-N vertex function is presented in the case in which there is a single off-mass-shell nucleon and a (nearly) on-mass-shell pion. Very strong effects due to the P 11 resonance at 1470 MeV are found. A simple parametrization of the vertex function is prvided in the case that at least one nucleon is on its mass shell. (Auth.)

  17. A precise measurement of the average b hadron lifetime

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, P; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    An improved measurement of the average b hadron lifetime is performed using a sample of 1.5 million hadronic Z decays, collected during the 1991-1993 runs of ALEPH, with the silicon vertex detector fully operational. This uses the three-dimensional impact parameter distribution of lepton tracks coming from semileptonic b decays and yields an average b hadron lifetime of 1.533 \\pm 0.013 \\pm 0.022 ps.

  18. Studies of the Triple Pomeron Vertex in perturbative QCD and its applications in phenomenology

    International Nuclear Information System (INIS)

    Kutak, K.

    2006-12-01

    We study the properties of the Triple Pomeron Vertex in the perturbative QCD using the twist expansion method. Such analysis allows us to find the momenta configurations preferred by the vertex. When the momentum transfer is zero, the dominant contribution in the limit when N c →∞ comes from anticollinear pole. This is in agreement with result obtained without expanding, but by direct averaging of the Triple Pomeron Vertex over angles. Resulting theta functions show that the anticollinear configuration is optimal for the vertex. In the finite N c case the collinear term also contributes. Using the Triple Pomeron Vertex we construct a pomeron loop and we also consider four gluon propagation between two Triple Pomeron Vertices. We apply the Triple Pomeron Vertex to construct the Hamiltonian from which we derive the Balitsky-Kovchegov equation for an unintegrated gluon density. In order to apply this equation to phenomenology, we apply the Kwiecinski-Martin-Stasto model for higher order corrections to a linear part of the Balitsky-Kovchegov equation. We introduce the definition of the saturation scale which reflects properties of this equation. Finally, we use it for computation of observables, such as the F 2 structure function and diffractive Higgs boson production cross section. The impact of screening corrections on F 2 is negligible, but those effects turn out to be significant for diffractive Higgs boson production at LHC

  19. Studies of the Triple PomeronVertex in perturbative QCD and its applications in phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Kutak, K.

    2006-12-15

    We study the properties of the Triple Pomeron Vertex in the perturbative QCD using the twist expansion method. Such analysis allows us to find the momenta configurations preferred by the vertex. When the momentum transfer is zero, the dominant contribution in the limit when N{sub c}{yields}{infinity} comes from anticollinear pole. This is in agreement with result obtained without expanding, but by direct averaging of the Triple Pomeron Vertex over angles. Resulting theta functions show that the anticollinear configuration is optimal for the vertex. In the finite N{sub c} case the collinear term also contributes. Using the Triple Pomeron Vertex we construct a pomeron loop and we also consider four gluon propagation between two Triple Pomeron Vertices. We apply the Triple Pomeron Vertex to construct the Hamiltonian from which we derive the Balitsky-Kovchegov equation for an unintegrated gluon density. In order to apply this equation to phenomenology, we apply the Kwiecinski-Martin-Stasto model for higher order corrections to a linear part of the Balitsky-Kovchegov equation. We introduce the definition of the saturation scale which reflects properties of this equation. Finally, we use it for computation of observables, such as the F{sub 2} structure function and diffractive Higgs boson production cross section. The impact of screening corrections on F{sub 2} is negligible, but those effects turn out to be significant for diffractive Higgs boson production at LHC.

  20. Vertex dynamics in multi-soliton solutions of Kadomtsev–Petviashvili II equation

    International Nuclear Information System (INIS)

    Zarmi, Yair

    2014-01-01

    A functional of the solution of the Kadomtsev–Petviashvili II equation maps multi-soliton solutions onto systems of vertices—structures that are localized around soliton junctions. A solution with one junction is mapped onto a single vertex, which emulates a free, spatially extended, particle. In solutions with several junctions, each junction is mapped onto a vertex. Moving in the x–y plane, the vertices collide, coalesce upon collision and then split up. When well separated, they emulate free particles. Multi-soliton solutions, whose structure does not change under space–time inversion as |t| → ∞, are mapped onto vertex systems that undergo elastic collisions. Solutions, whose structure does change, are mapped onto systems that undergo inelastic collisions. The inelastic vertex collisions generated from the infinite family of (M,1) solutions (M external solitons, (M − 2) Y-shaped soliton junctions, M ⩾ 4) play a unique role: the only definition of vertex mass consistent with momentum conservation in these collisions is the spatial integral of the vertex profile. This definition ensures, in addition, that, in these collisions, the total mass and kinetic energy due to the motion in the y-direction are conserved. In general, the kinetic energy due to the motion in the x-direction is not conserved in these collisions. (paper)