WorldWideScience

Sample records for alentejo soils surface

  1. Degradation of metalaxyl and folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils

    OpenAIRE

    Martins, M. Rosário; Pereira, Pablo; Lima, Nelson; Cruz-Morais, Júlio

    2013-01-01

    Degradation of xenobiotics by microbial populations is a potential method to enhance the effectiveness of ex situ or in situ bioremediation. The purpose of this study was to evaluate the impact of repeated metalaxyl and folpet treatments on soil microbial communities and to select soil fungal strains able to degrade these fungicides. Results showed enhanced degradation of metalaxyl and folpet in vineyards soils submitted to repeated treatments with these fungicides. Indeed, the greatest degra...

  2. Degradation of metalaxyl and folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils.

    Science.gov (United States)

    Martins, M Rosário; Pereira, Pablo; Lima, Nelson; Cruz-Morais, Júlio

    2013-07-01

    Degradation of xenobiotics by microbial populations is a potential method to enhance the effectiveness of ex situ or in situ bioremediation. The purpose of this study was to evaluate the impact of repeated metalaxyl and folpet treatments on soil microbial communities and to select soil fungal strains able to degrade these fungicides. Results showed enhanced degradation of metalaxyl and folpet in vineyards soils submitted to repeated treatments with these fungicides. Indeed, the greatest degradation ability was observed in vineyard soil samples submitted to greater numbers of treatments. Respiration activities, as determined in the presence of selective antibiotics in soil suspensions amended with metalaxyl and folpet, showed that the fungal population was the microbiota community most active in the degradation process. Batch cultures performed with a progressive increase of fungicide concentrations allowed the selection of five tolerant fungal strains: Penicillium sp. 1 and Penicillium sp. 2, mycelia sterila 1 and 3, and Rhizopus stolonifer. Among these strains, mycelium sterila 3 and R. stolonifer presented only in vineyard soils treated with repeated application of these fungicides and showed tolerance >1,000 mg l(-1) against commercial formulations of metalaxyl (10 %) plus folpet (40 %). Using specific methods for inducing sporulation, mycelium sterila 3 was identified as Gongronella sp. Because this fungus is rare, it was compared using csM13-polymerase chain reaction (PCR) with the two known species, Gongronella butleri and G. lacrispora. The high tolerance to metalaxyl and folpet shown by Gongronella sp. and R. stolonifer might be correlated with their degradation ability. Our results point out that selected strains have potential for the bioremediation of metalaxyl and folpet in polluted soil sites. PMID:23430293

  3. Arte Rupestre no Alentejo Central: o caso de Arraiolos

    OpenAIRE

    Rocha, Leonor

    2015-01-01

    The rock art of Central Alentejo known became internationally in the early twentieth century, with the work carried out in the Cities of Mora and Arraiolos, by V. Correia (Correia 1921). During the work excavation that was occurring in Pavia, V. Correia made some archaeological sites identification work, including a set of rock art outdoors, municipality of Arraiolos - two granite outcrops, with engravings (essentially anthropomorphic and cruciform) on vertical surfaces. The work carrie...

  4. Survey of veterinary etnobotany in Alentejo region

    OpenAIRE

    Farinha, Noémia; Póvoa, Orlanda

    2012-01-01

    A utilização tradicional de plantas para o tratamento de afecções animais é importante pelas suas potencialidades de utilização em pastagens medicinais, no desenvolvimento potencial de novas formulações farmacêuticas veterinárias para agricultura biológica e na preservação e valorização do conhecimento tradicional do Alentejo. Foi efetuado um levantamento etnobotânico para aplicação no tratamento de animais, na região alentejana, tomando como base 56 entrevistas semi-estruturadas realizada...

  5. Herbs and spices in traditional recipes of Alentejo (Portugal)

    OpenAIRE

    A.S. Dias; Dias, L. S.

    2006-01-01

    Alentejo, representing about 30% of the area and 5% of the population of Portugal, is a semi-arid region of undulated plains with a Mediterranean climate softened by the Atlantic, with mild winters but hot and dry summers. With an old history of scarcity and pauperism, it shows very particular cultural traits, including a unique culinary tradition, with a high use of wild plants, herbs, and bread-based dishes. An inventory of traditional recipes of Alentejo was built from various sources, ...

  6. Impacto da aplicação de lama residual urbana e de fertilizan­tes minerais em solos sob pastagem no Alentejo Impact of sewage sludge and mineral fertilizers application in soils un­der pasture from the Alentejo region

    Directory of Open Access Journals (Sweden)

    M.G. Serrão

    2010-01-01

    ­ing+inorganic fertilisers in Herdade da Criméia (Ferric Luvisols. The OM and available P contents were the chemical properties that significantly in­creased (P ≤ 5% in the soil surface layer of both field experiments. The SS application also caused the highest significant increases in soil total N and exchangeable Mg con­tents in Herdade do Revez. Liming in­creased soil pH and exchangeable Mg, in Herdade da Criméia. The SS did not pollute the soils with heavy metals. The bacterial populations of faecal origin increased im­mediately after the SS application, but pro­gressively decreased as time went by, reach­ing values similar to the controls.

  7. From production to consumption countryside: can the landscape be the new binding of a reshaped community? Example from Alentejo, Southern Portugal

    OpenAIRE

    Pinto-Correia, Teresa; Gonzalez, Carla

    2012-01-01

    The Alentejo landscape is dominated by large scale latifundia managed in an extensive silvo-pastoral system. But in the surrounding area to all small towns, small scale farming dominates, with olive groves combined with pastures, fruit orchards, and vegetable gardens, in the most fertile and water abundant soils. These small scale farm units have increasingly lost their importance as production units over the last decades, but farming has in many of them been maintained, by the ageing far...

  8. Estimation of Surface Soil Moisture Using Fractal

    Science.gov (United States)

    Chen, Yen Chang; He, Chun Hsuan

    2016-04-01

    This study establishes the relationship between surface soil moisture and fractal dimension. The surface soil moisture is one of important factors in the hydrological cycle of surface evaporation. It could be used in many fields, such as reservoir management, early drought warning systems, irrigation scheduling and management, and crop yield estimations. Soil surface cracks due to dryness can be used to describe drought conditions. Soil cracking phenomenon and moisture have a certain relationship, thus this study makes used the fractal theory to interpret the soil moisture represented by soil cracks. The fractal dimension of surface soil cracking is a measure of the surface soil moisture. Therefore fractal dimensions can also be used to indicate how dry of the surface soil is. This study used the sediment in the Shimen Reservoir to establish the fractal dimension and soil moisture relation. The soil cracking is created under the control of temperature and thickness of surface soil layers. The results show the increase in fractal dimensions is accompanied by a decreases in surface soil moisture. However the fractal dimensions will approach a constant even the soil moisture continually decreases. The sigmoid function is used to fit the relation of fractal dimensions and surface soil moistures. The proposed method can be successfully applied to estimate surface soil moisture. Only a photo taken from the field is needed and is sufficient to provide the fractal dimension. Consequently, the surface soil moisture can be estimated quickly and accurately.

  9. Less or More Intensive Crop Arable Systems of Alentejo Region of Portugal: what is the sustainable option?

    Directory of Open Access Journals (Sweden)

    Carlos Marques

    2015-03-01

    Full Text Available Competitiveness of traditional arable crop system of Alentejo region of Portugal has been questioned for long. Discussion and research on the sustainability of the system has evolved on two contrasted alternative options for production technologies to traditional system. On the one hand reduced and no tillage systems aim to more extensive technical operations reducing costs and maintaining production, or even to increase it in the long run as soil fertility improves. On the other hand, input intensification using irrigation, as a complement in the last stage of crop cycle or always when needed, aimed to increase system production levels. To evaluate competitiveness and sustainability of arable crop system we evaluated traditional rotation technology and alternative no tillage and irrigation systems and analyze their farm economic results as well as their energy efficiency and environmental impacts. The analysis of the impact of no tillage and irrigation on arable land production system showed that both alternatives contributed to cost savings and profit earnings, energy savings and reduced GHG emissions, increasing physical and economic factor efficiency. Research and technological development of both options are worthwhile to promote competitiveness and sustainability of arable crop production systems of the Alentejo region in Portugal.

  10. Surface modeling of soil antibiotics.

    Science.gov (United States)

    Shi, Wen-jiao; Yue, Tian-xiang; Du, Zheng-ping; Wang, Zong; Li, Xue-wen

    2016-02-01

    Large numbers of livestock and poultry feces are continuously applied into soils in intensive vegetable cultivation areas, and then some veterinary antibiotics are persistent existed in soils and cause health risk. For the spatial heterogeneity of antibiotic residues, developing a suitable technique to interpolate soil antibiotic residues is still a challenge. In this study, we developed an effective interpolator, high accuracy surface modeling (HASM) combined vegetable types, to predict the spatial patterns of soil antibiotics, using 100 surface soil samples collected from an intensive vegetable cultivation area located in east of China, and the fluoroquinolones (FQs), including ciprofloxacin (CFX), enrofloxacin (EFX) and norfloxacin (NFX), were analyzed as the target antibiotics. The results show that vegetable type is an effective factor to be combined to improve the interpolator performance. HASM achieves less mean absolute errors (MAEs) and root mean square errors (RMSEs) for total FQs (NFX+CFX+EFX), NFX, CFX and EFX than kriging with external drift (KED), stratified kriging (StK), ordinary kriging (OK) and inverse distance weighting (IDW). The MAE of HASM for FQs is 55.1 μg/kg, and the MAEs of KED, StK, OK and IDW are 99.0 μg/kg, 102.8 μg/kg, 106.3 μg/kg and 108.7 μg/kg, respectively. Further, RMSE simulated by HASM for FQs (CFX, EFX and NFX) are 106.2 μg/kg (88.6 μg/kg, 20.4 μg/kg and 39.2 μg/kg), and less 30% (27%, 22% and 36%), 33% (27%, 27% and 43%), 38% (34%, 23% and 41%) and 42% (32%, 35% and 51%) than the ones by KED, StK, OK and IDW, respectively. HASM also provides better maps with more details and more consistent maximum and minimum values of soil antibiotics compared with the measured data. The better performance can be concluded that HASM takes the vegetable type information as global approximate information, and takes local sampling data as its optimum control constraints. PMID:26613514

  11. Produção de cebola de dias curtos no Alentejo. Influência da adubação localizada Short-day onion bulb yield in Alentejo. Influence of fertilizer band placement

    Directory of Open Access Journals (Sweden)

    Rui Manuel Almeida Machado

    2008-12-01

    Full Text Available As baixas temperaturas e o fácil encharcamento da maioria dos solos do Alentejo constituem uma restrição à produção de hortícolas ao ar livre, no Outono-Inverno. A cebola de dias curtos pode constituir uma opção pela sua capacidade para superar estes constrangimentos. Assim, este trabalho teve como objectivo estudar o comportamento de duas cultivares de cebola de dias curtos, plantadas no Outono e a influência da localização da adubação aquando da plantação. O ensaio decorreu na herdade experimental da Mitra da Universidade de Évora e os tratamentos em estudo foram: a cultivar de cebola de dias curtos (“Spring Star” e “Mineutaka” e o método de aplicação do adubo à plantação (distribuição a lanço e localização do adubo numa faixa a 10 cm ± 2 de profundidade, sob a linha de cultura. A adubação localizada não afectou a densidade radical (cm cm-3 sob a linha de cultura, nem a produção comercial de bolbos a qual foi respectivamente para a “Spring Star” e “Mineutaka” de 8,3 e 9,0 kg m-2. Visto as cultivares estudadas terem apresentado resistência ao excesso de água e às baixas temperaturas que ocorreram durante o ciclo, com produções consideráveis, a cebola de dias curtos apresenta-se como uma cultura com elevado potencial agronómico para o Alentejo. Adicionalmente, dada a época em que é realizada a cultura a água para a rega não será um factor limitante.In Alentejo region low temperatures and soil waterlogging during Autumn- Winter season are limiting factors for vegetable production under field conditions. Short -day onions can be an option to surpass these restrictions. The aim of the present work was to evaluate the effect of short - day onion cultivars and band placement of the fertilizer on onion production in Alentejo, planted during the autumn. The experiment was carried out at Mitra Research Station of the University of Évora and the treatments were: short - day onion cultivars (

  12. Soil Hydrophobicity in Andisol under Soil Surface Burning

    Science.gov (United States)

    Obuchi, Atsuko; Mizoguchi, Masaru; Nishimura, Taku; Imoto, Hiromi; Miyazaki, Tsuyoshi

    Soil is known to exhibit hydrophobic properties after a forest fire. Experiments conducted by DeBano et al., (1976) showed that the organic compounds in the soil become volatized under high-temperatures, move downward along the soil temperature gradient, and form a hydrophobic layer deep within the soil profile. However, less is known about effects of oxygen atmosphere on morphological changes of organic matter in soil. In this study, we sought to clarify the increase in soil hydrophobicity as well as the changes in carbon and nitrogen content in response to heating of the ground surface in the field and both column and muffle furnace heating in the laboratory. In the muffle furnace burning, soil samples heated under oxygen-deprived conditions exhibited similar carbon and nitrogen dynamics and increased hydrophobicity with temperatures those observed in the field and column experiments. Soil samples under oxygen-deprived condition showed hydrophobicity and some carbon content by heating with 300°C and higher, while almost no carbon remained after heating with 400°C under oxygen available condition. Soil C/N ratio increased by heating with higher temperature under oxygen-deprived condition. Results suggested limited supply of oxygen might have an effect to produce soil hydrophobicity under soil surface burning.

  13. SOIL CHEMISTRY AND MINERALOGY: SURFACE COMPLEXATION MODELING

    Science.gov (United States)

    Ion adsorption in soils has been described using both empirical and chemical models. Empirical adsorption isotherm equations will be presented and their limitations discussed. Chemical surface complexation models and their applications to soils will be introduced. Advantages and limitations of su...

  14. HONO fluxes from soil surfaces: an overview

    Science.gov (United States)

    Wu, Dianming; Sörgel, Matthias; Tamm, Alexandra; Ruckteschler, Nina; Rodriguez-Caballero, Emilio; Cheng, Yafang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Gaseous nitrous acid (HONO) contributes up to 80% of atmospheric hydroxyl (OH) radicals and is also linked to health risks through reactions with tobacco smoke forming carcinogens. Field and modeling results suggested a large unknown HONO source in the troposphere during daytime. By measuring near ground HONO mixing ratio, up to 30% of HONO can be released from forest, rural and urban ground as well as snow surfaces. This source has been proposed to heterogeneous reactions of nitrogen dioxide (NO2) on humic acid surfaces or nitric acid photolysis. Laboratory studies showed that HONO emissions from bulk soil samples can reach 258 ng m‑2 s‑1 (in term of nitrogen), which corresponding to 1.1 × 1012 molecules cm‑2 s‑1and ˜ 100 times higher than most of the field studies, as measured by a dynamic chamber system. The potential mechanisms for soil HONO emissions include chemical equilibrium of acid-base reaction and gas-liquid partitioning between soil nitrite and HONO, but the positive correlation of HONO fluxes with pH (largest at neutral and slightly alkaline) points to the dominance of the formation process by ammonia-oxidizing bacteria (AOB). In general soil surface acidity, nitrite concentration and abundance of ammonia-oxidizing bacteria mainly regulate the HONO release from soil. A recent study showed that biological soil crusts in drylands can also emit large quantities of HONO and NO, corresponding to ˜20% of global nitrogen oxide emissions from soils under natural vegetation. Due to large concentrations of microorganisms in biological soil crusts, particularly high HONO and NO emissions were measured after wetting events. Considering large areas of arid and arable lands as well as peatlands, up to 70% of global soils are able to emitting HONO. However, the discrepancy between large soil HONO emissions measured in lab and low contributions of HONO flux from ground surfaces in field as well as the role of microorganisms should be further investigated.

  15. Stochastic modelling and probability risk maps of nitrate pollution in the vicinities of Beja, Alentejo, south Portugal

    OpenAIRE

    Paralta, Eduardo; Ribeiro, Luís F.

    2001-01-01

    The groundwater resources study of the Alentejo region (CCR Alentejo, 1996-1999) was carried out in several places namely Beja's Gabbros Aquifer to assess water quality for public supply and agriculture. A geostatistical study of nitrate diffuse pollution in the vicinities of Beja based on probabilistical technics was developed in the context of a MSc Thesis in co-operation with CVRM - Geosystems Center. Several basic statistics between July 1997 and July 2000 were computed. Indicator variogr...

  16. Soil moisture sensor calibration for organic soil surface layers

    Directory of Open Access Journals (Sweden)

    S. Bircher

    2015-12-01

    Full Text Available This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankyl

  17. Soil moisture sensor calibration for organic soil surface layers

    Science.gov (United States)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  18. Intersecting-surfaces approach to soil structure

    Directory of Open Access Journals (Sweden)

    V.Y. Chertkov

    2005-06-01

    Full Text Available The large number of intersecting surfaces in a volume divides the latter into small sub-volumes. Each of the sub-volumes is outlined or nearly outlined by parts of the intersecting surfaces. A number of simple geometrical conditions to be imposed on the intersecting surfaces determine a certain size distribution of the outlined sub-volumes. The approach based on these prerequisites was previously successfully applied to the multiple cracking and fragmentation of rocks, naturally and by blasting, as well as to soil fragmentation by shrinkage cracks. In both cases the intersecting surfaces are cracks, and sub-volumes are rock or soil fragments. The first application of the approach to the pore structure of soils was related to modelling the clay matrix pores and their size distribution. In this case the plate-like clay particles play the part of the intersecting surfaces, and the pore volumes play the part of the sub-volumes. The approach leads to the scale-invariant fragment- and pore-size distributions and permits one to take into account the superposition of the intersecting surfaces of a different physical nature and scale, the connectedness and tortuosity of the intersecting surfaces, the shape characteristics of sub-volumes, and the swelling-shrinkage of a system of clay particles. In general, soils contain, besides clay matrix pores, such sub-volumes as silt-sand grains and different types of clay aggregates and pores. The boundaries of the silt-sand grains and aggregates, along with cracks and clay particles, play the part of the intersecting surfaces. The objective of this work is to generalize the approach to model the different size distributions in sand and aggregated soil (in the last case we only consider the interaggregate, ie structural porosity. This development follows a brief summary of the approach including its previous applications as well as a consideration of the differences between such inter- secting surfaces as cracks

  19. Representações do suicídio no Alentejo

    OpenAIRE

    Costa, Joana Patrícia Santo

    2013-01-01

    Estima-se que em Portugal ocorram aproximadamente mil suicídios por ano, sendo que o Alentejo é a região do país onde as taxas de suicídio são as mais elevadas. Ao ser importante conhecer o contexto social e cultural onde o fenómeno ocorre e adquire significado, este estudo procura apreender os campos semânticos associados ao suicídio no Alentejo e compreender se a perceção das pessoas é modelada pelo nível de escolaridade, situação profissional, religiosidade e/ou contacto com alguém que ten...

  20. EDUCATION AND TRAINING OF ADULTS IN ALENTEJO PORTUGAL: PAST AND PRESENT OF AN UNCERTAIN FUTURE

    OpenAIRE

    Nico, Bravo; Nico, Lurdes

    2013-01-01

    The History of Education and Training of Adults in Alentejo / Portugal, is not recent. We can go back to the 70's, even before the Revolution of April 25, 1974. At the time, approximately 30% of the Portuguese population could neither read nor write. After 1974 the new political regime created a government office (Directorate General of Permanent Education / DGEP) with the responsibility of defining and implementing actions of adult education. Some universities, at the time, ...

  1. Besnoitia besnoiti impact on fertility of cattle exploited in mediterranean pastures (Alentejo).

    OpenAIRE

    Cortes, Helder Carola Espiguinha; J. Chagas e Silva; M.C. Baptista; Pereira, R. M.; Leitão, A.; HORTA, A.E.M.; Vasques, M.I.; J.P.Barbas; Marques, C.C.

    2006-01-01

    Besnoitia besnoiti impact on fertility of cattle exploited in Mediterranean pastures (Alentejo) Summary Besnoitia besnoiti is a bovine parasite endemic in many tropical and subtropical areas whose prevalence in the Mediterranean countries such as Portugal seems to be increasing. Most infections are mild or subclinical, characterized by the formation of numerous cutaneous and sub-cutaneous microcysts, lowering the quality of skins for the leather industry. Male sterility or impaired fer...

  2. Relationship Between Biogenic Amines and Free Amino Acid Contents of Winesand Musts from Alentejo (Portugal)

    OpenAIRE

    Herbert, Paulo; Cabrita, Maria Joao; Ratola, Nuno; Laureano, Olga; Alves, Arminda

    2006-01-01

    The concentration of biogenic amines and free amino acids was studied in 102 Portuguese wines and 18 musts from Alentejo demarcated (D.O.C.) regions. Most wines were commercial, except for 38 monovarietals obtained by micro vinification. Musts from the varieties used to produce the latter wines were also studied. Both biogenic amines and free amino acids were analyzed by HPLC using fluorescence detection for their o-phthalaldehyde/fluorenylmethyl chloroformate (OPA/FMOC) deriva...

  3. Effect of surface conditions on runoff and soil loss for chernozem soil

    Directory of Open Access Journals (Sweden)

    Dębicki R.

    2001-03-01

    Full Text Available Rainfall simulation tests were conducted to determine the effect of the initial water content and surface micro-relief changes on runoff, and soil loss for chernozem soil. The studies showed that soil loss by wash was mostly affected by the surface micro-relief, whereas soil loss by splash by the initial water content. Runoff amount was less dependent than the soil loss upon the initial surface conditions and was mostly affected by the seal formation. The highest amount of splash and wash suggest that the time of seal formation at the soil surface was most susceptible to soil erosion.

  4. Relationship between Mineral Soil Surface Area and the Biological Degradation of Biosolids Added to Soil

    OpenAIRE

    Dongqi Wen; Wenjuan Zhai; Demetrios Moschandreas; Guanglong Tian; Noll, Kenneth E.

    2015-01-01

    Geochemical and biological processes that operate in the soil matrix and on the soil surface are important to the degradation of biosolids in soil. Due to the large surface area of soils it is assumed that the microbial ecology is associated with mineral soil surface area. The total mineral surface areas were determined for soils from eight different fields selected from a long term study (1972–2006) of annual biosolids application to 41 fields in central Illinois varying in size from 3.6 to ...

  5. Soil Surface Sealing Effect on Soil Moisture at a Semiarid Hillslope: Implications for Remote Sensing Estimation

    OpenAIRE

    Shai Sela; Tal Svoray; Shmuel Assouline

    2014-01-01

    Robust estimation of soil moisture using microwave remote sensing depends on extensive ground sampling for calibration and validation of the data. Soil surface sealing is a frequent phenomenon in dry environments. It modulates soil moisture close to the soil surface and, thus, has the potential to affect the retrieval of soil moisture from microwave remote sensing and the validation of these data based on ground observations. We addressed this issue using a physically-based modeling approach...

  6. Using soil surface gray level to determine surface soil water content

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    How to determine surface soil water content(SWC) quickly and accurately is fundamental in studying eco-hydrological processes and their modeling.Here we use laboratory experiments to determine surface SWC using soil surface gray level(SGL) values.A negatively exponential relationship exists between SGL and SWC,i.e.,SGL increases with the decrease of SWC.SGL can be estimated based on initial SGL value(surface gray level when SWC=0),SWC,and a surface roughness coefficient characterized by mean soil particle size.The variation range of SGL was larger than that of SWC,indicating that changes in SWC were enhanced in SGL,and that SGL would thus be sensitive to changes in soil water.At the 95% confidence level,SWC can be determined by using the relationship between SWC and SGL established by the experiments.The determination of SWC has a high precision when SWC was between dry and saturated.

  7. Relationship between Mineral Soil Surface Area and the Biological Degradation of Biosolids Added to Soil

    Directory of Open Access Journals (Sweden)

    Dongqi Wen

    2015-12-01

    Full Text Available Geochemical and biological processes that operate in the soil matrix and on the soil surface are important to the degradation of biosolids in soil. Due to the large surface area of soils it is assumed that the microbial ecology is associated with mineral soil surface area. The total mineral surface areas were determined for soils from eight different fields selected from a long term study (1972–2006 of annual biosolids application to 41 fields in central Illinois varying in size from 3.6 to 66 ha. The surface areas for the soils varied from 1 to 9 m2/g of soil. The biological degradation rates for the eight soils were determined using a biological degradation rate model (DRM and varied from 0.02 to 0.20/year−1. Regression analysis revealed that the degradation rate was positively associated with mineral soil surface area (1 m2/g produces 0.018 year−1 increase in the degradation rate. The annual soil sequestration rate was calculated to increase from 1% to 6% when the soil total surface area increased from 1 to 9 m2/g of soil. Therefore, land application of biosolids is an effective way to enhance carbon sequestration in soils and reduce greenhouse gas emissions.

  8. Phosphorus Release to Floodwater from Calcareous Surface Soils and Their Corresponding Subsurface Soils under Anaerobic Conditions.

    Science.gov (United States)

    Jayarathne, P D K D; Kumaragamage, D; Indraratne, S; Flaten, D; Goltz, D

    2016-07-01

    Enhanced phosphorus (P) release from soils to overlying water under flooded, anaerobic conditions has been well documented for noncalcareous and surface soils, but little information is available for calcareous and subsurface soils. We compared the magnitude of P released from 12 calcareous surface soils and corresponding subsurface soils to overlying water under flooded, anaerobic conditions and examined the reasons for the differences. Surface (0-15 cm) and subsurface (15-30 cm) soils were packed into vessels and flooded for 8 wk. Soil redox potential and concentrations of dissolved reactive phosphorus (DRP) and total dissolved Ca, Mg, Fe, and Mn in floodwater and pore water were measured weekly. Soil test P was significantly smaller in subsurface soils than in corresponding surface soils; thus, the P release to floodwater from subsurface soils was significantly less than from corresponding surface soils. Under anaerobic conditions, floodwater DRP concentration significantly increased in >80% of calcareous surface soils and in about 40% of subsurface soils. The increase in floodwater DRP concentration was 2- to 17-fold in surface soils but only 4- to 7-fold in subsurface soils. With time of flooding, molar ratios of Ca/P and Mg/P in floodwater increased, whereas Fe/P and Mn/P decreased, suggesting that resorption and/or reprecipitation of P took place involving Fe and Mn. Results indicate that P release to floodwater under anaerobic conditions was enhanced in most calcareous soils. Surface and subsurface calcareous soils in general behaved similarly in releasing P under flooded, anaerobic conditions, with concentrations released mainly governed by initial soil P concentrations. PMID:27380087

  9. Levantamento etnobotânico sobre coentros e poejos no Alentejo

    OpenAIRE

    Póvoa, Orlanda; Farinha, Noémia; Dias, Susana Saraiva

    2012-01-01

    O coentro (Coriandrum sativum L.), o poejo (Mentha pulegium L.) e o poejo fino (Mentha cervina) são frequentemente utilizados na cozinha tradicional alentejana, imprimindo-lhes um toque distintivo comparativamente à cozinha tradicional das restantes regiões portuguesas. Foi efectuado um levantamento etnobotânico da utilização medicinal e condimentar destes três taxa com base em 67 entrevistas semi-estruturadas com informantes individuais ou em grupo em todo o Alentejo, compilando 91 fichas...

  10. Analysis and Quantification of trans-Resveratrol in Wines from Alentejo Region (Portugal)

    OpenAIRE

    Ratola, Nuno; Luís Faria, Joaquim; Alves, Arminda

    2004-01-01

    A simple procedure for determination of trans-resveratrol in wines from Alentejo region delimited appellation (Portugal) is described and validated. A set of 47 red and 21 white wines was analysed by direct injection in high performance liquid chromatograph with UV detector. A detection limit of 0.06 mg/L was achieved. Global uncertainty associated with the results, according to EURACHEM/CITAC rules, ranged from 16.33 to 27.15 %. Trans-resveratrol was detected in all red wines and in 8 white ...

  11. Surface Chemical Properties of Colloids in Main Soils of China

    Institute of Scientific and Technical Information of China (English)

    MAYI-JIE; YUANCHAO-LIANG

    1991-01-01

    Surface chemical properties of soil colloids are the important factor affecting soil fertility and genesis.To provide scientific basis for soil genetic classification,promotion of soil fertility and reasonable fertilizqation,the specific surface area and electric charge of soil colloids in relation to clay minerals and organic matter are further discussed on the basis of the results obtained from the studies on surface chemical properties of soil colloids in five main soils of China.Results from the studies show that the effect of clay minerals and organic matter on the surface chemical properties of soil colloids is very complicated because the siloxane surface,hydrated oxide surface and organic matter surface do not exist separately,but they are always mixed together and influenced each other.The understanding of the relationship among clay minerals,organic matter and surface chemical properties of soil colloids depends upon further study of the relevant disciplines of soil science,especially the study on the mechanisms of organo-mineral complexes.

  12. The utility of surface temperature measurements for the remote sensing of surface soil water status

    Science.gov (United States)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  13. Provenance of upper Triassic sandstone, southwest Iberia (Alentejo and Algarve basins): tracing variability in the sources

    Science.gov (United States)

    Pereira, M. F.; Ribeiro, C.; Gama, C.; Drost, K.; Chichorro, M.; Vilallonga, F.; Hofmann, M.; Linnemann, U.

    2016-01-01

    Laser ablation ICP-MS U-Pb analyses have been conducted on detrital zircon of Upper Triassic sandstone from the Alentejo and Algarve basins in southwest Iberia. The predominance of Neoproterozoic, Devonian, Paleoproterozoic and Carboniferous detrital zircon ages confirms previous studies that indicate the locus of the sediment source of the late Triassic Alentejo Basin in the pre-Mesozoic basement of the South Portuguese and Ossa-Morena zones. Suitable sources for the Upper Triassic Algarve sandstone are the Upper Devonian-Lower Carboniferous of the South Portuguese Zone (Phyllite-Quartzite and Tercenas formations) and the Meguma Terrane (present-day in Nova Scotia). Spatial variations of the sediment sources of both Upper Triassic basins suggest a more complex history of drainage than previously documented involving other source rocks located outside present-day Iberia. The two Triassic basins were isolated from each other with the detrital transport being controlled by two independent drainage systems. This study is important for the reconstruction of the late Triassic paleogeography in a place where, later, the opening of the Central Atlantic Ocean took place separating Europe from North America.

  14. Soil Compaction by Valmet Forwarder Operation at Soil Surface with and without Slash

    Directory of Open Access Journals (Sweden)

    Juang Rata Matangaran

    2012-04-01

    Full Text Available Soil compaction by machine used in forest harvesting operation caused negative impacts for regeneration and tree growth.  This research was intended to analyze the effectiveness of using slash to decrease soil compaction, to analyze soil compaction at various soil depths, and to measure rut depth at  soil surface.  Valmet 860.1 forwarder was used in this research. Soil compaction was measured through its bulk density, cone index, and rut depth, under the condition with and without slash.  The slash comprised of twigs, branches, and leaves as wastes from harvested Acacia mangium that were stacked to a width of about 1 meter in thickness following forwarder traffic. Results indicated that slash was effective in decreasing soil compaction.  About 50% increased in soil compaction by a Valmet forwarder could be reduced by using slash coverings at soil surface.  The maximum soil bulk density occurred after 5 forwarder passes.  Soil compaction also occurred at subsurface soil. After forwarder traffic, increasing cone index was observed at subsurface of various soil depths.  Slash was effective in decreasing soil compaction up to 20 cm in soil depth, although soil compaction by forwarder operation was slightly increased until 50 cm of soil depth.  Rut was not observed under the slash however rut of about 24 cm in depth was formed at soil surface without slash.  Using slash as coverings for forwarder operation reduced soil damaged.Keywords: soil compaction, forwarder Valmet, Acacia mangium, rutted, slash

  15. Soil surface properties affected by organic by-products

    OpenAIRE

    Pachepsky Ya.A.; Rawls W.J.; Fournier L.L.; Filgueira R.R.; Sikora L.J.

    2002-01-01

    The beneficial effects of amending soils with organic by-products include improvement of both chemical and physical factors. Very few studies have investigated changes in the soil specific surface area (SSA) after amendments with manures or composts. Soil samples were taken from plots before and after four years� application of manures, composts or nitrogen fertilizer. A corn-wheat-soybean rotation was grown. Soil samples were tested for changes in water retention at �15 bar, bu...

  16. A Gestão Económica da Água na Agricultura: Perspectivas de Utilização no Alentejo

    OpenAIRE

    R. Fragoso; Marques, C.

    2006-01-01

    This article presents the mains issues of management water and future perspectives for irrigation use in Alentejo. The growth water consumption has been taking to increase the competition for the resource and the need to promote its sustainable use. The water management policies has been reorienting in search of new alternative sources of water and from the offer to the demand side. The future perspectives of water irrigation use in Alentejo are dependent from the New CAP and from the DQA. Wi...

  17. Biochar Amendment to the Soil Surface Reduces Fumigant Emissions and Enhances Soil Microorganism Recovery.

    Science.gov (United States)

    Shen, Guoqing; Ashworth, Daniel J; Gan, Jay; Yates, Scott R

    2016-02-01

    During soil fumigation, it is ideal to mitigate soil fumigant emissions, ensure pest control efficacy, and speed up the recovery of the soil microorganism population established postapplication. However, no current fumigant emission reduction strategy can meet all these requirements. In the present study, replicated soil columns were used to study the effect of biochar derived from rice husk (BR) and green waste (BG) applied to the soil surface on 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions and soil gas distribution, and on microorganism population re-establishment. Relative to fumigated bare soil (no emission reduction strategy), high-density polyethylene (HDPE), and ammonium thiosulfate (ATS) treatments, BR gave dramatic emission reductions for both fumigants with no obvious emission peak, whereas BG was very effective only for 1,3-D. With BR application, the concentration of fumigant in the soil gas was higher than in the bare soil and ATS treatment. After the soil column experiment, mixing the BR with the fumigated soil resulted in higher soil respiration rates than were observed for HDPE and ATS treatments. Therefore, biochar amendment to the soil surface may be an effective strategy for fumigant emission reduction and the recovery of soil microorganism populations established postapplication. PMID:26726779

  18. Surface Reactivity in Tropical Highly Weathered Soils and Implications for Rational Soil Management

    Institute of Scientific and Technical Information of China (English)

    R. MOREAU; J. PETARD

    2004-01-01

    Highly weathered soils are distributed in the humid and wet-dry tropics, as well as in the humid subtropics. As a result of strong weathering, these soils are characterized by low activity clays, which develop variable surface charge and related specific properties. Surface reactions regarding base exchange and soil acidification, heavy metal sorption and mobility, and phosphorus sorption and availability of the tropical highly weathered soils are reviewed in this paper.Factors controlling surface reactivity towards cations and anions, including ion exchange and specific adsorption processes, are discussed with consideration on practical implications for rational management of these soils. Organic matter content and pH value are major basic factors that should be controlled through appropriate agricultural practices, in order to optimise favorable effects of colloid surface properties on soil fertility and environmental quality.

  19. Inverse modeling of soil characteristics from surface soil moisture observations: potential and limitations

    OpenAIRE

    Loew, A.; W. Mauser

    2008-01-01

    International audience Land surface models (LSM) are widely used as scientific and operational tools to simulate mass and energy fluxes within the soil vegetation atmosphere continuum for numerous applications in meteorology, hydrology or for geobiochemistry studies. A reliable parameterization of these models is important to improve the simulation skills. Soil moisture is a key variable, linking the water and energy fluxes at the land surface. An appropriate parameterisation of soil hydra...

  20. Radionuclide migration in sub-surface soil

    International Nuclear Information System (INIS)

    The aim of the investigations was to draw the most realistic conclusions about the migration rate of the radionuclides strontium, iodine, cesium and cerium in a model accident contaminating various subsurface soils in the environment of the Gorleben salt dome. The retardation factors of the radionuclides were determined in column tests in undisturbed soil samples. The distribution coefficients were determined in disturbed soil samples by shaking tests (batch method). The following mobility series can be given very approximately for the examined soil profiles where columnar results have been used: Ranker (Trebel) I > Sr > Ce > Cs; Podzol (Gorleben) I > Cs > Sr > Ce; Braunerde (Bruenkendorf) I ≥ Sr > Ce ≥ Cs; Arable Soils: Podzol (Gorleben) I > Sr ≥ Cs ≥ Ce; Para braunerde (Eschweiler) I > Sr ≥ Ce ≥ Cs

  1. Habitat Features and Strategies for the Sustainable Development in the Alentejo Region

    Directory of Open Access Journals (Sweden)

    Rui Manuel de Sousa Fragoso

    2015-03-01

    Full Text Available The unfavoured Portuguese regions have a level of life and economic growth rates lower than favoured regions, and the mean of European Union and hence have less entrepreneurial activities. The adoption of strategies of sustainable development driven by entrepreneurship phenomena could be a viable solution. Thus, the likely relationships between entrepreneurship and regional features were described, and sources of entrepreneurship opportunities for strategies based on the own regional resources and competitive advantages were identified. The paper concludes that, for the Alentejo region, some habitat variables should be reinforced for promoting entrepreneurship and sustainable development, and the main opportunities are related to the economic activities that belong to the regional productive profile of specialization.

  2. Soil Surface Structure: A key factor for the degree of soil water repellency

    Science.gov (United States)

    Ahn, S.; Doerr, S. H.; Douglas, P.; Bryant, R.; Hamlett, C.; McHale, G.; Newton, M.; Shirtcliffe, N.

    2012-04-01

    Despite of considerable efforts, the degree of water repellency has not always been fully explained by chemical property of soil (termed hydrophobicity). That might be because the structure of a soil surface was not considered properly, which is another main factor determining the severity of soil water repellency. Surface structure has only recently been considered in soil science, whilst it has been paid attention for several decades in materials science due to its relevance to industrial applications. In this contribution, comparison of critical contact angles measured on different surface structures (made with glass beads, glass shards and beach sands) is presented and the effect of surface structure on manifestation of soil water repellency is discussed in terms of several different variables such as the individual particles shape, and areal and structural factors of the actual surface.

  3. Soil Surface Sealing Effect on Soil Moisture at a Semiarid Hillslope: Implications for Remote Sensing Estimation

    Directory of Open Access Journals (Sweden)

    Shai Sela

    2014-08-01

    Full Text Available Robust estimation of soil moisture using microwave remote sensing depends on extensive ground sampling for calibration and validation of the data. Soil surface sealing is a frequent phenomenon in dry environments. It modulates soil moisture close to the soil surface and, thus, has the potential to affect the retrieval of soil moisture from microwave remote sensing and the validation of these data based on ground observations. We addressed this issue using a physically-based modeling approach that accounts explicitly for surface sealing at the hillslope scale. Simulated mean soil moisture at the respective layers corresponding to both the ground validation probe and the radar beam’s typical effective penetration depth were considered. A cyclic pattern was found in which, as compared to an unsealed profile, the seal layer intensifies the bias in validation during rainfall events and substantially reduces it during subsequent drying periods. The analysis of this cyclic pattern showed that, accounting for soil moisture dynamics at the soil surface, the optimal time for soil sampling following a rainfall event is a few hours in the case of an unsealed system and a few days in the case of a sealed one. Surface sealing was found to increase the temporal stability of soil moisture. In both sealed and unsealed systems, the greatest temporal stability was observed at positions with moderate slope inclination. Soil porosity was the best predictor of soil moisture temporal stability, indicating that prior knowledge regarding the soil texture distribution is crucial for the application of remote sensing validation schemes.

  4. Infiltration in soils with a saturated surface

    OpenAIRE

    Hogarth, William L.; Lockington, David A.; Barry, David Andrew; Parlange, Marc; Haverkamp, Randel; Parlange, Jean-Yves

    2013-01-01

    An earlier infiltration equation relied on curve fitting of infiltration data for the determination of one of the parameters, which limits its usefulness in practice. This handicap is removed here, and the parameter is now evaluated by linking it directly to soil-water properties. The new predictions of infiltration using this evaluation are quite accurate. Positions and shapes of soil-water profiles are also examined in detail and found to be predicted analytically with great precision.

  5. A noncontact laser system for measuring soil surface topography

    International Nuclear Information System (INIS)

    Soil surface topography profoundly influences runoff hydrodynamics, soil erosion, and surface retention of water. Here we describe an optical noncontact system for measuring soil surface topography. Soil elevation is measured by projecting a laser beam onto the surface and detecting the position of the interception point. The optical axis of the detection system is oriented at a small angle to the incident beam. A low-power HeNe (Helium-Neon) laser is used as the laser source, a photodiode array is used as the laser image detector and an ordinary 35-mm single lens reflex camera provides the optical system to focus the laser image onto the diode array. A wide spectrum of measurement ranges (R) and resolutions are selectable, from 1 mm to 1 m. These are determined by the laser-camera distance and angle, the focal length of the lens, and the sensing length of the diode array and the number of elements (N) contained in the array. The resolution of the system is approximately R/2N. We show for the system used here that this resolution is approximately 0.2%. In the configuration selected, elevation changes of 0.16 mm could be detected over a surface elevation range of 87 mm. The sampling rate of the system is 1000 Hz, which permits soil surfaces to be measured at speeds of up to 1 m s−1 with measurements taken at 1-mm spacing. Measurements of individual raindrop impacts on the soil and of soil surfaces before and after rain show the versatility of the laser surface profiler, which has applications in studies of erosion processes, surface storage and soil trafficability

  6. Passive microwave sensing of soil moisture content - The effects of soil bulk density and surface roughness

    Science.gov (United States)

    Wang, J. R.

    1983-01-01

    Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.

  7. Economical and environmental trade-offs of traditional Mediterranean dry farming systems in the Alentejo region of Portugal.

    OpenAIRE

    Rosado, Maria Maurícia; FRAGOSO, RUI; Marques, Carlos

    2013-01-01

    This paper aims assessing the economic and environmental trade-offs of traditional Mediterranean dry farming systems in the Alentejo region, southern Portugal. An environmental analysis using environmental indicators, such as the nitrogen balance, energy input, greenhouse gas emissions, acidification, eutrophication impacts, as well as an aggregated eco-indicator were developed. For assessing economic returns of farming systems, a budgeting analysis was carried out. Then the environmental and...

  8. Environmental evaluation and benchmarking of the traditional dryland Mediterranean crop farming system in the Alentejo region of Portugal.

    OpenAIRE

    Rosado, Maria; Marques, Carlos; Fragoso, Rui

    2015-01-01

    In this paper the effects of traditional Mediterranean crop farming system of the Alentejo region of Portugal on environment are evaluated and benchmarked. With this objective a typical farm of the region using a traditional system based on a crop-rotation of durum wheat with sunflower and peas was selected. Environmental indicators were used to evaluate production activities environmental effects. These include nitrogen balance and energy input determined using input and output processes ana...

  9. Effect of Management Practices on Soil Microstructure and Surface Microrelief

    Directory of Open Access Journals (Sweden)

    R. Garcia Moreno

    2012-01-01

    Full Text Available Soil surface roughness (SSR and porosity were evaluated from soils located in two farms belonging to the Plant Breeding Institute of the University of Sidney. The sites differ in their soil management practices; the first site (PBI was strip-tilled during early fall (May 2010, and the second site (JBP was under power harrowed tillage at the end of July 2010. Both sites were sampled in mid-August. At each location, SSR was measured for three 1 m2 subplots using shadow analysis. To evaluate porosity and aggregation, soil samples were scanned using X-ray computed tomography with 5 μm resolution. The results show a strong negative correlation between SSR and porosity, 20.13% SSR and 41.38% porosity at PBI versus 42.00% SSR and 18.35% porosity at JBP. However, soil images show that when soil surface roughness is higher due to conservation and soil management practices, the processes of macroaggregation and structural porosity are enhanced. Further research must be conducted on SSR and porosity in different types of soils, as they provide complementary information on the evaluation of soil erosion susceptibility.

  10. Characterization of surface soils at a former uranium mill.

    Science.gov (United States)

    Johnson, J A; Meyer, H R; Vidyasagar, M

    2006-02-01

    Dawn Mining Company operated a uranium mill in Stevens County, Washington, from 1957 to 1982, to process ore from the Midnite Mine, and from 1992 through 2000, to extract uranium from mine water treatment sludge. The mill was permanently shut down in 2001 when the Dawn Mining Company radioactive materials license was amended to allow direct disposal of water treatment sludge to a tailings disposal area at the mill. The mill building was demolished in 2003. Site soil characterization took place in 2004. Soil cleanup is ongoing. Contaminated soils on the site were characterized using a GPS-based gamma scanning system. A correlation between shielded gamma exposure rate and concentration of Ra in surface soils was developed. Subsurface soils were sampled using backhoe trenches. This system proved efficient and accurate in guiding development of the remedial action planning for the site and subsequent soil cleanup. PMID:16404186

  11. Depleted soil carbon and nitrogen pools beneath impervious surfaces

    International Nuclear Information System (INIS)

    Urban soils and vegetation contain large pools of carbon (C) and nitrogen (N) and may sequester these elements at considerable rates; however, there have been no systematic studies of the composition of soils beneath the impervious surfaces that dominate urban areas. This has made it impossible to reliably estimate the net impact of urbanization on terrestrial C and N pools. In this study, we compared open area and impervious-covered soils in New York City and found that the C and N content of the soil (0–15 cm) under impervious surfaces was 66% and 95% lower, respectively. Analysis of extracellular enzyme activities in the soils suggests that recalcitrant compounds dominate the organic matter pool under impervious surfaces. If the differences between impervious-covered and open area soils represent a loss of C and N from urban ecosystems, the magnitude of these losses could offset sequestration in other parts of the urban landscape. - The soils beneath impervious surfaces are depleted in C and N, which may have implications for the energy and nutrient balance of urban ecosystems.

  12. Antisoiling technology: Theories of surface soiling and performance of antisoiling surface coatings

    Science.gov (United States)

    Cuddihy, E. F.; Willis, P. B.

    1984-01-01

    Physical examination of surfaces undergoing natural outdoor soiling suggests that soil matter accumulates in up to three distinct layers. The first layer involves strong chemical attachment or strong chemisorption of soil matter on the primary surface. The second layer is physical, consisting of a highly organized arrangement of soil creating a gradation in surface energy from a high associated with the energetic first layer to the lowest possible state on the outer surfce of the second layer. The lowest possible energy state is dictated by the physical nature of the regional atmospheric soiling materials. These first two layers are resistant to removal by rain. The third layer constitutes a settling of loose soil matter, accumulating in dry periods and being removed during rainy periods. Theories and evidence suggest that surfaces that should be naturally resistant to the formation of the first two-resistant layers should be hard, smooth, hydrophobic, free of first-period elements, and have the lowest possible surface energy. These characteristics, evolving as requirements for low-soiling surfaces, suggest that surfaces or surface coatings should be of fluorocarbon chemistry. Evidence for the three-soil-layer concept, and data on the positive performance of candidate fluorocarbon coatings on glass and transparent plastic films after 28 months of outdoor exposure, are presented.

  13. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  14. Estimating Surface Soil Moisture in Simulated AVIRIS Spectra

    Science.gov (United States)

    Whiting, Michael L.; Li, Lin; Ustin, Susan L.

    2004-01-01

    Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential on the spectra general shape and albedo (Stoner and Baumgardner, 1981). Without moisture, the intrinsic or matrix reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be isolated by comparing similar soils in a study of the effects that small differences in moisture content have on reflectance. However, without prior knowledge of the soil physical and chemical constituents within every pixel, it is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils. Accurate soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for precision farming prescription, and managing irrigation and salinity. Better models of soil moisture and reflectance will also improve the selection of soil endmembers for spectral mixture analysis.

  15. Titratable Acidity and Alkalinity of Red Soil Surfaces

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1993-01-01

    The surfaces of red soils have an apparent amphoteric character,carrying titratable acidity and titratable alkalinity simultaneously.The titratable acidity arises from deprotonation of hydroxyl groups of hydrous oxide-type surfaces and dissociation of weak-acid functional groups of soil organic matter,while the titratable alkalinity is derived from release of hydroxyl groups of hydrous oxide-type surfaces.The titratable acidity and titratable alkalinity mainly depended on the composition and content of iron and aluminum oxides in the soils.The results showed that the titratable acidity and titratable alkalinity were in significantly positive correlation not only with the content of amorphous aluminum oxide(Alo) and iron oxide(Feo) extracted with acid ammonium oxalate solution,free iron oxide(Fed) extracted with sodium dithionite-citrate-bicarbonate(DCB) and clays,but also with the zero point of charge (ZPC) of the samples.Organic matter made an important contribution to the titratable acidity.the titratable alkalinity was closely correlated with the amount of fluoride ions adsorbed.The titratable acidity and titratable alkalinity of red soils were influenced by parent materials,being in the order of red soil derived from basalt> that from tuff> that from granite.The titratable acidity and titratable alkalinity ware closely related with origination of the variable charges of red soils,and to a certain extent were responsible for variable negative and positive charges of the soils.

  16. Superhydrophobic surfaces: a model approach to predict contact angle and surface energy of soil particles

    OpenAIRE

    BACHMANN, JÖRG; McHale, Glen

    2009-01-01

    Wettability of soil affects a wide variety of processes including infiltration, preferential flow and surface runoff. The problem of determining contact angles and surface energy of powders, such as soil particles, remains unsolved. So far, several theories and approaches have been proposed, but formulation of surface and interfacial free energy, as regards its components, is still a very debatable issue. In the present study, the general problem of the interpretation of contact angles and su...

  17. Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station

    Indian Academy of Sciences (India)

    Neena Sugathan; V Biju; G Renuka

    2014-07-01

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured during April 2010 to March 2011 at a tropical station, viz., Astronomical Observatory, Thiruvananthapuram, Kerala, India (76° 59’E longitude and 8°29’N latitude). The monthly, seasonal and seasonal mean diurnal variation of soil moisture content is analyzed in detail and is correlated with the rainfall measured at the same site during the period of study. The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also investigated. Surface albedo is found to fall exponentially with increase in soil moisture content. Soil thermal diffusivity and soil thermal conductivity are also estimated from the subsoil temperature profile. Log normal dependence of thermal diffusivity and power law dependence of thermal conductivity on soil moisture content are confirmed.

  18. Migration of radionuclides in sub-surface soil

    International Nuclear Information System (INIS)

    The object of the investigations was to draw the most realistic conclusions about the spreading rate of the radionuclides Sr, I, Cs and Ce in a model accident contaminating the earth surface for various subsurface soils taken from the environment of the Gorleben salt done. The retardation factors were hence determined for these radionuclides in columntests in undisturbed soil samples and the distribution coefficients determined in disturbed soil samples by shaking tests (batch method). The following mobility series can be given very globally for the examined soil profiles where especially columnar-results had been used: Ranker (Trebel) J > Sr > Ce > Cs, Podsol (Gorleben) J > Cs > Sr > Ce, Braunerde (Bruenkendorf) J approx. >= Sr > Ce approx. >= Cs. Arable Soils: Podsol (Gorleben) J > Sr > Cs > Ce, Parabraunerde (Eschweiler) J > Sr > Ce approx. >= Cs. (orig./HP)

  19. Soil Surface Composition Effects on the Wettability of Aquifer Materials

    Science.gov (United States)

    Ryder, J. L.; Demond, A. H.

    2004-05-01

    The wettability of subsurface porous media is critical for determining the distribution of non-aqueous phase liquids. Variations in the wettability of subsurface materials are generally attributed to sorption of hydrophobic contaminants. However, naturally occurring carbonaceous materials may influence the wettability as well. A series of seven soil materials were selected to determine the effect of organic carbon surfaces on soil wetting behavior. The materials represent organic carbon containing surfaces that may be found in soils from young humic matter to mature coal and shale kerogen. Measurements of organic liquid-water contact angle against cut rock faces reveal that surface composition alters the contact angle from the completely water wetted condition of quartz in the case of the mature carbon materials (Lachine Shale, Garfield Shale, Waynesburg Coal, and Plumbago Mineral Carbon). An examination of the soil elemental composition confirms that the bulk elemental composition of each material is separated on a plot of hydrogen to carbon versus oxygen to carbon ratios. The functional groups present at the surface of the soil materials were obtained with Fourier Transform Infrared Spectroscopy (FT-IR) analysis and indicate that the presence of oxygen containing surface functional groups is positively correlated with increased organic-liquid wetting. This study demonstrates that even in the absence of sorbing contaminants the subsurface is fractionally water-wet. This finding may help explain why subsurface distributions of non aqueous phase liquids can vary from those determined with laboratory sands.

  20. Relationship Between Iron Oxides and Surface Charge Characteristics in Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; WANGWEI-JUN

    1991-01-01

    The relationship between iron oxides and surface charge characteristics in variable charge soils (latosol and red earth) was studied in following three ways.(1)Remove free iron oxides (Fed) and amorphous iron oxides (Feo) from the soils with sodium dithionite and acid ammonium oxalate solution respectively.(2) Add 2% glucose (on the basis of air-dry soil weight) to soils and incubate under submerged condition to activate iron oxides,and then the mixtures are dehydrated and air-dried to age iron oxides.(3) Precipitate various crystalline forms of iron oxides onto kaolinite.The results showed that free iron oxides (Fed) were the chief carrier of variable positive charges.Of which crystalline iron oxides (Fed-Feo) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges,and did little influence on negative charges.Whereas the amorphous iron oxides (Feo),which presented mainly fas a coating with a large specific surface area,not only had positive charges,but also blocked the negative charge sites in soils.Submerged incubation activated iron oxides in the soils,and increased the amount of amorphous iron oxides and the degree of activation of iron oxide,which resulted in the increase of positive and negative charges of soils.Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide,and also led to the decrease of positive and negative charges.Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges.Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges.Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.

  1. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    OpenAIRE

    Julieta Bramorski; Isabella C. de Maria; Renato Lemos e Silva; Silvio Crestana

    2012-01-01

    The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulate...

  2. USDA soil classification system dictates site surface management

    International Nuclear Information System (INIS)

    Success or failure of site surface management practices greatly affects long-term site stability. The US Department of Agriculture (USDA) soil classification system best documents those parameters which control the success of installed practices for managing both erosion and surface drainage. The USDA system concentrates on soil characteristics in the upper three meters of the surface that support the associated flora both physically and physiologically. The USDA soil survey first identifies soil series based on detailed characteristics that are related to production potential. Using the production potential, land use capability classes are developed. Capability classes reveal the highest and best agronomic use for the site. Lower number classes are considered arable while higher number classes are best suited for grazing agriculture. Application of ecological principles based on the USDA soil survey reveals the current state of the site relative to its ecological potential. To assure success, site management practices must be chosen that are compatible with both production capability and current state of the site

  3. Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness

    Science.gov (United States)

    Wang, J. R.

    1982-01-01

    Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.

  4. Evolution of the soil surface roughness using geostatistical analysis

    Directory of Open Access Journals (Sweden)

    Eva Vidal Vázquez

    2010-01-01

    Full Text Available The objective of this work was to investigate the decay of initial surface roughness induced by simulated rainfall under different soil residue cover and to compare classical statistical indices with geostatistical parameters. A conventionally tilled loamy soil with low structure stability, thus prone to crusting was placed at 1 m² microplots. Each microplot received three successive rainfall events which bring about cumulative 25 mm, 50 mm and 75 mm at 65 mm h-1 intensity. Five treatments without replication were tested with different corn straw quantities (0, 1, 2, 3 and 4 Mg ha"1. Soil surface microrelief was measured at the initial stage and after each simulated rainfall event. Five treatments and four surface stages were monitored, resulting in 20 data sets. Point elevation data were taken at 0.03 m intervals using a pinmeter. Digital elevation models were generated and analysed using semivariograms. All data sets showed spatial dependence and spherical models were fitted to experimental semivariograms. A very significant relationship was found between the random roughness index, RR, and the sill of the semivariogram (C0+C1. All the treatments showed a clear trend to sill value reduction with increasing precipitation. However, roughness decay was lower in treatments with higher straw cover (3 and 4 Mg ha-1. Therefore, residue cover limited soil surface roughness decline. The control treatment, without straw, showed the lowest nugget effect (C0, which means the lowest spatial discontinuity of all treatments in this study. The range of spatial dependence (a also showed a trend to decrease with increased cumulative rain, which was most apparent in treatments without or with relatively low straw cover (0, 1 and 2 Mg ha-1. The suitability of using sill variance and range for describing patterns of soil surface microrelief decline is discussed.

  5. Plutonium in soil and surface air in Thailand

    International Nuclear Information System (INIS)

    Plutonium in soil and surface air in the central part of Thailand have been underinvestigated. Dissolve the sample in potassium fluoride and pyrosulfate fusions, and precipitate barium sulfate. The plutonium is separated by solvent extraction with HDEHP from perchloric acid medium. Finally the plutonium is coprecipitated with 50 μg of cerium carrier. The precipitate is filtered on a 25 mm. glossy membrane filter with a 0.1 μm pore size, and analyzed with a 300 mm2 surface-barrier detector at about 20 percent counting efficiency. The range of Plutonium-239, 240 in soil were 0.002 to 0.157 pCi/g.dry. Plutonium-239, 240 in surface air in July 1981 were 7.7 +- 2.1 aCi/m3 and lower than the limit of detector from August to November 1981

  6. Soil depth mapping using seismic surface waves for the assessment of soil vulnerability to erosion.

    Science.gov (United States)

    Samyn, K.; Cerdan, O.; Grandjean, G.; Bitri, A.; Bernardie, S.; Ouvry, J. F.

    2009-04-01

    The purposes of the multidisciplinary DIGISOIL project are the integration and improvement of in situ and proximal technologies for the assessment of soil properties and soil degradation indicators. Foreseen developments concern sensor technologies, data processing and their integration to applications of (digital) soil mapping (DSM). Among available techniques, the seismic one is, in this study, particularly tested for characterising soil vulnerability to erosion. The spectral analysis of surface waves (SASW) method is an in situ seismic technique used for evaluation of the stiffnesses (G) and associated depth in layered systems. The method is based on the propagation of mechanically induced Rayleigh waves. By striking the ground surface with a hammer, seismic waves are generated, including surface Rayleigh waves. During their propagation, they are recorded by seismic receivers (geophone sensors) regularly spaced along a profile to produce a seismogram. The particularity of Rayleigh waves lies in the dependence of their velocity with frequency, a phenomenon called dispersion. A profile of Rayleigh wave velocity versus frequency, i.e., the dispersion curve, is calculated from each recorded seismogram before to be inverted to obtain the vertical profile of shear waves velocity. Then, the soil stiffness can easily be calculated from the shear velocity if the material density is estimated, and the soil stiffness as a function of depth can be obtained. This last information can be a good indicator to identify the soil bedrock limit. From a geometrical point of view, a SASW system adapted to soil characterisation is proposed in the DIGISOIL project. This system was tested for the digital mapping of the depth of loamy material in a catchment of the European loess belt. Parametric penetrometric studies are also conducted for the purpose of verifying the accuracy of the procedure and evaluating its limitations. The depth to bedrock determined by this procedure can then be

  7. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    Science.gov (United States)

    We coupled a radiative transfer approach with a soil hydrological model (HYDRUS 1D) and a global optimization routine SCE-UA to derive soil hydraulic parameters and soil surface roughness from measured brightness temperatures at 1.4 GHz (L-band) and measured rainfall and calculated potential soil ev...

  8. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  9. Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter.

    Science.gov (United States)

    Lohwacharin, J; Takizawa, S; Punyapalakul, P

    2015-10-01

    We evaluated factors affecting the transport, retention, and re-entrainment of carbon black nanoparticles (nCBs) in two saturated natural soils under different flow conditions and input concentrations using the two-site transport model and Kelvin probe force microscopy (KPFM). Soil organic matter (SOM) was found to create unfavorable conditions for the retention. Despite an increased flow velocity, the relative stability of the estimated maximum retention capacity in soils may suggest that flow-induced shear stress forces were insufficient to detach nCB. The KPFM observation revealed that nCBs were retained at the grain boundary and on surface roughness, which brought about substantial discrepancy between theoretically-derived attachment efficiency factors and the ones obtained by the experiments using the two-site transport model. Thus, decreasing ionic strength and increasing solution pH caused re-entrainment of only a small fraction of retained nCB in the soil columns. PMID:26057475

  10. Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter

    International Nuclear Information System (INIS)

    We evaluated factors affecting the transport, retention, and re-entrainment of carbon black nanoparticles (nCBs) in two saturated natural soils under different flow conditions and input concentrations using the two-site transport model and Kelvin probe force microscopy (KPFM). Soil organic matter (SOM) was found to create unfavorable conditions for the retention. Despite an increased flow velocity, the relative stability of the estimated maximum retention capacity in soils may suggest that flow-induced shear stress forces were insufficient to detach nCB. The KPFM observation revealed that nCBs were retained at the grain boundary and on surface roughness, which brought about substantial discrepancy between theoretically-derived attachment efficiency factors and the ones obtained by the experiments using the two-site transport model. Thus, decreasing ionic strength and increasing solution pH caused re-entrainment of only a small fraction of retained nCB in the soil columns. - Highlights: • We studied the retention of carbon black (nCB) in two saturated natural soils. • The nCB deposition increased as soil organic matter was removed by preheating. • Lowering ionic strength and raising pH released only small portion of deposited nCB. • The maximum retention capacity of nCB in soils was not controlled by flow velocity. • Kelvin probe force microscopy indicated that nCB was retained on surface roughness. - Kelvin probe force microscopy indicated that carboxylated nCBs, which were deposited under an unfavorable condition for attachment at low IS, were retained on surface roughness

  11. Avaliação da competitividade da agricultura do Alentejo no âmbito do ecossistema montado

    Directory of Open Access Journals (Sweden)

    Rui Fragoso

    2009-03-01

    Full Text Available Neste estudo procede-se à avaliação sócioeconómica do ecossistema montado no Alentejo, em termos da viabilidade dos actuais sistemas de produção e dos efeitos da política agrícola na sua competitividade e sustentabilidade. A metodologia utilizada baseou-se na construção de matrizes de análise política. Em função dos níveis de rendimento e dos efeitos das medidas de política agrícola, os sistemas de produção são classificados em termos da sua contribuição real para o crescimento económico.This paper makes a socio-economic evaluation of the "Montado" ecosystem in Alentejo. It is study the viability of the agricultural systems and the effects of agricultural policy in their competitiveness and sustainability. It is used a Policy Analysis Matrix to evaluate the agricultural systems competitiveness and their economic efficiency. The agricultural systems are classified concerning their contribution for the economic growth, in function of income levels and policy effects.

  12. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  13. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs.

  14. The relationship of surface chemistry and albedo of lunar soil samples

    Science.gov (United States)

    Gold, T.; Bilson, E.; Baron, R. L.

    1977-01-01

    A relation between the albedo and the surface iron concentration (determined by Auger electron spectroscopy) of lunar soil samples is described. The effect of solar wind sputtering on the surface chemistry and albedo of the soil is discussed.

  15. Hanford Site surface soil radioactive contamination control plan, March 1993

    International Nuclear Information System (INIS)

    The Decommissioning and Resource Conservation and Recovery Act Closure Program is responsible to the US Department of Energy Richland Field Office, for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities and Resource Conservation and Recovery Act of 1976 closures at the Hanford Site. This program also manages the Radiation Area Remedial Action that includes the surveillance, maintenance, decontamination, and/or interim stabilization of inactive burial grounds, cribs, ponds, trenches, and unplanned release sites. This plan addresses only the Radiation Area Remedial Action activity requirements for managing and controlling the contaminated surface soil areas associated with these inactive sites until they are remediated as part of the Hanford Site environmental restoration process. All officially numbered Radiation Area Remedial Action and non-Radiation Area Remedial Action contaminated surface soil areas are listed in this document so that a complete list of the sites requiring remediation is contained in one document

  16. Effects of near soil surface characteristics on soil detachment by overland flow in a natural succession grassland

    Science.gov (United States)

    Vegetation restoration probably has great effects on the process of soil detachment. This study was conducted to investigate the effects of near soil surface characteristics on soil detachment by overland flow in a 7-year naturally restored grassland. Four treatments were designed to characterize th...

  17. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Surface soil heat flux is a component of surface energy budget and its estimation is needed in land-atmosphere interaction studies. This paper develops a new simple method to estimate soil heat flux from soil temperature and moisture observations. It gives soil temperature profile with the thermal diffusion equation and, then, adjusts the temperature profile with differences between observed and computed soil temperatures. The soil flux is obtained through integrating the soil temperature profile. Compared with previous methods, the new method does not require accurate thermal conductivity. Case studies based on observations, synthetic data, and sensitivity analyses show that the new method is preferable and the results obtained with it are not sensitive to the availability of temperature data in the topsoil. In addition, we pointed out that the soil heat flux measured with a heat-plate can be quite erroneous in magnitude though its phase is accurate.

  18. Comparative analysis of different measurement techniques for characterizing soil surface roughness in agricultural soils

    Science.gov (United States)

    Martinez-Agirre, Alex; Álvarez-Mozos, Jesús; Valle, José Manuel; Rodríguez, Álvaro; Giménez, Rafael

    2016-04-01

    Soil surface roughness can be defined as the variation in soil surface elevations, and as such, it is a key element in hydrology and soil erosion processes. In agricultural soils, roughness is mainly an anthropic factor determined by the type of tillage and management. Roughness is also a property with a high spatial variability, since the same type of tillage can result in surfaces with different roughness depending on the physical characteristics of the soil and atmospheric conditions. In order to quantify roughness and to parameterize its role in different processes, different measurement techniques have been used and several parameters have been proposed in the literature. The objective of this work is to evaluate different measurement techniques and assess their accuracy and suitability for quantifying surface roughness in agricultural soils. With this aim, a comparative analysis of three roughness measurement techniques has been carried out; (1) laser profilometer, (2) convergent photogrammetry and (3) terrestrial laser scanner. Roughness measurements were done in 3 experimental plots (5x5 meters) with different tillage treatments (representing different roughness conditions) obtained with typical agricultural tools. The laser profilometer registered vertically the distance from a reference bar down to the surface. It had a vertical accuracy of 1.25 mm, a sampling interval of 5 mm and a total length profile of 5 m. Eight profiles were taken per plot, four in parallel to tillage direction and four in perpendicular. Convergent photogrammetry consisted of 20-30 images taken per plot from a height of 5-10 m above ground (using an elevation platform), leading to point clouds of ~25 million points per plot. Terrestrial laser scanner measurements were taken from the four sides of each plot at a measurement height of ~1.75 m above ground. After orientating and corregistering the four scans, point clouds of ~60 million points were obtained per plot. The comparative

  19. Heavy metal pollution of surface soil in Thrace region (Turkey)

    International Nuclear Information System (INIS)

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. Spatial distributions of Cu, Zn, Ni, Cd, Cr, Pb, and As were plotted in relation to the concentration values in soil using Geographic Information System (GIS) technology

  20. Influence of surface and subsurface tillage on soil physical properties and soil/plant relationships of planted loblolly pine

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Kelting; H. L. Allen

    2000-05-01

    Soil tillage can improve tree survival and growth by reducing competing vegetation, increasing nutrient availability, improving planting quality, and improving soil physical properties. The authors conducted a tillage study with competition control and nutrient amendments to isolate the physical effects of tillage on tree growth. The objectives of this study were to understand: (1) how tillage affects soil physical properties; (2) the relationships between these properties and root growth; (3) linkages between root growth response and aboveground growth; and (4) tillage effects on aboveground growth. Four replicates of a 2x2 factorial combination of surface (disking) and subsurface (subsoiling) were installed on a well-drained, clay-textured subsoil, soil located on the Piedmont of North Carolina. Disking improved soil physical properties (reduced bulk density and increased aeration porosity) in the surface 20-cm of soil. Subsoiling improved soil physical properties at all depths in the planting row, with improvements still noted at 60-cm from the planting row in the surface 10-cm of soil. Rooting patterns followed the changes in soil physical properties. Despite improvements in soil physical properties and changes in rooting patterns, aboveground tree growth was not affected by tillage. The results of this study point to the need for better diagnostics for identifying sites were tillage is appropriate in situations where fertilization and vegetation control are planned. Potential factors to consider are presence and abundance of old root channels, soil shrink/swell capacity, soil structure, presence and depth to root restricting layers, and historical precipitation records.

  1. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  2. ESTIMATION OF SOIL CRACKING AND THE EFFECT ON SURFACE RUNOFF IN A TEXAS BLACKLAND PRAIRIE WATERSHED

    Science.gov (United States)

    Seasonal cracking of the soil matrix results in poor estimates of runoff and infiltration by simulation models due to the changing soil storage conditions. In this study, soil surface elevation changes were measured every two weeks and soil crack volume was calculated for a two-year period at the U...

  3. Conditional dependence of evaporative fraction on surface and root-zone soil moisture and its application to soil moisture retrieval

    Science.gov (United States)

    Ryu, D.; Akuraju, V.

    2013-12-01

    Thermal infrared (TIR) or evapotranspiration (ET) estimates from space have been gaining growing attention as an input to retrieve root-zone soil moisture. The rationale behind the approach is that i) there exists a strong causal link between the evapotranspiration and the vegetation canopy temperature and ii) under water-limited conditions soil water available for transpiration controls the evaporative fraction (EF) or the actual evapotranspiration (AET) to potential evapotranspiration (PET) ratio of vegetated surfaces. In this work, we examine the relationship between EF and surface to root-zone soil moisture content collected from two study sites (wheat and pasture fields) at the Dookie research farm site in Victoria, Australia. EF estimated from the eddy covariance system is compared with soil moisture content under various ranges of soil depths (5 depths from surface to 120 cm), net radiation, soil wetness and biomass. In both wheat and pasture fields, EF is highly correlated with surface (0-8 cm) soil moisture when the soil surface is bare-to-lightly vegetated, but the correlation decreases as vegetation grows or as the net radiation decreases. On the other hand, EF shows strong correlation with root-zone soil moisture during the growing seasons of the fields. Under similar ranges of soil moisture and net radiation, EF can have different ranges depending on the vegetation height and density. These results indicate the importance of biophysical parameters and processes in estimating surface and root-zone soil moisture contents using surface energy flux. We propose an exponential and a spherical model to fit EF versus soil moisture and show how their uncertainty changes with biophysical parameters.

  4. Impacts on water, soil and plants from the abandoned Miguel Vacas copper mine, Portugal

    OpenAIRE

    M.M. Abreu; M.J. Matias; Magalhães, M.Clara F.; M.J. Basto

    2008-01-01

    Soil, water and plant geochemistry was studied around the Miguel Vacas copper mine (Alentejo, SE Portugal), which stopped its exploitation and processing activities in 1991. After closure waste-rock piles remained exposed to weathering. The copper ore was mainly composed of copper phosphates and carbonates. Remediation actions were insufficient to prevent the spreading of waste-rock materials to surrounding farmed fields. The latter caused contamination of soils and water. Based on o...

  5. Generate disaggregated soil allocation data using a minimum cross entropy model

    OpenAIRE

    R. Fragoso; Martins, M. B.; Lucas, M.R.

    2008-01-01

    Montado ecosystem in the Alentejo Region, south of Portugal, has enormous agro-ecological and economics heterogeneities. A definition of homogeneous sub-units among this heterogeneous ecosystem was made, but for them is disposal only partial statistical information about soil allocation agro-forestry activities. The paper proposal is to recover the unknown soil allocation at each homogeneous sub-unit, disaggregating a complete data set for the Montado ecosystem area using incomple...

  6. Influence of soil surface characteristics and water repellence on soil infiltration and soil loss of Andisols (Canary Islands, Spain)

    Science.gov (United States)

    Concepción, Jiménez; Jonay, Neris; Josué, Fuentes; Marisa, Tejedor

    2010-05-01

    Infiltration is a crucial process in the hydrological cycle, since it controls - among other things - the generation of run-off, erosion and aquifer recharge. Undisturbed Andisols are considered resistant to water erosion; a characteristic closely associated with their high porosity that permits a rapid rainfall infiltration and high structural stability. In spite of that, the high content of organic C on this type of soils, and the positive relation between this property and water repellence, could allow the presence of some soil surface characteristics that may change this behaviour. The aim of this work was to study the influence of these hydrophobic layers on water infiltration and soil loss on Andisols of Tenerife. Twelve sites were chosen, all of which are located on the northern side of the island of Tenerife (Canary Islands, Spain), between 825-1400 m.a.s.l. The soils are allophanic Andisols (Typic/Lithic Hapludands and Typic Haplustands) and vitric Andisols (Typic Udivitrands) under pine forest. In each site, soil surface features with potential hydrological implications were described. To determine infiltration, a rainfall simulator with the following characteristics was used: 35 x 25 x 30 cm metal box with nozzles in the bottom, 2.5 cm apart (diameter of drops = 2-3 mm). The 4 box adjustable legs were set at 2 m height. Prior to installing the rainfall simulator, study zones were marked out using 30 cm-tall metal sheets. Each area measured approximately 875 cm2 and measurements were taken for slopes of 10 and 30% when it was possible. At the end of the slope a 25 cm-wide collector was semi-buried to collect runoff and sediment. Rainfall of variable intensity between 50-70 mmh-1 was simulated for periods of 30-45 minutes. Time to runoff (TR), volume to runoff (VR), steady-state infiltration rate (IR), runoff/rainfall ratio (RR), soil loss rate (SED) and sediment concentration (CSED) were measured. For some of the studied soils, the formation of horizons

  7. Solute leaching in a sandy soil with a water-repellent surface layer: a simulation.

    NARCIS (Netherlands)

    Rooij, de G.H.; Vries, de P.

    1996-01-01

    Many sandy soils in the Netherlands have a water-repellent surface layer covering a wettable soil with a shallow groundwater table. Fingers form in the water-repellent surface layer and rapidly transport water and solutes to the wettable soil in which the streamlines diverge. Although several field

  8. Proposta de delimitação da reserva ecológica nacional do Concelho de Viana do Alentejo

    OpenAIRE

    Borges, Bruno Miguel Guimarães, 1981-

    2012-01-01

    Relatório de estágio de mestrado, Geografia - Geografia Física e Ordenamento do Território, Universidade de Lisboa, Instituto de Geografia e Ordenamento do Território, 2012 A Reserva Ecológica Nacional (REN) do Município de Viana do Alentejo, elaborada ao abrigo Decreto-Lei 93/90, de 19 de março, encontra-se eficaz há cerca de 15 anos. Para além de ter ultrapassado o tempo máximo de vigência previsto no Regime Jurídico dos Instrumentos de Gestão Territorial e de existirem atualiza...

  9. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model

    Science.gov (United States)

    Decharme, Bertrand; Brun, Eric; Boone, Aaron; Delire, Christine; Le Moigne, Patrick; Morin, Samuel

    2016-04-01

    In this study we analyzed how an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over northern Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile, and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

  10. Removal of radioactive fallout from surface of soil and grassed surfaces using peelable coatings

    International Nuclear Information System (INIS)

    In the wake of the Chernobyl accident, it was found that the greatest contribution to the dose rate in the urban environment came from isotopes of radiocaesium deposited in open areas such as gardens and parks. Without intervention, the contamination would remain on or close to the soil surface for many decades. The efficiency and cost-effectiveness of peelable coatings as a means for removing the contamination was investigated. From small-scale tests it was found that peelable coatings based on polyvinyl alcohol and lignin were effective and inexpensive, both removing more than 90% of the contamination from dry soil. (author)

  11. State of the art in telemedicine - concepts, management, monitoring and evaluation of the telemedicine programme in Alentejo (Portugal).

    Science.gov (United States)

    Oliveira, Tiago Cravo; Branquinho, Maria José; Gonçalves, Luís

    2012-01-01

    Alentejo - one of five Portuguese continental regions - faces major problems impacting the health and social system of the region. Here, the low population density, the low educational and income level as well as an aging population have to be mentioned. Faced with the task of ensuring equal access to healthcare for all its inhabitants, the regional health authorities created the telemedicine program. From 1998 until 2000, the program developed in an experimental fashion, with teleconsultations involving a number of providers: primary health care centers, regional hospitals, and central hospitals. Between 2000 and 2010, there were a total of 135,000 telemedicine acts including teleconsultations, teleradiology (computerised tomography and x-rays), ultrasound telemedicine and telepathology. Presently, the network comprises 20 health centers and 6 hospitals, covering 4 districts. The platform is composed of high resolution videoconferencing equipment, software with patients' clinical records, an image archive, and a number of peripherals, such as electronic dermatoscopes and phonendoscopes. Teleconsultations are provided by fifteen medical specialties, across 3 district hospitals, ranging from neurology to pediatric surgery. In 2008, health authorities started the telelearning program, initially using point to point videoconferencing, and by the end of 2010, 848 healthcare professionals, across 52 locations, had participated in remote learning sessions, covering topics from chronic wound treatment, to infection control, to medical error. As of 2011, point to multipoint telelearning is also in operation. This paper provides an overview of the telemedicine program in Alentejo, including both infrastructure and operations. Preliminary results of an ongoing evaluation of the impact of teleconsultations on key indicators of the regional healthcare system are also presented (including current utilization and plans for future expansion). This article builds on the experience

  12. Heavy Metal Pollution of Surface Soil in Thrace Region (Turkey)

    CERN Document Server

    Cocskun, M; Frontasyeva, M V; Munevver, C; Eidhammer Sjobakk, T; Demkina, S V

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. S...

  13. Evaluating soil moisture constraints on surface fluxes in land surface models globally

    Science.gov (United States)

    Harris, Phil; Gallego-Elvira, Belen; Taylor, Christopher; Folwell, Sonja; Ghent, Darren; Veal, Karen; Hagemann, Stefan

    2016-04-01

    Soil moisture availability exerts a strong control over land evaporation in many regions. However, global climate models (GCMs) disagree on when and where evaporation is limited by soil moisture. Evaluation of the relevant modelled processes has suffered from a lack of reliable, global observations of land evaporation at the GCM grid box scale. Satellite observations of land surface temperature (LST) offer spatially extensive but indirect information about the surface energy partition and, under certain conditions, about soil moisture availability on evaporation. Specifically, as soil moisture decreases during rain-free dry spells, evaporation may become limited leading to increases in LST and sensible heat flux. We use MODIS Terra and Aqua observations of LST at 1 km from 2000 to 2012 to assess changes in the surface energy partition during dry spells lasting 10 days or longer. The clear-sky LST data are aggregated to a global 0.5° grid before being composited as a function dry spell day across many events in a particular region and season. These composites are then used to calculate a Relative Warming Rate (RWR) between the land surface and near-surface air. This RWR can diagnose the typical strength of short term changes in surface heat fluxes and, by extension, changes in soil moisture limitation on evaporation. Offline land surface model (LSM) simulations offer a relatively inexpensive way to evaluate the surface processes of GCMs. They have the benefits that multiple models, and versions of models, can be compared on a common grid and using unbiased forcing. Here, we use the RWR diagnostic to assess global, offline simulations of several LSMs (e.g., JULES and JSBACH) driven by the WATCH Forcing Data-ERA Interim. Both the observed RWR and the LSMs use the same 0.5° grid, which allows the observed clear-sky sampling inherent in the underlying MODIS LST to be applied to the model outputs directly. This approach avoids some of the difficulties in analysing free

  14. Variability of soil moisture and its relationship with surface albedo and soil thermal diffusivity at Astronomical Observatory, Thiruvananthapuram, south Kerala

    Indian Academy of Sciences (India)

    M S Roxy; V B Sumithranand; G Renuka

    2010-08-01

    Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76° 59′E longitude and 8° 30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with surface albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is greater than 40°. So the daily average surface albedo was calculated using the data when solar elevation angle is greater than 40°. The results indicate that the mean daily surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. Soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.

  15. Effect of some surface and subsurface attributes on soil water erosion

    Science.gov (United States)

    Bertol, Ildegardis; César Ramos, Júlio; Vidal Vázquez, Eva; Mirás Avalos, José Manuel

    2013-04-01

    Soil erosion is a complex phenomenon depending on climate, topography, soil intrinsic characteristics, crop and residue cover, and management and conservation practices that may be accelerated by man activities. Within the above mentioned factors, soil cover and soil management most influence soil erosion. Soil management includes mechanical mobilization and in soil conservationist systems soil residues are mobilized for increasing soil surface roughness. Even if soil roughness is ephemeral, it increases soil water storage and sediment retention in surface microdepressions, which contributes to decrease water erosion. Conservationist soil management systems also maintain the soil surface covered by crop residues, which are more persistent than roughness and contribute to dissipate kinetic energy from raindrops and partly also from runoff. Crop residues are more efficient than soil roughness in controlling water erosion because of its ability to retain detached soil particles. The objective of this study was to assess the efficiency of both soil cover by crop residues and soil surface roughness in controlling water erosion. A field experiments was performed on an Inceptisol in South Brazil under simulated rainfall conditions during 2012. The following treatments were evaluated: 1) residues of Italian ryegrass (Lolium multiflorum), 2) residues of common vetch (Vicia sativa), 3) scarification after cultivation of Italian ryegrass, 4) scarification after cultivation of common vetch, 5) scarified bare soil with high roughness as a control. Treatments #1 and 2 involved no-tilled soil with a rather smooth soil surface, where roots and crop residues of the previous crop were maintained. Treatments # 3 and 4 involved a rather high roughness, absence of previous crop residues and maintenance of antecedent roots. Experimental plots were 11 m long and 3.5 m wide with an area of 38.5 m2. Six successive simulated rainfall tests were applied using a rotating-boom rain simulator

  16. Soil Specific Surface Area and Non-Singularity of Soil-Water Retention at Low Saturations

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per;

    2013-01-01

    The dry end of the soil water characteristic (SWC) is important for modeling vapor flow dynamics and predicting soil properties such as specific surface area (SSA) and clay content (CL). Verification of new instrumentation for rapid measurement of the dry end of the SWC is relevant to avoid long...... Or (TO) and new single-parameter non-singularity (SPN) models; and evaluate estimates of SSA from water sorption, ethylene glycol monoethyl ether (EGME), and N2–BET methods. The AquaSorp successfully measured water sorption isotherms (∼140 data points) within a reasonably short time (1–3 d). The SPN...... model well described the distinct non-singularity between the adsorption and desorption branches, while the TO model captured the adsorption data reasonably well (<5% deviation from measurements), except for matric potentials below –200 MPa. The SSA derived from water sorption and the TO model were...

  17. Biological soil crust succession impact on soil moisture and temperature in the sub-surface along a rainfall gradient

    Science.gov (United States)

    Zaady, E.; Yizhaq, H.; Ashkenazy, Y.

    2012-04-01

    Biological soil crusts produce mucilage sheets of polysaccharides that cover the soil surface. This hydrophobic coating can seal the soil micro-pores and thus cause reduction of water permeability and may influence soil temperature. This study evaluates the impact of crust composition on sub-surface water and temperature over time. We hypothesized that the successional stages of biological soil crusts, affect soil moisture and temperature differently along a rainfall gradient throughout the year. Four experimental sites were established along a rainfall gradient in the western Negev Desert. At each site three treatments; crust removal, pure sand (moving dune) and natural crusted were monitored. Crust successional stage was measured by biophysiological and physical measurements, soil water permeability by field mini-Infiltrometer, soil moisture by neutron scattering probe and temperature by sensors, at different depths. Our main interim conclusions from the ongoing study along the rainfall gradient are: 1. the biogenic crust controls water infiltration into the soil in sand dunes, 2. infiltration was dependent on the composition of the biogenic crust. It was low for higher successional stage crusts composed of lichens and mosses and high with cyanobacterial crust. Thus, infiltration rate controlled by the crust is inverse to the rainfall gradient. Continuous disturbances to the crust increase infiltration rates, 3. despite the different rainfall amounts at the sites, soil moisture content below 50 cm is almost the same. We therefore predict that climate change in areas that are becoming dryer (desertification) will have a positive effect on soil water content and vice versa.

  18. Comparing soil and pond ash feedlot pen surfaces for environmental management

    Science.gov (United States)

    Removing manure and replacing soil to maintain pen surfaces is expensive. Pond ash (PA), a coal-fired electrical generation by-product, has good support qualities. A study was conducted comparing the performance of pond ash (PA) surfaced pens with soil surface (SS) pens. Four pens of an eight pen se...

  19. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  20. Construction methods pass through the surface patio in weathered rock and surface soil

    International Nuclear Information System (INIS)

    Through the surface of the patio or shaft construction in weathered rock layer and surface soil, it is one of the problems in the construction of roadway excavation. Introduced a mine shaft were used mining method from the top to down construction method (i. e. a general construction method) that is common through two main filling Patio, using the method from down to top of digging through the mountain tunneling of two main return air patio is successful practice of less investment and high speed, point out the conditions for its application. The latter method is neither a general construction method, nor is it a special construction method

  1. Density and Stability of Soil Organic Carbon beneath Impervious Surfaces in Urban Areas

    OpenAIRE

    Wei, Zongqiang; WU, SHAOHUA; Yan, Xiao; Zhou, Shenglu

    2014-01-01

    Installation of impervious surfaces in urban areas has attracted increasing attention due to its potential hazard to urban ecosystems. Urban soils are suggested to have robust carbon (C) sequestration capacity; however, the C stocks and dynamics in the soils covered by impervious surfaces that dominate urban areas are still not well characterized. We compared soil organic C (SOC) densities and their stabilities under impervious surface, determined by a 28-d incubation experiment, with those i...

  2. Characterization Investigation Study: Volume 3, Radiological survey of surface soils

    Energy Technology Data Exchange (ETDEWEB)

    Solow, A.J.; Phoenix, D.R.

    1987-12-01

    The Feed Materials Production Center was constructed to produce high purity uranium metal for use at various Department of Energy facilities. The waste products from these operations include general uncontaminated scrap and refuse, contaminated and uncontaminated metal scrap, waste oils, low-level radioactive waste, co-contaminated wastes, mixed waste, toxic waste, sludges from water treatment, and fly ash from the steam plant. This material is estimated to total more than 350,000 cubic meters. Other wastes stored in this area include laboratory chemicals and other combustible materials in the burn pit; fine waste stream sediments in the clear well; fly ash and waste oils in the two fly ash areas; lime-alum sludges and boiler plant blowdown in the lime sludge ponds; and nonradioactive sanitary waste, construction rubble, and asbestos in the sanitary landfill. A systematic survey of the surface soils throughout the Waste Storage Area, associated on-site drainages, and the fly ash piles was conducted using a Field Instrument for Detecting Low-Energy Radiation (FIDLER). Uranium is the most prevalent radioactive element in surface soil; U-238 is the principal radionuclide, ranging from 2.2 to 1790 pCi/g in the general Waste Storage Area. The maximum values for the next highest activity concentrations in the same area were 972 pCi/g for Th-230 and 298 pCi/g for U-234. Elevated activity concentrations of Th-230 were found along the K-65 slurry line, the maximum at 3010 pCi/g. U-238 had the highest value of 761 pCi/g in the drainage just south of pit no. 5. The upper fly ash area had the highest radionuclide activity concentrations in the surface soils with the maximum values for U-238 at 8600 pCi/g, U-235 at 2190 pCi/g, U-234 at 11,400 pCi/g, Tc-99 at 594 pCi/g, Ra-226 at 279 pCi/g, and Th-230 at 164 pCi/g.

  3. Characterization Investigation Study: Volume 3, Radiological survey of surface soils

    International Nuclear Information System (INIS)

    The Feed Materials Production Center was constructed to produce high purity uranium metal for use at various Department of Energy facilities. The waste products from these operations include general uncontaminated scrap and refuse, contaminated and uncontaminated metal scrap, waste oils, low-level radioactive waste, co-contaminated wastes, mixed waste, toxic waste, sludges from water treatment, and fly ash from the steam plant. This material is estimated to total more than 350,000 cubic meters. Other wastes stored in this area include laboratory chemicals and other combustible materials in the burn pit; fine waste stream sediments in the clear well; fly ash and waste oils in the two fly ash areas; lime-alum sludges and boiler plant blowdown in the lime sludge ponds; and nonradioactive sanitary waste, construction rubble, and asbestos in the sanitary landfill. A systematic survey of the surface soils throughout the Waste Storage Area, associated on-site drainages, and the fly ash piles was conducted using a Field Instrument for Detecting Low-Energy Radiation (FIDLER). Uranium is the most prevalent radioactive element in surface soil; U-238 is the principal radionuclide, ranging from 2.2 to 1790 pCi/g in the general Waste Storage Area. The maximum values for the next highest activity concentrations in the same area were 972 pCi/g for Th-230 and 298 pCi/g for U-234. Elevated activity concentrations of Th-230 were found along the K-65 slurry line, the maximum at 3010 pCi/g. U-238 had the highest value of 761 pCi/g in the drainage just south of pit no. 5. The upper fly ash area had the highest radionuclide activity concentrations in the surface soils with the maximum values for U-238 at 8600 pCi/g, U-235 at 2190 pCi/g, U-234 at 11,400 pCi/g, Tc-99 at 594 pCi/g, Ra-226 at 279 pCi/g, and Th-230 at 164 pCi/g

  4. Influence of weed mat and surface sawdust mulch on soil nutrient availability and soil chemical properties under organic blueberry production

    Science.gov (United States)

    Weed control represents one of the most important cultural management aspects for organic blueberry production. Two of the most common ways to control weeds in blueberries is by the use of surface sawdust mulch or by landscape fabric, often referred to as weed mat. Soil temperature and soil moisture...

  5. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from Synthetic Aperture Radar 1959

    Science.gov (United States)

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unles...

  6. Nocturnal soil CO2 uptake and its relationship to sub-surface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland

    Science.gov (United States)

    Despite their prevalence, little attention has been given to quantifying aridland soil and ecosystem carbon fluxes over prolonged, annually occurring dry periods. We measured surface soil respiration (Rsoil), volumetric soil moisture and temperature in inter- and under-canopy soils, sub-surface soi...

  7. Effect of soil surface conditions on runoff velocity and sediment mean aggregate diameter

    Science.gov (United States)

    César Ramos, Júlio; Bertol, Ildegardis; Paz González, Antonio; de Souza Werner, Romeu; Marioti, Juliana; Henrique Bandeira, Douglas; Andrighetti Leolatto, Lidiane

    2013-04-01

    Soil cover and soil management are the factors that most influence soil erosion by water, because they directly affect soil surface roughness and surface cover. The main effect of soil cover by crop residues consists in dissipation of kinetic energy of raindrops and also partly kinetic energy of runoff, so that the soil disaggregation is considerably reduced but, in addition, soil cover captures detached soil particles, retains water on its surface and decreases runoff volume and velocity. In turn, soil surface roughness, influences soil surface water storage and infiltration and also runoff volume and velocity, sediment retention and subsequently water and sediment losses. Based on the above rationale, we performed a field experiment to assess the influence of soil cover and soil surface roughness on decay of runoff velocity as well as on mean diameter of transported sediments (D50 index). The following treatments were evaluated: SRR) residues of Italian ryegrass (Lolium multiflorum) on a smooth soil surfcace, SRV) residues of common vetch (Vicia sativa) on a smooth soil surface, SSR) scarification after cultivation of Italian ryegrass resulting in a rough surface, SSV) scarification after cultivation of common vetch resulting in a rough surface, and SBS) scarified bare soil with high roughness as a control. The field experiments was performed on an Inceptisol in South Brazil under simulated rainfall conditions during 2012. Experimental plots were 11 m long and 3.5 m wide with an area of 38.5 m2. Six successive simulated rainfall tests were applied using a rotating-boom rain simulator. During each test, rain intensity was 60 mmhr-1, whereas rain duration was 90 minutes. Runoff velocity showed no significant differences between cultivated treatments. However, when compared to bare soil treatment, SBS (0.178 m s-1) and irrespective of the presence of surface crop residues or scarification operations, cultivated soil treatments significantly reduced runoff velocity

  8. Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air–soil exchange and implications for global cycling

    International Nuclear Information System (INIS)

    There are limited data on persistent organic pollutants (POPs) in the soils of the Tibetan Plateau. This paper presents data from a survey of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in 40 background surface (0–5 cm) soils of the Tibetan Plateau. Soil concentrations (pg/g, dw) ranged as follows: DDTs, 13-7700; HCHs, 64-847; HCB, 24-564; sum of 15 PCBs, 75-1021; and sum of 9 PBDEs, below detection limit −27. Soil DDT, HCB, PCB and PBDE concentrations were strongly influenced by soil organic carbon content. HCH concentrations were clearly associated with the proximity to source regions in south Asia. The air–soil equilibrium status of POPs suggested the Tibetan soils may be partial “secondary sources” of HCB, low molecular weight PCBs and HCHs and will likely continue to be “sinks” for the less volatile DDE and DDT. - Highlights: ► Soil organic carbon content influence the spatial distribution of persistent organic pollutants. ► The Tibetan soil acts as “secondary sources” for HCB, low molecular weight PCBs and HCHs. ► The Tibetan soil will continue to be “sinks” for DDE and DDT. - Tibetan soils may be potential “secondary sources” of the HCB, low molecular weight PCBs and HCHs that are observed in air.

  9. Potencialidades do sorgo sacarino [Sorghum bicolor (L. Moench] para a produção sustentável de bioetanol no Alentejo The potential of sweet sorghum [Sorghum bicolor (L. Moench] for sustainable bioethanol production in Alentejo

    Directory of Open Access Journals (Sweden)

    M.E.V. Lourenço

    2007-01-01

    Full Text Available Fazem-se algumas considerações sobre a importância dos biocombustíveis (biodiesel e bioetanol, num futuro próximo, e acerca das potencialidades do sorgo sacarino para a produção de bioetanol. Apresentam-se resultados de um ensaio de quatro dotações de rega (1500, 2500, 3500 e 4500 m³/ha aplicadas a uma variedade de sorgo sacarino. Avaliou-se a concentração em sólidos solúveis (ºBrix nos caules verdes e a altura das plantas ao longo do ciclo. Determinou-se a produção de matéria verde em caules e de matéria seca em caules, folhas e inflorescências. Estimou-se também a produção de açúcar e bioetanol por hectare. Os dados revelaram que a dotação de rega mais aconselhável foi a de 4500 m³/ha pois conduziu aos melhores resultados em todos os parâmetros, excepto no que se refere ao Brix que foi semelhante à da dotação de 3500 m ³/ha (17 e 16%, respectivamente. Com aquela dotação de rega, se os resultados se confirmarem, será de esperar que, no Alentejo, as produções de bioetanol, da referida cultura, sejam superiores a 5000 l/ha.The importance of biofuels (biodiesel and bioethanol in the next future, and the potential of sweet sorghum for bioethanol production are discussed. Results of a trial with four irrigation treatments (1500, 2500, 3500 e 4500 m³/ha applied, to one variety of sweet sorghum, are presented. The soluble solids content (ºBrix of the fresh stalks and plant height were monitored along the life cycle of the crop. The yield of fresh stalks and the dry matter yield of stalks, leaves and inflorescences were determined. Sugar and bioethanol yields were also estimated. The results showed that the 4500 m³/ha irrigation treatment conducted to the best results in all variables, except for the Brix values that were similar to the 3500 m³/ha treatment (17 and 16%, respectively. With that irrigation treatment, and if the results are confirmed in the future, it will be expected that bioethanol yields from

  10. Physical characterization, spectral response and remotely sensed mapping of Mediterranean soil surface crusts

    NARCIS (Netherlands)

    Jong, S.M. de; Addink, E.A.; Duijsing, D.; Beek, L.P.H. van

    2011-01-01

    Soil surface crusting and sealing are frequent but unfavorable processes in Mediterranean areas. Soil crust and seals form on bare soil subject to high-intensity rainfall, resulting in a hard, impenetrable layer that impedes infiltration and hampers the germination and establishment of plants. The a

  11. Calibration and validation of the COSMOS rover for surface soil moisture

    Science.gov (United States)

    The mobile COsmic-ray Soil Moisture Observing System (COSMOS) rover may be useful for validating satellite-based estimates of near surface soil moisture, but the accuracy with which the rover can measure 0-5 cm soil moisture has not been previously determined. Our objectives were to calibrate and va...

  12. The SMAP level 4 surface and root zone soil moisture data assimilation product

    Science.gov (United States)

    The NASA Soil Moisture Active Passive (SMAP) mission is scheduled for launch in January 2015 and will provide L-band radar and radiometer observations that are sensitive to surface soil moisture (in the top few centimeters of the soil column). For several of the key applications targeted by SMAP, ho...

  13. A physical scaling model for aggregation and disaggregation of field-scale surface soil moisture dynamics

    Science.gov (United States)

    Ojha, Richa; Govindaraju, Rao S.

    2015-07-01

    Scaling relationships are needed as measurements and desired predictions are often not available at concurrent spatial support volumes or temporal discretizations. Surface soil moisture values of interest to hydrologic studies are estimated using ground based measurement techniques or utilizing remote sensing platforms. Remote sensing based techniques estimate field-scale surface soil moisture values, but are unable to provide the local-scale soil moisture information that is obtained from local measurements. Further, obtaining field-scale surface moisture values using ground-based measurements is exhaustive and time consuming. To bridge this scale mismatch, we develop analytical expressions for surface soil moisture based on sharp-front approximation of the Richards equation and assumed log-normal distribution of the spatial surface saturated hydraulic conductivity field. Analytical expressions for field-scale evolution of surface soil moisture to rainfall events are utilized to obtain aggregated and disaggregated response of surface soil moisture evolution with knowledge of the saturated hydraulic conductivity. The utility of the analytical model is demonstrated through numerical experiments involving 3-D simulations of soil moisture and Monte-Carlo simulations for 1-D renderings—with soil moisture dynamics being represented by the Richards equation in each instance. Results show that the analytical expressions developed here show promise for a principled way of scaling surface soil moisture.

  14. Changes in Temperature and Fate of Soil Organic Matter in an Andisol due to Soil Surface Burning

    Science.gov (United States)

    Obuchi, Atsuko; Nishimura, Taku; Mizoguchi, Masaru; Imoto, Hiromi; Miyazaki, Tsuyoshi

    This is a print of a camera-ready Japanese manuscript for the Transactions of JSIDRE. This will provide an example and directions for the layout and font size/style to be used. Please refer to this when preparing the headings, figures/table and text of your manuscript. The manuscript should be submitted on A4 size. Changes in temperature, soil moisture, and carbon and nitrogen contents were measured in Andisol under soil surface burning. Soil samples were packed into an unglazed cylinder of 15 cm inner diameter and 30 cm high. Charcoal was burned for 6 hours on the surface of the soil column. During the burning soil surface temperature rose to between 600-700°C. In initially wet soil, rise in soil temperature was retarded for a while at around 95-100°C. On the other hand, in initially dry Toyoura sand showed more rapid temperature increase without retardation. The temperature retardation in the wet soil could be caused by consumption of latent heat by vaporization of soil water. Rate of proceeding of the 100°C front was proportional to square root of the burning time. This indicates that higher the initial volumetric water content, shallower the depth affected by burning. Soil samples suffered temperature above 500°C still had total carbon and nitrogen contents of over 20 and 1 g kg-1, respectively, whereas the soil that was heated up to over 500°C by muffle furnace contained less than 0.4 and 0.1 g kg-1 of the carbon and nitrogen.

  15. Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany

    International Nuclear Information System (INIS)

    This study presents a combined geochemical and mineralogical survey of urban surface soils. Many studies on urban soils are restricted to purely chemical surveys in order to investigate soil pollution caused by anthropogenic activities such as traffic, heating, industrial processing, waste disposal and many more. In environmental studies, chemical elements are often distinguished as lithogenic and anthropogenic elements. As a novel contribution to those studies, the authors combined the analysis of a broad set of chemical elements with the analysis of the main mineralogical phases. The semi-quantification of mineralogical phases supported the assignment of groups of chemical elements to lithogenic or anthropogenic origin. Minerals are important sinks for toxic elements. Thus, knowledge about their distribution in soils is crucial for the assessment of the environmental hazards due to pollution of urban soils. In Pforzheim, surface soils (0-5 cm depth) from various land use types (forest, agriculture, urban green space, settlement areas of various site densities) overlying different geological units (clastic and chemical sediments) were investigated. Urban surface soils of Pforzheim reflect to a considerable degree the mineral and chemical composition of parent rocks. Irrespective of the parent rocks, elevated concentrations of heavy metals (Zn, Cu, Pb, Sn, Ag) were found in soils throughout the whole inner urban settlement area of Pforzheim indicating pollution. These pollutants will tend to accumulate in inner urban surface soils according to the available adsorption capacity, which is normally higher in soils overlying limestone than in soils overlying sandstone. However, inner urban surface soils overlying sandstone show elevated concentrations of carbonates, phyllo-silicates and Fe and elevated pH values compared with forest soils overlying sandstone. Thus, in comparison to forest soils overlying sandstones, inner urban soils overlying sandstone affected by

  16. Calibration of an impedance probe for estimation of surface soil water content over large regions

    OpenAIRE

    Cosh, Michael H; Jackson, Thomas J.; Bindlish, Rajat; Famiglietti, James S.; Ryu, Dongryeol

    2005-01-01

    Large region surface soil moisture estimates are important for both hydrologic modeling and remote sensing applications. For soil moisture monitoring, gravimetric soil moisture sampling is reliable; however, it requires a significant effort to gather and process samples. Portable impedance probes serve as a valuable alternative to destructive gravimetric sampling. These probes measure the dielectric properties of the soil–water–air mixture from which we can infer the volumetric soil moisture....

  17. EFFECTS OF SURFACE WAVES AND MARINE SOIL PARAMETERS ON SEABED STABILITY

    Institute of Scientific and Technical Information of China (English)

    林缅; 李家春

    2001-01-01

    Based on the Yamamoto's soil model by considering the Coulomb friction effects, the wave-induced seabed instability has been investigated. An analytical solution is derived for soil response of a finite depth seabed under surface water wave. The effects of wave parameters and soil characteristics on the seabed instability are addressed for three types of soil. Finally, the roles of Coulomb friction stability are then analyzed as well.

  18. Application of a mesoscale atmospheric coupled fire model BRAMS-SFIRE to Alentejo wildland fire and comparison of performance with the fire model WRF-SFIRE

    Science.gov (United States)

    Menezes, Isilda; Freitas, Saulo; Stockler, Rafael; Mello, Rafael; Ribeiro, Nuno; Corte-Real, João; Surový, Peter

    2015-04-01

    Models of fuel with the identification of vegetation patterns of Montado ecosystem in Portugal was incorporated in the mesoscale Brazilian Atmospheric Modeling System (BRAMS) and coupled with a spread wildland fire model. The BRAMS-FIRE is a new system developed by the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC/INPE, Brazil) and the Instituto de Ciências Agrárias e Ambientais Mediterrâneas (ICAAM, Portugal). The fire model used in this effort was originally, developed by Mandel et al. (2013) and further incorporated in the Weather Research and Forecast model (WRF). Two grids of high spatial resolution were configured with surface input data and fuel models integrated for simulations using both models BRAMS-SFIRE and WRF-SFIRE. One grid was placed in the plain land and the other one in the hills to evaluate different types of fire propagation and calibrate BRAMS-SFIRE. The objective is simulating the effects of atmospheric circulation in local scale, namely the movements of the heat front and energy release associated to it, obtained by this two models in an episode of wildland fire which took place in Alentejo area in the last decade, for application to planning and evaluations of agro wildland fire risks. We aim to model the behavior of forest fires through a set of equations whose solutions provide quantitative values of one or more variables related to the propagation of fire, described by semi-empirical expressions that are complemented by experimental data allow to obtain the main variables related advancing the perimeter of the fire, as the propagation speed, the intensity of the fire front and fuel consumption and its interaction with atmospheric dynamic system References Mandel, J., J. D. Beezley, G. Kelman, A. K. Kochanski, V. Y. Kondratenko, B. H. Lynn, and M. Vejmelka, 2013. New features in WRF-SFIRE and the wildfire forecasting and danger system in Israel. Natural Hazards and Earth System Sciences, submitted, Numerical Wildfires, Carg

  19. Analytical solutions for two-dimensional soil heat flow with radiation surface boundary conditions

    International Nuclear Information System (INIS)

    Heat flow add temperature variations in soil are important in agriculture, forestry, and ecology. Nonuniform surface cover and variability in soil properties result in two-dimensional soil heat flow. This study derives analytical solutions for unsteady two-dimensional soil heat transfer problems with standard (constant temperature coefficient) and modified (temperature coefficient varies with position) radiation surface boundary conditions. Solutions are periodic in time and horizontal direction. The structure of the solutions guarantees that soil temperatures are smooth functions of position and time, even if the temperature coefficient or forcing function in the radiation boundary condition are discontinuous. Calculated soil temperature heat flux densities, and surface energy balance components for bare wet strips alternating with strips covered with either chalk, black plastic, or clear plastic were found to vary strongly with time and position. For diurnal variations, lateral heat flow only significantly affected temperatures in the middle of strips narrower than approximately 0.2 m. Sensitivity of soil temperature to changes in soil thermal properties increased as the temperature coefficient in the surface boundary condition decreased. Both cases showed that spatial differences in albedo, surface resistance, and serodynamic resistance spatially alter the surface energy balance and soil thermal regimes, including surface temperature and heat flux density

  20. Soil model systems used to assess fouling, soil adherence and surface cleanability in the laboratory: a review

    Directory of Open Access Journals (Sweden)

    Toure, Y.

    2013-01-01

    Full Text Available Surface fouling is a chronic problem in processing industries. The hygienic state of surfaces is thus a critical parameter with respect to the performance of the production process and to the final quality of the product. For this reason, cleaning and disinfection are essential. The most important first step in implementing a fouling mitigation strategy through cleaning and disinfection is to understand the mechanisms of fouling. This allows ways to be found to reduce, even to eliminate fouling, or to improve the effectiveness of cleaning and disinfection. This paper reviews the relevant literature and summarizes a selection of soil model systems used to aid such improvements. Organic, mineral, microbial, particulate, and composite soil model systems are presented. These soil model systems are of particular relevance in the study of fouling, cleaning or soil adhesion onto solid surfaces in the laboratory environment. The key features of the models, as well as their practical advantages and disadvantages, are described and discussed.

  1. A long-term simulation of surface fluxes and soil moisture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.; Lee, R.L. [Lawrence Livermore National Lab., CA (United States); Ek, M. [Oregon State Univ., Corvallis, OR (United States). Dept. of Atmospheric Science

    1993-09-01

    The heat fluxes over land surfaces play important roles in shaping atmospheric flows on various temporal and spatial scales. Fast and McCorcle showed that sea-breeze-like mesoscale circulations can develop over land surfaces of heterogeneous soil type and soil moisture. Evaporation from land surfaces is one of the major moisture sources for the summertime convective precipitation in extratropics. General circulation model studies also indicate that surface characteristics cause a significant impact on the simulated climate.

  2. Determination of thorium, uranium, and potassium elemental concentrations in surface soils in Cyprus

    OpenAIRE

    Tzortzis, Michalis; Tsertos, Haralabos

    2003-01-01

    A comprehensive study was conducted to determine thorium, uranium and potassium elemental concentrations in surface soils throughout the accessible area of Cyprus using high-resolution gamma-ray spectrometry. A total of 115 soil samples was collected from all over the bedrock surface of the island based on the different lithological units of the study area. The soil samples were sieved through a fine mesh, sealed in 1000-mL plastic Marinelli beakers, and measured in the laboratory in terms of...

  3. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Button, Patrick; Hendrickson, Alex; Spataru, Sergiu; Glick, Stephen

    2015-06-14

    The goals of the project were: Determine applicability of transmission line method (TLM) to evaluate sheet resistance of soils on module glass;
    Evaluate various soils on glass for changes in surface resistance and their ability to promote potential-induced degradation with humidity (PID);
    Evaluate PID characteristics, rate, and leakage current increases on full-size mc-Si modules associated with a conductive soil on the surface.

  4. Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air–soil exchange

    International Nuclear Information System (INIS)

    There are limited data on polycyclic aromatic hydrocarbons (PAHs) in both the atmosphere and soil of the Tibetan Plateau (TP). Concentrations of PAHs were therefore measured in 13 XAD resin-based passive air samplers and 41 surface (0–5 cm) soil samples across the TP. The average concentration of atmospheric PAHs was 5.55 ng/m3, which was lower than that reported for other background areas, but higher than the Arctic. Concentrations in the soils fell in a wide range from 5.54 to 389 ng/g, with an average of 59.9 ng/g. Elevation was found to play an important role in determining the spatial distribution of soil PAHs. The air–soil exchange state showed that the soils of the TP will likely remain as a sink for high molecular weight PAHs, but may become a potential “secondary source” for low molecular weight PAHs. Highlights: • The levels of PAHs in air and soil of the Tibetan Plateau were relatively lower than other background region of world. • The soil PAHs concentration decreased with the increase of elevation. • The Tibetan Plateau will likely remain as a sink for high molecular weight PAHs. • The Tibetan Plateau may become a potential “secondary source” for low molecular weight PAHs. -- The Tibetan soil will likely remain as a sink for high molecular weight PAHs, but may become a potential “secondary source” for low molecular weight PAHs

  5. Radiation balance of a soil-straw surface modified by straw color

    International Nuclear Information System (INIS)

    Straw color may alter the net radiative flux at the soil-straw surface and, consequently, the availability of energy for soil, biological, and atmospheric processes. This study ascertained the radiation balance of a soil-straw surface as modified by the color of the straw on the surface. Barley (Hordeum vulgare L.) stubble and loose straw on 36-m2 plots near Fairbanks, AK, was painted black, white, or remained unpainted (natural) in a randomized block experimental design. Reflected global radiation was measured in the spring of 1988–1990 and net radiation was monitored in the spring of 1990. Midday reflected global radiation and soil-straw surface temperatures were measured on clear days in 1989. The albedo of the black straw treatment was 0.05, of the natural straw treatment was 0.2, and of the white straw treatment was 0.3. The black straw treatment resulted in higher midday surface temperatures and consequently higher emission of longwave radiation compared with other straw color treatments. A soilstraw-atmosphere system model provided good estimates of the measured net radiative flux in 1990 (R2 = 0.91). The model predicted that a soil-black straw surface would absorb 10% more radiation than a soil-natural straw surface and 15% more radiation than a soil-white straw surface averaged over the three years. The results suggest that straw color management can be an option for altering the surface radiation balance in regions with extreme climates. (author)

  6. Heterogeneity of soil surface temperature induced by xerophytic shrub in a revegetated desert ecosystem, northwestern China

    Indian Academy of Sciences (India)

    Ya-Feng Zhang; Xin-Ping Wang; Yan-Xia PAN; Rui Hu; Hao Zhang

    2013-06-01

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the nearsurface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub (Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of ‘cool islands’ in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.

  7. Soil heat flux and day time surface energy balance closure at astronomical observatory, Thiruvananthapuram, south Kerala

    Indian Academy of Sciences (India)

    M S Roxy; V B Sumithranand; G Renuka

    2014-06-01

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, pre-monsoon, SW monsoon and NE monsoon seasons. The diurnal variation is characterized by a cross-over from negative to positive values at 0700 h, occurrence of maximum around noon and return to negative values in the late evening. The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat flux * is estimated in all seasons. Daytime surface energy balance at the surface on wet and dry seasons is investigated. The average Bowen’s ratio during the wet and dry seasons were 0.541 and 0.515, respectively indicating that considerable evaporation takes place at the surface. The separate energy balance components were examined and the mean surface energy balance closure was found to be 0.742 and 0.795 for wet and dry seasons, respectively. When a new method that accounts for both soil thermal conduction and soil thermal convection was adopted to calculate the surface heat flux, the energy balance closure was found to be improved. Thus on the land surface under study, the soil vertical water movement is significant.

  8. A radiosity-based model to compute the radiation transfer of soil surface

    Science.gov (United States)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  9. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broad bean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broad bean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plant during the experimental period are 68 % and 32 % for broadbean, 47 % and 53 % for ryegrass, respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137Cs concentration of the soil and the soil mass adhered to plant surfaces. (authors)

  10. Surface Soil Moisture Assimilation From ASAR Imagery for Root Zone Moisture Predictions at Basin Scale

    Science.gov (United States)

    Caschili, A.; Montaldo, N.; Mancini, M.; Albertson, J. D.; Botti, P.; Dessena, M. A.; Carboni, E.

    2003-12-01

    The state of the root-zone soil moisture is a key variable controlling surface water and energy balances. Emerging efforts in data assimilation seek to guide land surface models (LSMs) with periodic observations of surface soil moisture. Montaldo et al. (Water Resour. Res., 2001) and Montaldo and Albertson (Adv. Water Resour., 2003) developed an operational multi-scale assimilation system for robust root zone soil moisture predictions at the local scale. The assimilation scheme, developed for a force-restore method based LSM, updates the measured surface soil moisture, the root zone soil water content and the soil hydraulic conductivity, in a manner that compensates for both inaccurate initial conditions and model parameter estimates. In this presentation we describe the development and testing of an operational assimilation system for robust root-zone soil moisture predictions at the basin scale. High resolution data of the new ASAR (advanced synthetic aperture radar) sensor aboard European Space Agency's Envisat satellite offers the opportunity for monitoring surface soil moisture at high resolution (up to 30 m), which is suitable for distributed mapping within the small scales of typical Mediterranean basins. Indeed, adequate spatio-temporal monitoring of the soil moisture is essential to improve our capability to simulate the water balance. As part of a recently-approved European Space Agency (ESA) Envisat AO project, ASAR-based soil moisture mapping of the Mulargia basin (area of about 65 sq.km), sub-basin of the Flumendosa basin in Sardinia, are available . This semi-arid basin has a key role in the water resources management of Sardinia. Semi-arid regions, such as Sardinia island, suffers from water scarcity, which is increasingly due to the broad desertification processes of the Mediterranean area. Within the basin, land surface fluxes are well monitored through two evapotraspiration measurement systems (one eddy correlation technique based station, and one

  11. Cone model for two surface foundations on layered soil

    Institute of Scientific and Technical Information of China (English)

    Chen Wenhua

    2006-01-01

    In this paper, the cone model is applied to the vibration analysis of two foundations on a layered soil half space. In the analysis, the total stress field in the subsoil is divided into the free-field and the scattering field. Seed's simplified method is adopted for the free-field analysis,while the cone model is proposed for analyzing the dynamic scattering stress wave field.The shear stress field and the compressive stress field in the layered stratum with two scattering sources are calculated by shear cone and compressive cone, respectively. Furthermore, the stress fields in the subsoil with two foundations are divided into six zones, and the P wave and S wave are analyzed in each zone. Numerical results are provided to illustrate features of the added stress field for two surface foundations under vertical and horizontal sinusoidal force excitation. The proposed cone model may be useful in handling some of the complex problems associated with multi-scattering sources.

  12. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    Science.gov (United States)

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (MODIS data. PMID:26090852

  13. Incorporation of water vapor transfer in the JULES land surface model: Implications for key soil variables and land surface fluxes

    Science.gov (United States)

    Garcia Gonzalez, Raquel; Verhoef, Anne; Luigi Vidale, Pier; Braud, Isabelle

    2012-05-01

    This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapor transfer. The model was tested for three sites representative of semiarid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia), and Audubon site (Arizona, USA). Water vapor flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapor diffusion; thermal vapor flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapor flux had an effect on the diurnal evolution of evaporation, soil moisture content, and surface temperature. The incorporation of additional processes, such as water vapor flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

  14. Assimilating remote sensing data in a surface flux-soil moisture model

    Science.gov (United States)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius P.

    2002-06-01

    A key state variable in land surface-atmosphere interactions is soil moisture, which affects surface energy fluxes, runoff and the radiation balance. Soil moisture modelling relies on parameter estimates that are inadequately measured at the necessarily fine model scales. Hence, model soil moisture estimates are imperfect and often drift away from reality through simulation time. Because of its spatial and temporal nature, remote sensing holds great promise for soil moisture estimation. Much success has been attained in recent years in soil moisture estimation using passive and active microwave sensors, but progress has been slow. One reason for this is the scale disparity between remote sensing data resolution and the hydrologic process scale. Other impediments include vegetation cover and microwave penetration depth. As a result, currently there is no comprehensive method for assimilating remote soil moisture observations within a surface hydrology model at watershed or larger scales.This paper describes a measurement-modelling system for estimating the three-dimensional soil moisture distribution, incorporating remote microwave observations, a surface flux-soil moisture model, a radiative transfer model and Kalman filtering. The surface model, driven by meteorological observations, estimates the vertical and lateral distribution of water. Based on the model soil moisture profiles, microwave brightness temperatures are estimated using the radiative transfer model. A Kalman filter is then applied using modelled and observed brightness temperatures to update the model soil moisture profile.The modelling system has been applied using data from the Southern Great Plains 1997 field experiment. In the presence of highly inaccurate rainfall input, assimilation of remote microwave data results in better agreement with observed soil moisture. Without assimilation, it was seen that the model near-surface soil moisture reached a minimum that was higher than observed

  15. Density and stability of soil organic carbon beneath impervious surfaces in urban areas.

    Science.gov (United States)

    Wei, Zongqiang; Wu, Shaohua; Yan, Xiao; Zhou, Shenglu

    2014-01-01

    Installation of impervious surfaces in urban areas has attracted increasing attention due to its potential hazard to urban ecosystems. Urban soils are suggested to have robust carbon (C) sequestration capacity; however, the C stocks and dynamics in the soils covered by impervious surfaces that dominate urban areas are still not well characterized. We compared soil organic C (SOC) densities and their stabilities under impervious surface, determined by a 28-d incubation experiment, with those in open areas in Yixing City, China. The SOC density (0-20 cm) under impervious surfaces was, on average, 68% lower than that in open areas. Furthermore, there was a significantly (Pdensities of SOC and total nitrogen (N) in the open soils, whereas the correlation was not apparent for the impervious-covered soils, suggesting that the artificial soil sealing in urban areas decoupled the cycle of C and N. Cumulative CO2-C evolved during the 28-d incubation was lower from the impervious-covered soils than from the open soils, and agreed well with a first-order decay model (Ct = C1+C0(1-e-kt)). The model results indicated that the SOC underlying capped surfaces had weaker decomposability and lower turnover rate. Our results confirm the unique character of urban SOC, especially that beneath impervious surface, and suggest that scientific and management views on regional SOC assessment may need to consider the role of urban carbon stocks. PMID:25299685

  16. Influence of lateral subsurface flow and connectivity on soil water storage in land surface modeling

    Science.gov (United States)

    Kim, Jonggun; Mohanty, Binayak P.

    2016-01-01

    Lateral surface/subsurface flow and their connectivity play a significant role in redistributing soil water, which has a direct effect on biological, chemical, and geomorphological processes in the root zone (~1 m). However, most of the land surface models neglect the horizontal exchanges of water at the grid or subgrid scales, focusing only on the vertical exchanges of water as one-dimensional process. To develop better hydrologic understanding and modeling capability in complex landscapes, in this study we added connectivity-based lateral subsurface flow algorithms in the Community Land Model. To demonstrate the impact of lateral flow and connectivity on soil water storage we designed three cases including the following: (1) with complex surface topography only, (2) with complex surface topography in upper soil layers and soil hydraulic properties with uniform anisotropy. and (3) with complex surface topography and soil hydraulic properties with spatially varying anisotropy. The connectivity was considered as an indicator for the variation of anisotropy in the case 3, which was created by wetness conditions or geophysical controls (e.g., soil type, normalized difference vegetation index, and topographic index). These cases were tested in two study sites (ER 5 field and ER-sub watershed in Oklahoma) comparing to the field (gravimetric and remote sensing) soil moisture observations. Through the analysis of spatial patterns and temporal dynamics of soil moisture predictions from the study cases, surface topography was found to be a crucial control in demonstrating the variation of near surface soil moisture, but not significantly affected the subsurface flow in deeper soil layers. In addition, we observed the best performance in case 3 representing that the lateral connectivity can contribute effectively to quantify the anisotropy and redistributing soil water in the root zone. Hence, the approach with connectivity-based lateral subsurface flow was able to better

  17. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  18. Estrutura de capitais das PME produtoras de bens transacionáveis da região Alentejo: factores determinantes do endividamento

    OpenAIRE

    Cardoso, Carlos Alberto Garcia

    2015-01-01

    Neste trabalho, procuramos analisar os fatores determinantes do endividamento, de uma amostra de 2.064 PME produtoras de bens transacionáveis da Região Alentejo, no período compreendido entre 2006 e 2013. Centramo-nos no estudo dos fatores habitualmente tidos como determinantes da estrutura de capitais, maturidade da dívida e estrutura da dívida. Para determinação dos resultados, foram utilizados métodos univariados e de regressão sobre dados em painel e testadas as hipóteses. Definimos co...

  19. Satellite remote sensing applications for surface soil moisture monitoring: A review

    Institute of Scientific and Technical Information of China (English)

    Lingli WANG; John J.QU

    2009-01-01

    Surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/ atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. Recent technological advances in satellite remote sensing have shown that soil moisture can be measured by a variety of remote sensing techniques,each with its own strengths and weaknesses. This paper presents a comprehensive review of the progress in remote sensing of soil moisture, with focus on technique approaches for soil moisture estimation from optical,thermal, passive microwave, and active microwave measurements. The physical principles and the status of current retrieval methods are summarized. Limitations existing in current soil moisture estimation algorithms and key issues that have to be addressed in the near future are also discussed.

  20. Experimental study on the relation between the water content of surface soil and the acoustic wave

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the relation between the water content changing of surface soil and micro-quake recorded before earthquakes, we carried out a simulation experiment in laboratory. Its purpose is to explore whether the acoustic wave generated by micro-fracturing before earthquake are able to change water content of surface soil, so as to understand the relation between thermal anomaly in the remote sensing image got from the seismogenic area and the coming earthquake. The result of the experiment shows that when the acoustic wave enters into the surface soil the water content here increases on the background of decreasing due to natural evaporation. In the meantime, temperature here decreases.

  1. A global analysis of soil moisture derived from satellite observations and a land surface model

    Directory of Open Access Journals (Sweden)

    K. T. Rebel

    2012-03-01

    Full Text Available Soil moisture availability is important in regulating photosynthesis and controlling land surface-climate feedbacks at both the local and global scale. Recently, global remote-sensing datasets for soil moisture have become available. In this paper we assess the possibility of using remotely sensed soil moisture – AMSR-E (LPRM – to similate soil moisture dynamics of the process-based vegetation model ORCHIDEE by evaluating the correspondence between these two products using both correlation and autocorrelation analyses. We find that the soil moisture product of AMSR-E (LPRM and the simulated soil moisture in ORCHIDEE correlate well in space and time, in particular when considering the root zone soil moisture of ORCHIDEE. However, the root zone soil moisture in ORCHIDEE has on average a higher temporal autocorrelation relative to AMSR-E (LPRM and in situ measurements. This may be due to the different vertical depth of the two products – AMSR-E (LPRM at the 2–5 cm surface depth and ORCHIDEE at the root zone (max. 2 m depth – to uncertainty in precipitation forcing in ORCHIDEE, and to the fact that the structure of ORCHIDEE consists of a single-layer deep soil, which does not allow simulation of the proper cascade of time scales that characterize soil drying after each rain event. We conclude that assimilating soil moisture, using AMSR-E (LPRM in a land surface model like ORCHIDEE with an improved hydrological model of more than one soil layer, may significantly improve the soil moisture dynamics, which could lead to improved CO2 and energy flux predictions.

  2. Assessing eco-environmental performance of agricultural production in OECD countries: combination of soil surface, soil system and farm gate methods of nutrient auditing

    OpenAIRE

    Viet-Ngu Hoang; Mohammad Alauddin

    2009-01-01

    Nitrogen balance is increasingly used as an indicator of the environmental performance of agricultural sector in national, international, and global contexts. There are three main methods of accounting the national nitrogen balance: farm gate, soil surface, and soil system. OECD (2008) recently reported the nitrogen and phosphorus balances for member countries for the 1985 - 2004 period using the soil surface method. The farm gate and soil system methods were also used in some international p...

  3. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. PMID:26413801

  4. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    Science.gov (United States)

    Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.

    2016-01-01

    Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile. The results showed that the concentration of SOC in the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth. Over the 7-year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 in the bare soil. The sequestration of SOC in the 1-2 m depth of the soil accounted for 79, 68 and 74 % of the SOC sequestered in the 2 m deep soil profile under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  5. Organic matter composition of soil macropore surfaces under different agricultural management practices

    Science.gov (United States)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  6. EFFECT OF SOIL TILLAGE AND PLANT RESIDUE ON SURFACE ROUGHNESS OF AN OXISOL UNDER SIMULATED RAIN

    Directory of Open Access Journals (Sweden)

    Elói Panachuki

    2015-02-01

    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  7. Sorption of a triazol derivative by soils: importance of surface acidity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The sorption of a triazol derivative, 1-(4-chlorophenyl)- 4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)penten-3-ol with a common name of S3307D, on fifteen soils and three H2O2-treated soils was investigated. The sorption isotherm for each untreated and treated soil was non-linear, and was best fitted to Freundlich sorption equation. Soils containing high amount of clay content or organic matter or both sorbed much higher amounts of the chemical than soils that had low contents of these soil constituents. H2O2-treated soils showed considerable sorptive affinity for S3307D. It was concluded that both organic matter and mineral fraction in natural soils contributed to the sorption of the basic compound. Sorption by the H2O2 treated soils increased as suspension pH decreased, but all suspension pHs exceeded the pKa of the compound by more than two units. This implies that organic base protonation can occur on surfaces of soil components, and surface acidity (exchangeable acidity ) is important in sorption process of the organic base rather than suspension pH.

  8. Role of subsurface physics in the assimilation of surface soil moisture observations

    Science.gov (United States)

    Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...

  9. Apollo program soil mechanics experiment. [interaction of the lunar module with the lunar surface

    Science.gov (United States)

    Scott, R. F.

    1975-01-01

    The soil mechanics investigation was conducted to obtain information relating to the landing interaction of the lunar module (LM) with the lunar surface, and lunar soil erosion caused by the spacecraft engine exhaust. Results obtained by study of LM landing performance on each Apollo mission are summarized.

  10. Herbicide Transport to Surface Runoff from a Claypan Soil: Scaling from Plots to Fields

    Science.gov (United States)

    Streams and drinking water reservoirs throughout the claypan soil region of Missouri and Illinois are particularly vulnerable to herbicide contamination from surface runoff during the spring time period. This study follows a plot-scale study conducted on claypan soils to quantify herbicide losses fr...

  11. Polygenetic oxisols on tertiary surfaces, Minas Gerais, Brazil: soil genesis and landscape development.

    NARCIS (Netherlands)

    Muggler, C.C.

    1998-01-01

    Unravelling the genesis of polygenetic soils is a complex task because of overprinting and mixing of various phases of soil formation. Large areas of polygenetic Oxisols occur in the state of Minas Gerais, Brazil. They developed on surfaces exposed since the Tertiary or longer, which have been more

  12. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    Science.gov (United States)

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  13. Distribution coefficient Kd in surface soils collected in Aomori prefecture

    International Nuclear Information System (INIS)

    Soil-solution distribution coefficients (Kds), which are the ratio of an element concentration in a soil solid phase to that in a solution phase, for 32 elements in Andosols, Wet Andosols and Gleyed Andosols collected throughout Aomori Prefecture were determined. A dried soil sample was mixed with a 10-fold amount of pure water in a PPCO centrifuge tube, and then gently shaken for 24 h. The Kd values were obtained by measurement of element concentrations in solid and solution phases (batch method). The Kd values in this work were up to three orders of magnitude higher than the IAEA reported values, and their 95% confidence intervals were within two orders of magnitude. Most Kd values of elements were decreasing with increasing electrical conductivity of the solution phase. The Kd of Ca had a good correlation with that of Sr. However, the correlation between the Kds of K and Cs was not good. The Kd values were also determined by another method. The soil solutions were separated from the fresh soil samples by means of high speed centrifuging. The Kd values were calculated from the element concentration in solid phase and soil solution (centrifugation method). The Kd values obtained by the centrifugation method agreed within one order of magnitude with those by the batch method, and both variation patterns in elements correlated well. (author)

  14. Distribution coefficient Kd in surface soils collected in Aomori prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Hirofumi; Hasegawa, Hidenao; Hisamatsu, Shun' ichi; Inaba, Jiro [Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    2000-07-01

    Soil-solution distribution coefficients (Kds), which are the ratio of an element concentration in a soil solid phase to that in a solution phase, for 32 elements in Andosols, Wet Andosols and Gleyed Andosols collected throughout Aomori Prefecture were determined. A dried soil sample was mixed with a 10-fold amount of pure water in a PPCO centrifuge tube, and then gently shaken for 24 h. The Kd values were obtained by measurement of element concentrations in solid and solution phases (batch method). The Kd values in this work were up to three orders of magnitude higher than the IAEA reported values, and their 95% confidence intervals were within two orders of magnitude. Most Kd values of elements were decreasing with increasing electrical conductivity of the solution phase. The Kd of Ca had a good correlation with that of Sr. However, the correlation between the Kds of K and Cs was not good. The Kd values were also determined by another method. The soil solutions were separated from the fresh soil samples by means of high speed centrifuging. The Kd values were calculated from the element concentration in solid phase and soil solution (centrifugation method). The Kd values obtained by the centrifugation method agreed within one order of magnitude with those by the batch method, and both variation patterns in elements correlated well. (author)

  15. The impact of the soil surface properties in water erosion seen through LandSoil model sensitivity analysis

    Science.gov (United States)

    Ciampalini, Rossano; Follain, Stéphane; Cheviron, Bruno; Le Bissonnais, Yves; Couturier, Alain; Walter, Christian

    2014-05-01

    Quantitative models of soil redistribution at the landscape scale are the current tools for understanding space-time processes in soil and landscape evolution. But models use larger and larger numbers of variables and sometimes it becomes difficult to understand their relative importance and model behaviours in critical conditions. Sensitivity analysis (SA) is widely used to clarify models behaviours, their structure giving fundamental information to ameliorate models their selves. We tested the LandSoil model (LANDscape design for SOIL conservation under soil use and climate change) a model designed for the analysis of agricultural landscape evolution at a fine spatial resolution scale [1-10 meters] and a mid-term temporal scale [10-100 years]. LandSoil is suitable for simulations from parcel to catchment scale. It is spatially distributed, event-based, and considers water and tillage erosion processes that use a dynamic representation of the agricultural landscape through parameters such as a monthly representation of soil surface properties. Our aim was to identify most significant parameters driving the model and to highlight potential particular/singular behaviours of parameter combinations and relationships. The approach was to use local sensitivity analysis, also termed 'one-factor-at-time' (OAT) which consists of a deterministic, derivative method, inquiring the local response O to a particular input factor Pi at a specified point P0 within the full input parameter space of the model expressed as: δO/δP = (O2-O1) / (P2-P1) The local sensitivity represents the partial derivatives of O with respect to Pi at the point P0. In the SA procedure the topographical entity is represented by a virtual hillslope on which soil loss and sensitivity are calculated. Virtual hillslope is inspired from the virtual catchment framework proposed by Cheviron at al. (2011): a fixed topology consisting of a 3X3 square pixel structure having 150 m length allowing to test

  16. Uncertainties of seasonal surface climate predictions induced by soil moisture biases in the La Plata Basin

    Science.gov (United States)

    Sorensson, Anna; Berbery, E. Hugo

    2015-04-01

    This work examines the evolution of soil moisture initialization biases and their effects on seasonal forecasts depending on the season and vegetation type for a regional model over the La Plata Basin in South America. WRF/Noah model simulations covering multiple cases during a two-year period are designed to emphasize the conceptual nature of the simulations at the expense of statistical significance of the results. Analysis of the surface climate shows that the seasonal predictive skill is higher when the model is initialized during the wet season and the initial soil moisture differences are small. Large soil moisture biases introduce large surface temperature biases, particularly for Savanna, Grassland and Cropland vegetation covers at any time of the year, thus introducing uncertainty in the surface climate. Regions with Evergreen Broadleaf Forest have roots that extend to the deep layer whose moisture content affects the surface temperature through changes in the partitioning of the surface fluxes. The uncertainties of monthly maximum temperature can reach several degrees during the dry season in cases when: (a) the soil is much wetter in the reanalysis than in the WRF/Noah equilibrium soil moisture, and (b) the memory of the initial value is long due to scarce rainfall and low temperatures. This study suggests that responses of the atmosphere to soil moisture initialization depend on how the initial wet and dry conditions are defined, stressing the need to take into account the characteristics of a particular region and season when defining soil moisture initialization experiments.

  17. Polychlorinated biphenyls in surface soil in urban and background areas of Mongolia

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCBs) were measured in soil in some industrial towns (Ulaanbaatar, Suhbaatar, Erdenet, Darhan, Tsetserleg, Hovd, Ulaangom, Altay, Bayanhongor, Arvayheer, Saynshand, Choybalsan) and in background and rural areas of Mongolia. The average sum of all investigated PCB congeners in soil of Mongolia comes to 7.4 ng/g dry weight (DW) and varies from 0.53 ng/g DW till 114 ng/g DW. PCB levels in soil from towns are significantly higher than those in soil from background and rural areas. The PCB homological composition in soil sampled in highly-PCB-polluted sites is similar to the PCB homological pattern in Sovol and Aroclor 1254. Significant correlation between soil organic carbon and low chlorinated PCB both for towns and background sites was found. Significant differences in PCB means in soil in different natural zones were found. -- Highlights: •First study to measure PCBs in surface soil sampled throughout Mongolia. •The PCB patterns in polluted soil were similar to those in Sovol or Aroclor 1254. •Significant differences in PCB means in soil in different natural zones were found. -- Polychlorinated biphenyls were measured in soils throughout Mongolia

  18. Land surface model calibration through microwave data assimilation for improving soil moisture simulations

    Science.gov (United States)

    Yang, Kun; Zhu, La; Chen, Yingying; Zhao, Long; Qin, Jun; Lu, Hui; Tang, Wenjun; Han, Menglei; Ding, Baohong; Fang, Nan

    2016-02-01

    Soil moisture is a key variable in climate system, and its accurate simulation needs effective soil parameter values. Conventional approaches may obtain soil parameter values at point scale, but they are costly and not efficient at grid scale (10-100 km) of current climate models. This study explores the possibility to estimate soil parameter values by assimilating AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) brightness temperature (TB) data. In the assimilation system, the TB is simulated by the coupled system of a land surface model (LSM) and a radiative transfer model (RTM), and the simulation errors highly depend on parameters in both the LSM and the RTM. Thus, sensitive soil parameters may be inversely estimated through minimizing the TB errors. A crucial step for the parameter estimation is made to suppress the contamination of uncertainties in atmospheric forcing data. The effectiveness of the estimated parameter values is evaluated against intensive measurements of soil parameters and soil moisture in three grasslands of the Tibetan Plateau and the Mongolian Plateau. The results indicate that this satellite data-based approach can improve the data quality of soil porosity, a key parameter for soil moisture modeling, and LSM simulations with the estimated parameter values reasonably reproduce the measured soil moisture. This demonstrates it is feasible to calibrate LSMs for soil moisture simulations at grid scale by assimilating microwave satellite data, although more efforts are expected to improve the robustness of the model calibration.

  19. 40K, 134Cs and 137Cs in pollen, honey and soil surface layer in Croatia

    International Nuclear Information System (INIS)

    Specific activities of 40K, 134Cs and 137Cs in pollen, honey and in the first 25 cm of the surface soil layer were measured by gamma-spectrometry. Specific activity of 40K in pollen is about 1 order of magnitude higher than in honey. A 40K soil-to-pollen transfer coefficient (TC(40K)) of 0.436 ± 0.054 and a soil-to-honey transfer coefficient TC(40K) of 0.052 ± 0.008 were calculated as the mean of their respective values in 26 different segments of soil profile. Both parameters have very stable values over time as well as through different segments of vertical soil profile. 134Cs and 137Cs specific activities in pollen and honey decrease with time, resulting in a decrease of 137Cs soil-to-honey transfer factors (Tf(137Cs)) over time. The increase of the soil-to-honey Tf(137Cs) with increasing soil depth is a consequence of vertical distribution of 137Cs in soil. Soil-to-honey T f(137Cs) values are highest in meadow and mixed honey types and lowest in bush/tree honey. Similar trends are found for both Tf(134Cs) and Tf(137Cs). The results presented here indicate the importance of the caesium inventory in soil segments where plant root systems are developed

  20. Definition and experimental determination of a soil-water retention surface

    OpenAIRE

    Salager, Simon; El Youssoufi, Moulay Saïd; Saix, Christian

    2010-01-01

    This paper deals with the definition and determination methods of the soil-water retention surface (SWRS), which is the tool used to present the hydromechanical behaviour of soils to highlight both the effect of suction on the change in water and total volumes and the effect of deformation with respect to the water retention capability. An experimental method is introduced to determine the SWRS and applied to a clayey silty sand. The determination of this surface is based on the measurement o...

  1. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    Directory of Open Access Journals (Sweden)

    X.-K. Guan

    2015-07-01

    Full Text Available Soil organic carbon (SOC plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L. and two locally adapted forage legumes, bush clover (Lespedeza davurica S. and milk vetch (Astragalus adsurgens Pall. on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile, and to estimate the long-term potential for SOC sequestration in the soil under the three forage legumes. The results showed that the concentration of SOC of the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0–2.0 m soil depth measured. Over the 7 year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha−1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha−1 under bare soil. The sequestration of SOC in the 1–2 m depth of soil accounted for 79, 68 and 74 % of SOC sequestered through the upper 2 m of soil under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  2. Influences of pH, Temperature, and Moisture on Gaseous Tritium Uptake in Surface Soils

    OpenAIRE

    Fallon, Robert D.

    1982-01-01

    In South Carolina surface soils, the uptake of gaseous tritium (T2, HT, or both) showed a broad optimal temperature response from about 20 to 50°C, with the highest rates at 35 to 45°C. The optimal pH was in the range of 4 to 7. Uptake rates declined at the wet and dry extremes in soil moisture content. Inhibition seen upon the addition of hydrogen or carbon monoxide to the soil atmosphere suggested that hydrogenase may be responsible for T2-HT uptake in soil. During the period of most rapid ...

  3. The Impact of Microwave-Derived Surface Soil Moisture on Watershed Hydrological Modeling

    Science.gov (United States)

    ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.

    1997-01-01

    The usefulness of incorporating microwave-derived soil moisture information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface soil moisture fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of soil moisture than a standard hydrological initialization with streamflow data over an eight-day soil moisture drydown.

  4. Relationships Between Surface Albedo,Soil Thermal Parameters and Soil Moisture in the Semi-arid Area of Tongyu,Northeastern China

    Institute of Scientific and Technical Information of China (English)

    LIU Huizhi; WANG Baomin; Fu Congbin

    2008-01-01

    Continuous observation data collected over the whole year of 2004 on a cropland surface in Tongyu, asemi-arid area of northeastern China(44°25'N,122°52'E),have been used to investigate the variations of surface albedo and soil thermal parameters,including heat capacity,thermal conductivity and thermal diffusivity.and their relationships to soil moisture.The diurnal variation of surface albedo appears as a U shape curve on sunny days.Surface albedo decreases with the increase of solar elevation angle,and it tends to be a constant when solar elevation angle is larger than 40°.So the daily average surface albedo Was computed using the data when solar elevation angle is larger than 40°.Mean daily surface albcdo is found to decrease with the increase of soil moisture,showing an exponential dependence on soil moisture.The variations of soil heat capacity are small during Julian days 90-300.Compared with the heat capacity,soil thermal conductivity has very gentle variations during this period,but the soil thermal diffusivity has wide variations during the same period.The soil thermal conductivity is found to increase as a power function of soil moisture.The soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.

  5. Behavior of Ag nanoparticles in soil: Effects of particle surface coating, aging and sewage sludge amendment

    International Nuclear Information System (INIS)

    This study addressed the relative importance of particle coating, sewage sludge amendment, and aging on aggregation and dissolution of manufactured Ag nanoparticles (Ag MNPs) in soil pore water. Ag MNPs with citrate (CIT) or polyvinylpyrrolidone (PVP) coatings were incubated with soil or municipal sewage sludge which was then amended to soil (1% or 3% sludge (w/w)). Pore waters were extracted after 1 week and 2 and 6 months and analyzed for chemical speciation, aggregation state and dissolution. Ag MNP coating had profound effects on aggregation state and partitioning to pore water in the absence of sewage sludge, but pre-incubation with sewage sludge negated these effects. This suggests that Ag MNP coating does not need to be taken into account to understand fate of AgMNPs applied to soil through biosolids amendment. Aging of soil also had profound effects that depended on Ag MNP coating and sludge amendment. -- Highlights: •Silver nanoparticle coating affects fate in unamended soils. •Citrated coated silver nanoparticles could be found in pore water for up to six months. •Pre-incubation of silver nanoparticles in sewage sludge negated effects of surface coating. •Weathered or reprecipitated particles found in pore water for up to two months in sludge amended soils. •Particle surface coating, sewage sludge amendment and aging all have important impacts. -- Behavior of manufactured silver nanoparticles in soil depends on surface coating, contact with sewage sludge, and aging

  6. Mapping Surface Soil Organic Carbon for Crop Fields with Remote Sensing

    Science.gov (United States)

    Chen, Feng; Kissel, David E.; West, Larry T.; Rickman, Doug; Luvall, J. C.; Adkins, Wayne

    2004-01-01

    The organic C concentration of surface soil can be used in agricultural fields to vary crop production inputs. Organic C is often highly spatially variable, so that maps of soil organic C can be used to vary crop production inputs using precision farming technology. The objective of this research was to demonstrate the feasibility of mapping soil organic C on three fields, using remotely sensed images of the fields with a bare surface. Enough soil samples covering the range in soil organic C must be taken from each field to develop a satisfactory relationship between soil organic C content and image reflectance values. The number of soil samples analyzed in the three fields varied from 22 to 26. The regression equations differed between fields, but gave highly significant relationships with R2 values of 0.93, 0.95, and 0.89 for the three fields. A comparison of predicted and measured values of soil organic C for an independent set of 2 soil samples taken on one of the fields gave highly satisfactory results, with a comparison equation of % organic C measured + 1.02% organic C predicted, with r2 = 0.87.

  7. Prediction of Soil Erosion on Different Underlaying Surface in Construction Period of Xichang to Panzhihua Expressway

    Institute of Scientific and Technical Information of China (English)

    CHEN Tingfang; GUI Peng; CHEN Xingchang

    2007-01-01

    In order to investigate the behavior of soil erosion on the slope of the different underlaying surface during construction, the experiment with natural rainfall on Xichang-Panzhihua highway was conducted, to quantify the runoff and soil loss. The results show that: ①the main type of soil erosion is gully erosion, the amount of soil erosion caused by gully erosion is higher than that by surface erosion. ②The principal factor causing soil erosion on the slope of the embankment is individual amount of precipitation, the width of the embankment and rain intensity. ③ The principal factor causing soil erosion on the cutting slope is individual amount of precipitation, the width of the cutting slope and rain intensity. ④ The principal factor causing soil erosion on the slope of the dumped soil area is individual amount of precipitation, the width of the flat roof and rain intensity. There are well linear relationships between the amount of soil erosion and the principal factor, and their correlation coefficient are 0.935 7-0.999 8.

  8. Fixation of soil surface contamination using natural polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, M.R.

    1993-09-01

    Natural polysaccharides were evaluated as alternatives to commercially available dust-control agents for application in buried-waste and contaminated-soil remediation situations. Materials were identified and evaluated with specific criteria in mind: the materials must be environmentally benign and must not introduce any additional hazardous materials; they must be effective for at least 2 or 3 days, but they do not necessarily have to be effective for more than 2 to 3 weeks; they should be relatively resistant to light traffic; they must not interfere with subsequent soil treatment techniques, especially soil washing; and they must be relatively inexpensive. Two products, a pregelled potato starch and a mixture of carbohydrates derived from sugar beets, were selected for evaluation. Testing included small- and large-scale field demonstrations, laboratory physical property analyses, and wind-tunnel evaluations.

  9. Fixation of soil surface contamination using natural polysaccharides

    International Nuclear Information System (INIS)

    Natural polysaccharides were evaluated as alternatives to commercially available dust-control agents for application in buried-waste and contaminated-soil remediation situations. Materials were identified and evaluated with specific criteria in mind: the materials must be environmentally benign and must not introduce any additional hazardous materials; they must be effective for at least 2 or 3 days, but they do not necessarily have to be effective for more than 2 to 3 weeks; they should be relatively resistant to light traffic; they must not interfere with subsequent soil treatment techniques, especially soil washing; and they must be relatively inexpensive. Two products, a pregelled potato starch and a mixture of carbohydrates derived from sugar beets, were selected for evaluation. Testing included small- and large-scale field demonstrations, laboratory physical property analyses, and wind-tunnel evaluations

  10. Interception of Vapor Flow near Soil Surface for Water Conservation and Drought Alleviation

    Science.gov (United States)

    Wang, Z.; Wang, Y.; Gao, Z.; Hishida, K.; Zhang, Y.

    2015-12-01

    Liquid and vapor flow of water in soil and the eventual vaporization of all waters near the soil surface are mechanisms controlling the near-surface evaporation. Interception and prevention of the vapor form of flow is critical for soil water conservation and drought alleviation in the arid and semiarid regions. Researches are conducted to quantify the amount of near-surface vapor flow in the semi-arid Loess Plateau of China and the central California of USA. Quantitative leaf water absorption and desorption functions were derived and tested based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of a plant is characterized by the plant's water retention curves. Field studies are conducted to measure the dynamic water movements from the soil surface to ten meters below the surface in an attempt to quantify the maximum depths of water extraction due to different vegetation types and mulching measures at the surface. Results show that condensation is usually formed on soil surface membranes during the daily hours when the temperature gradients are inverted toward the soil surface. The soil temperature becomes stable at 13 Degree Celsius below the 4-meter depth in the Loess Plateau of China thus vapor flow is not likely deriving from deeper layers. However, the liquid flow may move in and out depending on water potential gradients and hydraulic conductivity of the layers. The near-surface vapor flow can be effectively intercepted by various mulching measures including gravel-and-sand cover, plant residue and plastic membranes. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  11. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per;

    approaching oven dry condition (~ -800 MPa). Alternatively, the linear Campbell-Rossi-Nimmo (CRN) model for pF (where pF = log (negative of matric potential; cm H2O)) versus volumetric water content (m3 m-3) showed accurate fits to data for all 41 soils from -10 to -800 MPa, and yielded high correlations......Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water...

  12. Heavy Metals in Surface Soils under Waste Dumps from Onitsha Nigeria

    Directory of Open Access Journals (Sweden)

    G.E. Nwajei

    2007-01-01

    Full Text Available Heavy metals in surface soils under waste dumps in Onitsha metropolis was investigated from Onitsha metropolis. Seven metals, namely arsenic, barium, cadmium, chromium, manganese, lead and lithium were considered. Analytical determinations were performed by atomic absorption spectrometry after sample digestion with acid mixture. Elevated concentrations of the aforementioned metals were obtained in this study. All metals were detected except for the background, soil sample from Inland town where chromium and lead were below detection limit. There were variations in the concentrations of metals in soils from various locations. Metal concentrations in soils obtained from Omagba phase II, Woliwo layout, Fegge road, Head bridge, Odoakbu layout, Awada layout and Isiafor layout were higher than those from Ozala layout and Inland town (Background soil samples. The highest concentrations of the contaminant metals found in soil located near the head bridge of River Niger. The sources of these metals were attributed to the industrial and anthropogenic wastes in various sample locations.

  13. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  14. Land surface scheme conceptualisation and parameter values for three sites with contrasting soils and climate

    Directory of Open Access Journals (Sweden)

    M. Soet

    2000-01-01

    Full Text Available The objective of the present study is to test the performance of the ECMWF land surface module (LSM developed by Viterbo and Beljaars (1995 and to identify primary future adjustments, focusing on the hydrological components. This was achieved by comparing off-line simulations against observations and a detailed state-of-the-art model over a range of experimental conditions. Results showed that the standard LSM, which uses fixed vegetation and soil parameter values, systematically underestimated evapotranspiration, partly due to underestimating bare soil evaporation, which appeared to be a conceptual problem. In dry summer conditions, transpiration was seriously underestimated. The bias in surface runoff and percolation was not of the same sign for all three locations. A sensitivity analysis, set up to explore the impact of using standard parameter values, found that implementing specific soil hydraulic properties had a significant effect on runoff and percolation at all three sites. Evapotranspiration, however affected only slightly at the temperate humid climate sites. Under semi-arid conditions, introducing site specific soil hydraulic properties plus a realistic rooting depth improved simulation results considerably. Future adjustments to the standard LSM should focus on parameter values of soil hydraulic functions and rooting depths and, conceptually, on the bare soil evaporation parameterisation and the soil bottom boundary condition. Implications of changing soil hydraulic properties for future large-simulations were explored briefly. For Europe, soil data requirements can be fulfilled partly by the recent data base HYPRES. Sandy and loamy sand soils will then cover about 65% of Europe, whereas in the present model 100% of the area is loam. Keywords: land surface model; soil hydraulic properties; water balance simulation

  15. Concentration, Soil-to-Plant Transfer Factor and Soil-Soil Solution Distribution Coefficient of Selenium in the Surface Environment

    International Nuclear Information System (INIS)

    Of the major radioactive selenium isotopes, Se-79, a beta emitter with a half-life of about 1.1 million years, is of special interest because it is one of the most important radionuclides for the long-term dose assessment of radioactive waste disposal. This radionuclide can reach human beings through several transfer paths in the environment. To predict Se-79 behavior from the environment to human beings, it would be useful to obtain the following information: stable Se concentration in environmental samples; soil-soil solution distribution coefficient (Kd); and soil-to-plant transfer factor (TF). In the present study, stable Se concentrations in river water, soil and crop samples collected in Japan, Kds and TFs were obtained. The results showed that geometric mean (GM) concentrations of river water, soil and crops were 0.057 μg/L (range: ds for paddy field soil and upland field soil samples were 116 and 67, respectively, whereas GMs of TFs for brown rice and upland field crops were 0.066 and 0.024, respectively. Probably due to longer growing period and different water management in the paddy fields for brown rice compared to those for upland field crops, the TF would be high in brown rice. (authors)

  16. Temporal observations of surface soil moisture using a passive microwave sensor

    International Nuclear Information System (INIS)

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas

  17. Temporal observations of surface soil moisture using a passive microwave sensor

    Science.gov (United States)

    Jackson, T. J.; O'Neill, P.

    1987-01-01

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas.

  18. Using Multi-Dimensional Microwave Remote Sensing Information for the Retrieval of Soil Surface Roughness

    Science.gov (United States)

    Marzahn, P.; Ludwig, R.

    2016-06-01

    In this Paper the potential of multi parametric polarimetric SAR (PolSAR) data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.

  19. Plant and soil modifications by continuous surface effluent application

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Levien, R. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. of Solos; Mohrdieck, F.G.; Rodrigues, N.R. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao; Flores, A.I.P.

    1993-12-31

    In order to study the effects on soil and plants of the liquid effluent generated by a the Integrated Liquid Effluent Treatment System of a large Brazilian petrochemical complex, a field study was conducted in four areas which received the effluent and compared to control sites. This work presents some results of this study. 12 refs., 1 fig., 3 tabs.

  20. Modeling spatial and seasonal soil moisture in a semi arid hillslope: The impact of integrating soil surface seal parameters

    Science.gov (United States)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel

    2010-05-01

    Modeling hillslope hydrology and the complex and coupled reaction of runoff processes to rainfall, lies in the focus of a growing number of research studies. The ability to characterize and understand the mechanisms underlying the complex hillslope soil moisture patterns, which trigger spatially variable non linear runoff initiation, still remains a current hydrological challenge especially in ungauged catchments. In humid climates, connectivity of transient moisture patches was suggested as a unifying concept for studying thresholds for subsurface flow and redistribution of soil moisture at the hillslope scale. In semiarid areas, however, transient moisture patches control also the differentiation between evaporation and surface runoff and the ability to identify a unifying concept controlling the large variability of soil moisture at the hillslope scale remains an open research gap. At the LTER Lehavim site in the center of Israel (31020' N, 34045' E) a typical hillslope (0.115 km2) was chosen offering different aspects and a classic geomorphologic banding. The annual rainfall is 290 mm, the soils are brown lithosols and arid brown loess and the dominant rock formations are Eocenean limestone and chalk with patches of calcrete. The vegetation is characterised by scattered dwarf shrubs (dominant species Sarcopoterium spinosum) and patches of herbaceous vegetation, mostly annuals, are spread between rocks and dwarf shrubs. An extensive spatial database of soil hydraulic and environmental parameters (e.g. slope, radiation, bulk density) was measured in the field and interpolated to continuous maps using geostatistical techniques and physically based modelling. To explore the effect of soil surface sealing, Mualem and Assouline (1989) equations describing the change in hydraulic parameters resulting from soil seal formation were applied. Two simple indices were developed to describe local evaporation values and contribution of water from rock outcrops to the soil

  1. A laboratory study of colloid and solute transport in surface runoff on saturated soil

    Science.gov (United States)

    Yu, Congrong; Gao, Bin; Muñoz-Carpena, Rafael; Tian, Yuan; Wu, Lei; Perez-Ovilla, Oscar

    2011-05-01

    SummaryColloids in surface runoff may pose risks to the ecosystems not only because some of them (e.g., pathogens) are toxic, but also because they may facilitate the transport of other contaminants. Although many studies have been conducted to explore colloid fate and transport in the environment, current understanding of colloids in surface runoff is still limited. In this study, we conducted a range of laboratory experiments to examine the transport behavior of colloids in a surface runoff system, made of a soil box packed with quartz sand with four soil drainage outlets and one surface flow outlet. A natural clay colloid (kaolinite) and a conservative chemical tracer (bromide) were applied to the system under a simulated rainfall event (64 mm/h). Effluent soil drainage and surface flow samples were collected to determine the breakthrough concentrations of bromide and kaolinite. Under the experimental conditions tested, our results showed that surface runoff dominated the transport processes. As a result, kaolinite and bromide were found more in surface flow than in soil drainage. Comparisons between the breakthrough concentrations of bromide and kaolinite showed that kaolinite had lower mobility than bromide in the subsurface flow (i.e., soil drainage), but behaved almost identical to bromide in the surface runoff. Student's t-test confirmed the difference between kaolinite and bromide in subsurface flow ( p = 0.02). Spearman's test and linear regression analysis, however, showed a strong 1:1 correlation between kaolinite and bromide in surface runoff ( p < 0.0001). Our result indicate that colloids and chemical solutes may behave similarly in overland flow on bare soils with limited drainage when surface runoff dominates the transport processes.

  2. Retrieval of Surface and Subsurface Moisture of Bare Soil Using Simulated Annealing

    Science.gov (United States)

    Tabatabaeenejad, A.; Moghaddam, M.

    2009-12-01

    Soil moisture is of fundamental importance to many hydrological and biological processes. Soil moisture information is vital to understanding the cycling of water, energy, and carbon in the Earth system. Knowledge of soil moisture is critical to agencies concerned with weather and climate, runoff potential and flood control, soil erosion, reservoir management, water quality, agricultural productivity, drought monitoring, and human health. The need to monitor the soil moisture on a global scale has motivated missions such as Soil Moisture Active and Passive (SMAP) [1]. Rough surface scattering models and remote sensing retrieval algorithms are essential in study of the soil moisture, because soil can be represented as a rough surface structure. Effects of soil moisture on the backscattered field have been studied since the 1960s, but soil moisture estimation remains a challenging problem and there is still a need for more accurate and more efficient inversion algorithms. It has been shown that the simulated annealing method is a powerful tool for inversion of the model parameters of rough surface structures [2]. The sensitivity of this method to measurement noise has also been investigated assuming a two-layer structure characterized by the layers dielectric constants, layer thickness, and statistical properties of the rough interfaces [2]. However, since the moisture profile varies with depth, it is sometimes necessary to model the rough surface as a layered structure with a rough interface on top and a stratified structure below where each layer is assumed to have a constant volumetric moisture content. In this work, we discretize the soil structure into several layers of constant moisture content to examine the effect of subsurface profile on the backscattering coefficient. We will show that while the moisture profile could vary in deeper layers, these layers do not affect the scattered electromagnetic field significantly. Therefore, we can use just a few layers

  3. Transformation of lignin in surface and buried soils of mountainous landscapes

    Science.gov (United States)

    Kovaleva, N. O.; Kovalev, I. V.

    2009-11-01

    The content and composition of the lignin phenols in plants and soils of vertical natural zones were studied in the Northern Caucasus region and Northwestern Tien Shan. Three types of lignin transformation were revealed: steppe, forest, and meadow ones. It was shown that the degree of oxidation of the biopolymer during the transformation of organic matter increased when going from the living plant tissues to humic acids in surface and buried soils. The portion of lignin fragments remained unchanged during the biopolymer transformation in the following series: plant tissues-falloff-litter-soil-humic acids-buried humic acids. It was also shown that the biochemical composition of the plants had a decisive effect on the structure of the humic acids in the soils. The quantitative analysis of the lignin phenols and the 13C NMR spectroscopy proved that the lignin in higher plants was involved in the formation of specific compounds of soil humus, including aliphatic and aromatic molecular fragments. The first analysis of the lignin content and composition in buried soils of different ages was performed, and an increase in the degree of oxidation of the lignin structures was revealed in the soil chronoseries. It was proposed to use the proportions of lignin phenols in surface and buried soils as diagnostic criteria of the vegetation types in different epochs.

  4. Factors affecting spatial variation of polycyclic aromatic hydrocarbons in surface soils in North China Plain.

    Science.gov (United States)

    Wang, Xilong; Zuo, Qian; Duan, Yonghong; Liu, Wenxin; Cao, Jun; Tao, Shu

    2012-10-01

    The spatial variation in concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in surface soils in the North China Plain and the influential factors were examined in the present study. High concentrations of the sum of 16 PAHs (∑PAH(16) ) appeared in cities and their surrounding areas. Emissions and soil organic carbon (SOC) content significantly regulated spatial differentiation of PAH contamination in soils in the study area. Compared with emissions, concentrations of individual and total PAHs in soils were more closely controlled by the SOC content. Furthermore, concentrations of PAH species with lower molecular weight (e.g., two- or three-ring) in surface soils were more strongly correlated with the SOC content in comparison with those of higher molecular weight (e.g., five- or six-ring), mainly because of their higher saturated vapor pressure, thus higher mobility. The spatial variation of PAH species in soils in the North China Plain tended to be larger with increasing benzene ring numbers, and the difference in physicochemical properties of PAH species determined their distinct spatial distribution characteristics. The present study highlights the relative importance of emissions and SOC content in spatial variation of PAHs and the dependence of the spatial distribution characteristics of PAH species in surface soils on their physicochemical properties at a regional scale. Results of the present work are helpful for regional risk assessment of the contaminants tested. PMID:22847656

  5. The Role of Iron-Bearing Minerals in NO2 to HONO Conversion on Soil Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Mulu A.; Bish, David L.; Lozovyi, Yaroslav; Engelhard, Mark H.; Raff, Jonathan D.

    2016-08-16

    Nitrous acid (HONO) accumulates in the nocturnal boundary layer where it is an important source of daytime hydroxyl radicals. Although there is clear evidence for the involvement of heterogeneous reactions of NO2 on surfaces as a source of HONO, mechanisms remain poorly understood. We used coated-wall flow tube measurements of NO2 reactivity on environmentally relevant surfaces [Fe (hydr)oxides, clay minerals, and soil from Arizona and the Saharan Desert] and detailed mineralogical characterization of substrates to show that reduction of NO2 by Fe-bearing minerals in soil can be a more important source of HONO than the putative NO2 hydrolysis mechanism. The magnitude of NO2-to-HONO conversion depends on the amount of Fe2+ present in substrates and soil surface acidity. Studies examining the dependence of HONO flux on substrate pH revealed that HONO is formed at soil pH < 5 from the reaction between NO2 and Fe2+(aq) present in thin films of water coating the surface, whereas in the range of pH 5–8 HONO stems from reaction of NO2 with structural iron or surface complexed Fe2+ followed by protonation of nitrite via surface Fe-OH2+ groups. Reduction of NO2 on ubiquitous Fe-bearing minerals in soil may explain HONO accumulation in the nocturnal boundary layer and the enhanced [HONO]/[NO2] ratios observed during dust storms in urban areas.

  6. Estimation of near-surface soil moisture based on MODIS data over Taklamakan's Oases - China

    Science.gov (United States)

    Badawy, Moawad; Meixner, Franz X.; Behrendt, Thomas; Mamtimin, Buhalqem

    2013-04-01

    Soil moisture is the most important factor that shapes the biotic and aboitic properties of the soil. Crop yielding is more often determined by the availability of soil moisture rather than deficiency of other nutrients. Hence, soil moisture management is imperative for sustainable food production and water supply; it also controls the response and feedback mechanisms between land surface and atmospheric processes and has been widely recognized in numerous environmental studies. However, spatially and temporally limited in-situ field observations are not appropriate to describe spatial variations of soil moisture over large areas. Consequently, there is a great need for satellite remote sensing to estimate and monitor the spatial and temporal variations of soil moisture. Recent advances in remote sensing have shown that soil moisture can be estimated by a variety of methods using visible bands (VIS), thermal infrared (TIR) and microwave imaging systems. Particularly optical remote sensing provides fine to moderate spatial resolution for near surface soil moisture estimation. In that context, MODIS data are a well-suited source for soil moisture estimation on a moderate-scale of spatial domain. The main objective of this work is to estimate the near-surface soil moisture (the "surface wetness") of some oases located in Taklamakan Desert (Xinjiang Uygur Autonomous Region, Northwest China) using MODIS data in combination with in-situ (field) observations. The Taklamakan Desert encloses many oases of different sizes, where key oases (watered by rainfall and irrigation) are Awati, Kuqa, and Turpan in the north, Milan, Ruoqiang, Waxxari, Qiemo, Minfeng, Yutian and Hotan in the south, and Shache in the west. This study uses the triangular (or trapezoid) method based on land surface temperature and vegetation index (Ts/VI) feature space. For the period 28 July to 29 August 2010, Ts and VI were derived from MODIS (day/night) land surface temperature (MOD11A2- 8 days) and

  7. Improved shape hardening function for bounding surface model for cohesive soils

    Directory of Open Access Journals (Sweden)

    Andrés Nieto-Leal

    2014-08-01

    Full Text Available A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.

  8. Runoff and windblown vehicle spray from road surfaces, risks and measures for soil and water.

    NARCIS (Netherlands)

    Schipper, P.N.M.; Comans, R.N.J.; Dijkstra, J.J.; Vergouwen, L.

    2007-01-01

    Soil and surface water along roads are exposed to pollution from motorways. The main pollutants are polycyclic aromatic hydrocarbons (PAH), mineral oil, heavy metals and salt. These pollutants originate from vehicles (fuel, wires, leakage), wear and degradation of road surfaces and road furniture (i

  9. Uptake of gaseous formaldehyde onto soil surfaces: a coated-wall flow tube study

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Meusel, Hannah; Kuhn, Uwe; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2015-04-01

    Gaseous formaldehyde (HCHO) is an important intermediate molecule and source of HO2 radicals. However, discrepancies exist between model simulated and observed HCHO concentrations, suggesting missing sources or sinks in the HCHO budget. Multiphase processes on the surface of soil and airborne soil-derived particles have been suggested as an important mechanism for the production/removal of atmospheric trace gases and aerosols. In this work, the uptake of gaseous HCHO on soil surfaces were investigated through coated-wall flow tube experiments with HCHO concentration ranging from 10 to 40 ppbv. The results show that the adsorption of HCHO occurred on soil surfaces, and the uptake coefficient dropped gradually (i.e., by a factor of 5 after 1 hour) as the reactive surface sites were consumed. The HCHO uptake coefficient was found to be affected by the relative humidity (RH), decreasing from (2.4 ± 0.5) × 10-4 at 0% RH to (3.0 ± 0.08) × 10-5 at 70% RH, due to competition of water molecule absorption on the soil surface. A release of HCHO from reacted soil was also detected by applying zero air, suggesting the nature of reversible physical absorption and the existence of an equilibrium at the soil-gas interface. It implies that soil could be either a source or a sink for HCHO, depending on the ambient HCHO concentration. We also develop a Matlab program to calculate the uptake coefficient under laminar flow conditions based on the Cooney-Kim-Davis method.

  10. Parameter identification and analysis of soluble chemical transfer from soil to surface runoff

    Science.gov (United States)

    Tong, J. X.; Yang, J. Z.; Hu, B. X.

    2012-03-01

    A two-layer mathematical model is used to predict the chemical transfer from the soil into the surface runoff with ponding water. There are two incomplete infiltration-related parameter γ and runoff-related parameter α in the analytical solution to the model, which were assumed to be constant in previous studies (Tong et al., 2010). In this study, experimental data are used to identify the variable γ and α based on the analytical solution. The soil depth of the mixing zone is kept to be constant in different experiments, and the values of γ and α before the surface runoff occurs are constant and equal to their values at the moment the runoff starts. From the study results, it is found that γ will decrease with the increase of the surface runoff time, the increase of the ponding-water depth, hp, or with the decrease of the initial volumetric water content. The variability of γ will decrease with the increase of the initial volumetric water content. Similarly, α will decrease with time for the initially unsaturated experimental soils, but will increase with time for the initially saturated experimental soils. The larger the infiltration, the less chemical concentration in the surface runoff is. The analytical solution is not valid for experimental soil without any infiltration if α is expected to be less or equal to 1. The results will help to quantify chemical transfer from soil into runoff, a significant problem in agricultural pollution management.

  11. Discussion on wind factor influencing the distribution of biological soil crusts on surface of sand dunes

    Institute of Scientific and Technical Information of China (English)

    YongSheng Wu; Hasi Erdun; RuiPing Yin; Xin Zhang; Jie Ren; Jian Wang; XiuMin Tian; ZeKun Li; HengLu Miao

    2013-01-01

    Biological soil crusts are widely distributed in arid and semi-arid regions, whose formation and development have an important impact on the restoration process of the desert ecosystem. In order to explore the relationship between surface airflow and development characteristics of biological soil crusts, we studied surface airflow pattern and development characteristics of biological soil crusts on the fixed dune profile through field observation. Results indicate that the speed of near-surface airflow is the lowest at the foot of windward slope and the highest at the crest, showing an increasing trend from the foot to the crest. At the leeward side, although near-surface airflow increases slightly at the lower part of the slope after an initial sudden decrease at upper part of the slope, its overall trend decreases from the crest. Wind velocity variation coefficient varied at different heights over each observation site. The thickness, shear strength of biological soil crusts and percentage of fine particles at crusts layer decreased from the slope foot to the upper part, showing that biological soil crusts are less developed in high wind speed areas and well developed in low wind speed areas. It can be seen that there is a close relationship between the distribution of biological soil crusts in different parts of the dunes and changes in airflow due to geomorphologic variation.

  12. An improved empirical method for large spatial scale surface soil heat flux estimations

    International Nuclear Information System (INIS)

    In this paper, a novel method to simulate soil heat flux for large spatial scale is proposed. This method is constructed with the ratio of soil heat flux and net radiation (G0/Rn) and surface characteristic parameters, such as ratio vegetation indices, surface temperature, surface shortwave infrared reflectance, soil moisture content, solar zenith angle. Field calibration is carried out using measured data in 2009 from Yingke, Huazhaizi, Arou, and Dayakou stations located in Heihe River Basin, Northwest of China. The estimated soil heat flux is compared with field observation data from Yingke and Arou stations in 2008. The overall deviation basis and correlation coefficient between the soil heat flux estimation and measured data are 13.4% and 0.804 in the Yingke station and 12.5% and 0.893 in the Arou station respectively, and also the correlation coefficient are 0.905 in the Maliantan station and 0.817 in the Binggou station respectively. Results indicated that the proposed method performed well in Heihe River Basin. This new method could be an optimal choice to estimate surface soil heat flux for large spatial scale in the future

  13. Geospatial Analysis of Near-Surface Soil Moisture Time Series Data Over Indian Region

    Science.gov (United States)

    Berwal, P.; Murthy, C. S.; Raju, P. V.; Sesha Sai, M. V. R.

    2016-06-01

    The present study has developed the time series database surface soil moisture over India, for June, July and August months for the period of 20 years from 1991 to 2010, using data products generated under Climate Change Initiative Programme of European Space Agency. These three months represent the crop sowing period in the prime cropping season in the country and the soil moisture data during this period is highly useful to detect the drought conditions and assess the drought impact. The time series soil moisture data which is in 0.25 degree spatial resolution was analyzed to generate different indicators. Rainfall data of same spatial resolution for the same period, generated by India Meteorological Department was also procured and analyzed. Geospatial analysis of soil moisture and rainfall derived indicators was carried out to study (1) inter annual variability of soil moisture and rainfall, (2) soil moisture deviations from normal during prominent drought years, (3) soil moisture and rainfall correlations and (4) drought exposure based on soil moisture and rainfall variability. The study has successfully demonstrated the potential of these soil moisture time series data sets for generating regional drought surveillance information products, drought hazard mapping, drought exposure analysis and detection of drought sensitive areas in the crop planting period.

  14. Cell surface properties of rhizobial isolated from soils contaminated with hydrocarbons: hydrophobicity and adhesion to sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Mehmannavaz, R. [INRS-Institut Armand-Frappier, Centre de microbiologie et biotechnologie, Pointe-Claire, Quebec (Canada); McGill Univ., Ste-Anne-de-Bellevue, Quebec (Canada); Prasher, S.O. [McGill Univ., Ste-Anne-de-Bellevue, Quebec (Canada); Ahmad, D. [INRS-Institut Armand-Frappier, Centre de microbiologie et biotechnologie, Pointe-Claire, Quebec (Canada)

    2001-02-01

    Ten strains of Rhizobium meliloti and two non-rhizobial strains, Escherichia coli JM105 and Comomonas testosteroni B-356, were studied for their behaviour in soil and water matrices by determining their hydrophobicity, as measured by bacterial adherence to n-octane, and adhesion, as measured by their retention on sandy soil particles. The hydrophobicity values for the rhizobial strains were similar to that for E. coli (around 15%), whereas C. testosteroni, which belongs to the Pseudomonads group, showed a significantly higher level (33%). Both non-rhizobial strains, however, showed higher levels of adhesion, (85% and 78%, respectively) than did the rhizobial strains ({approx}55%). The cell surface properties of the rhizobial strains were influenced by the composition of the growth media used, being significantly higher with nutrient-rich media. The nature or level of contaminants in the soil from which these strains were originally isolated did not, however, influence these properties. These characteristics are important in determining the fate of bacteria in the unsaturated subsurface soil environment because of their influence on the vertical transport, distribution and survival. Information about these characteristics will be particularly useful in choosing stains for agricultural applications (e.g., as biofertilizers or biocontrol agents) or in situ soil environment operations (e.g., bioaugmentation for bioremediation of pollutants). (Author)

  15. Some physicochemical properties of surface layer soils shelterbelts in agricultural landscape

    Science.gov (United States)

    Jaskulska, R.; Szajdak, L.

    2009-04-01

    Shelterbelts belong to very efficient biogeochemical barriers. They decrease the migration of chemical compounds between ecosystems. The investigations were carried out in the Chlapowski's Agroecological Park in Turew situated 40 km South-West of Poznań, Poland. This area is located on loamy soils, which contains 70% cultivated fields and 14% shelterbelts and small afforestations. The shelterbelts represent different ages and the content of plants as well as humus quantity in surface layer. The first one is 100-year-old shelterbelt, where predominant species is Crataegus monogyna Jacq., Quercus rober L., and Fraxinus excelsior (L.) and is characterized by a well-developed humus level. The other one is 14-year-old shelterbelt. It includes 13 species of trees and revealed a small amount of humus. The soil under both shelterbelts is mineral, grey-brown podzolic in surface layer compound from light loamy sands and weakly loamy sands. The soil samples were taken from surface layer (0-20 cm). pH 1N KCl, hydrolytic acidity, cation-exchange capacity, total proper area, total organic carbon and dissociation constants were determined in soils. The study showed that the soil under shelterbelts revealed acidic properties. It was observed that soils of 100-year-old shelterbelt characterizing lowest values pH = 4.2 revealed highest values of hydrolytic acidity equaled to 7.8 cmol(+)ṡkg-1. The physicochemical properties of investigated soils shoved specific surface areas (22.8 m2ṡg-1), cationic sorptive capacity (12.9 cmol(+)ṡkg-1). TOC (1.6%) 100-year-old shelterbelt was higher than in 14-year-old shelterbelt. The dissociation constants were determined by potentiometric titration. This investigation revealed that the pK value was the highest in the humus of 100-year-old shelterbelt (pKa = 3.1). However, soils of 14-year-old shelterbelt characterized by the lovest pK equaled to 2.8. The surface layer soils shelterbelts in agricultural landscape with good humus development

  16. [Distribution Characteristics and Source Identification of Organochlorine Pesticides in Surface Soil in Karst Underground River Basin].

    Science.gov (United States)

    Xie, Zheng-lan; Sun, Yu-chuan; Zhang, Mei; Yu, Qin; Xu, Xin

    2016-03-15

    Six typical surface soil samples were taken in Laolongdong underground river basin, and 20 OCPs were analyzed by gas chromatography equipped with micro-⁶³Ni electron capture detector. The purpose of this study was to investigate the distribution, composition and source of organochlorine pesticides ( OCPs) in the surface soil of Laolongdong underground river basin, and to further evaluate the pollution level. The results showed that 20 OCPs were inordinately detected in the soil samples and the detection rate of 16 OCPs (except for p,p'-DDE, cis-Chlordane, trans-Chlordane, dieldrin) was 100%. Moreover, the CHLs and DDTs were the main contaminants, and there were obvious differences in the concentrations of organochlorine pesticides between different sampling points. The concentration range of total OCPs was 5.57-2,618.57 ng · g⁻¹ with a mean of 467.28 ng · g⁻¹. Compared with other regions both at home and abroad, the concentrations of HCHs and DDTs in the surface soil samples of the studied area were arranged from high to middle levels. The total concentrations of OCPs, HCHs, DDTs and CHLs had a similar variation tendency in spatial distribution, upstream > midstream > downstream, and the concentrations of OCPs in upstream were obviously higher than those in midstream and downstream. Source analysis indicated that the HCHs mainly came from the use of lindane. DDTs in soil came from not only the early residues but also recently illegal use of industrial DDTs and the input of dicofol. In addition, chlordan was mainly from the early residues and atmospheric deposition. Compared with the Environmental Quality Standard for Soils of China and Netherlands, the level of OCPs in Xinli vilage soil was categorized as highly polluted, but the levels of OCPs in Longjing bay, Xia spit, and Zhao courtyard soils were classified as slightly polluted, while the Longjing adjacency and gaozhong temple soils belonged to unpolluted ones. PMID:27337880

  17. Particulate soils adherence and surface cleanability: influence of biomacromolecules at interfaces and of substrate hydrophobicity

    OpenAIRE

    Toure, Yetioman

    2014-01-01

    Cleaning of particulate soils is an important issue in food and pharmaceutical production. Understanding the adherence of these soils is a fundamental requirement for improving surfaces cleanability. The combination of particles and macromolecules substances appears in many processes. Adsorbed compounds from these mixtures may influence interactions at interfaces and thus fouling and cleaning. This thesis deals with a deeper understanding of the physico-chemical mechanisms affecting soili...

  18. Metals Accumulation and Leaf Surface Anatomy of Murdannia spectabilis Growing in Zn/Cd Contaminated Soil

    OpenAIRE

    Ladawan Rattanapolsan; Woranan Nakbanpote; Piyaporn Saensouk

    2013-01-01

    Murdannia spectabilis (Kurz) Faden was identified as a Zn/Cd hyperaccumulative plant. Leaf surface anatomy of the plant growing in non-contaminated soil (control) and Zn/Cd contaminated soil,was studied and compared by a light microscopy and scanning electron microscopy combined with Energy-dispersive X-ray spectroscopy(SEM/EDS). The similarities were reticulate cuticle on epidermises, uniform polygonal cell, stomatal arrangement in six surrounding subsidiary cells, and submarginal sclerenchy...

  19. Effects of bionic non-smooth surface on reducing soil resistance to disc ploughing

    Institute of Scientific and Technical Information of China (English)

    CHIRENDE; Benard; SIMALENGA; Timothy; Emmanuel

    2010-01-01

    Past researches have shown that the non-smooth body surfaces of soil burrowing animals help to reduce soil resistance. In this research, this concept of bionic non-smooth surface was applied to disc ploughs and an experiment was conducted in an indoor soil bin to find out the effects of different bionic units on reducing soil resistance to disc ploughing. Horizontal force acting on the disc plough during soil deformation was measured using a 5 kN sensor. Convex and concave bionic units were used and the material used for making convex ones is ultra high molecular weight polyethylene (UHMWPE) which is hydrophobic. From the experiment results, higher or deeper bionic units always resulted in less soil resistance. Convex bionic units gave the highest resistance reduction reaching a maximum of 19% reduction (from 1715.36 N to 1383.65 N) compared to concave bi-onic units. Also, samples with a bionic unit density of 30% gave the highest resistance reduction compared to the other two, which were either plain or had 10% density. In conclusion, the concept of bionic non-smooth units can be applied to disc ploughs in order to reduce soil resistance.

  20. Monitoring Carbon Fluxes from Shallow Surface Soils in the Critical Zone

    Science.gov (United States)

    Stielstra, C. M.; Brooks, P. D.; Chorover, J.

    2011-12-01

    The critical zone (CZ) is the earth's porous near-surface layer, characterized by the integrated processes that occur between the bedrock and the atmospheric boundary layer. Within this area water, atmosphere, ecosystems, and soils interact on a geomorphic and geologic template. We hypothesize that CZ systems organize and evolve in response to open system fluxes of energy and mass, including meteoric inputs of radiation, water, and carbon, which can be quantified at point to watershed scales. The goal of this study is to link above-ground and below-ground carbon processes by quantifying carbon pools and fluxes from near surface soils. Soil CO2 efflux and dissolved organic carbon (DOC) are monitored over a two year period across bedrock type and vegetation type at two seasonally snow covered subalpine catchments in Arizona and New Mexico. We measure the amount of DOC present in surface soils, and install ion exchange resins at the A/B soil horizon interface to capture DOC leachate mobilized during snowmelt and summer rainfall. Throughout the summer rain and spring snowmelt seasons we monitor soil respiration of CO2. Preliminary results show that rates of gaseous carbon flux are significantly higher (psoils with schist bedrock (2.5 ± 0.2 gC/m2/d )than from granite bedrock (1.3 ± 0.1 gC/m2/d), and higher from healthy mixed conifer forests (1.9 ± 0.3 gC/m2/d) than from mixed conifer forests impacted by spruce budworm (1.4 ± 0.1 gC/m2/d). DOC leached from soil samples does not vary significantly with bedrock type; however, spruce budworm impacted forests have significantly higher levels of leachable DOC in surface soils (22.8 ± 4.5 gC/m2) than are found in the soils of healthy forests (10.0 ± 1.5 gC/m2) or subalpine meadows (9.1 ± 0.5 gC/m2). The results of this study will allow us to evaluate the variability of carbon fluxes with vegetation and soil type within a shallow soil carbon pool and help constrain the contributions of soil organic carbon to net carbon

  1. 239+240Pu and 90Sr deposition densities in undisturbed surface soil in Vietnam

    International Nuclear Information System (INIS)

    The study's goal is determination of 239+240Pu and 90Sr deposition densities from known distribution of 137Cs deposition density. The tasks done include: simultaneous determination of 239+240Pu, 90Sr and 137Cs deposition densities in undisturbed surface soil layer having depth to 20 cm and use it as basis for determining the ratios of deposition densities 239+240Pu/137Cs and 90Sr/137Cs; studying the impact of soil parameters such as soil texture, content of organic matter, Humic, Fulvic as well as of geography parameters such as latitude, longitude, annual rainfall to the variation of these ratios. (NHA)

  2. A one-dimensional interactive soil-atmosphere model for testing formulations of surface hydrology

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.

    1990-01-01

    A model representing a soil-atmosphere column in a GCM is developed for off-line testing of GCM soil hydrology parameterizations. Repeating three representative GCM sensitivity experiments with this one-dimensional model demonstrates that, to first order, the model reproduces a GCM's sensitivity to imposed changes in parameterization and therefore captures the essential physics of the GCM. The experiments also show that by allowing feedback between the soil and atmosphere, the model improves on off-line tests that rely on prescribed precipitation, radiation, and other surface forcing.

  3. Runoff and windblown vehicle spray from road surfaces, risks and measures for soil and water.

    OpenAIRE

    Schipper, P.N.M.; Comans, R.N.J.; Dijkstra, J.J.; Vergouwen, L.

    2007-01-01

    Soil and surface water along roads are exposed to pollution from motorways. The main pollutants are polycyclic aromatic hydrocarbons (PAH), mineral oil, heavy metals and salt. These pollutants originate from vehicles (fuel, wires, leakage), wear and degradation of road surfaces and road furniture (i.e. crash barriers) and the application of de-icing salts. Runoff, vehicle spray and dry deposition disperse these contaminants into the soft shoulder (verges) of the roads and surface water to a m...

  4. Speciation and fractionation of heavy metals in soil experimentally contaminated with Pb, Cd, Cu and Zn together and effects on soil negative surface charge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Speciation of heavy metals in soil subsamplesexperimentally loaded with Pb, Cd, Cu and Zn in orthogonal designwas investigated by sequential extraction, and operationallydefined as water-soluble and exchangeable(SE), weakly specificadsorbed(WSA), Fe and Mn oxides-bound(OX) and organic-bound(ORG).The results show that speciation of heavy metals in the soilsubsamples depended on their kinds. About 90% of Cd and 75% of Znexisted in soil subsamples in the SE fraction. Lead and Cu existedin soil subsamples as SE, WSA and OX fractions simultaneously,although SE was still the major fraction. Organic-bound heavymetals were not clearly apparent in all the soil subsamples. Theconcentration of some heavy metal speciation in soil subsamplesshowed good correlation with ionic impulsion of soil, especiallyfor the SE fraction. Continuous saturation of soil subsamples with0.20 mol/L NH4Cl, which is the first step for determination of thenegative surface charge of soil by the ion retention method, resulted in desorption of certain heavy metals from the soil. Itwas found that the percentage desorption of heavy metals from soilsubsamples depended greatly on pH, the composition and originalheavy metal content of the soil subsamples. However, most of theheavy metals in the soil subsamples were still retained aftermultiple saturation. Compared with the parent soil, the negativesurface charge of soil subsamples loaded with heavy metals did notshow differ significantly from that of the parent one bystatistical analysis. Heavy metals existed in the soil subsamplesmainly as exchangeable and precipitated simultaneously.

  5. Bioremediation evaluation of surface soils contaminated with organic compounds

    International Nuclear Information System (INIS)

    This paper presents background information on bioremediation; information on biotechnologies that have been proven in other industries and that may be applicable to the natural gas industry; a protocol for assessing the feasibility of bioremediation; and, some preliminary results on some soils that were evaluated using the protocol. Background information related to natural gas production and processing sites and chemicals that are typically used are presented because both are important preliminary feasibility screening criteria. Applications of bioremediation to sites with similar chemicals such as refineries, wood treating plants, and former manufactured gas plants (MGP's) have been used for approximately 30 years, however bioremediation is not widely used to treat wellhead sites or natural gas production and processing sites. Examples of applications of bioremediation to non-natural gas industry sites are presented and the similarities, primarily chemical, are presented. The GRI developed an Accelerated Biotreatability Protocol for former MGP sites and it is currently being modified for application to the Exploration and Production (E and P) industry. The Accelerated Treatability Protocol is a decision-making framework to evaluate the potential full-scale biological treatment options. Preliminary results from some soils collected and evaluated using the protocol are presented

  6. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    Science.gov (United States)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  7. Nutrient Availability in the Surface Horizons of Four Tropical Agricultural Soils in Mali

    Directory of Open Access Journals (Sweden)

    Verloo, MG.

    2002-01-01

    Full Text Available Studies of nutrient availability are important for the understanding and the estimation of soil fertility in areas like West Africa, where low nutrient availability is still one of the major constraints for food production. Physico-chemical soil analyses were used to assess the fertility status of the surface horizon samples of four Malian agricultural soils, (Bougouni, Kangaba, Baguinéda and Gao abbreviated as Bgni, Kgba, Bgda and Gao. Soil texture was sandy loam for Bgni and Kgba, sandy clay loam for Bgda and loamy sand for Gao. Soil pH values varied from moderately acid for Bgda to neutral for the other sites. Organic carbon ranged from very low (for Gao or low (for Bgni and Bgda to medium (for Kgba. Total N, P and CEC were low for the four soils. Available contents of Fe and Mn in all soils, except Gao, were higher than the critical levels while available Cu and Zn contents (except in Kgba were below or close to it. Results indicated that Kgba soil had a better macronutrient status for plant growth than the other sites.

  8. Relationships between groundwater, surface water, and soil salinity in Polder 32, Southwest Bangladesh

    Science.gov (United States)

    Fry, D. C.; Ayers, J. C.

    2014-12-01

    In the coastal areas of Southwest Bangladesh polders are surrounded by tidal channels filled with brackish water. In the wet season, farmers create openings in the embankments to irrigate rice paddies. In the dry season, farmers do the same to create saline shrimp ponds. Residents on Polder 32, located within the Ganges-Brahmaputra-Meghna delta system, practice these seasonal farming techniques. Soils in the area are entisols, being sediment recently deposited, and contain mostly silt-sized particles. Brackish water in brine shrimp ponds may deposit salt in the soil, causing soil salinization. However, saline connate groundwater could also be contributing to soil salinization. Groundwater, surface water (fresh water pond, rice paddy and tidal channel water) and soil samples have been analyzed via inductively coupled plasma optical emission spectroscopy, inductively coupled plasma mass spectroscopy and ion chromatography in an attempt to correlate salinity measurements with each other in order to determine major sources of soil salinity. Multiple parameters, including distances of samples from tidal channels, inland streams, shrimp ponds and tube wells were measured to see if spatial correlations exist. Similarly, values from wet and dry seasons were compared to quantify temporal variations. Salt content in many soil samples were found to be high enough to significantly decrease rice yields. Continued soil salinization can decrease these yields even more, leading to farmers not producing enough food to sustain their families.

  9. Fertilidade e contaminação por metais pesados e microrganismos fecais de um solo sob pastagem pela aplicação de lama residual urbana Soil fertility and contamination by heavy metals and faecal microorganisms as affected by biosolids application in pasture

    Directory of Open Access Journals (Sweden)

    M. G. Serrão

    2009-01-01

    Full Text Available Em vastas áreas do Alentejo, os solos sob pastagem natural apresentam baixa fertilidade. A aplicação de lama residual urbana (LRU veicula matéria orgânica (M.O. e nutrientes para o solo, mas também pode introduzir metais pesados e bactérias de origem fecal, pelo que é conveniente monitorizar o solo após a adição destes resíduos. Comparam-se as fertilizações orgânica com LRU e a mineral, nos efeitos em alguns índices de fertilidade e contaminação metálica e fecal de um solo derivado de xistos e grauvaques, no Alentejo, no 1º ano de um campo experimental com pastagens. O campo, com um esquema experimentalem “split-plot”, foi constituído por seis talhões de 0,5 ha, correspondentes a três tratamentos de fertilização (nula, mineral e orgânica, com LRU, em dois tipos de pastagem, natural e semeada. Aplicaram-se cerca de 13 t/ha de uma mistura de LRU das ETARs de tratamento secundário de Alvito e de Vila Nova de Baronia, com teores apreciáveis de M.O., N e Ca. A adubação incluiu N, P, K, Zn e Mo. Determinaram-se os valores de pH (H2O e os teores de M.O. total, N total, P e K “assimiláveis”, catiões de troca e de Cd, Cr, Cu, Ni, Pb e Zn extraíveis por água régia, em amostras de terra (fracção In wide areas of Alentejo, soils under natural pasture have low fertility. Urban biosolids (UB application introduce organic matter (O.M. and nutrients in the soil, but it can also add heavy metals and bacteria of faecal origin. Thus, soil monitoring after the application of these residues is required. Organic with UB and mineral fertilisations were compared regarding their effects on some fertility and metallic and faecal pollution indicators of a soil derived from schists and grauwacks, in the 1st year of a field experiment with pastures. The experimental layout was a split-plot design, with six plots of 0.5 ha, referring to three fertilisation treatments (“nil”, mineral, and organic, with UB, in natural and sown

  10. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  11. A compendium of results from long-range alpha detector soil surface monitoring: June 1992--May 1994

    International Nuclear Information System (INIS)

    Soil surface monitors based on long-range alpha detector (LRAD) technology are being used to monitor alpha contamination at various sites in the Department of Energy complex. These monitors, the large soil-surface monitor (LSSM) and the small soil-surface monitor (SSSM), were used to help characterize sites at Fernald, Ohio, and active or inactive firing sites at Sandia National Laboratories and Los Alamos National Laboratory. Monitoring results are presented herein in chronological order

  12. Decomposing Dual Scale Soil Surface Roughness for Microwave Remote Sensing Applications

    Directory of Open Access Journals (Sweden)

    Ralf Ludwig

    2012-07-01

    Full Text Available Soil surface roughness, as investigated in this study, is decomposed in a dual scale process. Therefore, we investigated photogrammetrically acquired roughness information over different agricultural fields in the size of 6–22 m2 and decomposed them into a dual scale process by using geostatistical techniques. For the characterization of soil surface roughness, we calculated two different roughness indices (the RMS height s and the autocorrelation length l differing significantly for each scale. While we could relate the small scale roughness pattern clearly to the seedbed rows, the larger second scale pattern could be related to the appearance of wheel tracks of the tillage machine used. As a result, major progress was made in the understanding of the different scales in soil surface roughness characterization and its quantification possibilities.

  13. The impact of soil moisture variability on seasonal convective precipitation simulations. Part II: sensitivity to land-surface models and prescribed soil type distributions

    Directory of Open Access Journals (Sweden)

    Samiro Khodayar

    2013-08-01

    Full Text Available A set of model simulations with the regional climate model COSMO-CLM (CCLM are analysed to investigate the impact of multi-layer soil-vegetation-atmosphere transfer models (SVATs and the prescribed soil type distribution on seasonal climate simulations. The impact of two different SVATs coupled online with the CCLM, the standard TERRA-ML, and the more sophisticated VEG3D is investigated. Additionally, different simulations with the same setup are performed with the CCLM-VEG3D using a new high-resolution soil type inventory obtained from the European Soil Data Base (ESDB with an original horizontal resolution of 1km ? 1km. The influence of using soil type distributions as constant profiles, or according to soil horizons is discussed. For validation, observations from the Convective and Orographically-induced Precipitation Study (COPS are employed. The use of a more complex land-surface scheme, VEG3D, partially reduces the precipitation biases particularly at the highly vegetated windward and mountain crests of the Black Forest, probably in relation to a better representation of the vegetation in the area, which is not considered in TERRA-ML. In this area, an over-/underestimation up to 4 mm day?1 was observed, respectively. A slightly better simulation of the soil water content and soil temperature improves the simulation of surface turbulent fluxes. The strong impact of those on the atmospheric conditions and atmospheric instability (CAPE reveal an improvement in the simulation of the precipitation in the area and the daily cycle of convection. A strong dependency is found between the prescribed soil type and variables such as the soil moisture, surface turbulent fluxes and precipitation. An improved representation of the model soil type at the near surface and the use of different soil types within one soil column are highly relevant for further improving the simulation of precipitation. These results highlight the importance of land surface

  14. The effect of soil surface sealing on vegetation water uptake along a dry climatic gradient

    Science.gov (United States)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel

    2015-09-01

    Soil surface sealing is a widespread natural process occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water uptake (VWU). This effect is investigated here using experimental data, 2-D physically based modeling, and a long-term climatic data set from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes VWU parameters for the dominant shrub at the study site (Sarcopoterium spinosum) were acquired using lysimeter experiments. The results indicate that during the season surface sealing could either increase or decrease VWU depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on interannual variability of the seal layer effect on VWU, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. The seal layer was found to reduce the period where the vegetation was under water stress by 31% compared with unsealed conditions. This effect was more pronounced for seasons with total rainfall depth higher than 10 cm/yr, and was affected by interseasonal climatic variability. These results shed light on the importance of surface sealing in dry environments and its contribution to the resilience of woody vegetation.

  15. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Directory of Open Access Journals (Sweden)

    C. Draper

    2011-12-01

    Full Text Available This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%, this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  16. Massively Parallel Computation of Soil Surface Roughness Parameters on A Fermi GPU

    Science.gov (United States)

    Li, Xiaojie; Song, Changhe

    2016-06-01

    Surface roughness is description of the surface micro topography of randomness or irregular. The standard deviation of surface height and the surface correlation length describe the statistical variation for the random component of a surface height relative to a reference surface. When the number of data points is large, calculation of surface roughness parameters is time-consuming. With the advent of Graphics Processing Unit (GPU) architectures, inherently parallel problem can be effectively solved using GPUs. In this paper we propose a GPU-based massively parallel computing method for 2D bare soil surface roughness estimation. This method was applied to the data collected by the surface roughness tester based on the laser triangulation principle during the field experiment in April 2012. The total number of data points was 52,040. It took 47 seconds on a Fermi GTX 590 GPU whereas its serial CPU version took 5422 seconds, leading to a significant 115x speedup.

  17. Radar frequency effect on the relationship between surface soil moisture vertical profile and radar backscatter

    Science.gov (United States)

    Zribi, Mehrez; Gorrab, Azza; Baghdadi, Nicolas; Lili-Chabaane, Zohra; Mougenot, Bernard; Boulet, Gilles

    2013-04-01

    Soil moisture plays a key role in hydrological and climatic studies. Considerable efforts have been devoted to the study of radar backscattering responses from natural surfaces in active microwave remote sensing. Electromagnetic analytical backscattering models (Kirchhoff models, the small perturbation method, and more recently the Integral Equation Model (IEM,the AIEM, …) have been used to estimate moisture parameter. However, various experimental measurements have shown that their use must be restricted to specific conditions. For studies in the L, C, and X frequency bands, empirical and semi-empirical models are often calibrated using soil samples collected down to a depth of five centimetres, in which the moisture content is assumed to be homogeneous. In recent years, some studies have revealed that using the actual, inhomogeneous soil moisture profile can make a significant difference in the results obtained from backscatter models. The aim of this paper is to discuss the influence of radar frequency on the relationship between surface soil moisture and the nature of radar backscatter over bare soils. In an attempt to answer this question, the Advanced Integral Equation Model (AIEM) was used to simulate backscatter from soil surfaces with various moisture vertical profiles, for three frequency bands: L, C and X. In these computations, we investigated the influence of the vertical heterogeneity of soil moisture on the characteristics of the backscattered signals. The influence of radar frequency is clearly demonstrated. A database produced from Envisat ASAR and TerraSAR-X data, acquired over bare soils with in situ measurements of moisture content and ground surface roughness, was used to validate the usefulness of taking the soil moisture heterogeneity into account in the backscattering model. These results confirm the significant influence of soil moisture heterogeneities on the strength of radar backscatter. It also highlights the sensitivity of inversion

  18. Surface soil contamination standards for Rockwell Hanford Operations

    International Nuclear Information System (INIS)

    The 200 Areas of the Hanford site contain soils contaminated with levels of radioactivity ranging from fallout concentrations to levels requiring radiological controls. Some contamination is more or less uniformly distributed, and some occurs as discrete specks or spots of activity. Because of the acute need for standards, the Rockwell Environmental Protection (EP) Group proceeded to develop standards; these were approved by Rockwell in October 1979. It must be emphasized that these standards are only applicable to the 200 Areas of the Hanford site or other areas under Rockwell's jurisdiction. It is assumed that access to these areas will always be restricted and that land-use restrictions will be maintained. Contamination limits for areas used by the general public would normally be lower than the limits derived in this case. It appears that the Rockwell standards divided by a factor of 5 to 10 may be reasonable contamination guidelines for the general environment

  19. Topology of Roscoe's- and Hvorslev's- Surfaces in the Phase Space of Soil Mechanics

    OpenAIRE

    Evesque, P.

    2005-01-01

    In general, the evolution of soil submitted to simple stress-strain paths is characterized using the 3d phase space (v,p',q) i.e. (specific volume, mean intergranular pressure, deviatoric stress); one finds that all trajectories end up at a line of attracting point called the critical-state line. The surface of Roscoe (Hvorslev) is defined as the surface made of the last part of the set of trajectories ending to a given critical point and coming from all states of normally consolidated soils ...

  20. Analysis of Radionuclide at Surface Soil Sample at Higashi Ishikawa, Japan

    International Nuclear Information System (INIS)

    Radioactive effluent that released to the environment may influence the population externally and internally. In order to protect the population from the impact of radiation hazard, environmental radionuclide concentration must be monitored periodically. Analysis of radionuclide in surface soil sample is one of the environmental radiation monitoring programs task. The radionuclide content in surface soil sample from Higashi Ishikawa sampling point has been analyzed. The analysis results show insignificant difference compared with the theoretical estimations and the average of JAEA’s analytical result data since 1977 until 2005. (author)

  1. Effect of disking and other agricultural practices on the distribution of surface deposited plutonium in soil

    International Nuclear Information System (INIS)

    Two old fields near a chemical separations facility were recently farmed to determine the behavior of Pu deposited on the soil surface due to routine low-level stack releases during the last 20 years. The soil was disked thoroughly in preparation for a wheat crop in 1974 and a soybean crop in 1975. The agricultural practices did not materially increase the plutonium concentration in the 15 to 30 cm depth nor reduce the plutonium in the surface 0 to 5 cm depth. There was a considerable increase in the 5 to 15 cm depth

  2. Modelling and interpreting biologically crusted dryland soil sub-surface structure using automated micropenetrometry

    Science.gov (United States)

    Hoon, Stephen R.; Felde, Vincent J. M. N. L.; Drahorad, Sylvie L.; Felix-Henningsen, Peter

    2015-04-01

    Soil penetrometers are used routinely to determine the shear strength of soils and deformable sediments both at the surface and throughout a depth profile in disciplines as diverse as soil science, agriculture, geoengineering and alpine avalanche-safety (e.g. Grunwald et al. 2001, Van Herwijnen et al. 2009). Generically, penetrometers comprise two principal components: An advancing probe, and a transducer; the latter to measure the pressure or force required to cause the probe to penetrate or advance through the soil or sediment. The force transducer employed to determine the pressure can range, for example, from a simple mechanical spring gauge to an automatically data-logged electronic transducer. Automated computer control of the penetrometer step size and probe advance rate enables precise measurements to be made down to a resolution of 10's of microns, (e.g. the automated electronic micropenetrometer (EMP) described by Drahorad 2012). Here we discuss the determination, modelling and interpretation of biologically crusted dryland soil sub-surface structures using automated micropenetrometry. We outline a model enabling the interpretation of depth dependent penetration resistance (PR) profiles and their spatial differentials using the model equations, σ {}(z) ={}σ c0{}+Σ 1n[σ n{}(z){}+anz + bnz2] and dσ /dz = Σ 1n[dσ n(z) /dz{} {}+{}Frn(z)] where σ c0 and σ n are the plastic deformation stresses for the surface and nth soil structure (e.g. soil crust, layer, horizon or void) respectively, and Frn(z)dz is the frictional work done per unit volume by sliding the penetrometer rod an incremental distance, dz, through the nth layer. Both σ n(z) and Frn(z) are related to soil structure. They determine the form of σ {}(z){} measured by the EMP transducer. The model enables pores (regions of zero deformation stress) to be distinguished from changes in layer structure or probe friction. We have applied this method to both artificial calibration soils in the

  3. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-06-01

    The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  4. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Directory of Open Access Journals (Sweden)

    C. Draper

    2011-06-01

    Full Text Available The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively. When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  5. Optimal averaging of soil moisture predictions from ensemble land surface model simulations

    Science.gov (United States)

    Crow, W. T.; Su, C.-H.; Ryu, D.; Yilmaz, M. T.

    2015-11-01

    The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variable (IV) regression approach and comparisons against a long-term surface soil moisture data set acquired from satellite remote sensing. Application of the approach to multimodel ensemble soil moisture output from Phase 2 of the North American Land Data Assimilation System (NLDAS-2) and European Space Agency (ESA) Soil Moisture (SM) Essential Climate Variable (ECV) data set allows for the calculation of optimal weighting coefficients for individual members of the NLDAS-2 LSM ensemble and a biased-minimized estimate of uncertainty in a deterministic soil moisture analysis derived via optimal averaging. As such, it provides key information required to accurately condition soil moisture expectations using information gleaned from a multimodel LSM ensemble. However, existing continuity and rescaling concerns surrounding the generation of long-term, satellite-based soil moisture products must likely be resolved before the proposed approach can be applied with full confidence.

  6. A Comparison of Land Surface Model Soil Hydraulic Properties Estimated by Inverse Modeling and Pedotransfer Functions

    Science.gov (United States)

    Gutmann, Ethan D.; Small, Eric E.

    2007-01-01

    Soil hydraulic properties (SHPs) regulate the movement of water in the soil. This in turn plays an important role in the water and energy cycles at the land surface. At present, SHPS are commonly defined by a simple pedotransfer function from soil texture class, but SHPs vary more within a texture class than between classes. To examine the impact of using soil texture class to predict SHPS, we run the Noah land surface model for a wide variety of measured SHPs. We find that across a range of vegetation cover (5 - 80% cover) and climates (250 - 900 mm mean annual precipitation), soil texture class only explains 5% of the variance expected from the real distribution of SHPs. We then show that modifying SHPs can drastically improve model performance. We compare two methods of estimating SHPs: (1) inverse method, and (2) soil texture class. Compared to texture class, inverse modeling reduces errors between measured and modeled latent heat flux from 88 to 28 w/m(exp 2). Additionally we find that with increasing vegetation cover the importance of SHPs decreases and that the van Genuchten m parameter becomes less important, while the saturated conductivity becomes more important.

  7. Spatial Variability of Irrigated Corn Yield in Relation to Field topography and Soil Chemical Characteristics

    OpenAIRE

    Marques da Silva, José Rafael; Alexandre, C

    2005-01-01

    Corn yield, topography and soil characteristics were sampled on a 26 ha area of a centre pivot irrigated cropland. The aim of the study was to determine relationships between corn yield, field topography and soil characteristics. The study was carried out in the Alentejo region of Portugal. Corn yield was measured with a combine harvester fitted with a grain-flow sensor and positioned by means of the Global Positioning System (GPS). A grid-based digital elevation model (DEM) with 1-m resoluti...

  8. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature

    Science.gov (United States)

    Mintz, Y.; Walker, G. K.

    1993-01-01

    The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite (1954). It is shown that at locations where the net surface radiation flux has been measured, the potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor (1972), Penman (1948), and Budyko (1956-1974), and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere.

  9. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till

    Directory of Open Access Journals (Sweden)

    Leandro Michalovicz

    2014-10-01

    Full Text Available Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol, as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2- up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.

  10. Controlling factors of surface soil moisture temporal stability at watershed scale

    Science.gov (United States)

    Wei, Lingna; Chen, Xi; Dong, Jianzhi; Gao, Man

    2016-04-01

    Soil moisture plays a significant role in the land surface-atmosphere interactions. Temporal stability was frequently used for estimating areal mean soil moisture using limited number of point measurements. This study investigated the factors that determine soil moisture temporal stability using simulated high spatial resolution soil moisture data at watershed scale. Results show locations under dominate vegetation cover and with low topographic wetness index (TI) values are likely to provide reasonable areal mean soil moisture estimates. We demonstrated that including the information of vegetation cover and TI can effectively reduce the number of the sampling locations that required for determining the representative point. The length of sampling period is also shown to be important in correctly determining the representative point. When 10 sampling points were used, a sampling period of approximately 300 days can provide robust areal mean soil moisture estimates of the entire study period of 9 years. The presented study may be useful for improving our skills in applying the temporal stability method for areal mean soil moisture estimating, and hence remote sensing product validation.

  11. Modelling Soil Heat and Water Flow as a Coupled Process in Land Surface Models

    Science.gov (United States)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Braud, Isabelle

    2010-05-01

    To improve model estimates of soil water and heat flow by land surface models (LSMs), in particular in the first few centimetres of the near-surface soil profile, we have to consider in detail all the relevant physical processes involved (see e.g. Milly, 1982). Often, thermal and iso-thermal vapour fluxes in LSMs are neglected and the simplified Richard's equation is used as a result. Vapour transfer may affect the water fluxes and heat transfer in LSMs used for hydrometeorological and climate simulations. Processes occurring in the top 50 cm soil may be relevant for water and heat flux dynamics in the deeper layers, as well as for estimates of evapotranspiration and heterotrophic respiration, or even for climate and weather predictions. Water vapour transfer, which was not incorporated in previous versions of the MOSES/JULES model (Joint UK Land Environment Simulator; Cox et al., 1999), has now been implemented. Furthermore, we also assessed the effect of the soil vertical resolution on the simulated soil moisture and temperature profiles and the effect of the processes occurring at the upper boundary, mainly in terms of infiltration rates and evapotranspiration. SiSPAT (Simple Soil Plant Atmosphere Transfer Model; Braud et al., 1995) was initially used to quantify the changes that we expect to find when we introduce vapour transfer in JULES, involving parameters such as thermal vapour conductivity and diffusivity. Also, this approach allows us to compare JULES to a more complete and complex numerical model. Water vapour flux varied with soil texture, depth and soil moisture content, but overall our results suggested that water vapour fluxes change temperature gradients in the entire soil profile and introduce an overall surface cooling effect. Increasing the resolution smoothed and reduced temperature differences between liquid (L) and liquid/vapour (LV) simulations at all depths, and introduced a temperature increase over the entire soil profile. Thermal

  12. Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces

    Science.gov (United States)

    Kim, Minsu; Or, Dani

    2016-01-01

    Microbial life in soil is perceived as one of the most interesting ecological systems, with microbial communities exhibiting remarkable adaptability to vast dynamic environmental conditions. At the same time, it is a notoriously challenging system to understand due to its complexity including physical, chemical, and biological factors in synchrony. This study presents a spatially-resolved model of microbial dynamics on idealised rough soil surfaces represented as patches with different (roughness) properties that preserve the salient hydration physics of real surfaces. Cell level microbial interactions are considered within an individual-based formulation including dispersion and various forms of trophic dependencies (competition, mutualism). The model provides new insights into mechanisms affecting microbial community dynamics and gives rise to spontaneous formation of microbial community spatial patterns. The framework is capable of representing many interacting species and provides diversity metrics reflecting surface conditions and their evolution over time. A key feature of the model is its spatial scalability that permits representation of microbial processes from cell-level (micro-metric scales) to soil representative volumes at sub-metre scales. Several illustrative examples of microbial trophic interactions and population dynamics highlight the potential of the proposed modelling framework to quantitatively study soil microbial processes. The model is highly applicable in a wide range spanning from quantifying spatial organisation of multiple species under various hydration conditions to predicting microbial diversity residing in different soils. PMID:26807803

  13. Summary report: Assessment of deep injection well associated surface soils at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    This report summarizes sampling activities and analytical results of the chemical and radiological content of surface soils from storm water retention basins and drainage ditches associated with eight deep injection wells at the Idaho National Engineering Laboratory. The results of the sampling effort were intended to support permitting of the injection wells by the State of Idaho Department of Water Resources. In August 1992, the surface soils associated with eight storm water retention basins and ditches were sampled. All samples were collected and analyzed in accordance with a written sampling and analysis plan. The samples were analyzed by an off-Site contract laboratory, and the results were compared to local and regional soil analytical data to determine the presence of contaminants. The results indicated that the surface soils from the storm water retention basins and ditches did not have concentrations of metals or radionuclides greater than the range of concentrations found in local and regional soils. Volatile organic compounds were below detection limits

  14. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface.

    Science.gov (United States)

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-08-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3-5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. PMID:27132250

  15. Summary report: Assessment of deep injection well associated surface soils at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pole, S.B.

    1993-01-01

    This report summarizes sampling activities and analytical results of the chemical and radiological content of surface soils from storm water retention basins and drainage ditches associated with eight deep injection wells at the Idaho National Engineering Laboratory. The results of the sampling effort were intended to support permitting of the injection wells by the State of Idaho Department of Water Resources. In August 1992, the surface soils associated with eight storm water retention basins and ditches were sampled. All samples were collected and analyzed in accordance with a written sampling and analysis plan. The samples were analyzed by an off-Site contract laboratory, and the results were compared to local and regional soil analytical data to determine the presence of contaminants. The results indicated that the surface soils from the storm water retention basins and ditches did not have concentrations of metals or radionuclides greater than the range of concentrations found in local and regional soils. Volatile organic compounds were below detection limits.

  16. Downhole instrumentation for the evaluation of non-linear soil response on ground surface motion

    International Nuclear Information System (INIS)

    A downhole experiment at McGee Creek in eastern central California has shown that, for hard soil deposits, the one-dimensional shear-wave model for the soil constitutive relationship is adequate for use in the computation of ground surface motions. In order to investigate the influence of soil non-linearities on these latter, an alluvial site has been instrumented in southern California, at Garner Valley. This paper presents the characterization of the site and the soil parameters derived from in-site and laboratory-based tests. Preliminary results for the recorded ground motion responses corresponding to small-magnitude earthquakes are compared with computed motions from a one-dimensional shear-wave model. (author)

  17. Elevated soil CO2 efflux at the boundaries between impervious surfaces and urban greenspaces

    Science.gov (United States)

    Wu, XiaoGang; Hu, Dan; Ma, ShengLi; Zhang, Xia; Guo, Zhen; Gaston, Kevin J.

    2016-09-01

    Impervious surfaces and greenspaces have significant impacts on ecological processes and ecosystem services in urban areas. However, there have been no systematic studies of how the interaction between the two forms of land cover, and especially their edge effects, influence ecosystem properties. This has made it difficult to evaluate the effectiveness of urban greenspace design in meeting environmental goals. In this study, we investigated edge effects on soil carbon dioxide (CO2) fluxes in Beijing and found that soil CO2 flux rates were averagely 73% higher 10 cm inwards from the edge of greenspaces. Distance, soil temperature, moisture, and their interaction significantly influenced soil CO2 flux rates. The magnitude and distance of edge effects differed among impervious structure types. Current greening policy and design should be adjusted to avoid the carbon sequestration service of greenspaces being limited by their fragmentation.

  18. Be-7 as a tracer for short-term soil surface changes - opportunities and limitations

    Science.gov (United States)

    Baumgart, Philipp

    2013-04-01

    Within the last 20 years the cosmogenic nuclide Beryllium-7 was successfully established as a suitable tracer element to detect soil surface changes with a high accuracy. Particularly soil erosion rates from single precipitation events are in the focus of different studies due to the short radioactive half-life of the Be-7 isotope. High sorption at topmost soil particles and immobility at given pH-values enable fine-scaled erosion modelling down to 2 mm increments. But some important challenging limitations require particular attention, starting from sampling up to the final data evaluation. E.g. these are the realisation of the fine increment soil collection, the limiting amount of measurable samples per campaign due to the short radioactive half-life and the specific requirements for the detector measurements. Both, the high potential and the challenging limitations are presented as well as future perspectives of that tracer method.

  19. Measurement of light polarization characteristics from an oil-polluted soil surface in near-infrared bands

    Institute of Scientific and Technical Information of China (English)

    WANG Yuan; SHENG LianXi; LIKe; ZHAO NaiZhuo; ZHAO YunSheng

    2009-01-01

    Oil pollution can be monitored by infrared remote sensing technology. In this work, the degree of pola-rization (DOP) was established as a quantitative index of oil pollution. The crude oil and the local typical surface soil from the Songyuan oil field in Jilin province were collected. Some soil samples with four levels of oil content and three levels of water content were prepared and measured. The DOP of the polluted soil and the clean soil in the field was also measured at 180° relative viewing azimuth angle, and 10°, 30° and 50° viewing zenith angles. It was found that with rising soil oil content, the DOP of the reflected light on the soil surface increased when the soil water content was low, and decreased when the soil water content was high.

  20. Surface Complexation Modeling in Variable Charge Soils: Charge Characterization by Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation, considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.

  1. LRAD soil surface contamination monitor test and demonstration at the Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) Solid Waste Management (SWM) organization requested Savannah River Technology Center (SRTC) / Analytical Development Section (ADS) assistance in evaluating a Long Range Alpha Detector (LRAD) as a soil surface contamination monitor. Solid Waste Management also contracted TMA NcClean to bring the equipment to SRS and to operate it during the demonstration. For the demonstration, we measured LRAD signals above different surface materials including asphalt, concrete, clay soil, sandy soil, gravel, and a plywood sheet. This report describes the tests conducted at SRTC in the period August 22, 1995 through August 24, 1995. In order to put the data that were acquired in these tests in perspective, the physical principals on which LRAD is based are discussed

  2. Spatial Arrangment of Organic Compounds on a Model Mineral Surface: Implications for Soil Organic Matter Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Petridis, Loukas [ORNL; Ambaye, Haile Arena [ORNL; Jagadamma, Sindhu [ORNL; Kilbey, S. Michael [University of Tennessee, Knoxville (UTK); Lokitz, Bradley S [ORNL; Lauter, Valeria [ORNL; Mayes, Melanie [ORNL

    2014-01-01

    The complexity of the mineral organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise

  3. A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation. The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data as- similation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in considera- tion of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process, while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heteroge- neity and soil water thawing and freezing. With the improvement of soil moisture simulation, the soil temperature-simulated precision can be also improved to some extent.

  4. A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing

    Institute of Scientific and Technical Information of China (English)

    TIAN XiangJun; XIE ZhengHui

    2008-01-01

    The Ensemble Kalman Filter (EnKF) is well known and widely used in land data assimilation for its high precision and simple operation. The land surface models used as the forecast operator in a land data assimilation system are usually designed to consider the model subgrid-heterogeneity and soil water thawing and freezing. To neglect their effects could lead to some errors in soil moisture assimilation.The dual EnKF method is employed in soil moisture data assimilation to build a soil moisture data assimilation framework based on the NCAR Community Land Model version 2.0 (CLM 2.0) in consideration of the effects of the model subgrid-heterogeneity and soil water thawing and freezing: Liquid volumetric soil moisture content in a given fraction is assimilated through the state filter process,while solid volumetric soil moisture content in the same fraction and solid/liquid volumetric soil moisture in the other fractions are optimized by the parameter filter. Preliminary experiments show that this dual EnKF-based assimilation framework can assimilate soil moisture more effectively and precisely than the usual EnKF-based assimilation framework without considering the model subgrid-scale heterogeneity and soil water thawing and freezing. With the improvement of soil moisture simulation,the soil temperature-simulated precision can be also improved to some extent.

  5. Utilização de ferramentas informáticas no âmbito do estudo dos recursos hídricos subterrâneos do Alentejo, ERHSA

    OpenAIRE

    Fernandes, Judite; Francés, Alain; Costa, Augusto; Midões, Carla

    2001-01-01

    No âmbito do projecto Estudo dos Recursos Hídricos Subterrâneos do Alentejo (ERHSA) desenvolvido durante os últimos 4 anos sob a coordenação da Comissão de Coordenação da Região Alentejo (CCRA), foram estabelecidas redes de monitorização e aplicadas ferramentas matemáticas que actualmente apoiam a gestão dos recursos hídricos. Estas redes integradas na rede regional de monitorização da qualidade e quantidade da água subterrânea, gerida pela Direcção Regional do Ambiente e Ordenamento do Terri...

  6. Soil, snow, weather, and sub-surface storage data from a mountain catchment in the rain–snow transition zone

    OpenAIRE

    Kormos, P. R.; Marks, D; Williams, C. J.; H. P. Marshall; Aishlin, P.; Chandler, D. G.; J. P. McNamara

    2014-01-01

    A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain–snow transition zone. This type of data set is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 water year are included, which include several rain-on-snow (ROS) events. Surface so...

  7. Land surface temperature inversion of bare soil and vegetation cover based on MODIS data

    Science.gov (United States)

    Li, Jingwen; Zhou, Song; Wang, Zhezhen; Lv, Nan; Jiang, Jianwu; Wang, Ke

    2015-12-01

    Land surface temperature is one of the most important parameters in hydrology and agricultural production research . Split-window algorithm based on MODIS data was briefly introduced in this paper and applied in Hetao Irrigation District. Comparison between data retrieval and field collected data showed that data retrieval could reflect land surface temperature basic accurately .Linear fitting of different time series data can improve retrieval precision effectively. The results provide support for drought forecast, soil moisture monitoring etc. in the future.

  8. Boreal land surface water and heat balance : Modelling soil-snow-vegetation-atmosphere behaviour

    OpenAIRE

    Gustafsson, David

    2002-01-01

    The water and heat exchange in thesoil-snow-vegetation-atmosphere system was studied in order toimprove the quantitative knowledge of land surface processes.In this study, numerical simulation models and availabledatasets representing arable land, sub-alpine snowpack, andboreal forest were evaluated at both diurnal and seasonaltimescales. Surface heat fluxes, snow depth, soil temperatures andmeteorological conditions were measured at an agriculturalfield in central Sweden during three winters...

  9. Parameter identification and analysis of soluble chemical transfer from soil to surface runoff

    Directory of Open Access Journals (Sweden)

    J. X. Tong

    2012-03-01

    Full Text Available A two-layer mathematical model is used to predict the chemical transfer from the soil into the surface runoff with ponding water. There are two incomplete infiltration-related parameter γ and runoff-related parameter α in the analytical solution to the model, which were assumed to be constant in previous studies (Tong et al., 2010. In this study, experimental data are used to identify the variable γ and α based on the analytical solution. The soil depth of the mixing zone is kept to be constant in different experiments, and the values of γ and α before the surface runoff occurs are constant and equal to their values at the moment the runoff starts. From the study results, it is found that γ will decrease with the increase of the surface runoff time, the increase of the ponding-water depth, hp, or with the decrease of the initial volumetric water content. The variability of γ will decrease with the increase of the initial volumetric water content. Similarly, α will decrease with time for the initially unsaturated experimental soils, but will increase with time for the initially saturated experimental soils. The larger the infiltration, the less chemical concentration in the surface runoff is. The analytical solution is not valid for experimental soil without any infiltration if α is expected to be less or equal to 1. The results will help to quantify chemical transfer from soil into runoff, a significant problem in agricultural pollution management.

  10. Comparisons of surface sealing methods in emission reduction from soil fumigation using field plot tests

    Science.gov (United States)

    Effective agricultural management to reduce emissions from pre-plant soil fumigation is needed in developing policies and regulations towards fumigant use. Field plot tests provide an important tool for determining the effectiveness of surface sealing or other mitigation techniques on emission reduc...

  11. Dynamic geochemical models to assess deposition impacts of metals for soils and surface waters

    NARCIS (Netherlands)

    Groenenberg, J.E.; Tipping, E.; Bonten, L.T.C.; Vries, de W.

    2015-01-01

    This chapter describes the use of geochemical models to assess the impacts of the deposition of metals on the concentrations of metals in soils and surface waters. We describe three dynamic models: SMART2-metals, SMARTml and CHUM-AM, each with their specific purpose and geographical scale of applica

  12. Specific surface area effect on adsorption of chlorpyrifos and TCP by soils and modeling

    Science.gov (United States)

    The adsorption of chlorpyrifos and TCP (3,5,6, trichloro-2-pyridinol) was determined in four soils (Mollisol, Inceptisol, Entisol, Alfisol) having different specific surface areas (19–84 m2/g) but rather similar organic matter content (2.4–3.5%). Adsorption isotherms were derived from batch equilibr...

  13. Measures to diminish leaching of heavy metals to surface waters from agricultural soils

    NARCIS (Netherlands)

    Schipper, P.N.M.; Bonten, L.T.C.; Plette, A.C.C.; Moolenaar, S.W.

    2008-01-01

    Historical accumulation of heavy metals in agricultural soils has caused an increased leaching to shallow groundwater in the Netherlands. The elevated concentrations of metals like copper and zinc in shallow groundwater, causes problems to meet target levels in surface waters. Important sources for

  14. Interactions between metal ions and biogeo-surfaces in soil and water

    NARCIS (Netherlands)

    Weng, L.

    2002-01-01

    To provide the basis for an improved quantitative risk assessment of heavy metals in the environment, the interactions between the metal ions and the biogeo-surfaces in soil and water were studied using both experimental and modelling approaches.The Donnan membrane technique was developed and optimi

  15. Effects of photovoltaic module soiling on glass surface resistance and potential-induced degradation

    DEFF Research Database (Denmark)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alexander;

    2015-01-01

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60°C. Sea salt yielded a 3.5 orders of magnitude decrease in resistance on the glass surface when ...

  16. Spatiotemporal evolution of water content at the rainfall-event scale under soil surface sealing conditions

    Science.gov (United States)

    Sela, S.; Svoray, T.; Assouline, S.

    2012-04-01

    Surface water content dynamics rules the partitioning between infiltration, runoff, and evaporation fluxes. Extending the knowledge on factors controlling top-soil water content temporal stability (TS) is needed to calibrate and validate various remote sensing technologies. Spatiotemporal evolution of water content is highly non-linear, being affected by various factors at different spatial and temporal scales. In semi-arid climates, this evolution is significantly affected by the formation of surface seals, shown in previous studies to significantly reduce both infiltration and evaporation fluxes from the soil. The drying regime in a natural sealed soil system exerts a sharp contrast in the soil profile - a very dry seal is superimposed on top of a wetter soil layer. One question is thus, whether seal layers contribute to or destroy temporal stability of top soil water content at the hillslope scale. To address this question, a typical hillslope (0.115 km2) was chosen at the LTER Lehavim site in the south of Israel (31020' N, 34045' E) offering different aspects and a classic geomorphologic banding. The annual rainfall is 297 mm, the soils are brown lithosols and arid brown loess and the dominant rock formations are Eocenean limestone and chalk with patches of calcrete. The vegetation is characterised by scattered dwarf shrubs (dominant species Sarcopoterium spinosum) and patches of herbaceous vegetation, mostly annuals, are spread between rocks and dwarf shrubs. An extensive spatial database of soil hydraulic and environmental parameters (e.g. slope, radiation, bulk density) was measured in the field and interpolated to continuous maps using geostatistical techniques and physically based modelling. To explore the effect of soil surface sealing, Mualem and Assouline [1989] model describing the change in hydraulic parameters resulting from soil seal formation were applied. This spatio-temporal database was used to characterise 8240 spatial cells (3X3m2) serving as

  17. A non-equilibrium model for soil heating and moisture transport during extreme surface heating

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2015-03-01

    Full Text Available With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank–Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m−2. The Hertz–Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50–90 °C. Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure, which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different models developed for somewhat different purposes and for different porous

  18. Mass transport of contaminated soil released into surface water by landslides (Göta River, SW Sweden)

    OpenAIRE

    G. Göransson; Larson, M.; D. Bendz; Åkesson, M.

    2012-01-01

    Landslides of contaminated soil into surface water represent an overlooked exposure pathway that has not been addressed properly in existing risk analysis for landslide hazard, contaminated land, or river basin management. A landslide of contaminated soil into surface water implies an instantaneous exposure of the water to the soil, dramatically changing the prerequisites for the mobilisation and transport of pollutants. In this study, an analytical approach is taken to simulate the transport...

  19. Mass transport of contaminated soil released into surface water by landslides (Göta River, SW Sweden)

    OpenAIRE

    G. Göransson; Larson, M.; D. Bendz; Åkesson, M.

    2011-01-01

    Landslides of contaminated soil into surface water represent an overlooked exposure pathway that has not been addressed properly in existing risk analysis for landslide hazard, contaminated land, or river basin management. A landslide of contaminated soil into surface water implies an instantaneous exposure of the water to the contaminated soil, dramatically changing the prerequisites for the mobilisation and transport of pollutants. In this study, an analytical approach is taken to si...

  20. Mass transport of contaminated soil released into surface water by landslides (Göta River, SW Sweden)

    OpenAIRE

    G. Göransson; Larson, M.; D. Bendz; Åkesson, M.

    2012-01-01

    Landslides of contaminated soil into surface water represent an overlooked exposure pathway that has not been addressed properly in existing risk analysis for landslide hazard, contaminated land, or river basin management. A landslide of contaminated soil into surface water implies an instantaneous exposure of the water to the soil, dramatically changing the prerequisites for the mobilisation and transport of pollutants. In this study, an analytical approach is taken to simu...

  1. Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations

    OpenAIRE

    Jesús ÃÂlvarez-Mozos; Verhoest, Niko E.C.; Arantzazu Larrañaga; María González-Audícana; Javier Casalí

    2009-01-01

    Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration obser...

  2. Improving long-term, retrospective precipitation datasets using satellite-based surface soil moisture retrievals and the soil moisture analysis rainfall tool (SMART)

    Science.gov (United States)

    Using historical satellite surface soil moisture products, the Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available ground observations. In order to adapt...

  3. Analysis of soluble chemical transfer from soil to surface runoff and incomplete mixing parameter identification

    Directory of Open Access Journals (Sweden)

    Ju-xiu Tong

    2015-07-01

    Full Text Available A two-layer mathematical model proposed by Tong et al. (2010 was used to predict soluble chemical transfer from soil into surface runoff with ponded water on the soil surface. Infiltration-related incomplete mixing parameter and runoff-related incomplete mixing parameter in the analytical solution of the Tong et al. (2010 model were assumed to be constant. In this study, different laboratory experimental data of soluble chemical concentration in surface runoff from initially unsaturated and saturated soils were used to identify the variables and based on the analytical solution of the model. The values of and without occurrence of surface runoff were constant and equal to their values at the moment when the surface runoff started. It was determined from the results that decreases with the increase of the ponded water depth, and when the initial volumetric water content is closer to the saturated water content, there is less variation of parameter after the occurrence of surface runoff. As infiltration increases, the soluble chemical concentration in surface runoff decreases. The values of parameter range from 0 to 1 for the fine loam and sand under the controlled infiltration conditions, while it can increase to a very large value, greater than 1, for the sand under the restrained infiltration conditions, and the analytical solution of the model is not valid for experimental soil without any infiltration if is expected to be less than or equal to 1. The soluble chemical concentrations predicted from the model with variable incomplete mixing parameters and are more accurate than with from constant and values.

  4. The dust emission law in the wind erosion process on soil surface

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The dust emission models to date cannot describe the relation between the transport rate of different sized grains and their grain size composition in soil surface, so Aeolian grain transport on a soil-like bed composed of fine sand and silt powder was measured in a wind tunnel. Six types of soil-like beds with different silt fractions have been tested in this experiment. The mass flux profiles of silt dust and sand grains are much different due to their different motion modes. Analysis of the vertical distribution of the powder and sand grains reveals that for a given soil bed, the ratio of the horizontal dust flux to the horizontal sand flux is directly proportional to their mass ratio in the bed. The dust flux is closely linked to the sand flux by the bombardment mechanism. For a given wind velocity and grain size of the bed, the slopes of the vertical mass flux profiles of sand grains larger than 100 μm are nearly equal in a log-linear plot and the ratio between the fraction of transport rate of each size group to the whole transport rate and the mass fraction of each size group in the bed is a constant only dependent on grain size. With this law, the transport rate of dust and different sized grains can be related with the grain size composition in the soil surface.

  5. Soil-gas helium and surface-waves detection of fault zones in granitic bedrock

    Indian Academy of Sciences (India)

    G K Reddy; T Seshunarayana; Rajeev Menon; P Senthil Kumar

    2010-10-01

    Fracture and fault networks are conduits that facilitate groundwater movement in hard-rock terrains.Soil-gas helium emanometry has been utilized in Wailapally watershed,near Hyderabad in southern India,for the detection of fracture and fault zones in a granite basement terrain having a thin regolith.Based on satellite imagery and geologic mapping,three sites were selected for detailed investigation.High spatial resolution soil-gas samples were collected at every one meter at a depth of <1.5m along 100 m long profiles (3 in number).In addition,deep shear-wave images were also obtained using the multichannel analysis of surface waves.The study clearly indicates several soil-gas helium anomalies (above 200 ppb)along the pro files,where the shear-wave velocity images also show many near-surface vertical low velocity zones.We thus interpret that the soil-gas helium anomalous zones and the vertical low-velocity zones are probable traces of fault/fracture zones that could be efficient natural recharge zones and potential groundwater conduits.The result obtained from this study demonstrates the efficacy of an integrated approach of soil-gas helium and the seismic methods for mapping groundwater resource zones in granite/gneiss provinces.

  6. An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2009-02-01

    Full Text Available A long term data acquisition effort of profile soil moisture is currently underway at 13 automatic weather stations located in Southwestern France. In this study, the soil moisture measured in-situ at 5 cm is used to evaluate the normalised surface soil moisture (SSM estimates derived from coarse-resolution (25 km active microwave data of the ASCAT scatterometer instrument (onboard METOP, issued by EUMETSAT for a period of 6 months (April–September in 2007. The seasonal trend is removed from the satellite and in-situ time series by considering scaled anomalies. One station (Mouthoumet of the ground network, located in a mountainous area, is removed from the analysis as very few ASCAT SSM estimates are available. No correlation is found for the station of Narbonne, which is close to the Mediterranean sea. On the other hand, nine stations present significant correlation levels. For two stations, a significant correlation is obtained when considering only part of the ASCAT data. The soil moisture measured in-situ at those stations, at 30 cm, is used to estimate the characteristic time length (T of an exponential filter applied to the ASCAT product. The best correlation between a soil water index derived from ASCAT and the in-situ soil moisture observations at 30 cm is obtained with a T-value of 14 days.

  7. An evaluation of ASCAT surface soil moisture products with in-situ observations in southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2008-08-01

    Full Text Available A long term data acquisition effort of profile soil moisture is currently underway at 13 automatic weather stations located in southwestern France. In this study, the soil moisture measured in-situ at 5 cm is used to evaluate the normalised surface soil moisture (SSM estimates derived from coarse-resolution (25 km active microwave data of the ASCAT scatterometer instrument (onboard METOP, issued by EUMETSAT for a period of 6 months (April–September in 2007. The seasonal trend is removed from the satellite and in-situ time series by considering scaled anomalies. One station (Mouthoumet of the ground network, located in a mountainous area, is removed from the analysis as very few ASCAT SSM estimates are available. No correlation is found for the station of Narbonne, which is close to the Mediterranean sea. On the other hand, the other 11 stations present significant correlation levels. The soil moisture measured in-situ at those stations, at 30 cm, is used to estimate the characteristic time length (T of an exponential filter applied to the ASCAT product. The best correlation between a soil water index derived from ASCAT and the in-situ soil moisture observations at 30 cm is obtained with a T-value of 14 days.

  8. A qualitative description of shallow groundwater effect on surface temperature of bare soil

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2009-09-01

    Full Text Available Whether or not shallow groundwater affects skin temperature (the temperature of soil surface is important to detect depth and extent of shallow groundwater by dint of remote sensing and important for land surface modelling studies. Although few studies have been conducted to investigate that effect, they have yielded contradicting conclusions and they stopped in 1982. To determine that shallow groundwater affects skin temperature, we measured soil temperature at two different depths (5 and 10 cm in seven places with variable water table depths every ten minutes and for six days. After that, we correlated the minimum, maximum and average daily temperatures to average groundwater depth. We also built a simple numerical model using a differential equations solver, Flex PDE, to simulate heat transfer into soil profile and used it to simulate groundwater effect on skin temperature. We found quite high negative correlation between the maximum and average daily soil temperature and groundwater depth. Contrarily, we could hardly find any correlation between the daily minimum temperature and groundwater depth. Numerical simulations, though simple, were useful in showing that groundwater shifted skin temperature curves up in the winter and down in the summer without affecting the shape of the curve. We conclude that shallow groundwater affects skin temperature directly by its distinctive thermal properties in the soil profile and indirectly by affecting soil moisture which in turn has many different and contradictory effects on skin temperature. This study recommends building a comprehensive numerical model that simulates the effect of shallow groundwater on skin temperature and on the different energy fluxes at land surface.

  9. Wetland Ecohydrology: stochastic description of water level fluctuations across the soil surface

    Science.gov (United States)

    Tamea, S.; Muneepeerakul, R.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.

    2009-12-01

    Wetlands provide a suite of social and ecological critical functions such as being habitats of disease-carrying vectors, providing buffer zones against hurricanes, controlling sediment transport, filtering nutrients and contaminants, and a repository of great biological diversity. More recently, wetlands have also been recognized as crucial for carbon storage in the context of global climate change. Despite such importance, quantitative approaches to many aspects of wetlands are far from adequate. Therefore, improving our quantitative understanding of wetlands is necessary to our ability to maintain, manage, and restore these invaluable environments. In wetlands, hydrologic factors and ecosystem processes interplay and generate unique characteristics and a delicate balance between biotic and abiotic elements. The main hydrologic driver of wetland ecosystems is the position of the water level that, being above or below ground, determines the submergence or exposure of soil. When the water level is above the soil surface, soil saturation and lack of oxygen causes hypoxia, anaerobic functioning of microorganisms and anoxic stress in plants, that might lead to the death of non-adapted organisms. When the water level lies below the soil surface, the ecosystem becomes groundwater-dependent, and pedological and physiological aspects play their role in the soil water balance. We propose here a quantitative description of wetland ecohydrology, through a stochastic process-based water balance, driven by a marked compound Poisson noise representing rainfall events. The model includes processes such as rainfall infiltration, evapotranspiration, capillary rise, and the contribution of external water bodies, which are quantified in a simple yet realistic way. The semi-analytical steady-state probability distributions of water level spanning across the soil surface are validated with data from the Everglades (Florida, USA). The model and its results allow for a quantitative

  10. Use of Clay Deposits in Water Management of Calcareous Sandy Soils Under-surface and Sub-surface Drip Irrigation

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the effect of irrigation (levels and methods) and type of clay deposits on lettuce yield, water use efficiency WUE and the distributions of soil moisture and salts in the root zone of sandy calcareous soils. A field experiment was conducted at the college experimental station in 2002-2003. It consists of three clay deposits, three rates (0, 1.0 and 2.0%), and four total irrigation applied water levels, 360 mm (T1), 520 mm (T2), 635 mm (T3) and 822 mm (T4), using surface and subsurface drip irrigation. Results indicated that yield was significantly increased with the increase of irrigation level, whereas WUE significantly decreased with increase of irrigation level. The average yield increased by 9.30% in a high irrigation level compared to a moderate irrigation level, and decreased by 14.2% at the more stressed irrigation level. WUE decreased by 49.0% at a moderate irrigation level and yield was significantly affected by amendment rates. The difference between surface and subsurface drip on yields and WUE were also significant. Results indicated that the moisture content of the subsurface treated layer increased dramatically, while salts were accumulated at the surface and away from the emitters in subsurface drip irrigation. The advantages of surface drip irrigation were related to the relative decrease in salt accumulation in the root zone area where the plant roots were active and the water content was relatively high. (author)

  11. Global observational diagnosis of soil moisture control on the land surface energy balance

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-03-01

    An understanding of where and how strongly the surface energy budget is constrained by soil moisture is hindered by a lack of large-scale observations, and this contributes to uncertainty in climate models. Here we present a new approach combining satellite observations of land surface temperature and rainfall. We derive a Relative Warming Rate (RWR) diagnostic, which is a measure of how rapidly the land warms relative to the overlying atmosphere during 10 day dry spells. In our dry spell composites, 73% of the land surface between 60°S and 60°N warms faster than the atmosphere, indicating water-stressed conditions, and increases in sensible heat. Higher RWRs are found for shorter vegetation and bare soil than for tall, deep-rooted vegetation, due to differences in aerodynamic and hydrological properties. We show how the variation of RWR with antecedent rainfall helps to identify different evaporative regimes in the major nonpolar climate zones.

  12. Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index

    Directory of Open Access Journals (Sweden)

    W. Wang

    2011-05-01

    Full Text Available The trapezoidal relationship between land surface temperature (Ts and Vegetation Index (VI was used to estimate soil moisture in the present study. An iterative algorithm is proposed to estimate the vertices of the Ts ~ VI trapezoid theoretically for each pixel, and then Water Deficit Index (WDI is calculated based on the Ts ~ VI trapezoid using MODIS remotely sensed measurements of surface temperature and enhanced vegetation index (EVI. The capability of using WDI based on Ts ~ VI trapezoid to estimate soil moisture is evaluated using soil moisture observations and antecedent precipitation in the Walnut Gulch Experimental Watershed (WGEW in Arizona, USA. The result shows that, the Ts ~ VI trapezoid based WDI can capture temporal variation in surface soil moisture well, but the capability of detecting spatial variation is poor for such a semi-arid region as WGEW.

  13. Effective use of high CO2 efflux at the soil surface in a tropical understory plant

    Science.gov (United States)

    Ishida, Atsushi; Nakano, Takashi; Adachi, Minaco; Yoshimura, Kenichi; Osada, Noriyuki; Ladpala, Phanumard; Diloksumpun, Sapit; Puangchit, Ladawan; Yoshimura, Jin

    2015-01-01

    Many terrestrial plants are C3 plants that evolved in the Mesozoic Era when atmospheric CO2 concentrations ([CO2]) were high. Given current conditions, C3 plants can no longer benefit from high ambient [CO2]. Kaempferia marginata Carey is a unique understory ginger plant in the tropical dry forests of Thailand. The plant has two large flat leaves that spread on the soil surface. We found a large difference in [CO2] between the partly closed space between the soil surface and the leaves (638 µmol mol−1) and the atmosphere at 20 cm above ground level (412 µmol mol−1). This finding indicates that the plants capture CO2 efflux from the soil. Almost all of the stomata are located on the abaxial leaf surface. When ambient air [CO2] was experimentally increased from 400 to 600 μmol mol−1, net photosynthetic rates increased by 45 to 48% under near light-saturated conditions. No significant increase was observed under low light conditions. These data demonstrate that the unique leaf structure enhances carbon gain by trapping soil CO2 efflux at stomatal sites under relatively high light conditions, suggesting that ambient air [CO2] can serve as an important selective agent for terrestrial C3 plants. PMID:25758763

  14. Using a scoop to derive soil mechanical parameters on the surface of Mars

    Science.gov (United States)

    Kargl, Günter; Poganski, Joshua; Kömle, Norbert I.; Schweiger, Helmut; Macher, Wolfgang

    2016-04-01

    We will report on the possibility of using the scoop attached to the instrument deployment arm to perform soil mechanical experiments directly on the surface of Mars. The Phoenix mission flown 2009 had an instrument deployment arm which was also used to sample surface material indo instruments mounted on the lander deck. The flight spare of this arm will again be flown to Mars on board the InSight mission. Although, the primary purpose of the arm and the attached scoop was not soil mechanical investigations it was already demonstrated by the Phoenix mission that the arm can be used to perform auxiliary investigations of the surface materials. We will report on modelling efforts using a Discrete Element Software package to demonstrate that simple soil mechanical experiments can be used to derive essential material parameters like e.g. angle of repose and others. This is of particular interest since it would be possible to implement experiments using the hardware of the InSight mission. PIC Cross section cut through a trench dug out by the scoop and the pile of the deposed material which both can be used to derive soil mechanical parameters.

  15. Model for predicting the redistribution of particulate contaminants from soil surfaces

    International Nuclear Information System (INIS)

    A computerized model was developed to describe the redistribution of wind eroding soil-contaminant mixtures. Potentially mobile particulate contaminants can, in the first approximation, be assumed to be indistinquishable from the wind eroding soil in which they are distributed. A grid network characterizes important soil and surface conditions, and mass conserving control volumes are constructed on each cell. Material is transported through the vertical and top surfaces of a control volume by a modified Bagnold-Chepil horizontal flux formulation and modified Gillette vertical flux formulation, respectively. The vertical emissions, considered as puffs from area sources, create at regular time intervals a contaminant cloud which is proportional to the suspendable ground concentration. These puffs diffuse downwind under time-dependent wind velocity and atmospheric stability conditions, maintaining during the time interval a three-dimensional Gaussian distribution of concentration with cloud volume. Material from each puff is deposited in downward cells, leading to the possibility of many different flights from these new sources. The usefulness of this predictive tool is demonstrated by calculations involving mixtures of particulate 238PuO2 in highly erodible soils under dust storm conditions. Time-dependent surface concentration and breathing zone

  16. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China

    International Nuclear Information System (INIS)

    Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were coking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total. - PAHs in surface soil of Tianjin were apportioned and coal combustion, vehicle exhaust, coke production, and biomass burning were found to be the major sources

  17. Effective use of high CO₂ efflux at the soil surface in a tropical understory plant.

    Science.gov (United States)

    Ishida, Atsushi; Nakano, Takashi; Adachi, Minaco; Yoshimura, Kenichi; Osada, Noriyuki; Ladpala, Phanumard; Diloksumpun, Sapit; Puangchit, Ladawan; Yoshimura, Jin

    2015-01-01

    Many terrestrial plants are C3 plants that evolved in the Mesozoic Era when atmospheric CO2 concentrations ([CO2]) were high. Given current conditions, C3 plants can no longer benefit from high ambient [CO2]. Kaempferia marginata Carey is a unique understory ginger plant in the tropical dry forests of Thailand. The plant has two large flat leaves that spread on the soil surface. We found a large difference in [CO2] between the partly closed space between the soil surface and the leaves (638 µmol mol(-1)) and the atmosphere at 20 cm above ground level (412 µmol mol(-1)). This finding indicates that the plants capture CO2 efflux from the soil. Almost all of the stomata are located on the abaxial leaf surface. When ambient air [CO2] was experimentally increased from 400 to 600 μmol mol(-1), net photosynthetic rates increased by 45 to 48% under near light-saturated conditions. No significant increase was observed under low light conditions. These data demonstrate that the unique leaf structure enhances carbon gain by trapping soil CO2 efflux at stomatal sites under relatively high light conditions, suggesting that ambient air [CO2] can serve as an important selective agent for terrestrial C3 plants. PMID:25758763

  18. Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Schwendiman

    2006-07-27

    This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

  19. Comparative Study on Response Surfaces for Reliability Analysis of Spatially Variable Soil Slope

    Institute of Scientific and Technical Information of China (English)

    李亮; 褚雪松

    2015-01-01

    This paper focuses on the performance of the second-order polynomial-based response surfaces on the reliability of spatially variable soil slope. A single response surface constructed to approximate the slope system failure performance functionG(X) (called single RS) and multiple response surfaces constructed on finite number of slip surfaces (called multiple RS) are developed, respectively. Single RS and multiple RS are applied to evaluate the system failure probability pf for a cohesive soil slope together with Monte Carlo simulation (MCS). It is found thatpf calculated by single RS deviates significantly from that obtained by searching a large number of potential slip surfaces, and this deviation becomes insignificant with the decrease of the number of random variables or the increase of the scale of fluctuation. In other words, single RS cannot approximateG(X) with reasonable accuracy. The value ofpf from multiple response surfaces fits well with that obtained by searching a large number of potential slip surfaces. That is, multiple RS can estimateG(X) with reasonable accuracy.

  20. Levels of dioxins and furans in urban surface soil in Trondheim, Norway

    International Nuclear Information System (INIS)

    A study was conducted on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in surface soil in order to determine the concentration levels and possibly distinguishing between known and potential sources. The concentration levels are low (0.16-14 ng I-TEQ kg-1). The results show a clear pattern where the highest concentration levels were found in the oldest parts of the city. A number of sources were recognised in the soil samples through congener profiles, not all of them active, although similar congener profiles make it extremely difficult to distinguish between different sources. Estimations show that the municipal solid waste incinerator (MSWI) and domestic wood burning are the largest PCDD/F pollution sources within the area. - PCDD/F levels in soil range between 0.16 and 14 ng I-TEQ kg-1 where the main sources are waste incinerators, domestic wood burning and historical sources

  1. Aggregate breakdown and surface seal development influenced by rain intensity, slope gradient and soil particle size

    Directory of Open Access Journals (Sweden)

    S. Arjmand Sajjadi

    2014-12-01

    Dmax 4.75 mm were in the finest size classes of 0.02 and 0.043 mm, respectively for all slope gradients and rain intensities. The soil containing finer aggregates exhibited higher transportability of pre-detached material than the soil containing larger aggregates. Also, IR increased with increasing slope gradient, rain intensity and aggregate size under unsteady state conditions because of less development of surface seal. But under steady state conditions, no significant relationship was found between slope and IR. The finding of this study revealed the importance of rain intensity, slope steepness and soil aggregate size on aggregate breakdown and seal formation, which can control infiltration rate and the consequent runoff and erosion rates.

  2. Climatological evaluation of some fluxes of the surface energy and soil water balances over France

    Directory of Open Access Journals (Sweden)

    E. M. Choisnel

    Full Text Available This paper presents some statistical evaluations of the surface energy and soil water balance fluxes, for a prairie-type canopy, using the Earth model with a double-reservoir system for the management of the soil water reserve and the regulation of actual evapotranspiration. The mean values of these fluxes are estimated from energy and water balance simulations done on a 30-year climatic reference period (1951–1980. From values of these fluxes calculated for each meteorological synoptic station, mappings of net radiation, actual evapotranspiration, drainage and conduction fluxes have been made over French territory. Lastly, a few conclusions pertaining to the spatial variability of fluxes and to the partition of rainfall between run-off and drainage on the one hand and replenishment of the soil water reserve on the other hand are drawn from these preliminary results.

  3. Levels of dioxins and furans in urban surface soil in Trondheim, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, M. [Geological Survey of Norway, 7491 Trondheim (Norway)], E-mail: malin.andersson@ngu.no; Ottesen, R.T. [Geological Survey of Norway, 7491 Trondheim (Norway)

    2008-04-15

    A study was conducted on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in surface soil in order to determine the concentration levels and possibly distinguishing between known and potential sources. The concentration levels are low (0.16-14 ng I-TEQ kg{sup -1}). The results show a clear pattern where the highest concentration levels were found in the oldest parts of the city. A number of sources were recognised in the soil samples through congener profiles, not all of them active, although similar congener profiles make it extremely difficult to distinguish between different sources. Estimations show that the municipal solid waste incinerator (MSWI) and domestic wood burning are the largest PCDD/F pollution sources within the area. - PCDD/F levels in soil range between 0.16 and 14 ng I-TEQ kg{sup -1} where the main sources are waste incinerators, domestic wood burning and historical sources.

  4. Extraction and Analysis of PAHs in Surface Soils Near Freeways in Los Angeles

    Science.gov (United States)

    Mannino, I.

    2004-12-01

    Large urban areas such as Los Angeles are characterized by high levels of motor vehicle traffic. A by-product of this traffic is the emission of a group of compounds known as polycyclic aromatic hydrocarbons (PAHs). PAHs are a global-scale persistent environmental hazard, many of which are considered to be carcinogenic. This study investigated the prevalence of 16 PAHs in surface soils near major Los Angeles highways. The first phase of the study was the development of a methodology for efficiently extracting PAHs from soil. Preliminary findings suggested that the most efficient extraction method using an accelerated solvent extractor employed a mixture of acetone and hexane and a static extraction time of 5 minutes (completed in 2 cycles). Extraction efficiency was measured by spiking clean sand with a known amount of a PAH standard and extracting and analyzing the sand. The addition of an extra static cycle produced a significant increase in extraction efficiency. For example, utilization of 2 static cycles recovered 99.6% of the spiked phenanthrene compared to a 44% efficiency for the 1 cycle run. Preliminary results from a field sampling campaign indicated that significant concentrations of PAHs are deposited onto and accumulate in surface soils. Specifically, we found 12.13 μ g/kg of anthracene, 15.82 μ g/kg of benzo(a)pyrene, 23.42 μ g/kg of phenanthrene, and 23.43 μ g/kg of pyrene in surface soils, including soils from a public park. These results indicate that background levels of PAHs in soils may pose a significant health risk to humans. For example, the California preliminary remediation goal for benzo(a)pyrene in residential soils is 62 μ g/kg, slightly greater than our reported background values. A more detailed field sampling campaign will be pursued to elucidate the role of different environmental variables (i.e., time of day, sun intensity, traffic congestion, etc.), on the accumulation of PAHs in soils.

  5. Sulfate adsorption and surface precipitation on a volcanic ash soil (allophanic andisol).

    Science.gov (United States)

    Ishiguro, Munehide; Makino, Tomoyuki; Hattori, Yasunobu

    2006-08-15

    Sulfate strongly adsorbs on metal oxides and soils with variable charges. However, its surface precipitation has not been clearly evaluated and its adsorption mechanism has been in dispute. In the present study, an allophanic andisol, a typical volcanic ash soil having both negative and positive variable charges, was used to identify the adsorption mechanism of sulfate. Sulfate adsorption isotherms were obtained by a batch method at pH values of 4, 5, 6, and 7 in a wide range of concentrations in an Na-H-SO(4)-OH system. Theoretical isotherms were applied to the measured values for the evaluation. The surface precipitation was detected by the measured adsorption isotherms, and the BET isotherm confirmed the presence of multilayer adsorption. Stronger and weaker adsorption sites were suggested by using the Langmuir isotherm for the monolayer adsorption. The adsorption energies obtained from the Langmuir equation and recent spectroscopic analysis suggested that the stronger adsorption corresponded to an inner-sphere surface complex and that the weaker adsorption corresponded to outer-sphere surface complexation. The BET and Langmuir equations showed three types of adsorption mechanisms for the sulfate adsorption on the soil. PMID:16750540

  6. Dew formation on the surface of biological soil crusts in central European sand ecosystems

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2012-07-01

    Full Text Available Dew formation was investigated in three developmental stages of biological soil crusts (BSC, which were collected along a catena of an inland dune and in the initial substrate. The Penman equation, which was developed for saturated surfaces, was modified for unsaturated surfaces and used for prediction of dewfall rates. The levels of surface saturation required for this approach were predicted using the water retention functions and the thicknesses of the BSCs. During a single event, dewfall increased with crust development from 0.08 kg m−2 for the initial substrate to 0.10, 0.20 and 0.25 kg m−2 for crusts stages 1 to 3, respectively, which was well reflected by the model response. The suggested mechanism of dew formation involves a delay in water saturation in near-surface soil pores and EPS where the crusts were thicker and where the water capacity was high, resulting in elevated vapor flux towards the surface. The results also indicate that the amount of dewfall was too low to observe water flow into deeper soil. Analysis of the soil water retention curves revealed that, despite the sandy mineral matrix, moist crusts with clogged by swollen EPS pores exhibited a clay-like behavior. It is hypothesized that BSCs gain double benefit from suppressing their competitors by runoff generation and from improving their water supply by dew collection. Despite higher amounts of dew, the water availability to the crust community decreases with crust development, which may be compensated by ecophysiological adaptation of crust organisms, and which may further suppress higher vegetation or mosses.

  7. Development of uniform methodical documents on monitoring radioactive contamination of soil, atmosphere, surface waters

    International Nuclear Information System (INIS)

    Full text: During performance of the Program of joint activity by overcoming consequences of accident on the Chernobyl NPP within the limits of the Union state for 2002-2005 normative and technical documents on monitoring radioactive contamination of an environment have been created uniform for two states. The package includes three base techniques of radiation monitoring soil, surface waters and atmospheres. Directing Institution by development of techniques from Belarus was the Republican center of Radiation Control and Environmental Monitoring (RCRCM), from Russia - Science and Production Association 'Typhoon' (SPA 'Typhoon'). Techniques regulate sequence of operations at sampling soil, water and air at carrying out of radioactive monitoring; describe the order of preparation of sample and carrying out of measurements (gamma-spectrometer, beta- alpha-metric and radiochemical). In techniques recommended methods and means of sampling of soil, water, air are in details described. For standardization of techniques on monitoring radioactive contamination of surface waters, atmospheres, soil have been lead precision experiments (PE). RCRCM, Belarus state university, Institute of radiobiology of the National Academy of Sciences of Belarus, Belarus State institute of metrology, SPA 'Typhoon' (Russia) took part in PE. Programs PE have been developed. Control samples with various levels of activity of tests of water, aerosol filters and soil have been prepared in RCRKM. Interlaboratory experiments according to accuracy of techniques performance measurements (TPM) for an establishment of the attributed characteristics of components of an error (regular and casual) with simultaneous check of adequacy (suitability) TPM are lead. Processing of results PE has been made. Parameters of accuracy of techniques on monitoring radioactive contamination of water, atmospheres and soil are certain. During carrying out PE of laboratory-participants have brought necessary corrective

  8. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  9. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  10. Impact of Surface Roughness and Soil Texture on Mineral Dust Emission Fluxes Modeling

    Science.gov (United States)

    Menut, Laurent; Perez, Carlos; Haustein, Karsten; Bessagnet, Bertrand; Prigent, Catherine; Alfaro, Stephane

    2013-01-01

    Dust production models (DPM) used to estimate vertical fluxes of mineral dust aerosols over arid regions need accurate data on soil and surface properties. The Laboratoire Inter-Universitaire des Systemes Atmospheriques (LISA) data set was developed for Northern Africa, the Middle East, and East Asia. This regional data set was built through dedicated field campaigns and include, among others, the aerodynamic roughness length, the smooth roughness length of the erodible fraction of the surface, and the dry (undisturbed) soil size distribution. Recently, satellite-derived roughness length and high-resolution soil texture data sets at the global scale have emerged and provide the opportunity for the use of advanced schemes in global models. This paper analyzes the behavior of the ERS satellite-derived global roughness length and the State Soil Geographic data base-Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) using an advanced DPM in comparison to the LISA data set over Northern Africa and the Middle East. We explore the sensitivity of the drag partition scheme (a critical component of the DPM) and of the dust vertical fluxes (intensity and spatial patterns) to the roughness length and soil texture data sets. We also compare the use of the drag partition scheme to a widely used preferential source approach in global models. Idealized experiments with prescribed wind speeds show that the ERS and STATSGO-FAO data sets provide realistic spatial patterns of dust emission and friction velocity thresholds in the region. Finally, we evaluate a dust transport model for the period of March to July 2011 with observed aerosol optical depths from Aerosol Robotic Network sites. Results show that ERS and STATSGO-FAO provide realistic simulations in the region.

  11. Sorption of organic carbon compounds to the fine fraction of surface and Subsurface Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Zinn, Yuri [Federal University of Lavras, Brazil; Gisladottir, Gudrun [University of Iceland; Ann, Russell [Iowa State University

    2014-01-01

    Dissolved organic carbon (DOC) transported from the soil surface is stabilized in deeper soil profiles by physicochemical sorption processes. However, it is unclear how different forms of organic carbon (OC) compounds common in soil organic matter interact with soil minerals in the surface (A) and subsurface (B) horizons. We added four compounds (glucose, starch, cinnamic acid and stearic acid) to the silt- and clay-sized fraction (fine fraction) of A and B horizons of eight soils from varying climates (3 temperate, 3 tropical, 1 arctic and 1 sub-arctic). Equilibriumbatch experiments were conducted using 0 to 100 mg C L 1 of 14C-labeled compounds for 8 h. Sorption parameters (maximum sorption capacity, Qmax and binding coefficient, k) calculated by fitting sorption data to the Langmuir equation showed that Qmax of A and B horizons was very similar for all compounds. Both Qmax and k values were related to sorbate properties, with Qmax being lowest for glucose (20 500 mg kg 1), highest for stearic acid (20,000 200,000 mg kg 1), and intermediate for both cinnamic acid (200 4000 mg kg 1) and starch (400 6000 mg kg 1). Simple linear regression analysis revealed that physicochemical properties of the sorbents influenced the Qmax of cinnamic acid and stearic acid, but not glucose and starch. The sorbent properties did not show predictive ability for binding coefficient k. By using the fine fraction as sorbent, we found that the mineral fractions of A horizons are equally reactive as the B horizons irrespective of soil organic carbon content.

  12. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface

    Science.gov (United States)

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing–most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon’s characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops. PMID:27388276

  13. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    Science.gov (United States)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  14. Bacterial production of sunscreen pigments increase arid land soil surface temperature

    Science.gov (United States)

    Couradeau, Estelle; Karaoz, Ulas; Lim, HsiaoChien; Nunes da Rocha, Ulisses; Northern, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2015-04-01

    Biological Soil Crusts (BSCs) are desert top soils formations built by complex microbial communities and dominated by the filamentous cyanobacterium Microcoleus sp. BSCs cover extensive desert areas where they correspond to millimeters size mantles responsible of soil stability and fertility. Despite their ecological importance, little is known about how these communities will endure climate change. It has been shown in North America that different species of Microcoleus showed distinct temperature preferences and that their continental biogeography may be susceptible to small changes in temperature with unknown consequences for the ecosystem function. Using a combination of physical, biochemical and microbiological analyses to characterize a successional gradient of crust maturity from light to dark BSCs (Moab, Utah) we found that the concentration of scytonemin (a cyanobacterial sunscreen pigment) increased with crust maturity. We also confirmed that scytonemin was by far the major pigment responsible of light absorption in the visible spectrum in BSCs, and is then responsible of the darkening of the BSCs (i.e decrease of albedo) with maturity. We measured the surface temperature and albedo and found, as predicted, a negative linear relationship between these two parameters. The decrease in albedo across the gradient of crust maturity corresponded to an increase in surface temperature up to 10° C. Upon investigation of microbial community composition using SSU rRNA gene analysis, we demonstrate that warmer crust surface temperatures (decreased albedo) are associated with a replacement of the dominant cyanobacterium; the thermosensitive Microcoleus sp. being replaced by a thermotolerant Microcoleus sp. in darker BSCs. This study supports at the local scale a finding previously made at the continental scale, but also sheds light on the importance of scytonemin as a significant warmer of soils with important consequences for BSC composition and function. Based on

  15. Dryland, calcareous soils store (and lose) significant quantities of near-surface organic carbon

    Science.gov (United States)

    Cunliffe, Andrew M.; Puttock, Alan K.; Turnbull, Laura; Wainwright, John; Brazier, Richard E.

    2016-04-01

    Semiarid ecosystems are susceptible to changes in dominant vegetation which may have significant implications for terrestrial carbon dynamics. The present study examines the distribution of organic carbon (OC) between particle size fractions in near-surface (0-0.05 m) soil and the water erosion-induced redistribution of particle-associated OC over a grass-shrub ecotone, in a semiarid landscape, subject to land degradation. Coarse (>2 mm) particles have comparable average OC concentrations to the fine (soil. This may be due to aggregate stabilization by precipitated calcium carbonate in these calcareous arid soils. Critically, standard protocols assuming that coarse fraction particles contain no OC are likely to underestimate soil OC stocks substantially, especially in soils with strongly stabilized aggregates. Sediment eroded from four hillslope scale (10 × 30 m) sites during rainstorm events was monitored over four annual monsoon seasons. Eroded sediment was significantly enriched in OC; enrichment increased significantly across the grass-shrub ecotone and appears to be an enduring phenomenon probably sustained through the dynamic replacement of preferentially removed organic matter. The average erosion-induced OC event yield increased sixfold across the ecotone from grass-dominated to shrub-dominated ecosystems, due to both greater erosion and greater OC enrichment. This erosional pathway is rarely considered when comparing the carbon budgets of grasslands and shrublands, yet this accelerated efflux of OC may be important for long-term carbon storage potentials of dryland ecosystems.

  16. Emission to atmosphere of tritiated water formed at soil surface by oxidation of HT

    International Nuclear Information System (INIS)

    In the event of a release of molecular tritium to atmosphere, some tritium can oxidized at soil surface and be gradually re-emitted to atmosphere as HTO. The two processes are characterized by a deposition velocity and an emission rate, which are commonly used in deposition/emission models designed to calculate the concentrations of HTO in atmosphere. A technique has been developed to determine the emission rate and its evolution, by covering a small area of undisturbed soil by a field chamber, exposing the enclosed soil to molecular tritium, then determining the changes in HTO vapour content of a measured air-stream passing through the chamber. The emission rate is derived by dividing the amount of HTO extracted from the chamber during a given period of time, by the average amount of HTO contained in the soil during the same period. First experiments have been done on bare and grass-covered soils. The data obtained from these small-scale field experiments are consistent with those obtained from a full-scale field study carried out at nearly the same place

  17. A Surface Soil Radioactivity Mapping Has Been Carried Out at Muria Peninsula, Central Java

    International Nuclear Information System (INIS)

    The air of this mapping is to gain exposure dose value of the soil surface of Muria Peninsula. Central Java, in the area of 75 km radius from Ujung Lemah Abang. Lemah Abang is the proposed site of the first indonesian nuclear Power Plant. A radioactivity data obtained in 1995/1996 to 1998/1999 researches has been used for input data. For further analysis, a conversation factor multiplication is applied. This conversation factor is obtained from linear regression equation of the relationship between radioactivity and exposure values gained from re-measured randomly 44 points which are representative for high, medium, and low radiation areas obtained in 1995/1996 to 1998/1999 activities and it taking soil samples. The conversation data result is being constructed of the Surface Exposure Dose Map of Muria Peninsula. Those data show that the exposure dose of northern slope of Muria Volcano is relatively higher than that of southern slope, it means be harmonizing to the soil sample radioactivity values. The maximum radioactivity value of the soil samples is 3,56.10-2 Bq/gram (α radiation), 8,22.10-1 Bq/gram (β radiation) and 6,20.10-1 Bq/gram (γ radiation) and the minimum values are 4,44 10-3 Bq/gram (α radiation), 1,50. 10-1 Bq/gram (β radiation) and 4,09. 10-2 Bq/gram (γ radiation). (author)

  18. Organic carbon and nutrients (N, P in surface soil horizons in a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-03-01

    Full Text Available Organic carbon, nitrogen, and phosphorus in the soils of the High Arctic play an important role in the context of global warming, biodiversity, and richness of tundra vegetation. The main aim of the present study was to determine the content and spatial distribution of soil organic carbon (SOC, total nitrogen (Ntot, and total phosphorus (Ptot in the surface horizons of Arctic soils obtained from the lower part of the Fuglebekken catchment in Spitsbergen as an example of a small non-glaciated catchment representing uplifted marine terraces of the Svalbard Archipelago. The obtained results indicate that surface soil horizons in the Fuglebekken catchment show considerable differences in content of SOC, Ntot, and Ptot. This mosaic is related to high variability of soil type, local hydrology, vegetation (type and quantity, and especially location of seabird nesting colony. The highest content of SOC, Ntot, and Ptot occurs in soil surface horizons obtained from sites fertilized by seabird guano and located along streams flowing from the direction of the seabird colony. The content of SOC, Ntot, and Ptot is strongly negatively correlated with distance from seabird colony indicating a strong influence of the birds on the fertility of the studied soils and indirectly on the accumulation of soil organic matter. The lowest content of SOC, Ntot, and Ptot occurs in soil surface horizons obtained from the lateral moraine of the Hansbreen glacier and from sites in the close vicinity of the lateral moraine. The content of Ntot, Ptot, and SOC in soil surface horizons are strongly and positively correlated with one another, i.e. the higher the content of nutrients, the higher the content of SOC. The spatial distribution of SOC, Ntot, and Ptot in soils of the Hornsund area in SW Spitsbergen reflects the combined effects of severe climate conditions and periglacial processes. Seabirds play a crucial role in nutrient enrichment in these weakly developed soils.

  19. Effect of the overconsolidation ratio of soils in surface settlements due to tunneling

    Institute of Scientific and Technical Information of China (English)

    Ludmila Strokova

    2013-01-01

    Construction of urban tunnels requires the control of surface subsidence to minimize any disturbance to nearby buildings and services. Past study of surface subsidence has been limited to mainly empirical solutions based on field studies, and very few analytical studies have been carried out. The available analytical solutions are not sufficient to include complex ground conditions;hence, a comprehensive analytical solution coupled with numerical modeling is necessary to model the effect of surface subsidence due to tunneling. This paper presents the results of modeling of surface settlements due to tunneling using the finite element method. The effect of the overconsolidation ratio of soils expressed in terms of the co-efficient of earth pressure at rest (K0) on surface subsidence due to tunneling is investigated. It is demonstrated that surface settlements appear to be sensitive to K0 values, and for geotechnical calculations pertaining to overconsolidated sand and clay soil, K0 values of 0.6 and 0.8, respectively, are proposed.

  20. Soil macropores: Control on infiltration, hillslope and surface hydrology on a reclaimed surface-mined watershed

    International Nuclear Information System (INIS)

    The hydrologic response of a surface-mined watershed in central Pennsylvania is controlled by rapid macropore flow within the unsaturated man-made topsoil. Newly reclaimed surface-mined watersheds in central Pennsylvania exhibit low steady-state infiltration rates (1--2 cm/hr) and produce runoff dominated by infiltration-excess overland flow. However, within four years after reclamation, infiltration rates on some mine surfaces approach premined rates (8 cm/hr). As infiltration rate increases, the volume of infiltrated water increases, but the total porosity of minesoil matrix remains constant. There is little change in the surface discharge volume, indicating that infiltrated water continues to contribute to the basin surface discharge by the processes of throughflow and return flow. Throughflow in the topsoil horizon occurs in rapid response to rainfall input, producing large volumes of water with throughflow rates closely related to rainfall rates and with throughflow peaks following rainfall peaks by only minutes. Increased return flow alters the shape of the surface runoff hydrograph by slightly lagging behind infiltration excess overland flow. These changes in the shape of the surface runoff hydrograph reduce the potential for severe gully erosion on the reclaimed site. In addition, throughflow water remains predominantly in the topsoil horizon, and therefore has limited contact with potentially acid-producing backfill. Better understanding of macropore flow processes in reclaimed minesoils will help investigators evaluate past strategies and develop new reclamation techniques that will minimize the short-term surface erosional effects of mining and reclamation, while optimizing the long-term effluent and groundwater quality

  1. Chemical modification of a polyacrylamide. Enhanced decontamination of soils and surfaces after a nuclear accident

    International Nuclear Information System (INIS)

    This contribution concerns the decontamination of soils and surfaces polluted by cesium and strontium after a nuclear accident. The decontamination rate by means of an industrial polyacrylamide previously selected for its mechanical covering properties is studied. The characteristics of the polymer and its cation-exchange capacity (CEC) are specified. The chemical modification of the polymer, involving a crosslinking path and functional grafting, affords an improvement of its decontaminating properties. (author). 6 refs., 4 figs., 1 tab

  2. Potential fate of SOC eroded from natural crusted soil surface under simulated wind driven storm

    Science.gov (United States)

    Xiao, Liangang; Fister, Wolfgang; Greenwood, Philip; Hu, Yaxian; Kuhn, Nikolaus J.

    2016-04-01

    Improving the assessment of the impact of soil erosion on carbon (C) cycling requires a better understanding of the redistribution of eroded sediment and associated soil organic carbon (SOC) across agricultural landscapes. Recent studies conducted on dry-sieved aggregates in the laboratory demonstrated that aggregation can profoundly skew SOC redistribution and its subsequent fate by accelerating settling velocities of aggregated sediment compared to mineral grains, which in turn can increase SOC mineralization into greenhouse gases. However, the erodibility of the soil in the field is more variable than in the laboratory due to tillage, crus formation, drying-wetting and freeze-thaw cycles, and biological effects. This study aimed to investigate the potential fate of the SOC eroded from naturally developed soil surface and to compare the observations with those made in the laboratory. Simulated, short, high intensity wind driven storms were conducted on a crusted loam in the field. The sediments were fractionated with a settling tube according to their potential transport distances. The soil mass, SOC concentration and cumulative 80-day CO2 emission of each fraction were identified. The results show: 1) 53% of eroded sediment and 62% of eroded SOC from the natural surface in the field would be deposited across landscapes, which is six times and three times higher compared to that implied by mineral grains, respectively; 2) the preferential deposition of SOC-rich fast-settling sediment potentially releases approximately 50% more CO2 than the same layer of the non-eroded soil; 3) the respiration of the slow-settling fraction that is potentially transported to the aquatic systems was much more active compared to the other fractions and the bulk soil. Our results confirm in general the conclusions drawn from laboratory and thus demonstrate that aggregation can affect the redistribution of sediment associated SOC under field conditions, including an increase in

  3. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO2-Ce over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha−1, we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha−1), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  4. Modelling Arsenic and Lead Surface Soil Concentrations using Land Use Regression

    Directory of Open Access Journals (Sweden)

    Deschenes S.

    2013-04-01

    Full Text Available Land Use Regression (LUR models are increasingly used in environmental and exposure assessments to predict the concentration of contaminants in outdoor air. We explore the use of LUR as an alternative to more complex models to predict the concentration of metals in surface soil. Here, we used 55 soil samples of As and Pb collected in 1996 across British Columbia (BC, Canada by the Ministry of Environment. Predictor variables were derived for each sample site using Geographic Information System (GIS. For As (R2 = 0.44, the resulting linear regression model includes the total length of roads (m within 25 km, and bedrock geology. For the Pb model (R2 =0.78, the predictor variables are the total surface area of industrial land use (m2 within 5 km , the emissions of Pb (t within 10 and 25 km, and the presence of closed mines within 50 km. The study proposes that LUR can reasonably predict the concentrations of As and Pb in surface soil over large areas.

  5. Longevity of Sclerotinia sclerotiorum sclerotia on the soil surface under field conditions

    Directory of Open Access Journals (Sweden)

    Ricardo Brustolin

    2016-06-01

    Full Text Available ABSTRACT The longevity of Sclerotinia sclerotiorum sclerotia was quantified in an experiment carried out in the field. Sclerotia naturally formed in soybean plants in an infested commercial field were collected in a grain-cleaning machine and those present in the stem pith, with c.a. 8 mm in length and 1.9 mm in diameter were selected. Fifty sclerotia were kept inside a white nylon mesh (0.25mm screen bag (25 x 25cm. Eighty bags were laid on the soil surface-simulating no till farming. At monthly intervals, four bags were taken and brought to the laboratory. Sclerotia were washed with tap water and surface desinfested with sodium hypochlorite and exposed to germinate on sterilized moist river sand in a growth chamber at 15oC and 12h photoperiod. After 12 months, sclerotia kept on the soil surface, lost their viability. It may be concluded that under no till, crop rotation with nonsusceptible crops, can reduce the sclerotia bank in the soil.

  6. Contribution of Soil Surface CO2 Efflux to Boreal Forest Net Ecosystem Flux: Measurements and Modeling

    Science.gov (United States)

    Niinisto, S. M.; Kellomaki, S.

    2001-05-01

    The aims of the study are to assess the contribution of measured soil surface CO2 efflux to boreal forest net ecosystem flux and to test whether modeled component fluxes such as leaf and surface soil fluxes are consistent with the net flux measured from a tower over a forest stand. Net ecosystem flux was measured continuously in a boreal Scots pine forest in eastern Finland (62° 52'N, 30° 49'E) during the growing period in 2000. Height and diameter of trees in this 50-year-old stand ranged from 10 to 13 m and from 9 to 12 cm, respectively, for 80 % of trees. Eddy-flux measurements were made at the top of a 32-m tower, about 20 m above the canopy. Wind velocity and virtual temperature were measured with a three-axis sonic anemometer. CO2 fluctuations at 32 m were continuously monitored with a CO2 analyzer. Raw data were sampled at 10 Hz and 1/2 hr fluxes calculated. Soil surface CO2 efflux was measured on the top of a feather moss or lichen cover with an IRGA and four automated open dynamic chambers, each equipped with a PAR sensor and air temperature probe. Chambers of 19 cm diameter were made of transparent PMMA. Measurements were made twice per hr, lasting 1 min each. Periods considered in this study included both early and late season conditions, since data from the automated soil surface efflux measurements were available from May to June as well as from August to September. In this study, we aim to compare the measured soil surface CO2 efflux with simultaneously measured net ecosystem flux. The performance of the automated chambers will be tested by comparing with simultaneous measurements from a dark closed static chamber at the same site. A simple regression model, using soil surface temperature as an independent variable, will be built using the static dark chamber data from the previous years. A rough correction for the carbon uptake of moss will be made. This model could be validated later with automated measurements. To investigate further the

  7. Cold war legacy: surface investigation of unsaturated prairie soil radiologically contaminated in 1951

    International Nuclear Information System (INIS)

    In order to investigate the effect of weathering on the ground deposition of fallout from nuclear weapons releases, an aqueous, acidic solution of fission products and actinides was spread on bare ground and concrete surfaces at a remote location in southern Alberta. In July 1951, 6.7 L of this solution, containing 360 GBq of radioactive material, leaked from a storage container buried nearby. Since then, the radioactive material, created by the irradiation of 40 g of natural uranium metal in the NRX reactor, has migrated through the soil. This article describes the surface survey measurements for both residual contamination and to locate the buried storage tank. (author)

  8. Effects of film mulch and unevenness of row surface on soil temperature

    International Nuclear Information System (INIS)

    The purpose of this paper is to clarify the effect of the amount of contact between film mulch and row surface upon the variations of 10 soil temperatures and their deviations at the same 10 cm depth, and thereby properly compare the soil temperatures of two plots. Three process zones, consisting of a zone without mulch, a zone with black polyethylene mulch, and a zone with transparent polyethylene mulch, were established. Each zone was divided into three sub-zones whose contact percentages, that is, the amount of contact between the variations of mulch and the soil, were set to 100%, 70%, and 50%, respectively. Each sub-zone was further divided into two plots: one where no vegetation would be grown, and the other where radish plants would be grown. In all, 18 experimental plots were prepared. The daily range in soil temperature was measured beneath each of the 18 plots. The order relation of the daily ranges among the plots was transparent mulch (1.8 deg C to 2.7 deg C) > no mulch (1.2 deg C to 1.9 deg C) > black mulch (0.8 deg C to 1.1 deg C). The soil temperature order of the two plots based on t-test was as follows: The soil temperature at no mulch zone at 6:00 was 100% plot > 70% plot > 50% plot. The temperature at 15:00 was 50% plot > 70% plot > 100% plot. Accordingly, temperature change in the 50% plot was most significant. Soil temperature in the black mulch zone at 6:00 was highest in the 50% plot. Therefore, the insulating effect at the black mulch zone was the greatest. At 15:00, temperature rise in the 70% plot was most significant. In the transparent mulch zone, the 100% and 70% plots showed an equivalent insulating effect at 6:00, and the temperature rise in the 50% plot at 15:00 was largest. The soil temperature difference between two plots for each mulch zone, the distribution range of the difference between the 100% plot and the 70% plot, and that between the 100% plot and the 50% plot, all increased with increasing amounts of solar radiation. In

  9. A qualitative description of shallow groundwater effect on surface soil temperature

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2009-03-01

    Full Text Available Whether or not shallow groundwater affects skin temperature is important to detect depth and extent of shallow groundwater by dint of remote sensing and important for land surface modelling studies. Although few studies have been conducted to investigate that effect, they have yielded contradicting conclusions and they stopped in 1982. To determine that shallow groundwater affects skin temperature, we measured soil temperature at two different depths (5 and 10 cm in seven places with variable water table depths every ten minutes and for six days. After that, we correlated the minimum, maximum and average daily temperatures to average groundwater depth. We also built a simple numerical model using a differential equations solver, Flex PDE, to simulate heat transfer into soil profile and used it to simulate groundwater effect on skin temperature. We found quite high negative correlation between the maximum and average daily soil temperature and groundwater depth. Contrarily, we could hardly find any correlation between the daily minimum temperature and groundwater depth. Numerical simulations, though simple, were useful in showing that groundwater shifted skin temperature curve up in the winter and down in the summer without affecting the shape of the curve. We conclude that shallow groundwater affects skin temperature directly by its distinctive thermal properties in the soil profile and indirectly by affecting soil moisture which in turn has many different and contradictory effects on skin temperature. This study recommends building comprehensive numerical model that simulate the effect of shallow groundwater on skin temperature and on the different energy fluxes at land surface.

  10. The influence of rolled erosion control systems on soil temperature and surface albedo: part I. A greenhouse experiment

    International Nuclear Information System (INIS)

    A greenhouse study examined the influences of various surface covers (a bare control soil and seven rolled erosion control systems—RECS) on surface radiative properties, and soil temperature. In our companion paper we examine relationships with soil moisture, biomass production, and nutrient assimilation. Randomization and replication were key components to our study of microclimate under tropical radiation conditions. The bare Oxisol control soil exhibited the most extreme microclimatic conditions with the lowest albedo (not significantly different from that of P300© North American Green, a dark green polypropylene system), and the highest mean and maximum hourly temperatures recorded at depths of 5 and 8 cm. This hostile climatic environment was not conducive to biomass production or moisture storage and it is likely that the observed soil surface crusts impeded plant emergence. Rolled erosion control systems, on the other hand, generally moderated soil temperatures by reflecting more shortwave radiation, implying less heat energy at the surface for conduction to the soil. The result was that RECS exhibited lower mean soil temperatures, higher minimum temperatures and lower maximum soil temperatures. An aspen excelsior system (Curlex I© Excelsior) had the highest albedo and the soil beneath this system exhibited the greatest temperature modulation. Open-weave systems composed of jute (Geojute© Price & Pictures) and coconut fibers (BioD-Mat 70© RoLanka) were the RECS most similar in temperature response to the bare control soil. Other systems examined were intermediate in their temperature response and surface albedo (i.e., SC150BN© North American Green, C125© North American Green and Futerra© Conwed Fibers). (author)

  11. Soil Moisture and Vegetation Controls on Surface Energy Balance Using the Maximum Entropy Production Model of Evapotranspiration

    Science.gov (United States)

    Wang, J.; Parolari, A.; Huang, S. Y.

    2014-12-01

    The objective of this study is to formulate and test plant water stress parameterizations for the recently proposed maximum entropy production (MEP) model of evapotranspiration (ET) over vegetated surfaces. . The MEP model of ET is a parsimonious alternative to existing land surface parameterizations of surface energy fluxes from net radiation, temperature, humidity, and a small number of parameters. The MEP model was previously tested for vegetated surfaces under well-watered and dry, dormant conditions, when the surface energy balance is relatively insensitive to plant physiological activity. Under water stressed conditions, however, the plant water stress response strongly affects the surface energy balance. This effect occurs through plant physiological adjustments that reduce ET to maintain leaf turgor pressure as soil moisture is depleted during drought. To improve MEP model of ET predictions under water stress conditions, the model was modified to incorporate this plant-mediated feedback between soil moisture and ET. We compare MEP model predictions to observations under a range of field conditions, including bare soil, grassland, and forest. The results indicate a water stress function that combines the soil water potential in the surface soil layer with the atmospheric humidity successfully reproduces observed ET decreases during drought. In addition to its utility as a modeling tool, the calibrated water stress functions also provide a means to infer ecosystem influence on the land surface state. Challenges associated with sampling model input data (i.e., net radiation, surface temperature, and surface humidity) are also discussed.

  12. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    Science.gov (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  13. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  14. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    G. Helas

    2008-08-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  15. Changes in the Moisture of a Soil Continuously Irrigated Over a Small Surface

    International Nuclear Information System (INIS)

    The paper contains a description of water movements in the soil when the irrigated surface is restricted by a 40-cm-diam. hollow dug in the soil. Vertical and lateral water movements have been followed with a neutron-moisture meter designed for deep measurements. Several tubes, 1 m apart and extending to a depth of 3 m, are placed in a brown, clay-limestone soil on the site of the Cadarache Nuclear Research Centre. The hollow is dug round die central tube and a constant water level maintained in it. Water profiles taken at regular intervals of time over a period of several months show the infiltration on the central tube and diffusion on the outer tubes. On the central profile, the rate of advance of the infiltration front decreases with time. After some days, equilibrium is established between the water supply and the diffusion and evapotranspiration losses, and the soil moisture tends towards a constant value. Examination of the other profiles indicates vertical and lateral water movements and gives qualitative and quantitative information on the volume of moistened soil and the moisture limit. The phenomena observed can be explained by competition between gravity and suction forces and by the fact that the central profile, which is constantly under water, is not subject to evaporation, whereas in the others evaporation causes a rising movement of moisture. These investigations form part of the studies on the radiological safety of sites, for which purpose it is important to know the water movements in the first few metres of soils likely to be contaminated by the spilling of radioactive liquids. (author)

  16. Water content determination of soil surface in an intensive apple orchard

    Science.gov (United States)

    Riczu, Péter; Nagy, Gábor; Tamás, János

    2015-04-01

    Currently in Hungary, less than 100,000 hectares of orchards can be found, from which cultivation of apple is one of the most dominant ones. Production of marketable horticulture products can be difficult without employing advanced and high quality horticulture practices, which, in turn, depends on appropriate management and irrigation systems, basically. The got out water amount depend on climatic, edafic factors and the water demand of plants as well. The soil water content can be determined by traditional and modern methods. In order to define soil moisture content, gravimetry measurement is one of the most accurate methods, but it is time consuming and sometimes soil sampling and given results are in different times. Today, IT provides the farmers such tools, like global positioning system (GPS), geographic information system (GIS) and remote sensing (RS). These tools develop in a great integration rapidly. RS methods are ideal to survey larger area quick and accurate. Laser scanning is a novel technique which analyses a real-world or object environment to collect structural and spectral data. In order to obtain soil moisture information, the Leica ScanStation C10 terrestrial 3D laser scanner was used on an intensive apple orchard on the Study and Regional Research Farm of the University of Debrecen, near Pallag. Previously, soil samples from the study area with different moisture content were used as reference points. Based on the return intensity values of the laser scanner can be distinguished the different moisture content areas of soil surface. Nevertheless, the error of laser distance echo were examined and statistically evaluated. This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program - Elaborating and operating an inland student and researcher personal support system". The project was subsidized by the European Union and co-financed by the European Social Fund.

  17. Metals Accumulation and Leaf Surface Anatomy of Murdannia spectabilis Growing in Zn/Cd Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Ladawan Rattanapolsan

    2013-07-01

    Full Text Available Murdannia spectabilis (Kurz Faden was identified as a Zn/Cd hyperaccumulative plant. Leaf surface anatomy of the plant growing in non-contaminated soil (control and Zn/Cd contaminated soil,was studied and compared by a light microscopy and scanning electron microscopy combined with Energy-dispersive X-ray spectroscopy(SEM/EDS. The similarities were reticulate cuticle on epidermises, uniform polygonal cell, stomatal arrangement in six surrounding subsidiary cells, and submarginal sclerenchyma. The dissimilarities were uniserate trichomes spreading on both adaxial and abaxial epidermis of the plants growing in non-contaminated soil, whereas the uniserate trichomes were only on the submarginal-adaxial epidermis of the control plants. The trichomes on leaves of the plants growing in non-contaminated soil were found to have both uniseriate non-glandular and uniseriate glandular trichomes;whereas, leaves of the plants growing in the contaminated soil were merely non-glandular trichomes. The different shape and location of trichomes, the number of stomata and trichome indicated the effect of Zn and Cd on M. spectabilis. The higher percentages of Zn and Cd in the vascular bundle than in the cross section and epidermis areas showed both solutes could move along each route, with diffusion through the symplast and apoplast. The increase of Ca in M. spectabilis growing in Zn/Cd contaminated soil corresponded to the Zn and Cd distributed in the leaves. Zn K-edge and S K-edge XANES spectra proposed that Zn2+ ions were accumulated and/or adsorbed on the epidermis of the tuber, and then absorbed into the root and transport to the xylem. The double peaks of Zn-cysteine in the leaf samples proposed the metal sequestration was by sulphur proteins.

  18. Using UAV data for soil surface change detection at a loess field plot

    Science.gov (United States)

    Eltner, Anette; Baumgart, Philipp

    2014-05-01

    Application of unmanned aerial vehicles (UAV) denotes an increasing interest in geosciences due to major developments within the last years. Today, UAV are economical, reliable and flexible in usage. They provide a non-invasive method to measure the soil surface and its changes - e.g. due to erosion - with high resolution. Advances in digital photogrammetry and computer vision allow for fast and dense digital surface reconstruction from overlapping images. The study site is located in the Saxonian loess (Germany). The area is fragile due to erodible soils and intense agricultural utilisation. Hence, detectable soil surface changes are expected. The size of the field plot is 20 x 30 meters and the period of investigation lasts from October 2012 till July 2013 at which four surveys were performed. The UAV deployed in this study is equipped with a compact camera which is attached to an active stabilising camera mount. In addition, the micro drone integrates GPS and IMU that enables autonomous surveys with programmed flight patterns. About 100 photos are needed to cover the study site at a minimal flying height of eight metres and 65%/80% image overlap. For multi-temporal comparison a stable local reference system is established. Total station control of the signalised ground control points confirms two mm accuracy for the study period. To estimate the accuracy of the digital surface models (DSM) derived from the UAV images a comparison to DSM from terrestrial laser scanning (TLS) is conducted. The standard deviation of differences amounts five millimetres. To analyse surface changes methods from image processing are applied to the DSM. Erosion rills could be extracted for quantitative and qualitative consideration. Furthermore, volumetric changes are measured. First results indicate levelling processes during the winter season and reveal rill and inter-rill erosion during spring and summer season.

  19. 7Be:A Geochemical Tracer for Seasonal Erosion of Surface Soil in Watershed of Lake Hongfeng,Guizahou ,China

    Institute of Scientific and Technical Information of China (English)

    BAIZHANGUO; P.H.SANTSCHI; 等

    1996-01-01

    7Be penetrative depth in undisturbed surface soil is within 4mm.7Be activity shows exponential decrease with soil depth,which is expressed as a diffusion process.7Be penetrative depth in undisturbed surface soil is apparently deeper in the fall (0.22-0.37g cm-1) than in the spring (0.11-0.28g cm-2) at the same site;Whereas,7Be apparent activity at the top of surface soil is higher in the spring (0.3-2.2Bq g-1)than in the fall (0.2-0.5Bqg-1) at the same site,The 7Be inventory(189-544Bq m-2)changes with both locations and seasons.Although the 7Be flux to the earth's surface increases with amount of precipitation,its maximum inventory in the soil profiles decreases to 30%-40% after the rainy period.Calculated by the diffusion equation,the erosion and accumulation rates of soil particles are agreeable with the observation in situ,Which shows that the rates in fall are 1.5 times those in spring.The eroded soil particles almost all have been removed on the tablelands rathel than transported into the drainage system.This indicates that the soil erosion process in the karst region is only partial transportation within a short distance.

  20. Stabilization of Desert Surfaces and Accumulation of Dust Under Biological Soil Crusts

    Science.gov (United States)

    Finstad, K. M.; Mcnicol, G.; Pfeiffer, M.; Amundson, R.

    2014-12-01

    Biological soil crusts (BSC) are known to play a critical role in the stabilization of desert surfaces by helping to protect sediment from wind and water erosion and aiding in the trapping of airborne particles. The crusts are often composed of cyanobacteria, algae, and fungi, and occupy the upper few cm of a soil. Due to their high tolerance of desiccation and ability to utilize fog and dew sources, BSC are able to exist in environments that may otherwise be too dry for vascular plants. In the hyperarid Atacama Desert, decades or more between measurable precipitation events has created a landscape devoid of macroscopic life. While precipitation is rare, coastal fog occurs regularly and microbial communities capable of utilizing fog and dew water are able to persist. Here we found cyanobacteria and lichen living in association with a thin sulfate and dust crust (~2 cm) covering the surface of 'dust plateaus'. Topographically the region is highly irregular and part of a largely erosional landscape. We hypothesized that these flat-topped plateaus are accretionary features that have been able to maintain dust accumulation for thousands of years as a result of the surface crusts. To test this hypothesis we conducted radiocarbon analysis of crusts and soil profiles at two sites approximately 30 km apart, one in a high fog zone and another in lower fog frequency zone. The radiocarbon analysis shows that sediment has been accumulating in the 'plateaus' for the past 15,000 years and that biological activity and rates of C cycling in the crust increase with increasing fog frequency and intensity. The ages of organic material in the dust decrease monotonically with decreasing soil thickness, suggestive of progressive upward growth by dust accumulation. Our data indicate that the BSC are capable of surviving in hyperarid the Atacama Desert, a Mars analogue, through the utilization of fog water, and that their presence can leave a visible geomorphic imprint on the landscape.

  1. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226Ra, 232Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232Th and U content. The soil permeability is 5.0 x 10-12, which is considered average. The 226Ra (22.2 ± 0.3 Bq.m-3); U content (73.4 ± 3.6 Bq.kg-1) and 232Th content (55.3 ± 4.0 Bq.kg-1) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg-1) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m-3) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m-3). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  2. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    Science.gov (United States)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is

  3. Anaerobic methane oxidation may be more prevalent in surface soils than was originally thought

    Science.gov (United States)

    Gauthier, Mathieu; Bradley, Robert L.; Šimek, Miloslav

    2013-04-01

    Anaerobic oxidation of methane (CH4) (AOM) is a process that was first reported to occur in deep anoxic marine sediments. In this environment, CH4 is oxidized with sulphate (SO42-) as the terminal electron acceptor. It is mediated by a syntrophic consortium formed by SO42- reducing bacteria and anaerobic CH4 oxidizing Archaea, or by the latter alone. Since this landmark discovery, AOM was found to occur in other environments including freshwater lake sediments and water columns, mud volcanoes, landfill leachate, deep buried Holocene sediments and hydrocarbon contaminated aquifers. All of these situations are very specific and point to AOM as being primarily occurring in highly reducing conditions. Thus, observations of AOM in surface soils with fluctuating REDOX conditions are relatively scarce, although a few independent studies have reported AOM in surface peatlands as well as in a forest soil. Furthermore, AOM may follow different pathways, such as via the coupled oxidation of CH4 and reduction of manganese (Mn(IV)) or iron (Fe(III)), or by a lone denitrifying species that converts nitrite to nitric oxide in order to generate O2 that is then used internally to oxidize CH4. Thus, the goal of our study was to determine whether AOM is more prevalent than was thought in hydromorphic surface soils across different environments, and whether the addition of NO3- or SO4= as alternative electron acceptors may stimulate the process. We collected samples from 3 peatland soils in Scotland, 2 acid-sulphate soils in Finland, and shore sediments of 15 drained fish ponds in the Czech Republic. Subsamples were incubated in the absence of O2 and amended with either NO3-, SO42-, or left unamended (control). The net flux of CH4 and CO2 were assessed by gas chromatography after 2, 20, 40 and 60 days. We also used a 13C-CH4 isotope dilution technique to determine gross production and consumption rates of CH4. We detected AOM in all of our soils, with oxidation rates ranging between 0

  4. GEOEPIDERM – AN ECOLOGICAL CONCEPT THAT INTEGRATES SOIL COVER WITH ASSOCIATED LAND SURFACE COMPONENTS

    Directory of Open Access Journals (Sweden)

    I. Munteanu

    2008-10-01

    Full Text Available Based on the new concept of the “Epiderm of the Earth” introduced by the 2006 edition of the WRB-SR, the idea of “geoepiderm” has been developed. Besides its holistic meaning, by including both soil and non-soil materials found in the first 2 meters of the land surface, the term “geoepiderm” has a strong ecological sense, by suggesting similarity with the skin of the living organisms, as such, this concept is fully concordant with that of “Gaia” (Living Earth developed by James Lovelock. According to the main pedo-ecological characteristics of the soil and not soil coverings from the earth surface, ten kinds (classes of ‘geoepiderms” have been identified:1 – Protoderma (Entiderma– the primitive (emerging geoepiderm (mainly non-soil materials; five main subtypes: a Regoderma, b Leptoderma, c Areniderma, d Fluviderma and e Gleyoderma, were identified;2 – Cryoderma (Geliderma – geoepiderm of cold, mainly artic and subartic, regions with mean annual soil temperature <00C (often with perennial frozen subsoil - permafrost:3 – Arididerma – geoepiderm of arid regions and salt affected lands with limited or scarce available moisture; two subtypes: a Desertiderma, b Saliderma4 – Inceptiderma (or Juvenilederma – with 2 subtypes: a Cambiderma – a young (incipiently developed geoepiderm and b Andiderma, geoepiderm developed in volcanic materials;5 – Euderma – nutrient rich geoepiderm with two main subtypes: a Cherniderma (or Molliderma and b Luviderma (or Alfiderma;6 – Oligoderma – geoepiderm with low macro-nutrient and weatherable minerals content with 2 subtypes: a Podziderma (or Spodiderma and b Acriderma (or Ultiderma;7 – Ferriderma (Oxiderma or Senilederma – geoepiderm strongly weathered and with iron and aluminium hydroxides enrichment and low weatherable minerals reserve;8 – Vertiderma (Contractilederma – Contractile geoepiderm, developed from swelling clays;9 – Histoderma (Organiderma

  5. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography

    Science.gov (United States)

    Michot, Didier; Benderitter, Yves; Dorigny, Abel; Nicoullaud, Bernard; King, Dominique; Tabbagh, Alain

    2003-05-01

    A nondestructive and spatially integrated multielectrode method for measuring soil electrical resistivity was tested in the Beauce region of France during a period of corn crop irrigation to monitor soil water flow over time and in two-dimensional (2-D) with simultaneous measurements of soil moisture and thermal profiles. The results suggested the potential of surface electrical resistivity tomography (ERT) for improving soil science and agronomy studies. The method was able to produce a 2-D delimitation of soil horizons as well as to monitor soil water movement. Soil drainage through water uptake by the roots, the progression of the infiltration front with preferential flow zones, and the drainage of the plowed horizon were well identified. At the studied stage of corn development (3 months) the soil zones where infiltration and drainage occurred were mainly located under the corn rows. The structural soil characteristics resulting from agricultural practices or the passage of agricultural equipment were also shown. Two-dimensional sections of soil moisture content were calculated using ERT. The estimates were made by using independently established "in situ" calibration relationships between the moisture and electrical resistivity of typical soil horizons. The thermal soil profile was also considered in the modeling. The results showed a reliable linear relationship between the calculated and measured water contents in the crop horizon. The precision of the calculation of the specific soil water content, quantified by the root mean square error (RMSE), was 3.63% with a bias corresponding to an overestimation of 1.45%. The analysis and monitoring of the spatial variability of the soil moisture content with ERT represent two components of a significant tool for better management of soil water reserves and rational irrigation practices.

  6. Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data

    Directory of Open Access Journals (Sweden)

    Lisheng Song

    2015-05-01

    Full Text Available Soil and vegetation component temperatures in non-isothermal pixels encapsulate more physical meaning and are more applicable than composite temperatures. The component temperatures however are difficult to be obtained from thermal infrared (TIR remote sensing data provided by single view angle observations. Here, we present a land surface temperature and albedo (T-α space approach combined with the mono-surface energy balance (SEB-1S model to derive soil and vegetation component temperatures. The T-α space can be established from visible and near infrared (VNIR and TIR data provided by single view angle observations. This approach separates the soil and vegetation component temperatures from the remotely sensed composite temperatures by incorporating soil wetness iso-lines for defining equivalent soil temperatures; this allows vegetation temperatures to be extracted from the T-α space. This temperature separation methodology was applied to advanced scanning thermal emission and reflection radiometer (ASTER VNIR and high spatial resolution TIR image data in an artificial oasis area during the entire growing season. Comparisons with ground measurements showed that the T-α space approach produced reliable soil and vegetation component temperatures in the study area. Low root mean square error (RMSE values of 0.83 K for soil temperatures and 1.64 K for vegetation temperatures, respectively, were obtained, compared to component temperatures measurements from a ground-based thermal camera. These results support the use of soil wetness iso-lines to derive soil surface temperatures. It was also found that the estimated vegetation temperatures were extremely close to the near surface air temperature observations when the landscape is well watered under full vegetation cover. More robust soil and vegetation temperature estimates will improve estimates of soil evaporation and vegetation transpiration, leading to more reliable the monitoring of crop

  7. Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface.

    Science.gov (United States)

    Wu, Guozhong; Zhu, Xinzhe; Ji, Haoqing; Chen, Daoyi

    2015-01-01

    Molecular dynamic (MD) simulation was applied to evaluate the mobility, diffusivity and partitioning of SARA (saturates, aromatics, resins, asphaltenes) fractions of heavy crude oil on soil organic matter (SOM) coated quartz surface. Four types of SOM were investigated including Leonardite humic acid, Temple-Northeastern-Birmingham humic acid, Chelsea soil humic acid and Suwannee river fulvic acid. The SOM aggregation at oil-quartz interface decreased the adsorption of SARA on the quartz surface by 13-83%. Although the SOM tended to promote asphaltenes aggregation, the overall mobility of SARA was significantly greater on SOM-quartz complex than on pure quartz. Particularly, the diffusion coefficient of asphaltenes and resins increased by up to one-order of magnitude after SOM addition. The SOM increased the overall oil adsorption capacity but also mobilized SARA by driving them from the viscous oil phase and rigid quartz to the elastic SOM. This highlighted the potential of SOM addition for increasing the bioavailability of heavy crude oil without necessarily increasing the environmental risks. The MD simulation was demonstrated to be helpful for interpreting the role of SOM and the host oil phase for the adsorption and partitioning of SARA molecules, which is the key for developing more realistic remediation appraisal for heavy crude oil in soils. PMID:25016557

  8. Determination of thorium, uranium, and potassium elemental concentrations in surface soils in Cyprus

    CERN Document Server

    Tzortzis, M; Tzortzis, Michalis; Tsertos, Haralabos

    2003-01-01

    A comprehensive study was conducted to determine thorium, uranium and potassium elemental concentrations in surface soils throughout the accessible area of Cyprus using high-resolution gamma-ray spectrometry. A total number of 115 representative soil samples were collected from all over the bedrock surface of the island based on the different lithological units of the study area. The soil samples were sieved through a 0.2-mm mesh, sealed in 1000-mL plastic Marinelli beakers, and measured in the laboratory in terms of their gamma radioactivity for a counting time of 18 hours each. From the measured gamma-ray spectra, specific activity and elemental concentrations were determined for thorium (range from 2.5x10^-3 to 9.8 ppm), uranium (from 8.1x10^-4 to 3.2 ppm) and potassium (from 1.3x10^-4 to 1.9 %). The overall mean values (mean +- S.D.) calculated are 1.2 +- 1.7 ppm, 0.6 +- 0.7 ppm, and 0.4 +- 0.3 %, for thorium, uranium and potassium, respectively, which are by a factor of three to six lower than the world ...

  9. Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content, and chlorophyll degradation

    Science.gov (United States)

    Belnap, Jayne; Harper, Kimball T.; Warren, Steven D.

    1994-01-01

    Cryptobiotic soil crusts are an important component of semiarid and arid ecosystems. An important role of these crusts is the contribution of fixed nitrogen to cold‐desert ecosystems. This study examines the residual effects of various intensities and combinations of different surface disturbances (raking, scalping, and tracked vehicles) on nitrogenase activity, chlorophyll content, and chlorophyll degradation in these soil crusts. Nine months after disturbance chlorophyll content of disturbed soils was not statistically different from undisturbed controls, except in the scalped treatments, indicating recovery of this characteristic is fairly quick unless surface material is removed. Differences in chlorophyll degradation among treatments were not statistically significant. However, nitrogenase activity in all treatments showed tremendous reductions, ranging from 77–97%, when compared to the control, indicating this characteristic is slow to recover. Consequently, assessment of crustal recovery from disturbance must include not only visual and biomass characteristics but other physiological measurements as well. Areas dominated by these crusts should be managed conservatively until the implications of crustal disturbance is better understood.

  10. Distribution of 137Cs in surface soils as affected by forest clear-cutting

    International Nuclear Information System (INIS)

    The distribution of 137Cs was studied in podzol soil profiles from a 5 year old forest clear-cut area and an adjacent mature spruce forest in central Norway in order to assess the effects of clear-cutting on the distribution and mobility of radiocaesium in surface soils. A distinctly higher radiocaesium activity observed in the humus layer from the clear-cut compared to the forest area strongly indicates an increase in organic surface soil 137Cs activity within the first 5 years following forest clear-cutting. Such an increase, previously observed for Ca, Mg, Mn and Zn, is explained by increased supply of radiocaesium from decomposing logging residue, such as lichens and needles. Roughly 25% of the activity leached from decomposing residue had been transported into the A-E layer 5 years after clear-cutting. High 137Cs activity in the eluvial (E) horizon and a distinct decrease in deeper horizons indicates a certain leaching of 137Cs from the humus layer into the E horizon, which may act as an effective barrier against further leaching of radiocaesium. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    Science.gov (United States)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  12. ASSESSMENT OF EARLY SEASON AGRICULTURAL DROUGHT THROUGH LAND SURFACE WATER INDEX (LSWI) AND SOIL WATER BALANCE MODEL

    OpenAIRE

    K. Chandrasekar; Sesha Sai, M. V. R.; G. Behera

    2012-01-01

    An attempt was made to address the early season agriculture drought, by monitoring the surface soil wetness during 2010 cropping seasons in the states of Andhra Pradesh and Tamil Nadu. Short Wave Infrared (SWIR) based Land Surface Water Index (LSWI) and Soil Water Balance (SWB) model using inputs from remote sensing and ancillary data were used to monitor early season agriculture drought. During the crop season, investigation was made on LSWI characteristics and its response to the rainfall. ...

  13. Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia

    OpenAIRE

    Igarashi, Y.; Fujiwara, H.; D. Jugder

    2011-01-01

    Recent climate change, especially during the 2000s, may be the primary reason for the expansion of the Asian dust source region. The change in the dust source region was investigated by examining anthropogenic radionuclides contained in surface soil samples from Mongolia. Surface soil was globally labeled by radioactive fallout from nuclear testing during the late 1950s and early 1960s, but there are no current direct sources for anthropogenic radionuclides in the air (before the Fukushima nu...

  14. Effect of land-use changes and site variables on surface soil organic carbon pool at Mediterranean Region

    Science.gov (United States)

    Abu-hashim, Mohamed; Elsayed, Mohamed; Belal, Abd-ElAziz

    2016-02-01

    Soil organic carbon pool (SOCP) is affected by several factors particularly soil type, climate, topography, crop management, and anthropogenic factors. The study was carried out to clarify relationships between SOCP under different soil types and land-use changes in the Mediterranean region. Data of 26 pedons were investigated in Tanta catchment, middle Nile Delta, Egypt (30°45 N, 30°55 E), that the collected soil samples covered different soil types and land-uses. There were significant differences of SOCP among soils: loam and clay loams were rather similar. Clay soils were the most extensive and have mean SOCP of 4.08 ± 1.41 kg C m-2. The highest SOCP of 7.07 kg C m-2 was in clay loam soil associated with bare soil, while the lowest of 2.57 kg C m-2 in sandy clay loam soil associated with bare soil. Losing cropland showed highest increase from 1990 to 2015 with increasing urban encroachment by 15.3%. The overall average results of SOCP in cropland area showed 53.85 Mg C ha-1 under different soils. Losing the arable lands to urbanization resulted in a decrease of 285.421 Gg C of SOCP. With the decrease in SOCP sequestrated within the soil surface, carbon dioxide would be emitted to the atmosphere. The emitted CO2 resulted from losing the cropland equal to 1047.5 Gg CO2. Land-use changes have marked impact on surface SOCP and C sequestration.

  15. Integrated Processing of High Resolution Topographic Data for Soil Erosion Assessment Considering Data Acquisition Schemes and Surface Properties

    Science.gov (United States)

    Eltner, A.; Schneider, D.; Maas, H.-G.

    2016-06-01

    Soil erosion is a decisive earth surface process strongly influencing the fertility of arable land. Several options exist to detect soil erosion at the scale of large field plots (here 600 m²), which comprise different advantages and disadvantages depending on the applied method. In this study, the benefits of unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are exploited to quantify soil surface changes. Beforehand data combination, TLS data is co-registered to the DEMs generated with UAV photogrammetry. TLS data is used to detect global as well as local errors in the DEMs calculated from UAV images. Additionally, TLS data is considered for vegetation filtering. Complimentary, DEMs from UAV photogrammetry are utilised to detect systematic TLS errors and to further filter TLS point clouds in regard to unfavourable scan geometry (i.e. incidence angle and footprint) on gentle hillslopes. In addition, surface roughness is integrated as an important parameter to evaluate TLS point reliability because of the increasing footprints and thus area of signal reflection with increasing distance to the scanning device. The developed fusion tool allows for the estimation of reliable data points from each data source, considering the data acquisition geometry and surface properties, to finally merge both data sets into a single soil surface model. Data fusion is performed for three different field campaigns at a Mediterranean field plot. Successive DEM evaluation reveals continuous decrease of soil surface roughness, reappearance of former wheel tracks and local soil particle relocation patterns.

  16. Evaluation of two microwave surface distribution systems designed for substratum and agricultural soil disinfection

    International Nuclear Information System (INIS)

    Heat treatment by microwave for soil disinfection may represent an alternative to chemical treatments. One of the main problems in the design of microwave applicators for agricultural soil disinfection is to achieve a homogeneous surface energy distribution. This work has been carried out in order to evaluate two systems which can solve this problem: the first one is based on the use of a slotted waveguide and the other is based on overlapping the radiation of several magnetrons working simultaneously. Initially, the systems were modelled using an algorithm based on Maxwell equations in order to give a first overview of the system functioning. In a second step, the models were validated by comparison with thermal maps obtained empirically. As a consequence of this work we propose a redesign of the slotted waveguide system to improve the homogeneity of the temperature distribution over a large radiation area. The overlapping system gave adequate homogeneity for commercial purposes

  17. THE SPATIAL VARIABILITY OF UREASE ACTIVITY OF SURFACE AGRICULTURAL SOILS WITHIN AN URBAN AREA

    Directory of Open Access Journals (Sweden)

    Tayfun AŞKIN

    2006-02-01

    Full Text Available Soil enzymes play a major role in the mineralization processes of organic materials. The soil enzymes originate from animal, plant and microbial sources and the resulting soil biological activity including the metabolic processes of all these organisms. Information on soil enzyme activities used to determine soil microbiological characteristics are very important for soil quality and healthy.

  18. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Richard, M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France) and Laboratoires ANIOS, 59 260 Lille-Hellemmes (France)]. E-mail: marlene.richard@ec-lyon.fr; Le Mogne, Th. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Perret-Liaudet, A. [Hopital Neurologique de Lyon et INSERM U512, 69 394 Lyon (France); Rauwel, G. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); Criquelion, J. [Laboratoires ANIOS, 59 260 Lille-Hellemmes (France); De Barros, M.I. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France); Cetre, J.C. [Unite d' Hygiene et d' Epidemiologie, Hopital de la Croix Rousse, 69 317 Lyon (France); Martin, J.M. [Ecole Centrale de Lyon, UMR 5513 LTDS, 69 134 Ecully (France)

    2005-02-15

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed.

  19. Detergency of stainless steel surface soiled with human brain homogenate: an XPS study

    International Nuclear Information System (INIS)

    In the detergency field of re-usable medical devices, a special attention is focused on the non conventional transmissible agent called prions which is a proteinaceous infectious agent. Few cleaning procedures are effective against prions and few techniques are available to study cleaning effectiveness with respect to proteins in general. In our study, X-ray photoelectron spectroscopy (XPS) has been used to evaluate the effectiveness of detergent formulations to remove proteins from stainless steel surface soiled with a brain homogenate (BH) from human origin. Our results showed that XPS is a reliable surface analysis technique to study chemical species remaining on surface and substrate properties after cleaning procedures. A semi-quantitative evaluation of the detergency effectiveness could also be performed

  20. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    International Nuclear Information System (INIS)

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m3) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time

  1. [A spatial heterogeneity of surface soil moisture content in dry season in Mulun National Natural Reserve in Karst area].

    Science.gov (United States)

    Song, Tong-qing; Peng, Wan-xia; Zeng, Fu-ping; Ouyang, Zi-wen; Wu, Hai-yong

    2009-01-01

    By the methods of classical statistics and geostatistics, the spatial heterogeneity of surface soil (0-5 cm and 5-10 cm layers) moisture content in dry season in the typical sloping fields and depressions in Mulun National Natural Reserve in Karst area were studied. The results indicated that in study area, the surface soil moisture content in dry season was still higher, and showed a fine semivariogram structure as a whole. The spatial distribution of moisture content in 0-5 cm and 5-10 cm soil layers, both for sloping fields and for depressions, fitted exponential model well. Under the same stand conditions, the moisture content in the two soil layers had the similar spatial structure and distribution pattern; while under different stand conditions, there existed obvious difference in the same soil layer. The spatial pattern of surface soil moisture content in sloping fields was characterized by medium spatial autocorrelation, clear patches with well continuum, relatively slow variation of Moran's I index, while that in depressions was characterized by strong spatial autocorrelation, larger variation of Moran' s I index, and more fragmented patches. Therefore, topography, micro-physiognomy, precipitation, human disturbance, and especially vegetation were the most important factors affecting the spatial pattern of soil moisture content in the Mulun National Natural Reserve, and to preserve primary forest should have favorable effect on the regulation of the spatial heterogeneity of soil moisture content in the Reserve. PMID:19449572

  2. Surface Drainage and Mulching Drip-Irrigated Tomatoes Reduces Soil Salinity and Improves Fruit Yield

    Science.gov (United States)

    Hou, Maomao; Zhu, Lvdan; Jin, Qiu

    2016-01-01

    A study on the effects of mulched drip irrigation combined with surface drainage on saline soil and tomatoes was conducted in coastal areas of eastern China, where the crops are subjected to excessive salt. The treatments contained three irrigation rates—200, 250 and 300 m3/ha—and three drain ditch depths—10, 20 and 30 cm. The contents of soil salinity, organic matter and available nutrient were observed, and the tomato plant height, stem diameter and leaf area index during different growth periods were recorded. Results showed that the total removal rate of salt from soil at a 0–1 m depth was 8.7–13.2% for the three drainages. Compared with the control, the treatments increased the content of available N (by 12.1–47.1%) and available K (by 5.0–21.9%) in the soils inside the mulch and decreased the content of available N (by 3.4–22.1%) and available K (by 7.5–16.4%) in the soils outside the mulch. For tomatoes, the plant height and the stem diameter was increased significantly by the irrigations but was not significantly affected by the drainages, and the leaf area index was increased by 0.39~1.76, 1.10~2.90 and 2.80~6.86 respectively in corresponding to the seedling, flowering and fruit-set stage. Moreover, yield-increase rates of 7.9–27.6% were found for the treatments compared to the control with a similar amount of applied water. PMID:27153110

  3. A Study of the Relations between Soil Moisture, Soil Temperatures and Surface Temperatures Using ARM Observations and Offline CLM4 Simulations

    Directory of Open Access Journals (Sweden)

    Menglin S. Jin

    2014-09-01

    Full Text Available Soil temperature, soil moisture, skin temperature and 2-m air temperature are examined from both ground observations and the offline community land model (CLM4. Two-layer soil moisture and three-layer soil temperature observations from six-year (2003–2008 ground measurements at the Lamont, Oklahoma site supported by the Atmospheric Radiation Measurement (ARM Program of the Department of Energy (DOE show clear vertical and temporal relations between soil temperature and soil moisture with surface skin temperature and 2-m air temperature. First, daily means reveal that all of these variables have clear seasonal variations, with temperatures peaking in summer and minimizing in winter as a result of surface insolation. Nevertheless, the 2-m air temperature and upper soil temperature (−0.05 m peak at 2 h after that of surface skin temperature because of the lag of transport of heat from the skin level to the 2-m air and to underground respectively. As a result of such lag, at the monthly annual cycle scale, 2-m air temperature has higher correlation with upper soil temperature than skin temperature does. Second, there are little diurnal and annual variations at the lowest soil layer (−0.25 m. Third, a negative correlation (~−0.40 between skin temperature and soil moisture is observed, consistent with the expectation that heat flux and evaporation are competing physical processes for redistributing surface net radiation. Soil moisture, however, minimizes in March and maximizes in winter due to the local rainfall cycle. All of these key observed relations are qualitatively reproduced in the offline CLM4 using the atmosphere forcing derived from ARM observations. Nevertheless, CLM4 is too dry at the upper layer and has less variation at the lower layer than observed. In addition, CLM4 shows stronger correlation between Tsoil and Tskin (r = 0.96 than the observations (r = 0.64, while the predicted nighttime Tskin is 0.5–2 °C higher than the

  4. [A Novel Method of Soil Moisture Content Monitoring by Land Surface Temperature and LAI].

    Science.gov (United States)

    Gao, Zhong-ling; Zheng, Xiao-po; Sun, Yue-jun; Wang, Jian-hua

    2015-11-01

    Land surface temperature (Ts) is influenced by soil background and vegetation growing conditions, and the combination of Ts and vegetation indices (Vis) can indicate the status of surface soil moisture content (SMC). In this study, Advanced Temperature Vegetation Dryness Index (ATVDI) used for monitoring SMC was proposed on the basis of the simulation results with agricultural climate model CUPID. Previous studies have concluded that Normalized Difference Vegetation Index (NDVI) easily reaches the saturation point, andLeaf Area Index (LAI) was then used instead of NDVI to estimate soil moisture content in the paper. With LAI-Ts scatter diagram established by the simulation results of CUPID model; how Ts varied with LAI and SMC was found. In the case of the identical soil background, the logarithmic relations between Ts and LAI were more accurate than the linear relations included in Temperature Vegetation Dryness Index (TVDI), based on which ATVDI was then developed. LAI-Ts scatter diagram with satellite imagery were necessary for determining the expression of the upper and lower logarithmic curves while ATVDI was used for monitoring SMC. Ts derived from satellite imagery were then transformed to the Ts-value which has the same SMC and the minimum LAI in study area with look-up table. The measured SMC from the field sites in Weihe Plain, Shanxi Province, China, and the products of LAI and Ts (MOD15A2 and MOD11A2, respectively) produced by the image derived from Moderate Resolution Imaging Spectrometer (MODIS) were collected to validate the new method proposed in this study. The validation results shown that ATVDI (R² = 0.62) was accurate enough to monitor SMC, and it achieved better result than TVDI. Moreover, ATVDI-derived result were Ts values with some physical meanings, which made it comparative in different periods. Therefore, ATVDI is a promising method for monitoring SMC in different time-spatial scales in agricultural fields. PMID:26978922

  5. Natural radioactivity and external dose assessment of surface soils in Vietnam

    International Nuclear Information System (INIS)

    In this study, natural radioactivity in surface soils of Vietnam and external dose assessment to human population, deduced from activities of 226Ra, 232Th and 40K nuclides, were determined. From 528 soil samples collected in 63 provinces of Vietnam, including five centrally governed cities, the average activities were obtained and equal to 42.77 ± 18.15 Bq kg-1 for 226Ra, 59.84 ± 19.81 Bq kg-1 for 232Th and 411.93 ± 230.69 Bq kg-1 for 40K. The outdoor absorbed dose rates (OADRs) in air at 1 m above the ground level for 63 provinces were calculated, and their average value was 71.72 ± 24.72 nGy h-1, with a range from 17.45 to 149.40 nGy h-1. The population-weighted OADR of Vietnam was 66.70 nGy h-1, which lies in the range of 18-93 nGy h-1 found in the World. From the OADRs obtained, it was estimated that the outdoor annual effective dose and indoor annual effective dose to the population were 0.082 and 0.458 mSv, which are higher than the corresponding values 0.07 and 0.41 mSv, respectively, of the World. The radium equivalent activity Ra eq and the external hazard index H ex of surface soils of Vietnam are lower than the corresponding permissible limits of 370 Bq kg-1 and 1, respectively. Therefore, soil from Vietnam is safe for the human population when it is used as a building material. (authors)

  6. Resolving the High Resolution Soil Moisture Pattern at the Shale Hills Watershed Using a Land Surface Hydrologic Model

    Science.gov (United States)

    Shi, Y.; Baldwin, D. C.; Davis, K. J.; Yu, X.; Duffy, C.; Lin, H.

    2013-12-01

    Soil moisture is a critical variable for water and energy cycle. It determines the partitioning of available energy into sensible, latent and ground heat fluxes, as well as the partitioning of incoming precipitation into surface runoff and infiltration. The prediction of soil moisture pattern at high spatial resolution, however, is challenging. This project aims to answer the following questions: (1) Can we predict the observed high resolution soil moisture pattern (100-101 m) using numerical models? (2) What data and modeling techniques are needed to resolve fine scale land surface heterogeneities using numerical models? and (3) Is national soil database sufficient for high resolution modeling? The model used in this project is a coupled land surface hydrologic model, Flux-PIHM, which adds a land surface balance scheme to the Penn State Integrated Hydrologic Model (PIHM). Flux-PIHM has been implemented at the Shale Hills watershed (0.08 km2) in central Pennsylvania with an average grid size of 150 m2. The locally measured soil maps, soil parameters, and tree map, as well as LiDAR topographic data have been synthesized into the Flux-PIHM model to provide soil, land cover, and topography inputs. Calibrated only using watershed-scale data (i.e., discharge and surface heat fluxes) and point measurements (i.e., soil moisture and water table depth at one location), and driven by spatially uniform forcing data, Flux-PIHM is able to resolve the observed hill-slope scale (101 m) soil moisture pattern at the watershed owing to the spatially-distributed physically-based hydrologic component, especially the simulation of horizontal groundwater flow. The model successfully reproduces the seasonal change of soil moisture, and resolves the observed soil moisture pattern. This ability of Flux-PIHM to resolve hill-slope patterns is unique relative to current land surface models, and is especially significant for high-resolution simulations at small watersheds, which represent a

  7. Dew formation on the surface of biological soil crusts in central European sand ecosystems

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2012-11-01

    Full Text Available Dew formation was investigated in three developmental stages of biological soil crusts (BSC, which were collected along a catena of an inland dune and in the initial substrate. The Penman equation, which was developed for saturated surfaces, was modified for unsaturated surfaces and used for prediction of dewfall rates. The levels of surface saturation required for this approach were predicted using the water retention functions and the thicknesses of the BSCs. During a first field campaign (2–3 August 2011, dewfall increased from 0.042 kg m−2 for the initial sandy substrate to 0.058, 0.143 and 0.178 kg m−2 for crusts 1 to 3, respectively. During a second field campaign (17–18 August 2011, where dew formation was recorded in 1.5 to 2.75-h intervals after installation at 21:30 CEST, dewfall increased from 0.011 kg m−2 for the initial sandy substrate to 0.013, 0.028 and 0.055 kg m−2 for crusts 1 to 3, respectively. Dewfall rates remained on low levels for the substrate and for crust 1, and decreased overnight for crusts 2 and 3 (with crust 3 > crust 2 > crust 1 throughout the campaign. Dew formation was well reflected by the model response. The suggested mechanism of dew formation involves a delay in water saturation in near-surface soil pores and extracellular polymeric substances (EPS where the crusts were thicker and where the water capacity was high, resulting in elevated vapor flux towards the surface. The results also indicate that the amount of dewfall was too low to saturate the BSCs and to observe water flow into deeper soil. Analysis of the soil water retention curves revealed that, despite the sandy mineral matrix, moist crusts clogged by swollen EPS pores exhibited a clay-like behavior. It is hypothesized that BSCs gain double benefit from suppressing their competitors by runoff generation and from improving their water supply by dew collection. Despite higher amounts of dew, the

  8. Laboratory Scale Seismic Surface Wave Testing for the Determination of Soil Elastic Profiles

    Directory of Open Access Journals (Sweden)

    Aziman Madun

    2012-10-01

    Full Text Available Seismic surface wave testing is well-adapted to the study of elastic parameters and, hence, the elastic profile of soils in the field.  Knowledge of a ground’s stiffness profile enables the prediction of ground movement and, thus, the quality of the foundation.  The stiffness parameter obtained in this research corresponds to the measurement of the seismic surface wave phase velocity of materials, which relates to the very small strain shear modulus.  This paper describes a methodology for performing surface wave testing in the laboratory.  In comparison with field tests, a laboratory-scale experiment offers the advantage of allowing the process of data collection to be calibrated, and analytical studies can be carried out as the properties of the material under test are controllable and known a priori.  In addition, a laboratory scale experiment offers insight into the interaction between the seismic surface wave, the soil, the boundary and, hence, the constraints associated with the seismic surface wave technique.  Two simplified models of different sizes were developed using homogeneous remoulded Oxford Clay (from Midlands region of the UK.  The laboratory experimental methodology demonstrated that the seismic surface wave equipment used in the laboratory was directly influenced by the clay properties as well as the size of the test model.  The methodology also showed that the arrangement of the seismic source and the receivers had an impact on the range of reliable frequencies and wavelengths obtained.

  9. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    International Nuclear Information System (INIS)

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind's interactions with a building's superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport

  10. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W J [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  11. [Spatial variability of surface soil moisture content in depression area of karst region under moist and arid conditions].

    Science.gov (United States)

    Zhang, Jiguang; Chen, Hongsong; Su, Yirong; Wu, Jinshui; Zhang, Wei

    2006-12-01

    By the methods of geostatistics, this paper studied the spatial structure and distribution pattern of surface soil (0 - 5 and 5 - 10 cm) moisture content in the depression area of karst region in northwest Guangxi under moist and arid conditions in the forepart of dry season. The results showed that in test area, surface soil moisture content had obvious spatial heterogeneity and anisotropy, presenting a significantly different plaque distribution pattern. Under moist condition, surface soil moisture content had a medium or stronger spatial relativity, with a range of about 33.15 and 15.75 m, respectively, and an obvious trend effect in 0 - 5 cm soil layer. Under arid condition, the spatial relativity was strong, and the spatial scale of resembling plaque had somewhat decrease, with the smallest range being 8.22 m. The moisture content under arid condition had a higher spatial variability, and thus, the sampling strategy should be based on the mean soil moisture content. The significant difference in the spatial variability and distribution pattern of surface soil moisture in test area was mainly due to the effects of physiognomy, soil mean moisture (precipitation), and topography. PMID:17330464

  12. [Study on solid surface fluorescence characteristic of saline soils around lakes in arid and semiarid regions].

    Science.gov (United States)

    Yu, Hui-bin; Xi, Bei-dou; Wei, Zi-min; Ma, Wen-chao; He, Xiao-song; Guo, Xu-jing; Liu, Hong-liang

    2010-10-01

    Fluorescence spectroscopy relies on the fluorescence emitted by rigid conjugated systems and thus has been increasingly used to assess the soil organic matter (SOM) humification. This technique is widely applied to solution samples of humic substances, and so far no information exists about its applicability to solid-phase soil samples. Composite soil samples of different depths (0-20, 20-40 and 40-60 cm) were collected from four different halophyte communities along a saline-impact gradient, namely, Comm. Salicornia europaea (CSE), Comm. Suaeda glauca (CSG), Comm. Kalidium foliatum (CKF) and Comm. Sophora alopecuroides (CSA) located around Wuliangsuhai Lake. A humification index based on solid surface fluorescence spectroscopy (HIX(SSF)) was proposed, and compared with conventional humification indices I400/I360, I470/I360, I465/I399 and A4 /Al. There were close positive linear correlations between HIXass and 1400/1360, 145/I399 and A4/A1, but a poor positive linear correlation existed between the HIX(SSF) and I470/I360. The results indicated that HIX(SSF) can be taken as a tool to assess the soil humi fication. The HIX(SSF) of the CSE and CSG varied inappreciably within soil profiles and there was no trend with depth. However the HIX(SSF) varied appreciably in the CKF and CSA, and the HIX(SSF) of the bottom soil profile was higher than that of the other profiles. As a whole, the soil humification degree was low around Wuliangsuhai Lake, and the ecological environment was relatively fragile. The salinity showed a strong negative linear relationship with the I400/I360, I470/I360, I465/I399 and A4/A1, but a good negative linear relationship with the HIX(SSF). The results indicated that the degree of the SOM humification increased with the drop in the salinity. The HIX(SSF) can be an indicator not only of the degree of SOM humification, but also of the process of the salinisation. PMID:21137399

  13. Spatial variability of organochlorine pesticides (DDTs and HCHs) in surface soils from the alluvial region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-yan; GAO Ru-tai; HUANG Yuan-fang; JIA Xiao-hong; JIANG Shu-ren

    2007-01-01

    The spatial variability in the concentrations of 1,2,3,4,5,6-hexachlorocyclohexane (HCH) and 1,1,1-trichloro-2,2-bis-(p-chlorophenyl) ethane (DDT) in surface soils was studied on the basis of the analysis of 131 soil samples collected from the surface layer (0-20 cm depth) of the alluvial region of Beijing, China. The concentrations of total HCHs (including α-, β-, γ-, and δ-isomers) and total DDTs (i ncluding p,p'-DDT, p,p'-DDD, p,p'-DDE, and o,p'-DDT) in the surface soils tested were in the range from nondetectable to 31.72 μg/kg dry soil, with a mean value of 0.91, and from nondetectable to 5910.83 μg/kg dry soil, with a mean value of 32.13,respectively. It was observed that concentrations of HCHs in all soil samples and concentrations of DDTs in 112 soil samples were much lower than the first grade (50 μg/kg) permitted in "Environment quality standard for soils in China (GB15618-1995)". This suggests that the pollution due to organochlorine pesticides was generally not significant in the farmland soils in the Beijing alluvial region. In this study, the spatial distribution and trend of HCHs and DDTs were analyzed using Geostatistical Analyst and GS+(513).Spatial distribution indicated how these pesticides had been applied in the past. Trend analysis showed that the concentrations of HCHs,DDTs, and their related metabolites followed an obvious distribution trend in the surface soils from the alluvial region of Beijing.

  14. Soils

    International Nuclear Information System (INIS)

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  15. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Mingyong [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Tan Shuduan [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Dang Haishan [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Zhang Quanfa, E-mail: qzhang@wbgcas.cn [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China)

    2011-12-15

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10 m x 2 m x 0.16 m with a gradient of 20{sup o} (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources. - Highlights: > Soil erosion processes with rare earth elements was conducted under natural rainfall. > Experimental setup developed here has seldom implemented in the world. > Sheet erosion is the main erosion type and main contributor to sediment loss. > Sediment source changed in different sections on the slope surface. > The primary sediment source area tended to move upslope as erosion progressed.

  16. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall

    International Nuclear Information System (INIS)

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10 m x 2 m x 0.16 m with a gradient of 20o (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources. - Highlights: → Soil erosion processes with rare earth elements was conducted under natural rainfall. → Experimental setup developed here has seldom implemented in the world. → Sheet erosion is the main erosion type and main contributor to sediment loss. → Sediment source changed in different sections on the slope surface. → The primary sediment source area tended to move upslope as erosion progressed.

  17. Simulating aerosols over Arabian Peninsula with CHIMERE: Sensitivity to soil, surface parameters and anthropogenic emission inventories

    Science.gov (United States)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Couvidat, Florian; Menut, Laurent; Ghedira, Hosni

    2016-03-01

    A three dimensional chemistry transport model, CHIMERE, was used to simulate the aerosol optical depths (AOD) over the Arabian Peninsula desert with an offline coupling of Weather Research and Forecasting (WRF) model. The simulations were undertaken with: (i) different horizontal and vertical configurations, (ii) new datasets derived for soil/surface properties, and (iii) EDGAR-HTAP anthropogenic emissions inventories. The model performance evaluations were assessed: (i) qualitatively using MODIS (Moderate-Resolution Imaging Spectroradiometer) deep blue (DB) AOD data for the two local dust events of August 6th and 23rd (2013), and (ii) quantitatively using AERONET (Aerosol Robotic Network) AOD observations, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) aerosol extinction profiles, and AOD simulations from various forecast models. The model results were observed to be highly sensitive to erodibility and aerodynamic surface roughness length. The use of new datasets on soil erodibility, derived from the MODIS reflectance, and aerodynamic surface roughness length (z0), derived from the ERA-Interim datasets, significantly improved the simulation results. Simulations with the global EDGAR-HTAP anthropogenic emission inventories brought the simulated AOD values closer to the observations. Performance testing of the adapted model for the Arabian Peninsula domain with improved datasets showed good agreement between AERONET AOD measurements and CHIMERE simulations, where the correlation coefficient (R) is 0.6. Higher values of the correlation coefficients and slopes were observed for the dusty periods compared to the non-dusty periods.

  18. In-Plane Vibration Response of the Periodic Viaduct on Saturated Soil under Rayleigh Surface Wave

    Directory of Open Access Journals (Sweden)

    Hai-yan Ju

    2015-01-01

    Full Text Available In this study, the in-plane vibration response of the periodic viaduct on saturated soil under Rayleigh surface wave is studied. The Floquet transform method is used to decompose Rayleigh surface wave into a set of spatial harmonic waves. Considering the periodic condition of the viaduct, the wave number domain dynamic response of the periodic viaduct on saturated soil subjected to Rayleigh surface wave excitation is obtained by the transfer matrix method. Then the space domain dynamic response is retrieved by means of the inverse Floquet transform. Numerical results show that when the periodic viaduct is undergoing in-plane vibration, there exist three kinds of characteristic waves corresponding to axial compression, transverse shear, and bending vibration. Furthermore, when the frequency of Rayleigh wave is within the pass band of the periodic viaduct, the disturbance propagates over a very long distance and the attenuation of the wave motion far from the source is determined by the characteristic wave with the smallest attenuation, while the vibration attenuates rapidly and propagates in a short distance when the frequency of excitation source is in the range of band gap of periodic structure.

  19. Differences in the activities of eight enzymes from ten soil fungi and their possible influences on the surface structure, functional groups, and element composition of soil colloids.

    Science.gov (United States)

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3-4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11-60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9-22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11-49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance. PMID:25398013

  20. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, A [Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, 1040 Vienna (Austria); Balzter, H [Department of Geography, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); George, C, E-mail: ab@ipf.tuwien.ac.a [Earth Observation, Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford OX10 8BB (United Kingdom)

    2009-10-15

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km{sup 2} under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  1. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites

    International Nuclear Information System (INIS)

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions, and prolonged fire seasons caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency at a regional scale. Here, we present an analysis of satellite derived soil moisture anomaly data from ERS-1/2 (ERS: Earth Resources Satellite) scatterometer data and burned area maps from MODIS/AVHRR/ATSR (Moderate Resolution Imaging Spectroradiometer/Advanced Very High Resolution Radiometer/Along-Track Scanning Radiometer) over Central Siberia for the years 1992-2000. The purpose of this study is to investigate the relationship of remotely sensed soil moisture deviations from the long-term mean and fire within the boreal biome on a sub-continental scale. Results show that wet surface soil moisture conditions limit the extent of burned area. They can prevent the outbreak of fires but the magnitude of a negative (dry) deviation does not determine the maximum size of fire affected areas. It is known from the literature, however, that an ignition is more likely to occur under low surface wetness conditions, such as those that we observed during July and August in both permafrost and non-permafrost regions. Although the burned area under drier conditions in July is lowest over non-permafrost, the actual number of fires is as high as over continuous permafrost. Approximately 80% of all events occurred under such conditions during that month. The fire size was below 50 km2 under moist conditions. Larger burned areas have in general not been detected when the surface wetness deviation exceeded +5%.

  2. Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho; Leung, Lai-Yung R.

    2015-06-28

    This study assesses the relative influence of soil moisture memory and tropical sea surface temperature (SST) in seasonal rainfall over the contiguous United States. Using observed precipitation, the NINO3.4 index and soil moisture and evapotranspiration simulated by a land surface model for 61 years, analysis was performed using partial correlations to evaluate to what extent land surface and SST anomaly of El Niño and Southern Oscillation (ENSO) can affect seasonal precipitation over different regions and seasons. Results show that antecedent soil moisture is as important as concurrent ENSO condition in controlling rainfall anomalies over the U.S., but they generally dominate in different seasons with SST providing more predictability during winter while soil moisture, through its linkages to evapotranspiration and snow water, has larger influence in spring and early summer. The proposed methodology is applicable to climate model outputs to evaluate the intensity of land-atmosphere coupling and its relative importance.

  3. Assessing the performance of structure-from-motion photogrammetry and terrestrial lidar 1 at reconstructing soil surface microtopography of naturally vegetated plots

    Science.gov (United States)

    Soil microtopography or soil roughness is a property of critical importance in many earth surface processes but is often difficult to measure. Advances in computer vision technologies have made image-based 3D depiction of the soil surface or Structure-from-Motion (SfM) available to many scientists ...

  4. GEOSTATISTICAL ANALYSIS OF SURFACE TEMPERATURE AND IN-SITU SOIL MOISTURE USING LST TIME-SERIES FROM MODIS

    OpenAIRE

    Sohrabinia, M.; W. Rack; P. Zawar-Reza

    2012-01-01

    The objective of this analysis is to provide a quantitative estimate of the fluctuations of land surface temperature (LST) with varying near surface soil moisture (SM) on different land-cover (LC) types. The study area is located in the Canterbury Plains in the South Island of New Zealand. Time series of LST from the MODerate resolution Imaging Spectro-radiometer (MODIS) have been analysed statistically to study the relationship between the surface skin temperature and near-surface S...

  5. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  6. A framework for the construction of state surfaces of unsaturated soils in the elastic domain

    OpenAIRE

    Devillers, Philippe; El Youssoufi, Moulay Saïd; Saix, Christian

    2008-01-01

    This paper deals with volume changes of an unsaturated soil in the elastic domain. Two constitutive relations are established in the general framework of unsaturated porous media mechanics. They express the variations of the void ratio e and the water content w with respect to the mean net stress (σ − pg*) and the suction s. Associated with validated experimental results, these relations give access to the construction of the state surface e = f((σ − pg*), s) in the elastic domain. This surfa...

  7. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Science.gov (United States)

    Jakubaszek, Anita; Wojciech, Magdalena

    2014-06-01

    The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow) construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  8. Operable Unit 3-13, Group 3, Other Surface Soils (Phase I) Remedial Action Report

    Energy Technology Data Exchange (ETDEWEB)

    L. Davison

    2007-07-31

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 3, Other Surface Soils, Phase I sites at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The 10 sites addressed in this report were defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for these 10 sites have been accomplished and are hereafter considered No Action or No Further Action sites.

  9. Kinetics of aerobic and anaerobic biomineralization of atrazine in surface and subsurface agricultural soils in Ohio.

    Science.gov (United States)

    Tuovinen, Olli H; Deshmukh, Vaidehi; Özkaya, Bestamin; Radosevich, Mark

    2015-01-01

    The purpose of this study was to assess atrazine mineralization in surface and subsurface samples retrieved from vertical cores of agricultural soils from two farm sites in Ohio. The Defiance site (NW-Ohio) was on soybean-corn rotation and Piketon (S-Ohio) was on continuous corn cultivation. Both sites had a history of atrazine application for at least a couple of decades. The clay fraction increased at the Defiance site and the organic matter and total N content decreased with depth at both sites. Mineralization of atrazine was assessed by measurement of (14)CO2 during incubation of soil samples with [U-ring-(14)C]-atrazine. Abiotic mineralization was negligible in all soil samples. Aerobic mineralization rate constants declined and the corresponding half-lives increased with depth at the Defiance site. Anaerobic mineralization (supplemented with nitrate) was mostly below the detection at the Defiance site. In Piketon samples, the kinetic parameters of aerobic and anaerobic biomineralization of atrazine displayed considerable scatter among replicate cores and duplicate biometers. In general, this study concludes that data especially for anaerobic biomineralization of atrazine can be more variable as compared to aerobic conditions and cannot be extrapolated from one agricultural site to another. PMID:26273756

  10. Environmental proteomics – what proteins from soil and surface water can tell us: a perspective

    Directory of Open Access Journals (Sweden)

    W. Schulze

    2004-07-01

    Full Text Available Mass spectrometry based proteomics is widely used to study cellular processes in model organisms. However, it has not much been applied in environmental research because it was thought that free proteins would not be sufficiently stable in the environments. Based on recent observations that protein can readily be detected as a component of dissolve organic carbon, this article gives an overview about the possible use of proteomic methods in ecology and environmental sciences. At this stage, there are two areas of interest: (1 the identification of phylogenetic groups contributing to the DOC pool, and (2 identification of the origin of specific enzymes that are important for ecosystem processes. In this paper methods of mass spectrometry based proteomics were applied to identify proteins from DOC and water samples from different environments. It is demonstrated, that environmental proteomics is capable to distinguish the active set of organisms of different horizons of soils, and from various sources of surface water. Currently the limitation is given by the present knowledge of the genome of soil organisms. In addition, environmental proteomics allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific enzymes. Taking laccases as an example, it is shown that this enzyme is excreted into soils by a whole range of organisms from different phylogenetic groups. Further applications, such as in pollution reseach are conceivable. In summary, environmental proteomcis opens a new area of research between the fields of microbiology and biogeochemistry.

  11. Environmental proteomics what proteins from soil and surface water can tell us: a perspective

    Science.gov (United States)

    Schulze, W.

    2004-07-01

    Mass spectrometry based proteomics is widely used to study cellular processes in model organisms. However, it has not much been applied in environmental research because it was thought that free proteins would not be sufficiently stable in the environments. Based on recent observations that protein can readily be detected as a component of dissolve organic carbon, this article gives an overview about the possible use of proteomic methods in ecology and environmental sciences. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the DOC pool, and (2) identification of the origin of specific enzymes that are important for ecosystem processes. In this paper methods of mass spectrometry based proteomics were applied to identify proteins from DOC and water samples from different environments. It is demonstrated, that environmental proteomics is capable to distinguish the active set of organisms of different horizons of soils, and from various sources of surface water. Currently the limitation is given by the present knowledge of the genome of soil organisms. In addition, environmental proteomics allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific enzymes. Taking laccases as an example, it is shown that this enzyme is excreted into soils by a whole range of organisms from different phylogenetic groups. Further applications, such as in pollution reseach are conceivable. In summary, environmental proteomcis opens a new area of research between the fields of microbiology and biogeochemistry.

  12. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    Science.gov (United States)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  13. Plutonium in surface soil near the southwestern boundary of the Hanford project

    International Nuclear Information System (INIS)

    Samples of airborne particles collected near the Prosser Barricade in another study showed low 240Pu/239Pu ratios that are indicative of Hanford-produced plutonium. In an effort to locate evidence of a trail or the remains of a large short-term release of plutonium that may have occurred during past Hanford operations, surface soil samples were collected along the southweastern boundary of the Hanford Site in December 1979. Results indicated the possibility of slightly elevated levels of 239240Pu (0.016 pCi/g) occurring in the general vicinity of the Arid Land Ecology Field lab extending to the junction of Highway 240 and Horn Rapids Road as compared to lower levels (0.006 pCi/g) in a northwesterly direction along the base of Rattlesnake Mountain and the eastern slope of Yakima Ridge. Assuming the worldwide average 240Pu/239Pu ratio of 0.18 for soil of the Pacific Northwest, the plutonium in these soil samples may be slightly less enriched with 240Pu (240Pu/239Pu = 0.16). No evidence was discovered of an acute release remaining intact and crossing the southwestern boundary during the operating history of plutonium facilities in the 200 Areas

  14. Vertical distribution of soil moisture and surface sandy soil wind erosion for different types of sand dune on the southeastern margin of the Mu Us Sandy Land, China

    Institute of Scientific and Technical Information of China (English)

    ChaoFeng Fu; JingBo Zhao; FanMin Mei; TianJie Shao; Jun Zuo

    2015-01-01

    Soil moisture is a critical state affecting a variety of land surface and subsurface processes. We report investigation results of the factors controlling vertical variation of soil moisture and sand transport rate of three types of dunes on the south-eastern margin of the Mu Us Sandy Land. Samples were taken from holes drilled to a depth of 4 m at different topographic sites on the dunes, and were analyzed for soil moisture, grain-size distribution and surface sediment discharge. The results show that: (1) The average soil moisture varies in different types of dunes, with the following sequences ordered from highest to lowest: in the shrubs-covered dunes and the trees-covered dunes the sequence is from inter-dunes lowland to windward slope to leeward slope. The average moisture in the bare-migratory sand dunes is sequenced from inter-dunes lowland to leeward slope to windward slope. (2) Vegetation form and surface coverage affect the range of soil moisture of different types of dunes in the same topographic position. The coefficient of variation of soil moisture for shrubs-covered dunes is higher than that of other types of dune. (3) The effect of shrubs on dune soil moisture is explained in terms of the greater ability of shrubs to trap fine-grained atmospheric dust and hold moisture. (4) The estimated sand transport rates over sand dunes with sparse shrubs are less than those over bare-migratory dunes or sand dunes with sparse trees, indi-cating that shrubs are more effective in inhibiting wind erosion in the sandy land area.

  15. Quantifying the role of forest soil and bedrock in the acid neutralization of surface water in steep hillslopes

    International Nuclear Information System (INIS)

    The role of soil and bedrock in acid neutralizing processes has been difficult to quantify because of hydrological and biogeochemical uncertainties. To quantify those roles, hydrochemical observations were conducted at two hydrologically well-defined, steep granitic hillslopes in the Tanakami Mountains of Japan. These paired hillslopes are similar except for their soils; Fudoji is leached of base cations (base saturation 30%), because the erosion rate is 100-1000 times greater. The results showed that (1) soil solution pH at the soil-bedrock interface at Fudoji (4.3) was significantly lower than that of Rachidani (5.5), (2) the hillslope discharge pH in both hillslopes was similar (6.7-6.8), and (3) at Fudoji, 60% of the base cations leaching from the hillslope were derived from bedrock, whereas only 20% were derived from bedrock in Rachidani. Further, previously published results showed that the stream pH could not be predicted from the acid deposition rate and soil base saturation status. These results demonstrate that bedrock plays an especially important role when the overlying soil has been leached of base cations. These results indicate that while the status of soil acidification is a first-order control on vulnerability to surface water acidification, in some cases such as at Fudoji, subsurface interaction with the bedrock determines the sensitivity of surface water to acidic deposition. - Bedrock plays a major role in neutralizing acid when overlying soils have been leached of base cations

  16. Nitrous oxide emissions from sugarcane straw left on the soil surface in Brazil

    Science.gov (United States)

    Galdos, M. V.; Cerri, C. E.; Carvalho, J. L.; Cerri, C. C.

    2012-12-01

    In Brazil, the largest exporter of ethanol from sugarcane in the world, burning the dry leaves and tops in order to facilitate the harvest and transportation of the stalks is still a common practice. Burning plant residues causes emissions of greenhouse gases (GHGs) such as CO2, CH4 and N2O, besides the release of charcoal particles into the atmosphere. Due to a combination of pressure from changes in the public opinion and economical reasons, in Brazil sugarcane harvest is changing from a burned into an unburned system. Since manual harvest of sugarcane without burning is not economically feasible, mechanical harvesters have been developed that can take the stalk and leave the residues on the field, forming a mulch, in a system called green cane management. It is expected that 80% of the cane harvested in the main producing regions in Brazil will be harvested without burning by 2014. The conversion from burning sugarcane to green management of sugarcane will have impacts on the biogeochemical cycling of carbon and nitrogen in the plant soil system. The green cane management results in the deposition of large amounts of plant litter on the soil surface after harvest, ranging from 10 to 20 tons per hectare, which impact the whole production process of sugarcane, influencing yields, fertilizer management and application, soil erosion, soil organic matter dynamics as well as greenhouse gas emissions (CO2, N2O, CH4). From a GHG perspective, the conservation of sugarcane residues prevents emissions from the burning process, may promote carbon sequestration in soils and releases nitrogen during the decomposition process replacing the need for, and GHG emissions from, fossil fuel based nitrogen fertilizer sources. Measurements of soil C and N stocks and associated greenhouse gas emissions from the burned and unburned sugarcane systems and in the sugarcane expansion areas are still scarce. Therefore, the main objective of this work was to quantify the nitrous oxide

  17. Predicting climate change effects on surface soil organic carbon of Louisiana, USA.

    Science.gov (United States)

    Zhong, Biao; Xu, Yi Jun

    2014-10-01

    This study aimed to assess the degree of potential temperature and precipitation change as predicted by the HadCM3 (Hadley Centre Coupled Model, version 3) climate model for Louisiana, and to investigate the effects of potential climate change on surface soil organic carbon (SOC) across Louisiana using the Rothamsted Carbon Model (RothC) and GIS techniques at the watershed scale. Climate data sets at a grid cell of 0.5° × 0.5° for the entire state of Louisiana were collected from the HadCM3 model output for three climate change scenarios: B2, A2, and A1F1, that represent low, higher, and even higher greenhouse gas emissions, respectively. Geo-referenced datasets including USDA-NRCS Soil Geographic Database (STATSGO), USGS Land Cover Dataset (NLCD), and the Louisiana watershed boundary data were gathered for SOC calculation at the watershed scale. A soil carbon turnover model, RothC, was used to simulate monthly changes in SOC from 2001 to 2100 under the projected temperature and precipitation changes. The simulated SOC changes in 253 watersheds from three time periods, 2001-2010, 2041-2050, and 2091-2100, were tested for the influence of the land covers and emissions scenarios using SAS PROC GLIMMIX and PDMIX800 macro to separate Tukey-Kramer (p forest soils will decrease from 33.0 t/ha in 2001 to 26.9, 28.4, and 29.2 t/ha in 2100, respectively; the mean SOC of Louisiana cropland soils will decrease from 44.4 t/ha in 2001 to 36.3, 38.4, and 39.6 t/ha in 2100, respectively; the mean SOC of Louisiana grassland soils will change from 30.7 t/ha in 2001 to 25.4, 26.6, and 27.0 t/ha in 2100, respectively. Annual SOC changes will be significantly different among the land cover classes including evergreen forest, mixed forest, deciduous forest, small grains, row crops, and pasture/hay (p < 0.0001), emissions scenarios (p < 0.0001), and their interactions (p < 0.0001). PMID:24917151

  18. Impact of water conditions on land surface subsidance and the decline of organic soils in Kuwasy peatland

    Science.gov (United States)

    Chrzanowski, S.; Szajdak, L.

    2009-04-01

    Organic soils as result of drainage undergo consolidation, mineralization, and subsidence of surface layer, and decline of organic matter. The rate of the subsidence of surface layer depends on a number of factors, such as ground water level, kind of peat, density of thickness of peat layer, drainage depth, climate, land use and drainage duration. These processes are connected with the changes of physical properties and lead to the conversion of organic soils into mineral-organic and mineral. The phenomena are observed in Biebrza, Notec Valley, and Kurpiowska Basin and Wieprz-Krzna channel. During last 42 years, in Kuwasy peatland from 10-13 ton per year was declined and the area of peatland decreased from 53 to 57 cm. It was observed that, peat moorsh soil of the first stadium of moorshification located on a middle decomposed peat transformed into peat-moorh soil of the second stadium of moorshification located on a high decomposed peat. However shallow peat soils were converted into mineral-moorsh and moorsh. Kuwasy peatland was meliorated twice in XX century, first one in the middle of 30 and second one in 50. It led to the farther land surface subsidence and decline of organic matter. The aim of this investigation was to evaluate the rate of land surface subsidence, decline of the area and the transformation of physic-water properties in peat-moorsh soil of different water conditions. The investigations were carried out in Kuwasy peatland, located in Biebrza Basin North-East Poland. In peat soil samples ash contents, porosity, pF curves and bulk density were determined. The analysis of these results allowed to evaluate long-term soil subsidence and to relate it to soil water conditions.

  19. Quantifying 12/13CH4 migration and fate following sub-surface release to an agricultural soil

    International Nuclear Information System (INIS)

    Following gas generation in a Geological Disposal Facility (GDF), 14C-containing gases could migrate through the geosphere, eventually diffusing into soils at the Earth's surface. This paper reports summary results from laboratory and field experiments to obtain information on the probable rates of a) diffusive transport and b) oxidation of 12/13CH4 (as a surrogate for 14CH4) in a typical agricultural soil in the UK. Rates of CH4 oxidation were generally low in the field and undisturbed soil columns, though a re-packed column of homogenised topsoil oxidised ambient atmospheric CH4 20× faster than an undisturbed soil column. In contrast to low observed rates of CH4 oxidation, the effective diffusion of CH4 through the soil was rapid. Isotopically labelled CH4 injected at a depth of 45 cm in the field diffused to the surface and exited the soil over a time period ranging from 8 to 24 h. The rate of CH4 diffusion through the soil was increased by the presence of ryegrass roots which increased soil porosity and decreased water content. δ13C values for laboratory column soils after labelled CH4 injection experiments showed no sign of residual 13C, despite the extremely high δ13C values of the injected 12/13CH4. If laboratory observations are confirmed by measurements in field samples it can be concluded that the majority of 14CH4 from a GDF which enters a soil with low methanotrophic activity will be lost to the free atmosphere after diffusing rapidly through the soil column

  20. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    International Nuclear Information System (INIS)

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with 14C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants

  1. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, Western University, London, ON N6A 5B7 (Canada)

    2015-04-15

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with {sup 14}C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants.

  2. Towards a continuous operational system to estimate the root-zone soil moisture from intermittent remotely sensed surface moisture

    Science.gov (United States)

    Ragab, R.

    1995-12-01

    A study has been carried out to develop and evaluate a system to estimate soil moisture content in the root-zone using active microwaves from the European Remote Sensing Satellite, ERS-1, to measure moisture content in the top 10 cm of the soil profile. Two permanent grass sites in the UK with contrasting soil types, clayey and sandy, were selected for this study. The system consists of an initialization phase, which provides surface and root-zone moisture contents as initial values for the dynamic phase of a soil water balance model. The initial value of surface moisture can be either a remotely sensed or a measured value. The surface moisture value for a given day is in turn used to derive the initial value of the root-zone moisture for the same day. This can be obtained either from an empirical relationship for drying or wetting conditions, or during drying conditions alone. Both types of relationship have been established for each of the sites, with strong coefficient of determination, R2. The two-layer soil dynamic model requires as input daily rainfall, evapotranspiration and three soil physical parameters—soil moisture at field capacity, wilting point and a pseudo-diffusivity coefficient. The first layer represents the remotely sensed layer, taken as 0-10 cm, and the second represents the root-zone, taken as 0-50 cm, for both sites. The model has been run for 1992 and 1993. The model was not initialized by remote sensing data owing to an insufficient number of microwave backscatter-surface moisture data pairs to produce a relationship with good R2. It is hoped that the continuing collection of data will improve the relationships. Initial soil moisture contents of both layers were considered to be at field capacity, which is usually the case during winter time. The dynamic model, which offers a good balance between accurate description of the processes and minimum input of data, proved capable of simulating both surface and root-zone moisture content

  3. Identification of soil erosion land surfaces by Landsat data analysis and processing

    International Nuclear Information System (INIS)

    In this paper, we outline the typical relationship between the spectral reflectance of aileron's on newly-formed land surfaces and the geo morphological features of the land surfaces at issue. These latter represent the products of superficial erosional processes due to the action of the gravity and/or water; thus, such land surfaces are highly representative of the strong soil degradation occurring in a wide area located on the boundary between Molise and Puglia regions (Southern Italy). The results of this study have been reported on thematic maps; on such maps, the detected erosional land surfaces have been mapped on the basis of their typical spectral signature. The study has been performed using Landsat satellite imagery data which have been then validated by means of field survey data. The satellite data have been processed using remote sensing techniques, such as: false colour composite, contrast stretching, principal component analysis and decorrelation stretching. The study has permitted to produce, in a relatively short time and at low expense, a map of the eroded land surfaces. Such a result represents a first and fundamental step in evaluating and monitoring the erosional processes in the study area

  4. Heavy metal pollution in surface soils of Pearl River Delta, China.

    Science.gov (United States)

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased. PMID:25252793

  5. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex; Spartaru, Sergiu; Glick, Stephen; Terwilliger, Kent

    2015-12-03

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 order of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea salt on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.

  6. Determination of Critical Slip Surface of Soil Slope by New Complex Method

    Institute of Scientific and Technical Information of China (English)

    Li Liang; Chi Shichun; Lin Gao

    2006-01-01

    A new complex method is presented considering not only the improvement upon the "bad "design point, but also the diversity of the newly generated complex, which is obtained by replacing the "bad "design point with the better design point located at the line between the "bad "design point and the centroid of the remaining design points of the old complex. The new complex method is apphed to searching for the critical slip surface of two non-homogeneous soil slopes. The comparison of the results obtained by the new complex method with that by the basic complex method shows that the new complex method is much more likely to find the true critical surface for the randomly generated initial complex.

  7. Determination of Substances Content of Soil Surface Using Fast Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Determination of substances content of soil surface using neutron activation analysis has been performed. The aim of this research is to determine whether there are any dangerous, hazardous and toxic substances that released from The Research and Development Center for Advanced Technology (RDCAT) as a government institution has possibility in releasing that substances to the environment by surface water, sewage or rain water that give any dangerous the environmental. The fast neutron activation analysis was used to analyze the type and concentration of substances qualitative and quantitatively. The quantitative analysis was performed using relative method. Samples were counted using NaI(TI) detector. The result showed that there are several substances such as Mn-55, Fe-56, P-31, Al-27. Zn,65 and Mg-24. And there are found any hazardous, dangerous and toxic substances in the samples that causing any danger to human and environment. (author)

  8. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  9. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    Science.gov (United States)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  10. Estimating near-surface soil water content from passive microwave remote sensing - an application of MICRO-SWEAT

    International Nuclear Information System (INIS)

    The emissivity of soil surfaces at microwave frequencies depends strongly on the near-surface water content. However this relationship varies between soils. Use is made of a model (MICRO-SWEAT) which couples water, heat and microwave radiation transfers through soils to show that the main cause of soil variation in the relationship between apparent emissivity at 1.4 GHz (eapp) and the average water content of the upper 2 cm of the profile (θ0-2) are differences in the dielectric properties. A simple semi-empirical model is proposed, based on the effect of soil particle size distribution on bound/free water partitioning, which provides a calibration between eapp and θO2. Although, in principle, the detailed shape of the water content distribution close to the surface will influence the eapp/θ0-2 relationship, such effects are only significant during short periods ( < 1 h) following the onset of rainfall which produces steep wetting fronts close to the soil surface. (author)

  11. Effects of vegetation and soil-surface cover treatments on the hydrologic behavior of low-level waste trench caps

    International Nuclear Information System (INIS)

    Preliminary results are presented on a three-year field study at Los Alamos National Laboratory to evaluate the influence of different low-level radioactive waste trench cap designs on water balance under natural precipitation. Erosion plots having two different vegetative covers (shrubs and grasses) and with either gravel-mulched or unmulched soil surface treatments have been established on three different soil profiles on a decommissioned waste site. Total runoff and soil loss from each plot is measured after each precipitation event. Soil moisture is measured biweekly while plant canopy cover is measured seasonally. Preliminary results from the first year show that the application of a gravel mulch reduced runoff by 73 to 90%. Total soil loss was reduced by 83 to 93% by the mulch treatment. On unmulched plots, grass cover reduced both runoff and soil loss by about 50% compared to the shrub plots. Continued monitoring of the study site will provide data that will be used to analyze complex interactions between independent variables such rainfall amount and intensity, antecedent soil moisture, and soil and vegetation factors, as they influence water balance, and soil erosion. 18 refs., 2 figs., 3 tabs

  12. A tightly bound soil-water scheme within an atmosphere-land-surface model

    Science.gov (United States)

    White, Rachel; Toumi, Ralf

    2012-07-01

    SummaryThe concept of tightly bound water, in which a reservoir of soil water is bound tightly within small soil pores but is still available for evapotranspiration, is parameterised for the first time within the land surface scheme of a fully-coupled regional-scale atmosphere-land surface model. The Weather Research and Forecasting (WRF) regional climate model and the NOAH land surface scheme are selected and a case study is performed on the Olifants River Basin in the Limpopo region of South Africa. Accurate knowledge of water availability in this water-stressed region is of great importance for adaptation and future water policy. Results of a simulation forced by ERA40 re-analysis show that the standard land surface scheme is unable to reproduce the observed runoff despite rainfall and atmospheric conditions similar to observed. This version of the model over-estimates mean annual runoff by 120%. The tightly bound water scheme shows a significant improvement, reducing the bias to 22%. The inclusion of the tightly bound water scheme has little effect on the basin average annual rainfall despite increasing annual evapotranspiration. The tightly bound water physics dampens the response of runoff to precipitation and provides additional de-coupling between precipitation and runoff, increasing the variability in this relationship. Simulations with the WRF model forced with both 1980s and 2040s CCSM3 data show that the tightly bound water scheme significantly reduces runoff in different climates and projects a greater relative future decrease in runoff, from 4% to 10% for the same precipitation decrease of 2.5%. The scheme also affects the projected changes in spatially averaged 100-year return precipitation and runoff with significance at the 0.9 confidence level.

  13. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China.

    Science.gov (United States)

    Chen, Shu; Jiao, Xing-Chun; Gai, Nan; Li, Xiao-Jie; Wang, Xiao-Chun; Lu, Guo-Hui; Piao, Hai-Tao; Rao, Zhu; Yang, Yong-Liang

    2016-04-01

    Little research on perfluorinated compounds (PFCs) has been conducted in rural areas, although rural PFC sources are less complicated than in urban and industrial areas. To determine the levels and geographical distribution of 17 PFC compounds, samples of soil, surface water, and groundwater were collected from eight rural areas in eastern China. The total PFC concentrations (∑PFCs) in soils ranged from 0.34 to 65.8 ng/g ∑PFCs in surface waters ranged from 7.0 to 489 ng/L and ∑PFCs in groundwater ranged from 5.3 to 615 ng/L. Ratios of perfluorononanoic acid/perfluorooctanoic acid (PFNA/PFOA), perfluoro-n-butyric acid/perfluorooctanoic acid (PFBA/PFOA), and perfluoroheptanoic acid/perfluorooctanoic acid (PFHpA/PFOA) in rainwater increased due to the fluorine chemical plants in the surrounding rural and urban areas, suggesting that atmospheric precipitation may carry PFCs and their precursors from the fluorochemical industrial area to the adjacent rural areas. PMID:26745397

  14. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    Science.gov (United States)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0

  15. Error characterization methods for surface soil moisture products from remote sensing

    International Nuclear Information System (INIS)

    To support the operational use of Synthetic Aperture Radar (SAR) earth observation systems, the European Space Agency (ESA) is developing Sentinel-1 radar satellites operating in C-band. Much like its SAR predecessors (Earth Resource Satellite, ENVISAT, and RADARSAT), the Sentinel-1 will operate at a medium spatial resolution (ranging from 5 to 40 m), but with a greatly improved revisit period, especially over Europe (∼2 days). Given the planned high temporal sampling and the operational configuration Sentinel-1 is expected to be beneficial for operational monitoring of dynamic processes in hydrology and phenology. The benefit of a C-band SAR monitoring service in hydrology has already been demonstrated within the scope of the Soil Moisture for Hydrometeorologic Applications (SHARE) project using data from the Global Mode (GM) of the Advanced Synthetic Aperture Radar (ASAR). To fully exploit the potential of the SAR soil moisture products, well characterized error needs to be provided with the products. Understanding errors of remotely sensed surface soil moisture (SSM) datasets was indispensible for their application in models, for extractions of blended SSM products, as well as for their usage in evaluation of other soil moisture datasets. This thesis has several objectives. First, it provides the basics and state of the art methods for evaluating measures of SSM, including both the standard (e.g. Root Mean Square Error, Correlation coefficient) and the advanced (e.g. Error propagation, Triple collocation) evaluation measures. A summary of applications of soil moisture datasets is presented and evaluation measures are suggested for each application according to its requirement on the dataset quality. The evaluation of the Advanced Synthetic Aperture Radar (ASAR) Global Mode (GM) SSM using the standard and advanced evaluation measures comprises a second objective of the work. To achieve the second objective, the data from the Australian Water Assessment System

  16. Effects of preferential flow on soil-water and surface runoff in a forested watershed in China

    Institute of Scientific and Technical Information of China (English)

    Jinhua CHENG; Hongjiang ZHANG; Youyan ZHANG; Yuhu SHI; Yun CHENG

    2009-01-01

    Preferential flow is a runoff mechanism intermediate between matrix flow and surface flow, transmitting water at high velocity through the subsurface zone. To assess the effect of preferential flow on soil-water flow and surface runoff in a forested watershed, precipitation and volumes of preferential flow, matrix flow and surface runoff were measured over a period of four years in a forested watershed in the Three Gorges area of southern China. Results show that preferential-flow hydrographs have gentler rises and steeper recessions than those for matrix flow and surface runoff. Preferential flow as a percentage of soil-water flow ranged from 2.40% to 8.72% and the maximum preferential-flow velocity exceeded as much as 5600 times that of matrix flow. This shows that preferential flow plays an important role in the movement of soil water. Preferential flow has a significant effect on peak surface runoff by increasing the surface runoff rate and accelerating the appearance of peak surface runoff. Preferential flow can also prolong the duration of surface runoff. Surface runoff was observed to be positively correlated with preferential flow. The greater the sum of rainfall amount and antecedent precipitation is, the greater the effect of preferential flow on surface runoff is.

  17. Assimilation of Smos Observations to Generate a Prototype SMAP Level 4 Surface and Root-Zone Soil Moisture Product

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John

    2012-01-01

    The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].

  18. Effect of soil surface sealing on the hydrological response and the vegetation cover of semi-arid areas (Invited)

    Science.gov (United States)

    Assouline, S.; CHEN, L.; Sela, S.; Svoray, T.; Katul, G. G.

    2013-12-01

    Bare soil surfaces in semi-arid areas are prone to sealing, which involves the formation of a compacted and thus less permeable layer at the vicinity of the soil surface. This particular interface of the soil-atmosphere system affects the two main hydrologic fluxes in such areas: infiltration and evaporation. It follows that local rainfall-runoff relations are directly impacted by the formation of this layer with logical consequences to water availability for vegetation development. The role of soil surface sealing in shaping such hydrological responses of a semi-arid hillslope in Southern Israel is described on a quantitative basis using a modeling approach that links the seal hydraulic properties to the physical characteristics of the hillslope. A two-dimensional surface runoff model is applied to represent the joint impact of the seal layer, the microtopography and the vegetation patches on spatial and temporal features of the rainfall-runoff relationship. The seal layer and the vegetation patches affect runoff generation, while microtopography affects mainly overland flow patterns. More water is supplied to the vegetation patches via runoff re-infiltration under soil surface sealing conditions, thus enabling establishment and development of vegetation cover.

  19. A land surface model incorporated with soil freeze/thaw and its application in GAME/Tibet

    Institute of Scientific and Technical Information of China (English)

    HU; Heping; YE; Baisheng; ZHOU; Yuhua; TIAN; Fuqiang

    2006-01-01

    Land surface process is of great importance in global climate change,moisture and heat exchange in the interface of the earth and atmosphere,human impacts on the environment and ecosystem,etc.Soil freeze/thaw plays an important role in cold land surface processes.In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied.A sophisticated land surface model is developed,the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux.The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil,but also demonstrates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone,which makes the model applicable for various circumstances.The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme.Finally,the model is applied to analyze the diurnal energy and water cycle characteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998.Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently,in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period,ground heat flux increases,and sensible heat flux decreases,but latent heat flux does not change much; and (iv) during freezing period,soil temperature decreases,though ground heat flux increases.

  20. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil. PMID:23652539

  1. Soybean yield and chemical attributes in soil after five-year surface application of slag, aqueous lime and sewage sludge

    OpenAIRE

    Büll, Leonardo Theodoro; Freitag, Elisa Eni; Corrêa, Juliano Corulli; Fernandes, Dirceu Maximino

    2008-01-01

    The agricultural use of industrial residues and sewage sludge in order to provide essential nutrients to a plant and soil liming, will be one of the most promising alternative options of soil fertilization and liming management in a very near future, as far as these applications follow the prevailing technical norms to prevent eventual environmental contamination. The aim of this study was to evaluate the effect of slag, aqueous lime, sewage sludge and limestone, under surface app...

  2. Gas/solid particulate phthalic esters (PAEs) in Masson pine (Pinus massoniana L.) needles and rhizosphere surface soils

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The pine needle/rhizosphere soil distribution of PAEs was related to PL and KP. • The PL and KP determined the PAE deposition to surface soils and to needles. • High regression parameters of log Rs/n − log PL and log KP − log PL were achieved. • Log Rs/n carried the information of KP and lineally correlated with log PL. - Abstract: Phthalic acid esters (PAEs) are used in many branches of industry and are produced in huge amounts throughout the world. An investigation on particulate- and gas-phase distribution of PAEs has been conducted between January 2011 and December 2012 in Nanjing (China). Masson pine (Pinus massoniana L.) needles and rhizosphere surface soils were sampled from urban to suburban/remote sites, to investigate the pine needle/soil distribution of PAEs. The results showed that the average total PAE concentration (gas + particle) was 97.0 ng m−3. The six PAE congeners considered predominantly existed in the gas phase and the average contribution of gas phase to total PAEs ranged from 75.0% to 89.1%. The PAE concentrations in rhizosphere soils and pine needles were positively correlated with their particulate- and gas-phase concentrations, respectively, which suggested that surface soils accumulated PAEs mainly through gravity deposition of particles and pine needle stomata absorbed PAEs mainly from the gas phase. The gas/particle partitioning (KP) and soil-pine needle ratio (Rs/n) were determined. Experimentally determined KP values correlated well with the subcooled liquid vapor pressures (PL). A set of interesting relationships of log Rs/n − log KP − log PL was employed to explain the experimental findings of PAEs deposition to surface soils and to needles. This data set offered a unique perspective into the influence that Rs/n played in KP and correlated with PL

  3. Contributrion to the improvement of the soil moisture and ocean salinity (SMOS) sea surface salinity retrieval algorithm

    OpenAIRE

    Talone, Marco

    2010-01-01

    The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite was launched on November, 2, 2009 from the Russian cosmodrome of Plesetsk. Its objective is to globally and regularly collect measurements of soil moistre and Sea Surface Salinity (SSS). To do that, a pioneering instru- ment has been developed: the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), the rst space-borne, 2-D interferometric radiometer ever built; it operates at L-band, with...

  4. Recommended screening limits for contaminated surface soil and review of factors relevant to site-specific studies

    International Nuclear Information System (INIS)

    Surface soil can become contaminated with radionuclides through many different mechanisms such as airborne deposition, spills and leaching from contaminated material stored above ground. Current activities associated with the cleanup of contaminated weapons production and storage facilities and the future decommissioning of nuclear facilities might result in additional soil contamination as well as in the discovery of past contamination. Even after cleanup of known contaminated land, some residual contamination will remain. No matter how the contamination occurred, the issue becomes whether the level is sufficiently high, high before or after cleanup, to warrant action or restriction on the use of the contaminated site. The primary purpose of this Report is to provide screening limits (in Bq/kg) which can be applied to sites where the surface soil is determined to be contaminated with one or more radionuclides. These screening limits, which can be defined as a conservative method of relating an effective dose (E) limit for a critical group to a corresponding soil contamination level (EPA, 1990a), can be used to allow reasonable judgments to be made regarding the need for possible (further) action based on present soil radionuclide levels. If the surface soil concentration is below the suggested limits, then no further action will generally be required. If the concentration is above the suggested limit, a site-specific dose assessment should be conducted. To justify the guidance provided, this Report reviews in some detail the scientific basis for estimating both site-specific and generic doses to individuals from all pathways that could result from direct or indirect exposure to the contaminated soil. This review includes discussions of the uncertainty and variability in all the important parameters included in the calculational models. The Report also provides guidance on how to determine the site average radionuclide concentration in surface soil to be used for

  5. Development, habit and yield of buckwheat as affected by spectral composition of reflected radiation from the surface of soil

    International Nuclear Information System (INIS)

    The nuts of buckwheat were sown into pots embedded in the ground in non-competitive conditions. Pots were only differentiated by the kinds of ground surface (bare soil, grass and bare soil of diameter 35, 55, 95 cm, surrounded with grass). Among the five objects, the highest value of albedo in the whole screened range (350-1100 nm) was noticed in the object with grass (max. 30 percent), and the lowest value in the object with bare soil (max. 19 percent). Similarly, in the long weave (over 700 nm) the highest ability of reflection was shown by the grass

  6. Soil surface organic layers in Arctic Alaska: Spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-06-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500-700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  7. Energy Crops and their Implications on Soil Carbon Sequestration, Surface Energy and Water Balance

    Science.gov (United States)

    Song, Y.; Barman, R.; Jain, A. K.

    2011-12-01

    The quest to meet growing energy demand with low greenhouse gas emissions has increased attention on the potential of existing and advanced biomass energy crops. Potential energy crops include row crops such as corn, and perennial grasses such as switchgrass. However, a massive expansion of bioenergy crops raises many questions such as: how and where to grow energy crops; and what will be the impacts of growing large scale biofuel crops on the terrestrial hydrological cycle, the surface energy budget, soil carbon sequestration and the concurrent effects on the climate system. An integrated modeling system is being developed with in the framework of a land surface model, the Integrated Science Assessment Model (ISAM), and being applied to address these questions.This framework accounts for the biophysical, physiological and biogeochemical systems governing important processes that regulate crop growth including water, energy and nutrient cycles within the soil-plant-atmosphere system. One row crop (Corn) and two energy crops (Switchgrass and Miscanthus) are studied in current framework. Dynamic phenology processes and parameters for simulating each crop have been developed using observed data from a north to south gradient of field trial sites. This study will specifically focus on the agricultural regions in the US and in Europe. The potential productivity of these three crops will be assessed in terms of carbon sequestration, surface energy and water balance and their spatial variability. This study will help to quantify the importance of various environmental aspects towards modeling bioenergy crops and to better understand the spatial and temporal dynamics of bioenergy crop yields.

  8. Challenges in measuring the δ13C of the soil surface CO2 efflux.

    Science.gov (United States)

    Midwood, Andrew J; Millard, Peter

    2011-01-15

    The δ13C of the soil surface efflux of carbon dioxide (δ13CRS) has emerged as a powerful tool enabling investigation of a wide range of soil processes from characterising entire ecosystem respiration to detailed compound-specific isotope studies. δ13CRS can be used to trace assimilated carbon transfer below ground and to partition the overall surface efflux into heterotrophic and autotrophic components. Despite this wide range of applications no consensus currently exists on the most appropriate method of sampling this surface efflux of CO2 in order to measure δ13CRS. Here we consider and compare the methods which have been used, and examine the pitfalls. We also consider a number of analysis options, isotope ratio mass spectrometry (IRMS), tuneable diode laser spectroscopy (TDLS) and cavity ring-down laser spectroscopy (CRDS). δ13CRS is typically measured using chamber systems, which fall into three types: closed, open and dynamic. All are imperfect. Closed chambers often rely on Keeling plots to estimate δ13CRS, which may not be appropriate without free turbulent air mixing. Open chambers have the advantage of being able to maintain steady-state conditions but analytical errors may become limiting with low efflux rates. Dynamic chambers like open chambers are complex, and controlling pressure fluctuations caused by air movement is a key concern. Both open and dynamic chambers in conjunction with field portable TDLS and CRDS analysis systems have opened up the possibility of measuring δ13CRS in real time permitting new research opportunities and are on balance the most suited to this type of measurement. PMID:21181784

  9. Monitoring near surface soil moisture profiles during evaporation using off-ground zero-offset ground-penetrating radar

    Science.gov (United States)

    Moghadas, D.; Jadoon, K. Z.; Lambot, S.; Vanderborght, J.; Vereecken, H.

    2012-04-01

    Soil evaporation is important as it controls many processes in the physics of land-surface, including the mass and energy flows between the ground and the atmosphere, and fundamental biological processes such as seed sprouting and plant growth. In order to associate soil surface states to subsurface states and properties, it is important to have a perception about the vertical profiles of subsurface soil water contents and temperatures. However, the derivation of these profiles from local scale measurements would demand interpolation and may overlook variations that are at a smaller scale than the distance between the local soil sensors. In particular, for the detection of non-uniform and unstable infiltration and drying, it is questionable whether the wetting and drying front instabilities can be obtained from local scale measurements. In this respect, resorting to the geophysical methods like ground-penetrating radar (GPR) is vital as a continuous image of the subsurface states can be obtained by applying these techniques. In this study, we investigated the potentiality of the off-ground GPR data to monitor drying front of soil evaporation at the lysimeter scale. We simulated evaporation of near surface soil layers by using a sand box filled with the very fine sand. The bottom of tank was covered by a planar copper sheet playing the role of complete reflector. The room temperature was kept constant and the surface of the sand was exposed to evaporation. The time-lapse GPR, temperature and weight of the setup was constantly measured for a period of thirty days to monitor the upward water flow. The effect of the evaporation can be visualized in the high frequencies of the GPR signal. The full-waveform GPR model was integrated with hydrological model to estimate the soil hydraulic properties. Since the GPR method is sensitive to the soil moisture profile close to the soil surface, interpretation of the measured GPR signals with a water flow model in the soil

  10. Analysing the factors affecting gully development and their relationships with land-use changes in the east Alentejo (Portugal)

    International Nuclear Information System (INIS)

    The land abandonment and land-use changes as a consequence of the implementation of the European Union common Agricultural Policy (C. A. P.) in the SE of Portugal, have been generating, differences in the equilibrium of the geomorphic processes. The head waters catchments of some of the Guadiana River tributaries show in the study area several degrees of gully initiation and development both on the hillsides and valley bottom in fill. this gully generation process is closely related with the changes in the soil and cover properties occurring when agricultural practises have been replaced by intensive grazing areas or by abandoned land. (Author) 7 refs.

  11. The improvement of soil thermodynamics and its effects on land surface meteorology in the IPSL climate model

    Science.gov (United States)

    Wang, F.; Cheruy, F.; Dufresne, J.-L.

    2016-01-01

    This paper describes the implementation of an improved soil thermodynamics in the hydrological module of Earth system model (ESM) developed at the Institut Pierre Simon Laplace (IPSL) and its effects on land surface meteorology in the IPSL climate model. A common vertical discretization scheme for the soil moisture and for the soil temperature is adopted. In addition to the heat conduction process, the heat transported by liquid water into the soil is modeled. The thermal conductivity and the heat capacity are parameterized as a function of the soil moisture and the texture. Preliminary tests are performed in an idealized 1-D (one-dimensional) framework and the full model is then evaluated in the coupled land-atmospheric module of the IPSL ESM. A nudging approach is used in order to avoid the time-consuming long-term simulations required to account for the natural variability of the climate. Thanks to this nudging approach, the effects of the modified parameterizations can be modeled. The dependence of the soil thermal properties on moisture and texture lead to the most significant changes in the surface energy budget and in the surface temperature, with the strongest effects on the surface energy budget taking place over dry areas and during the night. This has important consequences on the mean surface temperature over dry areas and during the night and on its short-term variability. The parameterization of the soil thermal properties could therefore explain some of the temperature biases and part of the dispersion over dry areas in simulations of extreme events such as heat waves in state-of-the-art climate models.

  12. Estimating the Soil Moisture Profile by Assimilating Near-Surface Observations with the Ensemble Kalman Filter (EnKF)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kalman filter (EnKF) assimilation scheme,including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The "true"soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.

  13. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil

    Science.gov (United States)

    Ndiaye, Babacar; Esteves, Michel; Vandervaere, Jean-Pierre; Lapetite, Jean-Marc; Vauclin, Michel

    2005-06-01

    The study was aimed at evaluating the effect of rainfall and tillage-induced soil surface characteristics on infiltration and runoff on a 2.8 ha catchment located in the central region of Senegal. This was done by simulating 30 min rain storms applied at a constant rate of about 70 mm h -1, on 10 runoff micro-plots of 1 m 2, five being freshly harrowed perpendicularly to the slope and five along the slope (1%) of the catchment. Runoff was automatically recorded at the outlet of each plot. Hydraulic properties such as capillary sorptivity and hydraulic conductivity of the sandy loam soil close to saturation were determined by running 48 infiltration tests with a tension disc infiltrometer. That allowed the calculation of a mean characteristic pore size hydraulically active and a time to ponding. Superficial water storage capacity was estimated using data collected with an electronic relief meter. Because the soil was subject to surface crusting, crust-types as well as their spatial distribution within micro-plots and their evolution with time were identified and monitored by taking photographs at different times after tillage. The results showed that the surface crust-types as well as their tillage dependent dynamics greatly explain the decrease of hydraulic conductivity and sorptivity as the cumulative rainfall since tillage increases. The exponential decaying rates were found to be significantly greater for the soil harrowed along the slope (where the runoff crust-type covers more than 60% of the surface after 140 mm of rain) than across to the slope (where crusts are mainly of structural (60%) and erosion (40%) types). That makes ponding time smaller and runoff more important. Also it was shown that soil hydraulic properties after about 160 mm of rain were close to those of untilled plot not submitted to any rain. That indicates that the effects of tillage are short lived.

  14. Soil Surface and Leave Plantain (Platanus OrientalisContamination to Pb and Cd Mapping in Rasht City

    Directory of Open Access Journals (Sweden)

    M. Amini

    2015-06-01

    Full Text Available Any change in the characteristics of air, soil, water and food that adversely affect the health of the ecosystem, activities of human and other organismsis called contamination. Heavy metal uptake by plants depends on the type and concentration of metalin soil, its bioavailability, and plant species. The use of new sciences such as geostatistics is useful for fast and simple determination of soil and leaf contamination risk. This study studied the amount of soil and leaves of Platanus orientalis contamination in order to map the lead (Pb and cadmium (Cd concentration in Rasht city using a geostatistic method. To achieve the goal, 126 samples of surface soil (0-30 cm and 76 leaf samples (Platanus orientalis were collected from city streets. Total concentrations of lead and cadmium in the soils and leaves were determined, and clay, silt and sand particle percentage, organic matters, and soil pH were measured. Average concentrations of elements in terms of mg/kg were as follows: soil’s Lead: 86.62, soil’s Cadmium: 0.6, leaf’s Lead: 8.99. For soil Pb and Cd and leaf Pb, spherical model yielded a better fit in the experimental variogram in GS+ program by using trial and error method. According to the spatial structure, Kriging and IDW estimators were used for interpolation. Kriging estimation was mapped using Arc GIS 9.2 software.

  15. The influence of surface soil physicochemistry on the edaphic bacterial communities in contrasting terrain types of the Central Namib Desert.

    Science.gov (United States)

    Gombeer, S; Ramond, J-B; Eckardt, F D; Seely, M; Cowan, D A

    2015-09-01

    Notwithstanding, the severe environmental conditions, deserts harbour a high diversity of adapted micro-organisms. In such oligotrophic environments, soil physicochemical characteristics play an important role in shaping indigenous microbial communities. This study investigates the edaphic bacterial communities of three contrasting desert terrain types (gravel plains, sand dunes and ephemeral rivers) with different surface geologies in the Central Namib Desert. For each site, we evaluated surface soil physicochemistries and used explorative T-RFLP methodology to get an indication of bacterial community diversities. While grain size was an important parameter in separating the three terrain types physicochemically and specific surface soil types could be distinguished, the desert edaphic bacterial communities displayed a high level of local spatial heterogeneity. Ten variables contributed significantly (P Namib Desert and stress the importance of recording a wide variety of environmental descriptors to comprehensively assess the role of edaphic parameters in shaping microbial communities. PMID:25939371

  16. Using Sentinel-1 and Landsat 8 satellite images to estimate surface soil moisture content.

    Science.gov (United States)

    Mexis, Philippos-Dimitrios; Alexakis, Dimitrios D.; Daliakopoulos, Ioannis N.; Tsanis, Ioannis K.

    2016-04-01

    Nowadays, the potential for more accurate assessment of Soil Moisture (SM) content exploiting Earth Observation (EO) technology, by exploring the use of synergistic approaches among a variety of EO instruments has emerged. This study is the first to investigate the potential of Synthetic Aperture Radar (SAR) (Sentinel-1) and optical (Landsat 8) images in combination with ground measurements to estimate volumetric SM content in support of water management and agricultural practices. SAR and optical data are downloaded and corrected in terms of atmospheric, geometric and radiometric corrections. SAR images are also corrected in terms of roughness and vegetation with the synergistic use of Oh and Topp models using a dataset consisting of backscattering coefficients and corresponding direct measurements of ground parameters (moisture, roughness). Following, various vegetation indices (NDVI, SAVI, MSAVI, EVI, etc.) are estimated to record diachronically the vegetation regime within the study area and as auxiliary data in the final modeling. Furthermore, thermal images from optical data are corrected and incorporated to the overall approach. The basic principle of Thermal InfraRed (TIR) method is that Land Surface Temperature (LST) is sensitive to surface SM content due to its impact on surface heating process (heat capacity and thermal conductivity) under bare soil or sparse vegetation cover conditions. Ground truth data are collected from a Time-domain reflectometer (TRD) gauge network established in western Crete, Greece, during 2015. Sophisticated algorithms based on Artificial Neural Networks (ANNs) and Multiple Linear Regression (MLR) approaches are used to explore the statistical relationship between backscattering measurements and SM content. Results highlight the potential of SAR and optical satellite images to contribute to effective SM content detection in support of water resources management and precision agriculture. Keywords: Sentinel-1, Landsat 8, Soil

  17. The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Chow, F K; Kollet, S J

    2007-02-02

    This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can represent spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-hour period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.

  18. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    Science.gov (United States)

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth. PMID:26983916

  19. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2010-11-01

    Full Text Available The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP, issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km gridspacing by TU-Wien (Vienna University of Technology over a two year period (2007–2008. A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP and the Integrated Forecasting System (IFS analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.

  20. Ecological controls on N2O emission in surface litter and near-surface soil of a managed grassland: modelling and measurements

    Science.gov (United States)

    Grant, Robert F.; Neftel, Albrecht; Calanca, Pierluigi

    2016-06-01

    Large variability in N2O emissions from managed grasslands may occur because most emissions originate in surface litter or near-surface soil where variability in soil water content (θ) and temperature (Ts) is greatest. To determine whether temporal variability in θ and Ts of surface litter and near-surface soil could explain this in N2O emissions, a simulation experiment was conducted with ecosys, a comprehensive mathematical model of terrestrial ecosystems in which processes governing N2O emissions were represented at high temporal and spatial resolution. Model performance was verified by comparing N2O emissions, CO2 and energy exchange, and θ and Ts modelled by ecosys with those measured by automated chambers, eddy covariance (EC) and soil sensors on an hourly timescale during several emission events from 2004 to 2009 in an intensively managed pasture at Oensingen, Switzerland. Both modelled and measured events were induced by precipitation following harvesting and subsequent fertilizing or manuring. These events were brief (2-5 days) with maximum N2O effluxes that varied from Nm-2h-1 in early spring and autumn to > 3 mgNm-2h-1 in summer. Only very small emissions were modelled or measured outside these events. In the model, emissions were generated almost entirely in surface litter or near-surface (0-2 cm) soil, at rates driven by N availability with fertilization vs. N uptake with grassland regrowth and by O2 supply controlled by litter and soil wetting relative to O2 demand from microbial respiration. In the model, NOx availability relative to O2 limitation governed both the reduction of more oxidized electron acceptors to N2O and the reduction of N2O to N2, so that the magnitude of N2O emissions was not simply related to surface and near-surface θ and Ts. Modelled N2O emissions were found to be sensitive to defoliation intensity and timing which controlled plant N uptake and soil θ and Ts prior to and during emission events. Reducing leaf area index (LAI

  1. Gross alpha and beta radioactivity in surface soil and drinkable water around a steel processing facility

    Directory of Open Access Journals (Sweden)

    F.O. Ogundare

    2015-07-01

    Full Text Available The mean gross alpha and beta activities in surface soil and drinkable water in the surrounding communities of a steel processing company, following a continuous exposure of workers and dwellers is determined using a low background Gas-less counting system with a solid state silicon PIPS detector for alpha and beta detection. The average activities for gross alpha and beta in soil ranged between 48.5 ± 15.8–64.0 ± 10.0Bq/kg and 411.5 ± 11.5–2710.0 ± 150.0Bq/kg respectively, whereas in water it ranged between 0.0064 ± 0.0001–0.0182 ± 0.0001 Bq/l and 0.046 ± 0.001–0.126 ± 0.001 Bq/l respectively. The average annual committed effective dose from intake of water was between 0.0304 mSv and 0.0678 mSv which is lower than the recommended reference level for ingested dose from drinkable water.

  2. Competitive surface complexation reactions of sulfate and natural organic carbon on soil

    International Nuclear Information System (INIS)

    The ecological implications of subsurface SO42- loading on nutrient cation leaching, acidification, and the destruction of concrete containers used to store low-level radioactive waste, has been thoroughly addressed. Processes favoring SO42- adsorption by the subsurface matrix tend to alleviate these adverse ecological conditions and this has been investigated to a lesser extent. In this study, the adsorption of SO42 onto several soil types with indigenous SO42- and organic carbon removed, was measured as a function of pH in the presence and absence of added natural organic matter (NOM). Sulfate adsorption was strongly pH dependent and the presence of >2 mg L-1 NOM resulted in a consistent decrease in sulfate adsorption over the pH range 4.5 to 8. The tendency of these soils to adsorb SO42- was related to their large quantity of Fe-oxides and the presence of kaolinite in the 42- was related to their large quantity of Fe-oxides and the presence of kaolinite in the 42- onto positive or neutral surface sites (XOH + H+ + SO42- = XSO4- + H2O) as a inner-sphere complex proved successful in describing the adsorption of sulfate under the experimental conditions. The estimated value of the intrinsic equilibrium constant (K) for the above reaction was of the order 1010 suggesting strong sulfate adsorption. Estimated K values were found to be unaffected by the presence of added NOM. 57 refs., 3 figs., 3 tabs

  3. Impacts of impervious surface expansion on soil organic carbon--a spatially explicit study.

    Science.gov (United States)

    Yan, Yan; Kuang, Wenhui; Zhang, Chi; Chen, Chunbo

    2015-01-01

    The rapid expansion of impervious surface areas (ISA) threatens soil organic carbon (SOC) pools in urbanized areas globally. The paucity of field observations on SOC under ISA (SOCISA), especially in dryland areas has limited our ability to assess the ecological impacts of ISA expansion. Based on systematically measured SOCISA (0-80 cm depth) of a dryland city, and land-use and land-cover change data derived from remotely sensed data, we investigated the magnitude and vertical/horizontal patterns of SOCISA and mapped the impact of ISA expansion on SOC storage. The mean SOCISA in the city was 5.36 ± 0.51 kg C m(-2), lower than that observed in humid cities but much higher than that assumed in many regional carbon assessments. SOCISA decreased linearly as the soil depth or the horizontal distance from the open area increased. SOCISA accounted for over half of the city's SOC stock, which decreased by 16% (primarily in the converted croplands) because of ISA expansion from 1990 to 2010. The impacts of the ISA expansion varied spatially, depending on the land- use and converted land-cover type. PMID:26642831

  4. Impacts of impervious surface expansion on soil organic carbon - a spatially explicit study

    Science.gov (United States)

    Yan, Yan; Kuang, Wenhui; Zhang, Chi; Chen, Chunbo

    2015-12-01

    The rapid expansion of impervious surface areas (ISA) threatens soil organic carbon (SOC) pools in urbanized areas globally. The paucity of field observations on SOC under ISA (SOCISA), especially in dryland areas has limited our ability to assess the ecological impacts of ISA expansion. Based on systematically measured SOCISA (0-80 cm depth) of a dryland city, and land-use and land-cover change data derived from remotely sensed data, we investigated the magnitude and vertical/horizontal patterns of SOCISA and mapped the impact of ISA expansion on SOC storage. The mean SOCISA in the city was 5.36 ± 0.51 kg C m-2, lower than that observed in humid cities but much higher than that assumed in many regional carbon assessments. SOCISA decreased linearly as the soil depth or the horizontal distance from the open area increased. SOCISA accounted for over half of the city’s SOC stock, which decreased by 16% (primarily in the converted croplands) because of ISA expansion from 1990 to 2010. The impacts of the ISA expansion varied spatially, depending on the land- use and converted land-cover type.

  5. A mathematical model for soil solute transfer into surface runoff as influenced by rainfall detachment.

    Science.gov (United States)

    Yang, Ting; Wang, Quanjiu; Wu, Laosheng; Zhao, Guangxu; Liu, Yanli; Zhang, Pengyu

    2016-07-01

    Nutrients transport is a main source of water pollution. Several models describing transport of soil nutrients such as potassium, phosphate and nitrate in runoff water have been developed. The objectives of this research were to describe the nutrients transport processes by considering the effect of rainfall detachment, and to evaluate the factors that have greatest influence on nutrients transport into runoff. In this study, an existing mass-conservation equation and rainfall detachment process were combined and augmented to predict runoff of nutrients in surface water in a Loess Plateau soil in Northwestern Yangling, China. The mixing depth is a function of time as a result of rainfall impact, not a constant as described in previous models. The new model was tested using two different sub-models of complete-mixing and incomplete-mixing. The complete-mixing model is more popular to use for its simplicity. It captured the runoff trends of those high adsorption nutrients, and of nutrients transport along steep slopes. While the incomplete-mixing model predicted well for the highest observed concentrations of the test nutrients. Parameters inversely estimated by the models were applied to simulate nutrients transport, results suggested that both models can be adopted to describe nutrients transport in runoff under the impact of rainfall. PMID:27037880

  6. Transformation seismology: composite soil lenses for steering surface elastic Rayleigh waves.

    Science.gov (United States)

    Colombi, Andrea; Guenneau, Sebastien; Roux, Philippe; Craster, Richard V

    2016-01-01

    Metamaterials are artificially structured media that exibit properties beyond those usually encountered in nature. Typically they are developed for electromagnetic waves at millimetric down to nanometric scales, or for acoustics, at centimeter scales. By applying ideas from transformation optics we can steer Rayleigh-surface waves that are solutions of the vector Navier equations of elastodynamics. As a paradigm of the conformal geophysics that we are creating, we design a square arrangement of Luneburg lenses to reroute Rayleigh waves around a building with the dual aim of protection and minimizing the effect on the wavefront (cloaking). To show that this is practically realisable we deliberately choose to use material parameters readily available and this metalens consists of a composite soil structured with buried pillars made of softer material. The regular lattice of inclusions is homogenized to give an effective material with a radially varying velocity profile and hence varying the refractive index of the lens. We develop the theory and then use full 3D numerical simulations to conclusively demonstrate, at frequencies of seismological relevance 3-10 Hz, and for low-speed sedimentary soil (vs: 300-500 m/s), that the vibration of a structure is reduced by up to 6 dB at its resonance frequency. PMID:27125237

  7. Calibrating a large-extent high-resolution coupled groundwater-land surface model using soil moisture and discharge data

    Science.gov (United States)

    Sutanudjaja, E. H.; van Beek, L. P. H.; de Jong, S. M.; van Geer, F. C.; Bierkens, M. F. P.

    2014-01-01

    We explore the possibility of using remotely sensed soil moisture data and in situ discharge observations to calibrate a large-extent hydrological model. The model used is PCR-GLOBWB-MOD, which is a physically based and fully coupled groundwater-land surface model operating at a daily basis and having a resolution of 30 arc sec (about 1 km at the equator). As a test bed, we use the combined Rhine-Meuse basin (total area: about 200,000 km2), where there are 4250 point-scale observed groundwater head time series that are used to verify the model results. Calibration is performed by simulating 3045 model runs with varying parameter values affecting groundwater head dynamics. The simulation results of all runs are evaluated against the remotely sensed soil moisture time series of SWI (Soil Water Index) and field discharge data. The former is derived from European Remote Sensing scatterometers and provides estimates of the first meter profile soil moisture content at 30 arc min resolution (50 km at the equator). From the evaluation of these runs, we then introduce a stepwise calibration approach that considers stream discharge first, then soil moisture, and finally verify the resulting simulation to groundwater head observations. Our results indicate that the remotely sensed soil moisture data can be used for the calibration of upper soil hydraulic conductivities determining simulated groundwater recharge of the model. However, discharge data should be included to obtain full calibration of the coupled model, specifically to constrain aquifer transmissivities and runoff-infiltration partitioning processes. The stepwise approach introduced in this study, using both discharge and soil moisture data, can calibrate both discharge and soil moisture, as well as predicting groundwater head dynamics with acceptable accuracy. As our approach to parameterize and calibrate the model uses globally available data sets only, it opens up the possibility to set up large-extent coupled

  8. Mercury in the Surface Soil and Cassava, Manihot esculenta (Flesh, Leaves and Peel) Near Goldmines at Bogoso and Prestea, Ghana

    OpenAIRE

    Adjorlolo-Gasokpoh, A.; Golow, A. A.; Kambo-Dorsa, J.

    2012-01-01

    Mercury amalgamation is used indiscriminately in the recovery of gold by small-scale native gem winners in Ghana. Mercury is released into the environment in the form of wastewater, tailing and vapor from the roasting of amalgam to separate gold. The study looked at the levels of total mercury concentration in surface soil and cassava crop from farms located within the vicinities of Bogoso and Prestea Goldmines. The surface soil total mercury concentrations ranged between 125.29 and 352.52 μg...

  9. Tritium in surface soils at the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessment and remediation of the Mixed Waste Landfill in Technical Area 3. The Mixed Waste Landfill is an inactive, low-level radioactive and mixed waste disposal site. The Mixed Waste Landfill was subject to an extensive surface soil sampling program for tritium in July 1993. Results indicate that surface soils at the landfill contain significant levels of tritium. The classified area of the landfill contains the highest levels of tritium. Results also indicate that tritium has migrated beyond the fenced boundary of the classified area of the landfill

  10. The effect of inclined soil layers on surface vibration from underground railways using a semi-analytical approach

    International Nuclear Information System (INIS)

    Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect (± 10dB) on the surface vibration response.

  11. Empirical Model Evaluation of Sedimentary Residual Soil Bearing Capacity from Surface Wave Method

    Directory of Open Access Journals (Sweden)

    Sri Atmaja Rosyidi

    2010-10-01

    Full Text Available Bearing capacity of the subgrade layers has significant influence on the performance of the overall pavement structure. In this study, the Spectral Analysis of Surface Wave (SASW method was used for assessing the stiffness of pavement subgrade layer. The SASW method employed was based on the Rayleigh-wave propagation. Using the phase difference data of Rayleigh waves, the experimental dispersion curve of phase velocity was obtained. Consequently, inversion process was conducted to obtain the shear wave velocity and the dynamic modulus of the pavement structure. The results showed that some empirical models of the shear wave velocity and the dyamic elastic modulus versus soil bearing capacity of the California bearing ratio (CBR and dynamic cone penetrometer (DCP were derived. Good agreement was also found between these empirical models compared to that of previous studies

  12. Temporal Stability of Surface Roughness Effects on Radar Based Soil Moisture Retrieval During the Corn Growth Cycle

    Science.gov (United States)

    Joseph, A.T.; Lang, R.; O'Neill, P.E.; van der Velde, R.; Gish, T.

    2008-01-01

    A representative soil surface roughness parameterization needed for the retrieval of soil moisture from active microwave satellite observation is difficult to obtain through either in-situ measurements or remote sensing-based inversion techniques. Typically, for the retrieval of soil moisture, temporal variations in surface roughness are assumed to be negligible. Although previous investigations have suggested that this assumption might be reasonable for natural vegetation covers (Moran et al. 2002, Thoma et al. 2006), insitu measurements over plowed agricultural fields (Callens et al. 2006) have shown that the soil surface roughness can change considerably over time. This paper reports on the temporal stability of surface roughness effects on radar observations and soil moisture retrieved from these radar observations collected once a week during a corn growth cycle (May 10th - October 2002). The data set employed was collected during the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) field campaign covering this 2002 corn growth cycle and consists of dual-polarized (HH and VV) L-band (1.6 GHz) acquired at view angles of 15, 35, and 55 degrees. Cross-polarized L baud radar data were also collected as part of this experiment, but are not used in the analysis reported on here. After accounting for vegetation effects on radar observations, time-invariant optimum roughness parameters were determined using the Integral Equation Method (IEM) and radar observations acquired over bare soil and cropped conditions (the complete radar data set includes entire corn growth cycle). The optimum roughness parameters, soil moisture retrieval uncertainty, temporal distribution of retrieval errors and its relationship with the weather conditions (e.g. rainfall and wind speed) have been analyzed. It is shown that over the corn growth cycle, temporal roughness variations due to weathering by rain are responsible for almost 50% of soil moisture retrieval

  13. Surface soil moisture retrievals from remote sensing: Current status, products & future trends

    Science.gov (United States)

    Petropoulos, George P.; Ireland, Gareth; Barrett, Brian

    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth's land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today's world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space.

  14. [Recent Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Surface Soils from Yangtze River Delta].

    Science.gov (United States)

    Li, Jing-ya; Wu, Di; Xu, Yun-song; Li, Xiang-dong; Wang, Xi-long; Zeng, Chao-hua; Fu, Xiao-fang; Liu, Wen-xin

    2016-01-15

    A total of 243 surface soil samples collected from 11 cities in the Yangtze River Delta region were analyzed for the concentrations, spatial distribution, component profiles and emission sources of 29 PAH species. The analytical results indicated the total concentrations of PAHs in Yangtze River Delta fell in the range from 21. 0 ng x g(-1) to 3 578.5 ng x g(-1) with an arithmetic mean and standard deviation of 310.6 ng x g(-1) and 459.1 ng x g(-1), respectively. Our data showed spatial distribution of PAHs concentrations varied greatly in the region. In addition, the contents of PAHs were positively correlated with the total organic carbon fractions in topsoil. The sites with the highest levels of PAHs in the 11 cities studied were located in Suzhou with 759.0 ng x g(-1) +/- 132.9 ng x g(-1) ollowed by the areas of Wuxi and Shanghai, with the total PAHs concentrations of 565. 3 ng x g(-1) +/- 705.5 ng x g(-1) and 349.4 ng g(-1) 220. 1 ng-g(-1) respectively. The profiles of different components pointed to a predominant role of the species with 2-4 rings, and especially for the low molecular weight components with 2-3 rings. A preliminary identification on emission sources of local PAHs was performed by the specific ratios of isomeric species and principal component analysis (PCA). The results designated industrial coal and biomass combustion as the main mixed emission sources of PAHs in surface soils from Yangtze River Delta, and tail gas from transport as another major source in some areas. PMID:27078965

  15. Potential of EnMAP spaceborne imaging spectroscopy for the prediction of common surface soil properties and expected accuracy

    Science.gov (United States)

    Chabrillat, Sabine; Foerster, Saskia; Steinberg, Andreas; Stevens, Antoine; Segl, Karl

    2016-04-01

    There is a renewed awareness of the finite nature of the world's soil resources, growing concern about soil security, and significant uncertainties about the carrying capacity of the planet. As a consequence, soil scientists are being challenged to provide regular assessments of soil conditions from local through to global scales. However, only a few countries have the necessary survey and monitoring programs to meet these new needs and existing global data sets are out-of-date. A particular issue is the clear demand for a new area-wide regional to global coverage with accurate, up-to-date, and spatially referenced soil information as expressed by the modeling scientific community, farmers and land users, and policy and decision makers. Soil spectroscopy from remote sensing observations based on studies from the laboratory scale to the airborne scale has been shown to be a proven method for the quantitative prediction of key soil surface properties in local areas for exposed soils in appropriate surface conditions such as low vegetation cover and low water content. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next 3 to 5 years (EnMAP, HISUI, PRISMA, SHALOM), a great potential for the global mapping and monitoring of soil properties is appearing. Nevertheless, the capabilities to extend the soil properties current spectral modeling from local to regional scales are still to be demonstrated using robust methods. In particular, three central questions are at the forefront of research nowadays: a) methodological developments toward improved algorithms and operational tools for the extraction of soil properties, b) up scaling from the laboratory into space domain, and c) demonstration of the potential of upcoming satellite systems and expected accuracy of soil maps. In this study, airborne imaging spectroscopy data from several test sites are used to simulate EnMAP satellite images at 30 m scale. Then, different soil

  16. Linking evaporative fluxes from bare soil across surface viscous sublayer with the Monin-Obukhov atmospheric flux-profile estimates

    Science.gov (United States)

    Haghighi, Erfan; Or, Dani

    2015-06-01

    The Monin-Obukhov similarity theory (MOST) provides the theoretical basis for many "atmospheric-based" methods (such as eddy covariance and flux-profile methods) that are widely used for quantifying surface-atmosphere exchange processes. The turbulence driven and highly nonlinear profiles of momentum, air temperature, and vapor densities require complex resistance expressions applied to simple gradients deduced from a single or few height measurements. Notwithstanding the success of these atmospheric-based methods, they often leave a gap at the immediate vicinity of terrestrial surfaces where fluxes emanate. A complementary approach for quantifying surface fluxes relies on diffusive interactions across a viscous sublayer next to the surface, referred to as the "surface boundary layer (BL)" approach. This study (for bare soil) establishes formal links between these two approaches thereby offering a physically based lower boundary condition (BC) for flux-profile methods while improving the top BC for surface BL-based formulations to include atmospheric stability. The modified lower BC for flux-profile relationships links characteristics of drying evaporating surfaces considering nonlinearities between wetness and evaporative fluxes and obviates reliance on both profile measurements and empirical surface resistances. The revised top BC for surface BL methods greatly improves the agreement with published field-scale experimental measurements. The proposed reconciliation procedure improves estimation capabilities of both flux-profile and surface BL formulations, and considerably enhances their accuracy of flux estimation when applied theoretically (in the absence of measured profiles) to drying bare soil surfaces.

  17. Ecological Screening Values for Surface Water, Sediment, and Soil: 2005 Update

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G. P.

    2005-07-18

    One of the principal components of the environmental remediation program at the Savannah River Site (SRS) is the assessment of ecological risk. Used to support CERCLA, RCRA, and DOE orders, the ecological risk assessment (ERA) can identify environmental hazards and evaluate remedial action alternatives. Ecological risk assessment is also an essential means for achieving DOE's risk based end state vision for the disposition of nuclear material and waste hazards, the decommissioning of facilities, and the remediation of inactive waste units at SRS. The complexity of an ERA ranges from a screening level ERA (SLERA) to a full baseline ERA. A screening level ecological risk assessments, although abbreviated from a baseline risk assessment, is nonetheless considered a complete risk assessment (EPA, 2001a). One of the initial tasks of any ERA is to identify constituents that potentially or adversely affect the environment. Typically, this is accomplished by comparing a constituent's maximum concentration in surface water, sediment, or soil with an ecological screening value (ESV). The screening process can eliminate many constituents from further consideration in the risk assessment, but it also identifies those that require additional evaluation. This document is an update of a previous compilation (Friday, 1998) and provides a comprehensive listing of ecological screening values for surface water, sediment, and soil. It describes how the screening values were derived and recommends benchmarks that can be used for ecological risk assessment. The sources of these updated benchmarks include the U.S. Environmental Protection Agency (EPA), U.S. Fish and Wildlife Service (USFWS), U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), Oak Ridge National Laboratory (ORNL), the State of Florida, the Canadian Council of Ministers of the Environment (CCME), the Dutch Ministry of the Environment (RIVM), and the scientific literature. It

  18. Spatial distribution of Iodine-129 in surface soil around the Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Due to the accident at the Fukushima Daiichi nuclear power plant, which was caused by the Great East Japan Earthquake, a lot of radioactive materials were released into the environment. Among them, Iodine-131, which has a short half-life of 8 days, is thought to be hardly detected after the accident is concluded. It is very important to research how leaked out Iodine-131 was diffused in order to estimate the health impact of radiation at the time of the accident. On the other hand, Iodine-129, which was leaked out and was thought to act chemically-identically as Iodine-131, has an extremely long half-life of 15.7 million years and we are able to measure it equally after the accident. By following the trail of Iodine-129, it is considered to estimate the distribution of Iodine-131. To do this, at first, it is essential to measure simultaneously Iodine-131 and Iodine-129 in the same sample picked from near-the Fukushima Daiichi nuclear power plant and examine the relation between them (for example, the isotopic ratio of Iodine derived from the nuclear power plant (I-129/I-131)). At this study, we measured Iodine-129 in surface soil within 60 kilometers of the Fukushima Daiichi nuclear power plant, which was picked by research team of Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo. We discuss Iodine-129 derived from the nuclear power plant by considering the concentration range, the relation of a distance or a direction from the nuclear power plant, and the relation between I-129 and other radioactive nuclides (Cs-134, Cs-137, I-131). Since Iodine-129, which had been leaked out from the nuclear fuel reprocessing plant in Europe, was already transferred to Japan by way of the atmospheric transportation before the accident, it is important to distinguish between Iodine-129 from this accident and from the reprocessing plant. Then, we want to obtain the I-129/I-131 ratio originating in the accident precisely and discuss the

  19. Error in Radar-Derived Soil Moisture due to Roughness Parameterization: An Analysis Based on Synthetical Surface Profiles

    Directory of Open Access Journals (Sweden)

    Bernard De Baets

    2009-02-01

    Full Text Available In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles. Moreover, it is found that soil moisture retrieval with C-band configuration generally is less sensitive to inaccuracies in roughness parameterization than retrieval with L-band configuration.

  20. Changes in soil DOC affect reconstructed history and projected future trends in surface water acidification

    Science.gov (United States)

    Hruška, Jakub; Krám, Pavel; Moldan, Filip; Oulehle, Filip; Evans, Christopher D.; Wright, Richard F.; Cosby, Bernard J.

    2013-04-01

    Over the last two decades there has been growing evidence of widespread increasing concentrations of dissolved organic carbon (DOC) in surface waters in several regions in Europe and North America. Two main drivers have been proposed to explain this observation: climate change entailing changed humidity and temperature which alter rates of microbial processes and reductions in acid deposition which lead to decreased concentrations of strong acid anions and alter rates of decomposition and solubility of organic matter in soil. The question of historical DOC concentrations is therefore important for quantifying present-day acidification and possible future recovery of the surface waters. Due to the paucity of historical data, estimates of pre-acidification chemical and biological status usually come from modeling applications. Lack of process-understanding and of consensus upon what has been driving the observed DOC trends makes modeling uncertain and model outcomes are subject to controversy. Here we apply the MAGIC model to the long-term observed soil and streamwater chemistry data from an anthropogenically acidified small Lysina catchment, Czech Republic, to illustrate the importance of choice of source of DOC during recovery from acidification. The annual mean streamwater DOC concentration increased from 15.6-16.9 mg L-1 (1993-1994) to 21.8-24.5 mg L-1 in 2010-2011, an average annual increase of 0.6 mg L-1 year-1 (porganic soil horizons. Mean annual DOC increased from 41-42 mg L-1 in 1993-1994 to 67-74 mg L-1 in 2010-2011 below the organic horizon (at 5 cm depth below the surface), an annual increase of 2.7 mg L-1 year-1 (pdissolved organic carbon (DOC) levels and sources. The highest pH = 5.7 for 1850´s as well as for 2060 (pH = 4.4) was simulated given the assumption that streamwater DOC concentration was constant at the 1993 level. A scenario accounting for an increase of DOC as an inverse function of ionic strength (it has declined as a result of decreasing

  1. Applications of remote sensing and GIS in surface hydrology: Snow cover, soil moisture and precipitation

    Science.gov (United States)

    Wang, Xianwei

    Studies on surface hydrology can generally be classified into two categories, observation for different components of surface water, and modeling their dynamic movements. This study only focuses on observation part of surface water components: snow cover, soil moisture, and precipitation. Moreover, instead of discussion on the detailed algorithm and instrument technique behind each component, this dissertation pours efforts on analysis of the standard remotely sensed products and their applications under different settings. First in Chapter 2, validation of MODIS Terra 8-day maximum snow cover composite (MOD10A2) in the Northern Xinjiang, China, from 2000-2006, shows that the 8-day MODIS/Terra product has high agreements with in situ measurements as the in situ snow depth is larger or equal to 4 cm, while the agreement is low for the patchy snow as the in situ snow depth less than 4 cm. According to the in situ observation, this chapter develops an empirical algorithm to separate the cloud-covered pixels into snow and no snow. Continued long-term production of MODIS-type snow cover product is critical to assess water resources of the study area, as well as other larger scale global environment monitoring. Terra and Aqua satellites carry the same MODIS instrument and provide two parallel MODIS daily snow cover products at different time (local time 10:30 am and 1:30 pm, respectively). Chapter 3 develops an algorithm and automated scripts to combine the daily MODIS Terra (MOD10A1) and Aqua (MYD10A1) snow cover products, and to automatically generate multi-day Terra-Aqua snow cover image composites, with flexible starting and ending dates and a user-defined cloud cover threshold. Chapter 4 systematically compares the difference between MODIS Terra and Aqua snow cover products within a hydrologic year of 2003-2004, validates the MODIS Terra and Aqua snow cover products using in situ measurements in Northern Xinjiang, and compares the accuracy among the standard MODIS

  2. Use of microwave remote sensing data to monitor spatio temporal characteristics of surface soil moisture at local and regional scales

    Directory of Open Access Journals (Sweden)

    A. Löw

    2005-01-01

    Full Text Available Hydrologic processes, such as runoff production or evapotranspiration, largely depend on the variation of soil moisture and its spatial pattern. The interaction of electromagnetic waves with the land surface can be dependant on the water content of the uppermost soil layer. Especially in the microwave domain of the electromagnetic spectrum, this is the case. New sensors as e.g. ENVISAT ASAR, allow for frequent, synoptically and homogeneous image acquisitions over larger areas. Parameter inversion models are therefore developed to derive bio- and geophysical parameters from the image products. The paper presents a soil moisture inversion model for ENVISAT ASAR data for local and regional scale applications. The model is validated against in situ soil moisture measurements. The various sources of uncertainties, being related to the inversion process are assessed and quantified.

  3. A model for estimating time-variant rainfall infiltration as a function of antecedent surface moisture and hydrologic soil type

    Science.gov (United States)

    Wilkening, H. A.; Ragan, R. M.

    1982-01-01

    Recent research indicates that the use of remote sensing techniques for the measurement of near surface soil moisture could be practical in the not too distant future. Other research shows that infiltration rates, especially for average or frequent rainfall events, are extremely sensitive to the proper definition and consideration of the role of the soil moisture at the beginning of the rainfall. Thus, it is important that an easy to use, but theoretically sound, rainfall infiltration model be available if the anticipated remotely sensed soil moisture data is to be optimally utilized for hydrologic simulation. A series of numerical experiments with the Richards' equation for an array of conditions anticipated in watershed hydrology were used to develop functional relationships that describe temporal infiltration rates as a function of soil type and initial moisture conditions.

  4. Natural radioactivity levels in surface soil of Bangalore University Campus, Bangalore and their dependence on soil parameters

    International Nuclear Information System (INIS)

    The naturally occurring radionuclides present in soil include 226Ra, 232Th and 40K. Knowledge on the distribution of these radionuclides in soil and rock is of great importance for radiation protection and measurement. Human beings are continuously exposed to the ionizing radiations from the natural sources such as 238U and 232Th present in rocks, sand, soil and cosmic rays and the internal exposure from radioactive elements we ingest through food, water and air. The resulting worldwide average of the total annual effective dose from the terrestrial radiation is 0.48 mSv, with the results for individual countries being generally within 0.3 - 0.6 mSv range

  5. The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: Implications for surface and sub-surface hydrology

    Science.gov (United States)

    Bonell, M.; Purandara, B. K.; Venkatesh, B.; Krishnaswamy, Jagdish; Acharya, H. A. K.; Singh, U. V.; Jayakumar, R.; Chappell, N.

    2010-09-01

    SummaryThere is comparatively limited information in the humid tropics on the surface and sub-surface permeability of: (i) forests which have been impacted by multi-decades of human occupancy and (ii) forestation of land in various states of degradation. Even less is known about the dominant stormflow pathways for these respective scenarios. We sampled field saturated hydraulic conductivity, K∗ at 23 sites at four depths (0 m, n = 166), (0.10 m, n = 139), 0.45-0.60 m, n = 117, (1.35-1.50 m, n = 117) under less disturbed forest (Forest), disturbed production forest of various local species (Degraded Forest) and tree-plantations ( Acacia auriculiformes, 7-10 years old, Tectona grandis, ˜25-30 years old, Casuarina equisetifolia, 12 years old) in the Uttar Kannada district, Karnataka, India, in the Western Ghats. The sampling strategy was also undertaken across three physiographic blocks and under three main soil types. Subsequently the determined K∗ were then linked with rainfall intensity-duration-frequency (IDF) characteristics to infer the dominant stormflow pathways. The Degraded Forest shows an order of magnitude decline in K∗ at the surface as result of human impacts at decadal to century time scales. The lowest surface permeability is associated with the Degraded Forests over the Laterite ( Eutric Nitosols and Acrisols) and Red soils ( Eutric Nitosols) and infiltration-excess overland flow, IOF probably occurs. Further there is a progressive decline in K∗ with depth in these soils supporting Degraded Forests. The A. auriculiformes plantations over the Red and Lateritic soils are progressively restoring the near-surface K∗, but their K∗ still remain quite low when compared to the less disturbed forest permeability. Consequently these plantations still retain the 'memory' from the previous degraded state. In contrast the permeability of the Black soils (Vertisols) are relatively insensitive to T. grandis plantations and this soil group has a very low

  6. ASSESSMENT OF EARLY SEASON AGRICULTURAL DROUGHT THROUGH LAND SURFACE WATER INDEX (LSWI AND SOIL WATER BALANCE MODEL

    Directory of Open Access Journals (Sweden)

    K. Chandrasekar

    2012-08-01

    Full Text Available An attempt was made to address the early season agriculture drought, by monitoring the surface soil wetness during 2010 cropping seasons in the states of Andhra Pradesh and Tamil Nadu. Short Wave Infrared (SWIR based Land Surface Water Index (LSWI and Soil Water Balance (SWB model using inputs from remote sensing and ancillary data were used to monitor early season agriculture drought. During the crop season, investigation was made on LSWI characteristics and its response to the rainfall. It was observed that the Rate of Increase (RoI of LSWI was the highest during the fortnights when the onset of monsoon occurred. The study showed that LSWI is sensitive to the onset of monsoon and initiation of cropping season. The second part of this study attempted to develop a simple book keeping – bucket type – water tight soil water balance model to derive the top 30cm profile soil moisture using climatic, soil and crop parameters as the basic inputs. Soil moisture derived from the model was used to compute the Area Conducive for Sowing (ACS during the sowing window of the cropping season. The soil moisture was validated spatially and temporally with the ground observed soil moisture values. The ACS was compared with the RoI of LSWI. The results showed that the RoI was high during the sowing window whenever the ACS was greater than 50% of the district area. The observation was consistent in all the districts of the two states. Thus the analysis revealed the potential of LSWI for early season agricultural drought management.

  7. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.

    Science.gov (United States)

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-03-15

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated lands. Therefore, it is necessary to find the right soil practices for more sustainable viticulture. In this regard, straw mulching has proven to be effective in other crop and fire affected soils, but, nonetheless, little research has been carried out in vineyards. This research tests the effect of barley straw mulching on soil erosion and surface runoff on vineyards in Eastern Spain where the soil and water losses are non-sustainable. An experiment was setup using rainfall simulation tests at 55 mm h(-1) over 1h on forty paired plots of 0.24 m(2): twenty bare and twenty straw covered. Straw cover varied from 48 to 90% with a median value of 59% as a result of the application of 75 g of straw per m(2). The use of straw mulch resulted in delayed ponding and runoff generation and, as a consequence, the median water loss decreased from 52.59 to 39.27% of the total rainfall. The straw cover reduced the median sediment concentration in runoff from 9.8 to 3.0 g L(-1) and the median total sediment detached from 70.34 to 15.62 g per experiment. The median soil erosion rate decreased from 2.81 to 0.63 Mg ha(-1)h(-1) due to the straw mulch protection. Straw mulch is very effective in reducing soil erodibility and surface runoff, and this benefit was achieved immediately after the application of the straw. PMID:26789370

  8. Impact of groundwater capillary rises as lower boundary conditions for soil moisture in a land surface model

    Science.gov (United States)

    Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence

    2014-05-01

    Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.

  9. Lead and polycyclic aromatic hydrocarbons (PAHs) in surface soil from day care centres in the city of Bergen, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Haugland, Toril [Geological Survey of Norway, Leiv Erikssons vei 39, N-7491 Trondheim (Norway)], E-mail: toril.haugland@kj.uib.no; Ottesen, Rolf Tore; Volden, Tore [Geological Survey of Norway, Leiv Erikssons vei 39, N-7491 Trondheim (Norway)

    2008-05-15

    Surface soil (0-2 cm) quality in 87 day care centres in the city of Bergen, Norway has been studied. Approximately 45% of the day care centres contained Pb and PAH values above recommended action levels. There are clear variations between different areas of the city. The old central part of the city hosts most of the contaminated day care centres. In suburban areas most of the day care centres have Pb and PAH concentrations below action levels. City fires, gas work emission, lead-based paint, and traffic are probably important anthropogenic contamination sources, together with uncontrolled transportation of soil from contaminated to clean areas. Geological or other natural sources are probably not an important contributor to the high levels of lead and PAH. - Surface soil in 45% of the studied day care centres was contaminated by lead and PAH.

  10. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

    Science.gov (United States)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Delire, Christine; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo

    2016-01-01

     A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyze simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models and compare them with observations from 268 Russian stations. There are large across-model differences as expressed by simulated differences between near-surface soil and air temperatures, (ΔT), of 3 to 14 K, in the gradients between soil and air temperatures (0.13 to 0.96°C/°C), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, and hence guide improvements to the model’s conceptual structure and process parameterizations. Models with better performance apply multi-layer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (12–16 million km2). However, there is not a simple relationship between the quality of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, likely because several other factors such as differences in the treatment of soil organic matter, soil hydrology, surface energy calculations, and vegetation also provide important controls on simulated permafrost distribution.

  11. Spatiotemporal analysis of urban environment based on the vegetation-impervious surface-soil model

    Science.gov (United States)

    Guo, Huadong; Huang, Qingni; Li, Xinwu; Sun, Zhongchang; Zhang, Ying

    2014-01-01

    This study explores a spatiotemporal comparative analysis of urban agglomeration, comparing the Greater Toronto and Hamilton Area (GTHA) of Canada and the city of Tianjin in China. The vegetation-impervious surface-soil (V-I-S) model is used to quantify the ecological composition of urban/peri-urban environments with multitemporal Landsat images (3 stages, 18 scenes) and LULC data from 1985 to 2005. The support vector machine algorithm and several knowledge-based methods are applied to get the V-I-S component fractions at high accuracies. The statistical results show that the urban expansion in the GTHA occurred mainly between 1985 and 1999, and only two districts revealed increasing trends for impervious surfaces for the period from 1999 to 2005. In contrast, Tianjin has been experiencing rapid urban sprawl at all stages and this has been accelerating since 1999. The urban growth patterns in the GTHA evolved from a monocentric and dispersed pattern to a polycentric and aggregated pattern, while in Tianjin it changed from monocentric to polycentric. Central Tianjin has become more centralized, while most other municipal areas have developed dispersed patterns. The GTHA also has a higher level of greenery and a more balanced ecological environment than Tianjin. These differences in the two areas may play an important role in urban planning and decision-making in developing countries.

  12. Characterization of footprint-scale surface soil moisture variability using Gaussian and beta distribution functions during the Southern Great Plains 1997 (SGP97) hydrology experiment

    OpenAIRE

    Ryu, Dongryeol; Famiglietti, James S.

    2005-01-01

    The behavior of satellite footprint-scale surface soil moisture probability density functions (PDF) was analyzed using 50-km-scale samples taken from soil moisture images collected during the Southern Great Plains 1997 (SGP97) hydrology experiment. Under the observed wetness conditions, soil moisture variability generally peaked in the midrange of mean soil moisture content and decreased toward the wet and dry ends, while in the midrange it was more widely distributed. High variability in the...

  13. Influence of surface charge of an Fe-oxide and an organic matter dominated soil on iodide and pertechnetate sorption

    International Nuclear Information System (INIS)

    Iodine-129 and technecium-99 are commonly the largest contributors to the calculated health risk associated with long-term nuclear-waste burial. The high proportion of risk from these radionuclides is due to their large inventories in many types of waste, long half-lives, and the perception that they are highly mobile in sediments. In most aquifer systems, these radionuclides exist as anions, iodide (I-) and pertechnetate (TcO4-), and sorb poorly to soils that possess a net negative charge. A series of iodide and pertechnetate sorption experiments were conducted over a pH range of 3 to 9. The two soils used in this study possessed a pH-dependent charge; one soil was collected from a wetland and derived most of its charge from organic matter, whereas the second soil was collected from an upland site and derived most of its charge from Fe/Al-oxide coatings. Although both soils had nearly identical particle size distributions, pH values, and mineral compositions, they had dissimilar surface charge and I- and TcO4- sorption behavior. The pH where the wetland soil did not have any net charge (more specifically, the Point-of-Zero-Salt Effect) was 4.4. The pH where the upland soil did not have any net charge was 4.1. Under ambient conditions, the wetland soil had a pH of 4.2 and a slight positive net charge of +0.1 meq/100g. The upland soil had a natural pH of 5.0 and a net charge of -0.25 meq/100g. Both iodide and pertechnetate sorbed appreciably more to the wetland soil than to the upland soil, likely the result of more anion sorption sites derived from the organic matter in the wetland soil. In both soils, iodide sorption was greater and exhibited a greater pH-dependency than pertechnetate sorption. Pertechnetate exhibited anion exclusion (negative Kd values) or no sorption at pH values above the Point-of-Zero-Salt Effect. Iodide sorption decreased markedly as the pH increased to the zero-point-of-charge, and remained largely unchanged at pH values above the zero-point-of-charge

  14. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application

    Science.gov (United States)

    The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...

  15. An Indirect Data Assimilation Scheme for Deep Soil Temperature in the Pleim-Xiu Land Surface Model

    Science.gov (United States)

    The Pleim-Xiu land surface model (PX LSM) has been improved by the addition of a 2nd indirect data assimilation scheme. The first, which was described previously, is a technique where soil moisture in nudged according to the biases in 2-m air temperature and relative humidity be...

  16. The pollution exchange between soil and the near-surface air layer through turbulent transfer, resuspension and dry deposition

    International Nuclear Information System (INIS)

    The exchange of pollutants between the soil and the near-surface boundary layer is considered taking into account the effects of dry deposition, sedimentation and resuspension. The time taken to reach steady-state conditions has been evaluated. The exact solutions of conventional vertical turbulent diffusion with a given lower boundary condition have been derived and analysed. (author)

  17. Understanding Spatio-Temporal Impact of Land-Surface Heterogeneity on Soil Moisture Retrieval and Validation of Remotely Sensed Soil Moisture Products

    Science.gov (United States)

    Mohanty, Binayak; Gaur, Nandita; Maheshwari, Neelam

    2016-04-01

    This work serves to address the two-fold impact of land-surface heterogeneity on the soil moisture remote sensing community i.e. it 1) complicates the soil moisture retrieval process and 2) introduces uncertainty in validating remotely sensed soil moisture products using ground based data. In the retrieval algorithm for passive remote sensing, brightness temperature has been one key variable used to estimate soil moisture. However, the quantitative understanding of how brightness temperature evolves through space, time and hydroclimates is yet lacking. In this work, we attempt to develop an understanding of W's i.e., which (land surface variables), where (hydroclimates), what (support scale) and when (time) the sensitivity of brightness temperature varies with land surface variables. To this effect, a spatial global sensitivity analysis (GSA) to estimate sensitive variables of brightness temperature (H and V polarizations) at various support scales 800m, 1.6km, 3.2km, 6.4km, 12.8km, and 25.6km, 40km was employed. The effects of upscaling through various averaging techniques are also explored. It was found that the sensitivity of brightness temperature to spatial soil moisture decreases, whereas the sensitivity of scalar variables increase with increasing support scales. Also, the higher order interactions were significant in SMAPVEX12 and SMEX02 i.e., ~18% and ~10 % respectively, whereas SGP97 and SMEX04 show ~1% and ~5% interactions respectively between land surface variables. These interactions were also observed to decreases with increasing support scale. The second part of the study addresses the challenges in validation that arise as a result of scale discrepancy between footprint scale soil moisture and observed ground based data. The designed scheme generates the spatial variance structure of footprint scale moisture redistribution as a function of a scale appropriate dominant physical factor on which soil moisture redistribution depends. The scheme was

  18. Development and hydrology of biological soil crusts -- first results from a surface inoculation experiment

    Science.gov (United States)

    Mykhailova, Larysa; Raab, Thomas; Gypser, Stella; Fischer, Thomas

    2016-04-01

    Representing a set of various micro-biocoenoses, biocrusts often reside in adjacent patches, which not necessarily relate to structural elements of the habitat, like (micro-) topography or vegetational patterns. Such biocrust patches may become more stable through the formation of mutually dependent ecohydrological regimes. For example, algal patches inhibiting infiltration and generating runoff alternate with runoff-receiving moss patches possessing high water holding capacities. Here, we preliminarily report on a lysimeter field experiment where natural biocrust isolates were used for surface inoculation to (I) prove stochastic vs. deterministic biocrust development and (II) to quantitatively relate biocrust development to soil hydrology. Lysimeter sand was collected from 3-4 m below surface at natural dune outcrops in south-eastern Brandenburg, Germany (Glashütte (GLA) and Neuer Lugteich (LUG)), where biocrust samples were collected at the respective dune bases. The lysimeters were designed to prevent runoff. In a completely randomized full-factorial design, three factors were considered. (A) Inocolum in three treatments (bare control, mosses, algae), (B) mineral substrate texture in two treatments (GLA: 55% and LUG: 79% particles >630 μm), and (C) surface compaction in two treatments (control, 41.5 kN m‑2 for 30 seconds). The samples were kept dry and re-moistened to -60 hPa two days before inoculation. After a species inventory, the inoculate was isolated by gently washing off sand particles from the biocrust samples. Algal/lichen crusts were dominated by Zygogonium ericetorum and Cladonia sp. at both sites. All moss crusts were dominated by Polytrichum piliferum and Ceratodon purpureus, whereas Brachythecium albicans was present at GLA only. 20 g of homogenized moist inoculate were spread over the surface of each lysimeter (Ø 19 cm, 22 cm depth). We performed autochthonous inoculation, i.e. biocrust isolates collected from GLA were used for inoculation

  19. Discriminating Crop, Weeds and Soil Surface with a Terrestrial LIDAR Sensor

    Directory of Open Access Journals (Sweden)

    José Dorado

    2013-10-01

    Full Text Available In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L. P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements, actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75. Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.

  20. Evaluation of double sampling for estimating plutonium inventory in surface soil

    International Nuclear Information System (INIS)

    The Nevada Applied Ecology Group (NAEG), established by the Atomic Energy Commission (Nevada Operations Office) in July 1970, is currently obtaining estimates of the total amount (inventory) of 239,240Pu in surface soil using stratified random sampling at a number of ''safety-shot'' locations on the Nevada Test Site (NTS) and the Tonopah Test Range (TTR). Since radiochemical analyses for plutonium are costly and large numbers of samples are usually required, we investigate here the usefulness of double sampling in combination with stratified random sampling for estimating plutonium inventory, wherein a less costly method of analysis is used to estimate plutonium concentrations using a linear regression relationship between the two variables. The regressions of 239,240Pu concentrations on the following auxiliary variables are considered: (1) Ge(Li) scans for 241Am on soil samples brought to the laboratory, and (2) FIDLER (Field Instrument for the Determination of Low Energy Radiation) net 60 keV counts per minute (cpm) readings of 241Am taken in the field. Data from two NTS safety-shot sites (Project 57 in Area 13 and GMX site in Area 5) indicate that except for the lower plutonium concentration zones, the use of either Ge(Li) scans or FIDLER counts in conjunction with 239,240Pu radiochemical analyses can yield estimates of inventory with greater precision than possible with plutonium analyses alone. Percentage reductions in standard errors up to 35 percent using Ge(Li) scans and up to 45 percent using FIDLER counts appear to be possible with no increase in total costs. Also, the data suggest that double sampling will supply standard errors equal to those being obtained using only plutonium analyses at cost savings of 20 to 30 percent

  1. Geochemical baseline distribution of harmful elements in the surface soils of Campania region.

    Science.gov (United States)

    Albanese, Stefano; Lima, Annamaria; Qu, Chengkai; Cicchella, Domenico; Buccianti, Antonella; De Vivo, Benedetto

    2015-04-01

    Environmental geochemical mapping has assumed an increasing relevance and the separation of values to discriminate between anthropogenic pollution and natural (geogenic) sources has become crucial to address environmental problems affecting the quality of life of human beings. In the last decade, a number of geochemical prospecting projects, mostly focused on surface soils (topsoils), were carried out at different scales (from regional to local) across the whole Campania region (Italy) to characterize the distribution of both harmful elements and persistent organic pollutants (POP) in the environment and to generating a valuable database to serve as reference in developing geomedical studies. During the 2014, a database reporting the distribution of 53 chemical elements in 3536 topsoil samples, collected across the whole region, was completed. The geochemical data, after necessary quality controls, were georeferenced and processed in a geochemistry dedicated GIS software named GEODAS. For each considered element a complete set of maps was generated to depict both the discrete and the spatially continuous (interpolated) distribution of elemental concentrations across the region. The interpolated maps were generated using the Multifractal Inverse Distance eighted (MIDW) algorithm. Subsequently, the S-A method, also implemented in GEODAS, was applied to MIDW maps to eliminate spatially limited anomalies from the original grid and to generate the distribution patterns of geochemical baselines for each element. For a selected group of elements geochemical data were also treated by means of a Compositional Data Analysis (CoDA) aiming at investigating the regionalised structure of the data by considering the joint behaviour of several elements constituting for each sample its whole composition. A regional environmental risk assessment was run on the basis of the regional distribution of heavy metals in soil, land use types and population. The risk assessment produced a

  2. Arsenic and heavy metal concentrations in surface soils and vegetables of Feni district in Bangladesh.

    Science.gov (United States)

    Karim, R A; Hossain, S M; Miah, M M H; Nehar, K; Mubin, M S H

    2008-10-01

    An investigation of various heavy metals including the arsenic (As) poisoning in soils and vegetables in five upazillas under Feni district of Bangladesh was performed by neutron activation technique using the neutron irradiation facilities of TRIGA MARK II research reactor at Bangladesh Atomic Energy Research Establishment (BAERE), Savar, Dhaka. A total of 30 samples (15 surface soils and 15 foodstuffs) were studied in five Upazillas namely as, Sonagazi, Dagan Bhuiya, Feni Sadar, Fulgazi and Parsuram of Feni district taking three samples of each kind from each upazilla. Samples of each kind together with the standard reference material (SRM) were irradiated in the same neutron flux and the gamma-rays of nuclides from the irradiated samples were assessed and screened for As, Br, U, Th, Cr, Sc, Fe, Zn and Co in soils and As, Br, Na, K, Cr, Sc, Fe, Zn and Co in vegetables (i.e; eddoe, taro, green papaya, plantain, potato, callaloo, bottle ground and carambola). The measurement of gamma-rays was carried out by means of a calibrated high resolution HPGe detector. The concentration of product nuclides containing in the irradiated samples was determined from the peak count-rates of prominent gamma-lines for the corresponding nuclides. Among all contaminants, only As, Zn and Cr for both samples were focused because of their higher values compared with the local as well as the world typical values. The present results revealed that the mean levels of As in Parsuram, Feni Sadar and Pulgazi upazillas are higher than the world typical value of 2 mg/kg. The mean values of Zn and Cr for all upazillas are higher than the world typical values 32 and 27.9 mg/kg, respectively. For the case of vegetables, the mean concentration of As is found only in Eddoe (5.33 ppm) and Taro (1.46 ppm) collected from Sonagazi and Feni Sadar upazilla; which are higher than the values in Samta (0.1 ppm for eddoe and 0.44 ppm for taro) under Jessore district of Bangladesh. The mean concentrations of

  3. High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA

    OpenAIRE

    Evan Lau; Edward J. Nolan IV; Zachary W. Dillard; Ryan D. Dague; Amanda L. Semple; Wendi L. Wentzell

    2015-01-01

    Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiple...

  4. Long term global scale root zone soil moisture monitoring at ECMWF using a surface-only land data assimilation system

    Science.gov (United States)

    Albergel, Clement; de Rosnay, Patricia; Balsamo, Gianpaolo; Dutra, Emanuel; Kral, Tomas; Munoz-Sabater, Joaquin; Isaksen, Lars; Boussetta, Souhail; Massari, Christian; Brocca, Luca

    2015-04-01

    In the framework of the H-SAF (Satellite Application Facility on Support to Operational Hydrology and Water Management) project of EUMETSAT, ECMWF is developing a re-analysis of soil moisture that will cover 1992-2014 and will make use of satellite derived surface soil moisture (SSM) from ERS-1&2, ASCAT. This study presents the first steps toward the conception of this long term global scale root zone soil moisture; a surface-only Land Data Assimilation System (so-LDAS) able to ingest satellite-derived SSM observations is tested at global scale to increase prediction accuracy for surface and root zone soil moisture. The so-LDAS is defined as an offline sequential data assimilation system (simplified Extended Kalman Filter) based on a Land Surface Model (HTESSEL) uncoupled with the atmosphere, it is driven by ERA-Interim observations based atmospheric forcing. Its impact is assessed over 2010-2013 (1) using local in situ measurements of surface and root zone soil moisture and (2) at a basin scale initialising an event based Rainfall-Runoff hydrological model. Additionally to an open loop experiment (OL no analysis) three data assimilation experiments are used with different specification of the error matrices. The first one (Asc1) has been set up to test the so-LDAS with a soil moisture standard deviation of σb=0.01 m3m-3 for the first three layers of soil analysed and σo=0.02 m3m-3 for ASCAT SSM. σb was then doubled (Asc2) and σo set to 0.05 m3m-3 to be more consistent with satellite derived SSM errors deduced from previous independent studies. In a third experiment (Asc3), σo is set to 0.05 m3m-3, σb, is set to 0.1 × (wfc - wwilt), where wfc and wwilt are the volumetric water content at field capacity and at permanent wilting point, which depend on soil texture.

  5. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    Science.gov (United States)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  6. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

    Science.gov (United States)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Decharme, Bertrand; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Delire, Christine; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo; Sherstiukov, Artem B.

    2016-08-01

    A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.

  7. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids.

    Science.gov (United States)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R; Topp, Edward

    2015-04-15

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with (14)C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. PMID:25644844

  8. Using Polarimetric SAR Data to Infer Soil Moisture from Surfaces with Varying Subsurface Moisture Profiles

    Science.gov (United States)

    Khankhoje, Uday K.; van Zyl, Jakob; Kim, Yunjin; Cwik, Thomas

    2012-01-01

    A time-series approach is used to estimate the moisture content-based on polarimetric SAR data. It is found that under the assumption of constant soil moisture, empirically observed relationships between radar backscatter and moisture are only half as sensitive to moisture as compared to actual radar data. A numerical finite element method is used to calculate the radar backscatter for rough soils with arbitrarily varying soil moisture as a function of depth. Several instance of drying and wetting moisture profiles are considered and the radar backscatter is calculated in each case. Radar backscatter is found to crucially depend on the soil moisture variation in the top half wavelength of soil.

  9. Geochemical assessment of light gaseous hydrocarbons in near-surface soils of Kutch-Saurashtra: Implication for hydrocarbon prospects

    Science.gov (United States)

    Rao, P. Lakshmi Srinivasa; Madhavi, T.; Srinu, D.; Kalpana, M. S.; Patil, D. J.; Dayal, A. M.

    2013-02-01

    Light hydrocarbons in soil have been used as direct indicators in geochemical hydrocarbon exploration, which remains an unconventional path in the petroleum industry. The occurrence of adsorbed soil gases, methane and heavier homologues were recorded in the near-surface soil samples collected from Kutch-Saurashtra, India. Soil gas alkanes were interpreted to be derived from deep-seated hydrocarbon sources and have migrated to the surface through structural discontinuities. The source of hydrocarbons is assessed to be thermogenic and could have been primarily derived from humic organic matter with partial contribution from sapropelic matter. Gas chromatographic analyses of hydrocarbons desorbed from soil samples through acid extraction technique showed the presence of methane through n-butane and the observed concentrations (in ppb) vary from: methane (C1) from 4-291, ethane (C2) from 0-84, propane (C3) from 0-37, i-butane (iC4) from 0-5 and n-butane (nC4) from 0-4. Carbon isotopes measured for methane and ethane by GC-C-IRMS, range between -42.9‰ to -13.3‰ (Pee Dee Belemnite - PDB) and -21.2‰ to -12.4‰ (PDB), respectively. The increased occurrence of hydrocarbons in the areas near Anjar of Kutch and the area south to Rajkot of Saurashtra signifies the area potential for oil and gas.

  10. Hexabromocyclododecanes (HBCDDs) in surface soils from coastal cities in North China: Correlation between diastereoisomer profiles and industrial activities.

    Science.gov (United States)

    Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Jones, Kevin; Sweetman, Andrew J

    2016-04-01

    Hexabromocyclododecane (HBCDD) is a brominated flame retardant with a wide range of industrial applications, although little is known about its patterns of spatial distribution in soils in relation to industrial emissions. This study has undertaken a large-scale investigation around an industrialized coastal area of China, exploring the concentrations, spatial distribution and diastereoisomer profiles of HBCDD in 188 surface soils from 21 coastal cities in North China. The detection frequency was 100% and concentrations of total HBCDD in the surface soils ranged from 0.123 to 363 ng g(-1) and averaged 7.20 ng g(-1), showing its ubiquitous existence at low levels. The spatial distribution of HBCDD exhibited a correlation with the location of known manufacturing facilities in Weifang, suggesting the production of HBCDD as major emission source. Diastereoisomer profiles varied in different cities. Diastereoisomer compositions in soils were compared with emissions from HBCDD industrial activities, and correlations were found between them, which has the potential for source identification. Although the contemporary concentrations of HBCDD in soils from the study were relatively low, HBCDD-containing products (expanded/extruded polystyrene insulation boards) would be a potential source after its service life, and attention needs to be paid to prioritizing large-scale waste management efforts. PMID:26841293

  11. Geochemical assessment of light gaseous hydrocarbons in near-surface soils of Kutch–Saurashtra: Implication for hydrocarbon prospects

    Indian Academy of Sciences (India)

    P Lakshmi Srinivasa Rao; T Madhavi; D Srinu; M S Kalpana; D J Patil; A M Dayal

    2013-02-01

    Light hydrocarbons in soil have been used as direct indicators in geochemical hydrocarbon exploration, which remains an unconventional path in the petroleum industry. The occurrence of adsorbed soil gases, methane and heavier homologues were recorded in the near-surface soil samples collected from Kutch–Saurashtra, India. Soil gas alkanes were interpreted to be derived from deep-seated hydrocarbon sources and have migrated to the surface through structural discontinuities. The source of hydrocarbons is assessed to be thermogenic and could have been primarily derived from humic organic matter with partial contribution from sapropelic matter. Gas chromatographic analyses of hydrocarbons desorbed from soil samples through acid extraction technique showed the presence of methane through -butane and the observed concentrations (in ppb) vary from: methane (C1) from 4–291, ethane (C2) from 0–84, propane (C3) from 0–37, i-butane (iC4) from 0–5 and -butane (nC4) from 0–4. Carbon isotopes measured for methane and ethane by GC-C-IRMS, range between −42.9‰ to −13.3‰ (Pee Dee Belemnite – PDB) and −21.2‰ to −12.4‰ (PDB), respectively. The increased occurrence of hydrocarbons in the areas near Anjar of Kutch and the area south to Rajkot of Saurashtra signifies the area potential for oil and gas.

  12. Experimental evaluation of effect on Cassie-Baxter equation of surface roughness with application to soil water repellency

    Science.gov (United States)

    Ahn, Sujung; Douglas, Peter; Doerr, Stefan; Gowenlock, Cathren; Hallin, Ingrid; Mabbett, Ian

    2014-05-01

    Manifestation of soil water repellency depends both on the surface chemistry and the physical structure of the particles making up the soil. In materials science the effect of physical structure on water repellency is often explained by the Cassie-Baxter equation. Recently, a few attempts have been made to explain water repellency of soil using the Cassie-Baxter equation for hexagonally-arrayed spheres on a flat plane. Experimental verification of this conceptual model using glass beads as model soil particles has been left somewhat incomplete, as the experimentally measured contact angles do not match well those expected from theory. This might be caused by a failure to generate a perfect arrangement of particles. Therefore, we have aimed to obtain highly precise arrangements of glass beads as model soil particles using 3D printing technology. Our aim is to generate particle frames of precise hexagonal arrangement with particles at differing separations, and to measure the water contact angles upon the particle arrays optically using a goniometer. In this contribution, we report our preliminary results in which we explore the applicability of the Cassie-Baxter equation to such regular arrays as both separation distance and surface roughness is varied. This research has been funded by Bridging the Gap in Swansea University, UK.

  13. Scale-dependent linkages between nitrate isotopes and denitrification in surface soils: implications for isotope measurements and models.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Bowling, David R

    2016-08-01

    Natural abundance nitrate (NO3 (-)) isotopes represent a powerful tool for assessing denitrification, yet the scale and context dependence of relationships between isotopes and denitrification have received little attention, especially in surface soils. We measured the NO3 (-) isotope compositions in soil extractions and lysimeter water from a semi-arid meadow and lawn during snowmelt, along with the denitrification potential, bulk O2, and a proxy for anaerobic microsites. Denitrification potential varied by three orders of magnitude and the slope of δ(18)O/δ(15)N in soil-extracted NO3 (-) from all samples measured 1.04 ± 0.12 (R (2) = 0.64, p nitrification that was partially overprinted by denitrification. Mean NO3 (-) isotopes in lysimeter water differed from soil extractions by up to 19 ‰ in δ(18)O and 12 ‰ in δ(15)N, indicating distinct biogeochemical processing in relatively mobile water versus soil microsites. This implies that NO3 (-) isotopes in streams, which are predominantly fed by mobile water, do not fully reflect terrestrial soil N cycling. Relationships between potential denitrification and δ(15)N of extracted NO3 (-) showed a strong threshold effect culminating in a null relationship at high denitrification rates. Our observations of (1) competing fractionation from nitrification and denitrification in redox-heterogeneous surface soils, (2) large NO3 (-) isotopic differences between relatively immobile and mobile water pools, (3) and the spatial dependence of δ(18)O/δ(15)N relationships suggest caution in using NO3 (-) isotopes to infer site or watershed-scale patterns in denitrification. PMID:27102809

  14. Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study

    Science.gov (United States)

    Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.

    Fugitive dust from the erosion of arid and fallow land, after harvest and during agricultural activities, can at times be the dominant source of airborne particulate matter. In order to assess the source contributions to a given site, chemical mass balance (CMB) modeling is typically used together with source-specific profiles for organic and inorganic constituents. Yet, the mass balance closure can be achieved only if emission profiles for all major sources are considered. While a higher degree of mass balance closure has been achieved by adding individual organic marker compounds to elements, ions, EC, and organic carbon (OC), major source profiles for fugitive dust are not available. Consequently, neither the exposure of the population living near fugitive dust sources from farm land, nor its chemical composition is known. Surface soils from crop fields are enriched in plant detritus from both above and below ground plant parts; therefore, surface soil dust contains natural organic compounds from the crops and soil microbiota. Here, surface soils derived from fields growing cotton, safflower, tomato, almonds, and grapes have been analyzed for more than 180 organic compounds, including natural lipids, saccharides, pesticides, herbicides, and polycyclic aromatic hydrocarbon (PAH). The major result of this study is that selective biogenically derived organic compounds are suitable markers of fugitive dust from major agricultural crop fields in the San Joaquin Valley. Aliphatic homologs exhibit the typical biogenic signatures of epicuticular plant waxes and are therefore indicative of fugitive dust emissions and mechanical abrasion of wax protrusions from leaf surfaces. Saccharides, among which α- and β-glucose, sucrose, and mycose show the highest concentrations in surface soils, have been proposed to be generic markers for fugitive dust from cultivated land. Similarly, steroids are strongly indicative of fugitive dust. Yet, triterpenoids reveal the most

  15. Regional inventory of soil surface nitrogen balances in Indian agriculture (2000-2001).

    Science.gov (United States)

    Prasad, V Krishna; Badarinath, K V S; Yonemura, S; Tsuruta, H

    2004-11-01

    Nitrogen regulates several ecological and biogeochemical processes and excess reactive nitrogen in the environment can lead to pollution problems, including the deterioration of air quality, disruption of forest processes, acidification of lakes and streams, and degradation of coastal waters. Much of the excess nitrogen inputs are related to food and energy production. An important step to understanding the sources of nitrogen and ultimately defining solutions to excess nitrogen is to describe the geographic distribution of agricultural nitrogen contributions from different regions. In this study, soil surface nitrogen loads were quantified for different states of India for the period 2000-2001. Nearly 35.4 Tg of nitrogen has been estimated as inputs from different sources, with output nitrogen from harvested crops of about 21.20 Tg. The soil surface nitrogen balance, estimated as inputs minus outputs, is found to be about 14.4 Tg surplus from the agricultural land of India. Livestock manure constituted a major percentage of total inputs (44.06%), followed by inorganic fertilizer (32.48%), atmospheric deposition (11.86%) and nitrogen fixation (11.58%). Nitrogen balance varied from deficit to surplus for different states. The highest nitrogen surplus was found in Uttar Pradesh (2.50 Tg) followed by Madhya Pradesh (1.83 Tg), Andhra Pradesh (1.79 Tg), etc. A negative nitrogen balance was found in Orissa (-0.01 Tg), Andaman Nicobar Islands (-0.32 Tg) and for some of the northeastern states. Major fertilizer consumption states were found to be Tamilnadu (204 kg/ha), Haryana (132 kg/ha), Punjab (148 kg/ha), followed by others. Similarly, nitrogen inputs from total livestock excretions were found to be high for Kerala (616 kg/ha), Jammu and Kashmir (389 kg/ha), Tamil Nadu (338 kg/ha), etc. The average nitrogen surplus of about 54 kg/ha observed for the agricultural land of the entire country of India is comparatively higher than the average surplus of about 31 kg

  16. Modeling plant, microorganisms, and mineral surface competition for soil nitrogen and phosphorus: Competition representations and ecological significance

    Science.gov (United States)

    Zhu, Q.; Riley, W. J.; Chambers, J. Q.; Tang, J.

    2014-12-01

    It is widely accepted that terrestrial ecosystem carbon dynamics are strongly coupled and controlled by soil nutrients status. Nutrient availability serves as an indicator of aboveground carbon productivity and ecosystem stability, especially when soils are infertile. In these conditions, plants have to outcompete microorganism and mineral surfaces to acquire